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1. Introduction 

 
1.1. Introduction and problem statement  

 

Soil erosion is the displacement of soil particles from one location to another by the 

action of physical forces. The agents of soil erosion are mainly water and wind, each 

contributing a significant amount of soil loss each year. Soil erosion by rainfall and 

runoff is one of the main threats to soil sustainability in Europe (Boardman and 

Poesen, 2006). Approximately 15% of the European territory is affected by significant 

soil erosion (Bosco et al., 2015; Cerdan et al., 2010). Soil erosion is the result of a 

complex suite of processes involving both land degradation and soil deformation 

(ranging from micro-straining involving particle rearrangements to large scale 

displacements and mass movement of soils in the form of slides, falls or flows) (see 

chapter 2). The upper part of the soil, which is generally the most fertile layer, is also 

the most prone to erosion. When this layer is lost through soil erosion, large costs are 

incurred (Posthumus et al., 2015; Pimentel and Burgess, 2013; Bosco et al., 2015). For 

example, soil loss can lead to reduced soil quality, including a lower nutrient capacity, 

that, in turn, will lead to a significant rise in food production costs. A nutrient deficient 

soil produces up to 30% lower crop yields (Pimentel, 2006; Lal, 1998). The nutrient 

loss cost in the U.S.A. alone reaches several billion dollars annually (Pimentel and 

Burgess, 2013). 

Soil erosion also has other environmental consequences, research has shown that 

nutrient and carbon cycling are significantly altered by mobilization and deposition 

of soil (Quinton et al., 2010; Stockmann et al., 2013; Novara et al., 2016) and an 

eroded soil may lose 75–80% of its carbon content, with the consequent release of 

carbon to the atmosphere (Morgan, 2005; Yue et al., 2016).  

Soil erosion is linked to several natural hazards, such as floods and landslides 

(Markantonis et al., 2012). It can also cause water pollution and siltation, loss of 

organic matter and a reduction in water holding capacity (Boardman and Poesen, 

2006). The protection of soil resources has therefore been recognized as an 

important objective of environmental policy (CEC, 2006). Given the increasing threat 
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of soil erosion all over the world, and the implications this has on future food security 

and soil and water quality, an in-depth understanding of the rate and extent of 

erosion processes is crucial. Despite many years of research already undertaken in 

this field, to date scientists appear to have inadequately addressed some of the ‘big 

questions’ of our discipline such as: where is erosion occurring?  How severe is it? 

(Boardman, 2006; de Vente et al., 2014). This research aims to contribute in 

decreasing some of the weaknesses in soil erosion modelling, especially in data-poor 

areas.   

It is impractical to measure soil loss across whole landscapes by directly measuring 

water-induced soil erosion across large areas using experimental plots, soil erosion 

markers (e.g Caesium 137) or sampling river sediment load. This is technically and 

logistically difficult, and very expensive. Regional assessments involving techniques 

such as those based on remote sensing also have limitations, such as, for example, 

the cost and availability of remotely sensed data with adequate resolution and 

frequency (especially on arable land where spectral patterns are extremely time-

dependent) (Boardman, 2007). Therefore, further research is needed to improve 

methods and models for the estimation of soil erosion rates, so that appropriate 

management and mitigation strategies can be assessed, designed and implemented. 

Several models exist to predict soil erosion rates by water. These differ greatly in 

terms of complexity, inputs, spatial and temporal scale (see section 2.2). 

Heterogeneity of the models also affects the modelled processes (sheet-, rill-, 

ephemeral gully erosion), the manner in which these processes are represented and 

the types of output information they provide (e.g. mean annual or event-based soil 

erosion rate) (de Vente  et al., 2013). Many efforts have been made to describe soil 

erosion processes within models to achieve a better predictability and a more 

effective identification of the parameters involved (Wilken et al., 2017; Rose, 2017; 

Boardman, 2006; Sander et al., 2002). Unfortunately, input data of sufficient accuracy, 

granularity and continuity may not always be available (Jones et al., 2003) and 

application outside the spatial domain in which erosion models have been tested 

could be problematic (Favis-Mortlock, 1998). Models therefore need to be developed 



3 
 

that recognize these data limitations, and that can still be applied to data-poor 

regions.  

Often soil erosion is closely related with an enhanced susceptibility of a landscape to 

generating mass movements. Either can be a cause or an effect of the other (Larsen 

et al., 2010; Burton and Bathurst, 1998).  Mass movements and soil erosion are part 

of a system of multiple interacting processes operating in a complex hierarchy, with 

both being highly visible expressions of critical instabilities in a landscape. Both can 

significantly affect sediment budgets, particularly at hillslope and catchment scales 

(Benda and Dunne, 1997 in Van Beek, 2002). Sediment originates from soil erosion 

processes in pre-failure conditions, from landslides during failure and again from soil 

erosion after the failure occurs. As a consequence, a great deal of attention has been 

targeting these processes (de Vente et al., 2013; Rozos et al., 2013; Bosco and Sander, 

2015) and this has led to increasing our understanding of the processes involved and 

the parameters required. However, approaches combining both these processes into 

integrated assessments of catchment hillslope dynamics remain few and far between. 

It is still a challenge to improve the estimation and prediction of soil erosion by water 

at the catchment scale, particularly when trying to consider landslides processes. 

Landslides strongly interact with surface erosion processes, both directly through 

their capacity to move a considerable quantity of soil directly into a channel network 

and indirectly by changing the local topography, vegetation cover and soil properties 

(Acharya et al., 2009; Cochrane and Acharya, 2011). As for soil erosion modelling, the 

prediction of spatial and temporal probability of landslide occurrence is still an open 

challenge (Bosco et al., 2013; Van Westen et al., 2006; Wasowski et al., 2011). 

Furthermore, both processes potentially interact with the local pattern of vegetation 

composition and health, and with the human management of land cover (for example, 

forest resources, agriculture or agroforestry resources). Sediments and geomorphic 

changes (such as gullies and significant mass movements) may have an impact on 

how each precipitation event affects the water resources at the local and catchment 

scale. This impact could potentially influence both water quality (sediment transport 

dynamics) and quantity (runoff patterns, including flooding frequency and intensity). 

Disturbances to natural resources may further complicate the chain of interactions. 
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For example, wildfires may drastically change the protective effect of vegetated land 

cover. Conversely, intense post-fire soil loss or instability may hamper the recovery 

of sensitive forest ecosystems or crop cultivations. Therefore, soil erosion and 

landslides may configure non-negligible dependencies between soil, water and forest 

resources, and agriculture practices. Models specialised in domain-specific 

components of this integrated problem may have required several years to be 

developed. The complex causal network entangling different natural resources and 

processes shows characteristics cyclic dependencies (de Rigo, 2012c; Figure 1.1), also 

known as ‘feedback’ in system science and modelling (Koopmans and Stamovlasis, 

2016; Hieronymi, 2013; Richardson, 2009). The transdisciplinary modelling 

integration required to connect domain-specific model components may also require 

the investment of several years of research (Laniak et al., 2013; Kelly Letcher et al., 

2013). Reliable modelling architectures are necessary for supporting an integrated 

assessment and management of natural resources and processes, especially 

considering that multiple domains of expertise are typically involved (de Rigo and 

Bosco, 2011; de Rigo, 2015). This is also the case for studying the interactions 

between soil erosion and landslides by integrating a multiplicity of computational-

science models and techniques. 

This research focuses on the development of an integrated modelling architecture 

for the assessment of soil erosion by water in data-poor regions affected by slope 

instability (Figure 1.2). The proposed architecture should be sufficiently flexible to 

enable the design of future transdisciplinary scenario-analyses. In particular, the 

architecture might contribute as a novel component to simplify future integrated 

analyses of the potential impact of wildfires or vegetation types and distributions, on 

sediment transport from water induced landslides and erosion. 
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Figure 1.1 - An example of the typical complexity and cyclic dependencies among 

natural resources relationships. (Credit: Copyright (C) 2010-2015 Daniele de Rigo) 

(source: de Rigo, 2012c; 2015). 

 

 
 
 
 
 
 
 
 
 
 
 

https://archive.is/o/uDCIo/ur1.ca/a0ey2


6 
 

 
 
Figure 1.2. – The picture shows some of the soil erosion processes (rills and 

ephemeral gullies – top picture) and mass movements (shallow landslides – central 

picture) that characterize the study site, located in Italy within a catchment close to 

Rocchetta Sant’Antonio. The image also illustrates the heterogeneous land cover 

patterns that are present in this area (agricultural areas, grassland, shrubs and forest), 

with uneven patch size and complex connectivity. 
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1.2. ntegrated natural resources modelling and management 

(INRMM) 

  

Soil scientists cope with a broad set of problems, each associated with different 

conceptual and computational tools. For example, the specific theory, modelling 

methods, and data required for approximating the rate and extent of soil loss differ 

from the ones needed to study slope instability. Data scarcity and the range of spatial 

and temporal scales of potential interest may further exacerbate differences, given 

the variable set of simplifications and assumptions which every specific problem 

could suggest. This variety of problems may lead to the necessity of a multiplicity of 

expertise competences which differentiate the sub-domains within soil science. 

Accordingly, a number of computational models are available, whose normal 

application is limited to domain experts who master their underpinning semantics.  

Under normal circumstances and typical domain-specific usage, these semantics can 

safely remain implicit without a proper cross-disciplinary formalisation. These 

unexpressed semantics may become an issue when established domain-specific 

models are considered for integration within a broader context.  

As briefly outlined in the previous section, natural resources are part of a complex 

causal network (Figure 1.1) with complex cyclic dependencies, such as the 

relationship between soil erosion and land cover. Land cover strongly influences the 

precipitation-runoff relationship and thus plays a decisive role in mitigating or 

exacerbating soil erosion and floods. A good level of vegetation cover or good 

agricultural practices (such as land management reflecting site specific conditions to 

limit soil loss) can positively reduce soil erosion while a degraded land cover (e.g. 

caused by wildfires or outbreaks of vegetation pests) or bad agricultural practices 

(e.g. tilling in the down-slope direction) have negative effects on the soil erosion rate. 

In turn, the climate can directly or indirectly affect soil erosion by changing the 

precipitation intensity or driving changes in land cover (de Rigo, 2012c). At the same 

time, soil erosion has a direct influence on water sediment transport and water 

resources quality. Vegetation cover, soil, water resources and land use and 

management are thus intrinsically linked.  These few examples illustrate the complex 
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interaction among soil, forest, and water resources (all instances of natural 

resources), and man-made resources such as agriculture resources,.  

showing the typical multiplicity of dimensions which may guide corresponding 

modelling-integration efforts. Different models may support different conceptual 

steps of an integrated analysis. In each specific model, the modelled physical quantity 

(e.g. tonnes of soil loss per year), or more abstract index (e.g. a dimensionless 

landslide-susceptibility index), may serve as a decision-making metric to support 

prioritising the intervention in some more critical areas. Within an integrated 

perspective, the variety of factors of potential interest is often unsuitable to be 

assessed using a unique single metric. Multi-dimensional criteria are often needed to 

assess where the array of interrelated impacts escapes a one-dimensional 

simplification. An integrated perspective on the modelling and management of 

natural resources (Integrated Natural Resources Modelling and Management, 

INRMM, (de Rigo, 2012c) may frequently imply that the set of ecosystem services 

affected by resource instability or disturbances is better described with a multiplicity 

of dimensions and criteria (Maes_et al., 2013; Maes_et al., 2016; de Rigo_et al., 2016, 

Mubareka_et al., 2016).  

This general principle may be exemplified in the specific context of this thesis, 

assessing the interactions of shallow landslides and soil erosion. The slope-instability 

analysis offered by a single conceptual model may be complementary to a similar 

analysis perfomed with a statistical model, based on a rather different computational 

mechanism. Estimates by multiple models may be integrated as different 

components of a multi-model ensemble. Moreover, a specialised model of soil 

erosion by water may integrate information produced by the ensemble of landslide-

susceptibility models, so that the protection services of different vegetation types 

may be assessed integrating the dimensions of soil erosion and slope instability.   
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1.3. Integrating uneven arrays of data and computational 

components: the role of Semantic Array Programming 

 

This defines the aforementioned wider context, and an inter-domain diversity of 

computational models and methods which complements the previously discussed 

intra-domain diversity characterising soil science numerical applications. Again, the 

multiplicity of existing computational methods is often specific to particular domains 

(e.g. forest resources, software engineering, signal processing, advanced statistics). 

Semantic array programming (SemAP) (de Rigo, 2015, 2012a, 2012b) has been 

introduced as a modelling paradigm to ease the integration of the various conceptual 

modelling-units by formulating them as data-transformation models (D-TM). D-TM 

units do not force a user to master their internal details, since they exclusively 

exchange data (extended to include parameters), with broadly supported formats. 

An integrated D-TM consists of a chain of D-TM units (whose implementation may 

also be based on different programming languages) which starting from input data 

generate a series of intermediate derivative data, up to the final desired output.  

SemAP is designed to ease the computational communication between local-

contexts, different expertise and disciplines in a simple way – but also a compact and 

unambiguous one.  This is achieved by limiting the potential generality of the 

exchanged data by means of array-based semantic constraints (de Rigo, 2012d, 

2015). The interface of each D-TM unit is formalised so as to annotate the logical pre-

conditions required for the D-TM input data to be consistent (input semantic 

constraints). For example, a certain input may be expected to be a nonnegative 

column vector, while some of the input arrays may require compatible dimensions 

for the subsequent computation to be numerically feasible. Analogously, the output 

arrays of data generated by the D-TM may logically expect some semantic constraints 

to be respected (so called post-conditions). For the D-TM modules written directly 

following the SemAP paradigm, also internal semantic constraints (so called 

invariants) may be periodically checked, to detect anomalies in the algorithm. This 

semantic annotation of intermediate data is essential at the computational 
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integration level, so as to prevent inconsistent applications of domain-specific 

modules. 

This research proposes to apply the SemAP paradigm to address the problem of soil 

erosion and mass movement modelling. This approach provides the support that is 

required to capture the complexity of the environmental modelling architecture 

(further information on semantic array programming is discussed in section 2.5), and 

is an essential premise for the proposed integrated modelling architecture to be 

easily expanded in future, to include new steps toward a fully integrated 

environmental analysis.  

 
 

1.4. Key processes - The interactions between soil erosion by water 

and mass movements 

 

Following the overview on the computational-science integration challenges and 

approaches which characterise the novel contribution here proposed, a more specific 

discussion is needed concerning the core interaction between soil erosion by water 

and the mass movement of sediments. 

Soil erosion by water is particularly high where erodible soils are coupled with a high-

energy relief and high intensity rainfalls. Landslides may play an important role within 

soil erosion process through their capacity to remove and expose large parts of slopes 

in a relatively short time (Van Beek, 2002). Soil erosion by water and shallow 

landslides are often the main source of waterway sediment load in hilly catchments 

(Morgan, 2005; Benda and Dunne, 1997; Acharya et al., 2011). Although spatially and 

temporally constrained, especially when compared with surface wash, shallow 

landslides can have a high impact on the sediment budget of a catchment  (Van Beek, 

2002), for example by displacing large volumes of soil along gully systems created by 

surface erosion processes (Pla Sentis, 1997), by exposing soils along landslide scars 

(Valentin et al., 2005; Mazaeva et al., 2013), or by retrogressive movement of a mass 

movement increasingly exposing soils (Acharya, 2011). 
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Soil erosion processes can enhance landslide susceptibility as it affects the vegetation 

cover, changes the local topography and changes the properties of the near surface 

deposits, altering the hydro-geology and reducing the shearing resistance of these 

materials (Rozos et al., 2013; Lee, 2004; Popescu, 1994; Cochrane and Acharya, 2011; 

Acharya et al., 2009). The spatial distribution of the reworked sediments and their 

particle size composition play an important role in soil erosion processes (Sander et 

al., 2011) and mass movements, often in the form of mudflows, can form where 

significant accumulations of eroded slope materials are found (Nearing et al., 2005). 

The changes in the rate of soil erosion by water, occurring after a landslide has taken 

place, can be strong enough to impact on ecosystems services. Ecosystem services 

consist in the benefits that the natural environment and a properly-functioning 

ecosystem bring to people (de Rigo et al., 2016; Maes et al., 2016). The magnitude 

and frequency of landslide-derived sediment yields is also of critical importance for 

the safety of settlements and infrastructure located in downslope areas (Acharya, 

2011). However, further research is needed to achieve a better understanding of the 

effects and evolution of landslide-altered topographies on soil erosion. In turn, this 

will assist with the development of improved management of land and water 

resources (Acharya et al., 2009).  

 

 

1.5. Aims and objectives of the thesis 

 

In the previous sections, some core components of the proposed research 

contribution were introduced in their context. A synthesis of aims and objectives is 

here offered.  

The overall aim of this research is to better integrate and quantify the role of shallow 

landslides within soil erosion process modelling in data-poor regions.  

Hillslope processes can be envisaged as a cascade where surface erosion and mass 

movements are visible expressions of critical instabilities in a complex system of 

interacting processes that control the downslope movement of material (Van Asch, 

1980 in Van Beek, 2002).  Landslide events can result in changes in soil erosion rates 
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that are strong enough to deliver significant cascading impacts on ecosystems. To 

support the integrated assessment of these processes, the design and development 

of reliable modelling architectures is required. This research,focused on data-poor 

regions, proposes a new semi-quantitative method for better estimating the 

contribution of shallow landslides on soil erosion losses in areas affected by slope 

instability and with a limted data availability, by combining heuristic, empirical and 

probabilistic approaches.  

The main objectives of this thesis are to:  

1) improve, in data-poor regions, the estimation and prediction of soil erosion by 

water in catchments affected by shallow landslides triggered by water.  

2) Develop a robust approach to reduce the uncertainty in shallow landslide 

susceptibility assessments in data-poor condition.  

 

 The main activities of this study are to: 

1) Select and apply appropriate soil erosion models to estimate soil erosion by 

water in data-poor regions. 

 

Despite the efforts of the scientific community, the predictive value of soil erosion 

models is still limited, especially when the necessary data for running and calibrating 

the models (e.g. soil structure or temporal high resolution rainfall data) are poor or 

lacking (Govers, 2011). An evaluation of quantitative soil erosion and sediment yield 

models resulted in the selection of two approaches for further modification as they 

have the greatest flexibility for modelling soil erosion in data-poor regions and are 

suitable for application at a catchment scale.  

The first of the selected soil erosion models is an extended version of the Revised 

Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). The model was applied, 

within the study area, for estimating the pre- and post-failure rate of soil erosion by 

water. The other model is the revised version of the Morgan-Morgan-Finney model 

(MMF) (Morgan et al., 1984). Despite its suitability to run in data-poor areas, due to 

the lack of some of the input data, we decided to use only the first of these models 

for estimating the soil loss within the catchment.  
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2) Develop a robust approach for modelling landslide susceptibility in a data-

poor area. 

The assessment of spatial probability is one of the main challenges in landslides 

modelling. Despite the many different approaches (heuristic, deterministic and 

statistical; van Westen et al., 1997) spatial landslide susceptibility assessment 

remains a challenge. Different techniques for improving the spatial probability 

prediction of shallow landslides in data poor regions were investigated. 

A new semi-quantitative method, based on an ensemble approach, was used for 

combining deterministic and probabilistic approaches in order for the uncertainty to 

be mitigated.  

The application of an ensemble approach, especially in data poor regions, could 

potentially reduce the uncertainty and mitigate local poor performance associated 

with individual models, by excluding outlier estimations.  

3) Estimate the effects of shallow landslides on water-induced soil erosion in a 

data-poor catchment 

An in-depth analysis of the relationship between soil erosion and shallow landslides 

within the hydrological system (the set of interacting or interdependent component 

parts forming a complex whole) was carried out. A semi-quantitative modelling 

methodology to support the integrated assessment of soil erosion, by incorporating 

rainfall induced shallow landslides processes in data-poor regions, was developed 

and tested in the study area.  

 

 

1.6. Assumptions and constraints 

 

This research was designed and undertaken in collaboration with the National 

Research Council – Institute for Geo-Hydrological Protection  (CNR-IRPI) of Bari (Italy). 

A field survey, with important local support from Dr. Wasowski (CNR-IRPI, Bari) was 

designed to collect information on soil cohesion, soil texture, soil moisture, bulk 

density and plant height (mainly necessary to run the revised MMF (RMMF; Morgan, 

https://en.wikipedia.org/wiki/Interaction
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2001) model and to predict shallow landslide susceptibility applying the infinite slope 

stability model) on a number of different plots.  

The project results were constrained by the quality and coverage of the data obtained 

during the field survey and the availability of data provided by the CNR-IRPI. 

Unfortunately, adverse weather condition during the field season (a prolonged dry 

spell with temperatures well above the historical average) resulted in a reduced set 

of data (because of the difficulties in sampling) that was interesting in its 

representation of extreme dry conditions, but far from characteristic of long term 

conditions.  

The thesis is therefore mainly based on freely available datasets (described in section 

4.2.3.1) and three datasets provided by Dr. Wasowski (CNR-IRPI, Bari):  

i) a vector map of the mass movement which occurred in 2006 within the 

study area (figure 3.6) 

ii) a land cover map of the catchment based on ASTER imagery (figure 3.8) 

iii) a digital elevation model (raster) of the study site at a resolution of 5 

metres. 

Mass movement map 

This landslide inventory was made available in a geospatial vector data format (Esri 

Shapefile) projected in Universal Transverse Mercator coordinate system (WGS1984 

UTM Zone 33N). It contains more than 400 landslides that affected the catchment in 

the year 2006 (more details in chapter 3) ranging from few to thousands of square 

meters. This dataset is based on high resolution IKONOS satellite imagery and was 

created by the CNR-IRPI of Bari (Wasowski et al., 2010). 

Land cover map  

Classified land cover for the year 2000 projected in WGS1984 UTM Zone 33N. The 

dataset has a resolution of 5x5 metres. The land cover database consists of four 

different classes (pastures, crops, grass and woods) having a resolution of 5x5 metres, 

and was produced by CNR-Irpi (Bari) using ASTER imagery (July 2000). Four ASTER 

bands were analysed and used for classifying this area (Wasowski et al., 2010). 

Further information is available in section 3.5. 
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Digital elevation model 

The Digital Elevation Model (DEM) has a resolution of 5x5 meters and WGS1984 UTM 

Zone 33N as coordinate system. It covers the whole study site and was obtained by 

researchers of the CNR-Irpi of Bari from a 1:5,000 scale topography map of the area 

(Wasowski et al., 2012). 

The lack of detailed data in this case provided an ideal basis for this research to 

develop innovative modelling solutions that would work in data-poor conditions. 

 
 

1.7. Thesis structure 

 

This thesis contains seven chapters. This introduction provides the outline of the 

research and a further six chapters provide greater detail of key aspects of the 

research.  

Chapter two covers an overview of the physical processes of slope stability and soil 

erosion by water and analyses existing integrated modelling approaches.  

Chapter three describes the physiography of the study area near Rocchetta 

Sant’Antonio and  the Daunia region in southern Italy.  

Chapter four develops an approach to model soil erosion in data poor regions.  

Chapter five addresses the multi-scale robust modelling approach to estimate 

landslide susceptibility.  

Chapter six forms  the core of the thesis and outlines the coupled architecture for 

modelling the effects of shallow landslides triggered by water on soil erosion using a 

case study in the Rocchetta Sant’Antonio catchment. 

Chapter seven presents a summary of the obtained results, and provides suggestions 

for future research. 

 



16 
 

2. Literature review 

 
2.1. Soil erosion and slope stability processes: an overview 

 

Land degradation can be regarded as any change or disturbance to the land perceived 

to be deleterious or undesirable (Johnson et al., 1997). Land degradation is an 

important issue globally and can be the result of multiple interacting processes, 

including soil erosion, soil sealing, soil compaction, the decline in organic matter, 

mass movements, salinization, contamination and biodiversity decline 

(Montanarella, 2007). All these processes can lead to a reduction of the potential 

agricultural productivity with a consequent high impact on food security. For 

example, the productivity of some lands can decline up to 50% due to soil erosion 

and desertification (Eswaran et al., 2001). During the last 40 years, as a result of soil 

erosion, about 30% of the world’s cropland has become unproductive (Pimentel and 

Burgess, 2013). Estimates of the extent of land degradation vary, but approximately 

one third of the world’s arable land has been affected by degradation and 

desertification to date (UNCCD, 2015). 

Although for a holistic analysis of land degradation all the involved processes are 

important, here we will focus on soil erosion by water and mass movements being 

these processes the foundation of this research that aims to better integrate and 

quantify the role of landslides in soil erosion. 

 

 

Soil erosion 

According to Huber et al. (2008): “Soil erosion is a natural process that has been 

largely responsible for shaping the physical landscape we see around us today, 

through distribution of the weathered materials produced by geomorphic 

processes”. 

Soil erosion is the wearing away of the land surface by physical forces such as rainfall, 

flowing water, wind, ice, temperature change, gravity or other natural or 
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anthropogenic agents that abrade, detach and remove soil or geological material 

from one point on the earth’s surface to be deposited elsewhere. Soil erosion is a 

complex phenomenon influenced by very diverse factors such as land cover, climate 

and topography, and strictly linked to human practices and activities (Guerra et al., 

2017; Goudie and Boardman , 2010) that can also exacerbate this process (Bosco et 

al, 2009). While land cover affects soil erosion either positively (i.e. forests cover and 

good agricultural practices) or negatively (wildfire-degraded cover and bad 

agricultural practices (Foley et al., 2005)), climate affects soil erosion, both indirectly 

by driving land cover changes and directly by varying precipitation intensity and 

duration. At the same time, soil erosion influences water sediment transport, water 

resources quality and water storage loss (Hansen and Hellerstein, 2007). 

Referring to soil erosion as a threat to soil implicitly means ‘accelerated soil erosion’. 

The threshold above which soil erosion should be regarded as a major problem is 

controversial. The soil formation processes and rates vary substantially spatially. For 

example, considering the European continent, in Switzerland, the tolerable soil 

erosion rate is generally 1 t ha-1 yr-1, that can increase to 2 t ha-1 yr-1 for some soil 

types (Schaub and Prasuhn, 1998). Verheijen et al. (2009) report a general upper limit 

of 1.4 t ha-1 yr-1 in Europe, while 2t ha-1 yr-1 is the threshold in Norway for considering 

the soil loss as tolerable (Srebotnjak et al., 2010). For establishing what could be the 

tolerable soil erosion the soil formation rates were proposed as a basis. In Europe the 

current scientific knowledge indicate that 0.3 – 1.4 t hs-1 yr-1 is the rate of a tolerable 

soil loss (Verheijen et al., 2009). This range depends on the rate of dust deposition 

and on the driving factors of weathering (e.g. parent material, climate, etc.). Soil 

erosion by water accounts for the greatest loss of soil in Europe compared to other 

erosion processes (e.g. wind erosion) (Panagos et al., 2015) and the recent policy 

developments in the European Commission, as the Soil Thematic Strategy (EC, 2006)  

and the 7th Environmental Action Programme (EP and Council, 2013), call for 

quantitative assessments of soil loss rates.  We here focused our attention in 

improving modelling techniques for assessing soil erosion by water, also considering 

that sheet and rill erosion (see following paragraph) are the dominant types of 

erosion (Pimentel and Burgess, 2013) all over the world.  
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Soil erosion by water 

Water-induced soil erosion can result from rainfall, snowmelt or artificially by 

irrigation (Foster, 1982), and there are three main processes involved: detachment, 

transport and deposition (Figure 2.1). Soil erosion occurs in various forms such as 

splash, sheet, rill or gully erosion (Morgan, 2005) depending on the stage of progress 

in the erosion process and the position in the landscape (Figure 2.2). These processes 

are briefly explained below. 

 

Detachment - The soil detachment essentially involves two processes, the impact of 

raindrops on soil surface, where it overcomes the interstitial force of soil particles 

(rainsplash erosion), and the flow traction. Rainsplash action is only effective if the 

rain falls with sufficient intensity. The kinetic energy of raindrops is able to detach 

and move soil particles a short distance (Bryan, 2000). Although considerable 

quantities of soil may be moved by rainsplash, it is generally all redistributed back 

over the surface of the soil. On steep slopes, there can be a modest net downslope 

movement of splashed soil due to the effect of gravity and the gradient of the land. 

The main consequence of rainsplash erosion is to weaken the soil surface for 

transport by overland flow (Morgan, 2005). 

Transport - Transportation of soil particles occurs by surface runoff. It occurs when 

the amount of water accumulating on the soil surface exceeds the infiltration 

capacity of the soil and excess water from rain, meltwater or other sources, flows 

over the land as a sheet (Beven, 2004).  

Deposition – “The deposition of soil occurs when the transport capacity of overland 

flow becomes smaller than the settling velocity of particles owing to gravity. These 

particles are loosely deposited and can be easily remobilized” (Saavedra, 2005). For 

example, on the upslope part of erosion plots, where the flow velocity is low because 

of a small flow-contributing area as well as a short slope length, sediment is easily 

trapped in depressions or in channel beds. It is remobilized mainly by raindrop 

impacts. Downslope, an increase in flow velocity enhances the soil particle 

remobilization and rain-impacted flow transport, mainly depending on slope 

steepness (Saavedra, 2005). 
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Sheet erosion - Sheet erosion is the uniform, evenly distributed detachment of soil 

from the soil surface (Hairsine and Rose, 1992). Sheetwash erosion occurs without 

any well-defined channel and can manifest itself across entire slopes. As a 

consequence, the erosion can affect large areas and move significant amounts of soil.  

Rill erosion - Rills occur when overland flow begins to develop preferential flow 

paths. In turn, these flow paths are eroded further which results in small, well-defined 

concentrations of overland water. In many cases, small rills may disappear over time 

due to sedimentation. However, persistent micro-rills can develop further to become 

rills with a subset eventually becoming gullies (Figure 2.2). (Nearing et al., 1997; 

Saavedra, 2005). 

Gully erosion - Gullies are deeper channels, often resulting from unchecked rill 

erosion. Due to their size, gullies are capable of moving large amounts of soil, into 

larger channels such as streams and rivers and thus out of the original site. Gully 

erosion is often the main source of sediments in a catchment (Valentin et al., 2005). 

 

 
 

Figure 2.1 - Soil erosion and transport on inter-rill and rill areas (source: Doe and 

Harmon, 2001). 
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Figure 2.2: Schematic representation of rill, inter-rill areas and gullies in a sub-

catchment (source: Saavedra, 2005). 

 

Landslides 

The term ‘landslide’ generally denotes a downslope movement of earth, rock or 

debris due to the action of one or more external forces acting together. Rainfall, 

earthquakes, volcanic eruption or anthropogenic activity are only some of the 

numerous forces capable to generate landslides. Following Varnes (1978) a landslide 

can be generally classified by two names, the first used to describe the materials 

forming the landslide (e.g. earth, rock, mud or debris) and the second that represent 

the type of mass movement (e.g. falls, slides, topples). 

The landslides occur when stresses acting on a soil mass on a hillslope exceed the soil 

strength. It has generally been recognized that these forces are functions of various 

parameters relating to bedrock geology, lithology, geotechnical properties, rainfall 

characteristics and duration, groundwater conditions and land-use patterns. As well 
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as natural factors, in many cases human interferences are also responsible for 

triggering the landslides and create the same effects on a slope as a range of natural 

processes. Some of the common examples of human interferences leading to 

landslides are changes in land-cover, deforestation and cutting of slopes (Lanni, 

2012). 

The focus is on rainfall triggered shallow landslides involving the downslope 

movement of soil or rock occurring predominantly on the surface of the rupture or in 

relatively thin zones of intense shear strain within the soil mantle or weathered 

bedrock (typically to a depth from a few decimetres to several metres). 

It is now widely accepted to consider that water-induced shallow landslides in steep 

hillslopes are triggered by significant rainfall events which substantially increase the 

soil pore pressure (Bordoni et al., 2015; Anagnostopoulos et al., 2015; Tohari et al., 

2007). An increase in pore pressure reduces the soil's shear strength eventually 

leading to slope failures. It is typically observed that significant pore pressures are 

generated in the lower areas of a hillslope (Tohari et al., 2007; Anderson and Sitar, 

1995). However, the generation of pore pressure depends on various site specific 

factors related to hydrology, topography and soil properties.  

Water plays a major role not only in the initiation of failure, but also in the way that 

the earth then flows or slides and the distance that the landslide mass travels. Often, 

shallow landslides move fast and can be extremely destructive. 

The protection of soil has been recognised as one of the main challenges to society, 

addressing this challenge has therefore formed the focus of many environmental 

policies (CEC, 2006). As mentioned in Chapter 1, it is well documented that soil 

erosion leads to a decline in organic matter and carbon cycling, a reduction of crop 

productivity and water storage capacity, a breakdown of soil structure and a host of 

other processes such as enhanced siltation of streams and reservoirs, and enhanced 

flood risk (Pimentel and Burgess, 2013; Quinton et al., 2010; Bosco et al., 2009; 

Boardman, 2006; Bakker et al., 2004) and it is also closely related with an enhanced 

susceptibility of a landscape to generating mass movements (Larsen et al., 2010; 

Burton and Bathurst, 1998). Mass movements are often more confined in both space 

https://www.sciencedirect.com/science/article/pii/S0012825216302458#bbb0025
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and time than soil erosion, essentially a highly disperse manifestation of mass re-

distribution in a landscape.   

Good qualitative and quantitative data sets and process models are required at a 

range of scales to enable the evaluation of management strategies that aim to reduce 

the negative impact of these processes on the economic, social and environmental 

development of sensitive regions. Although past research has identified the key 

mechanisms involved (Morgan and Nearing, 2016; Shi et al., 2012; Morgan, 2005; 

Bryan, 2000; Sidle and Ochiai, 2006; Montrasio and Valentino, 2008), soil erosion and 

landslide modelling still faces some fundamental problems.  These include the lack of 

high resolution input data, the processes considered within the models (e.g. rill 

erosion, gully erosion, sediment deposition etc.) and the complex interactions among 

the involved processes. Several studies documented the large impact of landslides on 

catchment sediment yield (Figure 2.3), but approaches combining both soil erosion 

and slope instability into integrated assessments of catchment hillslope processes 

remain few and far between (de Vente et al., 2013).  

The capacity of the existing models to consider, at the same time, the spatial and 

temporal probability of landslides and soil erosion occurrence will be discussed in the 

following paragraphs. 
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Figure 2.3: Schematic diagram showing different phases of sediment transport in a 

hillslope: (A) initiation of overland flow and soil erosion, (B) failure initiation and 

retrogressions, (C) mobilisation of failure materials and (D) changes in hillslope profile 

following landslides (source: Acharya, 2011). 
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Both soil erosion and landsliding are manifestations of critical instabilities in 

catchments and form important indicators of the health of our landscapes. It is 

impractical to directly measure soil erosion in the field at a landscape or larger scale, 

and therefore a modelling approach is necessary (Bosco et al., 2015). Many limits in 

modelling soil erosion still exist; most of the developed models can suffer from a 

plethora of problems such as over-parameterisation, unrealistic requirement of input 

parameters or the unsuitability to the local conditions of the modelled processes 

(Merritt et al., 2003). One of the major limitations in modelling soil erosion is that its 

interactions with mass movements and riverbanks are often not considered (de 

Vente et al., 2013). Landslides strongly interact with surface erosion processes, 

directly and indirectly.  As already mentioned, they have a capacity to move a 

considerable quantity of soil directly into the stream network and change the local 

topography and soil properties (Acharya et al., 2009). As for soil erosion modelling, 

the prediction of spatial and temporal probability of landslide occurrence is still an 

open challenge (Van Westen et al., 2006; Bosco et al., 2013) and its impact is 

therefore difficult to include. 

 

 
2.2. Model complexity and accuracy 

 
2.2.1.  Physically based, conceptual and empirical modelling  

 

The practical suitability of physically based models is debated; the deterministic 

verification of any model outcome is largely not possible, to exactly reproduce a 

feature of nature that is the outcome of a highly non linear system (having, generally, 

poorly known initial and boundary conditions) it is almost impossible (Bras et al., 

2003; Bosco et al., 2015). Theoretically, physically process based models have the 

greatest potential to be applied in environmental modelling but their optimisation 

for the local condition of small catchments is a strong limitation. Often they show 

poor predictive capabilities if applied in different catchments and conditions (de 

Vente et al., 2013). In addition, the enormous gap between the richness and accuracy 

of the input parameters required by physically based models and the actual 
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availability of verifiable large-scale datasets limits their applicability (Stroosnijder, 

2005). The input parameters uncertainty is probably the main reason why more 

complex physically based models do not generally obtain better results than 

regression-based models, especially if applied at the catchment or larger scale.  

More complex models with better process descriptions should, in principle, be 

capable of better output forecasts. Jetten et al. (2003) found that the introduction of 

additional parameters into a model introduce an additional error that often 

outweighs the potential improvement linked with a better process description. 

Anyway, models are never totally physically based, numerous authors showed that 

for obtaining reasonable results it is necessary to calibrate the models (Hessel et al., 

2003). 

The growing desire by decision makers to use models for efficiently capturing and 

measuring the spatial and temporal aspects of soil erosion and landslide susceptibility 

feeds an effort to improve the performance of these models. The development of a 

distributed model with plausible physical basis and relatively low complexity is 

particularly attractive. However, the environmental complexity due to interactions of 

physical, biological and chemical processes is very high. Many of the environmental 

processes are nonlinear, with considerable uncertainty about their nature and their 

interconnections. Under these conditions stochastic, dynamic models should be the 

rule rather than the exception; the uncertainty which pervades most environmental 

systems demands an alternative stochastic approach to the deterministic 

mathematical equations based on well known scientific laws (Young, 2002). This is 

discussed in further detail below.  

To overcome the limits of both the physically based and empirical approaches it 

would be interesting to explore the applicability of some core concepts derived from 

a Data Based Mechanistic (DBM) approach (Young and Lees, 1993; Young, 1998).  

Data-Based Mechanistic models constitute a class of models that have intermediate 

characteristics with respect to physically based and empirical models. Young and Lees 

(1993) were the first to use the term ‘data-based mechanistic modelling’, but this 

concept had been around and developed considerably over several decades. The first 

applications in a hydrological context were published in the early 70s modelling 
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rainfall and flow processes (Whitehead and Young, 1975; Young, 1974) and water 

quality (Beck and Young, 1975). These approaches share some of the properties that 

are typical to empirical models, in particular the inductive approach to identification, 

in contrast to the hypothetical-deductive approach that is typical of mechanistic 

models. However, they are similar to mechanistic models in their attempt to provide 

at least a partial description of the physical behaviour of the system. After an initial 

black-box modelling stage has been carried out, the model follows a mechanistic 

approach on the physical laws that are most likely to control the behaviour of the 

system under study (Young, 2002). 

In particular, a recurring DBM methodology relies on identifying some mathematical 

properties of the process to model, based on the physical nature of the process, and 

to constrain the numerical model under development to automatically satisfy these 

properties. For example, knowing that a physical quantity represents the share of 

terrain (from 0 % to 100 %) with a certain characterisation of interest, an empirical 

model trained with available measured data is generally unable to guarantee that the 

estimated quantity will not occasionally have values higher than 100 %. 

However, this semantic property might be added into the mathematical formulation 

of the empirical model. This way, the model becomes slightly less general but 

physically consistent. 

In recent years the hydrological literature has shown an increasing interest in the top-

down approach (e.g. Jothityangkoon et al., 2001; Son and Sivapalan, 2007; Willems, 

2014; Hrachowitz and Clark, 2017) due to the relative failure of the reductionist 

approach in this field. It involves starting with the simplest model configuration at a 

large time scale (i.e. annual), and gradually increasing the complexity of the model 

with decreasing time scales (annual to monthly and finally to daily), in response to an 

evaluation of the model predictions at each time scale. To follow the same direction 

in modelling soil erosion, landslide susceptibility and their integration into one 

modelling approach is therefore worth investigating. 
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2.2.2.  Soil erosion by water and landslide prediction: an overview on 

capabilities and limitations  

 
2.2.2.1. Soil erosion by water: models and their limitations  

 

Many different models exist for estimating the process of soil erosion by water. These 

differ in terms of complexity, data requirement, spatial and temporal scale, physical 

processes and in the manner that these processes are represented (Table 2.1). In-

depth reviews on different soil erosion models are available in many different 

publications such as: Merritt et al. (2003), Aksoy and Kavvas (2005), de Vente and 

Poesen (2005), de Vente et al. (2013) and Pandey et al. (2016), with regard to the 

previously mentioned factors. Table 2.1 summarises 33 different soil erosion models 

in terms of their classification, scales of application and input data requirements. These 

models are classified in physically based (yellow-green colour in the table) (based on 

the solution of fundamental physical equations), conceptual (in salmon) (when exists 

a non-physical but conceptually meaningful relation between the elements of the 

process) and empirical (in blue) (based on the analysis of observations). The model 

classification refers to the over-arching process representation of the model. These 

models were developed for a wide range of applications, over a range of different 

scales (from the plot to the regional scale approaches) and, regarding the temporal 

scale, can be classified as event-based models (that model within-storm runoff and 

soil erosion processes), continuous simulation models (calculates erosion through the 

year and over many years) or annual (for models calculating only yearly averages). 

The data requirement, including the spatial and temporal variation of model input, 

range from low to high (typical of physically based models). 

 

Table 2.1 – List of the analysed soil erosion and sediment transport models and of 

their main characteristics (spatial and temporal scale, type of the model and level of 

the data requirement). The acronyms and associated references in this table are 

discussed in the main text. 
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As noted earlier in section 2.1, soil detachment, sediment transport and deposition 

are the main soil erosion processes. Although the importance of overland flow has 

now been recognised, in the past the detachment of soil from the surface was 

considered to be only the result of raindrop impact. The main involved processes, 

leading to sediment detachment, differ in different conditions (Merritt et al., 2003). 

As previously mentioned, raindrop impact generates a locally intense shear stress at 

the soil surface, resulting in rainfall detachment (Loch and Silburn, 1996). Likewise, 

overland flow causes a shear stress on the soil surface which, if it exceeds the 

cohesive strength of the soil, results in flow detachment. Sediment transport capacity 

is the maximum sediment flux that can be transported by a flow. Several equations, 

depending on different hydraulic variables such as shear stress, flow discharge or unit 

stream power, may be applied (Wainwright and Parsons, 1998). In general, the 

sediment transport formulas, in soil erosion modelling, belong to the following family 

of equations: 

                          DF = α(τ  − τ cr )(qc − Tc ),                                      (2.1) 

 

where DF is flow detachment (kg m-2 s-1), α (s2 kg-1) is a parameter, τ − τcr (kg m-1 s-2) 

represents the excess shear stress and qc − Tc (kg m-1 s-1) the difference between 

sediment flux and transport capacity.  

 

Physically based models 

Soil erosion physics-based models are based on the solution of fundamental physical 

equations describing streamflow and sediment and associated generation in a catchment. A 

sediment transport equation is present within every physically based soil erosion 

model (e.g. WEPP (Laflen et al., 1991), PESERA (Kirkby  et al., 2003) and LISEM (de 

Roo et al., 1994)). Both sediment concentration and sediment load can be used for 

calculating the sediment transport capacity but the concentration is normally 

considered as a more fundamental variable (Aksoy and Kavvas, 2005). The majority 

of the transport capacity equations derive from relationship initially applied in alluvial 

rivers and were adapted for shallow overland flow (Merritt et al., 2003). 
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In the rare tests comparing process-based soil erosion models against measured data, 

major discrepancies are reported (Boardman, 2006; de vente et al., 2013; Pandey et 

al., 2016). Takken et al. (1999), in a rigorous test applying LISEM with field data from 

an extreme precipitation event, showed that soil erosion rate is over-predicted for 

well-vegetated fields. The ANSWERS model has been evaluated in different 

environments worldwide. Its application reveals that the predicted runoff rate is 

generally very close to the observed data but the sediment yield is generally 

underestimated (Pandey et al., 2016). Another process-based model (MIRSED-

WEPPP) overestimates erosion and predicts erosion where it doesn’t actually occur 

(Boardman,2006; Mahmoodabadi and Cerdà, 2013). The failure of MIRSED-WEPP in 

predicting soil erosion is, as suggested by the authors, probably due to the 

assumption about runoff being generated by Hortonian overland flow while it is 

probably due to saturation excess (Boardman, 2006). Event-based models, that 

model within-storm runoff and soil erosion processes, are sensible to initial 

conditions that are often difficult to specify. The scale at which the majority of soil 

erosion data was collected (experimental plot) has probably inhibited the 

development and validation of erosion models suitable for the landscape scale 

(Boardman, 2006). The plot scale is totally inadequate for exploring the effects of 

extreme events on soil erosion (Baffaut et al., 1998).  
It could also happen that the models well simulate erosion data at the outlet, but fail 

in reproducing the spatial detail of runoff and soil erosion within the catchment 

(Jetten et al., 1999; Thapa, 2010), thus providing the right results but for the wrong 

reason. Therefore, validation of models using only outlet data is not reliable. Only by 

using spatially distributed data is it possible to validate the behaviour of spatially 

distributed soil erosion models (Hughes and Croke, 2011). 

 

Empirical models 

Empirical models are generally the simplest of all the model types discussed in section 

2.2.1. They are based on the analysis of observations and seek to characterise 

response from the data (Merritt et al., 2003, Pandey et al., 2016). As previously 

discussed their data requirement is usually lower than physically based and 
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conceptual models making them able to be supported by coarser data measurements 

and limited data (Pandey et al., 2016). Empirical models are often ideal for the 

analysis of data within catchments because many of that are based on the application 

of stochastic techniques to analyse catchment data (Wheater et al., 1993) (e.g. 

stochastic regression based primarily on observations). 

One of the main critiques to empirical models is to employ unrealistic assumptions 

about the physiscs of the catchment ignoring the ethereogenity of the catchment 

characteristics (such as rainfall) and the non-linearity that are present within the 

system (Wheater et al., 1993). Empirical models are also based on the assumption 

that underlying conditions remain unchanged during the study period so that tend 

not to be event-responsive. Nonetheless all these limits, empirical models are 

frequently used in situations with limited data and parameter inputs for al the 

reasons that were discussed in section 2.2.1. 

  

Conceptual models 

In conceptual models, a catchment is represented as a series of internal Storages (Pandey et 

al., 2016). This family of models generally include a general description of soil erosion 

processes within the catchment, without including any specific details on process 

interactions, which would require detailed input data (Merritt et al., 2003; Pandey et al., 

2016). In conceptual models there is a non-physical but conceptually meaningful relation 

between the elements of the process, these models play an intermediate role between 

empirical and physically based models (Aksoy and Kavvas, 2005; Pandey et al., 2016). Their 

architecture allows to this family of models to provide a qualitative and quantitative 

indication of the effects produced, for example, by land use changes within the catchment, 

without requiring a large amount of spatial and temporal data (Merritt et al., 2003). Typically, 

the values of parameters necessary to apply conceptual models are obtained through 

calibration against observed data (such as, for example, stream discharge and concentration 

measurements) (Hajigholizadeh et al., 2018). Because of that, conceptual models suffer 

from problems associated with the identifiability of their parameter values (Hajigholizadeh 

et al., 2018). 

 



32 
 

Most of the models capable of modelling erosion only predict a selection of the 

involved processes (sheet, rill, gully and in-stream erosion) (de Vente et al., 2013; 

Govers, 2011; Merritt et al., 2003). Sheet erosion together with rill erosion can be 

classified as overland flow erosion (Merritt et al., 2003). As defined by Loch and 

Silburn (1996) rills are small erosion channels that can be easily obliterated by tillage 

whose initiation is controlled by the soil cohesion and shear forces. Gullies are 

channels too deep to be easily obliterated by cultivation (Loch and Silburn, 1996). In 

gully erosion process, raindrop impact is no longer a significant factor in terms of 

particle detachment due to the greater flow depth absorbing the raindrop energy. 

Finally, the in-stream erosion involves the direct detachment of soil particles from 

stream banks or bed. All these soil erosion processes do not necessarily occur at 

different times from one another. 

The majority of the available models for estimating soil loss focus on rill and sheet 

erosion, thereby excluding the effect of different processes. This is a major limitation; 

permanent gullies, mass movements and in-stream erosion are often not considered 

(de Vente et al., 2013). Valid tests on the performance of these models can be carried 

out using data on sheet and rill erosion rates only. Misapplications occur when the 

total soil redistribution is equated to sheet and rill erosion (Govers, 2011). Some 

models exist for specifically considering gully and bank erosion. Up to now it has been 

not possible to develop a model including all the different components and applicable 

at catchment, or larger scale, with reasonable results (de Vente and Poesen, 2005; de 

Vente et al., 2013). A combination of natural complexity, lack of available data and 

spatial heterogeneity makes it problematic (Jakeman et al., 1999; Wasson, 2002). It 

is therefore required to integrate the work of soil erosion modellers with that of 

experts assessing soil erosion in the field (Boardman, 2006). 

 
Sediment deposition is another fundamental part of the soil erosion process. A large 

quantity of the sediment transported by water is normally deposited prior to reaching 

the catchment outlet. The direct incorporation of sediment deposition in erosion 

modelling is not only important for avoiding the overestimation of soil loss rate in a 

plot, field or catchment but also because the spatial distribution of deposited 

sediments and the particle size composition play a significant role in determining the 
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response of the land surface to the erosive  process (Sander et al., 2011). Many 

empirical and conceptual models, such as PERFECT  (Littleboy et al., 1992), SWRRB 

(Arnold et al., 1990), RUSLE (Renard et al., 1997) and MUSLE (Williams, 1975) do not 

consider the deposition  process in soil erosion estimation. Other models as for 

example WATEM/SEDEM (Van Oost et al., 2000; Van Rompaey et al., 2001), WEPP 

(Laflen et al., 1991), KINEROS2 (Smith et al., 1995a,b) EUROSEM (Morgan et al., 

1998a,b) or SIMWE (Mitas and Mitasova, 1998) do explicitly  consider sediment 

transport and deposition within  their equations. Unfortunately, most of these 

models are evaluated using data from erosion plots, without considering, as stated 

by Nearing (2006) and Licciardello et al. (2009) that within these plots the sediment 

deposition is negligible. Even fully calibrating the modules for calculating sediment 

transport and deposition their application at catchment scale would remain 

problematic. The lack of input data and the complex interactions among the involved 

processes remain a limitation (de Vente et al., 2013). 

 
 
 

2.2.2.2. Shallow landslides: models and their limitations  
 

 

Landslide modelling is based on many different approaches and techniques. One of 

the main challenges in landslide modelling is related to the assessment of spatial 

probability (Van Westen et al., 2006; Bosco et al., 2013). As for soil erosion prediction, 

many different approaches can be used for obtaining spatial probability maps. 

Heuristic, inventory-based, deterministic and statistical approach are the most 

important methods proposed in the literature (Van Westen et al., 2006, 1997; 

Guzzetti et al., 1999; Aleotti and Chowdury, 1999) but physically based and statistical 

approaches are the most common for predicting landslide occurrence. 

Statistical methods, which are based on establishing relationship among variables 

correlated with slope instability (Guzzetti et al., 1999), became popular with the 

spread of Geographic Information Systems (Van Westen et al., 2006). The basic 

assumption of this technique is that landslides occur with the same condition as they 

occurred in the past.  
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The first requirement of this methodology is to identify and map the landslide 

conditioning factors (geological and geomorphological). Estimations are then made 

of their relative contribution in slope failure and areas are classified as having a 

different hazard or susceptibility degree (Suzen and Doyuran, 2004; Pathak and 

Nilsen, 2004; Acharya, 2011). The most commonly used methodologies for these 

predictions are the bivariate and multivariate statistical methods such as logistic 

regression (LR), artificial neural network (ANN) or multiple regression analysis. This 

kind of analysis is based upon the presence or not of stability phenomena within the 

classified areas (Van Westen, 2000). One of the main limitation using this approach 

is the high sensitivity of the results to the set of input data jointly with the changes 

occurring to environmental parameters (such as slope, land cover or soil thickness) 

after a mass movement (Van Westen et al., 2006). Furthermore the triggering factors 

are hardly ever incorporated into statistical methods and never if we consider also 

the temporal aspect (Van Westen et al., 2006), it is a challenge to add the temporal 

dimension to a susceptibility map. It is also not easy to derive the probability of 

occurrence from the susceptibility (Acharya, 2011).  

Deterministic methods offer quantitative results that have a stronger physical basis. 

In landslide modelling, process-based models are normally developed for studying a 

specific class of landslides (debris flows, rock falls, etc.) or for investigating a specific 

triggering factor (Guzzetti, 2005). When applied to predict shallow landslides 

triggered by water, physically based models spatially extend slope stability models 

usually applied in geotechnical engineering (Guzzetti, 2005). Properties such as soil 

cohesion or internal friction, and parameters such as pore water pressure, are 

normally required by this family of models. But these are difficult to measure at 

catchment or regional scale because of their spatial variability and stratigraphic 

heterogeneity. A high degree of simplification is necessary to be applied to effectively 

implement these models (Dai et al., 2002). Even if we consider slopes as relatively 

simple systems governed by a few key properties, and we approximate parameter 

characterisation to help populate models at different granularities, the quality and 

uncertainty of the input data constitute a major constraint reducing the model’s 
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prediction capacities over wide temporal and spatial scales (Bosco et al., 2013; Dai et 

al., 2002; Van Westen, 2004). 

In deterministic methods, a slope stability analysis is used to determine a factor of 

safety (FS), so that the landslide susceptibility can be estimated. As with soil erosion 

many different models exist for estimating landslide susceptibility. The main difficulty 

overcome of the various physically process based landslide models is the coupling of 

the dynamic hydrology and (un)saturated soil mechanics to obtain spatio-temporal 

slope stability indications (Van Beek, 2002; Van Westen, 2004). In all these models, 

the local equilibrium along slip surfaces is estimated to evaluate the stability of a 

slope. Calculating a ratio between resisting and driving forces (FS) it is possible to 

express this equilibrium. If the factor of safety is lower than unity, the slope is 

unstable. 

 

                            𝐹𝐹𝐹𝐹 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟
𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟  =

𝑟𝑟ℎ𝑟𝑟𝑒𝑒𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑟𝑟
𝑟𝑟ℎ𝑟𝑟𝑒𝑒𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

𝐹𝐹
𝜏𝜏  ,                        (2.2) 

 

Since initial failures due to rainfall infiltration often have small depth-to-length ratios, 

and form failure planes parallel to the slope surface, the use of infinite slope stability 

analysis for the evaluation of landslides induced by rainfall is justified and often 

preferred for its simplicity. 

Within this equation S represents the shear strength mobilised along the sleep 

surface. The Mohr-Coulomb criterion is commonly applied for describing the state of 

soil strength (Cernica, 1995; Bourne and Willemse, 2001). It can be represented in its 

simplest form as: 

 

                              𝐹𝐹 = 𝑓𝑓 + (𝜎𝜎 − 𝑢𝑢) 𝑟𝑟𝑒𝑒𝑟𝑟 ∅  ,                          (2.3) 

 

where c is the soil cohesive resistance (kPa) (that can be enhanced by the presence 

of roots and other elements), σ represents the total normal stress (kNm-2) and u is 

the pore pressure (kNm-2), both acting on the slip surface and affecting the amount 

of frictional resistance ∅ that can be mobilised.  
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The driving force is represented by 𝜏𝜏 the slope parallel component of gravity acting 

on the soil mass above the slip surface. 

 

                                                   𝜏𝜏 = 𝛾𝛾𝑠𝑠𝐷𝐷 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽 𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽 ,                                                 (2.4) 

 

Where ɣs is the soil unit weight (kN/m3), 𝛽𝛽 is the slope angle (°) and D is the vertical 

soil depth (m). 

Considering the weight of the soil as the only load acting at the potential shear plane 

the total normal stress is given by: 

 
                                    𝜎𝜎 = 𝐷𝐷𝛾𝛾𝑠𝑠 𝑓𝑓𝑓𝑓𝑟𝑟2𝛽𝛽 ,                                                    (2.5) 

 

The methods used in traditional infinite slope analysis (Skempton and Deloy, 1957) 

must be modified to take into account the variation of the pore water pressure profile 

that results from the infiltration process. For example, based on the extended Mohr–

Coulomb failure criterion (Fredlund et al., 1978), the safety factor of an unsaturated 

uniform soil slope can be expressed as (Cho and Lee, 2002): 

 

                               𝐹𝐹𝐹𝐹 =
𝑓𝑓𝑠𝑠 + (𝑢𝑢𝑎𝑎 − 𝑢𝑢𝑤𝑤) 𝑟𝑟𝑒𝑒𝑟𝑟 ∅𝑏𝑏 + (𝜎𝜎𝑛𝑛 − 𝑢𝑢𝑎𝑎) 𝑟𝑟𝑒𝑒𝑟𝑟 ∅

𝛾𝛾𝑠𝑠𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽  ,                       (2.6) 

 

where cs is the effective cohesion, ua is the pore air pressure, uw is the pore water 

pressure, ua - uw is the matrix suction, σn is the total normal stress, σn - ua is the net 

normal stress on the slip surface and ∅b is an angle indicating the rate of increase in 

shear strength related to matrix suction. 

In the hydrological component of physically based models for predicting shallow 

landslide susceptibility, various approaches have been proposed for modelling the 

water infiltration process. These range from very simple topographic index models to 

complex three dimensions models based on Richards’ (1931) equation (Lanni, 2012). 

SHALSTAB (Montgomery and Dietrich, 1994) and SINMAP (Pack et al., 1998) are an 

example of models implementing a topographically based steady-state hydrology 

model (based on the work of O’Loughlin (O’Loughlin, 1986)). A topographic index 
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based on the ratio between the specific upslope contributing area and the local slope 

has been used for calculating the water table depth (Lanni, 2012; Jakob and Hungr, 

2005; Pack et al., 2005). The stability of each analysed element is evaluated by the 

slope stability component of the model using this topographic index. These models 

allow uncalibrated predictions and are generally used for a preliminary assessment 

over large areas obtaining reasonably successful results though with a tendency to 

over-predict (Lanni, 2012; Dietrich et al., 2001).  

Within its more complex approach TRIGRS (Baum et al., 2008) combines a one 

dimensional analytical transient flow model for vertical infiltration in homogeneous 

materials for either saturated or unsaturated soils, with a slope stability model. For 

setting the initial soil moisture conditions a topographic index approach is used to 

simulate a subsurface flow parallel to the slope. 

The development of three dimensional physically based hydrological models has 

been performed for obtaining better physically based simulations in well 

characterized study sites. The Van Beek’s model (Van Beek, 2002) is a 3D model 

coupling a hydrological (STARWARS) and a stability (PROBSTAB) module. The 

hydrological component consists of a module that predicts percolation resolving 

dynamic equations for saturated and unsaturated conditions and of sub-models that 

describe specific hydrological processes, such as interception or snow melt  

(Krzeminska et al., 2012; Malet et al., 2005). The hydrological model outputs are the 

daily groundwater height and the volumetric moisture content which is then used by 

the stability component for modelling shallow landslide susceptibility. 

In GEOtop (Rigon et al., 2006), a numerical solution of the three dimensional 

Richard’s equation for modelling subsurface flows and suction dynamics is applied. 

GEOtop-FS (Simoni et al., 2008) combines a basic equation of the Factor of Safety (FS) 

with the GEOtop model. GEOtop-FS could predict a real landslide which occurred 

within the Sauris catchment (Eastern Italian Alps) but unfortunately, for being 

satisfactorily applied, the model requires the solution of large systems of complex 

equations.  
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Many other models exist for shallow landslides prediction, from relatively simple one-

dimensional models such as dSLAM (Wu and Sidle, 1995) to complex physically based 

two- or three-dimensional  models such as InHm (Vanderkwaak, 1999), CI-SLAM 

(Lanni et al., 2012) or SHETRAN (Ewen et al., 2000). Because of the difficulties in 

calibration and parameterization of these more complex models due to the lack of 

accurate available data (Hilberts, 2006), it is often necessary at watershed scale to 

make simplified assumptions related to the hydrologic response (Loague et al., 2006). 

This makes the simpler topographic-index based models often preferred over more 

complex process-based hydrological models.  

Another real challenge in landslide prediction is represented by adding the temporal 

probability to the susceptibility maps. The temporal probability is the frequency of 

occurrence of landslides in a predetermined time interval. Compared with spatial 

probability, less research has been done for establishing the temporal probability of 

landslides (Guzzetti  et al., 2005; Jaiswal and Van Westen, 2009) but recently there 

was a research trend towards a frequency-magnitude quantification of landslides 

(Bovolo and Bathurst, 2012). For the majority of landslide types the probability that 

a similar event occurs once there has been mass movement, decreases with an 

increase in the degree of change in local conditions (Van Westen et al., 2006). 

Generally, statistical models do not consider the temporal aspect linked  with slope 

stability  processes as they cannot predict the changes in triggering and controlling 

conditions (e.g. changes  in land cover or in water table depth; Van Westen et al., 

2006). However, using statistical methods combined with landslide records and the 

return period of triggering events it is possible to analyse the temporal probability of 

landslides (Zezere et al., 2004; Dai and Lee, 2003; Guzzetti et al., 2005). If the 

precipitation event causing landslides and the related rainfall parameters are known, 

it is possible to assess the spatio-temporal probability of landslide at a given location. 

Unfortunately the lack of landslide records is the main obstacle in following this 

approach (Petley, 2012; Van Westen et al., 2006). 

If, for a specific location, with the exception of rockfalls and debris flows, there isn’t 

normally a magnitude-frequency relation linked with landslides (Van Westen et al., 

2006), some physically based and empirical models are available for elaborating this 
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relationship over large areas. Combining statistical and deterministic methods, it is 

possible to perform spatio-temporal analysis from local to wider scale.  

It is clear that further efforts are required to determine the spatio-temporal 

probability of landslides occurrence in order to minimize the hazards, especially in 

data-poor conditions and under possible future climate change scenarios. The 

research conducted in this thesis that proposes a statistical approach incorporating a 

frequency-area landslide distribution model (Malamud et al., 2004) within the 

framework of landslide susceptibility mapping, is a step forward in this direction. 

 

 

2.3. Remote sensing and pedometrics for improving the quality of 

modelling input data 

 

Remote sensing data from satellite imagery and pedometric methodologies offer 

considerable scope for improving the input quality of soil, landscape hydrology and 

vegetation cover components that characterize most soil erosion and shallow 

landslide models. To date, only a few models specifically use remotely sensed data as 

part of the model process (Jetten et al., 2006). 

“Pedometric mapping is generally characterized as a quantitative geo-statistical 

production of soil geoinformation also referred as digital soil mapping” (McBratney 

et al., 2003 in Hengl, 2003). Pedometrics is “the application of mathematical and 

statistical methods for the quantitative modelling of soils, with the purpose of 

analyzing its distribution, properties and behaviours” (McBratney et al., 2003; Lucà 

et al., 2018). The use of pedometric techniques and remote sensing could include 

new technologies such as close-range remote sensing, GPS positioning and advanced 

computational analysis (McBratney et al., 2003; Lucà et al., 2018). But also can 

include the use of well-known techniques as the Neural Networks or the application 

of Fuzzy systems (e.g. the Fuzzy Inference System (FIS) or the Adaptative Neuro-Fuzzy 

Inference Systems (ANFIS) (Hosseini et al., 2017) is analogous to neural networks and 

can be used to predict continuous variables.) (McBratney et al., 2003).  
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With the rapid development of methodologies for deriving auxiliary maps, the 

remote sensing and the terrain parameters (parameters derived from a Digital 

Elevation Model (DEM)) play a key role in digital soil mapping (Brevik et al., 2016) 

quantifying morphology of the terrain and surface characteristics. 

Although remote sensing has revolutionized vegetation mapping (for example with 

the use of the Normalized Difference Vegetation Index (NDVI) to determine the 

density of green on a patch of land or of the Leaf Area Index (LAI) to characterize 

plant canopies), our knowledge of how to apply advances in remote sensing to soil 

properties and terrain mapping is still incomplete (Mulder et al., 2011). It is not possible 

to directly measure soil characteristics using visible or infrared images in areas 

covered by vegetation. However a good correlation has been found between 

compound indices, such as NDVI, and soil carbon and nitrogen content (respectively 

r = 0.55 and r = 0.52; P < 0.01) (Sumfleth and Duttmann, 2008) or root zone soil 

moisture during the growing season (r: 0.46 – 0.55) (Wang et al., 2007). A logical 

further step for improving the prediction capacities in soil mapping was to combine 

DEM derived data and remote sensing (Hengl, 2003; Mohamed, 2017). 

One of the most widespread techniques for estimating the values of soil properties 

in unvisited locations is spatial prediction or spatial interpolation. Kriging and its 

derivatives have been recognized as one of the main spatial interpolation techniques 

from 1970s (Hengl, 2003; Li and Heap, 2011). Simple linear regression models linking 

terrain attributes and soil parameters formed the basis of the first applications 

(Gessler et al., 1995 and Moore et al., 1993). The second step was the ‘environmental 

correlation‘ of McKenzie and Ryan (1999) or the spatial prediction of Odeh et al. 

(1994, 1995, in Hengl, 2003) that extended the predictors to a set of environmental 

variables and remote sensing images. 

A spatial interpolation methodology that employs correlation with auxiliary maps and 

spatial correlation is the universal kriging method (UK) (Matheron, 1969). Numerous 

authors agree in reserving the name ‘universal kriging’ for the case where the drift 

(or trend) in the kriging process is modelled as a function of the coordinates only” 

(Wackernagel, 1998 in Hengl, 2003; Moral, 2010) and Kriging with external drift (KED) 

when the drift is defined externally using auxiliary variables (Moral, 2010). If drift and 

https://www.sciencedirect.com/science/article/pii/S0016706110003976#bb1140
https://www.sciencedirect.com/science/article/pii/S0016706110003976#bb1270


41 
 

residuals are fitted separately and then summed we have the ‘regression kriging’ (RK) 

(Odeh et al, 1994, 1995; Moral, 2010). Universal kriging, kriging with external drift 

and regression kriging can be considered equivalent methods (Hengl, 2003) giving the 

same predictions given the same assumptions. The advantage of RK is that it is not 

subject to the instability that can be present in the KED system (Goovaerts, 1997, in 

Hengl, 2003). 

Another very interesting technique is the K-nearest-neighbour. It is a machine 

learning technique developed to recognize patterns of data without an exact match 

to any stored information. The K-Nearest Neighbours (K-NN) algorithm (Keller et al., 

1985; Cunningham and Delany, 2007) is a nonparametric method. The proximity of 

neighbouring input observations in the training data set and their corresponding 

output values are used to test their predictions against a validation data set. 

Between the many different techniques that is possible to apply for producing 

modelling input data, remote sensing (for vegetation parameters) and kriging or K-

nearest neighbours (and its derivatives) (for soil characteristics) appear to be the 

more promising to support modelling prediction capacity in data-poor condition.  

 
 
 

2.4. Modelling soil erosion and landslides interactions 

 
 

2.4.1. The integrated modelling approaches. An overview  
 

As mentioned, many models exist for predicting shallow landslides and soil erosion 

by water independently, but relatively few attempt to develop an integrated 

approach to combine soil erosion and shallow landslide modelling (Burton and 

Bathurst, 1998; Bathurst et al., 2010).  

The sediment transport modelling system (SHETRAN) (Ewen et al., 2000) is such a 

model. SHETRAN is capable of predicting shallow landslides, soil erosion and 

sediment yield at a large spatial scale (Burton and Bathurst, 1998). Three main 

components lie at the core of SHETRAN, one each for water flow, sediment transport, 

and solute transport (equations are available in Acharya, 2011). It provides an 
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integrated surface and subsurface representation of water movement in a 

catchment, incorporating the major factors involved in hydrological cycles  

(interceptions, evapo -transpiration, snowmelt, overland and channel flow in 

unsaturated and saturated zones) (Acharya, 2011). In SHETRAN sediment yield as a 

function of soil erosion and shallow landslides with their driven sediment yields are 

modelled but, within the model, there is still the necessity to better understand 

hillslope processes involving shallow landslide generation, chnages in topography 

(that largely affect erosion) and to better predict changes in soil erosion after 

landslides occurrence (Cochrane and Acharya, 2011). 

SIBERIA is a physically based model for measuring soil erosion rates and for studying 

the erosional development of basins and their network of channels. It considers many 

different mass transport processes, such as fluvial sediment transport (applying the 

Einstein-Brown equation) and a conceptualization of mass movement mechanisms 

such as soil creep and landslides combining these effects at a diffusive term of the 

model’s equation (Willgoose and Riley, 1998). In SIBERIA the interactions between 

gullies or channels and the hillslopes are explicitly incorporated into the modelling 

architecture and the processes acting in the channels and on the hillslopes are 

specifically differentiated (Willgoose and Riley, 1998). The model developed by 

Willgoose et al (1989, 1990, 1991a,b,c,d), which can simulate the evolution of 

landscapes over time, is calibrated to existing hydrogeomorphic data. 

SOMORE (Pla Sentis, 1997), modelling soil hydrological processes, provides an index 

for understanding the conditions where both the potential soil and landslide erosion 

may be more critical. This model simulates the evolution of soil water balance under 

different climatic and topographic conditions. SOMORE, compares the soil moisture 

above the liquid limit for identifying the most favourable conditions for mass 

movements (Pla Sentis, 1997). It has the advantage, when compared with other 

physically based models, of having a low data requirement. 

Two other models, PSIAC (1968) and the model of Gavrilovic (1976) specifically 

consider the contribution of landslides to sediment yield. In PSIAC several factors are 

used to assess the sensitivity of a catchment towards erosion and sediment transport. 
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A score is attributed to each of these factors and the results are used for calculating 

an index related with the catchment sediment yield (de Vente et al., 2006; Globevnik 

et al., 2003). PSIAC uses nine factors related to sediment yield attributing different 

scores to each one (PSIAC, 1968), these are: geology, soils, climate, runoff, 

topography, ground cover, land use, upland and channel erosion and sediment 

transport. A numerical value represents the relative significance of that factor in the 

yield rating (PSIAC, 1968) and the yield rating is the sum of that values. These values 

are divided into five classes representing an average annual yield in acre-feet per 

square mile. The highest scores are attributed to strong signs of erosion such as 

gullies, rills or landslides (de Vente et al., 2005). The different scores contain a 

weighting system, for example a good vegetation cover, due to its negative score, 

results in a decrease in soil loss (de Vente and Poesen, 2005). Being PSIAC developed 

for the arid and semi-arid areas of southwestern USA, applying the model in other 

regions, a new relation between the sediment yield and the PSIAC index should be 

found (de  Vente and Poesen, 2005). PSIAC is recommended to be used in catchments 

no smaller than 25 square kilometers and in broad planning purposes (PSIAC, 1968; 

de Vente et al., 2005). In Johnson and Gebhart (1982) a modified version of PSIAC 

introducing empirical relations for assessing the different scores in order to reduce 

the subjectivity present within the model (de Vente and Poesen, 2005). 

The model of Gavrilovic offers a semi-quantitative method for modelling sediment 

yield. The sediment delivery ratio is estimated by multiplying the calculated sediment 

retention coefficient and the average annual gross erosion. The model of Gavrilovic 

uses an approach based on scores only for three of the modelling variables (soil cover, 

soil resistance, type and extent of erosion) (de Vente and Poesen, 2005), whereas the 

other variables are quantitative descriptors of the catchment conditions; this makes 

it one of the most quantitative of the analysed models. Coefficients for soil 

protection, type and extent of erosion processes and soil resistance are used for 

calculating the erosion into the model. The landslide erosion is accounted within the 

coefficient of type and extent of erosion. Unfortunately within the model of 

Gavrilovic and in PSIAC only observation of landslide occurrence is considered for the 

sediment yield calculation (de Vente and Poesen, 2005). 
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SSYIndex is a model for estimating sediment yield at a large spatial resolution, 

calibrated for 29 large rivers in Europe (Delmas et al., 2009). Four indicators represent 

different processes considered as sources, sinks or transfers of sediments (de Vente 

et al., 2013). Mass movement and hillslope erosion are considered as the main 

sources of sediment. The hillslope erosion indicator is assessed from a pan-European 

compilation of measured rill and interrill erosion rates in plot studies, and subsequent 

interpolation as a function of topographical, land use, and soil parameters (Cerdan et 

al., 2010). The mass movement indicator is defined through an expert assessment as 

the percentage of catchment area with potential for occurrence of mass movements, 

based on slope and lithology maps (de Vente et al., 2013). A simple sediment yield 

index is obtained summing the sediment sources and transfer potential and 

subtracting the sinks (Delmas et al.,2009). 

In TOPOG (O’Loughlin, 1986; CSIRO, 2017) both soil erosion and landslides are 

integrated into the model (CSIRO, 2017). TOPOG is a hydrological model describing 

how the water moves through and over the soil and back to the atmosphere. TOPOG 

predicts the degree of soil saturation in response to a steady state rainfall for 

topographic elements defined by the intersection of contours and flow tube 

boundaries, this relative soil saturation is used by the slope stability component  to 

analyze the slope stability of each topographic element (Montgomery and Dietrich, 

1994). 

TOPOG provides an index of the shallow landslide potential susceptibility 

(Montgomery and Dietrich, 1994). This model can also be applied for identifying the 

presence of areas affected by soil erosion problems. It is possible to extend the 

model’s analysis capacity, for calculating the potential to erosion, by supplying 

additional information describing the relationship between soil cover and particle 

entrainment (Vertessey et al., 1990). The main limit of TOPOG in analysing the 

integrated process of soil erosion and landslides is in the lack of a clear link between 

a mass movement and its effect on soil erosion rate on a slope profile. 

It is only in WEPP-SLIP (Cochrane and Acharya, 2011) that post-failure soil erosion is 

considered. Within WEPP-SLIP (Water Erosion Prediction Project Shallow Landslide 

Integrated Prediction) the physically based WEPP model (Laflen et al., 1991) is applied 
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for estimating pre-failure soil erosion rates by water. The infinite slope stability model 

of Skempton and DeLory (Skempton and DeLory, 1957) is then applied for evaluating 

the landslide susceptibility of the study area and a simple rule-based soil 

redistribution  model is used for estimating runout distance and the changes in 

topography after the mass failure (Acharya, 2011). Thereafter the WEPP model is re-

applied for measuring post-failure soil erosion rates by water considering the changes 

in topography and land cover (Cochrane and Acharya, 2011). Landslides can also 

trigger important processes such as the soil armouring. In WEPP-SLIP the soil 

armouring has been considered for accounting the changes in cover and soil 

properties.  

For determining the height of the water table, necessary for calculating the slope 

instability, the WEPP model is applied to each flowpath present in the study area 

(Acharya, 2011). One of the limits of this approach is that the total soil water content 

is manually attributed to each grid cell from each simulated flowpath. It makes this 

technique extremely time consuming (Acharya, 2011). WEPP-SLIP does not also 

simulate important sediment sources as the channel erosion but the main limitation 

is probably linked with the modelling of slope stability and runout distance. For 

assessing the post-failure soil erosion it is necessary to exactly know where and when 

a landslide will occur and to know the exact dimension of the affected area. Further 

steps are necessary in this direction. 

Two other models (Es and GLASOD) belonging to a family of models focusing on 

assessing the land degradation rather than estimating erosion or sediment yield and 

integrate soil and landslide erosion in their architecture. The erosional susceptibility 

(Es) model of de Ploey et al. (1995) includes a headcut retreat model for rills and 

gullies (de Ploey, 1989) and is used for calculating the erosion susceptibility of a 

catchment (e.g rill, sheet, gully, landslide or wind erosion). The erosion susceptibility 

is determined by comparing the volume of removed sediment and the energy input 

by water and air. The model requires volumetric soil loss estimates and basic 

pluviometric and aerodynamic data (de Vente and Poesen, 2005). At the basis of the 

Es model there is the idea that the majority of the erosion processes have a common 

operational mode: e.g. ”the retreat of an erosion border, usually a topographic ”cliff”, 
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in the top layer of the soil” (de Ploey et al., 1995). The efficiency of the different 

erosional processes incorporated in the model, was shown by applying Es in different 

studies around the world (de Vente and Poesen, 2005).  

GLASOD is a qualitative model directly based on observation of the involved 

processes using expert judgment. After delineating physiographic units showing 

homogeneity of soils, climate, topography, land use and vegetation cover, an 

evaluation on the degree and extent of human-induced degradation risk is carried 

out and a score which distinguishes between four different levels of soil degradation 

is attributed (de Vente and Poesen, 2005). The GLASOD methodology recognizees 4 

main types of soil degradation (water erosion, wind erosion, chemical deterioration 

and physical deterioration), soil erosion by water and landslide erosion are jointly 

considered and evaluated in the water erosion class (Oldeman et al., 1990). After the 

preparation of the GLASOD map the majority of the conclusions stated that a more 

detailed information at the national level is required and more objective ways should 

be found to prepare a base map and analysis of soil degradation risk (de Vente and 

Poesen, 2005). 

Although the changes in vegetation cover and topography are readily modelled by 

the majority of the erosion models (Dymond et al., 2006), the changes affecting soil 

properties are hardly ever considered. Soil input properties remain normally 

unchanged during the whole simulation period. Topographic changes and evolution 

of the hillslope profiles are also not well documented (e.g. Cendrero and Dramis, 

1996; Hovius et al., 1997) with a consequent lack of data for describing the changes 

in sediment yield after landslide occurrence. 

Not many models exist for integrating soil erosion processes and landslides 

prediction. The existing qualitative or quantitative models, presented here, are based 

on completely different approaches showing many different limitations.  Most of the 

models do not consider post-failure scenarios and are only partially sensitive to 

climate or land use changes hampering their applicability in climate change analysis 

(de Vente et al., 2013). Within the next section these limits will be further 

investigated. 
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2.4.2. Limitations of the present approaches 
 
 

The main limitation of the majority of the integrated erosion-landslides models is 

their lack of considering post-failure soil erosion changes.  Only in WEPP-SLIP post 

failure soil erosion is explicitly considered (post failure long-term sediment yield). The 

soil redistribution within the model needs to be further developed for the simulation 

of soil water content at catchment scale because of the extremely time-consuming 

process that consists in manually attribute the maximum value of the total soil water 

content from each simulated flowpath to each grid-cell (Acharya, 2011).  

Physically based approaches could be modified for considering post-failure soil 

erosion changes. These models use local terrain characteristics and a dynamic 

hydrological model with rainfall as the main variable (Jaiswal and Van Westen, 2009). 

This implies, as already mentioned, that landslides temporal probability also can be 

easily incorporated into the integrated model. Unfortunately these models are less 

suitable to be applied in data poor regions  and at a catchment  or larger scale as they 

usually require a detailed knowledge of local terrain characteristics (e.g. soil 

properties, high resolution climatological data, shear parameters) and are often 

optimised for the local conditions of small catchments (de Vente et al., 2013). 

Furthermore, due to the limits of reductionist models to adequately incorporate 

many different soil erosion processes as gully and bank erosion or mass movements, 

alternative approaches for catchment or wider scale estimates are required (de 

Vente and Poesen, 2005). 

Applying statistical methods it is possible to overcome the lack of detailed input data 

over large areas. Unfortunately their lack of accounting for the temporal aspect is the 

main limit of such an approach. For building an integrated system between soil 

erosion and shallow landslides in addition to the landslide susceptibility it is necessary 

to estimate the landslides temporal probability or the frequency-area distribution.  

For improving soil erosion estimation considering landslides within the erosion 

process it is necessary to estimate not only where, but also when a landslide will 

occur along with the size of the event. 
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This research follows this approach of considering the frequency-area distribution of 

landslides in order to quantify the size and number of landslides associated with 

precipitation events in data-poor regions.  

In chapter 6, a new method is proposed for empirically estimating the importance 

and extent of landslides on soil erosion losses. This has been achieved by sampling 

the frequency-size landslide distribution proposed by Malamud et al. (2004), and 

stochastically distributing (Monte Carlo method) the landslide location across the 

catchment. 

The proposed methodology is based on the geospatial semantic array programming 

paradigm (see section 2.5 and 6.2.1) and has been implemented on a catchment scale 

methodology using Geographic Information Systems (GIS) spatial analysis tools and 

GNU Octave . 

The Monte Carlo method was applied for repeating random frequency-size landslide 

distributions in order to calculate the mean change in soil erosion linked with 

landslide activities. Using this technique it is not possible to predict the exact time, 

position and extension of a landslide within the study area, but it is possible to predict 

the mean change in soil erosion due to landslide activity.  

 

 

2.5. Introducing the Semantic Array Programming paradigm 

 

Within specialised computational models, the programming environment might be 

stable with centralised, strictly codified, and often highly customised internal data 

structures (monolithic models or frameworks, de Rigo, 2015). As a consequence, the 

various parts of a single monolithic model may exchange information with direct 

access to the implementation details. For example, object oriented approaches are 

suited for representing and transforming information within a specific model in 

sophisticated and flexible modalities. As highlighted by de Rigo (2015), the objects of 

a specialised “monolithic model are typically straightforward to propagate and very 

effective in transferring structured information with default 

behaviours/assumptions”. However, this direct “internal” communication may 

become more and more complicated when the information is needed from 
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heterogeneous modelling sources, for example from multiple monolithic models 

(typically not designed to interact between each other) implemented with different 

programming languages and tools by many research teams along several years of 

independent development, “and possibly no single expert able to cope with the 

overall integration complexity” (de Rigo, 2015). However, a direct modelling 

integration is not always necessary for heterogeneous models to be able to 

communicate effectively. 

As outlined in the introduction, an important subset of computational modelling 

applications may be formulated by considering conceptual modelling-units as data-

transformation models or modules (D-TM) (de Rigo, 2015; 2013; de Rigo et al., 

2013b). In this work, this abstraction concept will be exploited with a focus on soil 

science and its potential integration within some cross-disciplinary aspects of 

INRMM. Since a D-TM unit f exclusively exchanges data (extended to include model 

parameters), transforming input data into derivative output data, then the internal 

details of f may be separated from the details of other D-TM units which need the 

output data of f as their input. In particular, different D-TM units might be 

implemented in different programming languages. Furthermore, an asynchrounous 

exchange of intermediate data is easy even if not all the involved D-TMs share the 

same computing environment (for example, in case some D-TM physically run in 

different computational facilities), simplifying collaboration between research teams. 

This requires data to be expressed in portable formats, and the semantic 

compatibility among initial or intermediate data from different D-TM units (which 

may have been originally designed for domain-specific purposes, without any plan to 

integrate them) to be verified. However, these requirements are far easier to satisfy 

compared with the potential costs of porting entire models from their original 

implementation to any given monolithic framework (Mäntylä and Lassenius, 2006; 

Lehman and Ramil, 2003; Lauder and Kent, 2000; Hatton and Roberts, 1994) 

 Using portable data formats, and checking for the semantic consistency of multiple 

data sources to manipulate together are non-intrusive requirements which do not 

require a monolithic approach. For example, the first requirement may be fulfilled 

with a post-processing of data formats to translate less portable to more portable 
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ones; and the second one with a pre-processing of input data sources to check 

whether their semantic compatibility is satisfied, as a pre-condition to then pass the 

inputs to the D-TM which will process them. These methodologies belong to the core 

recommendations of the Semantic Array Programming paradigm (de Rigo, 2012a; 

2012b; 2015) and will be applied throughout the computational modelling 

applications described in the next chapters. 

In this work, some of the specialised models which will be discussed are characterised 

by an array-based structure.  

They may be composed by an array of sub-models, or may process an array of 

datasets. Some layer may be in turn characterised by sub-arrays of data layers and 

corresponding data-transformations (Bosco et al., 2015; Bosco and Sander, 2015; 

Bosco et al., 2013). For example, the soil erosion model which will be discussed in 

Chapter 4 (e-RUSLE model) is based on a multiplicative structure of several specific 

factors (sub models), each dedicated to describing corresponding aspects of the 

erosive process. Each factor is represented as a geospatial grid of values, a value per 

each geographical unit cell c in the spatial extent of interest. Therefore, to each factor 

a spatial matrix of values is associated, and the final model is estimated by 

aggregating an array of factor-specific matrices.  

In data-poor regions, some of these factors may lack part of the necessary data for 

their estimation, so that a more approximated estimation strategy may be needed. 

For example, the intensity of precipitation is a key element affecting soil erosion by 

water (Wischmeier, 1959). A specific, unfortunately data-demanding factor is 

dedicated to this in the proposed soil erosion model: the erosivity factor 

(Wischmeier, 1959; Wischmeier and Smith, 1978). In paragraph 4.2.3.2, the topic will 

be discussed in detail. Here, this factor is mentioned to serve as an example for 

introducing a modelling procedure which will be applied in different parts of this 

work, to enable less fragile quantitative estimations to be computed in data-poor 

areas. The scarcity of accurate datasets for directly assessing the quantity Yc to be 

modelled (in the example, soil erosion rates and their erosivity component, for each 

spatial cell c) may motivate the replacement of the original model (or sub-model) 

with a surrogate model Yc
est = f(ϑ,Xc)  based on custom D-TMs. These data 
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transformations, from an array of proxy data Xc (hereinafter referred to as predictors 

or covariates), and an array of custom parameters ϑ, approximately estimate the 

otherwise too data-demanding quantity Yc.  

Typically, it cannot be expected for the surrogate model to perform equivalently to 

the original model. Therefore, despite the efforts to select a single ‘optimal’ surrogate 

model among the many potential candidates, that model might still present 

important weaknesses. This may be set in the wider context of computational 

modelling (de Rigo, 2015) by considering the difficulty to isolate a regression or 

classification algorithm universally superior to the other ones (Wolpert, 1996; 

Wolpert and Macready, 1997; Koppen et al., 2001; Xu et al., 2012). 

However, following a natively array-based modelling strategy, an array of different 

surrogate models  { Yc
est,1 , Yc

est,2 , … , Yc
est,n }  may be estimated instead of a single one, 

and an aggregated ensemble may be derived to mitigate part of the weaknesses of 

individual approximations. 

In the example, the surrogate model will take the form of a climatic-based empirical 

model to estimate the erosivity of rainfall. These kinds of empirical models are 

relatively frequent in the literature (for the exemplified erosivity quantity, Bollinne et 

al., 1979; Rogler and Schwertmann, 1981; Ferro et al., 1999; de Santos Loureiro and 

de Azevedo Coutinho, 2001), and are derived from more detailed data by means of a 

regression approach to correlate, over a given study area, the quantity to 

approximate with easily available predictor information (in the erosivity example, 

information on monthly precipitation patterns). This approach allows the empirical 

relationship to be extrapolated even outside its original study area, since the 

predictor information is often available over much wider areas than the study area. 

Therefore, from an array of estimates extrapolated from different study areas, an 

aggregated ensemble may be computed to approximate the missing original 

quantities over a given area of interest (see paragraph 4.2.3.2). A variant of this 

approach may be applied even when the surrogate models are not taken from 

existing literature, but instead are directly tuned to best fit a set of available 

measures. If a multiplicity of model families is exploited to tune each corresponding 

model { Yc
est,1 , Yc

est,2 , … , Yc
est,n }, then each model will be associated with the 



52 
 

advantages and weaknesses expressed by its model family, and a carefully designed 

final aggregated ensemble will again be able to partly mitigate some of the individual 

weaknesses. In chapter 5 examples of this array-based modelling strategy will be 

discussed.  

Following this overview of applications, the Semantic Array Programming paradigm 

may be summarised in a more formal way. Array Programming (AP) originated for 

“reducing the gap between mathematical formulation and code implementation” 

(Iverson, 1980) with the introduction of very concise operators and coding patterns 

to manipulate variables composed by large number of elements (for example, wide 

matrices of geospatial raster data). AP considers these variables as atomic by 

providing abstract operators which do not oblige the computational modeller to 

explicitly track the detailed shape of each array. Examples of popular AP languages 

are GNU Octave (https://gnu.org/software/octave/ ) and MATLAB (http:// 

mathworks.com/help/matlab/ ), GNU R (https://gnu.org/software/r/ ) and Python 

(http://python.org ) with NumPy and SciPy (Eaton et al., 2008; Venables et al., 2009; 

van Rossum and Drake, 2011; The Scipy community, 2012a; 2012b). 

The Semantic Array Programming paradigm (SemAP) complements the generality of 

abstraction supported by AP approaches with two additional ideas. First, SemAP 

introduces the systematic use of a rich set of array-based semantic constraints as 

provided by the Mastrave modelling library (http://mastrave.org ), which implements 

the paradigm (de Rigo, 2012d). Second, SemAP encourages an explicit effort towards 

a disciplined modularisation of each conceptual modelling unit. SemAP modules are 

typically associated to corresponding D-TM units, with a precise semantic annotation 

of the array-based mathematical constraints required for different D-TM input data 

to be compatible between each other.  

In particular, a D-TM semantically-enhanced following the SemAP paradigm explicitly 

expresses a set of semantic constraints for each of its input data, and optionally for 

the returned output derivative data. These constraints may be easily annotated even 

in a not fully formal context, for example within natural language descriptions (such 

as within scientific articles or reports). They take the form of a sequence of categories 

between “::”. The special token :: is used as delimiter “quotation” of the semantic 

https://gnu.org/software/octave/
https://gnu.org/software/r/
http://python.org/
http://mastrave.org/
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constraints. For example, if a certain semantic constraint sem applies to one of the 

D-TM input data, that input will be denoted as ::sem:: . This “informal” annotation 

has a precise formal equivalent in the Mastrave implementation of the SemAP 

paradigm, accessible online for each constraint ::sem:: at its corresponding URL 

http://mastrave.org/doc/mtv_m/check_is#SAP_sem . For example, an input data 

expected to be a matrix of nonnegative values, and limited by the D-TM capabilities 

in a way that causes missing data to generate an error, can be semantically annotated 

as a ::matrix:: of ::nonnegative:: elements, each of them ::nanless:: (i.e. without Not-

a-Number values, NaN). The formal definition of each constraint is respectively 

available at the URLs:  

::matrix:: - http://mastrave.org/doc/mtv_m/check_is#SAP_matrix ; 

::nonnegative:: - http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative ; 

::nanless:: - http://mastrave.org/doc/mtv_m/check_is#SAP_nanless . 

In computational science applications, the semantics may be characterised by 

referring to multiple dimensions. The mentioned set of array-based semantic 

constraints defines a specific, portable dimension grounded on the mathematics of 

arrays. These constraints are designed to be very compact, and in several cases easily 

understandable even without accessing their formal definition and computational 

implementation. Among the many other dimensions of semantics, a particular role 

may be highlighted for the geospatial semantics, which is essential in spatially explicit 

modelling. SemAP and geospatial semantics coexist with the geospatial application 

of the semantic array programming paradigm (Geospatial Semantic Array 

Programming, GeoSemAP) formalised by de Rigo et al.  (2013b) and de Rigo (2015) 

and applied, for example, in Bosco and Sander (2015). In chapter 6, GeoSemAP will 

be exploited. 

 

 

 

 

 

 

http://mastrave.org/doc/mtv_m/check_is#SAP_matrix
http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative
http://mastrave.org/doc/mtv_m/check_is#SAP_nanless
http://mastrave.org/doc/mtv_m/check_is#SAP_matrix
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http://mastrave.org/doc/mtv_m/check_is#SAP_nanless
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3. Study area 
 

3.1. Catchment choice 

 

The study area is located in southern Italy, within the Puglia region (Figure 3.1). It 

covers around 10 km2 in the municipal territory of Rocchetta Sant’Antonio which is 

situated in the southern part of the Daunia Appennines. The area is characterized by 

moderate relief topography, with elevations generally below 800m and modest slope 

inclination (around 10° on average). Vgetation cover is dominated by agricultural 

activity (mainly cereals) with grassland-pastures and trees only locally significant. The 

climate is Mediterranean (sub-humid) with large variation in annual rainfall values. 

Autumn and winter present a similar precipitation range that account for 60% of the 

annual total and summers are dry and hot (Wasowski et al, 2014).  

The Daunia Appennines are characterised to be highly susceptible to landsliding 

(Iovine et al., 1996; Magliulo et al., 2008; Zezza et al., 1994) and the study site has a 

frequency for landslides that exceed 20% for the overall Daunia Appennines 

(Wasowski et al., 2010). This site has been studied for some years (Wasowski et al., 

2007; Mossa et al., 2005) and due to the high number of shallow landslides affecting 

the local economy (Wasowski et al., 2010), a set of different data has been collected 

and produced: a map of the lithological units (section 3.2), a landslide inventory 

related to the year 2006 (section 3.3), a digital elevation model (DEM) with a 

resolution of 5x5 metres, rainfall data from the pluviometric station located in 

Rocchetta sant’Antonio (section 3.4), a map of the land cover (section 3.5) and some 

results from subsurface borehole investigation and piezometer monitoring.  



55 
 

 

 
 

Figure 3.1 – The study area (Rocchetta Sant'Antonio, Italy). Google Earth, © 2013 

Google. (source of the Background map: Esri, et al., 2018). 

This site was chosen because it has characteristics that make it suitable for our 

research purposes. These include: 
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• With its rural characteristics and frequent recurrence of predominantly 

shallow landslides (up to 10 m depth (Wasowski et al., 2010)), the study site 

can be considered a representative portion of the Daunia Mountains 

(Wasowski etal., 2010). 

• The site has been studied by local researchers for some years (Wasowski et 

al., 2007, 2010, 2012), making available for the scientific community a set of 

data at high spatial resolution. 

• The catchment is affected by both mass movements and soil erosion 

processes (with relevant costs for the local community1 (Comune di Rocchetta 

sant’Antonio, 2015)). The contemporary susceptibility of the area to soil erosion 

and shallow landslides is a precondition for evaluating the effects and 

interactions between these two processes. 

• The spatial size of the catchment is compatible with the field collection of the 

data neded for both soil erosion and landslide susceptibility models.T  

 

 

3.2. Geology and soil 

 

The Daunia region is located in the transition area that includes the most advanced 

part of the frontal thrust of the Southern Apennines and the most westerly area of 

the foredeep (Dazzaro et al., 1988; Ciarcia et al., 2003; Wasowski et al., 2010). A 

tectonally deformed lithostratigraphic succession belonging to the period between 

the Late Cretaceous and the Miocene age, characterises the chain units in this area. 

The clay-rich flysch formations of the Daunia region and the presence of intensely 

deformed geological units are factors predisposing to the slope instability (Wasowski 

et al., 2010).  

The outcropping formations within the selected catchment are divisible into three  

main categories, each dominated by one specific lithology: sandstone, limestone and 

clay-shales (Figure 3.3). In the study area, the clay-rich lithology, belonging to the Late 

                                                             
1  Within the municipality of Rocchetta Sant’Antonio the costs for mitigating the 

hydrogeological risk affecting the S.P. 99 bis (ex S.S. 303) were in the order of one million 
euro. 
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Cretaceous-Paleogene sedimentary succession, covers more than 76% of the 

territory. The ‘Complesso Indifferenziato’ composed of clay-shales is present in more 

than 50% of the territory (Wasowski et al., 2010), with Miocene age Flysch and 

alluvial deposits covering the other portion.  

The ‘Complesso Indifferenziato’ is marked by a lithological variability with clay-shales 

predominant on limestones, calcarenites, breccias and sandstones and shows an 

intense deformation at the outcrop (Wasowski et al., 2010). These deposits are 

known as the ‘Argille Varicolori’ that in turn are shared in clay-rich and limestone-

marlstone-rich members (‘Flysch Rosso’; Dazzaro et al., 1988; Wasowski et al., 2010). 

Sandstones and limestones cover respectively 18% and 5.5% of the study area 

(Wasowski et al., 2010, 2012). 

Shear strength data on the lithological units of this area is available from a series of 

commercial laboratory geotechnical tests (Wasowski et al, 2012) a subset of which 

was made available by CNR-IRPI (Bari) (see chapter 4, figure 4.4). These data show a 

low strength estimate of the clay-shales, resulting in a high landslide susceptibility 

that is consistent with the observed high frequency of landslides affecting the 

catchment. The predominance of sheared, scaly clays with weak geotechnical 

properties (𝜙𝜙Г
′  varying from 6.9° to 16.5°) and the presence of poorly drained slopes 

are considered the underlaying causes of landsliding (Wasowski et al., 2010, 2012). 

 Agricultural soils cover the majority of the catchment (Figure 3.4 and 3.5).  
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Figure 3.2 Geological map of the municipal territory of Rocchetta S. Antonio 2 . 

(Source: Wasowski et al., 2010). 

 

                                                             
2 Q) recent alluvium; Q dt), slope debris, including landslide deposit 

(Holocene); Qt), alluvial terrace deposit (sand, gravel and clay) (Pleistocene– 
Holocene); N2 s), sand, clay, marly clay and conglomerate (Pliocene); N1 s), 
sandstone including marly clay–shale intercalations (Miocene); N1 m), marly 
limestone, sandstone and clay–shale (Miocene); K2-Pg fl), Undifferentiated 
Complex (limestone breccia, calcarenite) (Palaeogene); K2-Pg fa), 
Undifferentiated Complex (primarily clay–shale and marly clay–shale, and 
secondarily limestone, calcarenite, breccia, sandstone) (Late Cretaceous–
Palaeogene) 
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Figure 3.3 – Map of the main lithological units in the study area. This map was 

obtained by integrating information from the state geological map (Malatesta et al., 

1967) and in situ checks (Wasowski et al., 2012). 

 

 

3.3. Geomorphology 

 

The Daunia Appennines are affected by several types of mass movements. Complex 

landslides, involving both rotational and translational sliding (Figure 3.4), often 

evolving into debris or earth flows are the most common type of slope instability 

affecting this region (Andriani et al, 2009). Mud flows are also a common 

phenomenon, especially in the areas with prevailing clay deposits. In most of the 

cases, the slope instability affecting this area is linked with re-activation of ‘dormant 

phenomena’ triggered by rainfall (Andriani et al., 2009; Cotecchia et al., 2009). 

In the study area, active landslides are typically shallow translational landslides of 

moderate dimension (from tens to hundreds of meters with basal slip plane less than 

10 m below ground surface) and mainly occurring on cultivated slopes. Because of 
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seasonal ploughing the landslide surface signatures are rapidly lost. Two maps of 

landslides are available for this area (Wasowski et al., 2007, 2010) and both were 

created by the department of Bari of the Research Institute for Hydrogeological 

Protection of the National Research Council (CNR-IRPI of Bari). These maps were 

derived from aerial photography and satellite image interpretation related to the 

years 1976 and 2006 and subsequent field investigations. By creating these two 

datasets, for simplicity, a distinction was made by the authors only between active 

and inactive landslides. They followed the geomorphic criteria typically adopted for 

the recognition of landslides and their state of activity from air-borne imagery (e.g. 

Wieczorek, 1984). Firstly, a stereoscopic interpretation of 1976 aerial photos was 

used to obtain a historical inventory of landslides related to that year,  Secondly, a 

landslide inventory based on the high resolution IKONOS satellite imagery was 

created for the spring of 2006. To facilitate the interpretation the satellite imagery 

was first orthorectified and pansharpened. 

Comparing slope failure inventories related to 1976 and 2006 (Figure 3.6) the 

frequency of active landsliding in 2006 is 160% higher than for 1976. This increase 

coincided with a significant change in land use over time (Wasowski et al, 2010). In 

particular, the areal extent of sown fields grew passed from 52% (of the total 

territory) in 1976 to 75% by the year 2000.  

Soil erosion by water is also a common process in the Daunia Appennines (Iannetta 

and Trotta, 2008), although it is much less intensively investigated. Ephemeral gullies 

and rills are widespread phenomena within the study area (Figure 3.5). The silty-clay 

slopes, especially where sown fields are present are particularly affected by soil 

erosion processes. 

Within the catchment, rills are very common and usually concentrated on the 

steepest cultivated slopes, were surface runoff concentrates. Their number is 

particularly high during the wet season. The lack of a good soil and vegetation cover 

and the low soil cohesion form the main contributing factors for the formation of rills. 

Ephemeral gullies also form where overland flow concentrates. They are small 

channels that can be easily erased by tillage practices but often reappearing again in 

approximately the same location (Soil Science Society of America, 2001). It is only at 
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the end of the last century that ephemeral gullies have been recognisd as a consistent 

part of the soil erosion system on croplands (Evans, 1993). Generally larger than rills 

and smaller than permanent gullies, ephemeral gullies are the result of rills forming 

a dendritic pattern of channels. Within the catchment ephemeral gullies are quite 

common geomorphological elements; as for rills they are mainly concentrated on the 

steepest cultivated slopes and especially where the vegetation cover is limited or 

absent. 

The study area is generally characterized by a moderate relief that, with a few 

exceptions, doesn’t exceed 1000m in height and generally has an elevation that is 

below 800 meters. The surface slopes are on average around 10° and peak slope 

angles rarely exceeds 25-30°.  

The catchment has an ephemeral drainage network (active in wet season) that 

includes a main watercourse and a network of small tributaries. The upper hillslope 

portion of the catchment is characterized by wet zones (areas with free surface-

water, including ponds, disordered migrating surface water, seeps) which are 

concentrated close to the boundaries of limestone and sandstone (Wasowski et al., 

2012).  
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Figure 3.4 – Examples of translational slides in the Rocchetta Sant’Antonio catchment 

(figure (a) and (b) ) (spring of 2012) and detail of the main scarp and head of a big 

translational slide (figure c, October 2012) occurred in the same area highlighted in 

picure b. All the landslides in the pictures have a length not exceeding a few tens of 

meters.  
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Figure 3.5 - ephemeral gully (a-c) and rills (b-c) (see section 2.1) in Rocchetta 

Sant’Antonio. Picture b is related to the fall period (October 2012), pictures a and c 

were taken in the spring of 2012. The maximum depth of the ephemeral gully in 

picture (a) is around 80-100 cm, the rills in pictures (a) and (b) are generally of uniform 

spacing and dimension , have a depth generally below 10 cm and are much more 

narrow than ephemeral gullies. Geomorphological features having similar 

dimensions and charactristics are present all over the catchment and especially 

during the wet season (October-March). 

 

 

 

 

 

 

 

 

 

 



64 
 

3.3.1 Landslides 

 

The Daunia Appennines are well known for recurrent landslide problems (Zezza et al., 

1994, Maglioulo et al., 2008). In a study conducted by Mossa et al in 2005 in an area 

situated at the north-west of the territory of Rocchetta sant’Antonio, a frequency of 

landslides exceeding 20% was reported. The study also showed that the slope class 

10-15° present the highest landslide frequency, followed by slopes characterized by 

steepness between 5-10° and 15-20°. 

The landslide inventory complied by Lamanna et al. (Lamanna et al., 2009; Wasowski 

et al., 2007) within the municipal territory of Rocchetta Sant’Antonio (Figure 3.6), 

revealed a strong impact of slope failure, with areal frequency of active landslides 

amounting to 2% in 1976 and 5.2% in 2006. The majority of these landslides were 

small and the density per km2 ranges from 6 (1976) to 34 (2006). 

Frequent field visits conducted in the last several years in the Daunia Apennines 

(Wasowski et al., 2007) confirm that seasonal remobilisations (mainly in winter and 

spring time) of pre-existing landslides are common. Nevertheless, also first-time 

shallow landsliding is widespread in rural areas. In most cases the triggering factors 

seem to be related to rainfall events. 

Short-lived shallow mass movements form the great majority of the inventoried slope 

failures, but the surface expression of much less common, larger and deeper 

landslides is more persistent. Field observations suggest that the signs of recent 

activity of these deep landslides, recognizable on remotely sensed imagery, typically 

do not persist for more than 2–3 years (Wasowski et al., 2007). 

Some studies within the municipality of Rocchetta sant’Antonio focused on the 

catchment traversed by the SP99bis road. This road was damaged by a series of big 

landslides between the years 2003 and 2005. Following these events subsurface 

geotechnical investigations were perforemd, as well as piezometer and inclinometer 

borehole monitoring. The outcomes of these investigations demonstrated the 

relationship between the presence of high piezometric levels in winter and early 

spring months and the occurrence of predominantly shallow slope failures (Wasowski 

et al., 2010, 2012). 
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Figure 3.6 -  Distribution of active landslides for the year 2006 in the study site of 

Rocchetta Sant’Antonio, Italy (source of the Background map: Esri et al., 2018).   

 

 

3.4. Climate 

 

The proximity of the Adriatic Sea directly influences the Rocchetta Sant’Antonio 

territory resulting in a Mediterranean sub-humid climate. The precipitation range 

typically varies from 600 to 750 mm with about 60% of the precipitation occurring 

during the autumn-winter period (Wasowski et al., 2010). The winters are generally 

mild with limited snow precipitation and the summers are dry (Figure 3.7) and hot, 

with maximum temperatures easily overpassing 30o. From analysing more than 50 

years of rainfall data (1955-2008) Wasoski et al. (2010) found a mean annual 

precipitation of 667 mm (449 – 1037 mm) with an average of 202 mm in winter (64-

470 mm) and 110 mm in summer (19-266 mm). In a mediterranean climate 

precipitation events are designed as severe if containing at least one hourly reading 
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exceeding 50 mm (Molini et al., 2011). In the study area relatively intense rainfall 

events exceed 40 mm (Wasowski et al., 2010). 

As is typical in the Mediterranean region, the inter-annual variation of the 

precipitation is large (Haylock and Goodess, 2004). The precipitation regime 

characterising this area favours the groundwater recharge over the period October – 

March (average 403 mm) and overlaps with the maximum instability of the slopes 

(Wasowski et al., 2012). A part of the climatic data used within the present research 

comes from a meteorological station located in Rocchetta Sant’Antonio (other 

climatological data comes from the E-OBS dataset (Haylock et al., 2008)). These data 

comprise a series of monthly rainfall data covering the period 1955 – 2011 and of 

three years of daily rainfall data (2010 – 2012) both provided by the CNR- IRPI of Bari. 

 

 
Figure 3.7 – Five-day cumulative rainfall registered in Rocchetta Sant’Antonio 

(December 2005 – December 2010; source: Wasowski et al., 2012) 
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3.5. Land use and cover 

 

The study area is intensively cultivated and within the catchment it is possible to 

distinguish three major classes of land use: i) agricultural soils (covering most of the 

area), ii) woodland (including shrubs) and iii) grassland and pastures (Figure 3.8). The 

presence of bare soil is very limited (except for short periods during the year) and 

mainly corresponds to rock and outcrops (Wasowski et al., 2012). The agricultural 

land is mainly used for cereal cultivation covering 75.6% of the territory’s area. 

Arborous lands represent 6.3% and are mainly concentrated in the more elevated 

areas. The remaining part is principally covered by pastures and grassland. As already 

mentioned, bare lands are very sparse (Wasowski et al., 2012). 

The CNR-Irpi (Bari) produced a land use map of the study site using ASTER imagery 

(July 2000). Four ASTER bands were analysed and used for classifying this area. The 

procedure has been checked using field data and the results were consistent with the 

local knowledge of this territory (Wasowski et al., 2010). The limited variability of the 

land cover characterizing this area also favoured the realiability of the map. The 

ASTER imagery was preferred over IKONOS because the images were related to the 

summer period after harvesting and were therefore more suitable for a supervised 

land-use classification. Furthermore, from analysing both the available images, only 

minor changes occurred from 2000 to 2006 (Wasowski, 2010). 

During the last 30 years the percentage of cultivated areas within the catchment has 

increased. From about 50% of the land being used as sown fields in 1970 to 75% by 

the year 2000. This abrupt change is probably related to the introduction of the EU 

sponsoring wheat cultivation during the mid-late 70s in southern Italy (Wasowski et 

al., 2012). 

The potential geotechnical impact of the changes in land use and vegetation cover is 

difficult to quantify. These changes are potentially able to modify the equilibrium of 

the slopes. Cereal cultivation, requiring deep ploughing (depth greater than 50 cm), 

can alter the soil mechanical and hydraulic properties and strength components (a 

decreased soil strength and angle of internal friction appear as consequence of soil 

tillage) (Wasowski et al., 2010). Also, the soil water balance can be altered by deep 
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ploughing, with direct consequences on the soil water pressure and consequently on 

the slope stability. An analysis of the landslide trends between the 1955 and 2011 

showed a significant increase of landslide activity in this area (Wasowski et al., 2014). 

The highest landslide susceptibility is focused in the areas that passed from pastures 

and grazing to cereals. The decrease in effective strength of the soil due to the land 

cover changes from grasslands to sown fields can be considered as the main cause of 

the reduced slope stability (Wasowski et al., 2014). 

  

 
 

Figure 3.8 – Land cover map of the study catchment. Cereals are the most widespread 

type of crop and woods are represented by broad-leaved species. Pastures 

characterize the non-cultivated areas that are mainly localized along the ephemeral 

drainage network and the main watercourse and grass is present on fallow fields. 

(source of the Background map: Esri et al., 2018).  
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3.6. Summary and conclusions 

 

A significant part of the Daunia Appennines is affected by slope instability (Andriani 

et al., 2015; Magliulo et al., 2008; Cotecchia et al., 2009). Prolonged rainfall and 

intense storms are the main triggering factors in this region. 

Complex landslides form the most common type of landslide affecting this region, 

particularly occurring in areas where clays-shales outcrop (Andriani et al., 2009, 

2015). Soil erosion is also widespread and ephemeral gullies and rills are common 

features in this region (Figure 3.5). The areas more susceptible to soil erosion process 

are the cultivated silty-clay slopes, especially after the harvest when the soil is bare. 

 

The study site is particularly susceptible to landsliding (in 2006 more than 400 

landslides affected this catchment) (Figure 3.6). Wasowski et al. (2010) describe the 

most common mass movement affecting this area as seasonal superficial 

translational slides. These types of landslides are generally characterized by depths 

not exceeding a few meters (Godt et al., 2008; Meisina and Scvarabelli, 2007). Within 

the catchment most landslides have slip surfaces that occur within 3 to 4 meters 

below the ground surface. These typically outnumber the deeper landslides found in 

the catchment (Wasowski et al., 2012). Widespread shallow landslides mainly occur 

on the cultivated slopes following very wet winter periods. In most of the cases the 

landslides were triggered by rainfall but the high groundwater level following 

prolonged precipitation periods is a causative factor of slope instability (Wasowski et 

al., 2010), there is a balance between antecedent soil moisture conditions and the 

level of rainfall required to cause failure. Most of the mass movements occur on 

slopes between 5 and 20° and the slopes between 10 and 15° have the highest 

landslide frequency (Lamanna et al., 2009). 

Following an analysis of local historical precipitation patterns, landslide occurrence 

and land use changes, it was found that an increase in landslide susceptibility was the 

result of land use changes responding to EU economic incentives for the production 

of durum wheat   (Wasowski et al., 2012). This study clearly illustrated the potential 

of appropriate land management in managing potentially unstable topographies. 
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4. Modelling soil erosion in data-poor regions 
 

4.1. Introduction 

 

Substantial efforts have been spent on the development of soil erosion models 

(Nearing et al., 2005). Often, a quantitative assessment is needed to infer on the 

extent and magnitude of soil erosion problems so that sound management strategies 

can be developed. Several soil erosion models exist with varying degrees of 

complexity. While physically based models can in principle offer scientifically sound 

methods for deriving soil erosion rates from a plethora of detailed input data, their 

practical suitability at regional/continental scale or at local scale in poor-data 

conditions is controversial (Bras et al., 2003) (see paragraph 2.2.1). The enormous 

gap between the type and accuracy of the required input parameters and the actual 

availability of harmonized, verifiable data sets limits the applicability of such models 

(Stroosnijder, 2005).  

In theory, when working with physically based models, possibly all the requested 

parameters are measurable and can then be considered as “known”. In practice, 

often the parameters have to be calibrated against observed data (Beck et al., 1995; 

Wheater et al., 1993). This calibration adds nonnegligible uncertainty in the 

parameters’ values. The heterogeneity, variability and uncertainty associated with 

input parameter values and their interpolation in spatial or temporal domains outside 

the observed ones should be considered as key factors (Saltelli et al., 2010; Jetten et 

al., 2003) which may partially explain why often lumped regression-based models can 

perform better than more complex physically based models (Bosco et al., 2013; de 

Vente et al., 2013). 

In these conditions, the adaptation of widely used low data demanding empirical 

models and their application to local conditions could play a meaningful role. 

Approximations with robust empirical modelling could provide useful – even if 

necessarily less accurate – support for risk assessors involved in decision-making 

processes in data-poor regions. The main limit of such an approach is that empirical 

http://www.sciencedirect.com/science/article/pii/S1674987115001255#bib19
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models do not necessarily model the right processes and should only be used for the 

range of conditions they were developed for (Hessel, 2002; de Vente et al., 2013). 

 
 

4.2. Modelling soil erosion 

 

4.2.1. The model selection process 

 

For selecting the more appropriate soil erosion model to the climatic, geological and 

geomorphological characteristics of the study area and to the limited amount of 

available data, an in depth review over thirty-three different soil erosion models was 

carried out. The soil erosion models we analysed greatly differ in terms of their input 

requirements, represented processes, application scale and information provided. 

Following the approach of Merritt et al. (2003) and Aksoy and Kavvas (2005), the 

processes represented by the models, their temporal and spatial scale of application, 

the required input, the type of model (physically based, conceptual or empirical), and 

other additional information such as their integration in a GIS environment were 

registered (a summary is available in table 2.1). 

By considering the characteristics of the Rocchetta Sant’Antonio area and the low 

input data availability, an in depth discussion on the key aspect of the different 

factors involved in soil erosion modelling, jointly with the related peculiarities and 

limits of the analysed models, is reported in this section. The consideration that 

follow in the text were used for selecting the more suitable models to our conditions. 

EMSS (Vertessey et al., 2001; Watson et al., 2001), IHACRES-WQ (Jakeman et al., 

1990, 1994; Dietrich, 1999), LASCAM (Viney and Sivapalan, 1999), MIKE-11 (Hanley 

et al., 1998), SedNet (Prosser et al., 2001), together with SIBERIA (Willgoose et al., 

1991 a-d), EGEM (Woodward, 1999), and STREAM (Cerdan et al., 2001) all consider 

soil erosion process, but they were not specifically developed for estimating soil 

erosion by water and consequently have limitations over being suitable for our 

purposes. 
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IHACRES-WQ, EMSS and MIKE-11 have been mainly developed for the water quality 

assessment, LASCAM is an hydrological model modified by Viney and Sivapalan 

(1999) incorporating a conceptualization of the USLE, and SedNet primarily is a 

sediment transport model (Merritt et al., 2003). EGEM is a model created for 

estimating ephemeral gully erosion only. SIBERIA despite linking widely accepted 

hydrological and soil erosion models principally simulates the geomorphic evolution 

of landforms subjected to fluvial and diffusive erosion and mass transport processes. 

STREAM is a water balance model that, coupled with other algorithms, is suitable to 

also measure soil erosion but it is not its primary function. Also HSPF (Johanson et al., 

1980) is mainly a model for the simulation of watershed hydrology and water quality, 

furthermore another limit of the model is that it relies heavily on calibration against 

field data for parameterisation (Walton and Hunter, 1996). 

The MEDRUSH (Kirkby et al., 1998a; Kirkby, 1998b) model also has never been really 

effective if applied at a small scale (less than 10 km2). MEDRUSH has been developed 

for modelling large catchments (100–2500 km2) in areas dominated by a natural or 

semi-natural environment (Kirkby and McMahon, 1999). The main model limitation 

in applying MEDRUSH for our site is imposed by the choice of a minimum 5 km 

reaches for effective channel routing (Kirkby and McMahon, 1999).  

  

Lumped against distributed models 

Many of the factors influencing soil erosion such as soil type, slope and land use, have 

a strong spatial variability. These factors can not be described using mean values even 

over areas as small as one field. Spatially lumped models consider an area as a single 

unit having uniform characteristics. If the spatial variability is a factor that needs to 

be considered, a dynamic distributed model is the more appropriate option (Morgan 

et al., 1998). Distributed soil erosion models, with the capability to incorporate a 

variety of spatially-varying land characteristics and precipitation forcing data, are 

thought to have great potential for improving soil erosion modelling. However, 

uncertainty in the high resolution estimates of model parameters may diminish 

potential gains in prediction accuracy achieved by accounting for the inherent spatial 

variability. 
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Climate 

The frequency of high intensity precipitations, typical of the Mediterranean climate, 

is an important selection parameter. The use of models as PERFECT (Littleboy et al., 

1992) and PESERA (Kirkby et al., 2003) that do not take into account the intensity of 

precipitation is not suitable for the Daunia region. Also models such as SWAT (Arnold 

et al., 1998; Arnold and Fohrer, 2005) or TOPOG (O’Loughlin, 1986, CSIRO, 2017), 

whose climatic aspects still need further investigation, have to be considered not 

suitable for our aims.  

 

Scale 

The problem of scale’ is common to many different disciplines (hydrology, 

hydrogeology, soil physics, geophysics, and so forth). The values obtained by 

measuring a physical property (e.g., the saturated soil cohesion) in several points 

cannot simply be ‘‘averaged’’ to get a single value that properly reflects the physics 

of the process viewed at the watershed or larger scale (Bloschl and Sivapalan 1995). 

Due to the scale-dependence of erosion models, these models may not be easily used 

at another spatial scale. The presence of scale-dependence will obfuscate 

experimental results, particularly if these are carried out under less controlled, semi-

natural conditions. This has been explored in various studies (e.g. Lark et al., 2004; 

Corstanje et al., 2007, 2008) and, for instance, has shown that strong relationships 

can be observed at some scales even though poor correlations were obtained in the 

overall experiment. 

Models as CREAMS (Knisel, 1980), GUEST (Misra and Rose 1996; Rose et al. 1997) and 

PERFECT and probably also EUROSEM (Morgan et al., 1998a,b), that are suitable to 

be applied at the plot or field scale should be used only if the advantage, linked with 

their use, is so strong to motivate the huge effort in applying the models at a larger 

scale. Another model that could present some limitations due to the application scale 

is SEMMED (de Jong et al., 1999). It is a promising model that predicts soil loss at a 

regional scale with a limited amount of soil data. The model results should also be 

interpreted with caution due to its sensitivity for rooting depth and initial soil 

moisture storage capacity (de Jong et al., 1999).  
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Geomorphology 

Soil erosion generally increases with slope steepness and slope length as a result of 

an increase in the velocity and volume of surface runoff. It is always true until the 

flow velocity can become independent of the slope, and it happens when the flows 

have a Froude number around one, with the bed morphology evolving with the flow 

(Gimenez and Govers, 2001). Dunne (1977) observed that topographic steepness is a 

significant factor affecting sediment yields. Zingg (1940) was one of the early 

researchers to relate erosion to slope steepness. He analysed numerous simulated 

rainfall data finding that the relationship between steepness of slope and soil erosion 

is represented by a power law equation. The CREAMS model is lacking in this aspect, 

the outputs are provided for a catchment that is assumed to have a uniform soil 

topography (Merritt et al., 2003). Also LISEM (de Roo et al., 1994) does not specifically 

take into account the effect of steep slopes and the presence of gullies (Hessel, 2002).  

Unfortunately, only few of the revised models e.g. CREAMS, HSPF, WEPP and 

WATEM/SEDEM (Van Oost et al., 2000; Van Rompaey et al., 2001) are able to consider 

the gully erosion process. Due to the small number of ephemeral gullies in our study 

site, gully erosion was not considered as a fundamental prerequisite in our selection 

process. 

 

Anthropic factor 

Another very important aspect of every soil erosion model relates to the impact of 

human activities on soil erosion. It is mainly through modifying the flow pattern, the 

direction of the surface runoff and reducing the amount and rate of runoff, that 

human activities affect soil water erosion (Renard and Foster, 1983). The anthropic 

factor can include tillage practices, terracing, and subsurface drainage as well as soil 

slope stabilization with geogrids or cellular faces. The anthropic factor can lead to a 

significant increase (i.e. between 2 and up-to 200 times) in total sediment yield (e.g. 

Einsele and Hinderer, 1997), or in a reduction after implementation of conservation 

measures (e.g. McIntyre, 1993; Renwick and Andereck, 2006). In catchments having 

an important human impact “different erosion processes are responsible for the main 

part of sediment yield than in catchments with limited human impact”. (De Vente, 
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2009). The collected information related to the reviewed models shows that many 

models don’t implement or only partially consider this aspect. A few of the models 

(as for example ANSWERS (Beasley et al., 1980), WEPP, LISEM and RUSLE) include a 

factor for anthropogenic soil disturbance or for conservation measures.  

 

Data Requirement 

A considerable effort is still required for improving the prediction capacity of soil 

erosion models and this should be undertaken in conjunction with methods for 

improving the quality of the input data: “The quality of model predictions strictly 

depends on the input data. Judicious data collection is required in order to achieve 

the maximum benefit in terms of model performance”. (Merrit et al., 2003). 

The input data required by a model is one of the key factors to be considered for 

selecting the more suitable model for application. Due to our aim to apply the model 

at catchment scale in data-poor conditions, a too high data requirement would be a 

limitation. Although at the local scale, organizing field activities is possible to collect 

the necessary data, it requires a strong economic and time investment. Data 

requirement and availability need to be carefully evaluated. 

Physically based models generally have a high data requirement, and are very 

complex to apply.  Extensive spatially-distributed data are required to develop inputs 

for KINEROS2 (Smith et al., 1995a,b), and the subdivision of watersheds into model 

elements and the assignation of appropriate parameters is both time consuming and 

computationally complex (Semmens et al, 2008). Also SHETRAN (Ewen et al., 2000) 

has too high a data requirement and complexity for our scope. Its high data 

requirement and the components that model physical processes, mainly represented 

by partial differential equations, require a strong effort for collecting the data and for 

the calibration of the model. Extensive data sets are required for model 

parameterization as for example initial overland and channel flow depths, canopy 

drainage parameters and storage capacities, vegetation root density distribution over 

depth or the sediment porosities and particle size distributions (Ewen et al., 2000).  

The climate component of WEPP (Nicks, 1985) generates mean daily precipitation, 

daily maximum and minimum temperature, mean daily solar radiation, and mean 
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daily wind direction and speed (Flanagan et al., 1995). Developing these climatic 

related files could be very time demanding and expensive.  

 

Sediment deposition 

Sediment deposition is a fundamental part of the soil erosion process. Its direct 

incorporation in soil erosion modelling is not only important for avoiding the 

overestimation of the soil erosion rate in a plot, field or catchment but also because 

the spatial distribution of deposited sediments plays a significant role in determining 

the response of the land surface to the erosive process (Sander et al., 2011). 

Many of the reviewed models, such as PERFECT (Littleboy et al., 1992), SWRRB 

(Arnold et al., 1990), RUSLE (Renard et al., 1997) and MUSLE (Williams, 1975) do not 

consider the deposition process in estimating soil erosion losses. Anyway, it is always 

possible to improve a soil erosion model by adding new tools and characteristics. For 

example, the RUSLE2 (Foster et al., 2000) model (an improved version of the RUSLE) 

considers two types of deposition, local and remote (Foster et al., 2003).  

In this work, an integration technique will be proposed to couple the dominant 

effects of shallow landslide and soil erosion at the catchment scale, in data-poor 

areas. At this scale, landslides may affect a relatively small area of the catchment. 

However, their local effects on the pre-existing land cover may include sharp 

discontinuities with areas suddenly exposed to the consequences of a significant 

component of bare soil. Among the dominant effects, an increased rate of soil loss is 

essential to be considered. Secondary redeposition of sediments may also be present, 

with local dynamics which may potentially be very complex to model given the 

extreme conditions characterising the landslide terrain. However, the mitigating 

effect of this natural process may be unlikely to fully compensate the additional soil 

loss due to land-cover changes and the newly exposed bare soil component. 

Therefore, as a first approximation, the overestimation of soil loss without 

accounting for potential redeposition may be considered as an acceptable 

simplification. 
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Land use/cover 

Only a few of the reviewed models do not take into account the land use or the land 

cover for reflecting the effect of the use of management practices or the presence of 

different land cover in the calculation of the water erosion rate (CREAMS, GUEST and 

partially SIBERIA). Since this is a fundamental parameter in soil erosion modelling, 

any model not considering land use/cover measuring soil loss should not be 

considered as suitable for soil erosion estimation.  

 

Final consideration in modelling selection 

By evaluating all the considerations raised from the modelling review, only a few of 

the 33 models showed the necessary characteristics to be applied in a data-poor area 

having climatical, geological and geomorphological characteristics as described in 

chapter 3. 

Even if models such as TOPOG, EROSION 3D (von Werner, 2004) or SWAT can be 

considered as a good option for our aims, they are too complex to be easily 

implemented and adapted to our scope.  

The empirical models: RUSLE2, USPED (Mitasova et al., 1996) and WATEM/SEDEM, 

are suitable to be applied such as the totally physically based model SIMWE (Mitas 

and Mitasova, 1998) and three conceptual models: RMMF, AGNPS (Young et al., 1989) 

and ANSWERS. All these models have the characteristics we highlighted as 

fundamental in the previous sections. By following the considerations presented in 

the paragraph 2.2.1. RMMF looks as the more suitable model to be applied in this 

project. 

The RMMF model is simple, flexible and easy to modify, it retains some empiricism 

but has a strong physical basis. The Morgan–Morgan–Finney model (Morgan et al., 

1984; Morgan, 2001) has been used successfully at plot, hillslope and catchment 

scales in many different environments such as Africa (Vigiak et al., 2005), the Rocky 

Mountains of the USA (Morgan, 1985), Nepal (Morgan, 2001) and Spain (Lopez-

Vicente et al., 2011). Another adavantage of this model is that it is also easy to 

integrate within a GIS environment. 
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Despite all these positive considerations on the application of the RMMF model, 

because of the difficulties we had during the field survey that we planned for 

collecting some of the data necessary to apply this model, we decided to use a 

different soil erosion model to estimate soil loss within the catchment. The limiting 

environmental conditions made not possible to collect information as for example 

the soil moisture or the effective hydrological depth that are required to properly 

apply the RMMF model and we also found strong discrepancies between the few data 

we measured on filed and the data available in the literature (Morgan, 2001; Morgan 

and Duzant, 2008) (see section 4.2.2.3). To avoid to add further uncertainty to the 

modelling results by exploiting other models to estimate the lacking modelling data, 

we decided to apply a less data demanding model more suitable to be applied in very 

data-poor conditions but still retaining the main characteristics highlighted in our 

review. Thus, in order to limit the high uncertainty due to the lack or low quality of 

some of the input data, we applied a modified version of the RUSLE model (e-RUSLE, 

Bosco et al., 2015). 

Before starting to describe the e-RUSLE model and its application within our study, 

the following paragraph highlight the architecture, potentiality and limits of the 

RMMF and also the work done to implement this model within our modelling 

architecture. 

 
 

4.2.2. RMMF, a soil erosion model suitable for data-poor regions 

 

The Morgan-Morgan-Finney model (MMF) (Morgan et al., 1984) is based on the 

concepts developed by Meyer and Wischmeier (1969) and Kirkby (1976). Despite 

being based on an empirical approach it provides a stronger physical basis than the 

Universal Soil Loss Equation (Wischmeier and Smith, 1978), it retains the advantages 

of having a low data demand and ease of understanding and applicability. Because of 

its stronger physical basis many different authors (e.g. de Vente and Poesen, 2005) 

consider MMF as a conceptual model, and has been used successfully all over the 

world in a wide range of different environments (Morgan, 1985; Besler, 1987; 

Shrestha, 1997). 
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The MMF model retains some simplifications (Morgan, 2001). The model assumes 

that the rainfall intercepted by vegetation cover does not contribute to soil 

detachment whereas the proportion which reaches the ground as leaf drainage has 

the capacity of detaching soil particles, depending on the height of fall (Finney, 1984; 

Morgan, 2001). An improving in calculating soil detachment by raindrop impact 

including the leaf drainage is therefore required. Another consistent limit of the MMF 

model is in not considering the capacity of runoff to detach soil particles. It is difficult 

to sustain that it doesn’t affect the predictive capacity of the model, especially on 

steep slopes and in presence of rills (Morgan, 2001). Therefore, it seems necessary 

to modify the MMF model for including soil detachment by runoff also. 

Although the MMF model can be considered a simple conceptual model to estimate 

annual soil erosion and runoff, some of its input parameters are difficult to determine. 

For example, the top soil rooting depth (Dr) is a component of the model difficult to 

estimate that also give problems of definition (Morgan et al., 1984, Morgan, 2001). 

Although rots clearly affect the soil water dynamics it also depends upon the depth 

of the horizons (especialy the A-horizon).  

By answering to all these limits, in 2001, a revised version of the Morgan-

Morgan_Finney model (RMMF) was presented by Morgan (2001). This new version 

of the model, tested with the same dataset used for validating MMF, improved the 

soil erosion processes description and provided a better support to the users for 

selecting input parameter values (Morgan and Duzant, 2008; Morgan, 2001).  

 
 

4.2.2.1. The modelling architecture 

 
The RMMF model and its predecessor the MMF model, requires a moderate number 

of inputs and has been applied under numerous different land-use and climatic 

scenarios (López-Vicente and Navas, 2010). It calculates the annual soil erosion rate 

(Ei, Mg ha-1 yr-1) by comparing the total soil detachment (F+H) (F is the detachment 

by raindrop impact and H is the detachment by runoff) and the sediment transport 

capacity (TC) and taking the lower value (see equation 4.1). 
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Ei = min[ (F+H), TC ] ,                                      (4.1) 

 

Rainfall Energy 

Within the RMMF the calculation of the rainfall energy has been revised from the 

MMF model by including the effect of leaf drainage.  

The procedure for calculating the energy of rainfall starts from the estimation of the 

effective rainfall (ER, mm). ER is the quantity of the total annual precipitation (R, 

mm) that directly reaches the ground surface after allowing for rainfall interception 

by vegetation cover (A, %). 

 

 ER = RA  ,                                       (4.2) 

 

ER is then split into two components: LD and DT. LD represents the rainfall 

intercepted by plant canopy that reaches the terrain as leaf drainage, DT is the 

precipitation that reaches the ground surface as direct throughfall.  

 
𝐿𝐿𝐷𝐷 = 𝐸𝐸𝐸𝐸 ∙ 𝐶𝐶𝐶𝐶                                            (4.3) 

𝐷𝐷𝐷𝐷 = 𝐸𝐸𝐸𝐸 − 𝐿𝐿𝐷𝐷 ,                                               (4.4) 

 

where CC (%) is the percentage canopy cover (expressed as a proportion between 0 

and 1) representing the percentage of soil covered by canopy. 

The kinetic energy of the rainfall that directly impacts the ground surface (KE(DT); 

J/m2) is a function of the rainfall intensity (I; mm/h). Typical values for the intensity 

of the erosive rain are: 10 (mm/h) for temperate climates, 25 (mm/h) for tropical 

climates and 30 (mm/h) for strongly seasonal climates (e.g. Mediterranean area). 

Within the MMF model the relationship of Wischmeier and Smith (1978) as used in 

the USLE and applicable to the majority of the United States east of the Rocky 

Mountains, is used: 

 

        𝐾𝐾𝐸𝐸(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷(11.9 + 8.7 𝑙𝑙𝑓𝑓𝑟𝑟 𝐼𝐼),                   (4.5) 
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Additional equations based on local relationships of the rainfall energy–intensity  are 

available. For example, in central Italy Zanchi and Torri (1980) developed a new 

equation suitable for the Mediterranean climate (applied within our GIS modelling 

architecture):. 

 

                                             𝐾𝐾𝐸𝐸(𝐷𝐷𝐷𝐷) = 𝐷𝐷𝐷𝐷(9.81 + 11.25 𝑙𝑙𝑓𝑓𝑟𝑟10 𝐼𝐼) ,                            (4.6)    
 

KE(LD) (J/m2) represents the kinetic energy of the leaf drainage. It is the energy of 

rainfall reaching the soil from leaves and branches of the vegetation cover and, as 

proposed by Brandt (1990), depends upon the plant canopy height (PH; m): 

 

                                                   𝐾𝐾𝐸𝐸(𝐿𝐿𝐷𝐷) = (15.8 ∙ 𝑃𝑃𝑃𝑃0.5) − 5.87 ,                               (4.7) 

 

When the value of Equation 7 is negative, KE(LD) is assumed to be equal to zero. The 

total energy of the effective rainfall (KE) is obtained by adding the kinetic energy of 

the direct throughfall to the kinetic energy of the leaf drainage: 

 

                                                        𝐾𝐾𝐸𝐸 = 𝐾𝐾𝐸𝐸(𝐷𝐷𝐷𝐷) + 𝐾𝐾𝐸𝐸(𝐿𝐿𝐷𝐷) ,                                      (4.8) 
 

Runoff 

The procedure for estimating the annual runoff Q (mm) is the same as that applied in 

the MMF model. The methodology was proposed by Kirkby in 1976 and assumes that 

runoff occurs when the daily total rainfall exceeds the soil moisture storage capacity 

(R; mm), and that daily runoff amounts approximate an exponential frequency 

distribution. 

 

                                                                𝑄𝑄 = 𝐸𝐸 𝑟𝑟𝑒𝑒𝑒𝑒 �− 𝑅𝑅𝑐𝑐
𝑅𝑅𝑜𝑜

 �  ,                                            (4.9) 

 
where Ro (mm) is the mean rainfall per rain day (mm) and Rc is the soil moisture 

storage capacity given by:. 

 

                                                  𝐸𝐸𝑐𝑐 = 1000 𝑀𝑀𝐹𝐹 ∙ 𝐵𝐵𝐷𝐷 ∙ 𝐸𝐸𝑃𝑃𝐷𝐷 �𝐸𝐸𝑡𝑡
𝐸𝐸0

� ,                               (4.10) 
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In the above formula for Rc MS is the soil moisture content at field capacity (% w/w), 

BD is the bulk density of the soil (Mg/m3), EHD is the effective hydrological depth of 

the soil (m) and Et/E0 is the ratio of actual to potential evapotranspiration. The term, 

EHD, replaces the rooting depth used in the original model and indicates the depth 

of soil within which the moisture storage capacity controls the generation of runoff. 

It is a function of the plant cover, which influences the depth and density of roots, 

and, in some instances, the effective soil depth, for example on soils shallower than 

0.1 m or where a surface seal or crust has formed. 

 

Soil particle detachment by raindrop impact 

In the revised MMF model, rainfall interception is allowed when estimating the 

rainfall energy. It is therefore removed from the equation used to describe soil 

particle detachment by raindrop impact (F; kg/m2) which then simplifies to: 

 

                                                            𝐹𝐹 = 𝐾𝐾 ∙ 𝐾𝐾𝐸𝐸 10−3 ,                                                 (4.11) 
 
where K is the erodibility of the soil (g/J). Morgan (2001) revised K values in order to 

cover a wider range of soil textures. The values range from 0.05 for clay to 1.2 for 

sand passing through Loamy sand (0.3), silty clay (0.5) or Loam (0.8) with values for a 

total of 12 different soil types. 

 

Soil particle detachment by runoff 

The revised model includes a new component to estimate the detachment of soil 

particles by runoff and is based on experimental work by Quansah (1982). The runoff 

detachment (H; kg/m2) is considered as a function of runoff (Q), slope steepness 

(S)and the resistance of the soil (Z) and is estimated from: 

 

                                                   𝑃𝑃 = 𝑍𝑍𝑄𝑄1.5 𝑟𝑟𝑟𝑟𝑟𝑟 𝐹𝐹 (1 − 𝐺𝐺𝐶𝐶)10−3 ,                                 (4.12) 

where GC = percentage ground cover. The equation assumes that soil particle 

detachment by runoff occurs only where the soil is not protected by ground cover. 

As a first approximation, this seems reasonable since, where a vegetation cover is 
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present, the shear velocity of the flow is imparted to the plants and not to the soil. 

Of course if plants are for a part the effect will be minimal.  

For loose, non-cohesive soils, Z=1.0 but based on the work of Rauws and Govers 

(1988) the dependence of Z on the cohesion of the soil (COH, kPa) is given through: 

 

                                                                 𝑍𝑍 =
1

(0.5 𝐶𝐶𝐶𝐶𝑃𝑃)                                                (4.13) 

 

Some guide values on soil cohesion are available in literature (Morgan, 2001) and are 

based on those used in EUROSEM (Morgan et al., 1993). These range from 2 kPa for 

sand to 12 kPa for clay. 

 

Transport capacity of runoff 

The method for estimating the transport capacity of the runoff (TC; kg/m2) remains 

unchanged from that used in the original version of the model, so that: 

 

                                                             𝐷𝐷𝐶𝐶 = 𝐶𝐶𝑄𝑄2 𝑟𝑟𝑟𝑟𝑟𝑟 𝐹𝐹 ∙ 10−3,                              (4.14) 
 
 
where C = the crop or plant cover factor, taken as equal to the product of the C and 

P factors of the Universal Soil Loss Equation, and S is the slope angle (°).The cover-

management factor (C factor of the USLE model) represents the influence of land 

cover, cropping and management practices on soil erosion by water. The human 

practices factor (P) reflects the effects of practices that will reduce the amount and 

rate of the water runoff and thus reduce the amount of erosion. The C factor can be 

adjusted to take account of different tillage practices and levels of crop residue 

retention (Morgan et al., 2001). 

 
 
 
 
 
 
 
 
 
 
 
 



84 
 

4.2.2.2. RMMF in a GIS environment 
 
 

Geographic Information Systems have been used in various environmental 

applications since the 1970s, however, it was necessary to wait until the early 1990s 

to see an extensive application of GIS to hydrologic and hydraulic modelling and 

mapping (Moore et al., 1991; Maidment and Djokic, 2000). Soil erosion by water is 

affected by numerous different factors: topography, vegetation, soil characteristics 

and land use, a Geographic Information System is a very useful tool for managing the 

large number of spatial data and the complex relationships present within the erosion 

modelling process. 

Despite the implementation of a variety of models to estimate soil erosion, there is 

still a lack of harmonization of assessment methodologies. Often, distinct approaches 

lead to significantly different soil erosion rates and even when the same model is 

applied to the same region the results may differ (Bosco et al., 2011). This can be due 

to the way the model is implemented (i.e. with the selection of different algorithms 

either for model’s equations or for GIS implementation) and/or to the use of datasets 

having distinct resolution or accuracy. Scientific computation is one of the central 

topics within environmental modelling (Casagrandi and Guariso, 2009), to overcome 

these problems there is thus the need to contemplate the development and 

implementation of reproducible computational methods during research activities. 

The RMMF model was implemented in ArcGis (using ESRI ModelBuilder) to support 

the reproducibility of the applied methodology. ModelBuilder is an application for 

creating, editing and managing models that is part of the ArcGis geoprocessing 

framework. It is a work flow tool enabling the creation and execution of consistent, 

repeatable models comprised of one or more processing steps. The use of 

ModelBuilder ensures the integrity of a particular model or set of analytical processes 

through modelling, storing, and publishing complex operations and workflows. 

Within ModelBuilder, a model consists of processes and the connections between 

them. Most of the geoprocessing tools available in ArcGIS can be used as processes 

within ModelBuilder. Once implemented, a model is available as a collection of lines 
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of code written in Python and suitable to be modified or personalized. Parameters 

can be defined that will be filled into a pop-up form at runtime enabling to run the 

model with different data for evaluating scenarios. 

The Revised Morgan-Morgan-Finney model was implemented as a collection of three 

different sub-models (scripts). The designed modularization is essential to ease 

future interactions with third-party sub-models. Ideally, each of the modules might 

easily be replaced by different arrays of sub-modules and data, without implying a 

major change in the modelling architecture. The RMMF model considers the soil 

erosion process as a combination of a water phase and a sediment phase. The water 

phase is linked with the energy of the rainfall and the volume of the runoff, while the 

sediment phase considers the soil particle detachment along with the transporting 

capacity of runoff (Morgan, 2001).  

The first of the implemented sub-models (Figure 4.1) calculates the runoff as given 

by equation 4.9. The second sub model (Figure 4.2) calculates the rainfall energy as 

given by equation 4.8, and the third sub-model calculates the soil particle 

detachment and the transport capacity of runoff. The union of the three sub-models 

then permits the soil water erosion to be calculated. 

 
 
 

 

Figure 4.1 – The picture shows the architecture created for running  the Runoff sub-

model of the RMMF model calculated  by applying the D∞ algorithm of Tarboton 

(1997) (see section 4.2.3.3). The input parameters (in blue) used in the runoff sub-

model (Soil moisture content (MS), Bulk density (BD), mean annual rainfall (R), etc.) 

are detailed in table 4.1. The equation of the Runoff sub-model is explained in section 

4.2.2.1 (Runoff). The land cover map of the area (land cover raster) was used to 

calculate the values of the effective hydrological depth (EHD) and the ratio of actual 

to potential evapotranspiration (Et/E0) using data from literature (Morgan and 

Duzant, 2008; Morgan, 2001). The values of Soil moisture content and bulk density 

were also derived from literature (Morgan and Duzant, 2008; Morgan, 2001) on the 

basis of the soil types present within the catchment. 
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Figure 4.2 –Part of the RMMF model, specifically the Rainfall energy estimation sub-

model as builded in Modelbuilder (ArcGis). The equations for estimating the rainfall 

energy are described in section 4.2.2.1 (Rainfall energy). The main modelling input 

are the mean annual rainfall (R) and the map of the land cover, jointly with data from 

Literature (Morgan and Duzant, 2008) used to derive the percentage canopy cover 

(CC), the percentage of the rainfall intercepted by the vegetation (A) and the plant 

height (PH) (see table 4.1). 

 

4.2.2.3. The data set and the limits in applying RMMF 
 

Modelling is not simply running a model using a basis of data as input. The 

construction of the input dataset requires a strong effort. Often the input data is 

derived from a few basic variables available as raw data. There are numerous choices 

the modellers have to take regarding input data. For example, how to derive the input 

variables from available datasets, the way to create continuous maps (interpolation 

methods have a high degree of subjectivity), and the spatial discretization of the 

study area (number, shape and size of selected spatial units). These choices are based 

either on the modeler’s experience or on practical considerations (e.g. model 

limitations).  

The RMMF model, requires several land cover and soil data  as shown in table 4.1 . 

Since the majority of these data are not available in Rocchetta Sant’Antonio, we 

planned a field survey (between September and October 2012) for collecting data on 

soil cohesion, soil texture, bulk density, soil moisture, soil depth and plant height on 

a number of fields considered representative for the study catchment. Our decision 

to collect field data rather than from field-based soil erosion plots, is because in 

oreder to validate any model at catchment scale or lower, it needs to be tested 

against data collected in the field and not from plot experiments (Poesen et al., 1996). 

The RMFF model requires the cohesion for a saturated soil for calculating the soil 

particle detachment by runoff; the height of the plants is used for calculating the 

kinetic energy of the leaf drainage and the soil texture is required by the model for 
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calculating the soil particle detachment by raindrop impact. Both the bulk density and 

the soil moisture at field capacity are required for calculating the runoff. 

Unfortunately, due to the limited amount of available data collected during the field 

survey it was not possible to fully implement the model as supposed. The prolonged 

dry season and the unusual very high temperature hampered the collection of 

sufficient data for mapping these parameters over the whole catchment, even when 

applying advanced multivariate statistical methods.  

 

Table 4.1 - Input parameters of the RMMF model (Morgan, 2001) 
 

Factor Parameter Definition and remarks 

Rainfall R 
Rn 

I 

Annual or mean annual rainfall (mm) 
Number of rain days per year 
Typical value for intensity of erosive rain (mm/h); 
use 10 for temperate climates, 25 for tropical 
climates and 30 for strongly seasonal climates (e.g. 
Mediterranean type and monsoon) 

Soil MS 
 
BD 
EHD 
 
 
 
K 
 
 
COH 

Soil moisture content at field capacity or 1/3 bar 
tension (% w/w). 
Bulk density of the top soil layer (Mg/m3) 
Effective hydrological depth of soil (m); will depend 
on vegetation/ crop cover, presence or absence of 
surface crust, presence of impermeable layer 
within 0.15 m of the surface 
Soil detachability index (g/J) defined as the weight 
of soil detached from the soil mass per unit of 
rainfall energy 
Cohesion of the surface soil (kPa) as measured with 
a torvane under saturated conditions 

Landform S Slope steepness (o) 
Land cover A 

 
Et/Eo 
 
C 
 
CC 
 
GC 
 
PH 

Proportion (between 0 and 1) of the rainfall 
intercepted by the vegetation or crop cover 
Ratio of actual (Et) to potential (Eo) 
evapotranspiration 
Crop cover management factor; combines the C 
and P factors of the Universal Soil Loss Equation 
Percentage canopy cover, expressed as a 
proportion between 0 and 1 
Percentage ground cover, expressed as a 
proportion between 0 and 1 
Plant height (m), representing the height from 
which raindrops fall from the crop or vegetation 
cover to the ground surface 
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The database to run the RMMF model was compiled using literature (Morgan, 2001; 

Morgan and Duzant, 2008). Two dataset representing the land cover and lithology of 

the catchment were made available and published by Dr Janusz Wasowski of CNR-

IRPI of Bari (Wasowski et al., 2010, 2012) and a limited amount of data on the 

lithological and soil characteristics of specific areas of the catchment were obtained 

as result of commercial laboratory geotechnical tests (Wasowski et al., 2012) (Figure 

4.3, 4.4). 

 

 
 

Figure 4.3 – Map of Geotechnical test sites commissioned in the Rocchetta 

Sant’Antonio catchment by CNR Irpi of Bari. Following a series of landslides that 

between the years 2003 and 2005 damaged the main road crossing this 

area,subsurface geotechnical investigations were perforemd. (source of the 

Background map: Esri, et al., 2018). 
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Figure 4.4 - Example of structured information and data collected for a typical set of 

geotechnical tests associated to a specific landslide in the Rocchetta Sant’Antonio 

catchment (see Figure 4.3). For copyright reasons, the values were removed from the 

table (an example of the values related to the tests performed on ‘Frana 12’ (see 

figure 4.3) is reported in table 4.8). 
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The soil related parameters of the RMMF model were also derived, using literature 

data for the type of soils characterizing the study site (table 4.2). In turn, the 

information on the different soils type that characterize the catchment were 

obtained by correlating the lithological map of the area and the geotechnical tests 

provided by the CNR-IRPI of Bari, an example of which in figure 4.4. We analysed the 

lithological characteristics of all the test sites to find a relationship with the type of 

soils characterizing that areas and validationg our results through the collection of 

some soil samples within the catachment.  

 

 

Table 4.2. Typical values for soil parameters for the RMMF model (Morgan and 

Duzant, 2008). MS is the soil moisture content at field capacity and BD is the bulk 

density of the top soil layer (additional information are reported in table 4.1). 

 

Soil 
type 

%clay %silt %sand MS BD 

       
Sand 

 
4 

 
4 
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0·08 

 
1·5 

Loamy 
 

6 11 83 0·15 1·4 
Sandy 

 
10 25 65 0·28 1·2 

Loam 20 35 45 0·20 1·3 
Silt 5 89 6 0·15 1·3 
Silt 

 
15 66 19 0·35 1·3 

Sandy 
 

 

28 14 58 0·38 1·4 
Clay 

 
36 35 29 0·40 1·3 

Silty 
 
 

36 55 7 0·42 1·3 
Sandy 

 
42 5 53 0·28 1·4 

Silty 
 

48 45 7 0·30 1·3 
Clay 64 18 18 0·45 1·1 
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Table 4.3 - Example of land cover parameters for the RMMF Model (Morgan and 

Duzant, 2008). CC and GC respectively represent the percentage canopy and ground 

cover and PH is the height of the plants. 

 
Cover      EHD    Et /E0  CC GC PH 
 
Woodland 

  

 
0·20 

 
0·95 

 
0·98 

 
1·0 

 
   30·0 

Woodland 
 

0·20 0·95 0·95      0·95  25·0 
Moorland 

  
0·12 0·90 0·98 1·0 0·5 

Moorland 
 

0·12 0·90 0·75      0·30 0·5 
Moorland 

  
 

0·12 0·90 0·95 0·8 0·2 
Lowland grass 

 
 

0·12 0·86 0·90 0·6 0·1 
Lowland grass 

 
  

0·12 0·86 0·80 0·5 0·1 
Silage (grass 

   
0·12 0·86 0·90 0·6    0.07 

Spring cereals 0·12 0·58 0·80 0·3 1·0 
Winter cereals 0·12 0·60 0·80 0·3 1·5 
Forage crops 

  
0·12 0·65 0·60 0·6 1·0 

Orchards 0·15 0·70 0·98 0·4 4·0 
Carrot 0·12 0·70 0·60 0·2 0·3 
Maize 0·12 0·68 0·65 0·5 2·0 
Vineyards 

  
0·12 0·30 0·80      0·80 1·5 

Bare soil (no 
 

0·09 0·05 0·0 0·0 0·0 
 

 

For the land cover related parameters of the RMMF model (e.g. percentage canopy 

cover, percentage ground cover, plant height, etc.), these were derived from the 

work of Morgan and Duzant (2008) using the land cover map of the study catchment. 

Despite the limiting environmental conditions that occurred during the field survey 

allowed us to collect a limited amount of data, by comparing the collected 

information on soil cohesion, bulk density, soil moisture and plant height with the 

layer determined from literature data, we noticed numerous significant differences. 

For example, by analysing the layer related to the plant height, we noticed a strong 

discrepancy among the observed and derived plant height. The information collected 

during the field survey show a vegetation height of the wooded areas generally 

among three and six meters (points 41, 19, 107, 0 and 51 in figure 4.5), showing high 

discrepancies with the values of Table 4.3. Due to the significant variability of this 

parameter that highly depends from local climatic conditions (water availability, 

mean annual temperatures, windiness, etc.) and anthropic influence (Moles et al., 

2009; de Bello et al., 2005) data from the literature are not suitable for calculating 

this model input parameter.  
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Also the values of soil cohesion we estimated measuring the shear strength in 

different points within the catchment (Figure 4.5) are not in line with data we 

obtained from the literature (Morgan, 2001). Due to the extreme dry conditions it 

was not possible to estimate soil cohesion under satured conditions. The soil 

cohesion is a parameter that normally has a high variability in the field and 

consequently cannot be adequately represented by a single number (Morgan and 

Quinton, 2001). The single value of 12 kPa suggested by Morgan (2001) for clay is 

indeed also not in line with the high variation of this parameter that we measured on 

field. In figure 4.6 is reported an example of the values we obtained using a shear 

vane (Figure 4.7) and that we converted to get the values of soil cohesion on a clay 

soil, this parameter showed a high variability such as in almost all the areas we 

analysed (see Figure 4.5).  

 

 
 

Figure 4.5 – Map of the land cover and of the survey points related to the field survey 

carried on within the study site between September and October 2012 (Wasowski et 

al., 2010). 
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Figure 4.6 – Results of one of the field tests performed using a shear vane for 

measuring the torque and undrained shear strength (kPa) in the study site. The 

undrained shear strengths appear to be very low. Results refer to the values 

measured in the survey point 49B. The picture on the right shows the values related 

to different superficial tests performed in the surrounding area of point 49B (max 

distance 50 cm). 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 – In-situ test with a shear vane for determining soil cohesion (see picture 

4.6). 
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Thus, as already mentioned at the beginning of this chapter, to limit the modelling 

uncertainty due to the lack of detailed input data, the e-RUSLE model is now 

considered. 

 

 

4.2.3.  e-RUSLE, a soil erosion model for data really-poor regions and 

large spatial extents 

 

A modelling architecture based on an extended version of the RUSLE model (e-RUSLE) 

(Bosco et al., 2015) is now presented and adapted to be applied at our study site.  

The e-RUSLE soil erosion model is based on an architecture designed for easing the 

integration of erosion-related natural resources models. The semantic array 

programming paradigm (de Rig, 2012a, 2012b) and the computational reproducibility 

(Bosco et al., 2011; de Rigo and Bosco, 2011) are at the basis of the applied modelling 

architecture. Its flexibility, low data demanding and architecture make this model as 

one of the best options for modelling soil erosion in data-poor regions and at large 

spatial extents. Furthermore, the family of models based on the USLE provides long-

term average soil loss estimates and has been applied all over the world in different 

environments and various climatic conditions (e.g. Kinnell, 2010; Lu et al., 2004; 

Angima et al., 2003; 165 Bosco et al., 2009). 

We have already discussed the (still open) challenges to obtain an appropriate 

parameterisation for physically based models to run in data-poor areas (see section 

2.2.1). Their failure to produce better results than achieved using the USLE/RUSLE 

family of models (Tiwari et al., 2000), jointly with the difficulties we also met in 

applying conceptual models as RMMF, encourage the use of the USLE/RUSLE model 

in applications for which it was not designed (Kinnell, 2010). Although even the e-

RUSLE parameterisation is not trivial, in particular considering the lack of data 

affecting the study site, the e-RUSLE array-based structure will be shown to offer a 

potential strategy to integrate uneven but locally accurate spatial information on key 

quantities – here illustrated for the case of erosivity. 
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4.2.3.1. Data set 

 

Electronic archives are an important data source for the scientific community. The 

added value and criteria for the selection of electronic archives are the accessibility 

of large volumes of data, their spatial coverage and their ability to preserve historical 

data (Panagos et al., 2011) and often their free availability. 

The data needed for running the model was compiled using the literature, public 

available data sets, and few detailed set of data coming from the National Research 

Council (CNR) of Bari: 

 

- Map of the main lithological units (figure 3.3) in the study area (Wasowski et 

al., 2012). 

- ENSEMBLES Observations gridded data set (E-OBS) (Haylock et al., 2008). 

https://www.ecad.eu/download/ensembles/download.php 

- Precipitation data from a meteorological station located in Rocchetta 

Sant’Antonio (figure 3.7) (Wasowski et al., 2012). 

- Map of land cover produced by CNR-IRPI of Bari (figure 3.8 and 4.5) (Wasowski 

et al, 2010). 

- European Soil Geographical Database (SGDBE) (Heineke et al., 1998). 

https://esdac.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/fr_intro.htm 

- A digital elevation model (DEM) with 5 m grid size (Wasowski et al., 2012). 

 

The map of the main lithological units was derived from the map published by 

Wasowski et al. in 2012. It has a spatial resolution of 5x5 meters and was 

georeferenced in WGS1984 UTM zone 33N. The original map was produced by the  

CNR-IRPI (Bari) and was obtained by integrating information from the state geological 

map (Malatesta et al., 1967) and in situ checks (Wasowski et al., 2012).  

A part of the climatic data used within the present research come from a 

meteorological station located in Rocchetta Sant’Antonio. These data comprise a 

series of monthly rainfall (mm) covering the period 1955 – 2011 and of three years of 

daily rainfall (2010 – 2012) coming from a pluviometric station located in Rocchetta 
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sant’Antonio, both kindly provided by the CNR- IRPI of Bari (Wasowski et al., 2012). 

Because daily rainfall data covers only a few years, these datasets were not used to 

directly calculate the rainfall erosivity within the e-RUSLE model but were used to 

test the reliability of the E-OBS dataset in the region. 

E-OBS is a European daily gridded observational data set for precipitation and air 

temperature that covers the period 1950–2018. The database contains gridded data 

for 5 elements (daily mean, minimum and maximum temperature, daily precipitation 

sum and daily averaged sea level pressure). The dataset is available in compressed 

NetCDF format.  E-OBS is based on the largest available pan-European precipitation 

data set, and its interpolation methods were chosen after careful evaluation of a 

number of alternatives (Haylock et al., 2008). The gridded data are delivered on four 

spatial resolutions, the 0.25 ̊ regular lat–long grid resolution has been used for our 

site. An added value of the E-OBS data set is the daily estimates of interpolation 

uncertainty, provided as standard error. 

The CNR-IRPI of Bari produced a 5x5 metres resolution land cover map of the study 

site using ASTER satellite multi-spectral imagery (July 2000) (projected in WGS1984 

UTM Zone 33N). To produce this map, four ASTER bands (three visible bands and one 

VNIR band) were analysed using standard commercial software (Wasowski et al., 

2010) and used for classifying this area. The applied procedure was checked using 

field data and the results were consistent with the local knowledge of this territory 

(Wasowski et al., 2010). The reliability of the results was also favoured by the limited 

number of land-cover types considered (all characterized by a distinctive spectral 

signatures) (Wasowski et al., 2010). Three main classes were distinguished: (1) 

agricultural land (with mainly cereal cultivation and that represents the predominant 

class), (2) wooded landv (3) other (that includes uncultivated and bare land, 

grassland, pasture and infrastuctures). 

Information on soil rock fragment content was determined from the SGDBEdataset 

(Heineke et al., 1998), all the data present within this dataset are available in Lambert 

Azimuth coordinate system. The 1:1,000,000 SGDBE data set contains a list of Soil 

Typological Units (STU) representing the properties of European soils. In the STU 

table, each STU has a number of attributes (e.g. dominant parent material, dominant 
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surface textural class, etc.). I The STUs are grouped in Soil Mapping Units (SMU) to 

form soil associations because of the difficulty in delineating the STUs at the database 

scale. Lastly, the digital elevation model (DEM) (coordinate system: WGS1984 UTM 

zone 33N) with a 5 m grid size of this area was obtained from 1:5,000 scale 

topography map (Wasowski et al., 2012). 

 
 
 

4.2.3.2. The modelling architecture  

 

The e-RUSLE architecture inherits from the RUSLE the ability to be easily linked to 

other related natural resources. For example, some effects of forest resources and 

generally of the vegetation component within land-cover are straightforward to 

assess (de Rigo and Bosco, 2011). Furthermore, approximated rapid assessments of 

the impact of disturbances (e.g. wildfires, de Rigo et al., 2013a; Di Leo et al., 2013) 

may be performed by exploiting the RUSLE modular architecture which easily allows 

potential and actual erosion rates to be estimated for different environmental 

conditions by simply considering different arrays of layers. The further seamless 

integration of multiple estimates in the rainfall erosivity component supports a more 

robust adaptability to heterogeneous climatic conditions typical of the Southern Italy.  

The RUSLE retains from the USLE (based on empirical correlation) some limitations. 

Within the model there are no factors directly representing physical processes (i.e, 

runoff, infiltration) and RUSLE only predicts soil losses caused by sheet and rill erosion, 

not by (ephemeral) gully erosion. Another fundamental lack is linked to the absence 

of estimating sediment deposition which can lead to overestimating soil erosion rates. 

However, the USLE multiplicative structure (Ferro, 2010) is well suited for 

transforming the modelled quantities into other correlated ones by simply adding 

custom factors. As an example, for overcoming the absence of sediment deposition 

calculations, Mitasova et al. (1996) replaced the LS factor with a new index 

considering the spatial distribution of areas with topographic potential for soil 

erosion and sediment deposition. 

The e-RUSLE preserves the structure of the RUSLE adding to its array of multiplicative 

factors one more factor for better considering the effect of stoniness on soil 



100 
 

erodibility. An array of local estimations of rain erosivity has also been introduced for 

mitigating the extrapolation uncertainty associated to each single rainfall erosivity 

equation. The array-based estimation of rainfall erosivity is proposed to be an 

ensemble of multiple estimations from partly independent modules (empirical 

equations) aggregated by a similarity analysis so as to also increase the design 

diversity (de Rigo, 2013). 

The methodology relies on the paradigm of Semantic Array Programming (de Rigo, 

2012a,b) (see section 2.5) which allows the multi-dimensional structure of the 

mathematical and computational model to be explicitly and concisely exploited. This 

is achieved by semantically enhancing the chain of involved data-transformation 

modelling (D-TM) modules so as to better focus on a compact, modular integration 

of the arrays of data and geospatial layers. 

 
Applying the semantic array programming paradigm  

Although the impact of the computational aspects in environmental modelling is 

steadily growing (Casagrandi and Guariso, 2009), they may be undervalued (Merali, 

2010) and the mitigation of the software-driven component of uncertainty in 

complex modelling might be understated while focusing on more traditional sources 

of uncertainty (Cerf, 2012; de Rigo, 2013). 

Part of the complication in computational models (affecting even their 

maintainability and readiness to constantly evolve) may be mitigated (McGregor, 

2006). Compared to other computational approaches, array programming (AP) 

understands large arrays of data as if they were a single logical piece of information. 

For example, a continental-scale gridded layer (such as the layers in the e-RUSLE 

application at the European scale, Bosco et al, 2015) may be managed by AP 

languages as if it were a single variable instead of a large matrix of elements. As a 

consequence, a disciplined use of AP (Iverson, 1980) may allow nontrivial 

computational workflow to be espressed with more compact data-processing 

operators (Taylor, 2003). This level of conciseness reduces the number of lines of 

code and may simplify the control flow in the model. For example, assigning all the 

values of a matrix M greater than a threshold T to a new value N may typically require 

a nested loop for each row and each column of the matrix, with an if statement to 
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check whether the element currently under examination exceeds the threshold. With 

AP languages such as GNU Octave, the list of elements exceeding the threshold T is 

simply assigned to the new value N with the instruction M( M > T ) = N, which is a 

greatly  more compact notation.  

However, the powerful abstraction and conciseness of AP – without the additional 

use of a disciplined semantics-aware implementation – might offer a weak support 

for checking the correctness of some extremely compact algorithms (de Rigo, 2012b). 

For example, in GNU Octave and MATLAB languages computing the square root of 

negative values is a prefectly legal operation which leads to a complex-valued result. 

This kind of result may be a physical nonsense for measured quantities, and a 

semantic check (e.g. to simply detect negative values where only nonnegative ones 

should be present) may suffice to avoid it. 

This is why the e-RUSLE computational modelling methodology (de Rigo and Bosco, 

2011; Bosco and de Rigo, 2013) follows the paradigm of Semantic Array Programming 

(as introduced in section 2.5) by combining concise implementation of the model 

with its conceptual subdivision in semantically enhanced abstract modules. 

It is worthy recalling two main aspects which characterise SemAP as a specialisation 

of AP: 

i) the modularisation of sub-models and autonomous tasks, paying 

attention to their concise generalization and the potential reusability in 

other contexts;and  

ii) the use of terse array-based constraints (SemAP semantic checks, de Rigo, 

2012d) to emphasize the focus on the coherent flow of the information 

and data among modules – which are often nontrivial in computational 

science.  

 

The SemAP semantic constraints apply to AP variables irrespective of their size (e.g. 

large arrays such as continental-scale geospatial layers). The semantic coherence of 

the information entered in and returned by each D-TM module (D-TM inputs and 

ouputs) is checked locally instead of relying on external assumptions. This may be 

essential especially when different modules rely on different expertise. This way, 

even the essential implementation details within each module (for example, the 
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implementation of the erosivity layer in the e-RUSLE as a climatic-driven composition 

of an array of local empirical relationships) may be at least partially decoupled from 

the overall modelling architecture. 

Ideally, modules might easily be replaced by more complex compositions of arrays of 

sub modules and data, without implying a major change in the modelling architecture. 

For example, the same methodology exploited for the erosivity layer was also 

exploited in Bosco et al. (2013) for estimating landslide susceptibility. 

SemAP array-based semantic constraints (de Rigo, 2012d) have been exploited in the 

model implementation. Some of them are exemplified hereinafter as active 

links ::sem::3 following the notation introduced in section 2.5.. 

 

The Extended RUSLE model (e-RUSLE) 

The e-RUSLE model is designed to predict only soil loss by sheet and rill erosion. As 

previously mentioned, sediment deposition processes or concentrated overland flow 

erosion (ephemeral gully erosion) are not considered in the equation. The model uses 

different factors representing the effect of topography, land cover, climatic erosivity, 

management practice and soil erodibility.  

 

The basic equation of the extended RUSLE is as follows: 

 

    Erc,Y = Rc,Y Kc,Y Lc,Y Sc,Y Cc,Y Stc,Y Pc,Y                                    (4.15) 

 

where all the factors refer to a given spatial grid cell c and are the average within a 

certain set of years Y = y1, · · · ,yi , · · · ,ynY of the corresponding yearly values: 

 

Erc,Y = average annual soil loss (t ha−1 yr−1). 

Rc,Y = rainfall erosivity factor (MJ mm ha−1 h−1 yr−1). 

Kc,Y = soil erodibility factor (t ha h ha−1MJ−1mm−1). 

Lc,Y = slope length factor (dimensionless). 

                                                             
3  The mathematical notation ::sem:: refers to the online taxonomy of array-based semantic constraints 
which defines the Semantic Array Programming paradigm (http://mastrave.org/doc/ mtv_m/check_is, de 
Rigo, 2012d). 
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Sc,Y = slope steepness factor (dimensionless). 

Cc,Y = cover management factor (dimensionless). 

Stc,Y = stoniness correction factor (dimensionless). 

Pc,Y = support practice aimed at erosion control (dimensionless). 

 

Given the multiplicative structure, all layers are expected to be defined in a given grid 

cell c without missing values (::nanless::4) in order for the soil loss to be computable 

in c. 

 

Rainfall Erosivity Factor 

The intensity of precipitation is one of the main factors affecting soil water erosion 

processes. The Rainfall Erosivity Factor (R) is a measure of precipitation’s erosivity. 

Wischmeier (1959) identified a composite parameter, EI30, as the best indicator of 

rain erosivity. 

The rainfall erosivity factor has been implemented in numerous soil erosion models: 

AGNPS (Young et al., 1989), WATEM (Van Oost et al., 2000), USPED (Mitasova et al., 

1996), SEMMED (De Jong et al., 1999) and MMF (Morgan et al., 1984). The rainfall 

erosivity factor has been widely applied all over the world and it is considered as an 

important factor for soil erosion assessment under climate change scenarios. Despite 

its frequent use, it retains some limitations. The main weakness of the R factor is in 

not explicitly considering runoff and this highly influences the capacity of the model 

to account for event erosion (Kinnell, 2010) and seasonal effects. 

The scarcity of accurate datasets for assessing soil water erosion rates in data-poor 

conditions motivated the introduction of a climatic-based ensemble model to 

estimate erosivity of rainfall. The climatic layers have been computed using GNU R (R 

Development Core Team, 2014) and GNU Octave (Eaton et al., 2008) with the 

Mastrave modelling library (de Rigo, 2012a; 2012b). The ensemble is an unsupervised 

data-transformation model applied to climatic data to reconstruct erosivity. 

Due to the short period over which daily rainfall data from the meteorological station 

located in Rocchetta Sant’Antonio are available, the R factor has been 

                                                             
4 http://mastrave.org/doc/mtv_m/check_is#SAP_nanless 
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computedusing the E-OBS database for calculating the mean rainfall erosivity over a 

period of 30 years.  

The same seven empirical equations (Table 4.6) that have been selected from the 

literature in order for the erosivity to be correlated with climatic information for large 

scale applications (Bosco et al., 2015), were exploited. Due to the high seasonal 

variability characterizing the precipitation pattern of the study site, we considered 

the same equations (Table 4.6)  we tested in our application of the e-RUSLE at 

European scale (Bosco et al., 2015), to be also able to characterize the large inter-

annual variation of the precipitations affecting this area. 

Spatially distributed climatic information (such as average annual precipitation, 

Fournier modified index, monthly rainfall for days with ≥ 10.0 mm, (see Table 4.5) has 

been computed from the daily reconstructed (E-OBS) patterns of precipitation in 

Europe (years 1980-2009). 

 
 
 
Table 4.4 - Climatic information: auxiliary variables based on precipitation patterns 

P·,c  in a given spatial grid cell c. P day,c and P m,c respectively refer to the precipitation 

in c for the day day and the month m. The values are computed considering years y 

in a set of nY years. 

 

Climatic information Definition Number of 
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Table 4.5 - Climatic information: covariates based on precipitation patterns in a given 

spatial grid cell c. P refers to the precipitation in c (for the day day and the month m). 

The values are computed considering a specific year y in a set of nY years. 

Climatic information Definition Number of 
covariates 

Average monthly precipitation 
[ mm ] ( )

∑
≡

=
 month

,
0
,

1

mday
cday

Y
cm P

n
P  12 

Average monthly precipitation 
of days with daily rain ≥ 10 

mm 
[ mm ] 
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Table 4.6 - List of empirical equations for estimating the rainfall erosivity (EI30) in a 
given spatial grid cell c. α and β are coefficients with αb1 and αb2 in MJmmha−1 h−1 yr−1, 

βb1 and βb2 in mm-1. βr1 and βr2 are expresses in mm-1 · MJmmha−1 h−1 yr−1 and αr1,2 

in  MJmmha−1 h−1 yr−1. αd1 and βd1were respectively in mm-1 · MJmmha−1 h−1 yr−1 and 

MJmmha−1 h−1 yr−1. βfi is dimensionless and αfi in mm-βfi· MJmmha−1 h−1 yr−1. 

Country/ 
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The equations in table 4.6 refer to climate-erosivity regressions, which have been 

validated in 4 geographical areas. Many other elementary relationships exist 

between climate and erosivity (Bosco et al., 2009; Bosco et al., 2015), the selected 

ones fulfil a series of expert-based criteria such as their reproducibility using the 

available datasets, a solid international literature, the climatic coverage of 

heterogeneous areas ranging from arid to wet conditions and the good regression 

performance validated in their spatial extent (see figure 4.8 and the discussion in 

section 2.5). As an example, although linear in the parameters’ regression, the 

empirical approach (eq. Rd1, region A3 in Table 4.6) proposed by de Santos Loureiro 

and de Azevedo Coutinho (2001) received wide acceptance (Onyando et al., 2005; 

Taveira-Pinto et al., 2009; Ranzi et al., 2012). The relationship has been tested in Italy 

(Diodato, 2004) where it provided estimates more stable (lower error) than the ones 

provided by other widely used empirical equations (in the limited validation set, the 

estimates of Rd1 did not show rank reversals when compared to the measured 

erosivity). This equation as also the advantage to be tested in an area with climatic 

conditions that could be similar to the study site (e.g. summers characterized by 

prolonged hot and dry conditions). 

The rationale for not limiting the estimation of the R factor to the use of one 

preferred regression based equation lies on the strengths and limitations that the 

empirical nature of those simplified equations show in different geographic and 

climatic conditions. As discussed in section 2.5, this motivates the use of multiple 

empirical equation families with parameterisations covering diverse climate areas 

(Table 4.6). 

The required integration exploited the array structure of the aforementioned 

quantities (semantic array programming). In particular, the array of regressors (Ri , 7 

dimensions, Table 4.6) and corresponding validated areas (Ai , 4 dimensions, Table 

4.6), as well as the array of covariates (Cj , 26 dimensions, Table 4.5) have been used.   
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Figure 4.8 - Climatic similarity estimated applying the Relative Distance Similarity 

(RDS) to the Bollinne equation (Belgium) and to the equation of de Santos Loureiro 

and de Azevedo Coutinho (Algarve) for rainfall erosivity. The similarity of 26 climatic 

indicators over the whole Europe is shown (red: maximum similarity; blue: maximum 

dissimilarity) and aggregated computing the median (Bosco et al., 2011). 

 

The proposed approach considers each estimate Ri  as covering an area larger than 

the study site with a spatially varying degree of reliability (many-to-one approach). 

This way, for each equation Ri a corresponding map of estimates is computed over 

the entire climatic extent (feature or covariate space) and transferred in the 

corresponding spatial extent (geographic space). As a consequence, for each pixel of 

the spatial extent a multiplicity of estimates becomes available. Depending on the 

climatic similarity of that pixel with the climate for which the equation Ri was 

originally designed (i.e. the climate charaterizing the original validated area Ai), a 

variable reliability is associated to the corresponding estimate. Hence, a weighting of 

the many estimates is performed on the basis of the local reliability of each estimate, 

generating a final aggregated estimate. The reliability is based on the Relative 

Distance Similarity (RDS) algorithm as implemented by the Mastrave modelling 

library (de Rigo, 2012 a; 2012 b) and is applied for each equation  Ri  to compare the 

climatic spatial information of each cell with the corresponding values in  Ai .  The 

RDS index has been successfully used in environmental fuzzy ensemble applications 

(de Rigo et al., 2017, 2016b, 2013a; Bosco et al., 2013). It defines the relative distance 

between two values Cj
1 and Cj

2 of a given nonnegative covariate. The relative distance 

is a dimensionless number between 0 (maximum dissimilarity) and 1 (maximum 
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similarity) and is simply the ratio between the minimum and the maximum value: 

min(Cj
1, Cj

2) / max(Cj
1, Cj

2). The behavior of each empirical equation outside its 

definition domain was also assessed to prevent meaningless out-of-range values to 

degrade the ensemble estimation. Therefore, for both the inputs (covariates) and the 

output (erosivity estimates) of the regressors Ri  the RDS index has been computed 

and then aggregated cautiously considering the minimum index. This may be defined 

here as:  

 

        

      

       (4.16) 

 

 
 

where δCj  is half of the measurement accuracy of the covariates and δRi  is the half 

of the tolerance of the erosivity estimates. Ω is a statistical operator with which the 

relative distances along each dimension of the covariates are aggregated in the RDS 

index. Among the many possibilities, a simple median has been selected here. The 

median is also a typical robust statistical operator frequently used for ensemble 

models.  

The weighted median (de Rigo, 2012c) of the 7 empirical models has here been used 

(using 𝐸𝐸𝐷𝐷𝐹𝐹𝑐𝑐
𝑖𝑖  as weights) for calculating the final R factor map. The values of R factor 

characterizing the study site have been extracted from this layer.  

The weighted median of a vector R1⋅⋅⋅n = [ R1 , R2 ⋅⋅⋅ Rn ] with integer weights  

w1⋅⋅⋅n = [ w1 , w2 ⋅⋅⋅ wn ]  is equivalent to the median of the vector [ R(1)◇w(1) ; R(2)◇

w(2) ; ... ], where the operator ◇ denotes duplications (de Rigo, 2012c, Yin et al., 

1996). Besides integer weights, the weighted median may be generalised to consider 

any nonnegative real weights. The weighted median Rwmed of the vector of R1⋅⋅⋅n   with 

nonnegative weights  w̅1⋅⋅⋅n = [ w̅1 , w̅2 ⋅⋅⋅ w̅n ] is defined as  

 

 Rwmed  = arg min(  w̅1⋅⋅⋅n  ∘ abs( R1⋅⋅⋅n - Rwmed ) ) 
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where ∘ is the operator representing the scalar product between two vectors. 

Therefore, in a given spatial cell c the weighted median of the vector of erosivity 

estimates by the 7 empirical models Rc,1⋅⋅⋅7 = [ Rc,1 , Rc,2 ⋅⋅⋅ Rc,7 ], with weights 

RDSc,1⋅⋅⋅7 = [ RDS1
c , RDS2

c ⋅⋅⋅ RDS7
c ] is 

 

 Rcwmed  = arg min(  RDSc,1⋅⋅⋅7  ∘ abs( Rc,1⋅⋅⋅n - Rcwmed ) ) 

 

as computed by the corresponding Mastrave function (de Rigo, 2012c). 

 

Soil erodibility factor 

The soil erodibility factor (K) “represents the effects of soil properties and soil profile 

characteristics on soil loss” (Renard et al., 1997). Soil erodibility is related to the 

integrated effect of rainfall, runoff, and infiltration on soil erosion. The K factor is 

affected by many different soil properties (soil texture, permeability, organic matter, 

etc.) and therefore quantifying the natural susceptibility of a soil is problematic. For 

this reason, K is usually estimated using the soil erodibility nomograph (Wischmeier 

and Smith, 1978) (Figure 4.9). 

The K factor is commonly included in soil erosion models (e.g. PERFECT (Littleboy et 

al., 1992), AGNPS and USPED) and it is usually determined experimentally using 

runoff plots. Determining the K factor using the nomograph requires a range of soil 

properties (soil texture, structure, permeability and percentage of organic matter) 

but not all of these are available for the  Rocchetta Sant’Antonio catchment. A 

simplified equation was therefore applied. This equation was calibrated using a 

world-wide dataset of measured K-values (Romkens et al., 1986; Renard et al. 1997) 

and has already been applied in Bosco et al. (2015): 

 

𝐾𝐾 = 0.0034 + 0.0405 ∙ 𝑟𝑟𝑒𝑒𝑒𝑒 �−0.5 �
𝑙𝑙𝑓𝑓𝑟𝑟𝐷𝐷𝑔𝑔 + 1.659

0.7101 �
2

�  ,            (4.17)  

 

where Dg is: 

𝐷𝐷𝑔𝑔 = 𝑟𝑟𝑒𝑒𝑒𝑒 � � 𝑓𝑓𝑖𝑖 ∙ 𝑙𝑙𝑟𝑟 �
𝑑𝑑𝑖𝑖 + 𝑑𝑑𝑖𝑖−1

2 �� ,                                  (4.18)  
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Dg is the geometric mean particle size (mm), for each particle size class (clay, silt and 

sand), di is the maximum diameter (mm), di-1 is the minimum diameter and fi is the 

corresponding mass fraction. 

The equation for the calculation of the K factor was applied using the percentage 

(::proportion:: 5 ) of sand, silt and clay present in the sandstone, clay-shale and 

limestone characterizing this area (Table 4.7). Information on these proportions were 

derived both form geotechnical tests carried on in this area (see Table 4.8) and 

literature (Shirazi and Boersma, 1984; Leone and Sommer, 2000). 

 

 
 
Figure 4.9 – The soil-erodibility nomograph. (source: Wischmeier and Smith, 1978)  

 

Only the effects of rock fragment within the soil profile are considered in the 

estimation of the K value. Furthermore, the equation applied for calculating the e-

RUSLE soil erosion map considers soils with less than 10% of rock fragment by weight 

(> 2mm) (Renard et al., 1997).  

                                                             
5 5http://mastrave.org/doc/mtv_m/check_is#SAP_proportion 
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Rock fragments have a major effect on soil erosion as they alter soil properties such 

as water holding capacity, soil erodibility, rooting volume or bulk density, influencing 

the hydrological response of a soil as well as its degradation and productivity (Poesen 

et al, 1994a). In estimating the K factor only the effects of rock fragment within the 

soil profile are considered (Renard et al., 1997). The possible presence of rock 

fragments on the soil surface and within the soil profile require special consideration 

that led to the introduction of the stoniness correction factor within the model. 

  

Table 4.7 – estimation of the mean percentage of sand, silt and clay present in soils 

derived by Sandstone, Clay-shales and Limestone that characterize the study site. 

These values have been selected by analysing data from the literature, geotechnical 

tests (see examples in figure 4.4 and table 4.8) and personal communications with 

local experts (CNR-IRPI (Bari)). 

 

 

 

 

 

 

 

Table 4.8 – Example of some of the main structured information collected for a typical 

geotechnical test (results are related to Frana 12) associated to a specific landslide in 

the Rocchetta Sant’Antonio catchment (see Figure 4.3, 4.4). The parameter soil depth 

is related to the depth of soil from the ground surface to the parent material. The 

weight density is the weight of soil in a given volume. Specific weight of particles is 

the weight density of the solid particles. Dry weight is the weight of the soil when the 

degree of saturation is zero. Satured weight is the weight of the soil when the pore 

are fully filled with water. The moisture content of a soil, expressed by volume, is 

defined as the ratio of the volume of water present in a soil sample to the dry volume 

of the soil sample. Porosity is a measure of the void spaces in the soil, and is 

calculated as the fraction of the volume of voids over the total volume. Particle size 

distribution represents the relative proportions of soil mineral particles (with major 

size classes clay, silt, sand and gravel). 

 % of sand % of silt % of clay 

Clay-shales 10 25 65 

Sandstone 58 32 10 

Limestone 20 50 30 
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Topographic factor 

The effect of topography within the model is accounted for by the L and S factors. 

Either slope length or slope steepness substantially affect sheet and rill erosion 

estimated by the model. The LS factor of the RUSLE model (L·S), as are the K and R 

factor, is present within the architecture of many different soil erosion models 

(AGNPS, PERFECT, MUSLE (Sadeghi et al., 2014; Williams, 1975). L and S factors have 

been determined through GIS procedures carried out using the Moore and Burch 

(1986) equation (4.19) and the Nearing’s (1997) formula (4.20). 

 

                                                𝐿𝐿𝐹𝐹 =  �
𝐴𝐴

22.13�
𝑚𝑚

× �
𝑟𝑟𝑟𝑟𝑟𝑟 𝛼𝛼

0.0896�
𝑛𝑛

                                      (4.19) 

 

                            𝐹𝐹 =  −1.5 +
17

(1 +  𝑟𝑟(2.3−6.1 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼))                                  (4.20) 

where: 

 

Parameters unit of 
measure 

min and 
max values 

soil depth m 2.5 - 5 

weight density kN/m3 19.2 - 22 

specific weight of particles kN/m3 26 - 27 

dry weight kN/m3 17.1 – 20.1 

satured weight  kN/m3 20.7 – 22.3 

moisture content % 9.5 – 14.8 

saturation   0.5 – 0.8 

porosity   0.2 – 0.3 

particle size 

gravel % 2.4 – 31.2 

sand   26.6 – 56.2 

silt   23.7 – 30.5 

clay   13.6 – 18.4 
definition (AGI) 
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A is the drainage area of a point belonging to a certain cell of the grid, α is the 

slope ::angle::6 and m and n are parameters. The values of m and n were considered 

respectively as 0.4 and 1.3. as reported in Bosco et al. (2008). 

 

The formula of Moore and Burch (1986) considers, within the calculation process, the 

concept of a specific catchment area A accounting for flow convergence and 

divergence through this term of the equation (Moore et al., 1991). Specific catchment 

area is one of the most commonly used terrain attributes in hydrological modelling 

(Erskine et al., 2006). It represents the area that can potentially produce runoff to the 

location of interest per unit length of contour (Bosco et al., 2015) and it gives to the 

LS factor stronger physical basis making it suitable for soil erosion modelling. 

 
The approach proposed in Bosco et al. (2015) for calculating the LS factor within the 

e-RUSLE model, was slightly modified. This was based on the use of the Nearing's 

(1997) equation for calculating the S factor because of its better performance for 

steep slopes (up to 50%) (Bosco et al., 2008). However the slope steepness 

component of the Moore and Burch (1986) formula is more appropriate for slopes 

lower than 12.73 degrees because it gives the correct limiting value of zero in absence 

of any steepness (see equations 4.19 and 4.20). A comparison of both formulas is 

presented in figure 4.10, where a close matching trend is observed between 0 and 

12.73 degrees (or 0 - 0.22 rad). Consequently we applied a merged formula obtained 

by using the Moore and Burch equation for slopes less than 12.73 degrees and then 

the Nearing formula for higher slopes. 

To calculate the slope length factor required in e-RUSLE, the D-infinity (D∞) 

algorithm of Tarboton (1997) was first used to calculate the flow direction and then 

the flow length. Due to the geomorphological characteristics of the study area, a 

multiple-neighbour flow algorithm was required with the D∞ algorithm being one of 

the most suitable (Gruber and Peckham, 2009; Chirico et al., 2005; Erskine et al., 2006) 

(see paragraph 4.2.3.3 for further information). 

                                                             
6 http://mastrave.org/doc/mtv_m/check_is#SAP_angle 
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Figure 4.10 - Comparison between the Moore and Burch (1986) relation and the 

Nearing's (1997) formula applied for calculating the S factor of the e-RUSLE model. 

 

 

 

Cover and Management Factor 

The cover-management factor represents the influence of land cover, cropping and 

management practices on soil erosion. A vegetative cover, changing the impact and 

intensity of rainfall, the resistance to water flow or the sediment transport, can 

influence soil and water losses (De Ploey, 1982, 1984). As with most of the soil erosion 

factors within the RUSLE, the C factor is based on the concept of deviation from a 

standard. As standard, an area under clean-tilled continuous fallow conditions was 

selected. The C factor incorporates the effects of plants, soil cover, soil biomass, and 

soil disturbing activities on soil erosion. For calculating the cover-management factor, 

a subfactor method for computing soil erosion ratios is normally used. The C factor 

value is an average soil loss ratio weighted according to the distribution of R during 

the year. The subfactors used for computing these ratio values are: canopy, surface 

cover, surface roughness, prior land use and antecedent soil moisture. Each subfactor 
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contains cropping and management variables affecting soil erosion by water and 

includes one or more variables (e.g. residue cover, canopy cover, canopy height, etc.). 

The dependence of the cover-management factor from many different parameters 

(as already mentioned) makes it difficult to calculate. Because of the difficulties in 

processing all the parameters due to the lack of data affecting the study site, values 

from literature were applied for calculating the C factor. 

The initial approach was to apply, for all the land cover classes present in the 

catchment, the worst value from the extensive literature cited in Bosco et al. (2015). 

Such an approach led to an overestimation of soil erosion phenomenon due to the 

strong difference that the C factor can present (e.g. the natural grassland present 

literature values from 0.001 to 0.1). After discussion with local experts, an approach 

based on our judgment was then used to select the most representative values for 

the local average conditions. We respectively applied the values of 0.05 for grassland, 

0.02 for pastures, 0.0025 for woods and finally 0.3 for the areas covered by crops, 

such as reported in figure 4.11.   

For decreasing the influence of classification errors, to account for within-class 

variability and for the temporal variation, the use of innovative techniques is the most 

effective method to obtain wide range information on land cover. Unfortunately, 

although the studies exploiting remote sensing techniques have reached good 

achievements they still need improvements (Zhang et al., 2011). 
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Figure 4.11 – Map of the e-RUSLE C factor in the study area. The values reported in 

the picture (dimensionless) represent the mean C factor for pastures, grass, broad-

leaved forests and cereals. These values are based on data from literature and from 

information collected during the field survey. 

 

 

Stoniness Correction factor 

Soil stoniness is known to have a strong influence on erosion rates (Poesen et al., 

1994). Rock fragments in the soil top layers affect soil water erosion processes in 

various ways, both directly and indirectly. Over the last years, there was a growing 

interest in soils containing considerable amounts of rock fragments (Cerdan et al., 

2010). These soils are widespread and in particular are present in the Mediterranean 

where they can occupy more than 60% of the land (Poesen and Lavee, 1994). 

The RUSLE model considers stoniness indirectly within the K and the C factor. 

Regarding the K factor, only the effects of rock fragments within the soil profile are 

considered. For the C factor stoniness is taken into account in calculating the surface 

cover sub-factor. Due to difficulties in calculating the C factor for the whole 
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catchment applying the original equations, the contribution of stoniness was not 

really considered. To avoid possible overestimation, the application of a new factor 

for calculating the contribution of stoniness in mitigating soil erosion by water 

(stoniness correction factor) has been analysed. Poesen and Ingelmo-Sanchez (1992) 

have given a decreasing relation between rock fragment cover (Rc) and relative 

interrill sediment yield (s): 

 

                       𝐼𝐼𝐸𝐸 =  𝑟𝑟−𝑏𝑏(𝑅𝑅𝑐𝑐) ,                                       (4.21) 

 

where b is a coefficient indicating the effectiveness of the rock cover 

(Rc, ::proportion:: ∈ [0; 1]) in reducing interrill soil loss. 

They found an experimental value for the coefficient b of 0.02 if the rock fragments 

are partly embedded in the sealed topsoil, and a value of 0.04 if the fragments are 

placed on the soil surface. These values are close to those reported by Box, (1981) 

and Collinet and Valentin (1984) ranging from 0.0256 to 0.058. 

Unfortunately detailed information on soil stoniness is not available for the 

catchment. The only available information is the volumetric rock fragment content of 

the soils contained in the ESGDB database. The volumetric content percentage of 

rock fragments in the top soil and the cover percentage of rock fragments at the soil 

surface are two different parameters (Poesen and Lavee, 1994). As a first 

aproximation and due to the limited available data on soil stoniness, we assumed the 

rock fragment cover equals the volumetric rock fragment content as suggested in 

(Govers et al., 2006).  

Due to the scale of the ESGDB dataset, this catchment is covered by a single 

volumetric rock fragment content that corresponds to a very low percentage of rock 

fragments in the soil. Despite the use of a single correction factor for the whole 

catchment is not corresponding to reality, the observation conducted during the field 

survey confirms that in general the soil is characterized by a low or very low content 

of rock fragments. 
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Human Practices factor 

P is the support or land management practice factor. By definition the P factor is the 

ratio of soil loss with a specific support practice to the corresponding loss with 

upslope and downslope tillage (Renard et al., 1997). It represents how surface and 

management practices like terracing, stripcropping or contouring affect erosion 

phenomenon. For areas where there is not support practices or without any data, the 

P factor is set equal to 1.0. Within the study catchment we have limited information 

on land management practices. These were mainly collected during the field survey 

and are limited to ploughing practices applied in a small number of fields to contrast 

soil erosion, therefore it was decided to consider the P factor equal to 1 everywhere. 

 

 
4.2.3.3. Geomorphometrical considerations for calculating 

the LS factor 

 

Considering that errors in slope computation could be exaggerated in soil erosion 

models because of the exponential relation between slope and soil erosion (Warren 

et al., 2004), variation in land surface computation can result in significantly different 

values. Prior to utilizing the available DEM for evaluating land-surface parameters, it 

is necessary to prepare the DEM. Some of the most common errors present within a 

DEM are due to local outliers, padi terraces (areas having pixels shown the same value 

typical of closed contours) or sinks (an erratic feature not corresponding to the actual 

feature of the terrain). Numerous statistical approaches or tools are available for 

correcting these errors (Hengl et al.,2004), for filling the sinks present in the DEM we 

exploited the tool available within ArcGis. 

Very important is also the selection of the more appropriate flow algorithm. One of 

the most applied flow algorithms is the ‘D8’ (O’Callaghan and Mark, 1984) (Figure 

4.12), a single neighbour flow algorithm. The main limit of the D8 algorithm is that it 

can model flow convergence but not divergence and in case of uncertainty this 

assignment is arbitrary. For cells far enough downstream to be in fully convergent 

channelized portion of the area the results are very good. In case of hillslope or near 
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peaks the values can present errors which can be of an order of magnitude (Gruber 

and Peckham, 2009). However using a multiple-neighbour flow algorithm it is 

possible to consider the effect of divergent flow (Gruber and Peckham, 2009). 

 

 
 
Figure 4.12 - Application of the D8 algorithm to calculate the flow accumulation in a 

little plot located on a steep slope within the study area. 

 

Other numerous algorithms also exist for handling not convergent flow as the 

TOPMODEL approach (Quinn et al., 1991) or the algorithms of Freeman (1991, in 

Gruber and Peckham, 2009) and Holmgreen (1994; in Gruber and Peckham, 2009). 

The main limitation of these algorithms is that they can produce over-dispersion 

(Costa Cabral and Burges, 1994; Tarboton, 1997). Three further algorithms has been 

proposed to overcome this limit, D∞ (Tarboton, 1997), DEMON (Costa-Cabral and 

Burges, 1994) and the Mass-Flux Method (MFM) algorithm of Peckham (Gruber and 

Peckham, 2009).  

 

Due to the importance that the extraction of parameters from a DEM has for the 

implementation of a model in a GIS environment, it was necessary to analyse this 
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aspect with the aim of reducing any error in the geomorphometric analysis. Applying 

the D8 algorithm for the calculation of the flow direction (Figure 4.12), it was 

immediately evident that this way was not suitable for our objectives. Using an 

artificial DEM (10x6) as a test, the calculated flow direction layer has shown its limit 

in representing not fully convergent situations. All flow is passed to the neighbour 

with the steepest downslope gradient (resulting in 8 possible drainage directions). It 

can model convergence (several cells draining into one), but not divergence (one cell 

draining into several cells). Ambiguous flow directions (as in Figure 4.13c where the 

same minimum downslope gradient is found in two cells) are resolved with an 

arbitrary assignment.  

 

            
(a)      (b) 

(c)                                       (d) 

 
Figure 4.13 – Slope (a, c) and Flow direction (b, d) for a 10x6 artificial grid using D8 

algorithm implemented in ArcGis. Figure (d) shows as using the D8 algorithm in 

divergent condition there is an arbitrary assignment of the flow direction. The 

east/west or south west/east assignement to the cell on the ridge is totally aribitrary. 
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The D8 algorithm provides a good estimate of the catchment area for grid cells that 

are far enough downstream to be in the fully convergent, channelised portion of the 

landscape. Only multiple-neighbour flow methods can accommodate the effects of 

divergent flow (from one cell to several downhill cells) and this is especially important 

on hill slopes. The geomorphological characteristics of the study area (mainly hill 

slopes) indeed require a multiple-neighbour flow algorithm for the calculation of the 

flow, with D∞, DEMON and MFM being the most suitable algorithms. The D∞ 

algorithm of Tarboton (1997) was selected to calculate the flow accumulation within 

the catchment (Figure 4.14) because DEMON is not available in the language required 

and its implementation would be difficult, and D∞ was succesfully applied in many 

different fields (Hamel et al., 2017; Regalado and Kelting, 2015; Lucieer et al., 2014). 

 

 

 

 
Figure 4.14 – D∞ algorithm applied in a small plot within the study site to calculate 

the flow accumulation. Comparing this picture with figure 4.12 it is possible to see 

how the D∞ algorithm consider the flow along the slope as less concentrated.  
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4.3. Results and discussion 

 
 
Figure 4.15 – Map of the soil erosion by water in the study area as calculated by 

applying the e-RUSLE model. Soil erosion is here reported in tonnes per hectare per 

year. 

 

The resulting soil erosion map is shown in figure 4.15. The well-known role of natural 

vegetation in mitigating soil erosion (Cerdan et al., 2010; de Rigo and Bosco, 2011; 

Maetens et al., 2012) may be observed by comparing the map with the land cover 

map of the catchment (Figure 3.8). Areas covered by grassland and woods present, 

as expected, a considerably lower soil erosion rate than cultivated areas.   

Since some essential factors in the e-RUSLE (C, K factors and stoniness) are derived 

from categorical information, the uncertainty associated with the corresponding 

classification may be propagated in the final erosion map (Figure 4.15). 

For improving the estimation of the C factor, that is still a weakness within the model, 

it may be necessary to develop new techniques or equations improving the 

collaboration between soil erosion scientists and remote sensing experts. Although 

good relationships were obtained since the 80s between the C factor and band ratios 
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of Near Infrared Reflectance (NIR) to red reflection (Cihlar, 1987; Stephens and Cihlar, 

1982) and the studies of the C factor estimation using remote sensing techniques 

have reached good achievements, they still need improvement (Zhang et al., 2011). 

Further analysis with detailed forest types and tree species distribution maps seem 

to be necessary for increasing the accuracy of the C factor (de Rigo and Bosco, 2011; 

Geißler et al., 2012). 

The RUSLE model generally tends to overestimate soil loss, probably because it does 

not account for deposition in local depressions (De Jong et al., 1986). 

Because of the weakness of data for some of the model’s parameters and the use of 

coarse spatial data (e.g. E-OBS and ESGDB) along with data having sub-optimal 

resolution (e.g. SRTM), the application of the model can lead to noticeably uncertain 

soil erosion rates in certain areas. For example, the lack of appropriate datasets for 

soil stoniness could locally lead to an over- or under-estimation of the erosion rate. 

However, the precise delimitation of such issues is very difficult as field investigations 

for validation are required. 

Because the main aim of this PhD thesis is to better integrate and quantify the role 

of landslides within soil erosion processes, the lack of an accurate quantitative 

prediction of the local soil erosion rate does not affect the scientific result of this 

work. A slight over- or under-estimation of soil erosion does not affect our effort in 

measuring the relative changes in soil erosion due to mass movements occurrence. 

However, even if the results provide an overview of the soil erosion susceptibility in 

the landscape rather than an accurate quantitative estimation for a specific location, 

they can be considered robust enough for our scope. 

The classification scheme used for measuring the soil erosion rates (Figure 4.15) is 

based on the one applied in Bosco et al. (2015). The thresholds above which soil 

erosion should be regarded as a serious problem is controversial, the soil formation 

processes and rates can substantially differ in different areas (see paragraph 2.1). By 

analysing the high resolution soil erosion map we produced (Figure 4.15), more than 

60% of the Rocchetta Sant’Antonio catchment is affected by significant soil erosion 

(over 5 t ha−1 yr−1, moderate – high level). The numerous rills and ephemeral gullies 
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present in this area are tangible evidence of this process. This also demonstrates the 

importance of maintaining permanent vegetation cover as a mechanism to combat 

soil erosion, were possible, and to adopt appropriate crop managing practices. As 

already mentioned, there is a probability for some of the model results to be over-

estimated. The R and C factor uncertainty and the possible presence of areas having 

a stoniness values much higher than the value indicated by the underlying soil 

database, could be at the basis of many of the possible uncertain estimations of sheet 

and rill erosion rates. Another limit of the proposed approach is that the model does 

not consider erosion processes such as channel or gully erosion, that locally may 

cause very high soil losses (Poesen et al., 2003; Mathys et al., 2003; Collinet and 

Zante, 2005), or tillage erosion that in this area may have a similar rate as soil erosion 

by water (van Oost et al., 2009). Anyway, the proposed architecture is designed not 

to be data demanding while still being able to scale up to the continental scale, such 

as presented in Bosco et al. (2015).  

 

The common validation procedures were not technically and financially applicable for 

the present work. Nonetheless, some validation options are still applicable. To 

validate the map of soil erosion by water (figure 4.15) we applied a qualitative 

approach based on visual interpretation applying the same methodology used by 

Bosco et al. (2015, 2014). This methodology is based on a visual and categorical 

comparison between modelled and observed erosion rates (Bosco et al., 2014). A 

procedure employing high-resolution Google Earth (Google Earth. Mountain View, 

CA: Google Inc.) images and pictures as data for a plausibility check was applied. 

The good resolution of Google Earth images jointly with a set of pictures collected 

during the field survey, allow for a visual qualitative estimation of soil erosion 

phenomena. By overlaying the map of soil erosion and the selected validation points 

(that corresponds to the same points were the field survey was carried out), a visual 

plausibility check, inspired on the erosion/deposition categories for field validation 

of Warren et al. (2005), and also of Berry et al. (2003) and Kapalanga (2008), was 

carried out. A buffer of 25x25 metres around the selected points (points are shown 
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in figure 4.5) was analysed, with over 700 cells at 5 m x 5 m. For each cell, a visual 

assessment relied on high-resolution images.  

As a result of the validation exercise, the soil erosion rates we estimated, despite the 

above mentioned limits, seems to be reliable enough for helping to identify areas in 

the Rocchetta sant’Antonio catchment where to concentrate the effort for 

preventing soil degradation. 

 

 
Figure 4.16 – Example of the plausibility check such as performed in Bosco et al. 

(2015). The check is over grid cells (Level 1) by integrating Google Earth and Bing 

higher-resolution information also including high resolution images (Google street 

view and georeferenced  crowd-sourced pictures) (Level 2).  

Image from Bosco et al. (2015); Bing Maps, © 2013 Microsoft Corporation; Google 

Street View, © 2013 Google Inc., Mountain View, CA. 
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4.4. Conclusions 

 

An estimation of soil erosion using a modified version of the RUSLE model has been 

carried out by merging existing empirical rainfall-erosivity equations within a climatic 

ensemble model based on the relative-distance similarity and by adding a new factor 

for better considering soil stoniness. The lack of high-resolution datasets to calculate 

rainfall erosivity and stoniness and the limitations inherited from the RUSLE 

architecture lead to a considerable level of uncertainty. 

Some of the individual factors could also be interdependent, which results in an even 

greater impact on the model results (van der Knijff et al., 1999). As a consequence, 

quantitative assessment using the model should not be undertaken without the right 

awareness.  

The provided estimates cautiously model the erosion rates in the absence of 

mitigating management practices – which, in an agricultural area as the Rocchetta 

sant’Antonio catchment, should be regarded as a main factor for limiting the impact 

of erosion. It is necessary to have in mind that the main objective of the present thesis 

is not the production of a new accurate soil erosion map of this area but to contribute 

to soil erosion research better integrating and quantifying the effect of landslides in 

soil erosion modelling for improving soil erosion estimation at local and regional 

scale. 

Overall, our spatially distributed assessment of soil erosion, carried out using the e-

RUSLE model, even considering all the limits of our approach, can help in identifying 

areas within this catchment where to concentrate efforts for preventing soil 

degradation.  

Improvement in these erosion estimates lies in better climate and soil data 

potentially available from national archives. Land cover requires frequent updating, 

because changes in land use have a major impact on erosion rates. There is the 

potential to do this through the analysis of remotely sensed images. 
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5. Modelling shallow landslides triggered by water. A 

multi-scale robust modelling approach for estimating 

landslide susceptibility 
 

 
Estimating the landslide susceptibility of a territory may be supported by many 

different analytical approaches: heuristic, deterministic and statistical (van Westen 

et al., 1997). Statistical landslide susceptibility methods are based on establishing 

relationships among measurable variables whose combination is empirically found to 

correlate with observed landslide occurrences. Theoretical insights guide the 

selection and analysis of landslide triggering factors (geological, hydrogeological and 

geomorphological) to determine the most appropriate input - the best suited set of 

predictors or covariates (Brenning, 2005) - to use for statistically reconstructing 

landslide susceptibility.  

In deterministic approaches, the landslide susceptibility is evaluated by carrying out 

a slope stability analysis. It results, for example, in the calculation of a factor of safety 

distribution across the study area. The deterministic approaches should be able, in 

theory, to provide more reliable results (especially where no field measurements are 

available on landslides and stable areas) but require detailed datasets describing 

conditioning and triggering factors. Many different models, which are usually 

composed of coupled dynamic hydrological and slope stability models, have been 

developed by several authors (van Beek, 2002; Chen and Lee, 2003; van Westen, 

2004) (see section 2.2.2.2). 

 
 

5.1. Susceptibility forecast  

 

Within the study area, precipitation is the main triggering factor for landslide 

occurrence (Wasowski et al., 2010). In order to improve the spatial prediction of 

landslides where water is the triggering factor, a combined total of five different 

deterministic and statistical models have been applied. In order to enhance the 

determination of landslide susceptibility, a new method based on an ensemble 
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approach has been used for aggregating the modelling results. The ensemble 

approach is a reproducible D-TM (see equation 5.1, and section 2.5) applied to the 

results of the array of models and is based on relative-distance similarity (RDS). The 

application of an ensemble approach, especially in data poor regions, could 

potentially reduce the uncertainty and mitigate local poor performance associated 

with individual models, by excluding outlier estimations. 

Uncertainty may affect these models from the inaccuracy of required input data 

layers X and parameters θ to the approximation of their reconstruction (e.g. by 

means of other specialised D-TMs) when not directly accessible as available datasets. 

Uncertainty may also be exacerbated by modelling simplifications or 

overcomplication. In the latter case, a perhaps theoretically accurate approach might 

sometimes result in a poorly performing D-TM implementation due to site-specific 

information gaps and possible impacts of site complexity where multiple conceptual 

mechanisms coexist as landslide drivers. Furthermore, nontrivial computational 

models may be affected by software uncertainty (de Rigo, 2013; de Rigo et al., 2013b) 

(see equation 5.1), namely the distance from the theoretical mathematical 

formulation and the actual model implementation in one or more artificial 

programming languages. 

 

 

 

 

(5.1)

 

  

 
 

Silent faults (Hook and Kelly, 2009) are a class of software errors that can alter 

computational output without any evident symptom (such as, for example, 

premature interruption or unrealistic results). Because of these silent faults, “many 
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scientific results are corrupted […] by undiscovered mistakes in the software used to 

calculate and present those results” (Hatton, 2007). 

In order for the uncertainty to be mitigated, a robust fuzzy ensemble model is 

proposed to aggregate an array of different susceptibility zonation maps. Each 

susceptibility zonation has been obtained by applying heterogeneous models 

(physically based and statistical methods), to increase design diversity (de Rigo, 

2013). The technique is designed to scale to different arrays of models. Each model 

is adapted to fit the ensemble array by wrapping its interface to behave as a 

semantically enhanced module. In the computational science domain, a wrapper unit 

is a computational module which modifies the input or the output of a pre-exisiting 

module. The pre-exisiting module is often unable to perform satisfactory checks 

concerning the semantic consistency of its set of input and output arguments. 

The wrapper module is designed to expand the behaviour of the pre-existing module 

by adding the missing semantics so that the input arguments are appropriately 

verified before they are passed to the module and for the output arguments to be 

verified by the semantic wrapper module after the computing of the pre-exisiting 

module, and before the output is passed to other modules. Semantic checks further 

mitigate inconsitencies between input data, parameters and outputs, following the 

paradigm of semantic array programming (de Rigo et al., 2013b, de Rigo, 2012a, 

2012b) (see section 4.2.3.2) (see equation 5.1). 

As discussed in section 2.5, SemAP complements the compactness of array 

programming notation with an effort towards the most concise generalisation of 

autonomous tasks as modules which are subject to array-based semantic checks. 

Each model is considered as a semantically-enhanced module of the ensemble. As  

described in chapter 2, a few straightforward semantic checks semi are exemplified 

in the following with the notation ::sem:: with link to the corresponding online 

description. 

Exploiting the availability of landslide maps and the environmental information 

(DEM, land cover and lithological map, geomorphology) two deterministic models 

based on the infinite slope equation (SINMAP (Pack et al., 1998, 2005) and a simple 

slope stability model derived by van Beek's PROBSTAB model (van Beek, 2002)), as 
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well as three statistical models based on Artificial Neural Network (ANN), Logistic 

Regression (LR) and RDS, were calibrated and validated.  

 

 

5.1.1.   The deterministic approach  
 

The evaluation of slope stability conditions in a landscape can be performed by 

considering the local equilibria (FS) of forces along pre-determined, shallow slip 

surfaces representative of translational slide mechanisms. As previously mentioned, 

two deterministic models based on the infinite slope equation (Stability INdex 

MAPping (SINMAP) and a simple slope stability model hereafter named TransSlide) 

were applied. 

 
 

The SINMAP model 

The theoretical basis of SINMAP involves a mechanistic infinite slope stability model 

(e.g. Hammond et al., 1992; Montgomery and Dietrich, 1994) linked with a 

topographically based steady-state hydrology model. The SINMAP approach is similar 

to that of Montgomery and Dietrich (1994), both combine the infinite slope stability 

model with the steady-state hydrologic concepts. The slope stability model balances 

the destabilizing components of gravity and the restoring components of friction and 

cohesion on a failure plane parallel to the ground surface with edge effects neglected 

(Pack et al., 2005). The theory at the basis of the model applies to translational slides 

where fluctuating pore pressures form the dominant trigger factor. The landslide 

susceptibility distribution is governed within the model by calculating slope and 

specific catchment areas starting from a DEM. The model parameters are allowed to 

be flexible following a uniform distribution between an upper and lower limit. The 

parameters may be calibrated using geographic calibration regions based on 

lithological, land cover or soil characteristics (Pack et al, 1998, 2005). 

SINMAP is based on the infinite-slope form of the Mohr-Coulomb failure law 

(Hammond et al., 1992; Pack et al, 1998): 
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     𝐹𝐹𝐹𝐹 =
𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑟𝑟 + (𝛾𝛾𝑠𝑠𝐷𝐷 − 𝛾𝛾𝑤𝑤𝐷𝐷𝑤𝑤)𝑓𝑓𝑓𝑓𝑟𝑟2𝛽𝛽 𝑟𝑟𝑒𝑒𝑟𝑟 ∅

𝛾𝛾𝑠𝑠𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽  ,                            (5.2) 

 

where  cs is the soil cohesion (kPa), cr is the root cohesion (kPa), ɣs is the soil unit 

weight (kN/m3), ɣw is the water unit weight (kN/m3), D is the vertical soil depth (m), 

Dw is the vertical water depth (m), β is slope angle (°) and ϕ is the internal friction 

angle (°). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1 – SINMAP Infinite slope stability scheme. S is the slope expressed as a 
decimal drop per unit horizontal distance (source: Pack et al., 2005). 

 
 

Within the SINMAP model the soil thickness is interpret as perpendicular to the slope 

profile (Figure 5.1). Introducing the variables: 

 

𝐶𝐶′ =
𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑟𝑟

ℎ𝛾𝛾𝑠𝑠
 ,          𝑟𝑟 =

𝛾𝛾𝑤𝑤

𝛾𝛾𝑠𝑠
 ,          𝑤𝑤 =

𝐷𝐷𝑤𝑤

𝐷𝐷 =
ℎ𝑤𝑤

ℎ     ,                         (5.3) 

 

where h=D cosβ is the soil thickness, C’ is the combined cohesion, w is the relative 

wetness and r is the water to soil density ratio, equation (5.2) can be written as: 

 

𝐹𝐹𝐹𝐹 =
𝐶𝐶′ + 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽 (1 − 𝑤𝑤𝑟𝑟) 𝑟𝑟𝑒𝑒𝑟𝑟 ∅

𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽    ,                                       (5.4) 
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Equation (5.4) is the dimensionless form of the infinite slope stability model. This is 

convenient because it directly combines cohesion with the soil density and thickness 

into a dimensionless cohesion factor, C’ (equation 5.3). This may be thought of as the 

ratio of the cohesive strength relative to the weight of the soil, or the relative 

contribution to slope stability of the cohesive forces (Pack et al, 2005) (Figure 5.2). 

 
Figure  5.2 - Illustration of dimensionless cohesion factor concept, where 𝜌𝜌𝑠𝑠𝑟𝑟 = 𝛾𝛾𝑠𝑠  

(source: Pack et al, 2005). 

 

 
Practically, the model works by computing slope and wetness at each grid point, but 

assuming other parameters are constant (or have constant probability distributions) 

over larger areas. With the form of equation (5.4) this amounts to implicitly assuming 

that the soil thickness (perpendicular to the slope) is constant. 

Adopting a modified version of the TOPMODEL approach (Beven and Kirkby, 1979), 

the relative wetness (w) can be written as: 
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𝑤𝑤 = 𝑚𝑚𝑟𝑟𝑟𝑟 �
𝐸𝐸′𝑒𝑒

𝐷𝐷 𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽 , 1� ,                                             (5.5) 

 

where T is the soil transmissivity (m2/h), R’ is the steady state recharge that is an 

estimation of the lateral discharge (m/h), a is the upslope drained area per unit 

contour length (m2/m). 

One of the assumptions SINMAP is based on is that the capacity for a lateral flux at 

each point is T sin β. This assumption differs from the TOPMODEL of Beven and Kirkby 

(1979) because the hydraulic conductivity is not assumed to decrease with depth. 

Here a uniform conductivity of a soil mantle overlying relatively impermeable 

bedrock is assumed. In addition, sin β is used rather than tan β because the flow 

distance is along the slope (Pack et al., 2005). 

For implementing the stability index in SINMAP, the wetness index from equation 

(5.5) is incorporated into equation (5.4), which becomes: 

 
  

                               𝐹𝐹𝐹𝐹 =
𝐶𝐶′ + 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽 [1 − 𝑚𝑚𝑟𝑟𝑟𝑟 �𝐸𝐸′

𝐷𝐷  𝑒𝑒
𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽 , 1� 𝑟𝑟] 𝑟𝑟𝑒𝑒𝑟𝑟 ∅

𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽    ,                   (5.6) 

 

For areas where the minimum factor of safety is less than 1, then there is a possibility 

(probability) of failure.  

 
 
The TransSlide model 

TransSlide (Bosco et al., 2013) is based on a translational slope stability function 

calculating the factor of safety at a potential shear plane based on variations of the 

groundwater level and volumetric moisture content. TranSlide’s basis is also in the 

equation (2.2) where, as already mentioned in chapter 2: 

 

𝐹𝐹 = (𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑟𝑟) + (𝜎𝜎 − 𝑢𝑢) 𝑟𝑟𝑒𝑒𝑟𝑟 ∅                  𝜏𝜏 = 𝛾𝛾𝑠𝑠𝐷𝐷 𝑓𝑓𝑓𝑓𝑟𝑟 𝛽𝛽 𝑟𝑟𝑟𝑟𝑟𝑟 𝛽𝛽                  (5.7)  

 

and 𝜎𝜎 is calculated following equation (2.5). 
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To determine the pore pressure that is necessary for calculating shear strength the 

following equation was used (van Beek, 2002): 

 

                       𝑢𝑢 = 𝛾𝛾𝑤𝑤𝐷𝐷𝑤𝑤  𝑓𝑓𝑓𝑓𝑟𝑟2𝛽𝛽 = 𝑟𝑟𝑤𝑤𝜎𝜎 ,                                             (5.8) 

 

where r and w are calculated as in the SINMAP model. The static inputs include soil 

shear strength (cohesion and friction) and an additional root cohesion function 

representing land use. The model calculates the local instability on the balance 

between resisting and driving forces. The model was implemented in a raster based 

environment and calculates the local instability on the balance between resisting and 

driving forces. Due to the paucity of available data in the study area, the full 

functionality of TransSlide could not be mobilised. It affected the reliability of the 

modelling outputs, that results in underestimating the areas susceptible to landslide 

within the catchment (see text and figures in section 5.5) 

 
 
 

5.1.2.  The statistical approach   
 
 

In statistical landslide susceptibility methods, semi-automated computational 

methods may benefit from meaningful interpretation which domain experts can 

supplement, for example on the relative contribution and emerging limitations of 

different semi-automated methods in estimating slope failure and classifying areas 

as having different hazard or susceptibility degree (Aleotti and Chowdhury, 1999; 

Suzen and Doyuran, 2004; Acharya, 2011). Multivariate statistical methods are 

common methodologies for these analyses, which are based upon the presence or 

not of stability phenomena within the classified areas (van Westen, 2000). A key 

problem using this approach is the high sensitivity of the results to the input data and 

the difficulty in deriving the probability of occurrence from the susceptibility 

(Acharya, 2011). In this work, three statistical models based on ANN, LR and RDS were 

calibrated and validated for susceptibility. 
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Artificial Neural Networks 

An ANN is a data-transformation model able to derive from a set of input data a 

corresponding set of outputs. Neural networks resemble a human brain because of 

the acquiring of knowledge through learning and storing the acquired knowledge 

within inter-neuron connection strengths (synaptic weights) (Figure. 5.3, 5.4).  

A peculiarity of ANNs is that the number of parameters (also known as weights of the 

ANN) may be limited to grow linearly with the number of input dimensions. The same 

applies to the number of output dimensions. An ANN is implemented by a system of 

interconnected nodes. Information propagates through nodes transforming the 

inputs in intermediate derived signals up to generate the final outputs. The internal 

nodes are called neurons and define the ANN hidden layers. Each node is a processing 

element propagating weighted inputs received from other nodes (Pradhan and Lee, 

2009) (Figure 5.4).  

Depending on the specific ANN architecture, the inputs of a given node may include 

or exclusively be constituted by intermediate derived signals. The learning process 

comes from adjusting the weights between neurons analysing the error between the 

predicted and target output. The output of a neural network, after the training, is a 

model that starting from an input dataset is capable of predicting a target value (Lee 

et al., 2007). 

The power and main advantage of using ANN lies in their capacity to model both 

linear and non-linear relationships and to learn these relations directly from the data. 

Because many complex problems are characterized by having a non-linear behaviour, 

traditional linear models are often inadequate. 

Most papers on the use of ANNs apply a multilayer feed-forward network (Maimon 

and Rokach, 2005). A feed-forward neural network is an ANN having connections 

between the different units not forming a cycle or loop. In this architecture 

information moves in only one direction, from the input nodes, through the hidden 

layers (if any) to the output nodes. The main reason for the use of this type of ANN is 

the simplicity of its theory, ease of programming and good results (Figure 5.5 shows 

the scheme of this kind of ANN). 
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Figure 5.3 – The biological neuron. A typical nerve cell conists of four parts: dendrites 

(accept inputs), Soma (process the inputs), Axon (turns processed inputs into 

outputs), Synapses (the electrochemical contacts between neurons). (Derived after: 

http://rslab.movsom.com/paper/somrs/html/chapter3.php.). 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 – Artificial neuron model. Inputs to the network are represented with the 

symbol xn, each of thse inputs are multiplied by a connection weight wn, summed and 

fed through the transfer function f() to generate a result and the output.  

 

 
 

X1 

http://rslab.movsom.com/paper/somrs/html/chapter3.php
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Figure 5.5: A generic single layer feed-forward neural network. 
 

 

Each of the processing neurons calculates the weighted sum of all interconnected 

signals from the previous layer plus a bias term and then produces an output through 

the activation function. The activation function associating individual nodes have 

typically a sigmoid shape (Figure 5.6). Other transfer functions can also be applied. 

The adjustment of the ANN function to experimental data (training of the network) 

is based on a non-linear regression procedure (Fraser, 2000). Random weights are 

assigned to each neuron, the output of the network is evaluated and the error 

between the output of the network and the training dataset is calculated. If the error 

is large, the weights are adjusted and the process goes back to evaluate the network’s 

output. This cycle is repeated until the error is small or a stopping criterion is satisfied.  

During the training of a neural network, the prediction error is evaluated for each 

iteration. The use of a ANN with too many neurons allows an excess of degrees of 

freedom and can cause overfitting of the data. A test dataset can be kept separated 

from the training phase and exploited to check how good the prediction capacity of 

the ANN is, on the basis of the sum of squared prediction errors. For obtaining the 

optimal intensity of training, a possibility is to explore the ANN performance in order 

to minimize the sum of the training plus validation (or cross-validation) errors (Figure 
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5.6), paying attention to not to stop the training process at the first point of minimum. 

Given the stochasticity of the aggregated error index, waviness in its value as a 

function of the training intensity may appear (which may lead to wrongly identify a 

local minimum with a too early stopping of the procedure). As a simple heuristics to 

mitigate this problem, the training should be allowed to proceed further following 

the first detected minimum in the aggregated error index, to check whether or not 

that training intensity is associated with a point of local minimum (de Rigo et al, 

2005). 

 

 
 
Figure 5.6 – Profiles for training and validation errors  
 
 

Within the present study we explored the use of a feed-forward neural network 

through the package nnet (Ripley, 1996; Venables and Ripley, 2002) in GNU R. The 

functions in this package allow to develop the most common type of neural network 

model (the feed-forward multi-layer perceptron). This package is widely exploited in 

the scientific literature for multiple applications (Ashtawy and Mahapatra, 2015; 

Herrera et al., 2010; Lawler et al., 2006). The functions have enough flexibility to allow 

the user to develop the best or most optimal models by varying parameters during 

the training process. Feed-forward neural networks provide a flexible way also to 
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generalize linear regression functions. They are non-linear regression models but 

with so many parameters that they are extremely flexible, flexible enough to 

approximate any smooth function. (Venables and Ripley, 2002). 

Nnet implements a feed-forward neural network with single hidden layer (Figure 5.5) 

allowing ‘skip-layer’ connections from input to output (some input signals have a 

direct connection to the output layer) having:  

 
 

𝑦𝑦𝑘𝑘 =  𝜎𝜎𝑜𝑜 �𝛼𝛼𝑘𝑘 + � 𝑤𝑤ℎ𝑘𝑘
ℎ

𝜎𝜎ℎ �𝛼𝛼ℎ + � 𝑤𝑤𝑖𝑖ℎ
𝑖𝑖

𝑒𝑒𝑖𝑖��                         (5.9)  

 
 

allowing the non-linear units to perturb a linear functional form. The units of input 

distribute the inputs (xi) to the hidden layer that sum the inputs, add a constant (αh 

and αk ) and take a function σh (continuous and limited) of the results. The outputs 

(yk) have the same form but with output function σo. wih and whk represents a set of 

weights that can also assume negative values [-∞, ∞]. 

The activation function σh of the hidden layer units is frequently a logistic function 
(sigmoid curve): 

 
 

          𝜎𝜎ℎ(𝑒𝑒) =
1

1 +  𝑟𝑟−𝑥𝑥                                                    (5.10) 

 

 
the output units can be linear, logistic or an activating threshold α. Within the nnet 

package the default is logistic output units.  

The ANN architecture coming from the calibration of the model (section 5.3)  

implemented exploiting the nnet package, use a logistic activation function, no skip-

layer connections, 5 neurons and a weight decay of 1e-04 (weight decay specifies 

regularization in the neural network, it is a regularization term that penalizes big 

weights). 
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Logistic Regression 

Logistic regression analysis, introduced by Cox in 1958, is one of the more commonly 

used statistical methods in earth science (Yilmaz, 2009). 

Logistic regression can be seen as a special case of the generalized linear model and 

thus analogous to linear regression. The model of logistic regression, however, is 

based on quite different assumptions (about the relationship between dependent 

and independent variables) from those of linear regression. In particular the key 

differences of these two models can be seen in the following two features of logistic 

regression. First, the conditional distribution y | x is a Bernoulli distribution rather 

than a Gaussian distribution . Second, the predicted values are probabilities and are 

therefore restricted to (0,1) through the logistic distribution function because logistic 

regression predicts the probability of particular outcomes. 

Many authors found logistic regression to be a better predictor than bivariate 

methods (Ayalew and Yamagashi, 2005; Nandi and Shakoor, 2009) and to compare 

well with artificial neural networks in its predictive performance (Yilmaz, 2009; Rossi 

et al., 2010). Furthermore, Brenning (2005) showed that logistic regression is less 

prone to over-fitting the data than support vector machines. 

LR is adopted for finding the best-fitting model describing the relationship between 

a dependent variable (y) (assuming a distribution between presence [1] and absence 

[0] of landslides) and n explanatory variables (the covariates x1,x2,…, xn).  

It follows that logistic regression involves fitting an equation of the following form to 

the data: 

 
        𝑧𝑧 = β0 + β1x1 + β2x2 + … + βj xj  ,                          (5.11) 

 
 

where β0 is the intercept of the model, the βj (j = 0, 1,2, ... ,n) are the slope coefficients 

of the logistic regression model, and the xj (j = 0, 1, 2, ... , n) are the independent 

variables.  

In our study, the results of the LR can be interpreted as the probability of occurrence 

of shallow landslides, it does not predict presence or absence of landslides (Brenning, 

2005). 

https://en.wikipedia.org/wiki/Logistic_function
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For the probability of occurrence of shallow water-induced landslides, given the 

selected independent variables (listed in section 5.2), the logistic response function 

is: 

  

   𝑃𝑃(𝑦𝑦 = 1) = 𝜋𝜋 =  1
1+𝑒𝑒−𝑧𝑧 ,                           (5.12) 

                                                                                
 

where  π is the probability of landslide occurrence or susceptibility. 

The maximum-likelihood method is used for estimating the coefficients of the logistic 

multiple regression model. Because of the non-linearity between independent 

variables and probability, parameter estimation requires the application of an 

iterative algorithm [5.13]. In order to model the probability π, equation 5.12 is 

linearized using the logit transformation: 

 

𝑙𝑙𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝜋𝜋) = 𝑙𝑙𝑓𝑓𝑟𝑟 � 𝜋𝜋
1−𝜋𝜋

� = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑒𝑒𝑗𝑗
𝑘𝑘
𝑗𝑗=1  ,                               (5.13) 

 
 

The advantage of logistic regression is that, through the addition of an appropriate 

link function that generalizes linear regression by allowing the linear model to be 

related to the response variable, the variables may be either continuous or discrete, 

or any combination of both types, and they do not necessarily have normal 

distributions. In the present situation, the dependent variable is a binary variable 

representing the presence or absence of landslides. 

We fitted a logistic regression model in GNU R calling the function glm (), the results 

are reported in table 5.1. The fitting process is not so different from the one used in 

linear regression. Using the logistic regression model, the spatial relationship 

between landslide occurrence and factors influencing landslides was assessed. 
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Table 5.1 – Values of coefficients β0, β1, …, βj associated to the covariates x1,x2,…, xn 

as coming from the training of the logistic regression applied exploiting the function 

glm() in R. Landocover, TWI, slope angle, aspect, elevation, profile- and plan- 

curvature are the covariates selected to running the model. More information are 

available in section 5.2. 

 

Coefficients: Estimate Std. Error Z value Pr (> | Z |) 

(Intercept) 1.234e-01 4.958e-01 0.249 0.80352 
elevation -1.951e-04 4.461e-04 -0.437 0.66188 

aspect 1.926e-03 5.706e-04 3.374 0.00074 
landcover2 -2.542e+00 3.411e-01 -7.453 9.15e-14 
landcover3 -5.515e+00 3.782e-01 -14.581 < 2e-16 
landcover4 -2.210e+00 3.362e-01 -6.573 4.94e-11 

slope 5.028e-02 7.664e-03 6.561 5.33e-11 
twi 2.296e-01 2.670e-02 8.598 < 2e-16 

plan_curv -1.980e-10 3.819e-08 -0.005 0.99586 
profile_curv -1.941e-09 1.304e-08 -0.149 0.88171 

 

 

Relative Distance Similarity 

RDS (de Rigo, 2015; Bosco et al., 2015; de Rigo, in prep), already introduced in chapter 

4, is a machine learning approach inspired by the architecture of a perceptron 

(Rosenblatt, 1962). The RDS can be seen as a neural network with a single hidden 

layer where each of the neurons is linked with a single point of training. In a 

perceptron each of the training points is linked with all the neurons. In the Relative 

Distance Similarity the single link among a neuron and a point of training has the 

advantage to avoid overfitting. 

The RDS index of a given multi-dimensional point c with respect to a set A of reference 

points involves the relative distance among the pairs {Cjc , Cjα} for each 𝛼𝛼 ∈ 𝐴𝐴  and 

each dimension j of the NC covariates        
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where δC j (as in the case of equation 4.16) is half of the measurement accuracy of 

the covariates and  Ω (de Rigo, in prep) is a statistical operator with which the relative 

distances along each dimension of the covariates are aggregated in the RDS index. 

The aggregated RDS index is mathematically constrained to vary between 0 and 1. 

For most of the families of Ω, the aggregated index has value 1 only if all the relative 

distances along each dimension of the covariates have value 1 (de Rigo, in prep).  As 

a consequence, in RDS when the values of the covariates in a point have exactly the 

same value of the covariates in one of the points of training, then the output value of 

the neuron linked with that point is 1. The higher is the distance between the 

covariates, the more the output of the neuron approaches zero. The closer are the 

values of the covariates to the values of a training point, the more the neuron linked 

with that point of training is activated. 

 
 

5.2. Data and explanatory variables 

 

A dataset of more than 400 reported landslides that affected the catchment in 2006 

and described in chapter 3, was used. This dataset is based on high resolution IKONOS 

satellite imagery. To make the interpretation easier, the satellite images were 

orthorectified and pansharpened. For running the statistical models, a set of 

calibration parameters was selected from international literature (Yilmaz, 2009; 

Pradhan and Lee, 2009; Rossi et al., 2010). Seven parameters, commonly assumed as 

directly or indirectly related to landslide occurrence (Yilmaz, 2009; Pradhan and Lee, 

2009), have been used for calculating the ANN, LR and RDS models. The Topographic 

Wetness Index (TWI) (Beven and Kirkby, 1979), the slope angle and aspect, the profile 

and plan curvature have been calculated starting from a digital elevation model with 

a resolution of 5 meters by exploiting the tools available in ArcGis. The remaining 

models covariates are the land cover and the elevation. 

The input parameters for running the deterministic models SINMAP and Translide 

(root and soil cohesion, internal friction angle, bulk density of the soil, groundwater 

height, soil depth and the effective recharge rate (Table 5.2)), have been determined 

using different methods. Where data was not measured directly, estimated values 
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from the literature were applied (Witt, 2005; Horn and Fleige, 2003; Morgan et al., 

1998; Cotecchia et al., 2006), if available, otherwise physically sensible values based 

on our judgment were used. 

The effective recharge rate used in SINMAP (50 mm/d) was derived comparing the 

available climatological data (Rocchetta SantAntonio and Rocchetta scalo 

meteorological stations) and values and approaches from literature (e.g. for 

calculating the transmissivity rate) (Witt, 2005). The hydraulic conductivity as the soil 

cohesion and the internal friction angle (used both in SINMAP and TransSlide) were 

informed by field data and the distribution of general soil characteristics of the 

catchment derived from the lithological map of the study area (Wasowski et al., 

2012). These values compare well with typical soil properties values from the 

literature (Morgan et al., 1998; Horn and Fleige, 2003). The model input values linked 

with soil characteristics are shown in the table below.  

 

Table 5.2 - Modelling input values, used in SINMAP and Translide, and linked with soil 

characteristics (the values reported for the bulk density are on moist conditions). 

These values comes from literature or from data collected in a few spots during the 

field survey. Because of the limited amaunt of available information,  average values 

for the whole study site, were applied within these deterministic models. 

Parameters Soils over 
sandstone 

Soils over 
limestone 

Soils over clay-
shales 

Soil cohesion 0-10 (kPa) 0-8 (kPa) 0-10 (kPa) 

Int. friction angle 25-32 º 31-34 º 10-22 º 

Soil depth 1.5 (m) 1.5 (m) 1.5 (m) 

Bulk density 1550 (kg/m3) 1600 (kg/m3) 1450 (kg/m3) 

Groundwater height 1 - 1.5 (m) 1 – 1.5 (m) 1 – 1.5 (m) 

Effect. recharge rate 50 (mm/d) 50 (mm/d) 50 (mm/d) 

 

The input values for cohesion (cs+cr) used within the model were in the interval 0.1 - 

0.4 in areas covered by crops and pastures and between 0.6 and 0.8 in areas covered 

by bush or forest. Due to the difficulties in measuring the soil depth we had during 

the field survey, a constant value of 1.5 meters was used, it derives from the few 

information collected on field and from the judgment of local experts. 
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5.3. Calibration of the models  

 
An initial set of data was partitioned into two subsets, with the calibration carried out 

on a training subset (2091 pixels) and the validation performed on the testing subset 

(682 pixels). The three statistical models were executed using both the same training 

set and the same set of covariates. The selected areas were subject to ::binary::7 

classification as stable (0) or not stable (1) (Figure 5.7, 5.8) on the basis of a dataset 

presented by (Wasowski et al, 2012). The calibration points represent the 0.6% of the 

catchment area. These have been selected by applying the RDS ensemble technique 

for analysing the relative distance between the model's covariates within the 

catchment. Applying this method, for selecting the training and validation points, it 

is possible to minimize the presence in the training set of areas having similar 

characterisics. 

The multicollinearity of the dataset of ::nonnegative::8 ::finite::9 predictors was also 

analysed in order to avoid strong correlation between different predictors. This was 

done for preventing the possibility that small changes in the data can cause an erratic 

change of the coefficient estimates.  

For estimating the more appropriate model parameters we applied a repeated 

random sub-sampling cross-validation to the training set of data. Using cross-

validation it is possible to estimate how accurately the models perform. 

For measuring modelling performance during calibration process, mean absolute 

error (MAE) and root mean square error (RMSE) against validation data were 

calculated. Although some authors suggest inter-comparisons of average model 

performance should be based on MAE (Willmott and Matsuura, 2005), RMSE was also 

calculated here because of its greater sensitivity to occasional large error compared 

to other measures. 

The classification criteria used for measuring the landslide susceptibility fluctuate in 

a range between 0 (stable conditions) and 1 (unstable conditions). The adopted 

                                                             
7 http://mastrave.org/doc/mtv_m/check_is#SAP_binary 
8 http://mastrave.org/doc/mtv_m/check_is#SAP_nonnegative 
9 http://mastrave.org/doc/mtv_m/check_is#SAP_finite 



146 
 

classification scheme is as follows: 0-0.4 (stable), 0.4-0.6 (area of model uncertainty) 

and 0.6-1 (unstable). 

Heterogeneous quantities provided as model outputs need to be transformed so as 

to be homogeneous in order for the models' performance to be comparable. In the 

output of the physically based models values minor than 1 represents unstable 

conditions, hence, it should be remapped as 1 and high output values represent 

stable conditions, which should remapped as 0. 

The ::nonnegative:: output of the two deterministic models has been remapped to 

the corresponding ::possibility::10 values ∈ [0 1] by means of Piecewise Cubic Hermite 

Interpolating Polynomials (PCHIP) (Figure 5.9) with the codelet (MATLAB language): 

pchip( [ 0 0.5 1 1.25 1.5 10 inf ], [ 1 0.8 0.6 0.5 0.4 0 0 ], output ). PCHIP has been 

chosen because ensuring monotonicity, continuity and derivability. 

 

 

Figure 5.7 – This map represents the landslides areas that were used for selecting the 

not stable points suitable to populate the modelling set of data with the associated 

degree of instability coming from the application of the RDS model.  

                                                             
10 http://mastrave.org/doc/mtv_m/check_is#SAP_possibility 
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Figure 5.8 - Map of the stable areas that were used for populating the set of points 

representing a condition of slope stability within the catchment with associated the 

degree of stability predicted by the RDS model . These areas of stability were selected 

during our field survey both with direct observation and collecting historical 

information from local people.  

 

In calibrating ANN the RMSE was determined for every combination of weight decay 

and number of neurons calculated by the ANN model during the network training. 

The final architecture of the ANN comes from the selection of weight decay and 

number of nodes minimizing the RMSE. The calculation of RMSE was then used for 

evaluating the fitting performance of the models. 

Calibration of the deterministic models was performed using data and information 

from the literature (Witt, 2005; Horn and Fleige, 2003; Morgan et al., 1998), from 

expert judgement or collected during the field survey. Due to the paucity of high 

resolution data for calculating the parameters required by SINMAP and TransSlide 

only a basic calibration was possible. We tested the model using different parameter 

values, the data coming from the field survey or derived from literature were used 

for example to calculate in SINMAP lower and upper bound of the ratio of 
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transmissivity to the effective recharge rate (T/R), of the soil friction angle or of the 

dimensionless cohesion (that takes into account both root and soil cohesion). The low 

resolution of the available data unfortunately does not allow the deterministic 

models to catch local variations within the catchment. The adjustments coming from 

the calibration process were necessary for capturing a major proportion of landslides 

in areas having a low stability index. 

 

 

Figure 5.9 – Use of the Piecewise Cubic Hermite Interpolating Polynomials (PCHIP) for 

remapping the deterministic models to the corresponding ::possibility:: values ∈ [0 

1]. 

 

 

5.4. The fuzzy ensemble approach  

 
A semi-quantitative method, based on an ensemble approach, has been used for 

combining deterministic and probabilistic approaches. The ensemble approach is a 

reproducible Data Transformation Model  applied to the results of the array of 

models of landslide susceptibility and is based on the relative-distance similarity  
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method. The application of an ensemble approach, especially in data poor regions, 

could potentially reduce the uncertainty and mitigate local poor performance 

associated with individual models, by excluding outlier estimations. 

Uncertainty may affect these models from the inaccuracy of required input data and 

parameters to the approximation of their reconstruction.  

In this application, the set A of reference points, mentioned in eq. 5.14, is instantiated 

for stable areas (SS) and unstable ones (i.e. the areas which might be subject to 

landslide phenomena, SL). 

In the landslide application, the indices RDScL and RDScS express the possibility [0,1] 

for c to respectively belong to L (unstable areas) or S (stable areas) 
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                    (5.15) 
  

 
 

 
A final ensemble takes into account both indices RDScL and RDScS so as to derive a 

harmonised RDS model for the landslide susceptibility. 

 
5.5. Validation and analysis of the models performance 

 

The performances of the different approaches have been estimated with an 

independent set of data (682 points).  

These data were used for measuring the modelling performance by calculating MAE, 

RMSE and the explained variance of the model (expressed in proportional terms). 

For calculating the explained variance, we used the pseudo – R2 reported in equation 

5.16: 

 
                                                𝑒𝑒𝑟𝑟𝑟𝑟𝑢𝑢𝑑𝑑𝑓𝑓 − 𝐸𝐸2 = 1 −  𝑀𝑀𝐹𝐹𝐸𝐸

𝑑𝑑𝑒𝑒𝑟𝑟(𝑓𝑓𝑜𝑜𝑟𝑟)                                                (5.16) 
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where var(obs) is the variance of the observed data and MSE is the mean square 

error. 

 
The results of validation are summarized in table 5.3. The table shows a better 

performance of the statistical methods when compared with deterministic 

approaches. A spatial analysis of the predicted landslide susceptibility (Figure 5.10) 

reveals the difficulties of physically based models to identify instabilities in some 

areas of the catchment. For example, the northeastern part of the catchment, largely 

affected by slope instability, is considered as stable by these models. This could be 

linked to the cumulated bias in the parameters required by physically based models, 

which are weakly approximated due to the lack of required information at the 

appropriate spatial resolution. Concerning data-driven statistical models, a key 

difference should be highlighted related to the performance which may be obtained 

with the use of out-of-the-box tools and custom designed machine learning models. 

The first category of tools is easily accessible by researchers even when their 

background does not include advanced modelling training. These tools (for example, 

the tool here applied for estimating ANN statistical method) are relatively easy to run 

with minimal expertise on machine learning modelling. As a trade-off, the 

performance achievable by non-experts is often not comparable with the 

performance obtainable by experienced modellers with custom designed machine 

learning approaches (here the RDS approach exemplifies a custom designed 

modelling approach).  

Both ANN and LR show some difficulties in predicting stable and unstable areas within 

the study area. Their explained variance of around 0.3 is in line with many other 

works (Ermini at al., 2005; Ayalew et al., 2005; Costanzo et al.,2014). Both these 

models tend to overestimate slope instability in areas where landslide activity is not 

present. The unusual slightly lower performance of the ANN when compared with LR 

(Lee et al., 2016) is probably due to the out-of-the-box application of the first model. 

One of the main objectives of our work was to test the potential to apply ensemble 

modelling methods to predict landslide susceptibility in data-poor regions. The low 

prediction capacity of some of the applied techniques highlight the potential of 
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ensemble methods in reducing locally-poor model performance as it allows the 

mitigation of outlier predictions. 

Between the applied models, the ensemble and RDS give the lowest errors and have 

the highest explained variance with values (both over 0.9) that are similar to other 

machine learning applications for measuring landslide susceptibility (Bui et al., 2016). 

Although the high error rate of some models, the simple models' median (table 5.32), 

with an explained variance that reaches 0.6 in predicting stable areas within the 

catchment, is the next best result. Its application as a straightforward unsupervised 

ensemble might prove useful even where no additional information is available (black 

box output data). 

The proposed ensemble, being a supervised method that infers a function 

from training data, slightly improves the best model in the array of outputs (in the 

worste case, the ensemble would have been equal to the best model in the array). 

The high performance showed by the RDS approach could be linked with the criterion 

used for the selection of the training and testing set of data. The possible presence 

of bias in using a similar technique for selecting the data and calculating the landslide 

susceptibility need to be further investigated. Because the quality of spatial landslide 

forecasts is largely dependent on the quality of the available datasets, the good 

performance of the combined model broadens the possibility of applying a 

quantitative assessment in data-poor regions.  

Anyway, the good performance of the ensemble method (as reported in table 5.3) 

confirms the potential to apply ensemble modelling methods to predict landslide 

susceptibility even in data-poor regions, where the best available models would 

simply be impossible to apply due to the lack of detailed information. The work in this 

thesis contributes to corroborate the hypothesis that where a single state-of-art (but 

too data-demanding) model cannot be applied, multiple simpler models may be 

aggregated to improve their performance. 
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Table 5.3- Values of the MAE and RMSE calculated on the validation set of data 

related to singles and combined applied models. U and S refer on MAE and RMSE 

calculated respectively on unstable on unstable (U) and stable (S) areas only. With 

lower MAE and RMSE values, statistical methods show better performance when 

compared with deterministic models. The best performance, linked with the lowest 

values of MAE and RMSE both in Stable and unstable areas, are related to the 

application of the Relative Distance Similarity and of the ensemble method. Because 

of the lack of detailed input data to calibrate the deterministic models (SINMAP and 

TRANSSL) these show the highest RMSE and MAE values.  

 

 RDS ANN LR SINMAP TRANSSL MEDIAN ENSEMB.  
MAE 0.003 0.44 0.37 0.45 0.51 0.35 0.001  

MAE U. 0.002 0.42 0.36 0.61 0.68 0.45 0  
MAE S. 0.003 0.45 0.38 0.3 0.34 0.25 0.001  
RMSE 0.02 0.47 0.43 0.54 0.58 0.4 0.019  

RMSE U. 0.01 0.45 0.4 0.65 0.7 0.47 0  
RMSE S. 0.03 0.48 0.46 0.4 0.42 0.32 0.026  
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Figure 5.10– Landslide susceptibility map of the study area produced by applying the 

RDS model (GNU Octave with Mastrave modelling library). The fuzzy classification 

index for measuring the landslide susceptibility estimates the possibility of instability, 

and fluctuates in a range between 0 (stable conditions) and 1 (unstable conditions). 

In red, the areas estimated as more susceptible to landslide occurrence.  
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Figure 5.11– Landslide susceptibility map of the study area, produced by applying an 

artificial neural network (multilayer perceptron, as implemented by the “nnet” 

package of GNU R). The map ranges from stable conditions (0) to unstable conditions 

(1).  The areas with values between 0.4 and 0.6 are characterised by high modelling 

uncertainty. 
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Figure 5.12– Landslide susceptibility map of the study site  produced by applying a 

logistic regression model. In red, the areas estimated as more susceptible to landslide 

occurrence (values from 0.6 to 1). In green, the areas presenting a low susceptibility 

to landslides (values below 0.4). In light green and orange, the areas where the 

uncertainty of the model is high.  
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Figure 5.13– Landslide susceptibility map of the study area, produced by applying the 

SinMap model. The classification index estimating the susceptibility to landlides 

ranges between 0 (stable) and 1 (unstable).  

In the output of the SinMap model, values less than 1 represent unstable conditions, 

while the higher output values represent stable conditions. To harmonise the 

susceptibility scale, the model output were here remapped by means of Piecewise 

Cubic Hermite Interpolating Polynomials (PCHIP) to values ∈ [0 1]. 
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Figure 5.14– Landslide susceptibility map of the study area produced by applying the 

TransSlide model. The classification index for measuring the landslide susceptibility 

fluctuates in a range between 0 (stable conditions) and 1 (unstable conditions). In 

red, the areas more susceptible to landlide occurrence are reported.  

As for the Sinmap model, the original classification scale was remapped to harmonise 

it with the one of the other models. Originally, values less than 1 represented 

unstable conditions, and high output values represented stable conditions. The 

model output were remapped by means of Piecewise Cubic Hermite Interpolating 

Polynomials (PCHIP) to range between 0 and 1. 
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Figure 5.15– Landslide susceptibility map of the study area. This map represents the 

output of the emsembling model and reports the  landslides observed within the 

study site. In the area, the ensemble estimates fluctuate from stable conditions (0) 

to unstable conditions (1).  The few areas with values between 0.4 and 0.6 are 

characterised by high modelling uncertainty. 

 

 

 
 
 
 
 
 
 
 
 



159 
 

5.6. Conclusions 

Landslide susceptibility assessment is a fundamental component of effective 

landslide prevention. One of the main challenges in landslide forecasting is the 

assessment of spatial distribution of landslide susceptibility. Despite the many 

different existing approaches, landslide susceptibility assessment still remains a 

challenge. A semi-quantitative method was here proposed combining heuristic, 

deterministic and probabilistic approaches for a robust catchment scale assessment.  

Five different techniques for modelling shallow landslide susceptibility were applied 

to a catchment located in Southern Italy (Rocchetta Sant'Antonio, FG). Each 

susceptibility zonation has been obtained by applying heterogeneous statistical 

techniques as logistic regression , relative distance similarity , artificial neural 

network  and two different landslide susceptibility techniques based on the infinite 

slope stability model (SINMAP and TransSlide). A fuzzy ensemble model has been 

exploited for aggregating the array of different susceptibility zonation maps. 

The performance of the models was evaluated against a landslide inventory of the 

year 2006 by calculating RMSE, MAE and explained variance. The good results of the 

ensemble model, when compared with the single techniques, make this method 

suitable to be applied in data poor regions with a lack of calibration and validation 

data. Because of the uncertainty in selecting a single suitable method for modelling 

spatial landslide susceptibility in areas characterized by data weakness, the applied 

ensemble method can potentially result in a less uncertain zonation. Alhough these 

preliminary results are promising, further research is required before this method can 

be used to communicate the findings with relevant authorities. The landslide 

susceptibility maps (Figure 5.10) calculated applying the statistical methods were 

obtained using three different scripts implemented using MATLAB and R languages 

respectively in GNU Octave and GNU R free software along with the modelling library 

Mastrave which implements the semantic array programming paradigm. The script 

applied for calculating the ANN is based on the work of Rossi (Rossi et al., 2010). Also 

the scripts used for selecting the training and testing points and for calculating the 

combined model were written following the SemAP paradigm in MATLAB language, 

within GNU Octave as computing environment. 
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6. A coupled architecture for modelling soil erosion and 

shallow landslides in data poor regions (the case of 

Rocchetta Sant’Antonio)  

 
 

6.1. Introduction 

 

The changes in soil erosion rates that follow landslide events can deliver significant 

cascading impacts on ecosystems, for example due to an increased sediment yield to 

a stream network.  

This may potentially be of ecological and economical relevance both close to where 

the landslide events are located (so called “on site” impacts) and at a wider scale (so 

called “off site” impacts). Local effects may potentially drive complex changes even 

at the landscape-scale (Bakker et al., 2005; Geertsema and Pojar, 2007). 

Furthermore, the ecosystem services provided by the areas affected by landslide 

events may be important for remote service benefit areas connected through so 

called “service connecting areas” such as stream networks (Syrbe and Walz, 2012). 

Natural resources are intrinsically entangled in complex networks whose 

management is increasingly complicated by climate change. There is indeed a 

growing awareness of the importance of modelling these cascades and the potential 

influence of climate change on these processes, and assess the resultant economic 

and societal consequences (de Rigo, 2012). 

Landslide events will result in changes in topography and vegetation cover which in 

turn will alter surface erosion rates and sediment yields. As stated in Chapter 2, there 

are a number of relevant models that use an integrated approach to soil erosion and 

landslide processes, including SHETRAN ) (Ewen et al., 2000), TOPOG (a physically-

based, distributed parameter, catchment hydrological model) (O’Loughlin, 1986; 

CSIRO, 2017) , PSIAC (Pacific Southwest Inter-Agency Committee) (PSIAC, 1968) or 

SIBERIA (also known as the Willgoose Catchment Evolution Model) (Willgoose and 

Riley, 1998). But it is only in WEPP-SLIP (Water Erosion Prediction project - Shallow 
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Landslide Integrated Prediction) (Cochrane, and Acharya, 2011) that post-failure 

sediment yield is explicitly considered. WEPP-SLIP is able to consider the post-failure 

changes in soil erosion rate through the changes in topography and land cover. 

However, there is still room to improve the modelling of the interactions of these 

processes, for example through assessments of the changes in surface area made 

more susceptible to soil erosion following landslide events. 

To quantify the potential changes in soil erosion due to landslide occurrence it is 

necessary to know where and when on the slope a landslide initiates and how it 

evolves. This chapter aims to present a new modelling approach for data-poor 

regions in an attempt to improve the estimation of sediment budgets derived from 

rainfall induced landsliding and soil erosion. A statistical approach is proposed that 

incorporates the frequency-area landslide distribution model of Malamud et al. 

(2004) within the framework of a spatially distributed empirical soil erosion model. 

 

 
6.2. A new architecture for coupling of the effects of rainfall-induced 

shallow landslides and soil erosion 

 
 
6.2.1. Geospatial semantic array programming 

 

Semantic array programming (see paragraph 2.5) has been used for building the 

architecture for our modelling approach. The proposed architecture (Figure 6.1) also 

exploits the geospatial capacities of GIS in order to estimate soil erosion yield (e-

RUSLE model). In our modelling approach we integrated SemAP and geospatial tools 

(ArcGis and GRASS GIS) through the Geospatial Semantic Array Programming 

paradigm (GeoSemAP). GeoSemAP exploits geospatial tools and Semantic Array 

Programming for splitting a complex D-TM into logical blocks whose reliability can 

more easily be checked by applying geospatial and mathematical constraints. Those 

constraints take the form of precondition, invariant and postcondition semantic 
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checks. This way, even complex wide-scale transdisciplinary models may be described 

as the composition of simpler GeoSemAP blocks. 

Semantic checks, within and between the different blocks as showed in figure 6.1, 

are exemplified in the following paragraphs with the already adopted notation 

::sem::. The semantic constraints were implemented within the code with a 

specialised module (de Rigo, 2012c) of the Mastrave modelling library. A hyperlink to 

the corresponding online description is provided. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1: Flowchart of the model. The proposed architecture splits a single data-

transformation-model (D-TM) for measuring soil erosion, in areas affected by slope 

instability, into logical blocks whose reliability is checked by applying semantic 

constraints. The semantic aspects of the data-transformations among model 

components are highlighted within the workflow with the notation ::sem::. 
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The decomposition of a complex model in logical components (blocks), and the use 

of semantic checks within each of them to ensure consistency, help to isolate, 

mitigate and correct the effects of data inputs when they are occasionally inadequate 

for some component (this is a typical case when an extensive sequence of numerical 

runs is required, which otherwise might exceed the ability of computational scientist 

to verify each single run). 

 

6.2.2. The modelling architecture 
 

The pre- and post-failure soil loss rate was calculated by applying the low data 

demanding model e-RUSLE (Bosco et al., 2015) that has been presented in chapter 4. 

Due to the flexibility of the modelling architecture that e-RUSLE is based on, it is 

possible to calibrate the model for application at different scales (Bosco et al., 2015). 

e-RUSLE was implemented using the ArcGIS software to first estimate the 

::nonnegative:: ::matrix::11 representing the soil erosion rates within the catchment 

without considering the influence of mass movement. The scripts applied for 

calculating the soil erosion losses was implemented in ESRI ArcGis but can also be 

easily carried out using an Open Source Free Software such as GRASS GIS or Quantum 

GIS. 

For quantifying the effect of size, position and number of landslides affecting this 

catchment the frequency-size distribution model proposed by Malamud et al. (2004) 

was adopted. They found that landslide data from well-documented and substantially 

complete landslide-event inventories from three quite different locations around the 

world (Italy, Guatemala and the United States), each with different triggering 

mechanisms, could be described quite well with the inverse gamma distribution 

(Figure 6.2): 

                 𝑒𝑒(𝐴𝐴𝐿𝐿, 𝜌𝜌, 𝑒𝑒, 𝑟𝑟) =
1

𝑒𝑒𝑎𝑎(𝜌𝜌) �
𝑒𝑒

𝐴𝐴𝐿𝐿 − 𝑟𝑟�
𝜌𝜌+1

𝑟𝑟𝑒𝑒𝑒𝑒 �
−𝑒𝑒

𝐴𝐴𝐿𝐿 − 𝑟𝑟�  ,                    (6.1) 

 

In (6.1), p is the probability density (km-2), Γ is the gamma function, AL is the landslide 

area (km2), ρ (-) is a parameter which controls the power law decay for medium and 

                                                             
11 http://mastrave.org/doc/mtv_m/check_is#SAP_matrix 
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large landslide areas, a (km2) determines the position of the maximum in the 

probability distribution and s (km2) is a parameter which fits the exponential decay 

behaviour for small landslide areas. Parameter values of ρ  = 1.4, a = 1.28 10-3 km2 

and s = -1.32 10-4 km2 , such as from the work of Malamud (2004), were shown to 

provide a good fit to the measured data. The same dataset of over 400 reported 

landslides described in paragraph 5.2 was used. Unfortunately this dataset is not 

freely available but the IFFI (Inventario dei Fenomeni Franosi in Italia) database 

(Agnesi et al., 2007) (a national project that aims at identifying and mapping 

landslides over the whole Italian territory) is a valuable alternative to apply our 

modelling approach.  

 

Figure 6.2 - Dependence of landslide probability densities p on landslide area AL, for 

three landslide inventories: 1994, earthquake in California, USA (Harp and Jibson, 

1995, 1996); 1997, snowmelt event in the Umbria region (Italy) (Cardinali et al., 

2000); 1998, landslides triggered by Hurricane Mitch in Guatemala (Bucknam et al., 

2001). (Source: Malamud et al., 2004). 
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Overall, a reasonable correlation between the inverse-gamma distribution of 

Malamud et al. (Malamud et al., 2004) with the above parameter values and the 

frequency-size distribution of the landslide database was found (Figure 6.3). The fit is 

very good for landslide areas greater than or equal to the peak in the distribution. For 

smaller landslide areas to the left of the peak the agreement is not as good, though 

modifications to parameters a and s could be made to improve this section. 

However the distribution of Malamud et al. (2004) and parameter values they used, 

were shown to work over a wide range of landslide sizes from various countries 

around the world. It was found that these same parameter values also provided a 

similar fit to the data from our field site suggesting the possibility of universality in 

the parameter values and therefore removing the need for calibrating the 

distribution for local applications. On this basis we wanted to see how well this would 

perform against data from the Rocchetta catchment and kept the original Malamud 

parameter values. The data for the smaller landslides does have a greater degree of 

uncertainty as its collection could easily have led to either an over or underestimation 

of the landslide number. This could occur through either medium landslides being 

classified as smaller due to being covered by larger landslides, or though the smaller 

landslides being covered by larger ones and therefore missed completely. The main 

point of this exercise wasn't to match exactly the landslide-area probability 

distribution, but to have a physically realistic distribution on which to base our 

modelling. To predict when and where a landslide will occur is one of the main 

challenges for calculating post-failure soil loss in data-poor regions. We exploited the 

correlation between the measured data and Malamud's distribution through 

combination with Monte Carlo simulation to analyse the effects of mass movements 

on soil erosion by water. 

Assuming the validity of the proposed inverse-gamma function for calculating the 

probability distribution of landslide areas we implemented a simple script (based on 

SemAP) in MATLAB language. Starting from a ::scalar positive:: 12  number to 

represent the number of landslides that occurred in the catchment, we then calculate 

the number of landslides δ  NL(h) in the h-th class of landslides. Each class is a 

                                                             
12 http://mastrave.org/doc/mtv_m/check_is#SAP_scalar_positive 
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::categorical-interval::13 which includes all the landslides with an area from AL(h) to 

AL(h + 1). The classes thus form a partition of ::contiguous - interval:: 14  s in 

[0;AL(hmax)] whose values are found from: 

 

                                    𝛿𝛿𝑁𝑁𝐿𝐿(ℎ) =  � 𝑒𝑒(𝐴𝐴𝐿𝐿)𝑑𝑑𝐴𝐴𝐿𝐿

𝐴𝐴𝐿𝐿 (ℎ+1)

𝐴𝐴𝐿𝐿 (ℎ)
 ,                                   (6.2) 

 
In order to evaluate the effect of the post-failure changes on the soil erosion rates in 

the catchment, we applied the Monte Carlo method twice. Once to randomly 

determine the location of a landslide, and a second time to sample the Malamud 

distribution to assign its size. The Monte Carlo simulation was also implemented in 

the MATLAB language following the SemAP paradigm and exploiting the potentiality 

offered by the Mastrave Library (de Rigo, 2012a) whose tools were largely used 

within the code. 

To be more explicit: considering Y as a random variable distributed according to a 

given probability distribution, it is possible to generate n pseudo-random instances 

Y1,..., Yn with the same distribution . This may be accomplished with a classical Monte 

Carlo extraction. Let us define f(·) as a certain function of Y which is implemented, 

within the SemAP paradigm, as a D-TM transforming an instance of Y into the desired 

output data. Suppose we are interested in computing the integral A of f(·) over a 

given domain . This implies considering the probability density function π(·) of Y over 

: 

 

𝐴𝐴 =    ∫ 𝑓𝑓(𝑌𝑌) ∙ 𝜋𝜋(𝑌𝑌)𝑑𝑑𝑌𝑌,       

𝑌𝑌 ∈ 𝛺𝛺
𝑌𝑌 ∼ 𝛷𝛷

    𝜋𝜋(𝑌𝑌)𝑑𝑑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 𝑓𝑓𝑢𝑢𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟 𝑓𝑓𝑓𝑓 𝛷𝛷 𝑟𝑟𝑟𝑟 𝑌𝑌
𝑟𝑟𝑢𝑢𝑓𝑓ℎ 𝑟𝑟ℎ𝑒𝑒𝑟𝑟 ∫ 𝜋𝜋(𝑌𝑌)𝑑𝑑(𝑌𝑌) = 1 

𝛺𝛺

 
𝛺𝛺            (6.3) 

 
 
 

Numerically, it is possible to approximately estimate A by exploiting the n Monte 

Carlo instances Y1,..., Yn as 

 

                                                             
13 http://mastrave.org/doc/mtv_m/check_is#SAP_categorical-interval 
14 http://mastrave.org/doc/mtv_m/check_is#SAP_contiguous_interval 
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             𝐴𝐴 ≈ �̂�𝐴𝑛𝑛 =  
1
𝑟𝑟  � 𝑓𝑓(𝑌𝑌𝑟𝑟𝑟𝑟𝑛𝑛),     ∀ 𝑟𝑟𝑢𝑢𝑟𝑟,  𝑌𝑌𝑟𝑟𝑟𝑟𝑛𝑛 

𝑛𝑛

𝑟𝑟𝑟𝑟𝑛𝑛=1

∼  Φ   ,                         (6.4) 

 
 

where Yrun is the run-th instance of Y corresponding to the run-th Monte Carlo 

iteration. From the law of large numbers, if n →  ∞, �̂�𝐴𝑛𝑛  →  A. In our particular 

application, �̂�𝐴𝑛𝑛 is the average over n runs of simulated landslides; in each of them 

the total erosion by water f(·)  is computed for the particular array of landslides Yrun. 

The n arrays of simulated landslides are the basis for f(·) to estimate the 

corresponding post-landslide soil erosion. Each landslide occurring in the run-th 

simulation has an area distributed according to �̅�𝑒 (·). This defines π(·) as the 

probability density function with which each run-th array of landslides is distributed. 

The Monte Carlo simulation was iterated 1,000 times. A more robust approach would 

have been based on 10000 iterations but due to the very high computational time 

require by the script we decided to reduce the number of iterations to 1000. For each 

of the iterations the post-failure changes in soil erosion were calculated and 

compared with the pre-failure estimates. 

 
Figure 6.3: Dependence of the landslide probability densities on landslide area for the 

measured set of data (blue) and for Malamud's distribution (green). The probability 

density is given on logarithmic and semi-logarithmic scale. A bootstrap analysis was 
performed to assess the uncertainty of the measured data. 
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The ::matrix:: representing the cover management factor of the e-RUSLE model was 

calculated using the 5x5 metre resolution land cover map of the study site, produced 

by CNR-IRPI of Bari using ASTER satellite multi-spectral imagery and published in 

(Wasowski et al., 2010) (see paragraph 3.5). The map is not freely available but the 

CLC (EEA, 2006) is a valid open access alternative. The post-failure changes in 

vegetation cover were used within the model for estimating the effect of mass 

movement on soil erosion.  

Important processes, as the soil armouring, the spatial distribution of the reworked 

sediments  and the changes in local topography play an important role in soil erosion 

processes (see paragraph 1.4). Unfortunately, the few available researches  for better 

understanding the evolution of a post-failure slope profile (Acharya, 2011) jointly 

with the lack of detailed data related to the soil characteristics of the study site led 

to consider, within  the proposed approach, only the post- failure changes affecting 

the vegetation cover. Because of the use of simplified equations to calculate the K 

factor, it would be impossible to properly consider the effect of local changes of this 

factor on post-failure soil erosion. However, it would be interesting to estimate the 

effect of changes in K factor by simulating a range of different possible fluctuations 

of the K factor values between pre- and post-failure conditions. This is something that 

will need further investigation.   

Because of the modular modelling architecture (Figure 6.1), the module that 

calculates the pre-failure C factor can be used as a link between our model and other 

approaches for measuring different land disturbance effects on soil erosion. The post-

failure vegetation cover results were only partially altered by the slow mass 

movements that characterize this catchment (see Figures 1.2 and 3.4). As locally the 

slide surface may also remain unchanged, we introduced into the model a value 

representing the post-failure percentage of bare soil. By analysing the landslide 

dataset, the available pictures, satellite images and accounting for all the information 

collected during the field survey carried out within the study area, the percentage of 

the post-failure bare soil cover was estimated to be not less than 20% of the landslide 

area. For each of the pixels of the modelled landslides in each of the 1,000 Monte 

Carlo iterations, the ::scalar positive:: ::proportion:: of bare soil (Bsp) was therefore 
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randomly determined in the range 0.2 - 1. BSp is selected to follow a maximum 

entropy distribution in the aforementioned range. If X is a continuous random 

variable with probability density p(x), then the differential entropy of X is defined as: 

 

𝑃𝑃(𝑋𝑋) =  − ∫ 𝑒𝑒(𝑒𝑒) 𝑙𝑙𝑓𝑓𝑟𝑟 𝑒𝑒(𝑒𝑒)𝑑𝑑𝑒𝑒1
0.2             (6.5) 

 

This is simply achieved by sampling the BSp value for each pixel with a Monte Carlo 

random sampling from a uniform distribution in [0.2 1]. 

 
 
 

6.3.  Results and discussion  

 

Table 6.1 shows the results of the Monte Carlo simulations. We replaced the mean 

values obtained by applying equation 6.4, with the median, because it is more stable 

in that it is only marginally affected by extreme values (Hampel et al., 1986). By 

analysing the median on 1,000 simulations of the cumulated pre-failure and post-

failure soil erosion, an increase of 20% of the within catchment total soil loss was 

estimated. The total soil erosion predicted for the catchment by applying the e-RUSLE 

model was of ∼ 8000 tons per year. The post-failure soil erosion estimated by 

applying the presented modelling architecture was over 9500 tons per year.  

The post-failure soil erosion rate in areas where landslides occurred is, on average, 

around 3.5 times the pre-failure value, passing from around 800 to more than 2700 

tons per year over an area covering 9.4% of the study site. 

A bootstrap analysis (Efron and Tibshirani, 1993; Efron, 1982) based on 10,000 runs 

was performed in order to assess uncertainty. This analysis was performed exploiting 

the module ‘mbootstrap_idx’ of the Mastrave modelling library (de Rigo, 2012a). The 

analysis of the changes in the rate of soil erosion due to the landslide occurrence 

predicted by the model shows post-failure increases in soil loss of approximately 

1700 tons per year (bootstrap p <= 0.05). This corresponds to an increase of around 

22% of the total soil erosion. We also analysed the extension of the area affected by 

slope instability. The bootstrap analysis shows that in each simulation at least 76 

hectares, corresponding to around 8.5% of the catchment, are affected by landslide 

https://en.wikipedia.org/wiki/Continuous_random_variable
https://en.wikipedia.org/wiki/Continuous_random_variable
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Differential_entropy
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activity (bootstrap ≤ 0.05). By comparing this value with the area that presented slope 

instability in 2006 (around 55 hectares), the applied methodology seems to result in 

a slight overestimate. The graph in figures 6.2 and 6.3 shows that Malamud's 

distribution seems to underestimate the number of small landslides (< 300 m2). 

Nevertheless, the probability density distribution for the Rocchetta landslides from 

2006 is in line with those reported by Malamud et al. (2004). The Malamud 

distribution was here purposedly applied with an unsupervised model, hence without 

any custom fine tuning to adapt the original distribution (Malamud et al., 2004) to 

the specific peculiarities of the catchment (for example, to better fit the distribution 

to small landslides). Although in the study area the data might allow some better 

tuning to be achieved in future refinements of the application, this approach is 

general and reusable even in more severely data-poor regions. The model is in its 

early developmental phase and fine-tuning the fit of the Malamud distribution to 

small landslides should help to improve the model predictions. However, for better 

evaluating the limits or the robustness of the proposed inverse-gamma distribution 

or of a modified version, further data would be necessary. The bootstrap analysis, 

with 10,000 runs, performed on the measured data (Figure 6.3) shows the 

uncertainty associated with a single year landslide dataset is too high to extrapolate 

different parameter values. A more detailed analysis based on datasets covering a 

longer time interval would help to improve the applied methodology. An additional 

source of error contributing to the predictions, which needs further investigation, 

arises from the selection of the model for estimating soil erosion and its running with 

limited data: thus, there is considerable scope for errors in the predictions to be 

strongly linked to this simplification. 

Because the capacity to estimate the changes in soil erosion from landslide activity is 

largely dependent on the quality of the available datasets, the applied methodology 

broadens the possibility of a quantitative assessment of these effects in data-poor 

regions. The obtained results, even considering a possible overestimation, confirm 

the important role of mass movements on soil erosion and the consequent necessity 

to better integrate these processes into soil erosion modelling. 
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Table 6.1: Bootstrap analysis of the modelling results. The bootstrap analysis, based 

on 10000 runs, shows the bootstrap cumulated distribution of the pre-and post-

failure soil erosion within the area affected by landslide activity. 

 

 
Quantile Pre-failure 

soil loss (t) 
Post-failure 
soil loss (t) 

Estimated landslide 
activity area (ha) 

5% 744.7 2530.3 76.6 (8.4%) 
25% 799.2 2762.3 84.4 (9.2%) 
50% 828.7 2773.3 85.5 (9.4%) 
75% 843.4 2896 87.1 (9.6%) 
95% 854.6 3005 88.9 (9.8%) 

 
 

 

6.4. Conclusions 

 

A new method for empirically estimating the importance and extent of landslides on 

soil erosion losses in data-poor regions has been developed. This has been achieved 

by sampling the frequency-size landslide distribution proposed by Malamud et al. 

(2004), and stochastically distributing the landslide location across the catchment. 

Given the increasing threat of soil erosion all over the world and the implications this 

has on future food security and soil and water quality, an in-depth understanding of 

the rate and extent of soil erosion processes is crucial. Each year, on average, 

between 8.5 and 10% of the catchment shows evidence of landslide activity that is 

responsible for a mean increase in the total soil erosion rate between 22 and 26% 

above the pre-failure estimate. These results confirm the potential importance of 

integrating the landslide contribution into soil erosion modelling. While this approach 

clearly has limitations, the proposed approach can be seen as a first attempt to assess 

the landslide-erosion interaction in areas with limited data. 

The proposed modelling approach is also suitable in applications having a wider 

spatial extent and to be potentially implemented in a transdisciplinary context. For 

example, the relevant effect of wild fires on soil erosion and landslide susceptibility 

(Di leo et al., 2013; de Rigo et al., 2013) could be modelled with a higher reliability 
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integrating the proposed approach. As stated in de Rigo et al. (2013), wildfires can 

considerably increase soil erosion by water and landslide susceptibility. The changes 

in landslide susceptibility may in turn affect soil erosion. In general, considering the 

modelling architecture (Figure 6.1), if the module that calculates the pre-failure C 

factor value would provide the layer altered by a different disturbance (e.g. wild_fires 

or outbreak of pests), the presented modelling architecture could then be applied for 

estimating the indirect effect of these disturbances on soil erosion, provided a new 

landslide susceptibility map, that considers the altered vegetation cover, is produced. 

Despite the promising results, further research is still required to fully assess the 

reliability and therefore applicability of this method in coupled landslide soil erosion 

modelling. 
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7. Summary and recommendations 
 
 

The methods presented and developed throughout this PhD thesis and the 

corresponding results are summarized in this final chapter. Here, the most important 

conclusions and recommendations, the main limits of the approaches used and a 

focus on further research are presented.  

 
 

7.1. Summary  

 

This research was conducted with the main objective to better integrate and quantify 

the role of water-induced shallow landslides within soil erosion processes with a 

particular focus  on data-poor conditions. To fulfill the objectives, catchment-scale 

studies on soil erosion by water and shallow landslides were conducted.  

A new semi-quantitative method, based on an ensemble approach, to predict 

landslide susceptivility by combining deterministic and probabilistic approaches was 

proposed and validated jointly with an integrated shallow landslide soil erosion 

modelling approach.  

 

Problem definition, aim and objectives 
 
Soil erosion and mass movements are part of a system of multiple interacting 

processes, with both being visible expressions of critical instabilities affecting a 

territory. Soil erosion by rainfall and runoff is one of the main soil threats in Europe 

(section 1.1.). Rainfall-induced landslides contribute directly to soil erosion by the 

displacement of material and indirectly by destroying the vegetation cover that 

reduces surface flow velocities. 

In most of the cases, the slope instability affecting the study area is linked with re-

activation of dormant phenomena triggered by rainfall (section 3.3). Because natural 

resources are intrinsically entangled in complex networks there is a growing 

awareness of the importance to better quantify and understand their connections in 

order to develop appropriate management policies.   
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The main objectives of this study were to: 

1) improve the estimation and prediction of soil erosion by water in catchments 

affected by shallow landslides triggered by water.   

2) Develop a robust approach to reduce the uncertainty in shallow landslide 

susceptibility assessments in data-poor regions.  

 

Because it is impractical to measure soil loss across whole landscapes using 

experimental plots, soil erosion markers or sampling river sediment load, a strong 

emphasis has been placed on modelling as a tool to assess soil erosion and the effect 

of mass movements triggered by water. 

 

The existing integrated modelling approaches and their limits 

Numerous models exist for predicting shallow landslides and soil erosion by water, 

but relatively few attempts were done to model soil erosion by water and shallow 

landslides using an integrated approach (section 2.4.1). The existing qualitative or 

quantitative models presented in paragraph 2.4 (e.g SHETRAN, SIBERIA, PSIAC and 

WEPP-SLIP), are based on completely different approaches and show many different 

limits.  In most of these models post-failure scenarios are not considered.  Only in 

WEPP-SLIP post failure soil erosion is explicitly considered (post failure long-term 

sediment yield) but the soil redistribution within the model needs to be further 

developed (section 2.4.2). 

Physically based models can be easily modified to consider post-failure soil erosion 

changes because of their use of local terrain characteristics and dynamic hydrological 

models. They also have the possibility to easily consider landslides temporal 

probability of occurrence. Unfortunately these models are also less suitable to be 

applied in data-poor conditions.   

With the use of statistical methods it is possible to overcome some of the lack of 

detailed input data. Unfortunately this approach does not account for the temporal 

aspect of mass movements.  For improving soil erosion estimation considering mass 

movements within the erosion process it is necessary to estimate not only where but 

also when a landslide will occur along with the size of the event. 
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In chapter 6 a new approach is presented to consider the frequency-area distribution 

of landslides in order to quantify the size and number of landslides associated to 

precipitation events in data-poor regions and to quantify their contribution on soil 

erosion. This was achieved by sampling the frequency-size landslide distribution 

proposed by Malamud et al. (2004), and stochastically distributing (using a Monte 

Carlo simulation) the location of landslides across the catchment. 

 

The study site 

The study area is situated in southern Italy in the Daunia Appennines of the Puglia 

region, within the municipal territory of Rocchetta Sant'Antonio. It covers an area of 

almost 10 km2 (section 3.1). This area is highly susceptible to landslide activity (Iovine 

et al., 1996; Magliulo et al., 2008) with a consequent negative impact on the local 

economy (Wasowski et al., 2010). The area neighbouring to the north-west of the 

Rocchetta Sant'Antonio territory presents a landslide frequency exceeding 20% for 

the overall area (Mossa et al., 2005; Wasowski et al., 2007, 2010, 2012) (section 3.3). 

Soil erosion is also widespread and the severity is largely determined by the 

combination of tillage practices and the high erodibility of the clay-rich units from 

which some of the local soils are derived (Lamanna et al., 2009). 

Within the catchment it is possible to distinguish four major classes of land use 

(agricultural soils, woodland, pastures and grassland) and three dominant lithologies 

(limestone, sandstone and clay-shales) (section 3.2, 3.5). Slope angles are on average 

approximately 10 degrees with peak slope angles rarely exceeding 25 to 30 degrees. 

An ephemeral drainage network is fed by precipitation during the autumn-winter 

period when some 600 to 750 mm of rainfall is common (Wasowski et al., 2010). The 

area is characterized by a Mediterranean sub-humid climate (section 3.4). 

This area has been studied for some years resulting in a database of information 

(including topography and Digital Elevation Model (DEM), site investigation and 

geotechnical test data, soil distribution and land use maps) (Wasowski et al., 2007, 

2010; Mossa et al., 2005). 
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Modelling soil erosion in data poor regions 

Despite numerous efforts, the prediction value of existing models is still limited, 

especially at regional scale or in data-poor areas, because a systematic knowledge of 

local climatological and soil parameters is often unavailable. After a first attempt in 

applying the RMMF model in the study site (section 4.2.2) for measuring soil loss, a 

new approach for modelling soil erosion in data-poor conditions was proposed. It is 

based on the joint use of a low-data-demanding models and innovative techniques 

for better estimating model inputs. This modelling architecture is based on semantic 

array programming paradigm with a strong effort towards computational 

reproducibility (section 2.5). An extended version of the RUSLE model was 

implemented merging different empirical rainfall-erosivity equations within a 

climatic ensemble model and adding a new factor for a better consideration of soil 

stoniness (section 4.2.3.2). The map of the soil erosion rates affecting the Rocchetta 

Sant’Antonio catchment was produced through the use of publicly available data sets 

and empirical relationships. 

 

A multi-scale robust modelling approach for estimating landslide susceptibility 

Landslide susceptibility assessment of a territory is fundamental to prevent landslide 

occurrence, its spatial distribution is also one of the main challenges in landslides 

forecasting. Despite the many different approaches that have been tested and 

developed (van Westen et al., 1997), landslide susceptibility assessment still remains 

a challenge. A semi-quantitative method that combines heuristic, deterministic and 

probabilistic approaches is here proposed for a robust catchment scale assessment 

in data-poor conditions (section 5.4). A set of different susceptibility zonation maps 

(Figure 5.12) was aggregated exploiting a modelling ensemble. Each susceptibility 

zonation has been obtained by applying heterogeneous statistical techniques as 

logistic regression (LR) (Cox, 1958), relative distance similarity (RDS) (de Rigo, 2015; 

de Rigo et al., 2013a; Bosco et al., 2015), artificial neural network (ANN) (section 

5.1.2) and two different landslide susceptibility techniques (SINMAP (Pack et al., 

1998, 2005) and TransSlide (Bosco et al., 2013)) based on the infinite slope stability 

model (section 5.1.1).  
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The ensemble approach is a reproducible data-transformation model applied to the 

results of the array of models and is based on RDS. The sequence of data-

transformation models has been enhanced following the semantic array 

programming paradigm. The good performance  of the ensemble model (section 5.5), 

when compared with the single techniques, make this method suitable to be applied 

in data-poor conditions where the lack of proper calibration and validation data can 

affect the application of physically based or conceptual models (Bosco et al., 2013). 

Because of the uncertainty in selecting a single suitable method for modelling spatial 

landslide susceptibility in areas characterized by data weakness, the applied 

ensemble method can potentially result in a less uncertain zonation (Bosco et al., 

2013). This catchment scale methodology may be exploited for analysing the 

potential impact of landscape disturbances.  

 

A coupled architecture of soil erosion by water and water induced shallow 

landslides 

Given the aim and constraints of the study area, a robust model that couples 

hydrology with stability has been developed (section 6.2.2). This chapter proposes a 

new integrated methodology for a robust assessment of soil erosion rates in data-

poor areas affected by landslide activity by combining heuristic, empirical and 

probabilistic approaches. This proposed methodology is based on the geospatial 

semantic array programming paradigm (section 6.2.1) and has been implemented on 

a catchment scale methodology using GIS, spatial analysis tools and GNU Octave. The 

integrated data-transformation model relies on a modular architecture (Figure 6.1), 

where the information flow among modules is constrained by semantic checks. In 

order to improve computational reproducibility. The proposed modelling 

architecture is flexible enough for future transdisciplinary scenario analysis to be 

more easily designed. 

By analysing modelling results within the study catchment, each year, on average, 

mass movements, are responsible for a mean increase in the total soil erosion rate 

between 22 and 26% over the pre-failure estimate. The post-failure soil erosion rate 

in areas where landslides occurred is, on average, around 3.5 times the pre-failure 

value (section 6.3). These results confirm the importance to integrate landslide 
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contribution into soil erosion modelling. The model is in its early developmental 

phase and fine tuning the fit of the model to small landslides should help to improve 

the model prediction capacity. Because the estimation of the changes in soil erosion 

from landslide activity is largely dependent on the quality of available datasets, this 

methodology broadens the possibility of a quantitative assessment of these effects 

in data-poor regions.  

The approach here proposed is also suitable to be applied on a wider spatial extent 

and in a transdisciplinary context. For example, due to the relevant effect of wildfires 

on soil erosion and mass movements  (Di leo et al., 2013; de Rigo et al., 2013) (section 

6.4) this modelling architecture could simplify future integrated analysis of the 

potential impact of wildfires on sediment transport from erosion and landslides 

triggered by water. 

 
 

7.2. Recommendations for further research and investigations  

 

The research conducted in this thesis has resulted in new and useful modelling 

techniques , which produced interesting results and conclusions on water-induced 

soil erosionand shallow landslides. Although the preliminary results obtained 

applying the new architecture for considering the impact of mass movement on soil 

erosion in data-poor regions (chapter 6) are promising, further research is required 

before this method can be applied by the scientific community and relevant 

authorities with any level of confidence. 

Consideration of, and integrating within the model, post-failure changes in 

topography and soil characteristics (e.g. soil armouring (Acharya, and T.A. Cochrane, 

2008) is fundamental for increasing the predictive capacity of the model. Also a better 

estimation of the bare soil exposed within a landslide is also fundamental for 

improving our model. It would also be worthwhile to fine tuning the Malamud 

distribution (Malamud et al., 2004) to the data to better fit the distribution to small 

landslides as suggested in section 6.3. For obtaining more reliable results, and more 

robust estimates of the effects of landslides on soil and vegetation cover, it will be 

also necessary to focus attention on producing a less uncertain zonation of the spatial 
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probability of the landslide susceptibility in areas characterized by low data 

availability (Bosco et al., 2013). This highlights the need to fully quantify model 

uncertainty to communicate where poor model fits exist (Bosco et al., 2017). 

The ensemble method proposed in chapter 5, being a supervised method, slightly 

improves the best model in the array of outputs. The high performance showed by 

the RDS approach could be linked with the criterion used for the selection of the 

training and testing set of data. The possible presence of bias in using a similar 

technique for selecting the data and calculating the landslide susceptibility needs to 

be further investigated.  

One of the main limits of the proposed approach is that the e-RUSLE (chapter 4) does 

not consider erosion processes such as gully erosion, that locally may cause very high 

soil losses (Poesen et al., 2003; Mathys et al., 2003; Collinet and Zante, 2005). The 

possibility to incorporate gully erosion within the modelling architecture should be 

investigated. In applying the e-RUSLE model, there is also a high probability for some 

of the model results to be overestimated. The R factor uncertainty and the presence 

of areas having a stoniness value much higher than reported can be at the basis of 

many of the uncertain estimations. The rainfall erosivity component of the models 

was estimated by ensembling an array of erosivity maps based on seven emipircal 

equations from literature. These equations were selected from the many available in 

the literature for their reasonable mathematical structure and set of covariate 

variables. Additional equations may be analysed and tested to complement the array 

of rainfall erosivity estimates at the basis of the final aggregated ensemble erosivity.  

Further investigations may also be recommendable on the key role of land cover 

changes and misclassifications (Bosco et al., 2015), inherited from the available land 

cover products, since these components of uncertainty can locally have an high 

impact on the estimated soil erosion rate. 
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Appendix A - field images 
This Appendix is intended to serve as a quick reference to the images captured in the 

field. 
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Figure 1.2. (Chapter1) – The picture shows some of the soil erosion processes (rills 

and ephemeral gullies – top picture) and mass movements (shallow landslides – 

picture in the middle) that characterize the study site, located in Italy within a 

catchment close to Rocchetta Sant’Antonio. The image also illustrates the 

heterogeneous land cover patterns that are present in this area (agricultural areas, 

grassland, shrubs and forest), with uneven patch size and complex connectivity. 

These picture were taken in Spring of 2012. (See page 6 of this thesis).  

 
 
 

 
Figure 3.4 (Chapter 3) – Examples of translational slides in the Rocchetta Sant’Antonio 

catchment (figure (a) and (b) ) (spring of 2012) and detail of the main scarp and head 

of a big translational slide (figure c, October 2012) occurred in the same area 

highlighted in picure b. All the landslides in the pictures have a length not exceeding 

a few tens of meters. (See page 62 of this thesis). 
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Figure 3.5 (Chapter 3) - ephemeral gully (a-c) and rills (b-c) (see section 2.1) in 

Rocchetta Sant’Antonio. Picture b is related to the fall period (October 2012), pictures 

a and c were taken in the spring of 2012. The maximum depth of the ephemeral gully 

in picture (a) is around 80-100 cm, the rills in pictures (a) and (b) are generally of 

uniform spacing and dimension , have a depth generally below 10 cm and are much 

more narrow than ephemeral gullies. Geomorphological features having similar 

dimensions and charactristics are present all over the catchment and especially 

during the wet season (October-March). (See page 63 of this thesis). 
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Figure 4.7 (Chapter 4) – In-situ test with a shear vane for determining soil cohesion 

(see picture 4.6). This picture was taken October of 2012. (See page 95 of this thesis). 

 


