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Abstract

In this thesis, we discuss the numerical approximation of random periodic solu-

tions (r.p.s.) of stochastic differential equations (SDEs) with multiplicative noise. We

prove the existence of the random periodic solution as the limit of the pull-back flow

when the starting time tends to −∞ along the multiple integrals of the period. As

the random periodic solution is not explicitly constructible, it is useful to study the

numerical approximation. We discretise the SDE using the Euler-Maruyama scheme

and modified Milstein scheme. Subsequently we obtain the existence of the random

periodic solution as the limit of the pull-back of the discretised SDE. We prove that

the latter is an approximated random periodic solution with an error to the exact

one at the rate of
√

∆t in the mean-square sense in Euler-Maruyama method and ∆t

in the modified Milstein method. We obtain the weak convergence result in infinite

horizon for the approximation of the average periodic measure.

Keywords: random periodic solution, periodic measure, Euler-Maruyama method,

modified Milstein method, infinite horizon, rate of convergence, pull-back, weak

convergence.
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Chapter 1

Introduction

Periodicity plays a very important role in the study of many different areas in

science. There are many periodic phenomena in our real life. Considering the sunrise

and sunset each day, we notice this periodic behaviour is driven by a dynamical sys-

tem in the celestial mechanics. Even now, it is still very hard to describe the process

of evolution in the formation of the solar system. But we also benefit from the peri-

odicity which is predictable in some sense. The long time behaviour of the universe

inspires people to investigate the long time limits of relevant dynamical systems. In

the deterministic dynamical system theory, fixed points or periodic solutions cap-

ture the intuitive idea of a stationary state or an equilibrium of a dynamical system.

Mathematicians have made enormous progress in the study of deterministic systems.

However, many systems in our real life are influenced by some noise factors

from internal or external sources. For instance, when we consider the maximum

daily temperature in any particular region, it certainly has periodic nature driven

by the divine clock due to the revolution of the earth around the sun. But the

randomness may come from the uncertainty of the reaction in sun, which influence

the heat delivery to the earth. On the other hand, the change of the climate on

the earth also provides chaotic disturbance onto the underlying dynamical system.

Also the price of wheat in financial market shows the combination of periodicity

and randomness. The intrinsic seasonality of wheat growth suggests the periodicity

of the price should follow the change of seasons. However, the strike price is always

being influenced by not only the real time supplies and demands, but also trading

reactions in the international market. Hence the importance of studying stochastic
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2 CHAPTER 1. INTRODUCTION

dynamical systems can hardly be overestimated.

The idea to regard stochastic differential equations (SDEs) as random dynamical

systems can be traced back to late 1970’s and early 1980’s with a number of seminal

works by Elworthy, Meyer, Baxendale, Bismut, Ikeda, Watanabe, Kunita and others

([1], [4], [5], [11], [25], [31], [33] etc). Later this was further developed to include

stochastic partial differential equations (SPDEs) by Flandoli [19], Garrido-Atienza,

Lu and Schmalfuss [20], Mohammed, Zhang and Zhao[38].

The concept of stationary solutions of stochastic dynamical systems has been

known for some time and is a stochastic counterpart of the notion of fixed points in

the theory of dynamical systems. There are many works studying their existence for

SDEs and SPDEs, such as Caraballo, Kloeden and Schmalfuss [8], Khanin, Mazel

and Sinai [28], Schmalfuss [41], Sinai [42], Zhao and Zheng [54] etc. An ergodic

theory of random dynamical systems has been built under the stationary regime,

in which stationary solutions and stationary measures, which are “equivalent”, are

fundamental objects.

Periodic solution has been a central concept in the theory of dynamical sys-

tems since Poincaré’s pioneering work [40]. As the random counterpart of periodic

solution, the concept of random periodic solutions (RPS) began to be addressed

recently for a C1-cocycle in the work of Zhao and Zheng[55]. Later the definition

of random periodic solutions and their existence for semi-flows generated by non-

autonomous SDEs with additive noise were given by Feng, Zhao and Zhou[12], and

it was developed to include SPDEs by the work of Feng and Zhao[13].

Denote by ∆ := {(t, s) ∈ R2, s ≤ t}. Let X be a separable Banach space. Denote

by (Ω,F , P, (θt)t∈R) a metric dynamical system and θs : Ω → Ω is assumed to

be measurably invertible for all s ∈ R. Consider a stochastic periodic semi-flow

u : ∆× Ω× X→ X of period τ , which satisfies the semi-flow relation.

u(t, r, ω) = u(t, s, ω) ◦ u(s, r, ω), (1.0.1)

for all r ≤ s ≤ t, r, s, t ∈ R and almost every ω ∈ Ω.

Definition 1.0.1. ([17]) We call u a τ -periodic stochastic semi-flow if it satisfies

an additional periodicity property: there exists a constant τ > 0 such that

u(t+ τ, s+ τ, ω) = u(t, s, θτω), (1.0.2)
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for any t ≥ s and almost every every ω ∈ Ω.

Remark 1.0.2. ([17]) (i) The periodicity assumption (1.0.2) is very natural. It

can be verified that solutions for SDEs or SPDEs with time periodic coefficients

satisfy (1.0.2) by the same argument as verifying the cocycle property for autonomous

stochastic systems. In the cocycle case, (1.0.2) holds for all τ > 0 i.e.

u(t, s, ω) = u(t− s, 0, θsω)

for any t ≥ s and almost every every ω ∈ Ω.

(ii) The periodicity assumption (1.0.2) plays a crucial role to enable us to lift

the semi-flow u to a cocycle on the cylinder [0, τ)× X.

The lift case provides the possibility to investigate the exponential contraction

of partial derivatives in the analysis of weak approximation. SDEs and SPDEs with

time-dependent coefficients which are periodic in time generate periodic semiflows

satisfying (1.0.1) and (1.0.2) ([12]-[14]). The following definition of random periodic

paths (solutions) for stochastic semi-flow was given by Feng, Zhao and Zhou.

Definition 1.0.3. ([12],[13]) A random periodic path of period τ of the semi-flow

u : ∆× Ω× X→ X is an F-measurable map Y : R× Ω→ X such that

u(t, s, ω)Y (s, ω) = Y (t, ω), Y (s+ τ, ω) = Y (s, θτω),

for any (t, s) ∈ ∆ and almost every ω ∈ Ω.

It has been proved that random periodic solutions exist for many SDEs and

SPDEs ([12]-[14]). Recently, “equivalence” of random periodic paths and periodic

measures has been proved in [17] and some results of the ergodicity of periodic

measures have been obtained. These results are proved in cocycle case and semi-

flow case. To consider the semi-flow case, lifts on the semi-flow and periodic measure

played a critical role.

Note that many phenomena in the real world have both periodic and random

nature, e.g. daily temperature, energy consumption, airline passenger volumes, CO2

concentration etc. The concept and its study are relevant to modelling random

periodicity in the real world.

In literature, there have been a number of recent works such as [9] on random

attractors of the stochastic TJ model in climate dynamics; [3] on stochastic lattice
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systems; [10] on stochastic resonance; [14] for SDEs with multiplicative linear noise;

and [51] on bifurcations of stochastic reaction diffusion equations. All these results

are theoretical on the existence of random periodic paths.

In deterministic cases of dynamical system, numerical schemes were widely ap-

plied on the solutions of ordinary differential equations. The stability and efficiency

of these schemes were well studied in various brilliant works, including but not lim-

ited to Butcher [7], Stuart and Humphries [44], Stoer and Bulirsch [43].

In general, neither stationary solutions nor random periodic solutions can be

constructed explicitly, so numerical approximation is another indispensable tool to

study stochastic dynamics, especially to physically relevant problems. It is worth

mentioning here that this is a numerical approximation of an infinite time horizon

problem. There are numerous works on numerical analysis of SDEs on a finite hori-

zon, and a number of excellent monographs (Kloeden and Platen [29], Milstein [36]).

However, there are only a few works on infinite horizon problems. A numerical anal-

ysis of approximation to the stationary solutions and invariant measures of SDEs

through discretising the pull-back, was given by Mattingly, Stuart and Higham [32],

Talay [45], Talay and Rubaro [46], Tocino and Ardanuy [47], Yevik and Zhao[52].

Numerical approximations to stable zero solutions of SDEs were given by Higham,

Mao and Stuart [23], Kloeden and Platen[29].

Numerical analysis for random periodic solutions was not considered in previous

work. The infinite horizon stochastic integral equation (IHSIE) method can deal with

anticipated cases ([12]-[14]). But it is still not clear how to numerically approximate

two-sided IHSIE and anticipate random periodic solutions. The pull-back method

used in this thesis is a popular way to study random attractors. Here we use this to

deal with stable adapted random periodic solutions of dissipative systems for the first

time. The pull-back method has some advantages. First, stability can be obtained

immediately. Secondly, it can deal with some dissipative equations that cannot be

dealt with by the IHSIE, especially the current IHSIE technique requires equations

to have multiplicative linear noise or additive noise and f being bounded. Thirdly

in this thesis, we study numerical approximations of random periodic solutions of

dissipative SDEs and with the pull-back idea, a random periodic solution of the

discretised system can be obtained as well.

The schemes in this thesis can be used to numerically compute random periodic



5

solutions and periodic measures for many concrete stochastic differential equations

arising in various real world problems. This thesis provides rigorous theoretical error

analysis to these schemes.

The structure of the thesis is as follows: in Chapter 3, We will first study the

Euler-Maruyama numerical scheme in infinite horizon and obtain an approximating

random periodic solution (r.p.s.) X̂∗r . We will prove that the latter converges to the

exact r.p.s. in L2(Ω) at the rate of
√

∆t when the time mesh ∆t tends to zero. This

result will be numerically verified. Despite its lower order of the approximation only

at the rate of
√

∆t, the advantage of this scheme is its simplicity, and it is relatively

easy to implement in actual computations. It works well for the SDE we consider in

this thesis.

We also consider more advanced numerical schemes, e.g. Milstein scheme ([27],

[29], [35], [36], [37], [47]), for high order convergence. We improve the rate of ap-

proximation from
√

∆t in Euler-Maruyama scheme to ∆t.

We will also do some numerical simulations to sample paths of the r.p.s. (Fig.

3.1). However, simulation of one pathwise trajectory is not a reliable way to tell

whether or not it is random periodic though it looks very much like to be. Here

we provide two reliable methods for this from numerical simulations. One method

is to simulate {X∗t (ω), t ∈ R} and {X∗t (θ−τω), t ∈ R} for the same ω. These two

trajectories should be repeating each other, but with a shift of one period of time.

See Fig. 3.1 as an example. The other way is to simulate {X∗t (θ−tω), t ∈ R}, which is

periodic if and only if X∗t (ω) is random periodic. As an example, see Fig. 3.2. These

two approaches would apply to any other stochastic differential equations should

they have a random periodic solution.

It was known from the recent work [17] that the law of the random periodic

solution is the periodic measure of the corresponding Markov semigroup. Thus we

will consider the convergence of transition probabilities generated by (2.0.1) and

its numerical scheme along the integral multiples of period to the periodic measure

and discretised periodic measure respectively and error estimate of the two periodic

measures in the weak topology. Under the Lyapunov-Floquet transformation, our

model can be extended to consider more general problems.

The strong approximations of the random periodic solution give us good un-

derstanding of the random periodicity. One would be also interested in an approx-
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imation in the weak topology. This allows us to consider multi-dimensional noise

numerically with greater efficiency and more general SDEs without demanding a

strong dissipative condition as long as the system is non-degenerate. Note the ap-

proximation of random periodicity is not a classical finite initial value, but infinite

horizon problem. For this reason, the exponential decay of the partial derivatives

over long time, which plays a key role in this analysis, is obtained. In Chapter 4,

a result on the average of the periodic measure is given, which provides a way to

approximate periodic measures numerically.



Chapter 2

Assumptions, backgounds and

preliminary results

In this and the chapter of strong approximation, we study stochastic differential

equations, which possess random periodic solutions and approximate them by Euler-

Maruyama and modified Milstein schemes. Consider the following m-dimensional

SDE {
dX t0

t = [AX t0
t + f(t,X t0

t )]dt+ g(t,X t0
t )dWt

X t0
t0 = ξ

, (2.0.1)

where f : R × Rm → Rm, g : R × Rm → Rm×d, A is a symmetric and negative-

definite m × m matrix, Wt is a two-sided Wiener process in Rd on a probability

space (Ω,F ,P). The filtration is defined as follows

F ts = σ{Wu −Wv : s ≤ v ≤ u ≤ t}, F t = F t−∞ =
∨
s≤t

F ts,

the random variable ξ is F t0-measurable. We assume that the functions f and g are

τ -periodic in time. By the variation of constant formula, the solution of (2.0.1) is

given

X t0
t (ξ) = eA(t−t0)ξ + eAt

∫ t

t0

e−Asf(s,X t0
s )ds+ eAt

∫ t

t0

e−Asg(s,X t0
s )dWs. (2.0.2)

Denote the standard P -preserving ergodic Wiener shift by θ : R× Ω→ Ω,

θt(ω)(s) := W (t+ s)−W (t), t, s ∈ R.

7
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The solution X of the non-autonomous SDE does not satisfy the cocycle property,

but u(t, t0) : Ω×Rm → Rm given by

u(t, t0)ξ = X t0
t (ξ)

satisfies the semi-flow property (1.0.1) and periodicity (1.0.2).

Denote by X−kτr (ξ, ω) the solution starting from time −kτ . Then we have for

any k > 0, r > −kτ and F−kτ -measurable random variable ξ,

X−kτr = eA(r+kτ)ξ + eAr
∫ r

−kτ
e−Asf(s,X−kτs )ds+ eAr

∫ r

−kτ
e−Asg(s,X−kτs )dWs.

(2.0.3)

We will show that when k →∞, the pull-back X−kτr (ξ) has a limit X∗r in L2(Ω) and

X∗r is the random periodic solution of SDE (2.0.1). It satisfies the infinite horizon

stochastic integral equation (IHSIE)

X∗r =

∫ r

−∞
eA(r−s)f(s,X∗s )ds+

∫ r

−∞
eA(r−s)g(s,X∗s )dWs.

We separate the linear term AX from the nonlinear term in (2.0.1) to enable us

to represent the random periodic solution by IHSIE ([12], [14]). This is helpful to

formulate the scheme for SPDEs for which random periodic solutions were considered

in [13].

We fix some notation. Let p ≥ 1 and denote the Lp-norm of a random variable

ξ by

‖ξ‖p = (E |ξ|p)
1
p ,

and the Frobenius norm of any d1 × d2 matrix B by

|B| = (

d1∑
i=1

d2∑
j=1

B2
ij)

1
2 .

2.1 Conditions for the SDE

We assume the following conditions for our model.

Condition (A). The eigenvalues of the symmetric matrix A, which we denote

by {λj}j=1,2,...,m, satisfy 0 > λ1 ≥ λ2 ≥ . . . ≥ λm.
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Condition (1). Assume there exists a constant τ > 0 such that for any t ∈
R, x ∈ Rm, f(t + τ, x) = f(t, x), g(t + τ, x) = g(t, x), and there exist constant

C0, β1, β2 > 0 with β1 +
β2

2

2
< |λ1| such that for any s, t ∈ R and x, y ∈ Rm,

|f(s, x)− f(t, y)| ≤ C0 |s− t|1/2 + β1 |x− y| ,

|g(s, x)− g(t, y)| ≤ C0 |s− t|1/2 + β2 |x− y| .

Condition (2). There exists a constant K∗ > 0 such that the initial condition

ξ satisfies

‖ξ‖2 ≤ K∗.

From Condition (1) it follows that for any x ∈ Rm, the linear growth condition

also holds:

|f(t, x)| ≤ β1 |x|+ C1, |g(t, x)| ≤ β2 |x|+ C2,

where the constants C1, C2 are strictly positive. It is easy to see that there exists a

constant α such that

β1 +
β2

2

2
< α < |λ1| .

In the following two chapters, we always assume that α satisfies this condition in all

the following proofs. Set ρ := |λm|, where λm is the eigenvalue with largest module.

For the SDE case, this quantity is certainly finite and for simplicity, we choose

numerical schemes to treat the linear part explicitly, which simplify the proof of the

pull-back convergence to the random periodic solutions for the discretised systems.

However, in a case of SPDEs, this technical assumption is no longer true, but can be

removed by employing exponential Euler-Maruyama method and Milstein scheme

([2], [26]). This will be studied in future work.

2.2 Existence and uniqueness of random periodic

solution

First recall the following lemmas proved in [52], which will be needed later.
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Lemma 2.2.1. Assume that the matrix A is symmetric and satisfies Condition (A).

Then for any ∆t > 0, the matrix

eA∆t −
p∑
i=0

1

i!
(A∆t)i

is positive-definite for odd p ∈ N and negative-definite for even p ∈ N and p = 0.

Lemma 2.2.2. Assume that the matrix A is symmetric and satisfies Condition (A),

and let ρ be as above. Then, for 0 < ∆t ≤ 1
ρ
, the matrix

eA∆tj − (I + A∆t)j

is positive-definite for any j ∈ N.

The proofs of the above two lemmas are specified in appendix. Now we first

consider the boundedness of the solution in L2(Ω).

Lemma 2.2.3. Assume Conditions (A), (1) and (2). Then there exists a constant

C > 0 such that for any k ∈ N, r ≥ −kτ , we have E
∣∣X−kτr

∣∣2 ≤ C.

Proof. First, using Itô’s formula to e2αr
∣∣X−kτr

∣∣2, we have

e2αr
∣∣X−kτr

∣∣2 =e−2αkτ |ξ|2 + 2α

∫ r

−kτ
e2αs

∣∣X−kτs

∣∣2 ds+ 2

∫ r

−kτ
e2αs

(
X−kτs

)T
AX−kτs ds

+ 2

∫ r

−kτ
e2αs

(
X−kτs

)T
f(s,X−kτs )ds+

∫ r

−kτ
e2αs

∣∣g(s,X−kτs )
∣∣2 ds

+ 2

∫ r

−kτ
e2αs

(
X−kτs

)T
g(s,X−kτs )dWs (2.2.1)

Firstly note the sum of the second and third terms of the right-hand side is non-

positive as the matrix (αI + A) is non-positive-definite. Take the expectation of

both sides of (2.2.1), apply the above inequality and use linear growth conditions to

obtain

e2αrE
∣∣X−kτr

∣∣2
≤e−2αkτ ‖ξ‖2

2 + 2

∫ r

−kτ
e2αsE

[(
X−kτs

)T
f(s,X−kτs )

]
ds

+

∫ r

−kτ
e2αsE

∣∣g(s,X−kτs )
∣∣2 ds
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≤e−2αkτ ‖ξ‖2
2 + (2β1 + β2

2)

∫ r

−kτ
e2αsE

∣∣X−kτs

∣∣2 ds
+ 2(C1 + β2C2)

∫ r

−kτ
e2αsE

∣∣X−kτs

∣∣ ds+ (2α)−1C2
2

(
e2αr − e−2αkτ

)
. (2.2.2)

Also, there exits ε > 0, such that(
β1 +

β2
2

2

)
(1 + ε) < α < |λ1| .

By Young’s inequality

2(C1 + β2C2)
∣∣X−kτs

∣∣ ≤ (C1 + β2C2)2

ε(2β1 + β2
2)

+ ε(2β1 + β2
2)
∣∣X−kτs

∣∣2 .
Then we have

e2αrE
∣∣X−kτr

∣∣2 ≤K1 +K2e
2αr +K3

∫ r

−kτ
e2αs

∥∥X−kτs

∥∥2

2
ds,

where

K1 =e−2αkτ ‖ξ‖2
2 −

(
C2

2

2α
+

(C1 + β2C2)2

2αε(2β1 + β2
2)

)
e−2αkτ ,

K2 =
C2

2

2α
+

(C1 + β2C2)2

2αε(2β1 + β2
2)
,

K3 =(2β1 + β2
2)(1 + ε) < 2α.

Now applying Gronwall’s inequality, we have

e2αrE
∣∣X−kτr

∣∣2
≤K1 +K2e

2αr +

∫ r

−kτ

(
K1 +K2e

2αs
)
K3e

∫ r
s K3drds

=K1e
K3(r+kτ) +K2e

2αr +
K2K3

2α−K3

(
e2αr − eK3r+(K3−2α)kτ

)
≤(K1e

2αkτ +K2)e2αr +
K2K3

2α−K3

e2αr.

Here we notice that K1e
2αkτ +K2 = ‖ξ‖2

2 . Therefore, by Condition (2)

E
∣∣X−kτr

∣∣2 ≤‖ξ‖2
2 +

2αK2

2α−K3

≤ K∗ +
2αK2

2α−K3

.

In the next lemma, we will also obtain a bound on the norm
∥∥X−kτt1 −X−kτt2

∥∥
2

for any fixed time t1, t2. This will be essential for us to estimate the error of the

numerical approximation in Section 3.1.2.
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Lemma 2.2.4. Assume Conditions (A), (1) and (2). Then there exist constants

C3 > 0, C4 > 0, such that for any positive k ∈ N and any t1, t2 ≥ 0, t1 ≥ t2, the

solution of (2.0.1) satisfies∥∥X−kτt1
−X−kτt2

∥∥
2
≤ C3(t1 − t2) + C4

√
t1 − t2.

Proof. From (2.0.2), we see that∥∥X−kτt1
−X−kτt2

∥∥
2

≤e2Akτ ‖ξ‖2

∣∣eAt1 − eAt2∣∣
+

∥∥∥∥eAt1 ∫ t1

−kτ
e−Asg(s,X−kτs )dWs − eAt2

∫ t2

−kτ
e−Asg(s,X−kτs )dWs

∥∥∥∥
2

+

∥∥∥∥eAt1 ∫ t1

−kτ
e−Asf(s,X−kτs )ds− eAt2

∫ t2

−kτ
e−Asf(s,X−kτs )ds

∥∥∥∥
2

. (2.2.3)

We evaluate each term on the right-hand side of (2.2.3). Now we consider the first

term with Lemma 2.2.1,∣∣eAt1 − eAt2∣∣
=

√
Tr
(
e2At2 (I − eA(t1−t2))

2
)

≤
√
Tr
(

(I − eA(t1−t2))
2
)

=
√
Tr
(
A2 (t1 − t2)2 + (eA(t1−t2) − I − A (t1 − t2)) (eA(t1−t2) − I + A (t1 − t2))

)
≤
√
Tr
(
A2 (t1 − t2)2)

= |A| (t1 − t2) .

Then we estimate the second term with the Minkowski inequality, Itô’s isometry

and the linear growth property∥∥∥∥eAt1 ∫ t1

−kτ
e−Asg(s,X−kτs )dWs − eAt2

∫ t2

−kτ
e−Asg(s,X−kτs )dWs

∥∥∥∥
2

≤
∥∥∥∥∫ t2

−kτ

(
eAt1 − eAt2

)
e−Asg(s,X−kτs )dWs

∥∥∥∥
2

+

∥∥∥∥∫ t1

t2

e−A(s−t1)g(s,X−kτs )dWs

∥∥∥∥
2

≤

√∫ t2

−kτ
|(eAt1 − eAt2) e−As|2 E [β2 (|X−kτs |) + C2]2 ds
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+

√∫ t1

t2

|e−A(s−t1)|2 E [β2 (|X−kτs |) + C2]2 ds

≤

√∫ t2

−kτ
|(eAt1 − eAt2) e−As|2

(
2β2

2E |X−kτs |2 + 2C2
2

)
ds

+

√∫ t1

t2

|e−A(s−t1)|2
(

2β2
2E |X−kτs |2 + 2C2

2

)
ds

≤K4

√∫ t2

−kτ
|(eAt1 − eAt2) e−As|2 ds+K4

√∫ t1

t2

|e−A(s−t1)|2 ds.

Here we take some constant K4 because E
∣∣X−kτs

∣∣2 is bounded above according to

Lemma 2.2.3. So we just need to consider the remaining part∫ t2

−kτ

∣∣(eAt1 − eAt2) e−As∣∣2 ds
=Tr

(∫ t2

−kτ
e−2A(s−t2)

(
I − eA(t1−t2)

)2
ds

)
=Tr

(
(−2A)−1

(
I − e2A(kτ+t2)

) (
I − eA(t1−t2)

)2
)

≤Tr
(

(−2A)−1
(
−A(t1 − t2)−

(
eA(t1−t2) − I − A(t1 − t2)

))2
)

≤Tr(−A)
(t1 − t2)2

2
.

Using the similar method to get∫ t1

t2

∣∣e−A(s−t1)
∣∣2 ds

=Tr

(∫ t1

t2

e−2A(s−t1)ds

)
=Tr

(
(−2A)−1

(
I − e2A(t1−t2)

))
=Tr

(
(−2A)−1

(
−2A(t1 − t2)−

(
e2A(t1−t2) − I − 2A(t1 − t2)

)))
≤(t1 − t2).

Therefore we have∥∥∥∥eAt1 ∫ t1

−kτ
e−Asg(s,X−kτs )dWs − eAt2

∫ t2

−kτ
e−Asg(s,X−kτs )dWs

∥∥∥∥
2

≤K4

√
Tr(−A)

2
(t1 − t2) +K4

√
t1 − t2.
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Lastly, we consider the third term of (2.2.3) with Minkowski inequality∥∥∥∥eAt1 ∫ t1

−kτ
e−Asf(s,X−kτs )ds− eAt2

∫ t2

−kτ
e−Asf(s,X−kτs )ds

∥∥∥∥
2

≤
∥∥∥∥∫ t2

−kτ
(eAt1 − eAt2)e−Asf(s,X−kτs )ds

∥∥∥∥
2

+

∥∥∥∥∫ t1

t2

e−A(s−t1)f(s,X−kτs )ds

∥∥∥∥
2

≤
∫ t2

−kτ

∥∥(eAt1 − eAt2)e−Asf(s,X−kτs )
∥∥

2
ds+

∫ t1

t2

∥∥e−A(s−t1)f(s,X−kτs )
∥∥

2
ds

≤
∫ t2

−kτ

∣∣(eAt1 − eAt2)e−As
∣∣ ∥∥f(s,X−kτs )

∥∥
2
ds+

∫ t1

t2

∣∣e−A(s−t1)
∣∣ ∥∥f(s,X−kτs )

∥∥
2
ds

≤K5

(∫ t2

−kτ

∣∣(eAt1 − eAt2) e−As∣∣ ds+

∫ t1

t2

∣∣e−A(s−t1)
∣∣ ds)

≤2K5(t1 − t2),

for a constant K5 > 0. Combining the above estimates we obtain the lemma with

the constants C3, C4 being independent of k and t1, t2.

Now we continue to consider the difference of the solutions under various initial

values. For simplicity, we here study two different initial values ξ and η.

Lemma 2.2.5. Denote by X−kτr and Y −kτr two solutions of (2.0.1) with different

initial values ξ and η respectively. Assume Conditions (A), (1) and Condition (2)

for both initial values. Then

∥∥X−kτr − Y −kτr

∥∥
2
≤ e

(
β1+

β2
2
2
−α
)

(r+kτ)
‖ξ − η‖2 .

Proof. According to (2.0.2) we have

X−kτr − Y −kτr

=eA(r+kτ) (ξ − η) + eAr
∫ r

−kτ
e−As

(
f(s,X−kτs )− f(s, Y −kτs )

)
ds

+ eAr
∫ r

−kτ
e−As

(
g(s,X−kτs )− g(s, Y −kτs )

)
dWs.

For simplicity, denote ζ−kτr = X−kτr − Y −kτr . Then according to the method used in

Lemma 2.2.3, and the global Lipschitz condition, we have

e2αr
∥∥ζ−kτr

∥∥2

2



2.2. EXISTENCE AND UNIQUENESS OF RANDOM PERIODIC SOLUTION 15

≤e−2αkτ ‖ξ − η‖2
2 + 2

∫ r

−kτ
e2αsE

[
(ζ−kτs )T (f(s,X−kτs )− f(s, Y −kτs ))

]
ds

+

∫ r

−kτ
e2αsE

∣∣g(s,X−kτs )− g(s, Y −kτs )
∣∣2 ds.

≤e−2αkτ ‖ξ − η‖2
2 + 2

∫ r

−kτ
e2αsE

[
β1

∣∣ζ−kτs

∣∣2] ds+

∫ r

−kτ
e2αsE

[
β2

2

∣∣ζ−kτs

∣∣2] ds
≤e−2αkτ ‖ξ − η‖2

2 +
(
2β1 + β2

2

) ∫ r

−kτ
e2αs

∥∥ζ−kτs

∥∥2

2
ds.

Then applying the Gronwall inequality to have

e2αr
∥∥ζ−kτr

∥∥2

2
≤ e−2αkτ ‖ξ − η‖2

2 e
(2β1+β2

2)(r+kτ).

Therefore

∥∥X−kτr − Y −kτr

∥∥
2
≤ e

(
β1+

β2
2
2
−α
)

(r+kτ)
‖ξ − η‖2 .

Now we can prove the following theorem.

Theorem 2.2.6. Assume Conditions (A), (1). Then there exists a unique random

periodic solution X∗(r, ·) ∈ L2(Ω), r ≥ 0 such that for any fixed initial value ξ, the

solution of (2.0.1) satisfies

lim
k→∞

∥∥X−kτr (ξ)−X∗(r)
∥∥

2
= 0.

Proof. Condition (2) implies that the initial value ξ belongs to L2(Ω). According to

Lemma 2.2.3, X−kτr (·) maps L2(Ω) to itself. Now we use the semi-flow property to

get that for any r, k, p ≥ 0,

X−kτ−pτr (ξ) = X−kτr (ω) ◦X−(k+p)τ
−kτ (ω, ξ).

Thus we can apply Lemma 2.2.5 to have for any ε > 0 there exists k∗ > 0 such that

for any k ≥ k∗, ∥∥X−kτr (ξ)−X−(k+p)τ
r (ξ)

∥∥
2
< ε.

This means that there exists N > 0 such that for any l,m ≥ N , we have∥∥X−lτr (ξ)−X−mτr (ξ)
∥∥

2
< ε,
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i.e.{X−kτr (ξ)}k∈N is a Cauchy sequence, so converges to some X∗(r, ω) in L2(Ω),

when k →∞.

If we set u(t, r)(ξ) = Xr
t (ξ), then u(t, r) : Ω × Rm → Rm defines a semi-

flow of homeomorphism (Kunita [31]). By the continuity of Xr
t (ω) : L2(Ω,Rm) →

L2(Ω,Rm), t ≥ r, then

u(t, r, ω)
(
X−kτr (ξ, ω)

) k→∞−−−→
L2(Ω)

u(t, r, ω) ◦ (X∗(r, ω)) .

But

u(t, r, ω)
(
X−kτr (ξ, ω)

)
= X−kτt (ξ, ω)

k→∞−−−→
L2(Ω)

X∗(t, ω).

So u(t, r, ω) (X∗(r, ω)) = X∗(t, ω), P− a.s.
Taking some other initial value η satisfying Condition (2), we have∥∥X∗r −X−kτr (η)

∥∥
2
≤
∥∥X∗r −X−kτr (ξ)

∥∥
2

+
∥∥X−kτr (ξ)−X−kτr (η)

∥∥
2
.

Applying Lemma 2.2.5 again, we can make the right-hand side small enough when

k →∞. Therefore the convergence is independent of the initial value.

Now we need to prove the random periodicity of the X∗(r, ω). Note by the

continuity of f and g,

X
−(k−1)τ
r+τ (ξ)

=eA(r+kτ)ξ +

∫ r+τ

−(k−1)τ

eA(r+τ−s)f(s,X−(k−1)τ
s (ξ))ds

+

∫ r+τ

−(k−1)τ

eA(r+τ−s)g(s,X−(k−1)τ
s (ξ))dWs

=eA(r+kτ)ξ +

∫ r

−kτ
eA(r−s)f(s+ τ,X

−(k−1)τ
s+τ (ξ))ds

+

∫ r

−kτ
eA(r−s)g(s+ τ,X

−(k−1)τ
s+τ (ξ))dW̃s

=eA(r+kτ)ξ +

∫ r

−kτ
eA(r−s)[f(s,X

−(k−1)τ
s+τ (ξ))ds+ g(s,X

−(k−1)τ
s+τ (ξ))dW̃s].

where W̃s := (θτω)(s) = Ws+τ −Wτ . On the other hand,

θτX
r
−kτ (ξ) = eA(r+kτ)θτξ +

∫ r

−kτ
eA(r−s)[f(s, θτX

−kτ
s )ds+ g(s, θτX

−kτ
s )dW̃s],

By pathwise uniqueness of the solution of (2.0.1), we have

X−kτr (θτω, ξ(θτω)) = θτX
−kτ
r (ξ) = X

−(k−1)τ
r+τ (ω, ξ(ω)). (2.2.4)
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From the proof of convergence we have

X
−(k−1)τ
r+τ (ω, ξ)

k→∞−−−→
L2(Ω)

X∗(r + τ, ω),

X−kτr (θτω, ξ(θτω))
k→∞−−−→
L2(Ω)

X∗(r, θτω).

Therefore

X∗(r + τ, ω) = X∗(r, θτω), P− a.s.

2.3 Numerical appoximations

To consider the numerical approximation for stochastic differential equations,

there are some fundamental results including Kloeden and Platen [29], Milstein [36],

Milstein and Tretyakov [37]. The Taylor expansions are key to numerical approxima-

tion of solutions of ODEs. As a generalization of deterministic Taylor expansions as

well as Itô formula, the stochastic Taylor expansions allow various kinds of approx-

imations of functionals of diffusion processes. Therefore we start by investigating

stochastic Taylor expansions and their applications.

2.3.1 Stochastic Taylor expansions

The introduction of stochastic Taylor expansions follows the layout of Kloeden

and Platen [29]. When considering the solution Xt of a 1-dimensional ordinary dif-

ferential equation
d

dt
Xt = f(Xt),

with initial value Xt0 , for t ∈ [t0, T ], 0 ≤ t0 < T, the equivalent integral equation

form is

Xt = Xt0 +

∫ t

t0

f(Xs)ds. (2.3.1)

We will require the function f : R → R to be sufficiently smooth and to have a

linear growth to justify the following constructions. The chain rule is applied on

such function f ,
d

dt
f(Xt) =

∂

∂x
f(Xt)

d

dt
Xt,
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or in integral form

f(Xt) = f(Xt0) +

∫ t

t0

∂

∂x
f(Xs)

d

ds
Xsds. (2.3.2)

Then the equation (2.3.1) becomes

Xt =Xt0 +

∫ t

t0

(
f(Xt0) +

∫ s

t0

f(Xz)
∂

∂x
f(Xz)dz

)
ds

=Xt0 + f(Xt0)

∫ t

t0

ds+

∫ t

t0

∫ s

t0

f(Xz)
∂

∂x
f(Xz)dzds

This simplest Taylor expansion can be continued by applying (2.3.2) to f(Xz)
∂
∂x
f(Xz)

and so on. Denote by L = f ∂
∂x

. Then for a general r+ 1 times continuously differen-

tiable function f : R→ R, this method gives the classical Taylor formula in integral

form:

Xt = Xt0 +
r∑
i=1

(t− t0)i

i!
Lif(Xt0) +

∫ t

t0

. . .

∫ s2

t0

Lr+1Xs1ds1 . . . dsr+1,

for t ∈ [t0, T ] and r = 1, 2, 3, . . .. The Taylor formula is a very useful tool in theo-

retical and practical investigations, particular in numerical analysis. This expansion

depends on the values of the function and some of its higher derivatives at the ex-

pansion point, weighted by corresponding multiple time integrals. The remainder

term contains the next multiple time integral. With sufficiently smooth function in

a neighbourhood of a given point, we have the approximation with the desired or-

der of accuracy. There are many possibilities to extend the Taylor expansions, one

important and direct way of extension is based on the iteration of application of Itô

formula (analogue of chain rule in deterministic case), which is known as Itô-Taylor

expansions.

Suppose Xt is the solution of the one-dimensional Itô stochastic differential equa-

tion in integral form

Xt = Xt0 +

∫ t

t0

f(Xs)ds+

∫ t

t0

g(Xs)dWs,

for t0 ≤ t ≤ T and f, g : R → R. With sufficient smoothness and linear bound of

functions f and g, we apply the Itô formula to these functions:

Xt =Xt0 +

∫ t

t0

(
f(Xt0) +

∫ s

t0

L0f(Xz)dz +

∫ s

t0

L1f(Xz)dWz

)
ds
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+

∫ t

t0

(
g(Xt0) +

∫ s

t0

L0g(Xz)dz +

∫ s

t0

L1g(Xz)dWz

)
dWs (2.3.3)

=Xt0 + f(Xt0)

∫ t

t0

ds+ g(Xt0)

∫ t

t0

dWs +R,

where

L0 =f
∂

∂x
+

1

2
g2 ∂

2

∂x2
,

L1 =g
∂

∂x
,

and

R =

∫ t

t0

∫ s

t0

L0f(Xz)dzds+

∫ t

t0

∫ s

t0

L1f(Xz)dWzds

+

∫ t

t0

∫ s

t0

L0g(Xz)dzdWs +

∫ t

t0

∫ s

t0

L1g(Xz)dWzdWs.

This is the simplest non-trivial Itô-Taylor expansion. As in deterministic case, the

process can be continued by applying the Itô formula to L1g to obtain

Xt =Xt0 + f(Xt0)

∫ t

t0

ds+ g(Xt0)

∫ t

t0

dWs

+ L1g(Xt0)

∫ t

t0

∫ s

t0

dWzdWs + R̄ (2.3.4)

with the remainder

R̄ =

∫ t

t0

∫ s

t0

L0f(Xz)dzds+

∫ t

t0

∫ s

t0

L1f(Xz)dWzds

+

∫ t

t0

∫ s

t0

L0g(Xz)dz dWs +

∫ t

t0

∫ s

t0

∫ z

t0

L0L1g(Xu)du dWzdWs

+

∫ t

t0

∫ s

t0

∫ z

t0

L1L1g(Xu)dWudWzdWs

These two Itô-Taylor expansions give us the famous numerical schemes, Euler-

Maruyama scheme and Milstein scheme, for the numerical approximation of stochas-

tic differential equations. We quote the book of Kloeden and Platen [29] to present

these two schemes.
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2.3.2 Euler-Maruyama scheme

The Euler-Maruyama scheme represent the simplest Itô-Taylor expansion (2.3.3).

For the one-dimensional stochastic differential equation

dXt = f(t,Xt)dt+ g(t,Xt)dWt,

the equidistant Euler-Maruyama scheme divide [0, T ] into N intervals with length

∆t, therefore we have T = N∆t. The iteration formula with initial condition Y0 = X0

is

Yn+1 = Yn + f(n∆t, Yn)∆t+ g(n∆t, Yn)∆W n,

for i = 0, . . . , N − 1. Here ∆W n = W(i+1)∆t − Wi∆t is the Brownian motion in-

crements. If we denote the numerical approximation by Y ∆t
t , then the order strong

convergence is given in the following theorem:

Theorem 2.3.1. [29] Suppose that

E(|X0|2) <∞, (2.3.5)

E
(∣∣X0 − Y ∆t

0

∣∣2)1/2

≤ K1(∆t)1/2, (2.3.6)

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K2 |x− y| , (2.3.7)

|f(t, x)|+ |g(t, x)| ≤ K3(1 + |x|), (2.3.8)

and

|f(s, x)− f(t, x)|+ |g(s, x)− g(t, x)| ≤ K4(1 + |x|) |s− t|1/2 (2.3.9)

for all s, t ∈ [0, T ] and x, y,∈ R, where the constants K1, . . . , K4 do not depend

on ∆t. Then there exists a positive constant K5, independent of ∆t, such that the

Euler-Maruyama approximation Y ∆t
t satisfies:

E
(∣∣XT − Y ∆t

T

∣∣) ≤ K5(∆t)1/2.
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The proof of this theorem firstly derives the boundedness of the second moment

of the process Xt for any 0 ≤ t ≤ T as well as that of the approximation process

Y ∆t
t , where Y ∆t

t is constructed piecewise between the discretization points on time

t. Then the error criterion appeals in the both side of inequality, which gives us the

result with the Gronwall inequality.

Remark 2.3.2. The constant K5 in the previous theorem involves an exponential

function of time T , which comes from the Gronwall inequality. When we consider

the infinite horizon problem, it becomes a problem.

2.3.3 Milstein scheme

For the order of accuracy, a more efficient method was developed originally by

Milstein [35]. There are also many sources that can be found in Milstein [36], Milstein

and Tretyakov [37], Kloeden and Platen [29]. The Milstein scheme represent the Itô-

Taylor expansions (2.3.4). The construction for each steps are as follows:

Yi+1 =Yi + f(i∆t, Yi)∆t+ g(i∆t, Yi)∆W i +
1

2
g(i∆t, Yi)g

′(i∆t, Yi)((∆W i)
2 −∆t),

for i = 0, . . . , N − 1 and ∆W i = W(i+1)∆t−Wi∆t. It is well known that it is difficult

to approximate the multi-dimensional Brownian motion increment. Therefore we

mainly consider the diagonal noise. Also the higher order smoothness and Lipschitz

continuity are required for Milstein scheme. Here we quote the result as follows:

Theorem 2.3.3. [29] Suppose that

E
(
|X0|2

)
<∞, (2.3.10)

E
(∣∣X0 − Y ∆t

0

∣∣2)1/2

≤ K1(∆t)1/2, (2.3.11)

|f(t, x)− f(t, y)| ≤K2 |x− y| ,

|g(t, x)− g(t, y)| ≤K2 |x− y| ,∣∣L1g(t, x)− L1g(t, y)
∣∣ ≤K2 |x− y| , (2.3.12)

|f(t, x)|+
∣∣Ljf(t, x)

∣∣ ≤K3(1 + |x|),
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|g(t, x)|+
∣∣Ljg(t, x)

∣∣ ≤K3(1 + |x|),∣∣LjL0g(t, x)
∣∣ ≤K3(1 + |x|), (2.3.13)

and

|f(s, x)− f(t, x)| ≤K4(1 + |x|) |s− t|1/2 ,

|g(s, x)− g(t, x)| ≤K4(1 + |x|) |s− t|1/2 ,∣∣L1g(s, x)− L1g(t, x)
∣∣ ≤K4(1 + |x|) |s− t|1/2 , (2.3.14)

for all s, t ∈ [0, T ], and x, y ∈ R, j = 0, 1, where the constants K1, . . . , K4 do not

depend on ∆t.

Then for the Milstein approximation Y ∆t, the estimate

E
∣∣XT − Y ∆t

T

∣∣ ≤ K5∆t

holds, where the constant K5 does not depend on ∆t.

The additional conditions compared with Euler-Maruyama scheme guaranteed

the required order of local error and the boundedness of corresponding coefficients.

Gronwall inequality is the main tool to accomplish the proof of the theorem.

Remark 2.3.4. When considering the infinite horizon problem, we need to modify

the scheme by borrowing terms from higher order scheme to satisfy the required order.

Therefore the corresponding assumption on function f , like the Lipschitz continuity

and linear growth of the terms Ljf(t, x), j = 0, 1, would be necessary.



Chapter 3

Strong Approximations

3.1 Euler-Maruyama scheme

3.1.1 Numerical approximation for random periodic solu-

tion

In this section, we will introduce the basic Euler-Maruyama method to approx-

imate the solution on infinite horizon. Take ∆t = τ/n, which will be taken to be

sufficiently small such that ∆t ≤ 1
ρ
, for some n ∈ N, in the remaining part of the

thesis. Let N = kn. The time domain from time −kτ to time 0 is divided into

N intervals of length ∆t such that N∆t = kτ . The scheme starts from an F−kτ -
measurable random variable ξ at a time −kτ . At each of the points i∆t we set the

value X̂−kτ−kτ+i∆t with the iteration formula

X̂−kτ−kτ+(i+1)∆t =X̂−kτ−kτ+i∆t + AX̂−kτ−kτ+i∆t∆t+ f(i∆t, X̂−kτ−kτ+i∆t)∆t

+ g(i∆t, X̂−kτ−kτ+i∆t)
(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
, (3.1.1)

where i = 0, 1, 2, . . . , and X̂−kτ−kτ+0∆t = ξ.

It is easy to see that for any M ≥ 0,

X̂−kτ−kτ+M∆t =(I + A∆t)Mξ + ∆t
M−1∑
i=0

(I + A∆t)M−i−1f(i∆t, X̂−kτ−kτ+i∆t)

+
M−1∑
i=0

(I + A∆t)M−i−1g(i∆t, X̂−kτ−kτ+i∆t)
(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
.

(3.1.2)

23
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Moreover, we can set up a discrete semi-flow given by recalling the standard P -

preserving ergodic Wiener shift θt(ω)(s) := W (t+ s)−W (t), t, s ∈ R,

ûi,j(ξ) = X̂j∆t
i∆t (ξ), i ≥ j, i, j ∈ {−kn,−kn+ 1, · · · }, θ̂ = θ∆t, θ̂

n = θ̂θ̂ · · · θ̂.

By the scheme (3.1.2), we have

ûj,l(ξ) =(I + A∆t)j−lξ + ∆t

j−1∑
m=l

(I + A∆t)j−m−1f(m∆t, X̂ l∆t
m∆t)

+

j−1∑
m=l

(I + A∆t)j−m−1g(m∆t, X̂ l∆t
m∆t)

(
W(m+1)∆t −Wm∆t

)
.

And then,

ûi,j ◦ ûj,l(ξ)

=(I + A∆t)i−j(I + A∆t)j−lξ + ∆t(I + A∆t)i−j
j−1∑
m=l

(I + A∆t)j−m−1f(m∆t, X̂ l∆t
m∆t)

+ (I + A∆t)i−j
j−1∑
m=l

(I + A∆t)j−m−1g(m∆t, X̂ l∆t
m∆t)

(
W(m+1)∆t −Wm∆t

)
+ ∆t

i−1∑
m=j

(I + A∆t)i−m−1f(m∆t, X̂ l∆t
m∆t)

+
i−1∑
m=j

(I + A∆t)i−m−1g(m∆t, X̂ l∆t
m∆t)

(
W(m+1)∆t −Wm∆t

)
.

=(I + A∆t)i−lξ + ∆t
i−1∑
m=l

(I + A∆t)i−m−1f(m∆t, X̂ l∆t
m∆t)

+
i−1∑
m=l

(I + A∆t)i−m−1g(m∆t, X̂ l∆t
m∆t)

(
W(m+1)∆t −Wm∆t

)
=ûi,l(ξ)

Therefore we proved that u satisfies the semi-flow property

ûi,j(ω) ◦ ûj,l(ω) = ûi,l(ω), for i ≥ j ≥ l.

Now we consider

ûi+n,j+n(ω)
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=(I + A∆t)i−jξ + ∆t
i+n−1∑
m=j+n

(I + A∆t)i+n−m−1f(m∆t, X̂
(j+n)∆t
m∆t )

+
i+n−1∑
m=j+n

(I + A∆t)i+n−m−1g(m∆t, X̂
(j+n)∆t
m∆t )

(
W(m+1)∆t −Wm∆t

)
=(I + A∆t)i−jξ + ∆t

i−1∑
m=j

(I + A∆t)i−m−1f(m∆t, θ̂nX̂
(j)∆t
m∆t )

+
i−1∑
m=j

(I + A∆t)i−m−1g(m∆t, θ̂nX̂
(j)∆t
m∆t )

(
W(m+n+1)∆t −W(m+n)∆t

)
=ûi,j(θ̂

nω).

That is the periodic property of u,

ûi+n,j+n(ω) = ûi,j(θ̂
nω), for i ≥ j.

In order to prove the convergence of the discretized semi-flow to a random peri-

odic solution, we first derive some similar estimates as in Lemma 2.2.3 and Lemma

2.2.5. Then a discrete analogue of Theorem 2.2.6 will give us the result.

Lemma 3.1.1. Assume Conditions (A), (1) and (2). Then there exists a constant

Ĉ > 0 such that for any natural numbers k ≥ 0, M ≥ 0, and sufficiently small ∆t,

the numerical solution X̂−kτ−kτ+M∆t defined by (3.1.2) satisfies

E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2 ≤ Ĉ.

Proof. We still choose α such that β1 + β2

2
< α < |λ1| . Then for any M ≥ 0,

(1− α∆t)−2M
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
= |ξ|2 +

M−1∑
i=0

(1− α∆t)−2i


∣∣∣X̂−kτ−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2
 . (3.1.3)

This is not hard to verify by expanding the sum and noting cancellations. Notice

that ∣∣∣X̂−kτ−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2
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=

((
X̂−kτ−kτ+i∆t

)(I + A∆t

1− α∆t
− I
)

+
∆t

1− α∆t
f(i∆t, X̂−kτ−kτ+i∆t)

T

+

(
W−kτ+(i+1)∆t −W−kτ+i∆t

)T
g(i∆t, X̂−kτ−kτ+i∆t)

T

1− α∆t

)

×
((

I + A∆t

1− α∆t
+ I

)
X̂−kτ−kτ+i∆t +

∆t

1− α∆t
f(i∆t, X̂−kτ−kτ+i∆t)

+
g(i∆t, X̂−kτ−kτ+i∆t)

(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
1− α∆t

)
. (3.1.4)

Note
(
I+A∆t
1−α∆t

− I
) (

I+A∆t
1−α∆t

+ I
)

is non-positive definite, where ∆t satisfies 0 < ∆t ≤ 1
ρ

as defined before, and for each i, f(i∆t, X̂−kτ−kτ+i∆t) and g(i∆t, X̂−kτ−kτ+i∆t) are both in-

dependent of
(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
. Take expectation on both sides of (3.1.3),

consider (3.1.4), apply the linear growth property and Young’s inequality to have

(1− α∆t)−2M E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
≤‖ξ‖2

2 +
M−1∑
i=0

(1− α∆t)−2i

(
∆t

1− α∆t

)2

E
∣∣∣f(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i ∆t

(1− α∆t)2E
∣∣∣g(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i 2∆t

(1− α∆t)2E
[(
X̂−kτ−kτ+i∆t

)T
(I + A∆t) f(i∆t, X̂−kτ−kτ+i∆t)

]

≤K̂1 + (1− α∆t)−2M K̂2 + K̂3

M−1∑
i=0

(1− α∆t)−2i E
∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2 , (3.1.5)

where,

K̂1 = ‖ξ‖2
2 ,

K̂2 =
C2

1 (∆t)2 + C2
2∆t

2α∆t− α2 (∆t)2 +
∆t

2α∆t− α2 (∆t)2

(C1 + β2C2 + ∆tC1 (β1 + |A|))2

ε̂ (2β1 + β2
2 + ∆t (β2

1 + 2β1 |A|))
,

K̂3 =
∆t

(1− α∆t)2 (1 + ε̂)
(
2β1 + β2

2 + ∆t
(
β2

1 + 2β1 |A|
))
.

Here ∆t and ε̂ need to be chosen small enough such that

(1 + ε̂)
(
2β1 + β2

2 + ∆t
(
β2

1 + 2β1 |A|
))

+ α2∆t < 2α.

This guarantees that

(1− α∆t)2
(

1 + K̂3

)
< 1.
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By the discrete Gronwall inequality,

(1− α∆t)−2M E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
≤ K̂1 + K̂2 (1− α∆t)−2M +

M−1∑
i=0

(
K̂1 + K̂2 (1− α∆t)−2i

)
K̂3

(
1 + K̂3

)M−i−1

= K̂1 + K̂2 (1− α∆t)−2M + K̂1

(
1 + K̂3

)M
− K̂1

+K̂2K̂3

(
1 + K̂3

)M
− (1− α∆t)−2M(

1 + K̂3

)
− (1− α∆t)−2

.

It turns out that,

E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2 ≤K̂2 + K̂1

((
1 + K̂3

)
(1− α∆t)2

)M
+

K̂2K̂3 (1− α∆t)2

(
1−

((
1 + K̂3

)
(1− α∆t)2

)M)
1−

(
1 + K̂3

)
(1− α∆t)2

≤ Ĉ.

Note the choice of the constant Ĉ is independent of k and the lemma holds for

sufficiently small time-step ∆t and constant ε̂.

The following lemma is a discrete analogue of Lemma 2.2.5.

Lemma 3.1.2. Denote by X̂−kτ−kτ+M∆t and Ŷ −kτ−kτ+M∆t solutions of the Euler-Maruyama

scheme with initial values ξ and η respectively. Assume Conditions (A), (1) and Con-

dition (2) for both initial values. Let ∆t = τ/n, n ∈ Z+, be sufficiently small such

that 0 < ∆t ≤ 1
ρ
. Then for any ε > 0, there exists an integer M∗ > 0 such that for

any M ≥M∗, we have ∥∥∥X̂−kτ−kτ+M∆t − Ŷ
−kτ
−kτ+M∆t

∥∥∥
2
< ε.

Proof. According to scheme (3.1.2) we have

X̂−kτ−kτ+M∆t − Ŷ
−kτ
−kτ+M∆t

= (I + A∆t)M (ξ − η) + ∆t
M−1∑
i=0

(I + A∆t)M−i−1 F̂i

+
M−1∑
i=0

(I + A∆t)M−i−1 Ĝi

(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
.
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Here

F̂i = f(i∆t, X̂−kτ−kτ+i∆t)− f(i∆t, Ŷ −kτ−kτ+i∆t),

Ĝi = g(i∆t, X̂−kτ−kτ+i∆t)− g(i∆t, Ŷ −kτ−kτ+i∆t).

Denote

ζ̂i = X̂−kτ−kτ+i∆t − Ŷ
−kτ
−kτ+i∆t.

Then by Condition (1), we have
∣∣∣F̂i∣∣∣ ≤ β1

∣∣∣ζ̂i∣∣∣ and
∣∣∣Ĝi

∣∣∣ ≤ β2

∣∣∣ζ̂i∣∣∣. According to the

method used in Lemma 3.1.1, we get the following result similar to inequality (3.1.5)

(1− α∆t)−2M E
∣∣∣ζ̂M ∣∣∣2

≤‖ξ − η‖2
2 +

M−1∑
i=0

(1− α∆t)−2i

(
∆t

1− α∆t

)2

E
∣∣∣F̂i∣∣∣2

+
M−1∑
i=0

(1− α∆t)−2i ∆t

(1− α∆t)2E
∣∣∣Ĝi

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i 2∆t

(1− α∆t)2E
[(
ζ̂i

)T
(I + A∆t) F̂i

]

≤‖ξ − η‖2
2 + K̂4

M−1∑
i=0

(1− α∆t)−2i E
∣∣∣ζ̂i∣∣∣2 ,

where

K̂4 =
∆t

(1− α∆t)2

(
2β1 + β2

2 + ∆t
(
β2

1 + 2β1 |A|
))
.

We choose ∆t small enough such that

2β1 + β2
2 + ∆t

(
β2

1 + 2β1 |A|
)

+ α2∆t < 2α.

Then, we have

(1− α∆t)2
(

1 + K̂4

)
< 1.

Again the discrete Gronwall inequality implies

(1− α∆t)−2M E
∣∣∣ζ̂M ∣∣∣2 ≤ ‖ξ − η‖2

2

M−1∏
i=0

(
1 + K̂4

)
= ‖ξ − η‖2

2

(
1 + K̂4

)M
.

Finally

E
∣∣∣ζ̂M ∣∣∣2 ≤ ‖ξ − η‖2

2

(
(1− α∆t)2

(
1 + K̂4

))M
< ε

with sufficiently large M .
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In the numerical scheme we split the process into two time intervals, [−kτ, 0)

and [0, r]. Define

X̂−kτr := X̂(r, 0, ω) ◦ X̂−kτ0 , (3.1.6)

where X̂(r, 0, ω), r ≥ 0, is finite time Euler-Maruyama approximation of the solution

of stochastic differential equation with time step size ∆t, till N ′∆t ≤ r, where N ′ is

the unique number such that N ′∆t ≤ r and (N ′ + 1)∆t > r. If N ′∆t < r, define

X̂(r, 0, ω) = X̂(N ′∆t, 0, ω) + f(N ′∆t, X̂(N ′∆t, 0, ω))(r −N ′∆t)

+g(N ′∆t, X̂(N ′∆t, 0, ω))(Wr −WN ′∆t) (3.1.7)

Lemma 3.1.3. (Continuity of the discrete semi-flow with respect to the initial value)

Denote by X̃0
r and Ỹ 0

r the solution of the finite time Euler-Maruyama scheme with

the initial values ξ̃ and η̃ at time 0. Assume Conditions (A), (1) and Condition (2)

for both initial values. Let ∆t be sufficiently small, p ≥ 1. Then for any ε > 0, there

exists a δ > 0 such that for any
∥∥∥ξ̃ − η̃∥∥∥

p
< δ, we have∥∥∥X̃0

r (ω, ξ̃)− Ỹ 0
r (ω, η̃)

∥∥∥
p
< ε. (3.1.8)

Proof. Note that X̃0
N ′∆t and Ỹ 0

N ′∆t satisfy analogues of (3.1.2), with initial value ξ̃

and η̃ at time 0 instead of −kτ . Apply the Euler-Maruyama scheme on the finite

time r′ = N ′∆t to obtain∣∣∣X̃0
r′(ω, ξ̃)− Ỹ 0

r′(ω, η̃)
∣∣∣p

=

∣∣∣∣∣(I + A∆t)N
′
(
ξ̃ − η̃

)
+ (∆t)

N ′−1∑
i=0

(I + A∆t)N
′−i−1

(
f(i∆t, X̃0

i∆t)− f(i∆t, Ỹ 0
i∆t)
)

+
N ′−1∑
i=0

(I + A∆t)N
′−i−1

(
g(i∆t, X̃0

i∆t)− g(i∆t, Ỹ 0
i∆t)
) (
W(i+1)∆t −Wi∆t

)∣∣∣∣∣
p

≤3p−1
∣∣∣(I + A∆t)pN

′
∣∣∣ ∣∣∣ξ̃ − η̃∣∣∣p + 3p−1(∆t)p

∣∣∣(I + A∆t)pN
′
∣∣∣ ∣∣∣∣∣
N ′−1∑
i=0

(I + A∆t)−i−1F̃i

∣∣∣∣∣
p

+ 3p−1
∣∣∣(I + A∆t)pN

′
∣∣∣ ∣∣∣∣∣
N ′−1∑
i=0

(I + A∆t)−i−1G̃i

(
W(i+1)∆t −Wi∆t

)∣∣∣∣∣
p

, (3.1.9)

where

F̃i := f(i∆t, X̃0
i∆t)− f(i∆t, Ỹ 0

i∆t),
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G̃i := g(i∆t, X̃0
i∆t)− g(i∆t, Ỹ 0

i∆t).

Denote ζ̃i := X̃0
i∆t− Ỹ 0

i∆t. For convenience, we denote Cp = 3p−1, Cp,N ′ = 3p−1N ′p−1.

Taking expectation on both sides of (3.1.9), and noting that the Lipschitz condition

of function f and g, we have

(1− α∆t)−pN
′
∥∥∥ζ̃N ′∥∥∥p

p

≤Cp
∥∥∥ξ̃ − η̃∥∥∥p

p
+ Cp,N ′(∆t)

p

N ′−1∑
i=0

(1− α∆t)−(i+1)pβp1

∥∥∥ζ̃i∥∥∥p
p

+ Cp,N ′(∆t)
p/2

N ′−1∑
i=0

(1− α∆t)−(i+1)pβp2

∥∥∥ζ̃i∥∥∥p
p

=Cp

∥∥∥ξ̃ − η̃∥∥∥p
p

+ K̃
N ′−1∑
i=0

(1− α∆t)−ip
∥∥∥ζ̃i∥∥∥p

p
,

where

K̃ =
Cp,N ′

(
(∆t)pβp1 + (∆t)p/2βp2

)
(1− α∆t)p

,

which is bounded for any 1 ≤ p < +∞.

Then by the Gronwall inequality, we have

(1− α∆t)−pN
′
∥∥∥ζ̃N ′∥∥∥p

p
≤ Cp

∥∥∥ξ̃ − η̃∥∥∥p
p

N ′−1∏
i=0

(1 + K̃).

So ∥∥∥ζ̃N ′∥∥∥p
p
≤ Cp

∥∥∥ξ̃ − η̃∥∥∥p
p

(
(1 + K̃)(1− α∆t)p

)N ′
.

Note

(1 + K̃)(1− α∆t)p

≤(1− α∆t)p + Cp,N ′
(
(∆t)pβp1 + (∆t)p/2βp2

)
≤1 + Cp,N ′ .

The result (3.1.8) at r′ = N ′∆t follows by taking

δ =
ε

Cp
(1 + Cp,N ′)

−N ′ .

Finally (3.1.8) at time r follows from (3.1.7) and the estimate at r′ = N ′∆t.
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Theorem 3.1.4. Assume that Condition (1) is satisfied and ∆t is fixed and small

enough. The time domain is divided as τ = n∆t. Then there exists X̂∗r ∈ L2 (Ω)

such that for any fixed initial values ξ, the solution of the Euler-Maruyama scheme

satisfies

lim
k→∞

∥∥∥X̂−kτr (ξ)− X̂∗r
∥∥∥

2
= 0, (3.1.10)

and X̂∗r satisfies the random periodicity property.

Proof. Firstly we note that the proof of the convergence of the process X̂−kτ0 can be

made similarly as that of Theorem 2.2.6. According to Lemma 3.1.1 we know that

for any M , we have X̂−kτ−kτ+M∆t ∈ L2 (Ω). We use a similar construction of a Cauchy

sequence as in Theorem 2.2.6. As we assume that τ = n∆t and kτ = kn∆t =: N∆t,

we have the following result by using semi-flow property, for any m ≥ 1,

X̂
−(k+m)τ
0 = X̂

−(N+mn)∆t
0 = X̂−N∆t

0 ◦ X̂−(N+mn)∆t
−N∆t .

It is a same process as X̂−N∆t
0 with a different initial value. By Lemma 3.1.2 we have

that for any ε > 0 there exists N∗ such that for any N ≥ N∗,∆t > 0, we have∥∥∥X̂−kτ0 − X̂−(k+m)τ
0

∥∥∥
2

=
∥∥∥X̂−N∆t

0 − X̂−(N+mn)∆t
0

∥∥∥
2
< ε.

Then we construct the Cauchy sequence X̂i = X̂−iτ0 , which converges to some X̂∗

in L2 (Ω). We now use the same method to prove the convergence is independent of

the initial point. Note for fixed ∆t,∥∥∥X̂∗ − X̂−kτ0 (η)
∥∥∥

2
≤
∥∥∥X̂∗ − X̂−kτ0 (ξ)

∥∥∥
2

+
∥∥∥X̂−kτ0 (ξ)− X̂−kτ0 (η)

∥∥∥
2

N→∞−−−→ 0,

where N →∞ is equivalent to k →∞.

Define X̂∗(r, ω) := X̂(r, 0, ω) ◦ X̂∗, r ≥ 0. According to Lemma 3.1.3, we have

X̂−kτr (ω) = X̂(r, 0, ω) ◦ X̂−kτ0 (ω)
k→∞−−−→
L2(Ω)

X̂(r, 0, ω) ◦ X̂∗(ω) = X̂∗(r, ω),

so (3.1.10) holds. On the other hand, similar to the proof of (2.2.4), we obtain

X̂τ
r+τ (ω, ξ(ω)) = X̂0

r (θτω, ξ(θτω)) = θτX̂
0
r (ω, ξ(ω)).

Therefore,

X̂−kτr (θτω) = X̂(r, 0, θτω) ◦ X̂−kτ0 (θτω)
k→∞−−−→
L2(Ω)

X̂(r, 0, θτω) ◦ X̂∗(θτω) = X̂∗(r, θτω).
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But,

X̂−kτ+τ
r+τ (ω)

k→∞−−−→
L2(Ω)

X̂∗(r + τ, ω), and X̂−kτ+τ
r+τ (ω) = X̂−kτr (θτω),P− a.s,

thus we have X̂∗(r + τ, ω) = X̂∗(r, θτω),P− a.s.

Example 3.1.5. Consider a specific stochastic differential equation

dX t0
t = −πX t0

t dt+ sin(πt)dt+X t0
t dWt. (3.1.11)

According to Theorem 2.2.6, the SDE (3.1.11) has a random periodic solution.

By Theorem 3.1.4, its Euler-Maruyama discretisation also has a random periodic

path.

To see the “periodicity” numerically, we provided two methods. One approach

is to simulate the processes

X̂∗t (ω) = X̂−6
t (ω, 0.5),−5 ≤ t ≤ 0,

and

X̂∗t (θ−2ω) = X̂−6
t (θ−2ω, 0.5),−5 ≤ t ≤ 2,

with the same ω and step size ∆t = 0.01 (Fig. 3.1).

One can see that these two trajectories exactly repeat each with a time shift of

one period (only comparing the graph of X̂∗t (θ−2ω) for −3 ≤ t ≤ 2). The second

method is the simulation of {X̂∗t (θ−tω), 0 ≤ t ≤ 6} for the same realisation ω and

step size as before (Fig. 3.2). One can easily see that Fig. 3.2 is a perfect periodic

curve. This agrees with the fact that if X̂∗t (ω) is a random periodic path iff X̂∗t (θ−tω)

is periodic, i.e. X̂∗t+τ (θ−(t+τ)ω) = X̂∗t (θ−tω). Note in theory X̂∗t = X̂−∞t , but we take

pull-back time −6 as this is already enough to generate a good convergence to the

random periodic paths X̂∗t (·) for t ≥ −5 by the solution starting at −6 from 0.5 for

both cases. The choice of the initial position does not affect random periodic paths,

but the time to take for the convergence.
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Figure 3.1: Simulations of the processes {X̂∗t (ω),−5 ≤ t ≤ 0} and {X̂∗t (θ−2ω),−5 ≤
t ≤ 2}.

Figure 3.2: Simulation of the process {X̂∗t (θ−tω), 0 ≤ t ≤ 6}
.
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3.1.2 The error estimation

In the above sections, we proved the existence of random periodic solutions of

SDE (2.0.1) and its discretisations as the limits of semi-flows when the starting times

were pushed to −∞. The next step is to estimate the error between these two limits.

Now we need to consider the difference between the discrete approximate solution

and the exact solution. The exact solution at time −kτ +M∆t is as follows

X−kτ−kτ+M∆t(ω, ξ) = eAM∆tξ + eA(M∆t−kτ)
∫M∆t−kτ
−kτ e−Asf(s,X−kτs )ds

+eA(M∆t−kτ)
∫M∆t−kτ
−kτ e−Asg(s,X−kτs )dWs. (3.1.12)

Lemma 3.1.6. Assume Conditions (A), (1) and (2). Choose ∆t = τ/n for some

n ∈ N and N = kn. Then there exists a constant K > 0 such that for any sufficiently

small fixed ∆t and N ′ ∈ N, , we have

lim sup
k→∞

∥∥∥X−kτN ′∆t − X̂
−kτ
N ′∆t

∥∥∥
2
≤ K
√

∆t,

where X−kτN ′∆t and X̂−kτN ′∆t are the exact and the numerical solutions given by (3.1.12)

and (3.1.2) respectively, K is independent of N ′ and ∆t.

Proof. In the following proof, we always denote by K̂i the constants derived from

the underlining computation unless otherwise stated. For any M ∈ N, we have

X−kτ−kτ+M∆t − X̂
−kτ
−kτ+M∆t

=
(
eAM∆t − (I + A∆t)M

)
ξ + eA(M∆t−kτ)

∫ M∆t−kτ

−kτ
e−Asf(s,X−kτs )ds

−
M−1∑
i=0

(I + A∆t)M−i−1 f(i∆t, X̂−kτ−kτ+i∆t)∆t

+ eA(M∆t−kτ)

∫ M∆t−kτ

−kτ
e−Asg(s,X−kτs )dWs

−
M−1∑
i=0

(I + A∆t)M−i−1 g(i∆t, X̂−kτ−kτ+i∆t)
(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
.

Similar to the method of Lemma 3.1.1, firstly consider

(1− α∆t)−2M
∣∣∣X−kτ−kτ+M∆t − X̂

−kτ
−kτ+M∆t

∣∣∣2
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=
M−1∑
i=0

(1− α∆t)−2i


∣∣∣X−kτ−kτ+(i+1)∆t − X̂

−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
 .

(3.1.13)

For simplicity we denote

B1 =
1

1− α∆t

∫ (i+1)∆t−kτ

i∆t−kτ

(
e−A(s+kτ−(i+1)∆t)f(s,X−kτs )− f(i∆t, X̂−kτ−kτ+i∆t)

)
ds,

B2 =
1

1− α∆t

∫ (i+1)∆t−kτ

i∆t−kτ

(
e−A(s+kτ−(i+1)∆t)g(s,X−kτs )− g(i∆t, X̂−kτ−kτ+i∆t)

)
dWs.

Therefore,

X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

= eA∆tX−kτ−kτ+i∆t − (I + A∆t) X̂−kτ−kτ+i∆t + (1− α∆t) (B1 +B2) .

Now we consider∣∣∣X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
=

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t
− I
)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t
− I
)

+BT
1 +BT

2

)
×
((

eA∆t

1− α∆t
+ I

)
X−kτ−kτ+i∆t −

(
I + A∆t

1− α∆t
+ I

)
X̂−kτ−kτ+i∆t +B1 +B2

)
=
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t
− I
)(

eA∆t

1− α∆t
+ I

)
×
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)
+
(
X̂−kτ−kτ+i∆t

)T (eA∆t − I − A∆t

1− α∆t

)2 (
X̂−kτ−kτ+i∆t

)
+BT

1 B1 +BT
2 B2

+ 2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t

)(
eA∆t − I − A∆t

1− α∆t

)(
X̂−kτ−kτ+i∆t

)
+ 2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B1

+ 2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B2 + 2BT

1 B2.

(3.1.14)
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We note that the matrix
(

eA∆t

1−α∆t
− I
)(

eA∆t

1−α∆t
+ I
)

can be non-positive-definite when

we choose the ∆t small enough. Now we consider each term in (3.1.14). First,

E

[(
X̂−kτ−kτ+i∆t

)T (eA∆t − I − A∆t

1− α∆t

)2

X̂−kτ−kτ+i∆t

]

≤
∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

∣∣∣∣eA∆t − I − A∆t

1− α∆t

∣∣∣∣2 ∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

=
∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

∣∣∣∣∣ 1
2
A2 (∆t)2 +

(
eA∆t − I − A∆t− 1

2
A2 (∆t)2)

1− α∆t

∣∣∣∣∣
2 ∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

≤
∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

∣∣∣∣∣ 1
2
A2 (∆t)2

1− α∆t

∣∣∣∣∣
2 ∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

≤K̂5(∆t)4.

Next,

E
[
BT

1 B1

]
= E |B1|2

=
1

(1− α∆t)2E

∣∣∣∣∣
∫ (i+1)∆t−kτ

i∆t−kτ

(
e−A(s+kτ−(i+1)∆t)f(s,X−kτs )− f(i∆t, X̂−kτ−kτ+i∆t)

)
ds

∣∣∣∣∣
2

≤ 1

(1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥e−A(s+kτ−(i+1)∆t)f(s,X−kτs )− f(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥

2
ds

)2

≤ 2(1 + µ)

µ (1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣ ∥∥f(s,X−kτs )

∥∥
2
ds

)2

+
2(1 + µ)

µ (1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥f(s,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)
∥∥

2
ds

)2

+
1 + µ

(1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥f(i∆t,X−kτ−kτ+i∆t)− f(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥

2
ds

)2

,

(3.1.15)

where µ is a small number from Young’s inequality, which will be fixed later. By lin-

ear growth property of f and Lemma 2.2.3, we know that
∥∥f(s,X−kτs )

∥∥
2

is bounded.

So for the first term in (3.1.15) we only need to estimate∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣ ds ≤ (∆t)2

2
Tr (−A) .
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By Condition (1) and Lemma 2.2.4, the second term in (3.1.15) becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥f(s,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)
∥∥

2
ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ

(∥∥f(s,X−kτs )− f(i∆t,X−kτs )
∥∥

2

+
∥∥f(i∆t,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)

∥∥
2

)
ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
C0 |s− i∆t+ kτ |1/2 ds+

∫ (i+1)∆t−kτ

i∆t−kτ
β1

∥∥X−kτs −X−kτ−kτ+i∆t

∥∥
2
ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
(C0 + β1C4)

√
s− i∆t+ kτds

≤K̂6 (∆t)
3
2 .

Applying the global Lipschitz condition, the third term of (3.1.15) becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥f(i∆t,X−kτ−kτ+i∆t)− f(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥

2
ds

≤β1∆t
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.

We summarise the above inequalities to have

E
[
BT

1 B1

]
≤ K̂7 (∆t)3 +

(1 + µ)β2
1 (∆t)2

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
. (3.1.16)

This term is of the 3rd order of ∆t and 2nd order of ∆t with
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.

Similar to the E
[
BT

1 B1

]
, the following term can be estimated as

E
[
BT

2 B2

]
= E |B2|2

=
1

(1− α∆t)2E

∣∣∣∣∣
∫ (i+1)∆t−kτ

i∆t−kτ

(
e−A(s+kτ−(i+1)∆t)g(s,X−kτs )− g(i∆t, X̂−kτ−kτ+i∆t)

)
dWs

∣∣∣∣∣
2

=
1

(1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥e−A(s+kτ−(i+1)∆t)g(s,X−kτs )− g(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥2

2
ds

≤ 2(1 + µ)

µ (1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣2 ∥∥g(s,X−kτs )

∥∥2

2
ds

+
2(1 + µ)

µ (1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥g(s,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)
∥∥2

2
ds

+
1 + µ

(1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥g(i∆t,X−kτ−kτ+i∆t)− g(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥2

2
ds, (3.1.17)
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where µ is a small number from Young’s inequality, which will be fixed later. By

the linear growth property of g and Lemma 2.2.3, we know that
∥∥g(s,X−kτs )

∥∥2

2
is

bounded. So we only need to estimate∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣2 ds ≤ 2

3
(∆t)3 Tr

(
A2
)
.

By Condition (1) and Lemma 2.2.4, the second term in (3.1.17) becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥g(s,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)
∥∥2

2
ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
2(C2

0 + β2
2C

2
4) |s− i∆t+ kτ | ds ≤ K̂8 (∆t)2 .

The third term follows from the global Lipschitz condition∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥g(i∆t,X−kτ−kτ+i∆t)− g(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥2

2
ds

≤β2
2∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
.

Conclude the above results to obtain

E
[
BT

2 B2

]
≤ K̂9 (∆t)2 +

(1 + µ)β2
2∆t

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
. (3.1.18)

The fifth term of (3.1.14) can be estimated as follows

E
[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t

)(
eA∆t − I − A∆t

1− α∆t

)(
X̂−kτ−kτ+i∆t

)]
≤2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2

1
2
|A2| (∆t)2

(1− α∆t)2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

≤K̂10 (∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.

To estimate the sixth term of (3.1.14),

E
[
2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B1

]
=E

[
2
(
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t
− I + A∆t

1− α∆t

)
B1

]
+ E

[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T (I + A∆t

1− α∆t

)
B1

]
. (3.1.19)
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Now we discuss these two terms separately. According to the result (3.1.16) and the

positivity of the terms on the right hand side, we have

E
[
2
(
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t
− I + A∆t

1− α∆t

)
B1

]
≤2
∥∥X−kτ−kτ+i∆t

∥∥
2

∣∣1
2
A2 (∆t)2

∣∣
1− α∆t

‖B1‖2

≤K̂11(∆t)2


√
K̂7(∆t)3/2

1− α∆t
+

√
1 + µβ1∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

(1− α∆t)2


≤K̂12(∆t)7/2 +

√
1 + µβ1K̂11(∆t)3

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2
.

And,

E
[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T (I + A∆t

1− α∆t

)
B1

]
≤2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2

‖B1‖2

1− α∆t
(1 + |A∆t|) (3.1.20)

≤
2

√
K̂7(∆t)3/2

1− α∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

(1 + ∆t |A|)

+
2
√

1 + µβ1∆t

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
(1 + ∆t |A|) . (3.1.21)

We use the conditional expectation to eliminate the seventh term

E
[((

X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B2

]
=E

[((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
E
[
B2|F i∆t−kτ

]]
=0.

For the last term,

E
[
2BT

1 B2

]
≤2
∥∥BT

1

∥∥
2
· ‖B2‖2

≤2

(√
K̂7 (∆t)3/2 +

√
1 + µβ1 (∆t)

1− α∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

)
×

(√
K̂9 (∆t) +

√
1 + µβ2

√
∆t

1− α∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

)
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≤K̂13(∆t)5/2 + K̂14(∆t)3/2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.

Combining all the estimation above, we have∣∣∣X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
≤

(
(1 + µ)β2

2∆t

(1− α∆t)2 +
2
√

(1 + µ)β1∆t

(1− α∆t)2
+ K̂16(∆t)3/2

)∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2

+ K̂15 (∆t)2 +

2

√
K̂7(∆t)3/2

1− α∆t
+ K̂17(∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2
.

Now we notice that the term
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
has coefficients, the largest

of which contains a constant multiplied by ∆t. The largest free term contains a

constant multiplied by (∆t)2.

Choosing µ and ∆t small enough and applying Young’s inequality for the term

(∆t)3/2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
,

and from (3.1.13) we get

(1− α∆t)−2M
∥∥∥X−kτ−kτ+M∆t − X̂

−kτ
−kτ+M∆t

∥∥∥2

2

≤
M−1∑
i=0

(1− α∆t)−2i

(
K̂18(∆t)2 + K̂20∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2

)

≤K̂19(∆t)(1− α∆t)−2M + K̂20(∆t)
M−1∑
i=0

(1− α∆t)−2i
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
,

(3.1.22)

where

K̂19 =
K̂18(1− α∆t)2

2α∆t− α2 (∆t)2 (∆t) =
K̂18(1− α∆t)2

2α− α2 (∆t)
,

K̂20 =
(1 + µ)(2β1 + β2

2 + ε)

(1− α∆t)2
.

Here µ, ε and the time step ∆t are chosen small enough such that

(1 + µ)(2β1 + β2
2 + ε) + α2∆t < 2α.
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Therefore, (
K̂20∆t+ 1

)
(1− α∆t)2 < 1.

Now using the discrete time Gronwall inequality, from (3.1.22), we have

(1− α∆t)−2M
∥∥∥X−kτ−kτ+M∆t − X̂

−kτ
−kτ+M∆t

∥∥∥2

2

≤K̂19∆t(1− α∆t)−2M + K̂19K̂20(∆t)2

M−1∑
i=0

(1− α∆t)−2i
(

1 + K̂20∆t
)M−i−1

=K̂19∆t(1− α∆t)−2M + K̂19K̂20(∆t)2

(
1 + K̂20∆t

)M
− (1− α∆t)−2M(

1 + K̂20∆t
)
− (1− α∆t)−2

.

So, ∥∥∥X−kτ−kτ+M∆t − X̂
−kτ
−kτ+M∆t

∥∥∥2

2

≤K̂19∆t+ K̂19K̂20(∆t)2
1−

((
1 + K̂20∆t

)
(1− α∆t)2

)M
1−

(
1 + K̂20∆t

)
(1− α∆t)2

≤K̂21∆t.

We can find a constant K̂21 which is independent of M and ∆t. Finally we take

M = N +N ′, where N∆t = kτ , N ′ ∈ Z, then

lim sup
k→∞

∥∥∥X−kτN ′∆t − X̂
−kτ
N ′∆t

∥∥∥
2

= lim sup
N→∞

∥∥∥X−kτ−kτ+(N+N ′)∆t − X̂
−kτ
−kτ+(N+N ′)∆t

∥∥∥
2

≤
√
K̂21

√
∆t.

So we get the result.

We have proved that the estimation of error from −kτ to N ′∆t as k → ∞ can

be controlled under the 1/2 order of the time-step. And the upper bound is uniform

in time. The following theorem will give us a more general result, which is from −kτ
to time r. Let X̂−kτr , r > 0 be given by (3.1.6).

Theorem 3.1.7. Assume Conditions (A), (1) and (2). We choose ∆t = τ/n for

some n ∈ N, N = kn. For any r ≥ 0, there exists a constant K̃ > 0 such that for



42 CHAPTER 3. STRONG APPROXIMATIONS

any sufficiently small fixed ∆t,

lim sup
k→∞

∥∥∥X−kτr − X̂−kτr

∥∥∥
2
≤ K̃
√

∆t,

where X−kτr is the exact solution while X̂−kτr is the numerical solution and K̃ is

independent of ∆t and r.

Proof. Assume for any r ≥ 0, N ′ is the unique integer such that N ′∆t ≤ r, (N ′ +

1)∆t > r. According to the semi-flow property, we have,

X−kτr (ω)− X̂−kτr (ω) =XN ′∆t
r (ω) ◦X−kτN ′∆t(ω)− X̂N ′∆t

r (ω) ◦ X̂−kτN ′∆t(ω),

where X̂N ′∆t
r is finite time Euler-Maruyama approximation of solution of (2.0.1)

from N ′∆t to r and X̂−kτN ′∆t is defined as before. So,∥∥∥X−kτr − X̂−kτr

∥∥∥
2
≤
∥∥∥XN ′∆t

r ◦X−kτN ′∆t −X
N ′∆t
r ◦ X̂−kτN ′∆t

∥∥∥
2

+
∥∥∥XN ′∆t

r ◦ X̂−kτN ′∆t − X̂
N ′∆t
r ◦ X̂−kτN ′∆t

∥∥∥
2
. (3.1.23)

For the first term on the right-hand side, by Lemma 3.1.6, we have∥∥∥X−kτN ′∆t − X̂
−kτ
N ′∆t

∥∥∥ ≤ K
√

∆t.

By the continuity of XN ′∆t
r (·) with respect to initial values in L2(Ω) ([31]), then∥∥∥XN ′∆t

r ◦X−kτN ′∆t −X
N ′∆t
r ◦ X̂−kτN ′∆t

∥∥∥
2
≤ C

∥∥∥X−kτN ′∆t − X̂
−kτ
N ′∆t

∥∥∥
2
≤ C5

√
∆t,

where C5 is independent of ∆t. For the second term on the right-hand side of (3.1.23),

it is finite time Euler-Maruyama approximation with same initial value. By Theorem

2.3.1 in Kloeden and Platen [29], there exists a constant C6 > 0 such that for

sufficiently ∆t > 0,∥∥∥XN ′∆t
r ◦ X̂−kτN ′∆t − X̂

N ′∆t
r ◦ X̂−kτN ′∆t

∥∥∥
2
≤ C6

√
∆t,

where the choice of C6 is independent of ∆t. The result follows by taking K̃ =

C5 + C6.

Corollary 3.1.8. For any r ≥ 0, the exact and numerical approximating random

periodic solution of equation (2.0.1), X∗r and X̂∗r , given in Theorem 2.2.6 and The-

orem 3.1.4 respectively satisfy∥∥∥X∗r − X̂∗r∥∥∥
2
≤ K̃
√

∆t.
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Proof. The result follows from

∥∥∥X∗r − X̂∗r∥∥∥
2
≤ lim sup

k→∞

[∥∥X∗r −X−kτr

∥∥
2

+
∥∥∥X−kτr − X̂−kτr

∥∥∥
2

+
∥∥∥X̂−kτr − X̂∗r

∥∥∥
2

]
.

3.2 Modified Milstein scheme

Next we consider the modified Milstein scheme which increases the convergence

order for the infinite horizon problem. If we assume some additional conditions

on the SDEs, the Milstein scheme will increase the strong order of error for finite

horizon. In the following content, the scheme is modified by adding terms from

higher order schemes to guarantee the result on infinite horizon. First we introduce

the assumptions

Condition (1.a). Assume there exists a constant τ > 0 such that for any t ∈
R, x ∈ Rm, f(t + τ, x) = f(t, x), g(t + τ, x) = g(t, x), and there exist constants

C0, β1, β2 > 0 with β1 +
β2

2

2
< |λ1| such that for any s, t ∈ R and x ∈ Rm,

|f(s, x)− f(t, y)| ≤ C0 |s− t|+ β1 |x− y| ,

|g(s, x)− g(t, y)| ≤ C0 |s− t|+ β2 |x− y| .

Meanwhile, we need higher order of Lipschitz continuity of the function f and g and

corresponding growth property.

Remark 3.2.1. The main difference is about the functions f and g. In Condition

(1.a), we assume higher order of continuity with respect to time. The higher order

of Lipschitz continuity and linear growth are given by Kloeden and Platen [29] as we

mentioned in Theoreme 2.3.3. To apply the modified Milstein scheme in the follow-

ing section, later we give the corresponding condition of the higher order Lipschitz

continuity as (3.2.2) and (3.2.3), which is the numerical interpretation for the above

condition with the specified scheme.
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3.2.1 Numerical approximation for random periodic solu-

tion

Now we introduce the iteration formula for the modified Milstein scheme as

follows,

X̂−kτ−kτ+(i+1)∆t

=X̂−kτ−kτ+i∆t + AX̂−kτ−kτ+i∆t∆t+ f(i∆t, X̂−kτ−kτ+i∆t)∆t

+ g(i∆t, X̂−kτ−kτ+i∆t) (∆W i)

+
∆Zi

2
√

∆t

[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t))

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]
+

(∆W i)
2 −∆t

4
√

∆t

[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t))

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]
, (3.2.1)

with

Υ̂±(X̂−kτ−kτ+i∆t) =X̂−kτ−kτ+i∆t + AX̂−kτ−kτ+i∆t∆t+ f(i∆t, X̂−kτ−kτ+i∆t)∆t

± g(i∆t, X̂−kτ−kτ+i∆t)
√

∆t

and

∆W i =

∫ −kτ+(i+1)∆t

−kτ+i∆t

dWs,

∆Zi =

∫ −kτ+(i+1)∆t

−kτ+i∆t

∫ s

−kτ+i∆t

dWuds,

1

2
((∆W i)

2 −∆t) =

∫ −kτ+(i+1)∆t

−kτ+i∆t

∫ s

−kτ+i∆t

dWudWs

where i = 0, 1, 2, . . . , and X̂−kτ−kτ+0∆t = ξ. Here the terms

1

2
√

∆t

[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t))

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]
and

1

2
√

∆t

[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t))

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]
are the approximations for g ∂f

∂x
and g ∂g

∂x
respectively if we neglect higher terms.

We require the higher order of Lipschitz continuity for for the function f and g in

the modified Milstein scheme as follows. We assume that there exist some constants

K∗1 and K∗2 independent of step-size ∆t such that for any x, y ∈ Rd and t ∈ R,
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1

2
√

∆t

∣∣∣F̂ (1)
t (x)− F̂ (1)

t (y)
∣∣∣ ≤ K∗1 |x− y| (3.2.2)

and

1

2
√

∆t

∣∣∣Ĝ(1)
t (x)− Ĝ(1)

t (y)
∣∣∣ ≤ K∗2 |x− y| , (3.2.3)

where

F̂
(1)
t (x) := f(t, Υ̂+(x))− f(t, Υ̂−(x)),

Ĝ
(1)
t (x) := g(t, Υ̂+(x))− g(t, Υ̂−(x)).

For the modified Milstein scheme, we can also set up a discrete semi-flow given

by

ûi,j(ξ) = X̂j∆t
i∆t (ξ), i ≥ j, i, j ∈ {−kn,−kn+ 1, · · · }, θ̂ = θ∆t, θ̂

n = θ̂θ̂ · · · θ̂.

It is easy to check the semi-flow property of the process,

ûi,j(ω) ◦ ûj,l(ω) = ûi,l(ω), for i ≥ j ≥ l. (3.2.4)

and the periodic property

ûi+n,j+n(ω) = ûi,j(θ̂
nω). for i ≥ j.

From the iteration (3.2.1), we have that for any M ≥ 0,

X̂−kτ−kτ+M∆t =(I + A∆t)Mξ + ∆t
M−1∑
i=0

(I + A∆t)M−i−1f(i∆t, X̂−kτ−kτ+i∆t)

+
M−1∑
i=0

(I + A∆t)M−i−1g(i∆t, X̂−kτ−kτ+i∆t) (∆W i)

+
M−1∑
i=0

{
(I + A∆t)M−i−1 ∆Zi

2
√

∆t

×
[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]}
+

M−1∑
i=0

{
(I + A∆t)M−i−1 [(∆W i)

2 −∆t]

4
√

∆t
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×
[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]}
.

(3.2.5)

The convergence of the discretized processes relies on the boundedness under the

modified Milstein scheme with additional terms. In the next lemma, we prove the

conclusion still holds as Lemma 3.1.1 with higher order of approximation terms.

Notice that the constants K̂i are independent of those in the previous sections on

the Euler-Maruyama scheme.

Lemma 3.2.2. Assume Conditions (A), (1.a) and (2). Then there exists a constant

Ĉ > 0 such that for any natural numbers k ≥ 0, 0 ≤M ≤ N , and sufficiently small

∆t, the numerical solution X̂−kτ−kτ+M∆t defined by (3.1.2) satisfies

E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2 ≤ Ĉ.

Proof. We still choose α such that β1 + β2

2
< α < |λ1| . Then it is known that for

any M ≤ N ,

(1− α∆t)−2M
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
= |ξ|2 +

M−1∑
i=0

(1− α∆t)−2i


∣∣∣X̂−kτ−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2
 . (3.2.6)

When we consider each term in the sum, it becomes∣∣∣X̂−kτ−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2
=

{(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t
− I
)

+
∆t

1− α∆t
f(i∆t, X̂−kτ−kτ+i∆t)

T

+
(∆W i)

T

1− α∆t
g(i∆t, X̂−kτ−kτ+i∆t)

T

+
(∆Zi)

T

2(1− α∆t)
√

∆t

[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]T
+

(∆W i)
2 −∆t

4(1− α∆t)
√

∆t

[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]T}
×
{(

I + A∆t

1− α∆t
+ I

)
X̂−kτ−kτ+i∆t +

∆t

1− α∆t
f(i∆t, X̂−kτ−kτ+i∆t)
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+
g(i∆t, X̂−kτ−kτ+i∆t) (∆W i)

1− α∆t[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)] ∆Zi

2(1− α∆t)
√

∆t

+
[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)] (∆W i)
2 −∆t

4(1− α∆t)
√

∆t

}
(3.2.7)

Note
(
I+A∆t
1−α∆t

− I
) (

I+A∆t
1−α∆t

+ I
)

is non-positive definite, where ∆t satisfies 0 < ∆t ≤ 1
ρ

as defined before, and for each i, f(i∆t, X̂−kτ−kτ+i∆t) and g(i∆t, X̂−kτ−kτ+i∆t) are both

independent of (∆W i) and (∆Zi). It is easy to verify the following properties of

∆Zi with the Itô’s isometry,

E[∆Zi] = 0, E[∆Zi∆W i] =
1

2
(∆t)2,

E[∆Zi]
2 =

1

3
(∆t)3, E[∆Zi(∆W i)

2] = 0.

Taking expectation on both sides of (3.2.6), there are some vanished terms as we

know that

E((∆W i)
2 −∆t) = 0, E[(∆W i)((∆W i)

2 −∆t)] = 0.

Considering (3.2.7), we have the following inequality with the linear growth property

and Young’s inequality,

(1− α∆t)−2M E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
≤‖ξ‖2

2 +
M−1∑
i=0

(1− α∆t)−2i (∆t)2

(1− α∆t)2
E
∣∣∣f(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i ∆t

(1− α∆t)2E
∣∣∣g(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i 2∆t

(1− α∆t)2E
∣∣∣∣(X̂−kτ−kτ+i∆t

)T
(I + A∆t) f(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣∣
+

M−1∑
i=0

(1− α∆t)−2i (∆t)3/2

2(1− α∆t)2
E
∣∣∣g(i∆t, X̂−kτ−kτ+i∆t)

∣∣∣
× E

∣∣∣f (i∆t, Υ̂+(X̂−kτ−kτ+i∆t)
)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)∣∣∣
+

M−1∑
i=0

(1− α∆t)−2i (∆t)2

12(1− α∆t)2
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× E
∣∣∣f (i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i ∆t

8(1− α∆t)2

× E
∣∣∣g (i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)∣∣∣2
≤‖ξ‖2

2 +
M−1∑
i=0

(1− α∆t)−2i−2 (∆t)2

(
C2

1 + 2β1C1

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+ β2
1

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)

+
M−1∑
i=0

(1− α∆t)−2i−2 (∆t)

(
C2

2 + 2β2C2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+ β2
2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)

+
M−1∑
i=0

(1− α∆t)−2i−2 2(∆t)
(
C1 (1 + |A|∆t)

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+β1 (1 + |A|∆t)
∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)
+

M−1∑
i=0

(1− α∆t)−2i−2 (∆t)2

2
2β1

(
C2

2 + 2β2C2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+ β2
2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)

+
M−1∑
i=0

(1− α∆t)−2i−2 (∆t)3

12
(2β1)2

(
C2

2 + 2β2C2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+ β2
2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)

+
M−1∑
i=0

(1− α∆t)−2i−2 (∆t)2

8
(2β2)2

(
C2

2 + 2β2C2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

+ β2
2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥2

2

)

≤K̂2 + (1− α∆t)−2M K̂3 + K̂4

M−1∑
i=0

(1− α∆t)−2i E
∣∣∣X̂−kτ−kτ+i∆t

∣∣∣2 , (3.2.8)

where

K̂1 = β1 +
β2

1

3
∆t+

β2
2

2
,

K̂2 = ‖ξ‖2
2 ,

K̂3 =
∆t

2α∆t− α2 (∆t)2 ×

(
C1 + β2C2 + ∆t

(
β1C1 + C1 |A|+ β2C2K̂1

))2

ε̂
(

2β1 + β2
2 + ∆t

(
β2

1 + 2β1 |A|+ β2
2K̂1

))
+
C2

1 (∆t)2 + C2
2∆t+ C2

2(∆t)2K̂1

2α∆t− α2 (∆t)2 ,

K̂4 =
∆t (1 + ε̂)

(1− α∆t)2

(
2β1 + β2

2 + ∆t
(
β2

1 + 2β1 |A|+ β2
2K̂1

))
.
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Here it is still possible to choose ∆t and ε̂ small enough such that

(1 + ε̂)
(

2β1 + β2
2 + ∆t

(
β2

1 + 2β1 |A|+ β2
2K̂1

))
+ α2∆t < 2α.

This gives us that

(1− α∆t)2
(

1 + K̂4

)
< 1.

By the discrete Gronwall inequality,

(1− α∆t)−2M E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2
≤ K̂2 + K̂3 (1− α∆t)−2M +

M−1∑
i=0

(
K̂2 + K̂3 (1− α∆t)−2i

)
K̂4

(
1 + K̂4

)M−i−1

.

Therefore,

E
∣∣∣X̂−kτ−kτ+M∆t

∣∣∣2 ≤K̂3 + K̂2

((
1 + K̂4

)
(1− α∆t)2

)M
+

K̂3K̂4 (1− α∆t)2

(
1−

((
1 + K̂4

)
(1− α∆t)2

)M)
1−

(
1 + K̂4

)
(1− α∆t)2

≤ Ĉ.

The choice of the constant Ĉ is independent of k and we only need to choose the

time-step ∆t sufficiently small to conquer the influence of the additional terms.

Next we consider the convergence of the discetized processes with different initial

values.

Lemma 3.2.3. Denote by X̂−kτ−kτ+M∆t and Ŷ −kτ−kτ+M∆t solutions of the modified Mil-

stein scheme with initial values ξ and η respectively. Assume Conditions (A), (1.a)

and Condition (2) for both initial values. Let ∆t = t/n, n ∈ Z+, be sufficiently small.

Then for any ε > 0, there exists an integer M∗ > 0 such that for any M ≥M∗, we

have ∥∥∥X̂−kτ−kτ+M∆t − Ŷ
−kτ
−kτ+M∆t

∥∥∥
2
< ε.

Proof. According to scheme (3.1.2) we have

X̂−kτ−kτ+M∆t − Ŷ
−kτ
−kτ+M∆t

= (I + A∆t)M (ξ − η) + ∆t
M−1∑
i=0

(I + A∆t)M−i−1 F̂i
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+
M−1∑
i=0

(I + A∆t)M−i−1 Ĝi (∆W i)

+
M−1∑
i=0

(I + A∆t)M−i−1
[
F̂

(1)
i (X̂−kτ−kτ+i∆t)− F̂

(1)
i (Ŷ −kτ−kτ+i∆t)

] ∆Zi

2
√

∆t

+
M−1∑
i=0

(I + A∆t)M−i−1
[
Ĝ

(1)
i (X̂−kτ−kτ+i∆t)− Ĝ

(1)
i (Ŷ −kτ−kτ+i∆t)

] (∆W i)
2 −∆t

4
√

∆t
.

Here

F̂i := f(i∆t, X̂−kτ−kτ+i∆t)− f(i∆t, Ŷ −kτ−kτ+i∆t),

Ĝi := g(i∆t, X̂−kτ−kτ+i∆t)− g(i∆t, Ŷ −kτ−kτ+i∆t),

F̂
(1)
i (x) := f(i∆t, Υ̂+(x))− f(i∆t, Υ̂−(x)),

Ĝ
(1)
i (x) := g(i∆t, Υ̂+(x))− g(i∆t, Υ̂−(x)).

Denote ζ̂i = X̂−kτ−kτ+i∆t − Ŷ
−kτ
−kτ+i∆t. Then by Condition (1.a), we have∣∣∣F̂i∣∣∣ ≤ β1

∣∣∣ζ̂i∣∣∣ , ∣∣∣Ĝi

∣∣∣ ≤ β2

∣∣∣ζ̂i∣∣∣
and ∣∣∣F̂ (1)

i (X̂−kτ−kτ+i∆t)− F̂
(1)
i (Ŷ −kτ−kτ+i∆t)

∣∣∣ ≤ 2K∗1 |ζi|
√

∆t,∣∣∣Ĝ(1)
i (X̂−kτ−kτ+i∆t)− Ĝ

(1)
i (Ŷ −kτ−kτ+i∆t)

∣∣∣ ≤ 2K∗2 |ζi|
√

∆t.

According to the method used in Lemma 3.1.1, we get the following result similar

to inequality (3.2.8)

(1− α∆t)−2M E
∣∣∣ζ̂M ∣∣∣2

≤‖ξ − η‖2
2 +

M−1∑
i=0

(1− α∆t)−2i

(
∆t

1− α∆t

)2

E
∣∣∣F̂i∣∣∣2

+
M−1∑
i=0

(1− α∆t)−2i ∆t

(1− α∆t)2E
∣∣∣Ĝi

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i 2∆t

(1− α∆t)2E
∣∣∣∣(ζ̂i)T (I + A∆t) F̂i

∣∣∣∣
+

M−1∑
i=0

(1− α∆t)−2i (∆t)3/2

2(1− α∆t)2
E
∣∣∣(Ĝi)

T
(
F̂

(1)
i (X̂−kτ−kτ+i∆t)− F̂

(1)
i (Ŷ −kτ−kτ+i∆t)

)∣∣∣
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+
M−1∑
i=0

(1− α∆t)−2i (∆t)2

12(1− α∆t)2
E
∣∣∣F̂ (1)

i (X̂−kτ−kτ+i∆t)− F̂
(1)
i (Ŷ −kτ−kτ+i∆t)

∣∣∣2
+

M−1∑
i=0

(1− α∆t)−2i ∆t

8(1− α∆t)2
E
∣∣∣Ĝ(1)

i (X̂−kτ−kτ+i∆t)− Ĝ
(1)
i (Ŷ −kτ−kτ+i∆t)

∣∣∣2
≤‖ξ − η‖2

2 + K̂5

M−1∑
i=0

(1− α∆t)−2i E
∣∣∣ζ̂i∣∣∣2 ,

where

C =β2
1 + 2β1 |A|+K∗1β2 +

∆t

3
(K∗1)2 +

∆t

2
(K∗2)2

K̂5 =
∆t

(1− α∆t)2

(
2β1 + β2

2 + C∆t
)
.

We choose ∆t small enough such that

2β1 + β2
2 + C∆t+ α2∆t < 2α.

Therefore, we have

(1− α∆t)2
(

1 + K̂5

)
< 1.

The discrete Gronwall inequality implies

(1− α∆t)−2M E
∣∣∣ζ̂M ∣∣∣2 ≤ ‖ξ − η‖2

2

M−1∏
i=0

(
1 + K̂5

)
= ‖ξ − η‖2

2

(
1 + K̂5

)M
.

Finally

E
∣∣∣ζ̂M ∣∣∣2 ≤ ‖ξ − η‖2

2

(
(1− α∆t)2

(
1 + K̂5

))M
< ε

with sufficiently large M .

In the numerical scheme, the process is considered as two parts, [−kτ, 0) and

[0, r]. Define

X̂−kτr := X̂(r, 0, ω) ◦ X̂−kτ0 , (3.2.9)

where X̂(r, 0, ω), r ≥ 0, is finite time Milstein approximation of the solution of

stochastic differential equation with time step size ∆t, till N ′∆t ≤ r, where N ′ is

the unique number such that N ′∆t ≤ r and (N ′ + 1)∆t > r. If N ′∆t < r, define

X̂(r, 0, ω)ξ = X̂(N ′∆t, 0, ω) + f(N ′∆t, X̂(N ′∆t, 0, ω))(r −N ′∆t)

+g(N ′∆t, X̂(N ′∆t, 0, ω))(Wr −WN ′∆t) (3.2.10)
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Lemma 3.2.4. (Continuity of the discrete semi-flow with respect to the initial value)

Denote by X̃0
r and Ỹ 0

r the solution of the finite Milstein scheme with the initial values

ξ̃ and η̃ at time 0. Assume Conditions (A), (1.a) and Condition (2) for both initial

values. Let ∆t be sufficiently small, p ≥ 1. Then for any ε > 0, there exists a δ > 0

such that for any
∥∥∥ξ̃ − η̃∥∥∥

p
< δ, we have∥∥∥X̃0

r (ω, ξ̃)− Ỹ 0
r (ω, η̃)

∥∥∥
p
< ε.

Proof. Note that X̃0
N ′∆t and Ỹ 0

N ′∆t satisfy analogues of (3.2.5), with initial value

ξ̃ and η̃ at time 0 instead of −kτ . Apply the Milstein scheme on the finite time

r′ = N ′∆t to obtain∣∣∣X̃0
r′(ω, ξ̃)− Ỹ 0

r′(ω, η̃)
∣∣∣p

≤4p−1
∣∣∣(I + A∆t)pN

′
∣∣∣ ∣∣∣ξ̃ − η̃∣∣∣p + 4p−1(∆t)p

∣∣∣(I + A∆t)pN
′
∣∣∣ ∣∣∣∣∣
N ′−1∑
i=0

(I + A∆t)−i−1F̃i

∣∣∣∣∣
p

+ 4p−1
∣∣∣(I + A∆t)pN

′
∣∣∣ ∣∣∣∣∣
N ′−1∑
i=0

(I + A∆t)−i−1G̃i

(
W(i+1)∆t −Wi∆t

)∣∣∣∣∣
p

+ 4p−1
∣∣∣(I + A∆t)pN

′
∣∣∣ ∣∣∣∣∣
N ′−1∑
i=0

(I + A∆t)−i−1

×
[
G̃

(1)
i (X̃0

i∆t)− G̃
(1)
i (Ỹ 0

i∆t)
] (∆W i)

2 − dt
4
√

∆t

∣∣∣∣p , (3.2.11)

where

F̃i := f(i∆t, X̃0
i∆t)− f(i∆t, Ỹ 0

i∆t),

G̃i := g(i∆t, X̃0
i∆t)− g(i∆t, Ỹ 0

i∆t),

G̃
(1)
i (x) := g(i∆t, Υ̂+(x))− g(i∆t, Υ̂−(x)).

Denote ζ̃i := X̃0
i∆t− Ỹ 0

i∆t. For convenience, we denote Cp = 4p−1, Cp,N ′ = 4p−1N ′p−1.

Taking expectation on both sides of (3.2.11), and noting that the Lipschitz condition

of function f and g, we have

(1− α∆t)−pN
′
∥∥∥ζ̃N ′∥∥∥p

p

≤Cp
∥∥∥ξ̃ − η̃∥∥∥p

p
+ Cp,N ′(∆t)

p

N ′−1∑
i=0

(1− α∆t)−(i+1)pβp1

∥∥∥ζ̃i∥∥∥p
p
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+ Cp,N ′(∆t)
p/2

N ′−1∑
i=0

(1− α∆t)−(i+1)pβp2

∥∥∥ζ̃i∥∥∥p
p

+ Cp,N ′(∆t)
p

N ′−1∑
i=0

(1− α∆t)−(i+1)p (2K∗2)p (2p!! + 1)

4

∥∥∥ζ̃i∥∥∥p
p

=Cp

∥∥∥ξ̃ − η̃∥∥∥p
p

+ K̃

N ′−1∑
i=0

(1− α∆t)−ip
∥∥∥ζ̃i∥∥∥p

p
,

where

K̃ =

Cp,N ′

(
(∆t)p

(
βp1 +

(2K∗2)
p
(2p!!+1)

2

)
+ (∆t)p/2βp2

)
(1− α∆t)p

,

which is bounded for any 1 ≤ p < +∞. Then by the Gronwall inequality, we have∥∥∥ζ̃N ′∥∥∥p
p
≤ Cp

∥∥∥ξ̃ − η̃∥∥∥p
p

(
(1 + K̃)(1− α∆t)p

)N ′
.

Note

(1 + K̃)(1− α∆t)p

≤(1− α∆t)p + Cp,N ′

(
(∆t)p

(
βp1 +

(2K∗2)p (2p!! + 1)

2

)
+ (∆t)p/2βp2

)
≤1 + Cp,N ′ .

The result (3.2.4) at r′ = N ′∆t follows

δ =
ε

Cp

(
1 + C ′p,N ′

)−N ′
.

Finally (3.2.4) at time r follows (3.2.10) and the estimate at r′ = N ′∆t.

Theorem 3.2.5. Assume that Condition(A), (1.a) and ∆t is fixed and small enough.

The time domain is divided as τ = n∆t. Then there exists X̂∗r ∈ L2 (Ω) such that

for any fixed initial values ξ, the solution of the modified Milstein scheme satisfies

lim
k→∞

∥∥∥X̂−kτr (ξ)− X̂∗r
∥∥∥

2
= 0, (3.2.12)

and X̂∗r satisfies the random periodicity property.

The proof follows the construction of Cauchy sequence X̂−kτ−kτ+M∆t as in Theorem

3.1.4. We know X̂−kτ−kτ+M∆t ∈ L2 (Ω) from Lemma 3.2.2 and the convergence of the

sequence by Lemma 3.2.3. Then we obtain the existence of the limit and it is not

hard to prove the random periodicity for the process.
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3.2.2 The error estimation

We proved the existence of random periodic solutions of SDE (2.0.1) and its

discretisations with modified Milstein scheme as the limits of semi-flows when the

starting times were pushed to −∞. Now we estimate the error between these two

limits. It is natural to consider the difference between the discrete approximate

solution and the exact solution. Let us recall the exact solution at time −kτ +N∆t

as follows

X−kτ−kτ+N∆t(ω, ξ) = eAN∆tξ + eA(N∆t−kτ)
∫ N∆t−kτ
−kτ e−Asf(s,X−kτs )ds

+eA(N∆t−kτ)
∫ N∆t−kτ
−kτ e−Asg(s,X−kτs )dWs. (3.2.13)

Then we have the following theorem about the strong error of the modified Milstein

scheme.

Theorem 3.2.6. Assume Conditions (A), (1.a) and (2). Choose ∆t = t/n for some

n ∈ N and N = kn. If X−kτ0 and X̂−kτ0 are the exact and the numerical solutions

given by (3.2.13) and (3.2.5) respectively, then there exists a constant K > 0 such

that for any sufficiently small fixed ∆t, we have

lim sup
k→∞

∥∥∥X−kτ0 − X̂−kτ0

∥∥∥
2
≤ K∆t.

Proof. For any M ≤ N , we have

X−kτ−kτ+M∆t − X̂
−kτ
−kτ+M∆t

=
(
eAM∆t − (I + A∆t)M

)
ξ + eA(M∆t−kτ)

∫ M∆t−kτ

−kτ
e−Asf(s,X−kτs )ds

−
M−1∑
i=0

(I + A∆t)M−i−1 f(i∆t, X̂−kτ−kτ+i∆t)∆t

−
M−1∑
i=0

{
(I + A∆t)M−i−1 ∆Zi

2
√

∆t

×
[
f
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− f

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]}
+ eA(M∆t−kτ)

∫ M∆t−kτ

−kτ
e−Asg(s,X−kτs )dWs

−
M−1∑
i=0

(I + A∆t)M−i−1 g(i∆t, X̂−kτ−kτ+i∆t) (∆W i)
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−
M−1∑
i=0

{
(I + A∆t)M−i−1 [(∆W i)

2 −∆t]

4
√

∆t

×
[
g
(
i∆t, Υ̂+(X̂−kτ−kτ+i∆t)

)
− g

(
i∆t, Υ̂−(X̂−kτ−kτ+i∆t)

)]}
.

Applying the method of Lemma 3.2.2, we firstly consider

(1− α∆t)−2M
∣∣∣X−kτ−kτ+M∆t − X̂

−kτ
−kτ+M∆t

∣∣∣2
=

M−1∑
i=0

(1− α∆t)−2i


∣∣∣X−kτ−kτ+(i+1)∆t − X̂

−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
 .

(3.2.14)

For simplicity we denote

B1 =
1

1− α∆t

∫ (i+1)∆t−kτ

i∆t−kτ

[
e−A(s+kτ−(i+1)∆t)f(s,X−kτs )− f(i∆t, X̂−kτ−kτ+i∆t)

−
∫ s

i∆t−kτ
F

(1)
i (X̂−kτ−kτ+i∆t)dWυ

]
ds.

B2 =
1

1− α∆t

∫ (i+1)∆t−kτ

i∆t−kτ

[
e−A(s+kτ−(i+1)∆t)g(s,X−kτs )− g(i∆t, X̂−kτ−kτ+i∆t)

−
∫ s

i∆t−kτ
G

(1)
i (X̂−kτ−kτ+i∆t)dWυ

]
dWs,

with

F
(1)
i (x) =

1

2
√

∆t

(
f
(
i∆t, Υ̂+(x)

)
− f

(
i∆t, Υ̂−(x)

))
,

G
(1)
i (x) =

1

2
√

∆t

(
g
(
i∆t, Υ̂+(x)

)
− g

(
i∆t, Υ̂−(x)

))
.

Hence we have

X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

= eA∆tX−kτ−kτ+i∆t − (I + A∆t) X̂−kτ−kτ+i∆t + (1− α∆t) (B1 +B2) .

Now we consider∣∣∣X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
=
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t
− I
)(

eA∆t

1− α∆t
+ I

)



56 CHAPTER 3. STRONG APPROXIMATIONS

×
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)
+
(
X̂−kτ−kτ+i∆t

)T (eA∆t − I − A∆t

1− α∆t

)2 (
X̂−kτ−kτ+i∆t

)
+BT

1 B1 +BT
2 B2

+ 2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t

)(
eA∆t − I − A∆t

1− α∆t

)(
X̂−kτ−kτ+i∆t

)
+ 2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B1

+ 2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B2 + 2BT

1 B2.

(3.2.15)

We know that the matrix
(

eA∆t

1−α∆t
− I
)(

eA∆t

1−α∆t
+ I
)

can be non-positive-definite

when we choose the ∆t small enough. Now we consider each term in (3.2.15). First,

E

[(
X̂−kτ−kτ+i∆t

)T (eA∆t − I − A∆t

1− α∆t

)2

X̂−kτ−kτ+i∆t

]

≤
∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

∣∣∣∣∣ 1
2
A2 (∆t)2

1− α∆t

∣∣∣∣∣
2 ∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

≤K̂6(∆t)4.

Next,

E
[
BT

1 B1

]
= E |B1|2

≤ 3(1 + µ)

µ (1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣ ∥∥f(s,X−kτs )

∥∥
2
ds

)2

+
3(1 + µ)

µ (1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥f(s,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)

−
∫ s

i∆t−kτ
F

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥
2

ds

)2

+
1 + µ

(1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥f(i∆t,X−kτ−kτ+i∆t)− f(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥

2
ds

)2

+
3(1 + µ)

µ (1− α∆t)2

(∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ
F

(1)
i (X−kτ−kτ+i∆t)

−F (1)
i (X̂−kτ−kτ+i∆t)dWυ

∥∥∥
2
ds
)2

, (3.2.16)
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where µ is a small number from Young’s inequality, which will be fixed later. By lin-

ear growth property of f and Lemma 2.2.3, we know that
∥∥f(s,X−kτs )

∥∥
2

is bounded.

So for the first term in (3.2.16) we only need to consider∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣ ds ≤ (∆t)2

2
Tr (−A) .

Applying Itô’s formula to f(i∆t,X−kτs ), we have∥∥∥∥f(i∆t,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
g
∂f

∂x
dWυ

∥∥∥∥
2

≤K̂7 |s− i∆t+ kτ |

By Condition (1.a) and Taylor expansion as (3.2.2), the second term in (3.2.16)

becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥f(s,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
F

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥
2

ds

≤3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥f(s,X−kτs )− f(i∆t,X−kτs )
∥∥

2
ds

+ 3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥f(i∆t,X−kτs )− f(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
g
∂f

∂x
dWυ

∥∥∥∥
2

ds

+ 3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ
g
∂f

∂x
(X−kτ−kτ+i∆t)− F

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥
2

ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
3(C0 + K̂7) |s− i∆t+ kτ |+ 3C

√
∆t
√
s− i∆t+ kτds

≤K̂8 (∆t)2 .

Applying the global Lipschitz condition, the third term of (3.2.16) becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥f(i∆t,X−kτ−kτ+i∆t)− f(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥

2
ds

≤β1∆t
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.

Considering the last term of (3.2.16)∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ
F

(1)
i (X−kτ−kτ+i∆t)− F

(1)
i (X̂−kτ−kτ+i∆t)dWυ

∥∥∥∥
2

ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
2K∗1

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

√
s− i∆t+ kτds
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≤K̂9(∆t)3/2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.

We summarise the above inequalities to have

E
[
BT

1 B1

]
≤K̂10 (∆t)4 +

(1 + µ)β2
1 (∆t)2

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2

+ K̂2
9(∆t)3

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
.

This term is of the 4th order of ∆t and 2nd order of ∆t with
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.

Similar to the E
[
BT

1 B1

]
, the following term can be estimated as

E
[
BT

2 B2

]
= E |B2|2

≤ 3(1 + µ)

µ (1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣2 ∥∥g(s,X−kτs )

∥∥2

2
ds

+
3(1 + µ)

µ (1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥g(s,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)

−
∫ s

i∆t−kτ
G

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥2

2

ds

+
1 + µ

(1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥g(i∆t,X−kτ−kτ+i∆t)− g(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥2

2
ds

+
3(1 + µ)

µ (1− α∆t)2

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ
G

(1)
i (X−kτ−kτ+i∆t)−G

(1)
i (X̂−kτ−kτ+i∆t)dWυ

∥∥∥∥2

2

ds,

(3.2.17)

where µ is the same as it in the estimation of E
[
BT

1 B1

]
. By the linear growth

property of g and Lemma 2.2.3, we know that
∥∥g(s,X−kτs )

∥∥2

2
and s are bounded. So

we only need to consider∫ (i+1)∆t−kτ

i∆t−kτ

∣∣e−A(s+kτ−(i+1)∆t) − I
∣∣2 ds ≤ 2

3
(∆t)3 Tr

(
A2
)
.

Applying Itô’s formula to g(i∆t,X−kτs ), we have∥∥∥∥g(i∆t,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
g
∂g

∂x
dWυ

∥∥∥∥2

2

≤K̂11 |s− i∆t+ kτ |2

By Condition (1.a) and Taylor expansion as (3.2.3), the second term in (3.2.17)

becomes∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥g(s,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
G

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥2

2

ds
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≤3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥g(s,X−kτs )− g(i∆t,X−kτs )
∥∥2

2
ds

+ 3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥g(i∆t,X−kτs )− g(i∆t,X−kτ−kτ+i∆t)−
∫ s

i∆t−kτ
g
∂g

∂x
dWυ

∥∥∥∥2

2

ds

+ 3

∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ
g
∂g

∂x
(X−kτ−kτ+i∆t)−G

(1)
i (X−kτ−kτ+i∆t)dWυ

∥∥∥∥2

2

ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
2(C2

0 + K̂11) |s− i∆t+ kτ |2 + C∆t |s− i∆t+ kτ | ds

≤K̂12 (∆t)3 .

The third term follows from the global Lipschitz condition∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥g(i∆t,X−kτ−kτ+i∆t)− g(i∆t, X̂−kτ−kτ+i∆t)
∥∥∥2

2
ds

≤β2
2∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
.

Using Itô isometry to estimate the last term∫ (i+1)∆t−kτ

i∆t−kτ

∥∥∥∥∫ s

i∆t−kτ

[
G

(1)
i (X−kτ−kτ+i∆t)−G

(1)
i (X̂−kτ−kτ+i∆t)

]
dWυ

∥∥∥∥2

2

ds

≤
∫ (i+1)∆t−kτ

i∆t−kτ
(2K∗2)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
|s− i∆t+ kτ | ds

≤K̂13(∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.

Conclude the above results to obtain

E
[
BT

2 B2

]
≤K̂14 (∆t)3 +

(1 + µ)β2
2∆t

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2

+ K̂13(∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.

The fifth term of (3.2.15) can be estimate as follows

E
[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T ( eA∆t

1− α∆t

)(
eA∆t − I − A∆t

1− α∆t

)(
X̂−kτ−kτ+i∆t

)]
≤2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2

1
2
|A2| (∆t)2

(1− α∆t)2

∥∥∥X̂−kτ−kτ+i∆t

∥∥∥
2

≤K̂15 (∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.
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To estimate the sixth term of (3.2.15),

E
[
2

((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B1

]
=E

[
2
(
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t
− I + A∆t

1− α∆t

)
B1

]
+ E

[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T (I + A∆t

1− α∆t

)
B1

]
.

These two terms are considered separately,

E
[
2
(
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t
− I + A∆t

1− α∆t

)
B1

]
≤2
∥∥X−kτ−kτ+i∆t

∥∥
2

∣∣1
2
A2 (∆t)2

∣∣
1− α∆t

‖B1‖2

≤K̂16(∆t)4 +

√
1 + µβ1K̂17(∆t)3

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2
.

And,

E
[
2
(
X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

)T (I + A∆t

1− α∆t

)
B1

]

≤
2

√
K̂10(∆t)2

1− α∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥
2

(1 + ∆t |A|)

+
2
√

1 + µβ1∆t

(1− α∆t)2

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
(1 + ∆t |A|)

+ 2K̂9(∆t)3/2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
(1 + ∆t |A|) .

We use the conditional expectation to eliminate the seventh term

E
[((

X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
B2

]
=E

[((
X−kτ−kτ+i∆t

)T ( eA∆t

1− α∆t

)
−
(
X̂−kτ−kτ+i∆t

)T (I + A∆t

1− α∆t

))
E
[
B2|F i∆t−kτ

]]
=0.

For the last term,

E
[
2BT

1 B2

]
≤ 2

∥∥BT
1

∥∥
2
· ‖B2‖2

≤ K̂18(∆t)7/2 + K̂19(∆t)3/2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
.
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Combining all the estimation above, we conclude the inequality with constants∣∣∣X−kτ−kτ+(i+1)∆t − X̂
−kτ
−kτ+(i+1)∆t

∣∣∣2
(1− α∆t)2 −

∣∣∣X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∣∣∣2
≤

(
(1 + µ)β2

2∆t

(1− α∆t)2 +
2
√

(1 + µ)β1∆t

(1− α∆t)2
+ K̂20(∆t)3/2

)∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2

+ K̂21 (∆t)3 + K̂22(∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
.

Now we notice that the term
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
has coefficients, the largest

of which contains a constant multiplied by ∆t. The largest free term contains a

constant multiplied by (∆t)3. Choosing µ and ∆t small enough and applying Young’s

inequality for the term (∆t)2
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥
2
, and from (3.2.14) we get

(1− α∆t)−2M
∥∥∥X−kτ−kτ+M∆t − X̂

−kτ
−kτ+M∆t

∥∥∥2

2

≤
M−1∑
i=0

(1− α∆t)−2i

(
K̂23∆t

∥∥∥X−kτ−kτ+i∆t − X̂
−kτ
−kτ+i∆t

∥∥∥2

2
+ K̂24(∆t)3

)

≤K̂25(∆t)2(1− α∆t)−2M + K̂23(∆t)
M−1∑
i=0

(1− α∆t)−2i
∥∥∥X−kτ−kτ+i∆t − X̂

−kτ
−kτ+i∆t

∥∥∥2

2
,

(3.2.18)

where

K̂23 =
(1 + µ)(2β1 + β2

2 + ε)

(1− α∆t)2

K̂25 =
K̂24(1− α∆t)2

2α∆t− α2 (∆t)2 (∆t) =
K̂24(1− α∆t)2

2α− α2 (∆t)
.

Here µ, ε and the time step ∆t are chosen small enough such that

K̂23∆t+ 1(1− α∆t)2 < 1. (3.2.19)

Now using the discrete time Gronwall inequality, from (3.2.18), we have∥∥∥X−kτ−kτ+M∆t − X̂
−kτ
−kτ+M∆t

∥∥∥2

2

≤K̂25(∆t)2 + K̂25K̂23(∆t)2
1−

((
1 + K̂23∆t

)
(1− α∆t)2

)M
1−

(
1 + K̂23∆t

)
(1− α∆t)2
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≤K̂26(∆t)2.

We can find a constant K̂26 which is independent of M and ∆t. We take M = N ,

where N∆t = kτ , then

lim sup
k→∞

∥∥∥X−kτ0 − X̂−kτ0

∥∥∥
2

= lim sup
N→∞

∥∥∥X−kτ−kτ+N∆t − X̂
−kτ
−kτ+N∆t

∥∥∥
2
≤
√
K̂26∆t.

Remark 3.2.7. The reason we applied modified Milstein scheme instead of the clas-

sical one is because the local inaccuracy of the estimation for function f would de-

crease the order of error for E[BT
1 B1]. The corresponding consequence is the coeffi-

cient K̂23 in Gronwall inequality would involve more terms, which leads to the failure

of inequality (3.2.19). It is not a problem for finite horizon as the constant C(T )

could be T -dependent, where T is the length of the approximation. To guarantee the

convergence of the random periodic solution, we need to find a time independent

scheme for the estimation. To avoid the complexity of modify the dissipative condi-

tion, our choice is to introduce the higher order terms to eliminate the influence of

the inaccuracy from the estimation of the function f .

We have proved the estimation of error from−kτ to 0 as k →∞ can be controlled

under the order 1 of the time-step. And the upper bound is uniform in time. The

following theorem will give us the more general result, which is from −kτ to time r.

Let X̂−kτr , r > 0 be given by (3.2.9).

Theorem 3.2.8. Assume Conditions (A), (1.a) and (2). We choose ∆t = t/n for

some n ∈ N, N = kn and N ′ is the unique integer such that N ′∆t ≤ r, (N ′+1)∆t >

r for r ∈ [0, T ]. If X−kτr is the exact solution while X̂−kτr is the numerical solution

given by (3.2.9). Then there exists a constant K̃ > 0 such that for any sufficiently

small fixed ∆t,

lim sup
k→∞

∥∥∥X−kτr − X̂−kτr

∥∥∥
2
≤ K̃∆t,

for all r ∈ [0, T ], where K̃ is independent of ∆t.

Proof. According to the semi-flow property, we have

X−kτr (ω)− X̂−kτr (ω) =X0
r (ω) ◦X−kτ0 (ω)− X̂0

r (ω) ◦ X̂−kτ0 (ω),
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where X̂0
r is finite time Milstein approximation of solution of (2.0.1) from 0 to r and

X̂−kτ0 is defined as before. So,∥∥∥X−kτr − X̂−kτr

∥∥∥
2
≤
∥∥∥X0

r ◦X−kτ0 −X0
r ◦ X̂−kτ0

∥∥∥
2

+
∥∥∥X0

r ◦ X̂−kτ0 − X̂0
r ◦ X̂−kτ0

∥∥∥
2
. (3.2.20)

For the first term on the right-hand side, by Theorem 3.2.6, we have∥∥∥X−kτ0 − X̂−kτ0

∥∥∥ ≤ K∆t.

By the continuity of X0
r (·) with respect to initial values in L2(Ω) ([31]), then∥∥∥X0

r ◦X−kτ0 −X0
r ◦ X̂−kτ0

∥∥∥
2
≤ C

∥∥∥X−kτ0 − X̂−kτ0

∥∥∥
2
≤ C5∆t,

where C5 is independent of ∆t. For the second term on the right-hand side of (3.2.20),

it is finite time Milstein approximation with same initial value. By Theorem 10.3.5

in Kloeden and Platen [29], there exists a constant C6 > 0 such that for sufficiently

∆t > 0, ∥∥∥X0
r ◦ X̂−kτ0 − X̂0

r ◦ X̂−kτ0

∥∥∥
2
≤ C6∆t,

where the choice of C6 is independent of ∆t. The result follows by taking K̃ =

C5 + C6.

Corollary 3.2.9. If we denote by X∗r and X̂∗r the exact and numerical approximat-

ing random periodic solution of equation (2.0.1) were given in Theorem 2.2.6 and

Theorem 3.1.4 respectively, then∥∥∥X∗r − X̂∗r∥∥∥
2
≤ K̃
√

∆t.

Proof. The result follows from∥∥∥X∗r − X̂∗r∥∥∥
2
≤ lim sup

k→∞

[∥∥X∗r −X−kτr

∥∥
2

+
∥∥∥X−kτr − X̂−kτr

∥∥∥
2

+
∥∥∥X̂−kτr − X̂∗r

∥∥∥
2

]
.

Example 3.2.10. To illustrate the errors in Theorems 3.1.7 and 3.2.8, we simulate

the random periodic solution of Example 3.1.5 with 2000 different noise realisations

by both Euler-Maruyama method and modified Milstein method.
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For the approximation of the increments ∆W i and ∆Zi, we use the method of

Kloeden and Platen in [29] as follows,

∆W i = W 1
−kτ+(i+1)∆t −W 1

−kτ+i∆t,

∆Zi =
1

2
∆t

[(
W 1
−kτ+(i+1)∆t −W 1

−kτ+i∆t

)
+

1√
3

(
W 2
−kτ+(i+1)∆t −W 2

−kτ+i∆t

)]
,

where W 1 and W 2 are two independent Wiener processes.

We then apply Monte Carlo method to obtain the root mean square errors between

the exact random periodic solution and the respective numerical schemes with 12

different step sizes:

1× 10−5, 2× 10−5, 3× 10−5, 4× 10−5,

1× 10−4, 2× 10−4, 3× 10−4, 4× 10−4,

1× 10−3, 2× 10−3, 3× 10−3, 4× 10−3,

where the exact one is given explicitly as

X∗t =

∫ t

−∞
e−(π+ 1

2
)(t−s)+Wt−Ws sin(πs)ds.

The relationship between the root mean square errors and the step size is shown in the

log-log plot Fig. 3.3. The difference of the orders of convergence between the Euler-

Maruyama method and Milstein method is clear from the numerical simulations.

3.3 Periodic measures

Let P(Rm) denote all probability measures on Rm. For P1, P2 ∈ P(Rm), define

metric dL as follows:

dL(P1, P2) = sup
ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)P1(dx)−
∫
Rm

ϕ(x)P2(dx)

∣∣∣∣ ,
where

L = {ϕ : Rm → R : |ϕ(x)− ϕ(y)| ≤ |x− y| and |ϕ(·)| ≤ 1}.

From the result of Ikeda and Watanabe [25], it is not difficult to prove that the

metric dL is equivalent to the weak topology. This useful observation was made by

Yuan and Mao [53].
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Figure 3.3: Root mean square error versus step size as log-log plot for the SDE

(3.1.11)
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We can define the transition probability of the semi-flow u which is generated

by the solution of (2.0.2) as follows:

P (t+ s, s, ξ,Γ) := P ({ω : u(t+ s, s, ω)ξ ∈ Γ}) = P (Xs
t+s(ξ) ∈ Γ), (3.3.1)

for any Γ ∈ B(Rm). For any ϕ being bounded and measurable

P (t+ s, s)ϕ(ξ) =

∫
Rm

P (t+ s, s, ξ, dη)ϕ(η) = Eϕ(Xs
t+s(ξ))

defines a semigroup satisfying

P (t+ s+ r, s+ r) ◦ P (s+ r, s) = P (t+ s+ r, s), r, t ≥ 0, s ∈ R.

Recall the following definition of periodic measure given in [17] .

Definition 3.3.1. ([17]) The measure function ρ· : R → P(Rm) is called periodic

measure if it satisfies for any s ∈ R, t ≥ 0, and Γ ∈ B(Rm),

ρs+τ = ρs,

∫
Rm

P (t+ s, s, x,Γ)ρs(dx) = ρt+s(Γ).

From Theorem 2.2.6, we know that the random periodic solution of (2.0.2) exists.

So by the result in [17], we know that the periodic measure ρ. exists, which can be

defined as the law of random periodic solutions, i.e.

ρr(Γ) = P (X∗r ∈ Γ). (3.3.2)

Similarly, we can define the transition probability of the discrete semi-flow û

from Euler-Maruyama scheme by

P̂ (t+ s, s, ξ,Γ) := P ({ω : û(t+ s, s, ω)ξ ∈ Γ}) = P (X̂s
t+s(ξ) ∈ Γ). (3.3.3)

For any ϕ being bounded and measurable

P̂ (t+ s, s)ϕ(ξ) =

∫
Rm

P̂ (t+ s, s, ξ, dη)ϕ(η) = Eϕ(X̂s
t+s(ξ))

defines a semigroup satisfying

P̂ (t+ s+ r, s+ r) ◦ P̂ (s+ r, s) = P̂ (t+ s+ r, s), r, t ≥ 0, s ∈ R,

Similar to the result in [17], the measure function defined by

ρ̂r(Γ) = P (X̂∗r ∈ Γ), (3.3.4)
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is a periodic measure for Markov semigroup P̂ (t+s, s). It satisfies for any s ∈ R, t ≥
0, and Γ ∈ B(Rm),

ρ̂s+τ = ρ̂s,

∫
Rm

P̂ (t+ s, s, x,Γ)ρ̂s(dx) = ρ̂t+s(Γ).

We have following error estimate of ρ. and ρ̂.. Consider the Euler-Maruyama

scheme (3.1.1) first.

Theorem 3.3.2. Assume Conditions (A), (1) and (2). Then periodic measures

ρ. and ρ̂. of the Markov semigroup generated by the exact solution of (2.0.1) and

the approximation (3.1.1) are weak limits of transition probabilities along integral

multiples of period, i.e.

P (r,−kτ, ξ)→ ρr, P̂ (r,−kτ, ξ)→ ρ̂r, as k→∞, (3.3.5)

weakly and the error estimate is

dL(ρr, ρ̂r) ≤ K̃
√

∆t, (3.3.6)

where K̃ is independent of ∆t and r.

Proof. To prove (3.3.5), by (3.3.1), (3.3.2), Theorem 2.2.6 and Jensen’s inequality,

we have

dL(P (r,−kτ, ξ), ρr)

= sup
ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)P (r,−kτ, ξ, dx)−
∫
Rm

ϕ(x)ρr(dx)

∣∣∣∣
= sup

ϕ∈L

∣∣E[ϕ(X−kτr )− ϕ(X∗r )]
∣∣

≤ sup
ϕ∈L

E|ϕ(X−kτr )− ϕ(X∗r )|

≤ E
∣∣X−kτr −X∗r

∣∣
≤

∥∥X−kτr −X∗r
∥∥

2

→ 0,

as k → ∞. So P (r,−kτ, ξ) → ρr weakly as k → ∞ from the well known result in

[25]. Similarly, we can have for the discrete system, P̂ (r,−kτ, ξ) → ρ̂r weakly as

k → ∞. Now we consider the metric between these two periodic measures ρ. and

ρ̂.,

dL(ρr, ρ̂r)
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= sup
ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)ρr(dx)−
∫
Rm

ϕ(x)ρ̂r(dx)

∣∣∣∣
≤ sup

ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)ρr(dx)−
∫
Rm

ϕ(x)P (r,−kτ, ξ, dx)

∣∣∣∣
+ sup

ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)P (r,−kτ, ξ, dx)−
∫
Rm

ϕ(x)P̂ (r,−kτ, ξ, dx)

∣∣∣∣ (3.3.7)

+ sup
ϕ∈L

∣∣∣∣∫
Rm

ϕ(x)P̂ (r,−kτ, ξ, dx)−
∫
Rm

ϕ(x)ρ̂r(dx)

∣∣∣∣
= sup

ϕ∈L

∣∣E[ϕ(X∗r )− ϕ(X−kτr )]
∣∣+ sup

ϕ∈L

∣∣∣E[ϕ(X−kτr )− ϕ(X̂−kτr )]
∣∣∣

+ sup
ϕ∈L

∣∣∣E[ϕ(X̂−kτr )− ϕ(X̂∗r )]
∣∣∣

≤E
∣∣X∗r −X−kτr

∣∣+ E
∣∣∣X−kτr − X̂−kτr

∣∣∣+ E
∣∣∣X̂−kτr − X̂∗r

∣∣∣
≤
∥∥X∗r −X−kτr

∥∥
2

+
∥∥∥X−kτr − X̂−kτr

∥∥∥
2

+
∥∥∥X̂−kτr −X∗r

∥∥∥
2
.

By Theorems 2.2.6, 3.1.4, 3.1.7, we have for any ε > 0, there exists N > 0 such that

when k ≥ N , ∥∥X∗r −X−kτr

∥∥
2
≤ ε

3
,
∥∥∥X̂−kτr −X∗r

∥∥∥
2
≤ ε

3
,

and ∥∥∥X−kτr − X̂−kτr

∥∥∥
2
≤ K̃
√

∆t+
ε

3
.

Then taking k ≥ N in (3.3.7), we have

dL(ρr, ρ̂r) ≤ K̃
√

∆t+ ε.

Note in the above inequality, the left hand side does not depend on k and ε is

arbitrary. So (3.3.6) is obtained.

Remark 3.3.3. There are a number of works about approximation of invariant

measures for SDE using Euler-Maruyama method and Milstein method ([32], [45],

[46], [53]). For finite horizon, the order of weak error with Euler-Maruyama method

was proved to be 1.0, a significant improvement from the order 0.5 in the strong

convergence (c.f. [29]). However, the order of 1.0 is not guaranteed in the infinite

horizon case, see [32] for the case of the invariant measures. On the other hand,

in some work such as [45], [46], the order of error of Euler-Maruyama method was

managed to increase to 1.0 under the non-degenerate condition. Here we do not have

such an assumption, and we have order 0.5 in the weak convergence formulation.
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However, in the case of the modified Milstein method, we will see that the error

is of order 1.0 in the next theorem. Note that the error estimate with the Milstein

scheme is also 1.0 in the weak convergence formulation even in the non-degenerate

case ([45], [46]).

Theorem 3.3.4. Assume Condition (A) and (1.a). Consider the modified Milstein

scheme (3.2.1). Then the periodic measure ρ̂. of the Markov semi-groups generated by

the discretised semi-flow is the weak limit of its transition probability along integral

multiples of period, i.e.

P̂ (r,−kτ, ξ)→ ρ̂r, as k→∞,

weakly and the error estimate between the approximating periodic measure ρ̂. and

the exact periodic measure is

dL(ρr, ρ̂r) ≤ K∗∆t,

where K∗ is independent of ∆t and r.

Proof. The proof is similar to the proof of Theorem 3.3.2, but using Theorem 3.2.8

instead of Theorem 3.1.7.

3.4 Transformation of the periodic SDE

via Lyapunov-Floquet transformation

In this section, we consider the following m-dimensional system

dX t0
t = A(t)X t0

t dt+ f̃(t,X t0
t )dt+ g̃(t,X t0

t )dWt, t ≥ t0, (3.4.1)

with X t0
t0 = ξ. We assume that the matrix A(t) is a continuous τ -periodic m × m

real matrix and the functions f̃ and g̃ are both τ -periodic in time, i.e.

A(t+ τ) = A(t), f̃(t+ τ, ·) = f̃(t, ·), g̃(t+ τ, ·) = g̃(t, ·), for any t ∈ R.

To solve this problem we need to apply the Floquet theorem to transform this

system to a system with the linear part having a time invariant generator.
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3.4.1 The transformation

The well known Floquet theorem can be found in many books, such as [22]. It

says that if Φ(t) is a fundamental matrix solution of the periodic system Ẋ = A(t)X,

then so is Φ(t+ τ). Moreover, there exists an invertible τ -periodic matrix P (t) such

that Φ(t) = P (t)eRt, where R is a constant matrix. The matrix P (t) is called the

Lyapunov-Floquet transformation matrix and X = P (t)Z is called the Lyapunov-

Floquet transformation.

Proposition 3.4.1. Under Lyapunov-Floquet transformation X(t) = P (t)Z(t), the

periodic system (3.4.1) is transformed to the following system with a constant coef-

ficient matrix linear part

dZt0
t = RZt0

t dt+ P (t)−1f̃(t, P (t)Zt0
t )dt+ P (t)−1g̃(t, P (t)Zt0

t )dWt, (3.4.2)

with Zt0
t0 = P (t0)−1ξ.

Proof. The proof follows some elementary calculations.

From the periodicity of P , we know that

Φ(t+ τ) = P (t+ τ)eR(t+τ) = P (t)eRteRτ = Φ(t)eRτ .

Since eR+2πkiI = eRe2πkiI = eR for any k ∈ Z, the constant matrix R is not unique.

It is also not necessarily real, even if eRτ is real. So we need the following corollary

to guarantee such a real constant matrix exists.

Corollary 3.4.2. Let B = R+R
2
, S(t) = Φ(t)e−Bt. Then S(t) is real and 2τ -periodic.

Under the transformation X t0
t = S(t)Zt0

t , the periodic system (3.4.1) is transformed

to the following system with constant coefficient matrix linear part

dZt0
t = BZt0

t dt+ S(t)−1f̃(t, S(t)Zt0
t )dt+ S(t)−1g̃(t, S(t)Zt0

t )dWt, (3.4.3)

with Zt0
t0 = S(t0)−1ξ,

Proof. Because A(t) is real, so the matrix C = eRτ = Φ(τ)Φ−1(0) is real. Thus for

the real matrix B = R+R
2

, C2 = eRτeRτ = e2Bτ . Note S(t) is real since B is real.

And notice that

S(t+ 2τ) = Φ(t+ 2τ)e−B(t+2τ) = Φ(t)C2e−2Bτe−Bt = Φ(t)e−Bt = S(t).
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Then we can obtain the time invariant system in a similar way as in the Corollary

3.4.1. The only difference is that the system with real constant coefficient matrix

linear part becomes 2τ -periodic.

3.4.2 Convergence theorem of the periodic parameter ma-

trix system

Condition (A′). The matrix function A(t) is τ -periodic, the corresponding matrix

B is symmetric with eigenvalues satisfying 0 > λ1 ≥ λ2 ≥ . . . ≥ λm.

Because S(t) is continuous and periodic, we have the boundedness of it. The

periodicity and continuity of S(t)−1 is obtained from the properties of S(t), it is

concluded that S(t)−1 is bounded as well. Thus there exists a constant γ such that

∣∣S(t)−1
∣∣ |S(t)| ≤ γ.

For the periodic parameter matrix system, we give the following condition

Condition (1′). Assume there exists a constant τ > 0 such that for any t ∈ R,

x ∈ Rm, f̃(t+τ, x) = f̃(t, x), g̃(t+τ, x) = g̃(t, x). There exist constant C̃0, β̃1, β̃2 > 0

with β̃1γ + β̃2
2
γ2

2
< |λ1|, such that for any s, t ∈ R and x, y ∈ Rm,∣∣∣f̃(s, x)− f̃(t, y)

∣∣∣ ≤ C̃0 |s− t|1/2 + β̃1 |x− y| ,

|g̃(s, x)− g̃(t, y)| ≤ C̃0 |s− t|1/2 + β̃2 |x− y| .

From this condition it follows that for any x ∈ Rm, the linear growth condition also

holds ∣∣∣f̃(t, x)
∣∣∣ ≤ β̃1 |x|+ C̃1, |g̃(t, x)| ≤ β̃2 |x|+ C̃2,

where the constants C̃1, C̃2 > 0, which are independent of time t.

Theorem 3.4.3. Assume that Conditions (A′), (1′). Then there exists a unique

random periodic solution X∗r ∈ L2(Ω) of period 2τ such that for any fixed initial

value ξ(ω), the solution of (3.4.1) satisfies

lim
k→∞

∥∥X−2kτ
r (ξ)−X∗r

∥∥
2

= 0.



72 CHAPTER 3. STRONG APPROXIMATIONS

Proof. We only need to verify that the corresponding time invariant system

dZt0
t = BZt0

t dt+ f
(
t, Zt0

t

)
dt+ g

(
t, Zt0

t

)
dWt, (3.4.4)

with Zt0
t0 = S(t0)−1ξ, where

f (t, x) = S(t)−1f̃(t, S(t)x), g (t, x) = S(t)−1g̃(t, S(t)x),

satisfies the conditions of Theorem 2.2.6. It is easy to see that

f(t+ 2τ, x) = f(t, x), g(t+ 2τ, x) = g(t, x).

For Condition (1), the largest eigenvalue of the matrix B is λ1. By the Lipschitz

condition on function f̃ and g̃, we have following result in the time invariant system

|f(t, x)− f(t, y)| ≤ β̃1γ |x− y| .

This means the function f will preserve the Lipschitz property with constant β1 =

β̃1γ. Similarly we can prove that the function g possesses the Lipschitz condition

with constant β2 = β̃2γ. Meanwhile, from Condition (1′), we have

β1 +
β2

2

2
< |λ1| .

Moreover, for any x ∈ Rm,

|f(t, x)| =
∣∣∣S(t)−1f̃(t, S(t)x)

∣∣∣ ≤ β̃1

∣∣S(t)−1
∣∣ |S(t)x|+

∣∣S(t)−1
∣∣ C̃1 ≤ β1 |x|+ C1.

Therefore we can verify the linear growth property of f and g with the constants

C1, C2 > 0. The constants β1 and β2 are both independent of time t. The initial

value of the time invariant system will preserve the boundedness because of the

boundedness of S(t)−1. According to Theorem 2.2.6, there exists a random periodic

solution Z∗r ∈ L2(Ω) with period 2τ such that

lim
k→∞

∥∥Z−2kτ
r (ξ)− Z∗r

∥∥
2

= 0.

It turns out that

lim
k→∞

∥∥X−2kτ
r (ξ)−X∗r

∥∥
2
≤ ‖S(r)‖ lim

k→∞

∥∥Z−2kτ
r (ξ)− Z∗r

∥∥
2

= 0.

The 2τ -periodicity of S(r) and Z−2kτ
r give us the random periodicity of solution

X∗(r, ω). So X∗r is a random periodic solution of (3.4.1) of period 2τ .
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3.4.3 Numerical approximation scheme and error estimate

With the existence of the random periodic solutions, we now consider the scheme

to simulate the process Z of equation (3.4.3). Similar as before, we can consider

strong and weak convergence in Euler-Maruyama and modified Milstein methods.

We firstly consider strong convergence in the Euler-Maruyama scheme

Ẑ−2kτ
−2kτ+(i+1)∆t

=Ẑ−2kτ
−2kτ+i∆t +

[
BẐ−2kτ

−2kτ+i∆t + S(i∆t)−1f̃(i∆t, S(i∆t)Ẑ−2kτ
−2kτ+i∆t)

]
∆t

+ S(i∆t)−1g̃(i∆t, S(i∆t)Ẑ−2kτ
−2kτ+i∆t)

(
W−2kτ+(i+1)∆t −W−2kτ+i∆t

)
. (3.4.5)

Theorem 3.4.4. Assume Conditions (A′), (1′) and (2), S(t) ∈ C1(R). Then there

exists Ẑ∗r , which is a random periodic solution of period 2τ for discrete random

dynamical system generated from (3.4.4), such that for any r ∈ [0, T ]

lim
k→∞

∥∥∥X−2kτ
r − S(r)Ẑ−2kτ

r

∥∥∥
2
≤ K̃
√

∆t,

and ∥∥∥X∗r − S(r)Ẑ∗r

∥∥∥
2
≤ K̃
√

∆t,

for a constant K̃ > 0, which is independent of ∆t, where X∗r is the exact random

periodic solution of (3.4.1).

Proof. By Theorem 3.1.4, there exists Ẑ∗r ∈ L2(Ω) such that

lim sup
k→∞

∥∥∥Ẑ−2kτ
r − Ẑ∗r

∥∥∥
2

= 0,

where Ẑ∗r is the random periodic solution of period 2τ for discrete random dynamical

system generated from (3.4.4). According to Theorem 3.1.7, we have the conclusion

that there exists a constant K1 > 0 such that

lim
k→∞

∥∥∥X−2kτ
r − S(r)Ẑ−2kτ

r

∥∥∥
2
≤ K1 ‖S(r)‖2

√
∆t̃ ≤ K̃

√
∆t.

Thus it follows that∥∥∥X∗r − S(r)Ẑ∗r

∥∥∥
2

≤ lim sup
k→∞

∥∥X∗r −X−2kτ
r

∥∥
2

+ lim sup
k→∞

∥∥∥X−2kτ
r − S(r)Ẑ−2kτ

r

∥∥∥
2

+ lim sup
k→∞

∥∥∥S(r)Ẑ−2kτ
r − S(r)Ẑ∗r

∥∥∥
2
≤ K̃
√

∆t.
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It is not hard to obtain the result for the modified Milstein scheme with Theorem

3.2.5 and Theorem 3.2.8.



Chapter 4

Weak approximations

4.1 Lifts of semi-flows, random periodic paths and

periodic measures

Denote by (Ω,F , P, (θ(s))s∈R) a metric dynamical system and θ(s) : Ω → Ω is

assumed to be measurably invertible for all s ∈ R. Denote ∆ := {(t, s) ∈ R2, s ≤ t}.
The lift of a stochastic semi-flow u : ∆×Ω×X→ X to a cocycle on a cylinder and

the corresponding lift of a random periodic path are introduced in following lemma.

Lemma 4.1.1. ([17]) We lift the τ -periodic stochastic semi-flow u : ∆×Ω×X→ X
to a random dynamical system on a cylinder X̃ := [0, τ)× X by the following:

Φ̃(t, ω)(s, x) = (t+ s mod τ, u(t+ s, s, θ(−s)ω)x) , (4.1.1)

for any (s, x) ∈ X̃, t ∈ R+ and almost every ω ∈ Ω.

Then Φ̃ : R+ × Ω × X̃ → X̃ is a cocycle on X̃ over the metric dynamical system

(Ω,F , P, (θ(s))s∈R).

Moreover, assume Y : R×Ω→ X is a random periodic solution of the semi-flow

u with period τ > 0. Then Ỹ : R× Ω→ X̃ defined by

Ỹ (s, ω) := (s mod τ, Y (s, ω)), (4.1.2)

is a random periodic solution of the cocycle Φ̃ on X̃.

Defined the skew product Θ̄ : ∆ × Ω̄ → Ω̄ of the metric dynamical system

(Ω,F , P, (θ(s))s∈R) and the semi-flow u by

Θ̄(t+ s, s)(ω, x) = (θ(t)ω, u(t+ s, s, θ(−s)ω)x), t ∈ R+, s ∈ R. (4.1.3)

75
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Here Ω̄ = Ω× X.

We can verify that for any t1, t2 ∈ R+, s ∈ R,

Θ̄(t2 + t1 + s, t1 + s) ◦ Θ̄(t1 + s, s) = Θ̄(t2 + t1 + s, s). (4.1.4)

Theorem 4.1.2. [17] Assume the τ -periodic stochastic semi-flow u : ∆×Ω×X→ X
has a random periodic solution Y : R× Ω→ X. Define

(µs)ω(Γ) = δY (s,θ(−s)x)(Γ).

Then

µs(dx, dω) = (µs)ω(dx)× P (dω)

is a periodic measure of the skew product Θ̄ on the product measurable space (Ω ×
X,F ⊗ B(X)), i.e.

Θ̄(t+ s, s)µs = µt+s, µτ+s = µs,

for all t ∈ R+, s ∈ R, which is equivalent to

u(t+ s, s, θ(−s)ω)(µs)ω = (µt+s)θ(t)ω and (µτ+s)ω = (µs)ω,

for all t ∈ R+, s ∈ R, ω ∈ Ω.

Consider the case when u(t + s, s, ·) is a Markovian semi-flow on a filtered dy-

namical system (Ω,F , P, (θt)t∈R, (F ts)s≤t), i.e. for any s, t, u ∈ R, s ≤ t, we have

θ−1
u F ts = F t+us+u and u(t + s, s, ·) is independent of F s−∞. The random periodic solu-

tion Y (s, ω) is assumed to be adapted, i.e. for any s ∈ R, Y (s, ·) is measurable with

respect to F s−∞ :=
∨
r≤sF sr .

Denote the transition probability of u by

P (t+ s, s, x,Γ) = P ({ω : u(t+ s, s, ω)x ∈ Γ}),

for any Γ ∈ B(X), t ∈ R+, s ∈ R. From (1.0.2) and the measure preserving property

of θτ , the transition property P (t+ s, s, x,Γ) satisfies the periodic relation

P (t+ s+ τ, s+ τ, x,Γ) = P (t+ s, s, x,Γ), (4.1.5)

for any Γ ∈ B(X), t ∈ R+, s ∈ R.
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For any probability measure ρ on (X,B(X)), define

(P ∗(t+ s, s)ρ)(Γ) =

∫
X
P (t+ s, s, x,Γ)ρ(dx)

for any Γ ∈ B(X), t ∈ R+, s ∈ R. Then the definition of periodic measure of the

periodic Markov semigroup is given as follows,

Definition 4.1.3. [17] The measure valued function ρ : R → P(X) is called a τ -

periodic measure of the τ -periodic Markov semigroup P (t + s, s, x,Γ), t ≥ 0, if for

any s ∈ R, t ∈ R+,

P ∗(t+ s, s)ρs = ρt+s, ρs+τ = ρs. (4.1.6)

One direction of the “equivalence” of random periodic paths and periodic mea-

sures are illustrated in the following theorem.

Theorem 4.1.4. [17] Assume that the τ -periodic Markovian stochastic semi-flow

u : ∆× Ω×X→ X has an adapted random periodic solution Y : R× ω → X. Then

it has a periodic measure ρs on (X,B(X)) defined by

ρs(Γ) = EδY (s,ω)(Γ) = P ({ω : Y (s, ω) ∈ Γ}), Γ ∈ B(X) s ∈ R. (4.1.7)

Moreover, for any t ∈ R,

E(m{s ∈ [0, τ) : Y (s, ·) ∈ Γ}) = E(m{s ∈ [t, t+ τ) : Y (s, ·) ∈ Γ}). (4.1.8)

This theorem gives us the fact that if we have a random periodic solution, then

the law of the r.p.s. is a periodic measure. On the other direction, when there is a

periodic measure, one can construct the corresponding random periodic solution in

an enlarged probability space, details of which can be found in Feng and Zhao [17].

For the weak approximation, we consider following non-autonomous stochastic

differential equation on Rd.

dX(t) = b(t,X(t))dt+ σ(t,X(t))dWt,

X(s) = x,

where s ≤ t,W is a d1-dimensional Brownian motion on a probability space (Ω,F ,P).

It is well-known that the semi-group is given by

u(t+ s, s, x) = P (t+ s, s)φ(x) = Eφ(X(t+ s, s, x)), t ≥ 0.



78 CHAPTER 4. WEAK APPROXIMATIONS

Here we assume the existence of the periodic measure {ρs}s∈R of the Markovian

semi-group. By the consideration on the lifted cylinder X̃ = [0, τ) × Rd in [17], the

lifted cocycle with coordinates X̃ = (s, x) is given by

X̃(t)(x) = (t+ s mod τ,X(t+ s, s, x(θ(−s)ω))),

where u is corresponding semi-flow. We follow the idea of the lifted case

dX̃(t) = b̃(X̃(t))dt+ σ̃(X̃(t))dW̃ (t),

where

X̃(0)x̃ = x̃ = (s, x), W̃ = (W̃0,W ),

W̃0 is a one-dimensional Brownian motion which is independent of W ,

b̃(X̃) =

(
1

b(X̃)

)
=

(
1

b(X̃0, X)

)
,

and

σ̃(X̃) =

(
0 0

0 σ(X̃)

)
=

(
0 0

0 σ(X̃0, X)

)
.

The infinitesimal generator of the process X(t) is given by

L̃ =
d∑
i=0

b̃i(x̃)
∂

∂x̃i
+

1

2

d∑
i,j=0

ãij(x̃)
∂2

∂x̃i∂x̃j
,

=
d∑
i=1

bi(s, x)
∂

∂xi
+

1

2

d∑
i,j=1

aij(s, x)
∂2

∂xi∂xj
+

∂

∂s
,

where a(s, x) = σ(s, x)σ∗(s, x).

4.2 Assumptions

To obtain our result, we give the following conditions:

Condition (3) The functions b, σ are of class C∞ with bounded derivatives of

any order. The function σ is bounded. The function b and σ are τ -period with respect

to time, i.e.

b(t+ τ, x) = b(t, x), σ(t+ τ, x) = σ(t, x).
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It is easy to obtain the periodicity of function a(t+ τ, x) = a(t, x).

Condition (4) The infinitesimal generator L̃ is uniformly elliptic with respect

to x, i.e. there exists a positive constant α such that for any t, x, y ∈ Rd, we have∑
i,j

aij(t, y)xixj ≥ α |x|2 .

Condition (5) We assume the weak dissipative condition for the SDE, i.e. there

exists a strictly positive constant β and a compact set K such that for any t and any

x ∈ Kc, we have

x · b(t, x) ≤ −β |x|2 .

4.3 Preliminary results and notations

Proposition 4.3.1. Assume Conditions (3) and (5). Then for any n ∈ N, there

exist strictly positive constants Cn and γn, such that for any t > 0 and x ∈ Rd, we

have

E |Xs,x
t+s|

n ≤ Cn(1 + |x|n exp(−γnt)).

Proof. As the constants in Conditions (3) and (5) are uniform with respect to initial

condition, for simplicity, we omit them in this proof. We temporarily denote by

Xt := Xs,x
t+s, and let Yt = |Xt|2, then we have

dYt =d |Xt|2 = 2XtdXt + dXtdXt

=2Xtb(t,Xt)dt+ 2Xtσ(t,Xt)dWt + σ2(t,Xt)dt.

Apply the Itô’s formula on eδt(Yt)
n
2 to obtain

deδt(Yt)
n
2 =δeδt(Yt)

n
2 dt+ eδtd(Yt)

n
2

=δeδt(Yt)
n
2 dt+

n

2
eδt(Yt)

n
2
−1dYt +

n

2

(n
2
− 1
)
eδt

(Yt)
n
2
−2

2
dYtdYt

=δeδt |Xt|n dt+ neδt |Xt|n−1 b(t,Xt)dt+ neδt |Xt|n−1 σ(t,Xt)dWt

+
(n

2
+ 4 · n

4

(n
2
− 1
))

eδt |Xt|n−2 σ2(t,Xt)dt.
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By Condition (3), we denote the bound of function σ(t, x) by Cσ, therefore, together

with Condition (5), we have

deδt |Xt|n =δeδt |Xt|n dt+ neδt |Xt|n−1 b(t,Xt)dt+ neδt |Xt|n−1 σ(t,Xt)dWt

+
n(n− 1)

2
eδt |Xt|n−2 σ2(t,Xt)dt

≤ (δ − nβ) eδt |Xt|n dt+ nCσe
δt |Xt|n−1 dWt +

(
n

2

)
Cσe

δt |Xt|n−2 dt.

Take expectation on both side after integrating from 0 to T , together with Young’s

inequality

|Xt|n−2 ≤ (|Xt|n−2 ε)
n
n−2

n
n−2

+

(
1
ε

)n
2

n
2

=
n− 2

n
ε

n
n−2 |Xt|n +

2

nε
n
2

,

we have

eδTE |XT |n ≤ |x|n + (δ − nβ)

∫ T

0

eδtE |Xt|n dt+

(
n

2

)
C2
σ

∫ T

0

eδtE |Xt|n−2 dt

≤ |x|n +
(n− 1)C2

σ

δε
n
2

(eδT − 1)

+

(
δ − nβ +

(
n− 1

2

)
C2
σε

n
n−2

)∫ T

0

eδtE |Xt|n dt. (4.3.1)

We denote by

K6 = δ − nβ +

(
n− 1

2

)
C2
σε

n
n−2

and choose the constant

ε <

(
2β

(n− 1)C2
σ

)n−2
n

to satisfy K6−δ < 0. The choice of the constant δ would also guarantee that K6 > 0.

Then we apply the Gronwall’s inequality on (4.3),

eδTE |XT |n

≤ |x|n +
(n− 1)C2

σ

δε
n
2

(eδT − 1) +K6

∫ T

0

eδtE |Xt|n dt

≤ |x|n +
(n− 1)C2

σ

δε
n
2

(eδT − 1) +K6

∫ T

0

(
|x|n +

(n− 1)C2
σ

δε
n
2

(eδt − 1)

)
e
∫ T
t K6drdt

= |x|n +
(n− 1)C2

σ

δε
n
2

(eδT − 1) +K6e
K6T

(
|x|n − (n− 1)C2

σ

δε
n
2

)∫ T

0

e−K6tdt
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+
(n− 1)K6C

2
σ

δε
n
2

eK6T

∫ T

0

e(δ−K6)tdt

=
(n− 1)C2

σ

δε
n
2

eδT + eK6T

(
|x|n − (n− 1)C2

σ

δε
n
2

)
+

(n− 1)K6C
2
σ

δ(δ −K6)ε
n
2

(eδT − eK6T )

= |x|n eK6T +
(n− 1)C2

σ

(δ −K6)ε
n
2

(eδT − eK6T ).

To conclude,

E |XT |n ≤ |x|n e(K6−δ)T +
(n− 1)C2

σ

(δ −K6)ε
n
2

(1− e(K6−δ)T ).

The existence of the positive constant γn is ensured by K6 − δ < 0.

Consider the sequence {Xtn}n∈N with tn = nτ , which is an ergodic Markov chain

with property of contraction out of some set under our assumption.

Proposition 4.3.2. Assume Condition (3), then there exists a constant r > 1 and

a set B(0, R) ⊃ K, such that,

sup
x∈Bc

E
[
r
∣∣Xtn+1

∣∣2 − |Xtn|
2 |Xtn = x

]
< 0.

Proof. Apply the same idea for Proposition 4.3.1 with n = 2. In order to satisfy

E
[
r
∣∣Xtn+1

∣∣2 − |Xtn|
2 |Xtn = x

]
≤
(
|x|2 e(K6−δ)τ + Cβ,σ(1− e(K6−δ)τ )

)
r − |x|2 < 0,

we need

(1− re(K6−δ)τ ) |x|2 > rCβ,σ(1− e(K6−δ)τ ).

As K6 − δ < 0, there always exists a constant r to ensure 1− re(K6−δ)τ > 0 for any

positive constant τ . Then the ball B is determined by taking R >
√

rCβ,σ(1−e(K6−δ)τ )

1−re(K6−δ)τ .

Denote C∞p is the space of the smooth function φ ∈ C∞ with the property that

itself and all its derivatives have at most polynomial growth at infinity. Let the

function φ ∈ C∞p and u(t+ s, s, x) = Eφ(Xs,x
t+s). It is well known that u(t+ s, s, x) is

a classical solution of the PDE:

d

dt
u(t+ s, s, x) = L̃u(t+ s, s, x),

u(s, s, x) = φ(x).
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By the Fokker-Planck equation, we have the density function of periodic measure ρ̃

satisfying:

d

dt
p(s, x) = L̃∗p(s, x) = 0, (4.3.2)

where L̃∗ is the conjugate operator of L̃. The density function of the periodic measure

is smooth with respect to the initial condition by our assumptions.

Consider the spatial differentiation of the solution with respect to the initial

condition. Kunita showed in [30] that the function u(t+ s, s, x) satisfies that for any

order n ∈ N, there exist an integer rn ∈ N such that for any T > 0, ∃Cn(t) > 0,

|Dnu(t+ s, s, x)| ≤ Cn(T )(1 + |x|rn), ∀t < T. (4.3.3)

Therefore the Proposition 4.3.1 gives us the property that the function φ andDnu(t+

s, s, x) belong to L2(Rd+1, ¯̃ρ).

The function 1
τ

∫ τ
0
u(t+ s, s, x)ds has the same spatial derivatives as

1

τ

∫ τ

0

u(t+ s, s, x)ds− 1

τ

∫ τ

0

∫
X
φ(x)p(s, x)dxds,

without loss of generality, in the following sections, we assume that∫
X̃
φ̃(x̃)d ¯̃ρ(x̃) =

1

τ

∫ τ

0

∫
X
φ(x)p(s, x)dxds = 0, (4.3.4)

where φ̃(x̃) = φ(x), and the notation ¯̃ρ denote the average periodic measure, which

is invariant in the case of lifted cocycle.

For simplicity, in the following sections, we may often write ũ(t) or u(t+ s, s) to

represent the function u(t+ s, s, x). We also often write b, a to represent b(s, x) and

a(s, x) as we have the uniform conditions for these functions and any order of their

derivatives in Condition (3). The operators ∂, ∇ and D on function u(t + s, s, x)

always refer to derivatives with respect to spatial coordinates. The derivatives with

respect to initial time will stay as ∂
∂s

. Also, we also denote the infinitesimal generator

by

L̃ = bi∂i +
1

2
aij∂ij +

∂

∂s
.

Remark 4.3.3. By the Proposition 4.3.1, for any compact set K and any n ∈ N
1

τ

∫ τ

0

∫
K

|x|n p(s, x)dxds = lim
t→∞

E(|Xs,x
t+s|

n 1K(Xs,x
t+s)) ≤ Cn,

where Cn is determined from the proposition. Therefore the average periodic measure

has the finite moments of any order.
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4.4 Main results

4.4.1 Estimates on the average of u(t+ s, s) in any ball

Lemma 4.4.1. Assume Conditions (3), (4) and (5), for any ball B, there exists

strictly positive constants C and λ such that for any t > 0 and any x ∈ B,

1

τ

∫ τ

0

|u(t+ s, s, x)| ds ≤ C exp(−λt).

Proof. Consider the Markov chain {Xtn}n∈N with tn = nτ in our model. Its transi-

tion kernel P (kτ + s, s, x,Γ) is irreducible. The existence of small sets to satisfy the

minorization condition can be found in some books (Meyn and Tweedie [34], Num-

merlin [39]). By the Proposition 4.3.2 and Nummerlin’s result, the Markov chain is

geometrically recurrent. Then we follow the result of Tweedie in [49], we have that

for any φ ∈ C∞p with the property (4.3.4), there exist strictly positive constants C

and λ such that for any n,

1

τ

∫ τ

0

∫
X

∣∣Eφ(Xs,x
tn+s)

∣∣ p(s, x)dxds ≤ C exp(−λtn). (4.4.1)

By Proposition 4.3.1, we have that there exist strictly positive constants C0, γ and

a integer N ∈ N such that

|u(t+ s, s, x)| ≤ C0(1 + |x|N exp(−γt)).

Apply this to (4.4.1) to obtain that for any n,

1

τ

∫ τ

0

∫
X
|u(tn + s, s, x)|2 p(s, x)dxds

≤C0

τ

∫ τ

0

∫
X
|u(tn + s, s, x)| (1 + |x|N exp(−γtn))p(s, x)dxds

=
C0

τ

∫ τ

0

∫
X
|u(tn + s, s, x)| p(s, x)dxds

+
C0

τ

∫ τ

0

∫
X
|u(tn + s, s, x)| |x|N exp(−γtn)p(s, x)dxds

≤C0C exp(−λtn) +
C2

0 exp(−γtn)

τ

∫ τ

0

∫
X
(1 + |x|N exp(−γtn)) |x|N p(s, x)dxds

≤C1 exp(−λ1tn). (4.4.2)
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Then we prove the monotonicity of the function 1
τ

∫ τ
0

∫
X |u(t+ s, s, x)|2 p(s, x)dxds

as follows. It is well known that

L̃ |u(t+ s, s)|2

=bi∂i |u(t+ s, s)|2 +
1

2
aij∂ij |u(t+ s, s)|2 +

∂

∂s
|u(t+ s, s)|2

=2u(t+ s, s)L̃u(t+ s, s) + aij∂iu(t+ s, s)∂ju(t+ s, s)

=
d

dt
|u(t+ s, s)|2 + aij∂iu(t+ s, s)∂ju(t+ s, s).

Therefore,

d

dt

(
1

τ

∫ τ

0

∫
X
|u(t+ s, s, x)|2 p(s, x)dxds

)
=

1

τ

∫ τ

0

∫
X

d

dt
|u(t+ s, s, x)|2 p(s, x)dxds

=
1

τ

∫ τ

0

∫
X
L̃ |u(t+ s, s, x)|2 p(s, x)dxds

− 1

τ

∫ τ

0

∫
X
aij(t+ s, x)∂iu(t+ s, s, x)∂ju(t+ s, s, x)p(s, x)dxds.

From the property of density function of the average periodic measure (4.3.2) and

Condition (4), we know that the function satisfies

d

dt

(
1

τ

∫ τ

0

∫
X
|u(t+ s, s, x)|2 p(s, x)dxds

)
=− 1

τ

∫ τ

0

∫
X
aij(t+ s, x)∂iu(t+ s, s, x)∂ju(t+ s, s, x)p(s, x)dxds

≤− α

τ

∫ τ

0

∫
X
|∇u(t+ s, s, x)|2 p(s, x)dxds

≤0.

From the decreasing property of the function and (4.4.2), we take C2 = C1 exp(λ1τ),

then for any kτ ≤ t < (k + 1)τ ,

1

τ

∫ τ

0

∫
X
|u(t+ s, s, x)|2 p(s, x)dxds

≤C1 exp(−λ1kτ) = C2 exp(−λ1(k + 1)τ) ≤ C2 exp(−λ1t). (4.4.3)

The above shows that the exponential contraction of u(t+ s, s, x) under the average

of periodic measure holds for any t. Again we consider the result

d

dt
|u(t+ s, s)|2 = L̃ |u(t+ s, s)|2 − aij∂iu(t+ s, s)∂ju(t+ s, s).
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Multiplying the above inequality with eδt, and integrating the both sides with respect

to the average periodic measure ¯̃ρ, we obtain

eδt
∫
X̃

d

dt
|u(t+ s, s)|2 d ¯̃ρ+ Cae

δt

∫
X̃
|∇u(t+ s, s)|2 d ¯̃ρ ≤ eδt

∫
X̃
L̃ |u(t+ s, s)|2 d ¯̃ρ = 0,

where Ca is the bound of function a = σσ∗, which comes from the boundedness of

function σ. Therefore, taking integration from 0 to T on the both sides, we have∫ T

0

eδt
∫
X̃

d

dt
|u(t+ s, s)|2 d ¯̃ρdt+ Ca

∫ T

0

eδt
∫
X̃
|∇u(t+ s, s)|2 d ¯̃ρdt ≤ 0. (4.4.4)

The integration by parts on the first term of inequality (4.4.4) gives us∫ T

0

eδt
∫
X̃
d |u(t+ s, s)|2 d ¯̃ρ

=eδT
∫
X̃
|u(T + s, s)|2 d ¯̃ρ−

∫
X̃
|u(s, s)|2 d ¯̃ρ− δ

∫ T

0

eδt
∫
X̃
|u(t+ s, s)|2 d ¯̃ρdt,

where we have the initial condition that u(s, s, x) = φ̃(x̃). By the Proposition 4.3.1

and the polynomial growth of the function φ, we have the constant C3 > 0 that∫
X̃

∣∣∣φ̃(x̃)
∣∣∣2 d ¯̃ρ < C3.

If we take δ < λ1, where λ1 comes from (4.4.3), we also have the constant C4 > 0

that for any T and any s ∈ [0, τ)

δ

∫ T

0

eδt
∫
X̃
|u(t+ s, s)|2 d ¯̃ρdt < C4.

Applying these results on (4.4.4) to obtain that for any T and any s ∈ [0, τ),∫ T

0

eδt
∫
X̃
|∇u(t+ s, s)|2 d ¯̃ρdt

≤ 1

Ca

(∫
X̃
|u(s, s)|2 d ¯̃ρ+ δ

∫ T

0

eδt
∫
X̃
|u(t+ s, s)|2 d ¯̃ρdt

)
≤C5. (4.4.5)

Now we consider the following results

d

dt
|∇u(t+ s, s)|2

=2(∂ku(t+ s, s))∂k(
d

dt
u(t+ s, s))
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=2(∂ku(t+ s, s))∂k(L̃u(t+ s, s))

=2(∂ku(t+ s, s))∂k(bi∂iu(t+ s, s)) + 2(∂ku(t+ s, s))∂k(
∂

∂s
u(t+ s, s))

+ (∂ku(t+ s, s))∂k(aij∂iju(t+ s, s))

=2bi(∂ku(t+ s, s))(∂iku(t+ s, s)) + 2(∂kbi)(∂ku(t+ s, s))(∂iu(t+ s, s))

+ 2(∂ku(t+ s, s))
∂

∂s
(∂ku(t+ s, s))

+ aij(∂ku(t+ s, s))(∂ijku(t+ s, s)) + (∂kaij)(∂ku(t+ s, s))(∂iju(t+ s, s)),

and

L̃ |∇u(t+ s, s)|2

=bi∂i(∂ku(t+ s, s))2 +
∂

∂s
(∂ku(t+ s, s))2 +

1

2
aij∂ij(∂ku(t+ s, s))2

=2bi(∂ku(t+ s, s))(∂iku(t+ s, s)) + 2(∂ku(t+ s, s))
∂

∂s
(∂ku(t+ s, s))

+ aij(∂ku(t+ s, s))(∂ijku(t+ s, s)) + aij(∂iku(t+ s, s))(∂jku(t+ s, s)).

Therefore compare the difference between these two expansions, we obtain

d

dt
|∇u(t+ s, s)|2 − L̃ |∇u(t+ s, s)|2

=− aij(∂iku(t+ s, s))(∂jku(t+ s, s)) + 2(∂kbi)(∂ku(t+ s, s))(∂iu(t+ s, s))

+ (∂kaij)(∂ku(t+ s, s))(∂iju(t+ s, s)).

The elliptic condition for aij gives us a constant C5 > 0 such that

−aij(∂iku(t+ s, s))(∂jku(t+ s, s) ≤ −C5

∣∣D2u(t+ s, s)
∣∣2 .

Meanwhile, we apply Young’s inequality to the rest terms with Condition (3) to

obtain

2(∂kbi)(∂ku(t+ s, s))(∂iu(t+ s, s)) + (∂kaij)(∂ku(t+ s, s))(∂iju(t+ s, s))

≤C6ε
∣∣D2u(t+ s, s)

∣∣2 +
C7

ε
|∇u(t+ s, s)|2 ,

where we will choose ε small enough to satisfy −C5 + C6ε < 0.

Hence we have strictly positive constants C7 and C8 such that

d

dt
|∇u(t+ s, s)|2 − L̃ |∇u(t+ s, s)|2 ≤ −C7

∣∣D2u(t+ s, s)
∣∣2 + C8 |∇u(t+ s, s)|2 .
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Here we choose γ < δ and multiply eγt on both sides. After integration with respect

to ¯̃ρ, for any large time T , the integration from 0 to T satisfies the inequality as

follows:∫ T

0

eγt
∫
X̃

d

dt
|∇u(t+ s, s)|2 d ¯̃ρdt−

∫ T

0

eγt
∫
X̃
L̃ |∇u(t+ s, s)|2 d ¯̃ρdt

≤− C7

∫ T

0

eγt
∫
X̃

∣∣D2u(t+ s, s)
∣∣2 d ¯̃ρdt+ C8

∫ T

0

eγt
∫
X̃
|∇u(t+ s, s)|2 d ¯̃ρdt.

Then we apply the result (4.4.5) with γ small enough and the property of L̃ as

(4.3.2) to obtain

eγT
∫
X̃
|∇u(T + s, s)|2 d ¯̃ρ−

∫
X̃
|∇u(s, s)|2 d ¯̃ρ ≤ C9.

By the boundedness of
∫
X̃

∣∣∣∇φ̃∣∣∣2 d ¯̃ρ, we have

1

τ

∫ τ

0

∫
X
|∇u(t+ s, s, x)|2 p(s, x)dxds ≤ C exp(−γt). (4.4.6)

We proved the basic case in the previous part of proof. It is natural that we continue

to prove the induction step in the following content. Assume that for any k ≤ m,

there exist strictly positive constants Ck and γk such that for any t > 0,

1

τ

∫ τ

0

∫
X

∣∣Dku(t+ s, s, x)
∣∣2 p(s, x)dxds ≤ Ck exp(−γkt).

Here we need to compare the expansion of the operators d
dt

and L̃ on the following

term:

|Dmu(t+ s, s, x)|2 =
∑

l(J)=m

(∂Ju(t+ s, s, x))2,

where J is the multi-index with length l(J). We also introduce the multi-indices K

and L for the following relation between them,

d

dt
DJu(t+ s, s, x)

=DJ L̃u(t+ s, s, x)

=∂J

(
bi∂iu(t+ s, s, x) +

∂

∂s
u(t+ s, s, x) +

1

2
aij∂iju(t+ s, s, x)

)
=bi∂J ⋃{i}u(t+ s, s, x) +

∂

∂s
(∂Ju(t+ s, s, x)) +

1

2
aij∂J ⋃{ij}u(t+ s, s, x)
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+
∑

l(K)+l(L)≤2m+1

ΦJ
KL∂Ku(t+ s, s, x)∂Lu(t+ s, s, x).

Here the notation ΦJ
KL contains all the combinations of spatial derivatives on the

functions a and b for respect multi-indices K and L under some specified J . It is

obvious the length of K and L will not exceed m+ 1. The boundedness of each ele-

ments in ΦJ
KL comes from Condition (3). Therefore we will always have the following

result by Young’s inequality with some constants small enough,

d

dt
|Dmu(t+ s, s, x)|2 − L̃ |Dmu(t+ s, s, x)|2

=− aij
(
∂J
⋃
{i}u(t+ s, s, x)

) (
∂J
⋃
{j}u(t+ s, s, x)

)
+

∑
l(K)+l(L)≤2m+1

ΦJ
KL∂Ku(t+ s, s, x)∂Lu(t+ s, s, x)

≤− Cm
1

∣∣Dm+1u(t+ s, s, x)
∣∣2 + Cm

2

∑
k≤m

∣∣Dku(t+ s, s, x)
∣∣2 .

Then we choose a strictly positive constant δm+1 small enough to proceed as the

basic case. Multiplying eδm+1t on both sides and integrating with respect to ¯̃ρ, we

will have the following result after integration from 0 to T and let T tends to ∞:∫ ∞
0

eδm+1t

(∫
X

∣∣Dm+1u(t+ s, s)
∣∣2 d ¯̃ρ

)
dt <∞

Consider a higher order Dm+1u(t+ s, s, x), we have

d

dt

∣∣Dm+1u(t+ s, s, x)
∣∣2 − L̃ ∣∣Dm+1u(t+ s, s, x)

∣∣2
≤− Cm+1

1

∣∣Dm+2u(t+ s, s, x)
∣∣2 + Cm+1

2

∑
k≤m+1

∣∣Dku(t+ s, s, x)
∣∣2 .

By choosing γm+1 < δm+1 and following the same procedure as above, we have that

there exist strictly positive constants Cm+1 and γm+1 such that for any t > 0,

1

τ

∫ τ

0

∫
X

∣∣Dm+1u(t+ s, s, x)
∣∣2 p(s, x)dxds ≤ Cm+1 exp(−γm+1t).

By math induction, we proved the above result holds for any order of spatial deriva-

tives of u(t+ s, s, x).

Since the density function p(s, x) is strictly positive continuous function on any

ball B = B(0, R), we have

1

τ

∫ τ

0

‖∂Ju(t+ s, s)‖2
L2(B) ds ≤

C

τ

∫ τ

0

∫
X
|∂Ju(t+ s, s, x)|2 p(s, x)dxds.
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By the Sobolev embedding Theorem, we have that for any x ∈ B,

1

τ

∫ τ

0

|u(t+ s, s, x)| ds ≤ C exp(−λt),

which is the conclusion of this lemma.

4.4.2 Estimates on the average of u(t+ s, s) in L2(πr)

For our next lemma, we need to introduce the weight πr(s, x) with some integer

r which is determined later,

πr(s, x) =
1

(2 + |x|2 + cos(2πs
τ

))r
.

If we consider the gradient of it,

∇πr(s, x) = − 2rx

2 + |x|2 + cos(2πs
τ

)
πr(s, x),

and the partial derivatives with respect to initial time,

∂

∂s
πr(s, x) =

2πr
τ
sin(2πs

τ
)

2 + |x|2 + cos(2πs
τ

)
πr(s, x),

the following results will be concluded.

For any multi-index J and any integer r, we have a smooth function ψJ,r(s, x)

and ψs,r(s, x) such that,

∂Jπr(s, x) = ψJ,r(s, x)πr(s, x),

∂

∂s
πr(s, x) = ψs,r(s, x)πr(s, x)

where ψJ,r(s, x) → 0 and ψs,r(s, x) → 0 when |x| → +∞. These properties will be

used in the following lemma.

Lemma 4.4.2. Assume Conditions (3), (4) and (5), there exists strictly positive

constants C and λ such that for any t > 0, we have

1

τ

∫ τ

0

∫
X
|u(t+ s, s, x)|2 πr(s, x)dxds ≤ C exp(−λt).
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Proof. We have the property (4.3.3):

∀n ∈ N, ∃rn ∈ N, ∀T > 0, ∃Cn(T ) > 0 : ∀t < T, |Dnu(t+ s, s, x)| ≤ Cn(T )(1+|x|rn).

Therefore, for any integer n ≥ 0, it is possible to choose an integer rn such that, for

any 0 ≤ m ≤ n and any t ≥ 0, we have

|Dmu(t+ s, s, x)|πrn(s, x) ∈ L2(Rd).

When we consider the integer MI defined by

l(I) = [MI − d/2],

and the property of the weight πr, we have that there exists an integer r0 such that

for any t > 0, any r ≥ r0 and any m ≤MI ,

Dm (u(t+ s, s, x)πr(s, x)) ∈ L2(Rd).

It is easy to get the periodicity of the function u(t + s, s, x)πr(s, x) with respect to

the initial time s. Any order of its spatial derivatives are also τ -periodic in s. Then

we have ∫ τ

0

∫
X

d

dt
|u(t+ s, s)|2 πrdxds

=

∫ τ

0

∫
X

2u(t+ s, s)L̃u(t+ s, s)πrdxds

=

∫ τ

0

∫
X

2biu(t+ s, s)(∂iu(t+ s, s))πrdxds

+

∫ τ

0

∫
X

2u(t+ s, s)

(
∂

∂s
u(t+ s, s)

)
πrdxds

+

∫ τ

0

∫
X
aiju(t+ s, s)(∂iju(t+ s, s))πrdxds

=−
∫ τ

0

∫
X
(∂ibi) |u(t+ s, s)|2 πrdxds−

∫ τ

0

∫
X
bi |u(t+ s, s)|2 (∂iπr)dxds

−
∫ τ

0

∫
X
|u(t+ s, s)|2

(
∂

∂s
πr

)
dxds

−
∫ τ

0

∫
X
(∂iaij)u(t+ s, s)(∂ju(t+ s, s))πrdxds

−
∫ τ

0

∫
X
aij(∂iu(t+ s, s))(∂ju(t+ s, s))πrdxds
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−
∫ τ

0

∫
X
aiju(t+ s, s)(∂ju(t+ s, s))(∂iπr)dxds.

By Condition (4) and the property of the weight π(s, x), we have that∫ τ

0

∫
X

d

dt
|u(t+ s, s)|2 πrdxds

≤−
∫ τ

0

∫
X
(∂ibi) |u(t+ s, s)|2 πrdxds+

∫ τ

0

∫
X

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)
|u(t+ s, s)|2 πrdxds

−
∫ τ

0

∫
X
|u(t+ s, s)|2 ψsπrdxds

+
1

2

∫ τ

0

∫
X
(∂ijaij) |u(t+ s, s)|2 πrdxds+

1

2

∫ τ

0

∫
X
(∂iaij) |u(t+ s, s)|2 ψjπrdxds

− α
∫ τ

0

∫
X
|∇u(t+ s, s)|2 πrdxds

+
1

2

∫ τ

0

∫
X
(∂jaij) |u(t+ s, s)|2 ψiπrdxds+

1

2

∫ τ

0

∫
X
aij |u(t+ s, s)|2 ψijπrdxds

=

∫ τ

0

∫
X

(
Φa,b(s, x) + Φψ(s, x) +

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)

)
|u(t+ s, s)|2 πrdxds

− α
∫ τ

0

∫
X
|∇u(t+ s, s)|2 πrdxds,

where Φa,b is a bounded function depending on functions a, b and their derivatives,

Φψ is a function which could depend on functions ψI . It is easy to prove that Φa,b is

independent of r. We also know that Φψ tends to 0 when |x| tending to∞. Therefore,

we choose r ≥ r0 large enough to obtain

lim sup
|x|→∞

(
Φa,b(s, x) + Φψ(s, x) +

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)

)
≤CΦ − 2rβ < 0.

Now choosing the ball B = B(0, R) with R large enough, which depends on the

integer r, we have following result by previous lemma,∫ τ

0

∫
X

(
Φa,b(s, x) + Φψ(s, x) +

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)

)
|u(t+ s, s)|2 πrdxds

=

∫ τ

0

∫
B

(
Φa,b(s, x) + Φψ(s, x) +

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)

)
|u(t+ s, s)|2 πrdxds

+

∫ τ

0

∫
Bc

(
Φa,b(s, x) + Φψ(s, x) +

2r · x · b(s, x)

2 + |x|2 + cos(2πs
τ

)

)
|u(t+ s, s)|2 πrdxds
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≤C1

∫ τ

0

∫
B

|u(t+ s, s)|2 πrdxds− C2

∫ τ

0

∫
Bc
|u(t+ s, s)|2 πrdxds

≤(C1 + C2)

∫ τ

0

∫
B

|u(t+ s, s)|2 πrdxds− C2

∫ τ

0

∫
X
|u(t+ s, s)|2 πrdxds.

Therefore,∫ τ

0

∫
X

d

dt
|u(t+ s, s)|2 πrdxds ≤ −C2

∫ τ

0

∫
X
|u(t+ s, s)|2 πrdxds+ C3 exp(−λt).

The basic result from ordinary differential equation gives us that there exist strictly

constants C and λ such that for any t > 0,

1

τ

∫ τ

0

∫
X
|u(t+ s, s)|2 πrdxds ≤ C exp(−λt).

4.4.3 Exponential decay in time of the spatial derivatives of

the solution

Theorem 4.4.3. Assume Conditions (3), (4) and (5), and let the function φ ∈ C∞p .

Let u(t+ s, s, x) = Eφ(Xs,x
t+s). Then for any multi-index I, there exists an integer kI ,

strictly positive constants ΓI and γI such that the spatial derivative ∂Iu(t + s, s, x)

satisfies that

1

τ

∫ τ

0

|∂Iu(t+ s, s, x)| ds ≤ ΓI(1 + |x|kI ) exp(−γIt).

Proof. The process of the proof is very similar to Lemma 4.4.1. We apply math

induction on each order of spatial derivatives of u(t + s, s, x), then it is possible to

use Sobolev embedding Theorem to obtain the result. In Lemma 4.4.1, we applied

the property of the density function p(s, x) of the average periodic measure ¯̃ρ,

L̃∗p(s, x) = 0.

It guaranteed the exponential contraction in any ball B(0, R). When we consider

the behaviour out of the ball, we have following result,∫
L̃ |u(t+ s, s)|2 πrdx̃

=

∫
|u(t+ s, s)|2 L̃∗πrdx̃
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=

∫ (
Φa,b + Φψ +

2r · x · b
2 + |x|2 + cos(2πs

τ
)

)
|u(t+ s, s)|2 πrdx̃.

For some fixed r, it is possible to choose the ball large enough to make sure that for

any x ∈ Bc, we have

Φa,b + Φψ +
2r · x · b

2 + |x|2 + cos(2πs
τ

)
< 0,

which we described in Lemma 4.4.2. Therefore we have some positive constants C0

and λ0 such that ∫
X̃
L̃ |u(t+ s, s)|2 πrdx̃ ≤ C0 exp(−λ0t). (4.4.7)

Then we compare the difference of operators d
dt

and L̃ to obtain the estimation of

higher order of spatial derivatives,∫
X̃

d

dt
|u(t+ s, s)|2 πrdx̃−

∫
X̃
L̃ |u(t+ s, s)|2 πrdx̃ ≤ −α

∫
X̃
|∇u(t+ s, s)|2 πrdx̃.

Multiplying eδt and integrating with respect to t from 0 to T , we have

eδT
∫
X̃
|u(T + s, s)|2 πrdx̃+ C

∫ T

0

eδt
∫
X̃
|∇u(t+ s, s)|2 πrdx̃dt

≤
∫
X̃
|φ(x̃)|2 πrdx̃+ δ

∫ T

0

eδt
∫
X̃
|u(t+ s, s)|2 πrdx̃dt+

∫ T

0

eδt
∫
X̃
L̃ |u(t+ s, s)|2 πrdx̃dt.

By the property (4.4.3) and (4.4.7), we choose the constant δ small enough to obtain∫ T

0

eδt
∫
X̃
|∇u(t+ s, s)|2 πrdx̃dt ≤ C

Now we consider that∫
X̃

d

dt
|∇u(t+ s, s)|2 πrdx̃−

∫
X̃
L̃ |∇u(t+ s, s)|2 πrdx̃

≤− C1

∫
X̃

∣∣D2u(t+ s, s)
∣∣2 πrdx̃+ C2

∫
X̃
|∇u(t+ s, s)|2 πrdx̃.

Multiplying eγt with γ small enough, we have the integration with respect to t,

eγT
∫
X̃
|∇u(T + s, s)|2 πrdx̃+ C

∫ T

0

eγt
∫
X̃

∣∣D2u(t+ s, s)
∣∣2 πrdx̃dt

≤
∫
X̃
|∇φ(x̃)|2 πrdx̃+ (γ + C2)

∫ T

0

eγt
∫
X̃
|∇u(t+ s, s)|2 πrdx̃dt
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+

∫ T

0

eγt
∫
X̃
L̃ |∇u(t+ s, s)|2 πrdx̃dt,

which gives us the conclusion that∫
X̃
|∇u(t+ s, s)|2 πrdx̃ ≤ Ce−γt.

It is easy to repeat the process for any m ∈ N with positive constants Cm and γm

to obtain ∫
X̃
|Dmu(t+ s, s)|2 πrdx̃ ≤ Cme

−γmt.

As we showed, for any multi-index J ,

∂Jπr(s, x) = ψJ,r(s, x)πr(s, x),

where ψJ,r(s, x) is bounded for fixed r.

Then we prove the conclusion of the theorem by the weighted Sobolev embedding

Theorem with πr(s, x)dx̃ instead of the the density function of average periodic

measure p(s, x)dx̃ .

Remark 4.4.4. The proof of the previous theorem also gives us the result that there

exist some integer l ∈ N and strictly positive constants Γ and γ, such that for any t

and x, we have∣∣∣∣1τ
∫ τ

0

u(t+ s, s, x)ds−
∫
X̃
φ̃(x̃)d ¯̃ρ(x̃)

∣∣∣∣ ≤ Γ(1 + |x|l) exp(−γt).

4.5 Numerical Analysis

Here we consider the numerical approximation of our model with Euler-Maruyama

method

X̂−kτ−kτ+(i+1)∆t = X̂−kτ−kτ+i∆t + b(i∆t, X̂−kτ−kτ+i∆t)∆t

+σ(i∆t, X̂−kτ−kτ+i∆t)
(
W−kτ+(i+1)∆t −W−kτ+i∆t

)
, (4.5.1)

which followed the same notation as strong approximation in (3.1.1) except the

functions b and σ. When considering the local error of the weak approximation, we

firstly focus on the time interval from 0 to ∆t and k = 0,

X0,x
∆t = x+ b(0, x)

∫ ∆t

0

dt+ σ(0, x)

∫ ∆t

0

dWt+R,
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where the expression of R can be determined by the stochastic Taylor expansions

in Kloeden and Platen’s book [29] as follows

R =

∫ t

0

∫ r

0

L̃b(s, x)dzdr +

∫ t

0

∫ r

0

σ(s, x)
∂

∂x
b(s, x)dWzdr

+

∫ t

0

∫ r

0

L̃σ(s, x)dzdWr +

∫ t

0

∫ r

0

σ(s, x)
∂

∂x
σ(s, x)dWzdWr.

Then we take the expectation to have

E
(
X0,x

∆t − X̂
0,x
∆t

)
= E(R) = C(∆t)2,

where the existence of constant C comes from the smoothness of functions b and

σ and the boundedness of their derivatives. In order to consider the weak error of

function φ ∈ C∞p , we need to have the boundedness of any order of the discrete

process’s moments.

Proposition 4.5.1. Assume Conditions (3) and (5), then for any integer n, there

exist strictly positive constants Cn and γn such that for any step size ∆t small

enough, we have that for any initial x and any number of steps N ∈ N

E
∣∣∣X̂−kτ−kτ+N∆t

∣∣∣n ≤ Cn (1 + |x|n exp(−γnN∆t)) .

Proof. By the Euler-Maruyama method, when the initial state x ∈ Kc, we have(
X̂−kτ−kτ+(i+1)∆t

)2

=
(
X̂−kτ−kτ+i∆t + b(i∆t, X̂−kτ−kτ+i∆t)∆t+ σ(i∆t, X̂−kτ−kτ+i∆t)

(
W−kτ+(i+1)∆t −W−kτ+i∆t

))2

=
(
X̂−kτ−kτ+i∆t

)2

+
(
X̂−kτ−kτ+i∆t

)T
b(i∆t, X̂−kτ−kτ+i∆t)∆t

+
(
X̂−kτ−kτ+i∆t

)T
σ(i∆t, X̂−kτ−kτ+i∆t)∆W i

+
(
b(i∆t, X̂−kτ−kτ+i∆t)

)2

(∆t)2 +
(
σ(i∆t, X̂−kτ−kτ+i∆t)

)2

(∆W i)
2

+
(
b(i∆t, X̂−kτ−kτ+i∆t)

)T (
σ(i∆t, X̂−kτ−kτ+i∆t)

)
(∆t)(∆W i).

Apply Conditions (3) and (5) after taking the expectation on both sides to obtain

E
(
X̂−kτ−kτ+(i+1)∆t

)2

≤ E
(
X̂−kτ−kτ+i∆t

)2

(1− β∆t) + C1∆t
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As the compactness of the set K, the above result still holds for some constant CK

instead of C1 when x ∈ K. Therefore we choose C = max{C1, CK} and iterate the

inequality,

E
(
X̂−kτ−kτ+N∆t

)2

≤ |x|2 (1− β∆t)N + C∆t
N−1∑
i=1

(1− β∆t) .

The conclusion is obtained when ∆t is small enough for n = 2. It is easy to derive

the higher orders of moment with same process.

To approximate the average periodic measure, we need to consider the average of

different initial time s. Therefore, we also discretize the initial time with ∆t = τ/N .

Then the numerical scheme are repeated with the initial conditions X̂0 = (n∆t, x),

n = 0, . . . , N − 1. The choice of the constant N highly depends on the properties

of the model. The difficulties to find the criterion come from the dimension of x

and solving the general partial differential equations. The criterion for K is also

extremely difficult by the same reason. But we have the long time behaviour for the

numerical scheme as following theorem.

Theorem 4.5.2. Assume Condition (3), (4) and (5). We Choose ∆t = τ/N for

some N ∈ N. Then for any function φ ∈ C∞p , if the scheme (4.5.1) is ergodic, it

satisfies:

lim
N,K→∞

1

N

N−1∑
n=0

1

K

K∑
k=1

φ
(
X̂−kτ+n∆t
n∆t (x)

)
=

∫
φ(x)d ¯̃ρ(x) +O(∆t) a.s.

Proof. Denote by u(n∆t, s, x) = Eφ(Xs,x
n∆t) with s < 0. Therefore

u(n∆t,−kτ + n∆t, x) = Eφ(X−kτ+n∆t,x
n∆t )

and

u(n∆t, n∆t, X̂−kτ+n∆t,x
n∆t ) = Eφ(X̂−kτ+n∆t,x

n∆t ).

By the periodicity of u(t+ s, s, x) with respect to initial time s, it is always possible

to move the initial time into [0, τ) like

u(n∆t,−kτ + n∆t, x) = u(kτ + n∆t, n∆t, x), ∀n ∈ {0, 1, ..., N − 1}.

Then we consider the following Itô’s-Taylor expansions

u(kτ + n∆t, (n+ i)∆t, X̂n,x
i+1)
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=u(kτ + n∆t, (n+ i)∆t, X̂n,x
i )

+ Lu(kτ + n∆t, (n+ i)∆t, X̂n,x
i )∆t+Rn

1,i(∆t)
2 a.s., (4.5.2)

and

u(kτ + n∆t, (n+ i+ 1)∆t, X̂n,x
i )

=u(kτ + n∆t, (n+ i)∆t, X̂n,x
i )

+ Lu(kτ + n∆t, (n+ i)∆t, X̂n,x
i )∆t+Rn

2,i(∆t)
2 a.s.. (4.5.3)

where X̂n,x
i := X̂−kτ+n∆t,x

−kτ+n∆t+i∆t. The coefficient Rn
1,i before the local error (∆t)2 have

the form as follows

E
[
ψ(X̂n,x

i ) · ∂Ju
(
kτ + n∆t, (n+ i)∆t, X̂n,x

i + θ
(
X̂n,x
i+1 − X̂

n,x
i

))]
, (4.5.4)

where 0 < θ < 1 and the function ψ(x) is a product of functions b, σ and their

derivatives. The coefficient Rn
2,i has the similar form as above. It is easy to obtain the

boundedness of ψ(x) with Condition (3). Considering the average periodic measure,

when N goes to infinity, we have

lim
N→∞

1

N

N−1∑
n=0

∂Ju (kτ + n∆t, (n+ i)∆t, x)

=
1

τ

∫ τ

0

∂Ju(kτ + s, s+ i∆t, x)ds

≤C exp(−λ(kN − i)∆t)(1 + |x|l)

Combine this with Proposition 4.5.1 and Theorem 4.4.3, there exists a constant

λ > 0 and integer l ∈ N, such that

kN−1∑
i=0

lim
N→∞

1

N

N−1∑
n=0

∣∣Rn
1,i

∣∣
≤

kN−1∑
i=0

lim
N→∞

1

N

N−1∑
n=0

CE
[
∂Ju

(
kτ + n∆t, (n+ i)∆t, X̂n,x

i + θ
(
X̂n,x
i+1 − X̂

n,x
i

))]
≤

kN−1∑
i=0

CE
[

1

τ

∫ τ

0

∂Ju
(
kτ + s, s+ i∆t, X̂n,x

i + θ
(
X̂n,x
i+1 − X̂

n,x
i

))
ds

]

≤C
τ

sup
i≥0

E
(

1 +
∣∣∣X̂−kτ,x−kτ+i∆t

∣∣∣l +
∣∣∣X̂−kτ,x−kτ+(i+1)∆t

∣∣∣l) kN−1∑
i=0

exp (−λ(kN − i)∆t)
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≤1− e−λkN∆t

1− e−λ∆t
eλ∆tCl

(
1 + |x|l

)
.

Let k go to infinity and ∆t be small enough, we have

+∞∑
i=0

lim
N→∞

1

N

N−1∑
n=0

∣∣Rn
1,i

∣∣ ≤ C

∆t
(1 + |x|l).

The result also holds for Rn
2,i. Denote by Rn

i = Rn
1,i −Rn

2,i, we have

lim
N→∞

+∞∑
i=0

1

N

N−1∑
n=0

|Rn
i | (∆t)2 ≤ C̃(1 + |x|s)(∆t).

By the successive comparison between (4.5.3) and (4.5.4), we have

lim
N,K→∞

1

N

N−1∑
n=0

1

K

K∑
k=1

φ
(
X̂−kτ+n∆t
n∆t (x)

)
= lim

K→∞

1

K

K∑
k=1

1

τ

∫ τ

0

u(s,−kτ + s, x)ds+ lim
N→∞

+∞∑
i=0

1

N

N−1∑
n=0

|Rn
i | (∆t)2 a.s.. (4.5.5)

The strong law of large numbers gives us

lim
K→∞

1

K

K∑
k=1

1

τ

∫ τ

0

u(s,−kτ + s, x)ds =
1

τ

∫ τ

0

∫
φ(x)dρs(x)ds =

∫
φ(x)d ¯̃ρ(x).

The left hand side of (4.5.5) gives us the measure under discretized average periodic

measure ∫
φ(x)d ¯̃ρ∆t(x) = lim

N→∞

1

N

N−1∑
n=0

1

K

K∑
k=1

φ
(
X̂−kτ+n∆t
n∆t (x)

)
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Appendix

5.1 Useful inequalities for proofs

During the proofs of following lemmas and theorems, we need some inequalities

to help us estimate, so here are some important ones for our estimation. We state

them without detail proofs here.

5.1.1 Young’s inequality

If a and b are non-negative real numbers and p and q are positive real numbers

such that 1/p+ 1/q = 1 then

ab ≤ ap

p
+
bq

q

This is the standard form of Young’s inequality and now we introduce the Young’s

inequality with ε while p = q = 2. For any real non-negative numbers a and b, and

for any ε > 0, the following inequality holds:

ab ≤ a2

2ε
+
εb2

2

5.1.2 Continuous Gronwall inequality

Let I denote an interval of the real line. Let α, β and u be real-valued functions

defined on I. Assume that β and u are continuous and that the negative part of α

99
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is integrable on every closed and bounded subinterval of I. If β is non-negative and

if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

0

β(s)u(s)ds, ∀t ∈ I

then

u(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, ∀t ∈ I

5.1.3 Discrete Gronwall inequality

Here we introduce a sharp Gronwall inequality from Holte[24](2009) for the

proofs of discrete version of random periodic solution. Assume yn, fn and gn are

non-negative sequences and

yn ≤ fn +
n∑
k=0

gkyk, for n ≥ 0

Then

yn ≤ fn +
n∑
k=0

fkgk

n∏
k=j+1

(1 + gj), for n ≥ 0

5.2 Proofs

Lemma 5.2.1. Assume that the matrix A is symmetric and positive-definite as

stated above. Then for any ∆t > 0 the matrix

e−A∆t −
p∑
i=0

1

i!
(−A∆t)i (5.2.1)

is positive-definite for odd p ∈ N and negative-definite for even p ∈ N and p = 0.

Proof. We start with the one-dimensional statement:

For any α > 0 and ∆t > 0,

e−α∆t −
p∑
i=0

1

i!
(−α∆t)i (5.2.2)
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is positive-definite for odd p ∈ N and negative-definite for even p ∈ N and p = 0.

The statement is valid for p = 0.Consider the function

f(t) := e−α∆t −
p+1∑
i=0

1

i!
(−α∆t)i

and note that f(0) = 0. Then

f ′(t) := −α

(
e−α∆t −

p∑
i=0

1

i!
(−α∆t)i

)

If

e−α∆t −
p∑
i=0

1

i!
(−α∆t)i

is positive, then f ′(t) is negative for all ∆t > 0, and thus f(t) < 0(and vice versa).

Starting from p = 0, with each consecutive integer p the sign of (5.2.2) will reverse.

So the one-dimensional statement is correct. Now, the matrix exponential of A is

diagonalizable:

eA = QeDQ−1

where Q is invertible and D is diagonal with eigenvalues of A as its spectrum.

Q−1
(
e−A∆t

)
Q

=Q−1

(
∞∑
i=0

1

i!
(−A∆t)i

)
Q

=Q−1

(
∞∑
i=0

1

i!
(−QDQ−1∆t)i

)
Q

=
∞∑
i=0

1

i!
(−D∆t)i

=e−D∆t

Therefore for any p ≥ 0 we have

e−A∆t −
p∑
i=0

1

i!
(−A∆t)i
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=e−A∆t −
p∑
i=0

1

i!
(−QDQ−1∆t)i

=Qe−D∆tQ−1 −
p∑
i=0

1

i!
Q(−D∆t)iQ−1

=Q

(
e−D∆t −

p∑
i=0

1

i!
(−D∆t)i

)
Q−1

Note the matrix

e−D∆t −
p∑
i=0

1

i!
(−D∆t)i

is diagonal with the following trace:
e−λ1∆t −

∑p
i=0

1
i!
(−λ1∆t)i 0 · · · 0

0 e−λ2∆t −
∑p

i=0
1
i!
(−λ2∆t)i · · · 0

...
...

...
...

0 0 · · · e−λm∆t −
∑p

i=0
1
i!
(−λm∆t)i


The diagonal elements are the eigenvalues of the matrix (5.2.1), and according to

the one-dimensional statement proved earlier,they are all positive or all negative

depending on the parity of p.

Lemma 5.2.2. Assume that the matrix A is symmetric and positive-definite as

stated above, and denote by λ the largest eigenvalue of A. Then, for 0 < ∆t ≤ 1
λ

,

the matrix

e−A∆tj − (I − A∆t)j

is positive-definite for any j ∈ N.

Proof. This lemma is proved by using the induction principle. The result for j = 1

follows from Lemma 5.2.1. Suppose now that for some j the matrix e−A∆tj − (I −
A∆t)j is positive-definite, and we need to discuss the following matrix

e−A∆t(j+1 − (I − A∆t)j+1

=e−A∆t
(
e−A∆tj − (I − A∆t)j

)
+
(
e−A∆t − (I − A∆t)

)
(I − A∆t)j
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Figure 5.1: The path of noise ω used in the model

The four terms above on the right-hand side are all positive-definite matrices. An-

other useful result we can obtain is:

e−A∆t(I − A∆t)j = (I − A∆t)je−A∆t

due to the property of the matrices of e−A∆t and (I − A∆t)j. Therefore, we have

a sum of two products of commuting positive-definite matrices, which is a positive-

definite matrix. By the induction principle, all the matrices e−A∆tj − (I −A∆t)j are

positive-definite for any j ∈ N

5.3 Numerical experiments

We will show the details of the numerical experiment here. Firstly, we attached

the path of noise we used in the approximation as in Fig. 5.1. All the original

numerical processes take the corresponding noise in the specified time intervals.

We used the same initial condition x = 0.5 for each approximation. The time

intervals for each experiment differ from -6.5 to -12. The corresponding discretized

process are illustrated as in Fig. 5.2 to 5.13. It is easy to notice the patterns are not

all the same. But when we consider the pull-back with difference of kτ , where the

period τ = 2, it is easy to notice the pattern looks similar. To show these pattern

are the same, we move these graphs into the same figures as in Fig. 5.14 to Fig. 5.17.



104 CHAPTER 5. APPENDIX

Figure 5.2: Simulations of the processes {X̂−6.5
t (ω),−6.5 ≤ t ≤ 0}

Figure 5.3: Simulations of the processes {X̂−7
t (ω),−7 ≤ t ≤ 0}

Figure 5.4: Simulations of the processes {X̂−7.5
t (ω),−7.5 ≤ t ≤ 0}



5.3. NUMERICAL EXPERIMENTS 105

Figure 5.5: Simulations of the processes {X̂−8
t (ω),−8 ≤ t ≤ 0}

Figure 5.6: Simulations of the processes {X̂−8.5
t (ω),−8.5 ≤ t ≤ 0}

Figure 5.7: Simulations of the processes {X̂−9
t (ω),−9 ≤ t ≤ 0}
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Figure 5.8: Simulations of the processes {X̂−9.5
t (ω),−9.5 ≤ t ≤ 0}

Figure 5.9: Simulations of the processes {X̂−10
t (ω),−10 ≤ t ≤ 0}

Figure 5.10: Simulations of the processes {X̂−10.5
t (ω),−10.5 ≤ t ≤ 0}
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Figure 5.11: Simulations of the processes {X̂−11
t (ω),−11 ≤ t ≤ 0}

Figure 5.12: Simulations of the processes {X̂−11.5
t (ω),−11.5 ≤ t ≤ 0}

Figure 5.13: Simulations of the processes {X̂−12
t (ω),−12 ≤ t ≤ 0}
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Figure 5.14: Simulations of the processes {X̂−6.5
t (ω)}, {X̂−8.5

t (ω)}, {X̂−10.5
t (ω)}

Figure 5.15: Simulations of the processes {X̂−7
t (ω)}, {X̂−9

t (ω)}, {X̂−11
t (ω)}

Figure 5.16: Simulations of the processes {X̂−7.5
t (ω)}, {X̂−9.5

t (ω)}, {X̂−11.5
t (ω)}



5.3. NUMERICAL EXPERIMENTS 109

Figure 5.17: Simulations of the processes {X̂−8
t (ω)}, {X̂−10

t (ω)}, {X̂−12
t (ω)}

Figure 5.18: Simulations of the processes {X̂−6
r (ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

To show the random periodicity of the process, we defined the process {X̂∗t (θ−tω)}
in the above contents. Here we take the corresponding points of the process {X̂−6

r (θtω)}
to form the {X̂∗t (θ−tω), 0 ≤ t ≤ 6} as in Fig 5.18 to Fig 5.30
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Figure 5.19: Simulations of the processes {X̂−6
r (θ−0.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.20: Simulations of the processes {X̂−6
r (θ−1ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.21: Simulations of the processes {X̂−6
r (θ−1.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}
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Figure 5.22: Simulations of the processes {X̂−6
r (θ−2ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.23: Simulations of the processes {X̂−6
r (θ−2.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.24: Simulations of the processes {X̂−6
r (θ−3ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}
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Figure 5.25: Simulations of the processes {X̂−6
r (θ−3.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.26: Simulations of the processes {X̂−6
r (θ−4ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.27: Simulations of the processes {X̂−6
r (θ−4.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}
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Figure 5.28: Simulations of the processes {X̂−6
r (θ−5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.29: Simulations of the processes {X̂−6
r (θ−5.5ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}

Figure 5.30: Simulations of the processes {X̂−6
r (θ−6ω)} and {X̂∗t (θ−tω), 0 ≤ t ≤ 6}
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