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Abstract
There have been numerous statistical and dynamical downscaling model comparisons. However, differences in model skill 
can be distorted by inconsistencies in experimental set-up, inputs and output format. This paper harmonizes such factors 
when evaluating daily precipitation downscaled over the Iberian Peninsula by the Statistical DownScaling Model (SDSM) 
and two configurations of the dynamical Weather Research and Forecasting Model (WRF) (one with data assimilation (D) 
and one without (N)). The ERA-Interim reanalysis at 0.75◦ resolution provides common inputs for spinning-up and driving 
the WRF model and calibrating SDSM. WRF runs and SDSM output were evaluated against ECA&D stations, TRMM, GPCP 
and EOBS gridded precipitation for 2010–2014 using the same suite of diagnostics. Differences between WRF and SDSM 
are comparable to observational uncertainty, but the relative skill of the downscaling techniques varies with diagnostic. The 
SDSM ensemble mean, WRF-D and ERAI have similar correlation scores ( r = 0.45–0.7), but there were large variations 
amongst SDSM ensemble members ( r = 0.3–0.6). The best Linear Error in Probability Space ( LEPS = 0.001–0.007) and 
simulations of precipitation amount were achieved by individual members of the SDSM ensemble. However, the Brier Skill 
Score shows these members do not improve the prediction by ERA-Interim, whereas precipitation occurrence is reproduced 
best by WRF-D. Similar skill was achieved by SDSM when applied to station or gridded precipitation data. Given the greater 
computational demands of WRF compared with SDSM, clear statements of expected value-added are needed when applying 
the former to climate impacts and adaptation research.

Keywords Regional climate modelling · Dynamical downscaling · Statistical downscaling · Precipitation · WRF · SDSM · 
Iberian Peninsula · Data assimilation

1 Introduction

Downscaling methods were developed in the 1990s to 
improve the spatial resolution of simulations by Global Cli-
mate Models (GCMs). The spatial resolution of GCMs is 
now typically 100–200 km, but some run at 16–40 km reso-
lution thanks to advances in computing power (Davini et al. 
2017). Nonetheless, most GCMs are still unable to simulate 
correctly the leading modes of climate variability (Delworth 
et al. 2012) or sub-grid scale weather phenomena (Zappa 
et al. 2013). In order to obtain more accurate local simu-
lations, statistical and dynamical downscaling techniques 
were developed. The former applies empirical relation-
ships between large-scale atmospheric circulation and local 
weather variables (von Storch et al. 1993). The latter is based 
on the numerical integration of equations describing mass, 
momentum and energy balances in the atmosphere at finer 
scales than the host GCM (Giorgi 2006; von Storch 2006).
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Numerous statistical downscaling techniques have been 
developed, but most fall into one of three main categories 
as defined by Maraun et al. (2010). Perfect Prognosis meth-
ods apply statistical relationships between the large and 
local scales to adjust directly the outputs of climate models. 
Model Output Statistics use direct transfer functions between 
model and observed data to post-process model output. 
Weather Generators are stochastic models that modulate 
the spatial distribution and temporal dependence of local 
variables depending on large scale atmospheric conditions. 
Early comparisons of statistical downscaling methods for 
Europe (Goodess et al. 2007) and North America (Wilby 
et al. 1998), showed greater skill for mean temperature and 
precipitation than for their extremes. Those statistical meth-
ods applied to precipitation were more skilful at reproducing 
persistence of wet-spells than the distribution or frequency 
of rainfall. Additionally, performance tends to be better in 
winter (Timbal and Jones 2008; Yang et al. 2010) and for 
mid latitudes (Cavazos and Hewitson 2005), with the cor-
relation coefficients between predictions and observations 
reaching values around 0.7 for monthly averages and about 
0.5 for daily precipitation. For the Iberian Peninsula (hence-
forth IP), a comparison of different techniques for precipi-
tation downscaling in the Ebro Valley, including machine 
learning algorithm Random Forest (RF), a Multiple Linear 
Regression (MLR) model and analogues applied accord-
ing to a Perfect Prognosis approach, concluded that RF and 
MLR did not represent any significant improvement over 
simpler analogues (Ibarra-Berastegi et al. 2011). Improved 
results were also found by Fernández and Sáenz (2003) by 
the search of analogues in the space of the canonical cor-
relation coefficients.

Statistical downscaling methods are known to have 
limitations. Long and accurate meteorological records 
are needed to calibrate these models and the relationship 
between large and local scale must be assumed stationary. 
In addition, downscaled results are ultimately dependent on 
the quality of inputs from GCMs (Vrac and Vaittinada Ayar 
2017). Previous studies show that the Statistical DownScal-
ing Model (SDSM) (Wilby et al. 2014) provides good esti-
mates of daily temperature (Liu et al. 2007), total precipita-
tion (Wetterhall et al. 2006, 2007) and areal rainfall (Hashmi 
et al. 2011). However, estimates of extreme precipitation 
may be less reliable for arid climate regimes and/or during 
dry seasons (Wilby and Dawson 2013).

Dynamical downscaling models nested within a GCM can 
provide more accurate climate simulations than the coarse 
global model itself (Jones et al. 1995; Foley 2010; Rummu-
kainen 2010; Feser et al. 2011; Önol 2012). In these cases, 
the GCM provides the boundary conditions that drive the 
regional climate model (RCM). Importantly, even if only 
boundary conditions are provided to the model, RCMs are 
able to reproduce small-scale features dependent on the 

surface boundary of the domain such as orographic precipi-
tation or large water bodies (Rockel et al. 2008; Leung and 
Qian 2009). That is mainly achieved by the finer spatial reso-
lution of these models, which is typically less than 25 km.

Nevertheless, RCMs are also known to have limitations, 
foremost of which is the rising computational cost as the 
resolution and/or area of the domain increases. This can 
translate into simulations running for months or even years 
(depending on processor speeds and storage). The spatial 
resolution of the RCM domain also determines the weather 
features that can be simulated by the models, and those 
that cannot must be parameterized. Such outputs contain 
significant biases in temperature and precipitation (Varis 
et al. 2004; Ines and Hansen 2006; Christensen et al. 2008; 
Teutschbein and Seibert 2012; Turco et al. 2013). For exam-
ple the Weather Research and Forecasting Model (WRF, 
ARW) (Skamarock et al. 2008), is known to have a cold bias 
in summer temperature over the IP (Fernández et al. 2007; 
Argüeso et al. 2011; Jerez et al. 2012) which can be reduced 
by the 3DVAR data assimilation scheme (González-Rojí 
et al. 2018). The spatial variability of precipitation over the 
IP is well captured by WRF (Cardoso et al. 2013), but there 
are recognized limitations in some monthly totals (Argüeso 
et al. 2012).

Comparisons of statistical and dynamical techniques are 
not straightforward to perform because of their different 
inputs, spatial (and temporal) resolution, and methods of 
calibration. Moreover, the outputs of the former are typically 
point-scale and the latter grid-scale which may conceal true 
differences in model performance (Tustison et al. 2001). In 
the past, nearest neighbour or bilinear interpolation tech-
niques have been used to improve comparability. In order to 
compare highly anisotropic fields such as precipitation, the 
nearest neighbour technique produces more accurate results 
than the bilinear interpolation as it does not smooth the fields 
(Accadia et al. 2003; Casati et al. 2008; Moseley 2011). Ide-
ally, configuration of both downscaling techniques would 
be as similar as possible taking into account the restrictions 
associated with each model, including inputs from the same 
GCM or Reanalysis.

There have been many comparisons between dynamical 
and statistical downscaling focusing on hydrological applica-
tions (Fowler and Wilby 2007). These include assessments of 
downscaled future projections (Mearns et al. 1999; Hundecha 
et al. 2016; Onyutha et al. 2016) or current weather condi-
tions (Wilby et al. 2000; Haylock et al. 2006; Huth et al. 2015; 
Casanueva et al. 2016; Vaittinada Ayar et al. 2016; Roux et al. 
2018). These studies show that statistical and dynamical meth-
ods have comparable skill at simulating the present climate 
and should be regarded as complementary tools (Wilby et al. 
2000; Haylock et al. 2006; Osma et al. 2015). However, there 
remains considerable scope for method refinement around the 
many decisions involved in downscaling model set-up and 
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simulation. These choices include the source and spatial reso-
lution of the driving boundary conditions used in the dynami-
cal downscaling model; the optimum suite of large-scale vari-
ables for statistically downscaling (on a site-by-site basis); the 
period of record used for model calibration or spin-up; whether 
or not to use data assimilation (for dynamical downscaling 
of past climate); and the choice of diagnostics for assessing 
downscaling model skill and value-added to coarser resolu-
tion GCM inputs.

Our objective is to minimize the factors that can distort 
model-dependent differences in skill between statistical and 
dynamical downscaling methods. We do this by analysing 
daily precipitation downscaled over the IP via the Statistical 
DownScaling Model (SDSM) (https ://www.sdsm.org.uk/) 
and two configurations of the dynamical WRF model (one 
with and one without 3DVAR data assimilation). In order to 
fairly compare these models, we harmonize the experimental 
inputs, outputs and diagnostics. In all our experiments, the 
large-scale variables fed into the downscaling originate from 
the ERA-Interim reanalysis (Dee et al. 2011), and the near-
est neighbour technique is used to identify grid-cells closest 
to station data. There have been other comparisons between 
WRF and various statistical downscaling methods (Schmidli 
et al. 2007; Gutmann et al. 2012; Casanueva et al. 2016) but, as 
far as the authors are aware, there has been only one previous 
direct comparison between SDSM and WRF (for China) and, 
in this case, WRF did not include data assimilation (Tang et al. 
2016). The present study assesses the strengths and weak-
nesses of both downscaling techniques using a range of daily 
precipitation diagnostics for the IP. Furthermore, we determine 
whether differences between downscaling techniques exceed 
differences between observational datasets. Our downscaled 
precipitation series are either point measurements or have a 
15 km resolution, which are finer scales than the reanalysis 
(0.75◦ ) and are comparable to other gridded precipitation data-
sets such as Spain02 (Herrera et al. 2012, 2016) or SPREAD 
(Serrano-Notivoli et al. 2017), with around 10 km and 5 km 
of spatial resolution respectively.

This paper is organised in five main parts. In Sect. 2, we 
introduce the study area then describe the techniques for com-
paring and validating our downscaling models.  Section 3 pre-
sents our evaluation of precipitation downscaled by SDSM 
and WRF for 21 stations using a common validation period 
(2010–2014). In Sect. 4 we discuss the key insights emerg-
ing from the analysis, and in Sect. 5 we conclude with some 
remarks about the wider implications of the research.

2  Study area, data and methodology

2.1  Study area

The precipitation regimes of the IP are influenced by sea 
level pressure patterns over the Atlantic Ocean and by con-
vective storms that mostly develop in the south-eastern 
part of Spain (Zorita et al. 1992; Rodríguez-Puebla et al. 
1998; Fernández et al. 2003). The IP is a challenging area 
to undertake regional climate downscaling experiments 
because of these contrasting rainfall mechanisms and 
marked topographic gradients which broadly delimit four 
regimes (Kottek et al. 2006; Peel et al. 2007; Lionello 
et al. 2012; Rubel et al. 2017): (1) (Semi)Arid climate, 
in some locations of the Ebro basin and southeastern IP; 
(2) Mediterranean, in the southwestern IP; (3) Oceanic, 
located mainly in the northern IP; and (4) Alpine climate, 
in the mountain ranges. However, inter-annual variability 
of precipitation cannot be explained entirely by changes in 
atmospheric circulation; other factors need to be taken into 
account, including air temperature and humidity (Good-
ess and Jones 2002). Particularly, European precipitation 
extremes are influenced by the North Atlantic Oscillation 
(Haylock and Goodess 2004; Zveryaev et al. 2008) and 
East Atlantic oscillation (Rodríguez-Puebla et al. 1998; 
Sáenz et al. 2001; Zveryaev et al. 2008) which modulate 
the location of Atlantic storm tracks.

2.2  Data

Several datasets were used to compare the downscaling 
techniques:

• ERA-Interim (ERAI) reanalysis atmospheric data at 
0.75◦ horizontal resolution ( ∼ 80 km ) were obtained 
from the Meteorological Archival and Retrieval System 
(MARS) repository at ECMWF. These data were used 
as the boundary conditions for WRF, and for creating 
the large-scale input variables for SDSM. These data 
were also used to drive the validation experiments of 
both downscaling techniques.

• The European Climate Assessment and Dataset project 
(ECA&D) provides daily precipitation data from land 
stations (Klein Tank et al. 2002). Daily precipitation 
occurrence and amount at these sites were used as the 
local-scale data for calibrating SDSM, as well as for 
validating model experiments. Twenty-one stations 
were chosen (red dots in Fig. 1), evenly spaced over 
the IP and without oversampling any region. Fourteen 
stations were available for Portugal, but only Lisbon 
had data during our validation period. Further informa-

https://www.sdsm.org.uk/
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tion about the chosen stations can be found in Online 
Resources 1. Four regions were also defined according 
to their climate regime: Northern, Central, Mediter-
ranean and SouthWestern regions (in blue, green, pink 
and orange respectively in Fig. 1). These regions are 
similar to those defined by Serrano et al. (1999) and 
reflect the spatial patterns of long-term annual precipi-
tation obtained by Rodríguez-Puebla et al. (1998). The 
Northern region encompasses the Oceanic climate, the 
Mediterranean region is related to the (Semi)Arid cli-
mate and the SouthWestern region encloses the Medi-
terranean climate. The Central region is a mix of the 
Oceanic and Mediterranean climates.

• The ensembles observations (EOBS) Version 12.0 data-
set (Haylock et al. 2008; van den Besselaar et al. 2011) 
was included as a validation dataset. This provides daily 
precipitation at 0.25° longitude and latitude grid-reso-
lution ( ∼ 20 km in mid-latitudes). Note that EOBS was 
built using ECA&D thus, the two datasets are not inde-
pendent. Additionally, some studies suggest that EOBS 
is biased toward lower values of precipitation even if the 
correlations overall are high (Hofstra et al. 2009; Kjell-
ström et al. 2010). For the IP, there are known deficien-
cies in the south because of data scarcity (Herrera et al. 
2012) and near mountainous regions (González-Rojí 
et al. 2018).

• Tropical Rainfall Measuring Mission (TRMM) data 
(Wang et al. 2014) were used to evaluate both down-
scaling techniques. These data are available every 3-h 
at 0.25◦ longitude and latitude ( ∼ 20 km ) resolution. In 

order to compare with other observational datasets and 
experiments, TRMM data were aggregated to daily val-
ues. Previous studies suggest that TRMM estimates dif-
fer from ground-based observations (Nesbitt and Anders 
2009; Condom et al. 2011; Hunink et al. 2014), with 
a precipitation rate-dependent low bias (Huffman et al. 
2007; Hashemi et al. 2017).

• Version 2.2 of the Global Precipitation Climatology 
Project (GPCP) (Huffman et al. 2001) dataset was also 
included for downscaling model evaluation. Daily pre-
cipitation data are available at 1° longitude and latitude 
grid resolution ( ∼ 100 km ). GPCP reproduces large-
scale precipitation patterns, but some errors in the esti-
mates are observed at regional scales (Janowiak et al. 
1998), particularly in areas with sparse gauges (Beck 
et al. 2017).

2.3  SDSM set‑up

SDSM (version 5.2) (Wilby et al. 2014) is defined as a con-
ditional weather generator, as large-scale atmospheric vari-
ables (called predictors) are used to simulate time-varying 
parameters describing local variables (predictands) specified 
by the user. Downscaling relationships are hence established 
between regional predictors from reanalyses or GCMs and 
local predictands such as daily precipitation (used here) or 
temperature.

Several steps must be followed to run SDSM. Model 
calibration begins by selecting locations with observational 
data, in this case, the 21 stations (in the first experiment) 
or nearest EOBS grid cells (in the second experiment). 
Station latitude and longitude determines the closest rea-
nalysis grid cell (herein ERAI), for which a predictor set 
is extracted. Available predictors include: downward short-
wave radiation flux, mean sea level pressure, precipitation, 
near-surface specific humidity, mean temperature at 2 m and 
both wind components, wind strength, geopotential height, 
vorticity, divergence and relative humidity (all at 500 and 
850 hPa) (Cavazos 2000; Wilby and Wigley 2000; Schoof 
and Pryor 2001). Others also use moisture flux (Yang et al. 
2010) or total precipitable water (Timbal and Jones 2008) 
as predictors.

Once the predictand and predictor sets are assembled, 
relationships between them are explored within the soft-
ware. A three-step calibration strategy was implemented to 
minimize subjectivity in the choice of predictor variables. 
First, any candidate predictor variable with explained vari-
ance (R-squared) greater than 0.1 (for each month of the 
monthly analysis) was short-listed. Second, those with sta-
tistically insignificant partial correlation ( p > 0.05 ) were 
eliminated. Finally, the predictor with weakest partial corre-
lation was removed until the point at which only significant 
variables remain. This implementation of SDSM follows the 

Fig. 1  Location of the 21 stations used in the study highlighted with 
red squares. The climate regions are Northern, Central, Mediter-
ranean and SouthWestern (shown in blue, green, pink and orange 
respectively)
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procedures customarily applied before (Wilby et al. 1998, 
2002; Gulacha and Mulungu 2017). Examples of more spe-
cific applications of SDSM can be found elsewhere (Hans-
sen-Bauer et al. 2005; Huth 2005; Crawford et al. 2007; 
Mahmood and Babel 2013, 2014; Wilby and Dawson 2013).

Having selected the predictors, SDSM is calibrated by 
ordinary least squares with a fourth-root transformation 
applied to daily rainfall amounts (to approximate a normal 
distribution). During simulations, white noise is added to 
replicate missing variance and thereby generate an ensemble 
that represents model uncertainty. Here, SDSM was set up 
to generate a 20-member ensemble for each station, having 
calibrated the model using data for the period 1979–2009 
and validated against 2010–2014.

A second experiment was performed with SDSM to check 
whether model skill changes when area-average (gridded) 
precipitation is used for calibration instead of point (sta-
tion) precipitation. This experiment (henceforth described 
as SDSM-EOBS) uses data from the closest EOBS cell to 
the station. Under this arrangement, SDSM-EOBS and WRF 
now have the same source of downscaling inputs (ERAI), 
validation period (2010–2014) and similar horizontal scale 
(gridded data).

2.4  WRF model set‑up

Two simulations were run using version 3.6.1 of WRF, 
forced by ERAI. Both begin on 1st of January 2009, but the 
whole year 2009 was used to spin-up the model and establish 
correct land-atmosphere fluxes. Hence, only data covering 
the period 2010–2014 are analysed below.

In the first experiment (WRF-N), boundary conditions 
drive the model after the initialization. The second experi-
ment (WRF-D) is configured as WRF-N from the point of 
view of the physical parameterizations. These are: WRF 
five-class microphysics; RRTMG scheme for both short-
wave and long-wave radiation; MYNN2 Planetary Bound-
ary Layer scheme; the Tiedtke scheme for cumulus convec-
tion; and the NOAH Land Surface Model. However, 3DVAR 
data assimilation (Barker et al. 2012) is run every six hours 
(00, 06, 12 and 18 UTC) using observations from NCEP 
ADP Global Upper Air and Surface Weather Observations 
(PREPBUFR dataset) inside a 120-minute assimilation win-
dow centered on those times. Both experiments use high-
resolution sea surface temperature (SST) field NOAA OI 
SST v2 (Reynolds et al. 2007), which is updated daily.

The background error covariance matrices used in the 
3DVAR step of WRF-D were prepared such that they 
change from month to month. Ninety days computed from 
13-months (from January 2007 until February 2008) of WRF 
12-h runs (initialized at 00 and 12 UTC) are used to prepare 
background error covariances for every month. These 12-h 
runs are centred around the month that the background error 

covariance is prepared for, such that 90 days in December, 
January and February are used to produce the background 
error covariance for January and so on. The background 
error covariances are adjusted to the domain and the physical 
parameterizations used in this study following Parrish and 
Derber (1992), namely, the cv5 method of WRFDA (Barker 
et al. 2012).

The WRF-Domain was centred on the IP but covers much 
of Western Europe and north-west Africa ( 20◦–60◦N , 25◦W
–15◦E ) (see Fig. 2). The horizontal resolution is 15 × 15 km2 
with 51 vertical levels. Due to the distance between the 
margins of the domain and the IP, boundary effects from 
nudging (magenta region in Fig. 2) are discounted (Rummu-
kainen 2010). The mountainous regions of the IP (showed by 
the GLOBE dataset in Fig. 2) are recognizable in a domain 
with spatial resolution 15 km, even though topographic 
effects are still underestimated.

2.5  Analytical methods and diagnostics of model 
skill

The analyses are organised in three parts. First, we exam-
ine the calibration of SDSM by evaluating the predictors 
selected for each station. We assess whether any distinct 
regional patterns emerge in, for example, the spatial distribu-
tion of explained variance in daily precipitation totals. That 
way, we will be able to check if some stations with the same 
characteristics can be calibrated in the same way.

Second, precipitation downscaled from ERAI by both 
SDSM and WRF was compared with the observational 
datasets described above (i.e. EOBS, TRMM and GPCP). 
Different sources of precipitation were used to explore 
downscaling model uncertainty relative to observational 
uncertainty. This will help us to check how well the downs-
caling techniques perform in the IP. As these validation data-
sets are gridded, the nearest cell to the station was selected. 
Evaluation of time-series against station data was performed 
using Taylor diagrams (2001), which enable simultaneous, 
graphical comparison of downscaling model and observa-
tional root mean squared error (RSME), Pearson’s corre-
lation (r) and standard deviation (SD). The statistical reli-
ability of the differences shown by the Taylor diagrams was 
assessed via bootstrap estimation (not shown). For brevity, 
Taylor diagrams are shown for representative stations in 
each climatic region, but all others can be found in the sup-
porting Online Resources. The statistical confidence of the 
correlations was examined using 1000 bootstrap time series 
created with replacement and compared with observational 
data. Distributions of correlations between each bootstrap 
and observed series are presented as box and whisker plots, 
again organized by climatic region.

Third, in order to see which downscaling experiments 
are the best at reproducing the observed precipitation, the 
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outputs were compared from the three of them: WRF-D, 
SDSM-stations and SDSM-EOBS (to assess sensitiv-
ity of results to the resolution of the predictand). Only 
WRF-D was included in this comparison as results from 
Sect. 3.2 will show that it consistently outperforms the 
experiment without data assimilation (WRF-N) at repro-
ducing the observed weather. The same result was found 
by González-Rojí et al. (2018). Diagnostics are derived for 
each SDSM ensemble member and the ensemble mean in 
order to compare the deterministic output of WRF (sin-
gle realization) with the probabilistic output of SDSM 
(20-member ensemble). The following statistical tests 
were applied in each case:

• The Linear Error in Probability Space (LEPS) (Ward 
and Folland 1991) measures how well WRF and SDSM 
predict the distribution of observed precipitation at 

each station. The LEPS score varies betwen 0 and 1, 
with 0 representing a perfect model.

• The Brier Skill Score (BSS) shows the value-added 
by the various downscaling models to precipitation 
derived from ERAI (our reference model) (Winterfeldt 
et al. 2011; García-Díez et al. 2015). The BSS was cal-
culated following von Storch and Zwiers (1999) using 
the error variances of the experiments (i.e. WRF-D 
simulation and SDSM, the forecast F on each case) 
relative to ERAI (the reference R): 

where  t he  e r ro r  va r iance  i s  de f ined  as 
�2
x
= (1∕N)ΣN

i=1
(x

i
− O

i
)2 , x

i
 are forecast data and O

i
 are 

observed data. The BSS varies between − 1 and 1 where 

(1)BSS =

{

1 − 𝜎2
F
𝜎−2
R

for 𝜎2
F
≤ 𝜎2

R

𝜎2
R
𝜎−2
F

− 1 for 𝜎2
F
> 𝜎2

R

Fig. 2  Upper panel: domain of 
the experiments created with 
WRF at 15 × 15 km resolu-
tion (in red). The margins of 
the domain with nudging are 
shown in magenta. Lower panel: 
topography of the IP repre-
sented by the GLOBE dataset 
at 1 km resolution (left) and 
within the WRF model at 15 km 
resolution (right)
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positive values indicate that the experiment improves the 
reference forecast; conversely, negative values signal that 
the reference performs better than the experiment (i.e. the 
downscaling does not add value to the forcing model).

• Several diagnostics were derived noting that, because 
there are only five years of simulations, extreme rain-
fall can not be assessed. Instead, we have characterized 
how well WRF and SDSM simulate the following widely 
used indices (Haylock et al. 2006; Wilby and Yu 2013; 
Nicholls and Murray 1999):

• Absolute mean daily precipitation (pav)—the aver-
age precipitation of all days;

• Wet-day intensity (pint)—the average precipitation 
on days with more than 1 mm;

• 90th percentile wet-day total (pq90)—the 90th per-
centile of precipitation on days with more than 1 
mm;

• Maximum consecutive dry days (pxcdd)—the num-
ber of consecutive days with precipitation less than 
1 mm;

• Wet-day probability (pwet)—the number of days 
with precipitation exceeding 1 mm divided by the 
number of days of the analysed period.

• Maximum 5-day precipitation total (px5d)—the 
maximum precipitation total in any five consecutive 
days.

3  Results

3.1  SDSM calibration

We begin this section by presenting the predictor suites cre-
ated for SDSM at each station (Fig. 3). The most frequently 
selected predictor variables were: precipitation (PREC, 21 
sites), downward shortwave radiation flux (DSWR, 20 sites), 
850 and 500 hPa geopotential height (H850, 16 and H500, 
10 sites respectively), mean sea level pressure (MSLP) and 
relative humidity at 500 hPa (R500, 9 sites). Other predictors 
were selected less frequently: zonal wind at 850 hPa (U850, 
5 sites), meridional wind at 500 hPa (V500, 5 sites), zonal 
wind at 500 hPa and meridional wind at the surface (U500 

Fig. 3  SDSM predictor suite 
calibrated using inputs from 
ERAI at 0.75◦ . The last column 
is the explained variance in % 
(rounded to the nearest whole 
percent) achieved for the 
calibration period (1979–2009). 
Acronyms of the predictors fol-
low Wilby and Dawson (2013), 
and are defined in Online 
Resource 2
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and VSUR, 4 sites), and zonal wind at the surface (USUR, 
3 sites). Hence, SDSM uses information about the state of 
the atmosphere as well as the incident radiation during cali-
bration; variables related to atmospheric moisture are also 
important.

The most frequently selected predictors vary by region. 
According to Table 1, downward shortwave radiation flux, 
precipitation, 850 hPa geopotential height and zonal wind, 
relative humidity and 500 hPa geopotential height are 
favoured for the northern region. Downward shortwave 
radiation, precipitation and relative humidity at 500 hPa are 
important predictors in the centre of the IP. Radiation, pre-
cipitation, zonal wind at 500 hPa and geopotential height 
at 500 and 850 hPa emerge for the Mediterranean region. 
Finally, radiation, geopotential height at 850 hPa, precipita-
tion, meridional wind at surface, geopotential height and 
relative humidity at 500 hPa, and zonal wind at 850 hPa are 
prominent in the southwest.

The �-squared test was used to check for dependency of 
the frequency of predictor variable selection by site latitude, 
longitude, elevation and annual precipitation during the 
calibration period 1979–2009. No statistically significant, 
dependencies of predictor suite on site were found. This 
suggests that the optimum predictor set cannot be inferred 
from physiographic properties and that each site has to be 
calibrated on a case-by-case basis. Given the large area of 
the IP and known spatial variability in precipitation, a single 
multi-site version of SDSM (Wilby et al. 2003) was also 
deemed unsuitable.

Having established the predictor suites, the explained 
variance ( R2 ) during the calibration period is presented in 
Fig. 4. R2 varied between 15 and 40 percent with mean value 
22%. Vigo and Córdoba achieved 39% and 32% respectively 
which are comparable to Gulacha and Mulungu (2017) for 
different periods and regions. Relatively high R2 were also 
obtained in the Cantabrian region. Conversely, the lowest R2 
were observed at the Mediterranean coast, particularly near 
the Ebro basin and Barcelona. Overall, a northwest-south-
east gradient in R2 is evident across the IP which reflects 
dominance of large scale weather systems near the Atlantic 
(higher R2 ) to local convective precipitation near the Medi-
terranean (lower R2 ). These results are consistent with those 
reported by Goodess and Palutikof (1998).

The predictor suites are similar for SDSM-EOBS except 
at five stations: Lisbon, Ciudad Real, Lleida, Almería and 
Vigo. The main differences relate to changes in the height 
of the variables (near surface, 500 or 850 hPa) or with a 
reduction in the number of predictors used. Ciudad Real 
also included the additional predictor VSUR. The R2 values 
improve at all stations (except for Vigo) and has mean value 
28%. The predictor suites and R2 values are provided for all 
sites in Online Resources 3.

3.2  Comparison of observational datasets 
and downscaling experiments

The Northern region has four stations, namely: A Coruna, 
Vigo, Gijón and Santander. Here, we present only the Taylor 
diagram for Gijón (Fig. 5); others are available in Online 
Resource 4. The correlation values for SDSM mean and 
WRF-D are in the range 0.6 and 0.8. However, even if the 
SD is quite similar to that observed, WRF-D outperforms the 
SDSM mean for most sites. Similar results are observed for 
ERAI and WRF-N for the stations included in this region, 
but the correlation and the SD are not as good for SDSM and 
WRF-D. In this case, the correlation ranges between 0.4 and 
0.65 and the SD is worse. The EOBS dataset has the best 
correlation (0.95), compared with TRMM and GPCP (which 

Table 1  Number of times that each predictor was used for each region

Acronyms are defined in Online Resource 2

Region DSWR MSLP USUR VSUR F500 U500 V500 H500 U850 Z850 H850 PREC R500 R850 RSUR

North (4) 4 1 1 1 1 2 0 2 2 0 3 4 2 1 1
Centre (5) 5 5 1 0 1 1 3 1 0 1 5 5 3 0 0
Mediterranean (5) 5 1 0 0 0 0 2 3 0 1 2 5 1 0 0
SouthWest (7) 6 2 1 3 0 1 0 4 3 0 6 7 3 0 1

Fig. 4  Spatial variations in explained variance (in %) achieved by the 
SDSM for the calibration period (1979–2009)



Harmonized evaluation of daily precipitation downscaled using SDSM and WRF+WRFDA models over…

1 3

range between 0.3 and 0.4, and with much worse RMSE than 
the downscaling). SDSM ensemble members overestimate 
the SD in every station, and have correlation values in the 
range 0.3–0.5; the SDSM ensemble mean underestimates the 
SD but presents better correlation and RMSE scores than the 
ensemble members.

The Central Region has five stations, namely: Pamplona, 
Soria, Madrid, Valladolid and Daroca. Here we present the 
results for Soria and Madrid stations (Fig. 6) as representa-
tives of the region; other Taylor diagrams are available via 
Online Resource 5. Similar correlations emerge for WRF-D, 
ERA and SDSM mean, ranging between 0.5–0.7, 0.4–0.6 
and 0.5–0.6, respectively. The SD is underestimated by 
WRF-D, ERAI and SDSM mean in Soria (and Pamplona), 
but it is accurately simulated by WRF-D and ERAI in 
Madrid (and Valladolid and Daroca). The correlation, SD 
and RMSE obtained by TRMM outperformed GPCP, but 
those scores are not comparable to those obtained by the 
downscaling experiments. Again, the EOBS dataset has the 
highest correlations (above 0.9 for each station). Most mem-
bers of the SDSM ensemble overestimate the SD and have 
weaker correlations than the SDSM mean.

The Mediterranean has five stations, namely: Lleida, Bar-
celona, Murcia, Almería, Castellón de la Plana. Here we 
present the results for Lleida and Murcia stations (Fig. 7; 
other Taylor diagrams are available in Online Resource 6). 

Similar correlations are observed for WRF-D, ERAI and 
the SDSM mean, with values ranging between 0.4 and 0.6. 
However, the RMSE is better for WRF-D and the SDSM 
ensemble mean compared with other datasets. TRMM and 
GPCP datasets achieved the lowest correlations. The down-
scaling experiments are always located between these data-
sets and EOBS in the Tailor diagram. The members of the 
ensemble reproduced the SD for some stations (Lleida and 

Fig. 5  Taylor diagram for Gijón Station, Northern Region. The points 
are as follows: WRF-N (red), WRF-D (green), ERAI (orange), SDSM 
ensemble mean (magenta), EOBS (grey), GPCP (violet) and TRMM 
(brown). Observed station data (grey diamond) and individual SDSM 
ensemble members (blue squares) are also shown. Other Taylor dia-
grams for this region are available at Online Resource 4

Fig. 6  As in Fig. 5 but for Soria (top) and Madrid (bottom) stations, 
Central Region. Other Taylor diagrams for this region are available at 
Online Resource 5
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Barcelona), while for others they tend to overestimate it. 
These correlations range between 0.3 and 0.5.

The Southwestern region has seven stations, namely: Lis-
bon, Ciudad Real, Cáceres, Albacete, Córdoba, Huelva and 
Tarifa. Here we present the results for Lisbon and Albacete 
(Fig. 8); other Taylor diagrams are available from Online 
Resource 7. Correlations for WRF-D, ERAI and the SDSM 
mean range between 0.5 and 0.6. WRF-D achieves the 

highest correlation of 0.7 in Tarifa (and 0.55 for the others). 
WRF-N has similar correlation values ( ∼ 0.6 ) to WRF-D, 
ERAI and SDSM mean in Lisbon. Most experiments under-
estimate the observed SD, particularly for Lisbon, Córdoba 
and Albacete stations. Individual members of the SDSM 
ensemble have correlations in the range 0.3–0.5, and tend 
to underestimate the SD. TRMM and GPCP are closer to 
the results obtained by the rest of the experiments than in 

Fig. 7  As in Figs. 5 and 6 but for Lleida (top) and Murcia (bottom) 
stations, Mediterranean Region. Other Taylor diagrams for this region 
are available at Online Resource 6

Fig. 8  As in Figs. 5, 6 and 7 but for Lisbon (top) and Albacete (bot-
tom) stations, Southwestern Region. Other Taylor diagrams for this 
region are available at Online Resource 7
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other regions. However, these datasets still obtain the worst 
results in this region. The EOBS dataset again outperforms 
the others.

Significance of all the above results was assessed via 
bootstrap with resampling. Correlation values obtained for 
the 1000 time-series created for each experiment are shown 
in Fig. 9. The EOBS dataset achieved the best results for 
all regions and the other observational datasets (GPCP and 
TRMM) the worst. Correlations for both WRF experiments, 
ERAI and the SDSM ensemble mean fall within the range of 
the observational datasets. The WRF-D experiment achieved 
higher correlations than WRF-N in each region, but the dif-
ference was greatest in the Mediterranean region.

3.3  Comparison of downscaling techniques

Correlation values for ERAI tend to be lower than those 
for WRF-D and the SDSM ensemble mean, particularly 
in the North. However, we cannot differentiate which 
experiment (WRF-D or SDSM ensemble mean) is best 
at simulating precipitation over the IP based on these 
results alone. Thus, other diagnostics are applied to these 

experiments, and each member of the SDSM ensemble. 
Furthermore, we also assess the extent to which the skill 
of the SDSM mean and ensemble members depends on 
station or gridded precipitation.

The upper panel of Fig. 10 presents the LEPS for WRF-
D, the mean of the SDSM experiments and individual 
members of both ensembles compared with observed 
precipitation at each station (D-STAT, SDSM-STAT and 
EnsSDSM-STAT, SDSM_EOBS-STAT and EnsSDSM_
EOBS-STAT respectively). Figure 10 shows that WRF-D 
has superior LEPS scores to the SDSM mean except for 
Vigo. Conversely, WRF-D is outperformed by individual 
SDSM members at all stations except Santander, Castellón 
de la Plana, Tarifa, Córdoba and Lisbon.

The lower panel of Fig. 10 shows similar results for 
SDSM-EOBS. Again, WRF-D outperforms the SDSM 
ensemble mean (except for cells overlying Vigo and Ciu-
dad Real). As before, individual SDSM-EOBS members 
are superior to WRF-D at the majority of sites (with the 
exception of the same stations before plus A Coruna and 
Pamplona).

Fig. 9  Correlations between 
each experiment/dataset and the 
corresponding observed pre-
cipitation amount. 1000 daily 
time-series were created by 
the bootstrap with resampling 
technique. Results are shown by 
region. As in previous figures, 
WRF-N, WRF-D, ERAI, the 
SDSM ensemble mean, EOBS, 
GPCP and TRMM are coloured 
in red, green, orange, magenta, 
grey, violet and brown respec-
tively
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Figure 11 shows the BSS for WRF-D, SDSM means and 
ensemble members. Both the WRF-D and SDSM means 
added value compared with ERAI. The average scores were 
0.05 for D, 0.11 for the SDSM mean and 0.14 for the mean 
of SDSM-EOBS. Individual SDSM members do not add 
value (negative scores).

WRF-D does not add value to ERAI at eight stations: 
A Coruna (North), Valladolid, Madrid and Daroca (Cen-
tral), Murcia and Barcelona (Mediterranean), Cáceres and 
Albacete (Southwest). In comparison, the ensemble mean 
of SDSM does not add value at three stations: Pamplona 
(Central), Murcia and Barcelona (Mediterranean). The 

Fig. 10  Top panel: LEPS scores 
for WRF-D (green), SDSM 
mean (magenta) and individual 
ensemble members (light pink 
boxes) at each station. Bottom 
panel: same as the top panel 
but for the SDSM-EOBS 
experiment, with the ensemble 
mean and members in dark 
and light orange respectively. 
Station names are color-coded 
by regions as follows: North-
ern (cyan), Central (green), 
Mediterranean (magenta) and 
Southwestern (orange)
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SDSM-EOBS mean does not add value for the cell over 
A Coruna. While WRF-D is able to significantly improve 
skill for the Mediterranean region (omitting Barcelona and 
Murcia), the best scores for SDSM are achieved in Almería, 
Lleida and Valladolid. Remarkable scores are obtained for 
six stations by SDSM-EOBS. These are those the same as 
SDSM-stations plus Castellón de la Plana and Madrid. Addi-
tionally, the relationship of BSS with the elevation of EOBS 
and WRF grids was explored, but no significant connection 
was found between them.

Finally, seasonal precipitation diagnostics were derived 
for each station, namely: mean precipitation (pav), precipi-
tation intensity (pint), precipitation 90th quantile (pq90), 

maximum consecutive dry days (pxcdd), wet-day prob-
ability (pwet) and maximum five-day precipitation total 
(px5d). Figure 12 shows how these compare when based on 
observed data, WRF-D, SDSM-stations mean, SDSM-EOBS 
mean and the ensemble members of both SDSM experi-
ments. For brevity, we limit our findings to winter and sum-
mer, however, results for spring and autumn are provided in 
Online Resources 8 and demonstrate similar behaviour to 
winter and summer respectively.

WRF-D outperforms SDSM when simulating mean pre-
cipitation (pav) in winter (Fig. 12, top panel). The median 
value for stations is 1.82 mm, compared with 1.70 mm for 
WRF-D, 1.52 mm for the SDSM-stations mean, 1.59 mm for 
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the SDSM-stations ensemble, 1.62 for the mean of SDSM-
EOBS and 1.64 for the ensemble. In summer, observed pav 
is lower as expected (0.63 mm for stations) (Fig. 12, lower 
panel). SDSM still has a dry bias but is now closer (0.44 and 
0.59 mm) than WRF-D (0.23 mm).

Precipitation intensity (pint) in winter is simulated well 
by the members of both SDSM ensembles (with median 
7.59 mm for SDSM-stations, 7.27 mm for SDSM-EOBS, 

compared with 7.57 mm for stations). WRF-D is too dry 
(5.88 mm), but less biased than the mean of both SDSM 
experiments (4.94 mm for SDSM-stations, and 4.83 mm 
for SDSM-EOBS). In summer, the individual members 
of both SDSM ensembles obtained similar results to the 
observations.

The winter 90th percentile of precipitation (pq90) is 
underestimated by the mean of both SDSM experiments 

Fig. 12  Precipitation diagnostics (pav, pint, pq90, pxcdd, pwet and 
px5d) based on observed data (blue), WRF-D (green), ensemble 
means and members for SDSM-stations (magenta, light pink), and 

SDSM-EOBS (red and orange respectively) during winter (DJF, top) 
and summer (JJA, bottom). Each box and whisker encloses the results 
of the chosen 21 stations
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(with median 11.0 mm for SDSM-stations and 10.2 mm for 
SDSM-EOBS, compared with 17.2 mm for stations). How-
ever, the spread of the members of the SDSM ensembles is 
similar to observed precipitation (16.7 mm and 14.9 mm 
respectively). WRF-D also underestimates pq90 (13.4 mm). 
In summer, pq90 is significantly underestimated by WRF-D 
and the means of both SDSM experiments. In this case, the 
SDSM-stations ensemble (14.8 mm) is closer to observa-
tions (16.6 mm).

The median maximum consecutive dry days (pxcdd) for 
the stations is 45 days. All of the experiments underestimate 
the number of days: WRF-D (34 days), the means of both 
SDSM experiments (34 and 33 days) and the members of 
both SDSM ensembles (30 days in both cases). In summer, 
as expected, pxcdd is larger (55 days) and the behaviour of 
downscaling models differ from winter. Now the members 
of both SDSM ensembles overestimate the number of days 
(65 and 67 days respectively), but not as much as WRF-D 
(81 days). The SDSM ensemble means match observations.

The mean probability of occurrence of a wet-day (pwet) 
during winter is 0.24 for stations. WRF-D and the ensemble 
members of both SDSM experiments agree with observa-
tions (0.24 for WRF-D and SDSM-EOBS, 0.23 for SDSM-
stations). However, both the ensemble means overestimate 
pwet (0.35 for SDSM-stations and 0.34 for SDSM-EOBS). 
In summer, pwet is lower as expected (0.08). Both SDSM 
ensemble means slightly overestimate the probability (0.10), 
while WRF-D (0.04) and members of both ensembles (0.07) 
underestimate pwet.

Finally, the median maximum 5-day precipitation total 
(px5d) for winter at stations is 79.0 mm. This diagnostic 
is understimated by all downscaling models as follows: 
76.6 mm (SDSM-stations members) and 68.3 mm (SDSM-
EOBS members), 64.2 mm (SDSM-stations mean), 55.1 
mm (WRF-D) and 53 mm (SDSM-EOBS mean). In sum-
mer, observed px5d is lower (47.3 mm), and the downscal-
ing models exhibit the same pattern of low bias, except for 
SDSM-stations ensemble members, in which case the bias 
is positive.

Differences in downscaling skill between winter and sum-
mer reflect the contrasting precipitation mechanisms across 
the IP. Winter precipitation is associated with large frontal 
systems originating from the Atlantic Ocean (Fernández 
et al. 2003; Gimeno et al. 2010; Gómez-Hernández et al. 
2013), so the probability of precipitation is relatively high 
(and dry-spells lengths low). Conversely, in summer, there is 
more convective precipitation (Zorita et al. 1992; Rodríguez-
Puebla et al. 1998; Fernández et al. 2003) and the number of 
consecutive dry days is higher.

The above seasonal variations are reflected in downscal-
ing model skill. WRF-D performs better in winter, when 
large-scale precipitation is predominant as previously 
shown by Cardoso et al. (2013). Similarly, SDSM is able 

to reproduce the persistence of rain or dry conditions as 
reported by Goodess et al. (2007). Furthermore, SDSM 
simulates total precipitation and areal rainfall well as shown 
by Wetterhall et al. (2007) and Hashmi et al. (2011).

4  Discussion

Use of precipitation as a predictor variable for SDSM cali-
bration departs somewhat from convention but is defensible. 
Dynamical models simulate precipitation based on large-
scale and convective processes (such as precipitation from 
fronts or cumulonimbus clouds). However, neither convec-
tive nor microphysical processes are taken into account 
by other grid-scale predictors, so ERAI precipitation adds 
important independent information. Additionally, since the 
predictor suite used in the calibration of SDSM does not suf-
fer from multicollinearity, precipitation is adding explana-
tory power. Other studies have also shown that precipitation 
produced by a numerical model can be helpful for statistical 
downscaling (Schmidli et al. 2006) and that the correlation 
skill of statistical techniques using precipitation as a pre-
dictor yields is improved over conventional downscaling 
(Widmann et al. 2003). Moreover, Wilks (1992) conditioned 
the local parameters of a stochastic daily weather generator 
using monthly precipitation from coarse resolution models, 
whereas Fealy and Sweeney (2007) designed a statistical 
technique to predict rainfall occurrence and amount, basing 
their selection of predictors on strength of correlation with 
precipitation.

The correlation, SD and RMSE achieved by the statistical 
and dynamical downscaling models against observed station 
data lie between those obtained for different observational 
datasets (EOBS, TRMM and GPCP). This not only happens 
on a site by site basis, but more generally at the regional 
level. This shows that, even though dynamically or statisti-
cally downscaled precipitation might seem far from perfect 
according to the correlation or RMSE metrics, they have 
comparable levels of agreement as between different sources 
of observational data. This further highlights the uncertainty 
in precipitation products used to evaluate downscaling 
methods. Such discrepancies can not simply be attributed 
to representativeness error because of the horizontal resolu-
tion of different datasets. For instance, GPCP and TRMM 
precipitation estimates involve different satellites, spatial 
coverage and merging with rain-gauge data, whereas EOBS 
precipitation estimates are based on gridding of point-based 
station data.

Dynamical downscaling with data assimilation outper-
forms the experiment without. Hence, 3DVAR data assimila-
tion improves the quality of the simulations made with WRF, 
as shown by the Taylor diagrams and the bootstrap analysis 
(see Figs. 5, 6, 7, 8, 9). This is consistent with Navascués 
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et al. (2013), Ulazia et al. (2016, 2017) and González-Rojí 
et al. (2018). However, such simulations are 55% more com-
putationally demanding to perform, so our present set of 
WRF experiments were limited to five years. Longer simula-
tions would be needed to reliably estimate the skill of WRF 
at downscaling extreme precipitation events.

The scores of the precipitation diagnostics obtained by 
both SDSM experiments are similar. Hence, this model is 
able to simulate realistic estimates of precipitation inde-
pendently of the resolution of the predictands (i.e. whether 
point- or grid-based). Our results show that the correlation 
with observations and RMSE are much improved by the 
SDSM ensemble mean compared with individual mem-
bers. Conversely, the SD deteriorates when the ensemble 
mean is calculated. Average precipitation does not seem to 
be affected, but there are important differences in the behav-
iour of the individual members and the mean of both SDSM 
ensembles for precipitation intensity, 90th percentile, wet-
day probability and maximum five-day precipitation.

Since the same source of predictors was used in all our 
downscaling experiments (ERAI) and gridded output was 
used to calculate diagnostics, we have undertaken a harmo-
nized evaluation of the dynamical and statistical techniques. 
According to the results, the most skillful downscaling tech-
nique varies according to the choice of diagnostic. Overall, 
WRF-D produces more consistent results (better scores in 
the Taylor diagrams and some precipitation diagnostics), but 
it is clear that SDSM is able to produce comparable (or even 
better) results to WRF if the ensemble is taken into account. 
This result agrees with previous research. For example, 
Schmidli et al. (2007) reported that over flat terrain, both 
downscaling techniques showed similar results. Gutmann 
et al. (2012) compared a statistical model with WRF in the 
mountainous regions of Colorado, and found that statistical 
downscaling was able to improve the results of the original 
model. Casanueva et al. (2016) compared eight RCMs with 
five statistical downscaling methods over continental Spain, 
and found that statistical methods outperformed RCMs in 
terms of seasonal mean precipitation.

Data assimilation is not an option (due to the lack of 
observations) for climate change or seasonal forecast appli-
cations of WRF. Rather, only N-type WRF simulations can 
be performed. Additionally, in these applications, the cor-
relation coefficient is not a fair verification index, and, as 
shown by Figs. 10 and 12, if the temporal occurrence of pre-
cipitation is not taken into account members of the SDSM 
ensemble perform better than WRF-D.

Another key-aspect to consider when one of the down-
scaling techniques must be chosen is the time and com-
putational cost. The calibration step of SDSM is the most 
demanding and time-consuming part of this downscaling 
technique. Even so, the time expended on this task is mod-
est compared with the investment require to run WRF. 

Moreover, the storage required for all the sites downscaled 
by SDSM was tiny ( < 100Mb ) when compared with each 
run of WRF for the whole domain of the IP. The storage 
needed by the raw data for WRF-N is 2 Tb and 4.7 Tb for 
WRF-D. On the other hand, WRF provides the spatial distri-
bution of simulated precipitation (and many other variables) 
over the whole domain compared with just 21 stations (or 
EOBS cells) from SDSM.

Finally, it is important to note that the selection of SDSM 
predictors (including precipitation) and high resolution grid-
ded inputs means that the statistical downscaling is now 
more closely approximating the ingredients of the dynamical 
model. We have statistically downscaled ERAI data using 
local information from EOBS gridded data with SDSM 
and found that the results are comparable to those obtained 
with local information from station data. We see a grow-
ing opportunity for deploying both downscaling techniques 
in combination (Díez et al. 2005; Fernández-Ferrero et al. 
2009). For example, dynamical modelling could give the 
spatial coverage and persistence, whereas statistical down-
scaling could improve the precision of highly local weather 
metrics (Roux et al. 2018).

5  Conclusions

This study shows how more consistent evaluation of statisti-
cal and dynamical downscaling techniques can be achieved 
by minimizing differences in model set-up, inputs and out-
puts. Moreover, the observational datasets against which 
downscaling techniques are routinely compared should not 
be considered as absolute truth.

We evaluated daily precipitation simulated by two down-
scaling techniques: WRF (boundary forcing by ERAI, with 
and without 3DVAR data assimilation) and SDSM (using 
predictors also from ERAI fit to station and gridded precipi-
tation). By harmonizing the inputs (ERAI), validation period 
(2010–2014), output format (EOBS gridded precipitation) 
and diagnostics, the remaining differences can be more con-
fidently attributed to the downscaling techniques themselves 
rather than experimental set-up. The complex landscapes 
and climate regimes of Iberia provide a diverse and chal-
lenging set of conditions for testing both models.

We confirm that SDSM must be calibrated on a site by 
site basis - exploration of the predictor sets in relation to 
station elevation, latitude or longitude found no coherent 
regional patterns or gradients. Having followed consistent 
calibration procedures, the statistically downscaled series 
were no more different to WRF series, than variations 
between observational datasets (EOBS, TRMM and GPCP). 
Our results also showed that WRF-D (with data assimila-
tion) yields more skillful precipitation than WRF-N (without 
assimilation). The comparison of our experiments showed 
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that no downscaling technique was superior across all verifi-
cation metrics. According to our results, comparable correla-
tions are obtained for the SDSM ensemble means, WRF-D 
and ERAI for the regions studied. However, individual mem-
bers of the SDSM ensembles, were generally less skillful 
than WRF-D. Focusing on the precipitation metrics, the skill 
of SDSM was similar whether station or gridded precipi-
tation was used for calibration. Thus, the different spatial 
scales involved in the station versus gridded precipitation 
data problem do not apparently play an important role, at 
least at the 20 km range checked in this study.

The best LEPS values were achieved by SDSM ensem-
ble members at most stations (16 for SDSM-stations and 
13 for SDSM-EOBS). Both WRF-D and the members of 
the SDSM ensemble outperformed the SDSM mean in all 
cases. In contrast, the BSS showed that SDSM ensemble 
means and WRF-D added value to the prediction of precipi-
tation when compared with unadjusted ERAI. This was not 
the case for the SDSM ensemble members. This is because 
the BSS index accounts for the temporal occurrence of pre-
cipitation, whilst SDSM stochastically generates individual 
series that are not expected to match observed series.

WRF-D outperformed SDSM when simulating winter 
daily mean precipitation, whereas SDSM ensemble mem-
bers were most skilful for precipitation intensity and the 90th 
percentile. This was also the case in summer. WRF-D and 
SDSM ensemble members reproduced observed maximum 
consecutive dry-days and the probability of a wet-day in 
winter. Maximum 5-days precipitation totals were under-
estimated by both downscaling techniques. In summer, 
WRF-D overestimated maximum consecutive dry-days and 
underestimated the probability of a wet-day. Both SDSM 
experiments behaved similarly to winter. According to this 
seasonal analysis, we conclude that SDSM can outperform 
WRF-D when simulating these indices, but WRF-D presents 
more consistent results between seasons.

Ultimately, these downscaled products could be useful for 
analysis of the long-term water balance of western Europe. 
SDSM generates similar results to WRF at grid scales, but 
can simulate weather variables for much longer periods, at 
lower computational costs and in considerably less time. 
Hence, clear statements about the expected value-added are 
needed when applying WRF to climate impacts and adapta-
tion research. However, further research is needed to explore 
the extent to which different types of precipitation mecha-
nism (e.g. intense local convection or widespread frontal 
system) are reproduced as well by SDSM as by WRF, rather 
than pooling all rain days as in the present study. There is 
also scope for detailed analysis of multi-season extremes, or 
simulations of inter-annual variability.
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