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Abstract

In this paper, a multi-row effusion cooling configuration with scaled gas turbine combustor conditions

is studied numerically. The distribution of the coolant film is examined by surface adiabatic cooling

effectiveness (ACE). Simulation results have shown that the accuracy of cooling effectiveness prediction

is closely related to the resolution of turbulent flow structures involved in hot-cold flow mixing, espe-

cially those close to the plate surface. The formation of the coolant film in the streamwise direction is

investigated. It is shown that the plate surface directly downstream the coolant holes are covered well

by the coolant jets, while surface regions in between the two columns of the coolant holes could not be

protected until the coolant film is developed sufficiently in the spanwise direction in the downstream re-

gion. More detailed study has also been carried out to study the time-averaged and time-dependent flow

field. The relation between the turbulent flow structures and coolant film distribution are also examined.

The Kelvin-Helmholtz instability in the upper and lower coolant jet shear layer, is found to have the

same frequency of around 8000Hz, and is independent of the coolant hole position. Additionally, it is

suggested by the spectral coherence analysis that those unsteady flow structures from the lower shear

layer are closely related to the near-wall flow temperature, and such effect is also independent of the

coolant hole position.

Keywords: hybrid LES-RANS, multi-row effusion cooling, inflow turbulence, adiabatic cooling

effectiveness

1. Introduction

The combustion chamber of a modern gas turbine engine is a hostile environment in which the

combustor liner is exposed to the extremely high temperature gas. Effusion cooling is a commonly

used technology to protect the combustor liner from being melted down by the hot gas. By injecting

the coolant through an effusion cooling array, a film of low temperature air can be formed on the5

solid surface to isolate it from the high temperature gas. Increasing the coverage of the coolant film

improves the cooling effect. However, simply increasing the amount of coolant will reduce the efficiency

of jet engine components as the coolant air is often routed from the compressor, hence decreasing the

propulsive mass flow. Good understanding of the effusion cooling mechanism is critical for improving

the cooling performance with minimum coolant usage. Moreover, the flow inside a combustor chamber10

is highly unsteady with injection, swirls and vortices, as well as chemical reaction of fuel-air mixture. It

is therefore important to understand the effects of such highly unsteady flow on the formation of coolant

film.
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There are a wide range of studies carried out to investigate the performance of the coolant film both

experimentally and numerically. A series of experiments were carried out by Sinha and others [1–4] on15

a configuration of a single-row of 30◦-inclined coolant holes. Numerical simulations of this configuration

using the Reynolds-averaged Navier-Stokes (RANS) approach have been performed by many groups

as well [5–7]. Although these RANS studies were generally able to reproduce the time-averaged flow

quantities with reasonable accuracy, a time-dependent approach such as Large-Eddy Simulation (LES)

will offer great advantages in resolving the unsteady flow structures as the mixing of the coolant and20

mainstream is dominated by secondary flows and vortex interactions. Several groups have conducted

LES studies [8–10] on single-row configurations and obtained good agreement with experimental data.

Ziefle and Kleiser [11] carried out an LES study with inflow turbulence added to the mainstream as inlet

boundary conditions. Differences in the cooling effectiveness distribution were found compared to those

without inflow turbulence.25

Resolving the flow in each of the hundreds or thousands of holes in a full effusion cooling array would

be very expensive. As long as only a reasonably small number of holes are considered, wall-resolving

LES can be performed in place of RANS calculations mainly to gain insights into the jet/mainstream

interaction. Only a few LES studies have been performed for multiple rows with geometrically resolved

jet/jet interactions. Motheau et. al. [12] carried out a LES study on a multi-row cooling configuration.30

Their main focus was on the interaction of an acoustic wave with the coolant jets rather than the cooling

effectiveness. Konopka et al. [13] analysed the interaction of multiple rows of coolant jets using LES.

The flow field comparisons against the Particle Image Velocimetry (PIV) data showed good agreement

but no assessment was made for the cooling effectiveness. However, because of the requirement of LES

in near-wall grid resolution, N ∝ Re2.4, wall-resolving LES studies are limited to low Reynolds number35

configurations.

Scaling the combustor conditions can be very useful. In recent years, experimental studies are carried

out by Martin [14] and Krawciw et. al. [15, 16] assessing the performance of full coverage effusion

cooling array configurations at scaled combustor conditions. In the former work, a jet-in-crossflow type

turbulence generator was built to generate combustor relevant flow conditions with high intensity levels40

and large lengthscales. The cooling performance of cylindrical and fan-shape effusion cooling holes was

studied by adiabatic cooling effectiveness (ACE), normalised heat transfer coefficient (HTC) and heat

flux reduction (HFR). It was found that the free-stream turbulence levels can increase the rate of mixing

and degrade the cooling effectiveness at low blowing ratios (BR). At high BRs, the surface ACE was

increased due to the reattachment of the coolant jet caused by the mainstream turbulence. It was also45

found that the effect of density ratio (DR) as an independent parameter was relatively weak in inclined

cylindrical hole cases. The ACE results of DR from 1 to 1.4 scale reasonably well against momentum

flux ratio, which suggests that the results obtained at low DR can be used to predict that at combustor

DR. The fan-shape hole was found to improve the spatially averaged ACE by 89%. This is mainly

due to the diffusion of the coolant at hole exit which keeps the coolant jet attached to the plate surface50

at BRs up to 5. Krawciw [15, 16] extended the work further to different hole geometries ranging from

the most simple inclined cylindrical hole to more exotic helical hole. The cooling performance of those
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designs were examined by both the ACE in [15, 16] using a Pressure-Sensitive-Pain (PSP) technique and

the overall cooling effectiveness (OCE) accounting the heat conduction inside the effusion-cooled plate

in [16] using the Infra-Red Thermography. The experiments in [15] were conducted at momentum ratios55

(MR) ranging from 0.6 to 15. It was found that the fanned-shape related designs generally performed

better than the cylindrical holes in terms of ACE and coolant film coverage. Also, the averaged ACE

results vary little when BR exceeds 1.5 for most of the designs.

In this paper, a wall-proximity blended hybrid LES-RANS approach is used to conduct numerical

simulations with one of the multi-row effusion cooling configurations in Krawciw’s experiments[15]. The60

hybrid LES-RANS approach is used to reduce the computational expenses in the near-wall region by

the use of RANS as near-wall models, but resolving the turbulent flow features that are not attached

to the wall [17–19]. The main purpose of this study lies in two folds. Firstly, the numerical approaches

are examined by the prediction of the surface ACE distribution. Secondly, investigations are carried out

based on the eddy resolving solutions to study the flow behaviour and the formation of the coolant film65

in this multi-row configuration at scaled combustor conditions. Additionally, the effects of turbulent flow

structures are also examined.

The paper is organised as follows. The methodology and configuration for the simulations are ex-

plained in Section 2, including explanation of the grid resolution and summary of the cases. Section 3

describes the time-averaged flow field obtained by the simulations. Results of the surface ACE distribu-70

tion compared with the measurements and RANS solutions are presented in Section 4. Detailed study

of the coolant film formation and coolant jet development is also presented in this section. Section 5

illustrates analysis on the turbulent flow structures in the coolant-mainstream mixing region and off-wall

region, as well as brief discussion about their effects on the surface ACE distribution and coolant film

formation.75

2. Methodology and configuration

2.1. The unstructured in-house solver

The current study employs an in-house hybrid LES-RANS solver for unstructured grid, FLUXp (Flux

Limited Unstructured eXtrapolation in parallel) [20, 21]. In this solver, the Favre-averaged compressible

Navier-Stokes equations for ideal gas are solved in conservation form,80

∂

∂t

∫

Ω

W dV +

∮

∂Ω

(F−G) · n dA = 0 (1)

The conservative variables are W = [ρ, ρui, E]T , the inviscid and viscous fluxes are defined as Fi =

uiW + [0, δ1ip, δ2ip, δ3ip, uip]
T and Gi = [0, τ1i, τ2i, τ3i, τkiuk + qi]

T . The stress tensor τij , total energy

E and heat flux qj satisfies,

τij = 2(µ+ µT )

(
Sij −

1

3
∂kukδij

)
, E = ρe+

1

2
ρuiui, qi = −(κ+ κT )

∂T

∂xi
(2)

where the thermal conductivity is computed from κ = µcp/Pr. The Prandtl number is set to Pr = 0.72

and its turbulent counterpart is 0.90. An extra equation of state p = ρRT is also included. In order to85

overcome the low Mach numerical stiffness, a preconditioned formula is more robust and more details of

the preconditioning is presented in Appendix A.
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2.1.1. Spatial and temporal discretisation

Viscous terms are discretised using the central differencing scheme, while a MUSCL type reconstruc-

tion with a modified Roes scheme is used for inviscid fluxes at the common face of two neighbouring90

cells,

F =
1

2
(FR + FL)−

γ

2

∣∣∣∣
∂F

∂Q

∣∣∣∣ (QR −QL) (3)

where the up-winding term is controlled by parameter γ ∈ (0, 1]. When γ = 0, the central difference

is used. Meanwhile, the upwinding is fully functioning when γ = 1. The blending between the two

schemes is applied to combine the accuracy of the central difference scheme in resolving the turbulent

flow structures, and the numerical stability of the upwinding scheme. In the current simulations, γ ≈ 0.395

is defined in regions covering the coolant jets and their wakes, and is smoothly transitioned to 1 in the

farfield. Q = [p, ui, T ]
T and F are the primitive and flux vectors. Subscripts “L” and “R” represent the

immediate left and right position of the common flux face, where piecewise linear reconstructions are

performed from cell centres to give a second-order spatial accuracy. Moreover, the dual-time advancing

is employed with the outer physical time discretised by a three-level backward Euler scheme, thus leading100

to a second-order temporal accuracy. The inner pseudo time is advanced by a three-stage Runge-Kutta

scheme. As the outer time is formulated implicitly, it allows larger physical time steps to increase the

computing efficiency compared to its explicit counterpart.

2.1.2. LES-RANS hybridisation

In this work, the RANS model is used in the near-wall region instead of a wall-resolving LES approach105

to reduce the requirement of near-wall grid resolution. A wall proximity formula is used to control the

“destruction” of the eddy viscosity in the RANS part [22]. This is different from the Detached Eddy

Simulation (DES), where the approximate turbulent lengthscale is replaced by the weighting between

the lengthscale and grid spacing min(LT , CDES∆) [23–25]. In DES, the interface between the LES and

RANS is not fixed but depends on the flow and grid resolution. However, in our hybrid LES-RANS110

approach, the LES-RANS interface is determined at a given wall proximity based on a RANS cut-off

distance dc, or the corresponding y+ value. And the LES and RANS regions are defined by a modified

wall distance,

d̃ =

[
1− tanh

(
α
d− dc
dc

)]
d

2
(4)

where α is a coefficient which controls the decay rate of d̃ in the mixed region, dc is the RANS cut-off

distance typically corresponding to y+ ∼ 60. The weighting parameter for LES is given as,115

ε = tanh
[
β(d− d̃)

]
(5)

where β is a coefficient that controls the growth of ε in the mixed region, increasing the value of β will

result in a faster increase of ε before reaching the maximum value of 1. The LES weighting parameter

is used when calculating the SGS eddy viscosity,

µsgs = εµsmag (6)
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where µsmag = ρlsgsDs is the eddy viscosity computed from the Smagorinsky-Lilly model [26], where

lsgs = Cs∆ is the sub-grid scale, and Ds = |S| is model differential operator. This eddy viscosity can also120

be replaced by the eddy viscosity from other SGS models, for example µσ = ρlsgsDσ from the σ-model

[27].

The two-equation Shear Stress Transport (SST) k-ω model[25] is used as the near-wall RANS model.

The transport equations of the SST model and definitions of the variables are presented in Appendix

B with details. In order to blend the SST model with the LES, the turbulent length scale LT in the125

“destruction” term Bk of the transport equations is modified so that the eddy viscosity of the RANS

model µT is controlled by the wall proximity d̃,

Bk = k3/2
1

LT

d

d̃
(7)

The turbulent length scale LT therefore scales with the modified wall distance in the mixed region but

returns to the original value in the RANS region.

As Figure 1 shows, the RANS and LES regions are defined based on the modified wall distance d̃.130

The eddy viscosity of RANS reduces smoothly when moving away from the wall in the mixed region.

The weighting of LES increases in the mixed region when ε gradually increases from 0 to 1. In the LES

region where ε = 1, the RANS eddy viscosity vanishes, and the SGS eddy viscosity has full weighting. A

smooth transition in the eddy viscosity field is therefore obtained between the RANS and LES regions,

and the effective viscosity being used during the simulation is calculated,135

µeff = µlam + µT + µsgs (8)

where µeff is the effective viscosity, µlam is the dynamic (laminar) viscosity. Also, it has been shown that

the near-wall RANS has maintained its ability to reproduce the log-law near-wall behaviour [20, 22, 28].

RANS Zone

Mixed Zone

LES Zone

Figure 1: Blending of RANS and LES regions

In this work, since no explicit SGS model is used, µsgs is zero, which is behaving like an implicit

LES [29–31] or numerical LES [32]. This hybrid LES-RANS approach has been successfully applied to

various studies, such as turbulent jets [18, 21] and a heated bluff body flow [19].140

2.2. Krawciw’s experiments

Experiments were carried out by Krawciw et al. [15, 16] on the “Biot-Scale Rig” designed by Martin

[14] at Loughborough University. This rig was developed to run Biot number matched experiments,
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replicating the overall effectiveness of combustor representative cooling configurations. According to

[15], the combustor conditions are aero-thermally scaled to the near-ambient rig conditions due to the145

limit of the wind tunnel. In order to represent the exact combustor equivalent conditions, a so-called

“Biot-number-scaling” is applied when determining the test conditions. Firstly, the Reynolds number

of the experiment must match that of the combustor conditions to ensure that the flow field is similar.

Secondly, Nusselt number must be matched to scale the boundary between the fluid and the wall, as well

as the Biot number, to reproduce the conduction of heat inside the plate, for furture studies on the overall150

cooling effectiveness. Therefore, the fluid properties, convective heat transfer and plate conductivity must

be scaled to match the Reynolds number, Nusselt number and Biot number of the combustor conditions.

Moreover, the facilities were modified by Krawciw et al. [15] to expand the capability and fidelity. A

few additional equipment were added, including a bulk free-stream turbulence generator and those for

pressure sensitive pain (PSP) measurement. A range of geometric scales and measurement of ACE155

were available after the modification. The mainstream air in the wind tunnel was provided through a

recirculating wind tunnel with an in-line heater. The mainstream entered a turbulence generator after

a series of flow straightening grids and screens. The turbulence generator took air from the downstream

of the inline heater and re-entered the mainstream through a set of holes with variable diameters. By

varying the jet velocity and hole diameter, different bulk turbulence intensity levels in the mainstream160

could be generated. Details of the jet-in-crossflow type turbulence generator can be found in [14]. The

coolant flow was fed into a plenum before entering the coolant holes from a separate source. The speed

of the coolant flow was controlled by flow controllers and the plenum was made of materials with limited

conduction rate. Downstream the test section, the wind tunnel was vented to atmosphere in order to

maintain the atmospheric pressure and prevent heat build-up and Nitrogen concentration during the165

experiment.

2.3. Flow domain and boundary conditions

A sketch of the computational domain is illustrated in Figure 2a. It contains two columns of the

coolant holes with a spanwise distance of 3.1D. Using the periodic boundary conditions at the two sides

of the mainstream channel, this section can be extended periodically in the spanwise direction, mimicking170

the full plate in experiments. The top surface of the main channel locates about 7.75D away from the

plate surface and it is defined as far-field to allow flow penetration through the boundary. The origin

of the computational domain is set at the centre of the two rows and parallel to the leading edge of the

first coolant hole. The inlet locates at about 11.6D away from the leading edge of the first hole and the

outlet is about 15D away from the trailing edge of the last hole. The bottom surface of the main channel,175

together with the coolant hole surface and top surface of the coolant chamber, is set as no-slip and zero

heat flux wall. This ensures that no extra heat is introduced to the domain and that the wall surface is

adiabatic. The coolant holes stretch 3.1D in the vertical direction with an very shallow inclination angle

of around 17◦ to the plate surface, which leads to a length-to-diameter ratio of about 10.6D. The coolant

enters the chamber from the bottom surface that is about 4.65D away from the coolant hole inlet. The180

surfaces of 4 sides are slip walls to make sure that all the coolant that enters the chamber will come out
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from the coolant holes.

Periodic side B.C.

Coolant

Mainstream

View from the top for the effusion cooled plate

x

y

z

x

z

(a) A sketch of the computational domain and boundaries

1st hole/row

2nd 4th 6th 8th

3rd 5th 7th 9th
z=-1.55D

z=0

z=1.55DColumn 2

Column 1

Midspan

(b) Definition of the coolant hole locations

Figure 2: A sketch of the computational domain and the effusion-cooled plate

According to the experiment [15], the mainstream bulk velocity is U∞ = 36m/s with a velocity profile

specified at the inlet. The coolant speed at the inlet of the chamber is adjusted to reach the targeted

blowing ratio at the coolant hole exit. The mainstream temperature is T∞ = 315K while the coolant185

flow has a temperature of about Tc = 300K. This leads to a density ratio of 1.05 and a blowing ratio of

around BR = 1.5, with corresponding Reynolds number of around ReD ≈ 6, 000, which are equivalent to

the experiments. A velocity profile is used at the inlet of the mainstream, with synthetically generated

free-stream turbulence using the Synthetic Eddy Method (SEM) [33–35] at a turbulent intensity level of

5%, and a lengthscale of about 2D.190

2.4. Mesh and case summary

Two coarse grids of about 3-million and 8-million cells are used for RANS simulations. The coarse

3-million-cell grid do not have specific refinement region for the turbulent flow structures. A maximum

cell size of 1.2D is applied to the farfield of the main flow domain, while that on the effusion cooled

plate surface is limited to 0.4D. The surface cells are growing to the maximum surface cell size in this195

3-million-cell grid without any specific restriction. Prism layers are generated from the solid surfaces

with the first cell height set to satisfy y+ ≈ 1.0 based on the mainstream inlet conditions. Additionally,

a cell-to-cell match condition is applied to the left and right boundaries in the spanwise direction of the

mainstream channel to comply with the requirement of the periodic boundary condition. In the 8-million-

cell grid, refinement regions are used to limit the volume cells size to a maximum of 0.20D in the regions200

covering the injected coolant jets and their wake where the coolant jets mix with the mainstream. This

refinement aims at better resolving the shear layer and the mixing of coolant jets and the mainstream,
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which are important to the formation of the coolant film. Cells on the plate surface and in the near-wall

regions are refined to capture the injection and reattachment of coolant jets. The resolution of those

highly unsteady flow structures are important to the prediction of surface ACE distribution. In this205

8-million-cell grid, the cell size on the coolant hole exit edges is the same as the that of the 3-million-cell

grid, but the growth of the cell size in the middle regions between the coolant holes is controlled by a

maximum size of 0.18D, similar to the cell size in the volume refinement regions. A much finer grid of

about 18-million cells is used for the hybrid LES-RANS case. The refinement regions are the same as

the 8-million-cell grid, but the resolution is much finer. The cell size in the volume refinement regions210

is set to 1/5 of the value used in the 8-million-cell grid, which is about 0.04D. Meanwhile, the cells

on the plate surface between the coolant holes are limited to about 0.08D, which is about half of the

corresponding value in the 8-million-cell grid. These refinement processes result in a volume resolution in

the corresponding regions to be more than doubled compared to the 8-million-cell grid. Figure 3 shows

an overall view and an enlarged cut-away view of the 18-million-cell grid for eddy resolving simulation.215

A summary of the simulations carried out in the current study is presented in Table 1, in which

Ncell is the total cell number, ∆V and ∆S are the maximum cell size in the volume and plate surface

refinement regions, ∆t the time step size and the convective time is defined as t∗ = D/U∞. The timestep

size in MRC3 is set to be 1/200 of the convective time. To evaluate the timestep size being used in

the simulation, an maximum equivalent CFL number is calculated based on the bulk velocities and220

the minimum cell size, although the implicit method being used in the solver allows much larger CFL

number compare to the explicit method (CFLmax 6 1). In MRC3, the maximum equivalent CFL

number with the mainstream velocity is about CFLU∞
≈ 0.1, and that with the coolant jet velocity is

about CFLUc
≈ 0.6.

Table 1: A summary of simulations performed in the current study

Case Approach Ncell ∆V ∆S t∗/∆t

MRC1 RANS 2,830,211 1.20D 0.40D N/A

MRC2 RANS 7,661,401 0.20D 0.18D N/A

MRC3 hybrid LES-RANS 17,866,961 0.04D 0.08D 200

3. Time-averaged flow field225

Detailed study of the time-averaged flow field can be carried out based on results of the simulations

both for the temperature and velocity field.

3.1. Examination of the temperature field

The time-averaged temperature field is studied first for a brief overview of the mixed flow field

formed by the coolant jets and the mainstream. Fig. 4 illustrates the mean temperature contours at a230

slice through the first column of holes (z = −1.55D). The time-averaged temperature fields across the

1st column of coolant holes from the 3 cases are very similar to each other. The thickness of the coolant
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Figure 3: The MRC3 grid: a general view of the cut-away position (left) and an enlarged view showing detailed grid

resolution (right)

film, denoted by the position of the upper shear layer, is growing smoothly from the upstream coolant

hole to the downstream ones. It can be found from all 3 cases that the coolant jet from the first hole

does not reattach to the plate surface very well. This results in a high flow temperature region occurring235

near the plate surface downstream the first hole’s exit. This is due to the coolant jet penetrating deeply

into the mainstream as a result of the high momentum ratio of the current configuration, in spite of the

small jet inclination angle. Some differences in the near-wall region can be found between the 3 cases.

Firstly, the lower shear layer of the 1st coolant jet in MRC1 goes straight up in the streamwise direction,

while that in the other two cases shows a trend of reattachment. This suggests that MRC1 does not240

have enough resolution in the region close to the wall to capture the reattachment of the coolant jet,

thus underpredicts the off-wall flow mixing as well as the surface ACE value. MRC2 presents a trend

of reattachment, but the strength of the reattachment is not as well predicted as in the eddy-resolving

MRC3. Streamlines from the time-mean flow field of MRC3 is presented in Fig. 5, which illustrates

the separation and reattachment of the coolant flow. Secondly, the decreasing speed of the near-wall245

flow temperature towards the downstream direction is underpredicted in MRC1 and MRC2, due to the

underestimate in the coolant jet reattachment. Case MRC3 shows a clear decreasing trend in the near-

wall flow temperature. The coolant flow fully reattaches to the plate surface after the third hole. It seems

that the downstream coolant jets are more attached to the plate surface. This is highly likely due to the

effects of a high-velocity and low-temperature coolant film formed by the wake of the upstream coolant250

jets. Furthermore, the comparison between the downstream coolant jets to the upstream ones indicates

that the low temperature core of the downstream ones extends further in the streamwise direction. This

is also because of the effects of the low-temperature coolant film attached to the plate surface. The heat

transfer rate between the coolant film and the coolant jets is reduced since the temperature difference is

reducing as more coolant is injected into this coolant film. As a result, the low temperature core becomes255

increasingly longer in the downstream coolant jets.

Fig. 6 presents the mean temperature contours on the plate surface and selected downstream slices

in MRC3. It can be found that the coolant jets of the first 2 rows are lifted off the plate surface, thus

would result in a high temperature flow attached to the surface locally. Therefore, a low value of the
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(a) MRC1

(b) MRC2

(c) MRC3

Figure 4: Time-averaged temperature contours at a slice through the first column holes of: (a) MRC1, (b) MRC2, (c)

MRC3

Figure 5: Streamlines of the separated and reattached coolant from the 1st coolant jet in MRC3

surface ACE is expected in the position corresponding to the first two rows. After the 3rd row, the260

coolant jets are pressed onto the plate surface by the coolant film which is a mixture of the upstream

coolant jets and part of the mainstream. As a result, the flow temperature attached to the surface is

lower since more coolant is reattached to the surface. Moreover, the overall temperature of the coolant

film is reduced as more coolant is injected to the mainstream, thus compensates the heat transferred to

the coolant film from the hot mainstream. It is also noticeable that the spanwise coverage of the coolant265

film keeps increasing since the 4th row. The most possible reason of this expansion is that the local

coolant jet is forced to expand further and further in the spanwise direction in response to the constrain
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of the incoming coolant film in the vertical direction.

Figure 6: Time-averaged temperature contours on the plate surface and selected downstream slices of MRC3

3.2. Examination of the velocity field

The mean flow fields of the simulations are examined by the velocity and Reynolds stresses profiles.270

The velocity field across and in the wake of the first coolant hole is studied to provide a basic under-

standing of the mixing flow between the coolant jet and the mainstream at current conditions. The

development of the flow field with multiple coolant jets is illustrated by the velocity and Reynolds stress

profiles in the wake of each coolant hole through the centre of the first column at z = −1.55D. It is

worth noting that the Reynolds stresses from MRC3 are resolved in the LES regions, while those from275

MRC1 and MRC2 are modelled by RANS.

Figs. 7 and 8 present the mean streamwise and vertical velocities through the centreline of the

first coolant hole. The origin of the streamwise position is at the leading edge of the first coolant

hole and the trailing edge of the first coolant hole is at x = 3.42D as illustrated in the figure. The

mainstream boundary layer is clearly illustrated by the streamwise velocity profile at the leading edge280

of the coolant hole (x = 0). It shows that in MRC1 and MRC2, the bulk velocity in the farfield is

slightly underpredicted. At x = 2D, which is slightly downstream the centre of the coolant hole exit,

the coolant jet is exiting the hole exit at a streamwise velocity of about 2U∞ and a vertical velocity

of about 0.5U∞. The vertical velocity is slightly lower in MRC1 due to the coarse resolution. Similar

underestimate is also found in MRC2, but is able to recover in a higher position. An upper shear layer is285

formed at about y = 0.5D locally. This shear layer position moves up in the downstream as the coolant

jet penetrates further into the mainstream. The coolant jet core is illustrated by the wide peak in the

velocity profiles downstream the trailing edge. However, MRC1 and MRC2 underpredict the jet core

velocity correspondingly. A recirculation region is formed in the near-wall region close to the trailing

edge of the coolant hole, as the negative vertical velocity in the profiles at x = 4D and 6D indicate.290

This recirculation region is generated by the separation of the coolant jet from the trailing edge of the

coolant hole. It ends after x = 6D as the near-wall vertical velocity at x = 8D is no-longer negative,

which indicates that the separated coolant flow fully reattaches to the plate surface.
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Figure 7: Time-averaged streamwise velocity profiles at z/D = −1.55 through the 1st coolant hole, – · – MRC1, – –

MRC2, ––– MRC3
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Figure 8: Time-averaged vertical velocity profiles at z/D = −1.55 through the 1st coolant hole, legend same as Fig. 7

Profiles of the Reynolds normal stress (u′u′)1/2 of the first coolant hole are illustrated in Fig. 9. The

profiles indicate that turbulence intensity of 5% added to the mainstream is present in all three cases295

across the 1st coolant hole. Comparison between profiles of the three cases suggests that MRC1 and

MRC2 completely underestimate the turbulent flow features, especially in the upper and lower shear

layers. Though the grid refinement in MRC2 help providing better prediction to the turbulence, the

improvement is limited and cannot compare to the eddy resolving MRC3. A clear peak can be found

in the profile of x = 2D at about y = 0.5D. This indicates that the velocity at the upper shear layer300

is fluctuating significantly. The peak moves up towards the downstream, but the transition is smoother
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Figure 9: Reynolds normal stress (u′u′)1/2 profiles at z/D = −1.55 through the 1st coolant hole, legend same as Fig. 7
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due to the shear layer breaking up into smaller structures. A second peak appears close to the wall at

x = 4D. This is due to the formation of another shear layer between the lower boundary of the coolant

jet and the mainstream. Similar to the upper shear layer, its position moves up and the strength reduces

during the breakup. A third but less strong peak occurs at x = 8D. This peak is probably caused by305

the unsteadiness of the separated flow from the coolant jet.
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Figure 10: Reynolds shear stress u′v′ profiles at z/D = −1.55 through the 1st coolant hole, legend same as Fig. 7

Fig. 10 shows the Reynolds shear stress u′v′ across the first coolant hole and at downstream locations.

Similar to the profiles of the Reynolds normal stress (u′u′)1/2, instability in the upper and lower shear

layers of MRC1 and MRC2 is not well resolved compared to that in MRC3. The upper and lower shear

layers are illustrated by the positive peaks at x = 2D and 4D. In the downstream regions, the lower310

shear layer is demonstrated by a negative peak. The change in the peak direction of the lower shear

layer between x = 4D and 8D is due to the fact that the wall boundary layer formed inside the coolant

hole still exists at x = 4D, but is smoothed out at 8D. This wall boundary layer introduces a different

streamwise velocity distribution compared to that of the standard shear layer. The movement of the

upper shear layer in the vertical direction is illustrated much clearer in the shear stress profiles. The315

upper shear layer moves up to about y = 2D at downstream location of x = 10D. This suggests that at

such a high momentum ratio, the coolant jet penetrates deeply in vertical direction, in spite of the small

hole inclination angle of 17◦. The upper boundary of the coolant jet is so far from the plate surface that

only a small amount of coolant is attached to the wall. This is one of the reasons why the surface ACE

remains low in the wake of the first 3 holes.320
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Figure 11: Time-averaged streamwise velocity profiles at z/D = −1.55 through the first column of holes, legend same as

Fig. 7
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The mean streamwise velocity in the wake of the 5 coolant holes in the first column is illustrated in

Fig. 11. The peak values of the coolant jet cores are again underpredicted in MRC1 and MRC2, though

the reducing trend of the peak velocity and its vertical position being captured. The coolant jet core,

demonstrated by the wide peak in the velocity profile, is at around y = 1D in the wake of the first

hole. The position of this jet core moves down towards the plate surface as the peak of profiles indicates.325

This is because the upstream coolant jets mix with the mainstream and thus reduce the blowing ratio

at the position of the downstream coolant jet. Also, the mixed flow from the upstream stays on top

of the coolant jet and is pushing the local coolant jet towards the plate surface. Another finding from

the profiles is that the value near the peaks increases so that the relative peak height seems reducing in

the downstream positions. This is due to the mixing of the upstream coolant jets and the mainstream,330

which increases the local velocities of the mixed flow in the downstream region where y < 1.6D. Such

increase in the local velocities results in a decrease on the blowing ratio of the local coolant jet. This is

one of the reasons why the downstream coolant jet become more attached to the plate surface.
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Figure 12: Reynolds shear stress u′v′ profiles at z/D = −1.55 through the first column of holes, legend same as Fig. 7

Fig. 12 shows the Reynolds shear stress u′v′ in the wake of the 5 coolant holes in the 1st column. The

upper and lower boundary of the coolant jet core, or the upper shear layer of the coolant jet, is illustrated335

by the first pair of peak and valley at about y = 1D. The value of the peak and valley reduces towards

the downstream as a result of the increasing velocities in the coolant film consists of multiple coolant

jets. Although its presence and decaying trend is also shown in MRC1 and MRC2, the strength of the

instability is greatly underpredicted. The second pair of peak and valley, although not as high as the first

pair, indicates the lower boundary of the coolant flow, or the lower coolant jet shear layer, where some340

of the coolant flow separates from the main jet and reattaches to the wall. As a result of the increasing

velocity in coolant film towards downstream, both the coolant jet core and the separated coolant flow

region become more and more closer to the wall, with a reduction in the unsteadiness. Comparing to

MRC3, MRC1 and MRC2 failed to capture such flow separation and reattachment very close to the plate

surface, which would greatly affect the results of surface ACE distribution.345

4. Coolant film distribution

In this section, the distribution of the coolant film over the plate with multiple rows of coolant holes

is studied using the time-averaged adiabatic cooling effectiveness. And the hybrid LES-RANS results are

compared with RANS solutions and relevant measurements. More detailed investigation on the coolant
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film formation throughout the multiple rows and its three dimensional structure are also investigated350

by a coolant film thickness defined later in this section. Differences on the coolant jet injection between

the upstream and downstream holes are also studied with the help of the coolant jet mean centreline

trajectory.

4.1. Adiabatic cooling effectiveness

Contours of the mean surface ACE of the simulations and the corresponding measurements are shown355

in Fig. 13. The surface ACE is calculated using the mainstream temperature T∞, coolant temperature

Tc and local wall temperature Tw,

η =
T∞ − Tw

T∞ − Tc
(9)

Comparing the results of three cases, it is clearly shown that although the overall increasing trend is

captured in MRC1 and MRC2, the ACE value on the plate surface is greatly underestimated, especially

those at the first 4 rows. This is a result of the not well-resolved coolant jet separation and reattachment360

in the region close to the wall that has been discussed previously. Moreover, the local cell refinement in

the wake of the coolant jets, as well as on the surface, improves the prediction of coolant jet reattachment

to the plate surface. This is even more important in hybrid LES-RANS because the grid resolution need

to be small enough to capture the vortices in the separation and reattachment regions. The results of

MRC3 present a similar coolant film coverage as that of the measurements. For the first three rows,365

the surface ACE after the coolant exit is slightly lower than in the experiment. This is due to the

underpredicted amount of coolant flow reattaching to the surface. From the 4th row, an increasing

amount of coolant is reattached to the plate surface and the surface ACE increases significantly. Also,

the overall temperature of the coolant film consisted of multiple coolant jets is reducing as more coolant

flow is injected. This consequentially results in a reduction in the heat transfer rate between the injected370

coolant flow and the flow in the coolant film region. The two phenomena together result in an increase

in the surface ACE distribution. However, the effects may be slightly under-resolved in MRC3. Such

underestimate leads to a slightly lower value in the high ACE region near the centreline downstream

each coolant hole at x > 25D comparing to that in the experiment. It is noted that the results of the

measurements are slightly angled, which is mainly due to a slightly asymmetric geometry of the coolant375

holes when the plate is manufactured [15, 16].

The spanwise-averaged mean ACE profiles are plotted in Fig. 14. An area-weighted spanwise-

averaging process is used, which includes cells from regions inside the coolant hole where the ACE value

is about 1.0. This results in the occurrence of peaks in the ACE profiles with an interval of about 6.2D,

which is the distance between two rows of coolant holes, as Fig. 14 (a) illustrates. The spanwise-averaged380

mean ACE profile presented in [15] is obtained with a slightly different averaging process. Therefore,

the spanwise-averaging process for the simulation results is modified to obtain profiles as close to the

measurements as possible, and is shown in Fig. 14 (b). Encouraging results are obtained by MRC3

compared with the measurements and RANS, while results of RANS calculations largely underestimate

the surface ACE. The increasing trend of the surface ACE after each hole is captured well by the hybrid385

LES-RANS approach while the RANS results show a much slower increase. A small underestimate of
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(a) MRC1

(b) MRC2

(c) MRC3

(d) Experiment

Figure 13: Contours of time-averaged surface adiabatic cooling effectiveness: (a) MRC1, (b) MRC2, (c) MRC3

the surface ACE occurs in the downstream region of x > 10D in MRC3. It suggests that the amount of

coolant reattaching to the plate surface is slightly underpredicted. This is possibly due to that the local

grid resolution is not fine enough to accurately resolve all scales of the turbulent flow structures in the

reattachment regions, which consist of the upstream turbulence, coolant reattachment, jet-mainstream390

mixing etc. These structures, especially those close to the plate surface, bring coolant jets and main-

stream together and thus determine the temperature and coverage of the coolant film near the plate

surface. Therefore, the extent to which those structures are resolved greatly influences the behaviour of

the coolant film and surface ACE. Additionally, the increasing grid resolution introduces improvements

on surface ACE prediction over the three cases, although such improvements in RANS solutions is not395

as great as between RANS and hybrid LES-RANS.
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Figure 14: Spanwise-averaged mean surface adiabatic cooling effectiveness: (a) comparison between simulation results , (b)

comparison with measurements
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Figure 15: Streamwise distribution of time-averaged surface adiabatic cooling effectiveness through the first column holes

at z = −1.55D

The streamwise distribution of the ACE through the centreline of the first coolant hole column is

depicted in Fig. 15. Results of MRC3 show an improving prediction of the ACE values in the wake of

the downstream coolant holes, though underestimate is found after the first two peaks. Improvements

on different grid resolutions is clearly illustrated by the ACE values in the wake regions. Also, the RANS400

solutions failed to follow the increasing trend closely in the streamwise direction, while this trend is

mainly caused by the complex mixing between the mainstream, upstream and downstream coolant jets.

It is also suggested that the reattachment and mixing of the initial coolant jets (e.g. first 2 coolant jets
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Figure 16: Streamwise distribution of mean surface adiabatic cooling effectiveness at centreline between two columns at

z = 0

in the local column) requires a much finer grid resolution for accurate prediction of the mixing effect.

Fig. 16 illustrates the mean ACE at the centreline between the two column of holes. A constantly405

increasing trend is shown in all cases. Case MRC3 presents a good prediction of the first non-zero

point. This point indicates that the coolant film generated by the two columns of jets started to merge

together, and thus provides protection to the plate surface in the middle of the columns. Meanwhile,

the first non-zero point in MRC1 and MRC2 is more towards the downstream, and the ACE values are

underestimated. The reason that MRC1 and MRC2 give similar prediction along the centreline is that410

the local grid resolution of the two grids is similar. This suggests that the grid resolution in regions

between the two columns of coolant jets is also important, and coarse grid resolution in such regions

would result in underestimate of the coolant film spanwise distribution.

4.2. Coolant film thickness

As Fig. 4 shows, the wakes of the coolant jets form a region where the flow temperature is lower than415

the mainstream temperature. This region is attached to the plate surface. In this section, it is referred

to as the coolant film, since it is a coolant flow region to protect the plate from the high temperature

mainstream. The edge of this coolant film can be viewed as the boundary between the coolant jets

and the hot mainstream. In order to statistically define the coolant film region, a temperature recovery

factor, which is similar to the velocity recovery factor used in the boundary layer [36], is calculated as420

follows,

FT (x) =
T (x)− Tc

T∞ − Tc
(10)

in which FT (x) denotes the temperature recovery factor at a specific point in the flow domain. If

FT = 1, the local temperature fully recovers to the mainstream temperature. If FT < 1, it is regarded

as being inside the coolant film region. In this way, the boundary between the coolant film region and

the mainstream can be defined by a given value of temperature recovery factor. The boundaries of the425

coolant film based on a temperature recovery factor of FT = 99% are shown in Fig. 17a, and an additional

picture of boundaries with a lower temperature recovery factor of FT = 75% is presented by Fig.17b. It

is clear that the coolant film only covers the regions directly downstream the coolant hole in the first
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few rows. As more coolant jets are injected to the mainstream, the spanwise coverage of the coolant film

develops until the whole plate surface is isolated from the hot mainstream.430

(a) FT = 99% (b) FT = 75%

Figure 17: Isosurfaces of the coolant film of MRC3

In order to quantify the coverage of the coolant film in the spanwise and vertical direction, a coolant

film “thickness” can be defined as the vertical distance between the coolant film boundaries to the plate

surface. Reminiscent of the velocity boundary layer thickness defined at the position where the velocity

recovery factor reaches 99% [36], the coolant film thickness δFT
can be defined when the temperature

recovery factor reaches 99%,435

δ99% = max(F−1
T (k = 99%)) (11)

Detailed comparison of the coolant film thickness at different positions and the development in the

streamwise and spanwise direction are plotted in Figs. 18 and 19. The profiles suggest that the coolant

jets form a consistent protection layer at the position directly downstream the coolant hole, while the

plate surface between the two columns is not covered by the coolant until the 3rd row (x = 10D). It is

also shown that the coolant film at the 2nd column is closer to the plate surface due to the staggered440

arrangement. As a result, the coolant film thickness between the two columns is smaller than the 1st

column but greater than the 2nd column. Additionally, the coolant film thickness increases very fast

in the first few rows, which can be regarded as a developing region of the coolant film. Downstream of

x ≈ 15D, the rate of increase reduces, and a complete protection layer covering the whole spanwise of

the plate surface has formed. Such region where x > 15D can be regarded as the developed region of445

the coolant film.

4.3. Coolant jet trajectory

The coolant jet trajectory can be represented by the centre of each coolant jet. In this paper, the

temperature difference FT is used to identify the coolant jet centre, and the trajectory is illustrated in
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Figure 18: Streamwise coolant film thickness δ99% distribution
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Figure 19: Development of the spanwise coolant film thickness δ99% evaluated at the trailing edge of the 1st and 2nd

columns of coolant holes
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Figure 20: Coolant jet centre trajectory on contours of temperature with diverging blue and red colour

Fig. 20.450

The profiles coolant jet trajectory are then compared as Fig. 21 shows. The starting point of the

downstream trajectories (jet 3, 5 and 7) is aligned with that of the first coolant jet at x = 0, to

demonstrate the different behaviour of coolant jet in the downstream position. A common trend can be

found from profiles of the two cases that the first coolant jet in the column are blended towards the plate

20



surface due to the mixing with the mainstream. However, the downstream coolant jet, which is the 3rd455

coolant jet, penetrates further in the vertical direction. This is because that the 1st coolant jet forms a

preliminary coolant film that adjust to the coolant velocity and temperature, and this preliminary coolant

film reduces the shear stress when the downstream coolant jet injects to the mainstream. However, the

limitation on the coolant jet vertical penetration increases when moving further towards the downstream.

This restriction is due two reasons. The first reason is the blockage due to more fluid injected into the460

mainstream that forces the injected jet to stay attached to the plate surface. The second reason is that

a complete coolant film is formed towards the downstream with the velocity becomes more towards the

direction that is parallel to the plate surface, and the downstream coolant jet is blended once injected

to the mixed coolant film.
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Figure 21: Time-averaged trajectories of coolant jets in the 1st column

Many researchers [37–41] are focused on the development of analytical or semi-analytical models,465

which is able to predict the mean surface adiabatic cooling effectiveness from given design parameters

like injection angle, blowing ratio etc. Part of those models use information of coolant jet trajectory,

either measured or predicted, to calculate the corresponding mean ACE distribution. For example,

the method proposed by LeGrives et al. [41] involves two mechanisms controlling the ACE: the mass

entrainment and turbulent diffusion. Effects of the two mechanisms on the mean ACE can be evaluated470

based on the information provided by the coolant jet trajectory, either from measurements or prediction.

Although such model is restricted to single-row configuration, study of jet trajectories in multi-row

configuration can be beneficial to the development of analytical or semi-analytical models dedicated in

the mean ACE prediction of multi-row configurations.
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5. Turbulent flow structures475

5.1. Identification of turbulent flow structures

The instantaneous flow features can be used to study the relation between the turbulent flow struc-

tures and the coolant film distribution on the plate surface. The instantaneous three dimensional flow

structures of MRC3 are illustrated by isosurfaces of λ2 at an non-dimensional value of −0.128, and

coloured by temperature in Fig. 22. The λ2 is the second largest eigenvalue of the velocity gradient480

tensor, and it is considered one of the best ways to show the vortex core [42]. Shear layers are formed

at the interface between the coolant jet from the first hole in each column and the mainstream. The

Kelvin-Helmholtz structures can be observed from the leading edge of the first hole in each column.

These structures develop and break down into smaller structures in the downstream region. The hairpin

vortices are generated due to the interaction with the plate surface. In the multi-row case, vortices in the485

wake region of the first coolant jet in each column are present until the mixed flow comes across the jet

from the next coolant hole. Effects between the upstream and downstream coolant jets occur as discuss

previously, and result in the downstream coolant jet being more attached to the plate surface. This

phenomenon would reduce the coolant film temperature attached to the surface and therefore increases

the surface ACE. It is also known that the effect becomes more dominant when it moves further to the490

downstream, since more coolant jets join the mixed flow. Also, a wider spanwise spreading of the coolant

film is obtained as the downstream coolant jet is more attached to the plate surface.

Figure 22: Three-dimensional flow structures depicted by λ2 and coloured by temperature

The instantaneous temperature contours and spanwise vorticity on a slice through the first column

of holes are presented in Fig. 23 and Fig. 24 respectively. The turbulent inflow, jet-mainstream shear

layers and smaller structures caused by the separation and reattachment of the coolant flow are clearly495

illustrated in the contours of vorticity. The effects of these structures on the near-wall flow temperature

can be studied from the contours of temperature. As Fig. 23 shows, the shear layer formed at the leading

edge of the first hole is broken down by the mainstream turbulence not far after the injection. Hence,

the coolant jet penetration into the mainstream is shortened. This leads to a faster reattachment of
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the coolant jet to the plate surface, which would reduce the near-wall flow temperature. However, the500

inflow turbulence also enhances the mixing of coolant jet and hot mainstream. The combination of the

two effects results in the surface ACE downstream the first 2 holes in Fig. 23 remaining at a low level.

Moreover, the early breakdown of the coolant jet also leads to reduced effects on the direct downstream

coolant jet, which make the downstream coolant jet being more attached to the plate surface. Therefore,

the surface ACE value in regions downstream the 2nd and 3rd coolant holes decreases significantly after505

the trailing edge due to the fast breakdown of the coolant jets. As illustrated in the surface ACE

distribution, the effect that results in the coolant jets being more attached to the plate surface becomes

dominant after the 6th row.

Figure 23: Instantaneous contours of temperature through the first column holes

Figure 24: Instantaneous contours of non-dimensional spanwise vorticity through the first column holes

The instantaneous temperature and streamwise vorticity contours at selected downstream positions

are shown in Fig. 25 and Fig. 26 respectively. It is found from the vorticity contours that the two shear510

layers die out soon after the trailing edge of the 1st and 2nd row of holes. Moreover, the coolant jets

from the 1st and 2nd coolant holes break up before they reach the downstream hole. This confirms the

finding that the inflow turbulence breaks down the coolant jet early. It is also proved by the temperature

contours that the effect that results in the coolant jet being more attached to the plate surface becomes

more obvious after the 4th row. The inflow turbulence in the mainstream is found to exist throughout515

the channel. Furthermore, the off-wall structures downstream the first coolant hole vanishes quickly in

the streamwise direction. Meanwhile, those structures in the downstream coolant jets stay active further

in the streamwise direction. This is contributed to the enhanced reattachment and flow mixing in the

off-wall regions of the downstream coolant jets, as they are more attached to the plate surface.

5.2. Spectral analysis520

The unsteady features of the flow field are also examined by the power spectra in the upper shear

layer and on the wall downstream of the first column coolant holes. Fig. 27 shows a sketch of the probe

positions to extract the time signal for the spectral analysis. Two groups of probes are considered. The
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Figure 25: Instantaneous contours of temperature on the plate surface and selected downstream slices

Figure 26: Instantaneous contours of non-dimensional streamwise vorticity on the plate surface and selected downstream

slices

first group is located in the upper shear layer y = 1D at the trailing edge of each coolant exit. The

second group is placed on the plate surface and at the same streamwise position as the first group.525

Figure 27: A sketch showing the location of the probes for the spectral analysis

The spectra of turbulence kinetic energy (TKE) and pressure fluctuation in the upper shear layer are

shown in Fig. 28. The TKE spectra in the shear layer of all 5 holes follow the Kolmogorov’s −5/3 law in

the inertial subrange. It demonstrates that the turbulent flow structures in the upper shear layer is fully

developed. A few modes can be found in the spectra, especially from that of the 1st hole. One of the

modes is clearly illustrated by the spectra of pressure fluctuation at about 8000Hz, which corresponds530

to a Strouhal number of about 0.65. This frequency is considered to be the major frequency of the shear

layer instability. However, this peak diminishes in the spectra of the downstream holes because the small

24



turbulent flow structures in mixed flow destroys the potential shear layer that might be formed between

the mixed flow and downstream coolant jets.
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(b) Pressure fluctuation

Figure 28: Power spectral density of (a) turbulence kinetic energy and (b) pressure fluctuation in the shear layer
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(b) Wall

Figure 29: Power spectral density of temperature fluctuation (a) in the shear layer and (b) on the wall

The spectra of temperature in the upper shear layer (y = 1D) and on the wall are presented in Fig. 29.535

It is clearly shown that the temperature spectra both in the shear layer and close to the plate surface have

a major peak frequency at about 8000 Hz, which is consistent with the shear layer instability frequency.

The second and third peaks are also found in the spectra of the first hole both in the upper shear layer

and on the wall. This is because the upstream flow for the first coolant jet does not contain any mixed

coolant flow. Therefore, the instability in the shear layer is purely generated by the mixing of coolant jet540

and mainstream. Moreover, the presence of lower shear layer also brings a few frequency modes to the

temperature spectrum on the wall. However, the frequency modes diminish in the spectra at downstream

positions. This is because the coolant injected to the mainstream from the upstream holes results in a

reducing temperature of the mixed flow. Therefore, the temperature fluctuation becomes smaller in the

position where the upper shear layer should be. As for the spectra on the wall, the coolant jets from the545

downstream holes are more attached to the plate surface so that the temperature fluctuation is restricted
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and the frequency modes are diminished.

5.2.1. Spectral coherence

An attempt to study the similarity of the unsteady features in the wake of the upstream and down-

stream coolant jets is carried out by using the coherence function between the two time-dependant550

signals. Following [43], the magnitude-squared coherence function between two temporal signals a(t)

and b(t) is calculated from,

R
2
ab(f) =

|Sab(f)|2
Saa(f)Sbb(f)

(12)

where Sab(f) is the cross-spectral density of the signals a(t) and b(t), Saa(f) and Sbb(f) are the power

spectral density functions of the corresponding signal, and the coherence function R2
ab(f) varies between

0 and 1. The two signals are perfectly correlated at a certain frequency f if the corresponding coherence555

function R2
ab = 1. In this particular case, it suggests that turbulent flow structures with the same size

occurs at both the position of a and b. On the contrary, the two signals are uncorrelated at a certain

frequency f while the corresponding coherence function R2
ab = 0. The spectral coherence analysis is a

common tool in signal post-processing and has been in used various studies such as noise and vibration

transmission [44], vibro-acoustics detection [45], electrical impedance measurements [46] etc.560
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Figure 30: Coherence function of wall pressure fluctuations between: (a) the 1st and 3rd hole, (b) the 1st and 7th hole
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Figure 31: Coherence function of wall temperature fluctuations between: (a) the 1st and 3rd hole, (b) the 1st and 7th hole

The coherence of the pressure and temperature fluctuations close to the plate surface between the

1st hole and the downstream holes is studied in this section. The aim of calculating coherence of the

pressure and temperature signals from the wake of the first row and the downstream rows is to find out

the structures that exist both in the upstream and downstream coolant jets, as well as their effects on

the hot-cold flow mixing. Fig. 30 illustrates the coherence of pressure fluctuation. Four modes can be565

found from the pressure coherence between the 1st and 3rd hole. This first peak occurs at a frequency

of about 8000Hz, which is the major frequency of the coolant jet lower shear layer. And this frequency

is consistent with the major frequency of the coolant jet upper shear layer. Three higher frequency

modes f2, f3 and f4 can be found close to 13000Hz, 19000Hz and 24000Hz respectively. The coherence

of the 2nd mode keeps high in both Fig. 30 (a) and (b). This suggests that turbulent flow structures570

corresponding to this frequency keeps occurring in the downstream coolant jets. Meanwhile, coherence of

the 3rd and 4th modes reduces to below 0.5 in Fig. 30 (b), which indicates that structures corresponding

to the two frequencies are not as active in the wake of 7th coolant jet.

The coherence function of wall temperature is presented in Fig. 31. Peaks can be found in both

profiles near the major frequency of about 8000Hz. This indicates that the major shear layer roll-up575

has a great influence on the mixing of coolant jet and mainstream, although it is close to the plate
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surface. Two higher frequency modes occur close to 13000Hz and 19000Hz corresponding to the 2nd

and 3rd modes in the coherence function of wall pressure fluctuation. However, the 3rd mode disappears

in Fig. 31 (b), and the value of 2nd mode reduces to below 0.5. It suggests that the effect of turbulent

flow structures corresponding to a frequency near 19000Hz is very small on hot-cold mixing close to the580

wall, while the peak close to 13000Hz diminishes quickly in the downstream position.

6. Conclusion

The performance of a multi-row effusion cooling configuration with cylindrical coolant holes at scaled

combustor conditions has been studied numerically in this paper. The time-averaged temperature and

velocity distribution across the field are investigated to provide an overview of the mixed flow field formed585

by the coolant jets and mainstream, as well as the formation of the coolant film. More detailed study

on the coolant film distribution and formation is carried out based on the adiabatic cooling effectiveness

and analysis of the temperature field. Results suggest that the prediction of coolant film distribution is

highly dependent on the resolution of the turbulent flow structures that are important to the coolant-

mainstream mixing, especially in regions close to the plate surface where part of the coolant jets separate590

and reattach. The formation of the coolant film across the multi-row array is investigated using a “film

thickness” defined based on the temperature recovery factor. It is found that the plate surface directly

downstream the coolant holes are well covered by the coolant film, while regions in the middle of the two

columns are exposed to the hot mainstream until the 3rd row. Study on the coolant jet trajectories show

that the downstream coolant jets are more attached to the plate surface. As a result, the mean ACE and595

spanwise coverage of the coolant jet is increasing with the streamwise location. The increasing coolant

attachment is due to the fact that the upstream coolant jets injected to the mainstream together form

a low-temperature and high-velocity coolant film on top of the plate surface, which reduces the blowing

ratio locally at the position where the downstream coolant jet is injected.

The flow features and their effects on the coolant film are investigated in the later part of the paper,600

especially the turbulent flow structures and coolant-mainstream mixing close to the plate surface. A

major frequency of the coolant jet shear layer instability is found at about 8000Hz in both the upper

and lower boundaries. This frequency is found to diminish in the upper shear layer of the downstream

coolant jets, which is due to the rapid destruction of the downstream coolant jet shear layer by the

turbulent flow structures in the upstream flow. On the contrary, such frequency mode can still be found605

in the coolant jet lower shear layer close to the plate surface, although the strength is weak. Spectral

coherence analysis is carried out on the near-wall pressure and temperature signals of different coolant

holes in the 1st column. It is demonstrated that turbulent flow structures from the coolant jet lower

shear layer is closely related to the near-wall flow temperature, and can be found in all coolant jets from

upstream to downstream.610

This study has shown that the plate surface is well protected when the coolant film is formed after 3-4

rows of coolant holes, but the plate surface between the first few rows of coolant holes are still exposed

to the hot mainstream. Hence, some extra features should be added to the cooling scheme to protect this

region. The results of velocity field, pressure difference between the inlet and exit of the coolant holes and
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coolant massflow distribution can be used in the development and calibration of 1D and 2D prediction615

models being used widely in the initial design stage of effusion cooilng schemes. The information of the

unsteady flow field, especially the Reynolds stresses, are essential in helping the development of reduced-

order models and more accurate RANS models with anisotropic Reynolds stresses or non-linear eddy

viscosity. Therefore, results of this study can be helpful in improving the cooling performance and can

be beneficial to effusion cooling predictive modelling.620
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Nomenclature

δij Kronecer delta

γ central-upwind blending parameter

κ thermal conductivity

κT turbulent conductivity630

τ stress tensor, = [τij ]

F inviscid flux vector, = [Fi]

G viscous flux vector, = [Gi]

Q vector of primitive variables

q heat flux vector, = [qi]635

u Cartesian components of velocity, = [ui] =

[u, v, w]T

W vector of conservative variables

x Cartesian coordinates, = [xi] = [x, y, z]T

µ viscosity640

µT RANS eddy viscosity

µsgs Sub-grid scale eddy viscosity

ρ fluid density

Bi Biot number, Bi = hL/ksolid

BR Blowing Ratio, ρcUc/ρ∞U∞645

cp specific heat

D diameter of the coolant hole

DR Density Ratio, ρc/ρ∞

E total energy per unit mass

LT turbulent integral lengthscale650

M Mach number

MR Momentum Ratio, ρcU
2
c /ρ∞U2

∞

Nu Nusselt number, Nu = hL/kfluid

p static pressure of the fluid

Pr Prandtl number655

PrT turbulent Prandtl number

R gas constant

Re Reynolds number, Re = ρUL/µ

Sij strain-rate tensor

St Strouhal number, St = fL/U660

T temperature

t physical time

t∗ non-dimensional time unit

Tc coolant flow temperature

T∞ mainstream temperature665

Tu turbulence intensity

Uc coolant flow bulk velocity at exit

U∞ mainstream velocity
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Appendix A. The preconditioning of the governing equations

The governing equations are transformed to their primitive form for the simplicity of the Jacobian.780

The primitive form not only brings advantages in the analysis of the preconditioning but also simplifies

the numerical solving procedure, particularly for the implicit scheme of the viscous terms [47].

∂W

∂Q

∂

∂t

∫

Ω

Q dV +

∮

∂Ω

(F−G) · n dA = 0 (A.1)

where the primitive variables Q = [p, ui, T ]
T , and the Jacobian ∂W/∂Q is used to convert conservative

variables W to primitive variables Q.

Time-derivative preconditioning is implemented to overcome numerical stiffness at low Mach con-785

ditions. This is achieved by replacing the density derivative ρp in the Jacobian ∂W/∂Q with the

preconditioning variable Θ, which is a function of Mach number.

In this way, the time-derivative preconditioning system of Navier-Stokes equations can be written as,

Γ
∂

∂t

∫

Ω

Q dV +

∮

∂Ω

(F−G) · n dA = 0 (A.2)

where Γ is the modified Jacobian,

Γ =




Θ 0 0 0 ρT

Θu ρ 0 0 ρTu

Θv 0 ρ 0 ρT v

Θw 0 0 ρ ρTw

ΘH − 1 ρu ρv ρw ρTH + ρcp




More details of the preconditioning variable Θ and the modified Jacobian Γ are presented in [20].
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In most cases, the preconditioning would destroy the time accuracy of Eq. A.1 and can only be used790

for steady flows. To extend its capability to unsteady problems, a pseudo time term is introduced and

the original time-derivatives are kept, which reads,

∂

∂t

∫

Ω

W dV + Γ
∂

∂τ

∫

Ω

Q dV +

∮

∂Ω

(F−G) · n dA = 0 (A.3)

where the first term on the left hand side is the physical time term, the second term is the pseudo time

denoted by τ and preconditioning is only applied to this term. The physical time term vanishes for steady

state problems, and in unsteady problems the above equation is suitable for the dual-time algorithm.795

Appendix B. Transport equations of the SST model for hybrid LES-RANS

In the two-equation SST k-ω model [25], the eddy viscosity µT is defined as,

µT =
ρα1k

max (α1ω,ΩF2)
(B.1)

in which the turbulent kinetic energy k and specific dissipation rate ω satisfy two transport equations,

∂k

∂t
+

∂ũik

∂xi
= P̃k −Bk +

∂

∂xi

[
(ν + σkνT )

∂k

∂xi

]
(B.2)

∂ω

∂t
+

∂ũiω

∂xi
=

(
α

νt

)
P̃k − βω2 +

∂

∂xi

[
(ν + σωνT )

∂ω

∂xi

]
+ 2(1− F1)

σω2

ω

∂k

∂xi

∂ω

∂xi
(B.3)

where νT = µT /ρ is the kinematic eddy viscosity, all coefficients and functions such as P̃k, Ω, F1, F2, α,800

α1, β, β
∗, σk, σω , σω2

follow the definition in [25]. It should be noted that the “destruction” term Bk in

Eq. B.2 is modified as,

Bk = k3/2
1

LT

d

d̃
, LT =

√
k

β∗ω
(B.4)

in which the wall proximity fraction d̃/d is used to control the RANS turbulent viscosity µT , so that the

RANS region is blended smoothly with the LES region in the viscosity field.

The SST k-ω model is well-known for combining the accuracy of Wilcox’s k-ω model in resolving805

the near wall boundary layer and the low free-stream sensitivity of the Jones-Launder k-ε model. Addi-

tionally, Bradshaw’s assumption of the principal shear-stress is considered for extra ability to solve flows

with adverse pressure gradients [48].
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