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Synopsis 

A new stochastic gradient adaptation algorithm based on tbe cost function E[lekITJ, 

where T ~ 2.0, and is a rational number, is proposed. Conditions for the convergence 

in the mean of the adaptive algorithm are derived along with the stability bounds on 

the step size J1.. Merits of the new adaptation algorithm as compared with that of 

the least mean square (LMS) algorithm are demonstrated by means of simulations. 

Computer simulations were performed with non-Gaussian binary and quaternary se

quences of data. Simulations are performed in the presence of far-end signal sequences 

of various attenuation levels in data echo cancellers for full duplex digital data trans

mission over telephone lines. Three different echo path models were used in these 

simulations along wi th four attenuation levels for the far-end data sequences. Con

vergence goals were set 20 dB below the attenuation level of the far-end signals in 

each case. In a given set of simulations, T was increased starting from 2.0 in steps 

of 0.1 for each successive simulation as long as the algorithm remains convergent. It 

is observed that convergence time decreases with the increase in T initially and then 

levels off before increasing once again. These simulations indicate that a substantial 

reduction in convergence time can be achieved relative to the mean square algorithm. 

The amount of reduction in initial convergence time depends upon various parameters 

such as transfer function characteristics of the echo path, attenuation level of the far

end signal and type of data. A set of simulations was also performed after introducing 

dispersion in the far-end signal in addition to the attenuation. Results of which show 

the same trend of reduction in convergence time with the increase in i, as for the case 

of attenuated only far-end signal. Although the superiority of the proposed algorithm 

is demonstrated for digital data echo cancellation only, it could be applied to various 

other areas of adaptive signal processing where data are non-Guassian. 
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Chapter 1 

Introduction 

This thesis attempts to suggest ways to increase the initial convergence rate 

of the adaptive algorithms in adaptive filtering applications. Applications of 

the modified stochastic gradient algorithms in digital data echo cancellation in 

digital data transmission over telephone lines is exhibited by means of computer 

simulations. For a digital data echo canceller, adaptation is a part of the initial

isation period during which transmission of useful data is not possible. Thus it 

is desirable to decrease the adaptation time i.e. to increase the convergence rate 

of the adaptation process. Present techniques for minimising the initial adap

tation time involve protocols in which the far-end signal is switched off during 

initialisation. The intention here is to develop algorithms with higher conver

gence rates in the presence of far-end signal, so that these kinds of protocols are 

no more required. 

A new cost function E[lekl'l 1 where.,. 2: 2.0 [1] and is a rational num

ber is chosen for investigation using stochastic gradient methods. A well known 

.1Ck is the error between the estimated and the desired values at kth time sample. 

1 



CHAPTER 1. INTRODUCTION 2 

stochastic gradient least mean square (LMS) algorithm with cost function E[led 2 ] 

is widely in use in adaptive signal processing including echo cancellation [2]. The 

LMS algorithm, or the mean square error criterion in general, is optimum for 

Gaussian data. That means there is no room for further improvements in a 

Gaussian enVirOlll11ent. 

However, with the emergence of computer networks and an ever increasing 

number of computer users, the demand for transmission of digital data over 

telephone lines is increasing continuously. Digital data streams, e.g. +1 & -1 in 

binary form, are non-Gaussian. Thns the LMS algorithm becomes nonoptimal 

for digital data. We therefore, investigate error criteria other than the mean 

square one, for convergence rate improvements. Error criteria like lekl\ lekl6 

and so on have already been suggested in the literature [:3]. They all have integer 

powers only, and tend to suffer from instability because of large gradients. We, 

on the other hand, are suggesting a general error criterion which is no more 

restricted to integer powers. In principle, the suggested error power is any 

rational number. 

Some other kind of algorithms have been investigated in the past for use 

111 digital data communication applications including echo cancellation. It is 

the LMS algorithm which is mostly in use due to its numerical robustness 

and simplicity in implementation using transversal filters [2]. Recursive least 

squares (RLS) algorithms have much higher convergence rates even with the 

mean square function but they tend to be numerically unstable. We therefore, 

have confined this thesis to stochastic gradient methods only. 

In this thesis we have developed stochastic gradient algorithms based on the 

general error criteria led'. where T is a rational number greater than 2.0. The 

algorithm is developed, analysed and then implemented for digital data echo 
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cancellers. Three different echo path models are used for computer simulations. 

Two echo path models comprise of decaying impulse responses with two different 

time constants, whereas the third echo path model is a ringing sequence of 

filter coefficients. Echo of the near-end signal is assumed to be mixed with the 

incoming far-end signal. The far-end signal is assumed to be attenuated between 

15 and 30 dBs compared to the near end signal or echo of the near-end signal. 

For computer simulations we have used four attenuation levels of the far-end 

signal, which are -15, -20, -25 and -30 dB. During simulations convergence was 

always achieved 20 dB below the far-end signal level. The effects of dispersion in 

addition to the attenuation in the far-end signal are also observed with computer 

simulations. For the new adaptation algorithms, computer simulations were 

performed on data transmission systems with two levels as well as four levels. 

Simulation results indicate large improvements in initial convergence time. 

The thesis structure is straightforward and easy to follow. The second chap

ter provides the necessary background material. It is mainly divided into two 

parts, adaptive filtering and echo cancellation. The adaptive filtering sections 

help in understanding adaptive filters, their structures, implementations, etc. 

The echo cancellation sections help in understanding the echo process, echo can

celler structures and implementation of adaptive filtering in echo cancellation. 

The third chapter starts with the actual development and derivation of the 

stochastic gradient algorithms. It then verifies the proposed algorithms analyt

ically as well as performing some other mathematical analysis including deter

mination of the theoretical boundaries of the convergence coefficient or the step 

size. Chapter four describes in detail all kinds of modelling for computer simu

lations. This includes, modelling of the binary and quaternary data sequences 

and of various echo paths. Setup for simulations, performance measure and 
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simulation procedures are discussed at the end of the chapter. 

The fifth and sixth chapters provide the resnlts of the computer simulations 

by applying the newly developed stochastic gradient adaptation algorithms in 

digital data echo cancellers. Chapter five deals with the binary data whereas 

in chapter six, four level data results are presented. These chapters start with 

comparing the results of various echo path models for particular far-end signal 

levels and then comparing the results of various far-end signal levels for par

ticular echo path models. They also include the results of switched gradient 

simulations and the switching behaviour for a particular case. In short these 

two chapters summarise experimental results and prove the validity of the pro

posed adaptation algorithms. Chapter five also incorporates and analyses the 

calculated and measured step sizes of the convergence process It also includes 

some results where dispersion is added to the far-end signal in addition to the 

attenuation. 

Chapter seven summarises the conclusions and suggests areas of further 

investigation. After the references, some numerical values, computer codes used 

for simulations and published material from this work, are added in appendices. 



Chapter 2 

Adaptive echo Cancellation 

2.1 Introduction 

This chapter provides the necessary background material for the work presented 

in this thesis. Adaptive filters are described briefly at the start. A few uses of 

adaptive filters, and adaptive filter design are discussed. After introducing the 

concept of echo, its sources and mechanisms of generation in the telephone 

system are discussed. The need for cancelling the echoes and various methods 

used for this purpose are also discussed. A relatively new and widely used 

technique is echo cancellation. Echo cancellation is used in both voice and data 

echo cancellers. 

5 
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2.2 Adaptive Filters 

Adaptive filters [4]-[11] are so common 111 modern signal processing that the 

term seldom needs a detailed definition here in this thesis. In short, filters are 

referred to as devices consisting of a piece of hardware or software capable of 

extracting information of interest from corrnpted data. Adaptation is a self 

adjusting process which converges towards minimising the error between the 

output of the filter and the required output, according to a certain criterion. 

An adaptive filter consists of two key components. A programmable fil

ter and an adaptation algorithm. Figure 2.1 shows basic construction of an 

adaptive filter. The adaptation process automatically adjusts the parameters of 

the programmable filter to maximise the performance at the output of the filter 

compared with some conditioning input, continuously. The output can be taken 

from various points of the adaptive filter loop, depending upon its particular 

application. 

Adaptive filtering in control and signal processing has been researched for 

almost the past four decades. H llndreds of research papers have been pu blished 

and a number of books [12]-[20] have now appeared. 

2.3 Adaptive filter operation 

An adaptive filter operates ill" many different ways to perform modelling, predic

tion, interference cancelling, etc. Modelling or system identification can further 

be divided into two types. Direct system modelling and inverse system mod

elling. These operations are further elaborated next. 
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Figure 2.1: Block diagram of the essential components of an adaptive filter. 
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2.3.1 Direct system modelling 

Figure 2.2 (a) shows the direct system modelling approach. The system input is 

supplied to the adaptive filter as well as to the unknown system with the trans

fer function H(z). The output of both (adaptive filter as well as the unknown 

system) is subtracted and the resulting error is supplied to the adaptive filter. 

The adaptive filter parameters are then adjusted with the help of this error 

signal, in order to minimise a certain cost function. Adaptation of the filter 

leads towards convergence in such a way that the adaptive filter coefficients are 

matched in best possible way to the coefficients of the unknown system filter. 

Hence modelling of the unknown system with the adaptive filter is achieved. 

An example is system identification [21, 22J. Another practical example which 

illustrates the direct system modelling use of the adaptive filter is in echo can

cellation in telephone circuits [2:3J-[27J. Direct system modelling is used in this 

thesis to model various echo paths. 

2.3.2 Inverse system modelling 

Figure 2.2 (b) shows the inverse system modelling approach. The signal input is 

supplied to the unknown system whose output in turn is supplied to the adaptive 

filter. The output of the adaptive filter is then compared with the delayed 

signal input. The resulting error is then applied to the "daptive filter. The 

ad"ptive filter then adjusts its parameters with the help of this error signal in 

order to minimise a certain cost function. Adaptation in this way leads towards 

convergence such that the inverse of the adaptive filter coefficients match the 

filter coefficients of the unknown system. 
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Figure 2.2: Modelling of the unknown system using adaptive filters: (a) direct 

system modelling; (b) inverse system modelling. 
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A practical example of such a system is equalisation [28)-[33) in telephone 

lines where the signal characteristics at the output are changed due to distortions 

in the communication channel. 

2.3.3 Prediction 

Figure 2.3 (a) shows a predictor. A delayed signal is supplied to the adaptive 

filter. The output of the ad1lPtive filter, which uses previous signal values for 

prediction, is compared to the current value of the input signal. The result

ing error is then applied to the adaptive filter. The adaptive filter adjusts its 

parameters to minimise a certain cost function, in order to predict the present 

value of the random signal in the best possible way. A practical example is the 

efficient coding of speech signals [:34)-[:37) 

2.3.4 Interference cancelling 

Figure 2.:3 (b) shows the application of an adaptive filter in interference can

celling. Here the adaptive filter is used to cancel an unknown interference from 

an information bearing signal. A reference signal derived from a sensor close 

to the source of interference is supplied to the adaptive filter. The output of 

the adaptive filter is subtracted from the information bearing corrupted signal 

(the primary signal). The resulting error signal is used by the adaptive filter 

to minimise a certain cost function. After convergence, the error signal is the 

recovered information bearing signal. Practical examples of this configuration 

include adaptive noise cancelling [38)-[40), mains interference cancelling for 

medical equipment [38) and echo cancellation in telephone lines [23)-[27). This 

configuration is used for echo cancellation in the present thesis as well. 
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terference cancelling. 
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2.4 Programmable filter designs, HR and FIR 

Programmable filters [41J are of many types that can be used in the design of 

adaptive filters. Two basic designs of programmable filters namely, recursive 

or I1R (infinite impulse response) filter and nonrecursive or FIR (finite impulse 

response) filters are discussed here. 

2.4.1 Recursive HR filters 

Design of a recursive filter [42, 4:3J that IS also the most generalised digital 

filter structure [I :3J is shown in Figure 2.4. This comprises both feedforward 

and feedback coefficients or multipliers. The response of this n-stage filter is 

governed by the nth order difference equation which shows that the value of the 

present filter output is given by a linear combination of the weighted present 

and past input values as well as the past output values. This structure results 

in a pole-zero filter design. The number of poles and zeros, or order of the filter, 

is given by the number of delay stages. Recursive integrated filters compatible 

with digital telephony systems are commercially available [44J. 

This recursive filter is referred to as an infinite impulse response (I1R) fil

ter, as it has, theoretically an infinite memory. It could well be unstable if 

restrictions are not placed on the feedback coefficients. Adaptive I1R filters are 

applied in equalisation and in reduction of multipath interference in high fre

quency (:3 to :30 MHz) digital communication channels, where their high speed 

of convergence is of primary importance [1:3J. 
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Figure 2.4: Structure of infinite impulse response (IlR) recursive filter. {a,,} 

are feedforward and {b,,} are feedback coefficients. Z-l are unit delays. 
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2.4.2 Nonrecursive FIR filters 

The potential instability in the HR design comes from the feedback coefficients. 

One way to overCOme this drawback is to design the filter with feedforward 

coefficients only, as an all zero filter, as shown in Figure 2.5. This has only a 

limited memory which is controlled by the number of delay stages and is called 

a finite impulse response (FIR) or the transversal filter design [45]-[50]. The 

input signal is delayed by a number of delay elements. Output of the delay 

elements is multiplied with the feedforward multipliers or filter coefficients or 

stored weights or impulse response values. These products are then summed 

to form the output signal. The filter is always stable as there are no feedback 

elements. FIR filters are relatively simple to design and construct. They are 

most widely applied in telecommunications applications of adaptive filters such 

as equalisation [28] and echo cancellation [49]. 
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Figure 2.5: Structure of finite impulse response (FIR) nonrecursive filter. {(I,,} 

are feedforward coefficients. z-I "re unit delays. 
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2.5 Cost functions 

A cost function provides a quantitative measure for assessing quality of perfor

mance. The concept of the cost function is basic to adaptive filtering. A cost 

. function defines a transformation from a vector space spanned by the elements 

of the coefficient vector into the space of a real scalar [I6]. A highly popular 

cost function is the mean square error criterion. It is defined as the mean square 

value of an estimation error ek. 

(2.1 ) 

The basis of famous Wiener filters is to minimise this mean square error crite

rion. Some other error criteria have also been suggested in literature [51]-[59]. 

Error criteria other than the mean square one are generally ignored by contem

porary researchers as they are difficult to analyse mathematically. A few more 

cost functions are the absolute error criterion 

and the nonlinear t.hreshold error criterion. 

if 

if 

(2.2) 

(2.:3) 

where I and m are arbitrary numbers. In this thesis we suggest a cost function 

of the form 

(2.4) 

where T :::: 2.0. 

Trajectories of led' against led, for selected values of T are shown in Fig

ure :3.1. The slopf$ of led' increase sharply for higher values of led and higher 
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values of T. Whereas, slopes of lekl T decrease slowly for lower values of lekl and 

higher values of T. This provides a clue that convergence may be faster with 

high values of T. 

2.6 Significance of echo 

Normally all conversations take place in the presence of echoes. We hear echoes 

of our own speech when the signal is reflected from floor, walls and other objects 

present in the surroundings. If the time delay between the speech and echo is 

short, the echo is not noticeable. If, however, the time delay exceeds a few 

tens of milliseconds, the echo becomes distinct and noticeable. Distinct echoes 

are invariably annoying and under certain conditions can completely disrupt a 

conversation. 

In the domain of communications, echo can be defined as the reflected por

tion of the transmitted signal. Echoes may be generated in telephone circuits 

as well. When a signal at any point in the circuit during its transmission, en

counters an impedance mismatch, a portion of the signal is reflected back as an 

echo. The longer is the delay, the greater is the requirement to attenuate the 

echo before it can be tolerated. Typically echo which is 11 dB below the original 

signal or higher requires special treatment, if the round trip delay exceeds 40 

msec [25]. 

Commercial communication satellites came into operation ill 1965. A geo

stationary or synchronous satellite must be placed in an orbit about :36,000 km 

from the surface of the Earth. One way travel of signal between two earth 

stations communicating with the satellite is more than about 240 ms or of the 

order of a quarter of a second. The round trip delay becomes as large as 600 
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ms if we take into account terrestrial delays as well. Even some long distance 

calls on Earth exceeds the threshold and produce noticeable echoes. 

2.7 Sources and mechanism of echo genera

tion 

The echo is an unwanted signal defined as the portion of the transmitted signal 

which reflects back from a distant point of impedance mismatch. The main 

source of echoes in the telephone network is the hybrid [2] (also known as hybrid 

transformer or differential transformer). A typical long haul communication 

circuit is shown in Figure 2.6. The essential components of a hybrid circuit are 

as shown in Figure 2.7 

Figure 2.6 is the diagram of a full duplex transmission system where box A 

can transmit t.o box B and can receive from B simultaneously. In the telephone 

system, every subscriber is connected to a central office (usually known as tele

phone exchange) via a single pair of wires. When a local telephone call is made, 

subscriber A and B are connected through their single pair of wires via central 

office. During their conversation, the signal travels essentially on a single pair 

of wires in both directions. For the circuits of the order of 50-60 km or more, 

a separate pair of wire becomes necessary for transmission in each direction. 

Firstly, the long distance circuits require repeater amplifiers along their length, 

which are one-way devices. Secondly, most long distance calls are multiplexed 

for economic reasons. This means a number of calls use portions of a wide band 

channel. Multiplexing requires that the signals in the two opposite directions 

be sent in different slots. A device tha.t connects a two wire (one pair) circuit to 
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a four wire (two pairs) circuit and vice-versa is called a hybrid. Nearly all the 

significant echoes in the telephone network are generated at these hybrids. It is 

possihle to observe multiple echoes on a poorly terminated circuit but mostly 

the significant echo heard by a talker is the first reflection from a distant hybrid. 
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Figure 2.6: Simplified representation of a typical long haul communication link. 

Each pair of solid lines represent a pair of wires. 
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circuit into a four wire one and vice versa. 
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2.8 Methods for cancelling echoes 

Different methods are used for reducing the effects of echoes e.g. via net loss, 

echo suppression and echo cancellation. In the method, via net loss, an equal 

amount of attenuation is introduced in both lines (one line is one pair of wires). 

If the attenuation is say G dB, the signal will be attenuated only by G dB but 

the echo loss will be 2G dB. Hence signal to echo ratio is improved. But at the 

same time signal level is reduced. If the length of a circuit of this kind exceeds 

:3000 km or so, the method becomes very inefficient as the received signal levels 

are very low [60). 

A second method is known as echo suppressIOn [60, 61) which has been 

widely used in telephone networks until the last decade. This method takes 

advantage of the dynamics of the human speech. Both A and B do not speak 

simultaneously during conversations most of the time. So when A is speaking the 

switch in the line from A to B is closed and a one way connection is established 

for the listening of B. At the same time the switch in the line from B to A 

is opened because B is not speaking. In this way there is no return path for 

the signal which reflects from the hybrid near B. As A stops speaking and B 

starts speaking the switch in the line B to A is closed and a connection IS 

established from B to A and the switch in the line A to B is opened as A IS 

not speaking. A problem occurs when both speakers start speaking at the same 

time or one interrupts the other. There is a 20 percent probability for one 

speaker to interrupt the other [62). A comparator makes the decision to close 

a switch and to open the other, primarily on the basis of who was speaking 

for most of the time during interruption. These type of decisions critically 

affect the performance of the echo suppressor. Some amount of chopping of 
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the initial portions of the interrupter's speech is still unavoidable even in the 

best of echo suppressors. Also echo is not eliminated during interruptions. In 

spite of all this echo suppressors have been used successfully for over 50 years on 

terrestrial circuits with round trip delays of up to 100 ms [26J. The performance 

of echo suppressors degrades when they are used over very long distances such 

as satellite links with round trip delays of the order of 600 ms, because the 

interruption rate increases [6IJ, as does the sensitivity to improper operation of 

echo control devices [26J. 

The latest method being used to control echoes is called echo cancella

tion [63J-[7IJ. This is discussed in detail in the next section. 

2.9 Echo cancellation 

An echo canceller [72J-[S:3] is an adaptive device which can synthesise a filter to 

match the transfer characteristics of the echo path. The first full exposition of 

the principles of adaptive echo cancellation appeared in [8:3]. A block diagram 

of an echo canceller is shown in Figure 2.8. 

We assume that the channel is linear and 1S completely specified by its 

transfer function or the impulse response. A digital transversal filter which 

consists of a tapped delay line with the number of taps proportional to the 

round trip delay from the canceller to the hybrid is used for synthesising echo. 

If we apply an impulse at point (! in Fignre 2.8, its response at point b will give 

the impulse response of the echo path, which can then be used to set the tap· 

values of the filter. 

The echo path changes continuously during the course of a conversation in 

a digital telephone network or during the course of data transfer in the case 
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Figure 2.8: Block diagram of an adaptive echo canceller. 

of a full duplex digital data transmission system. It is then required to mea

sure the impulse respons" to upd"te the filter co-eflicients. This type of echo 

canceller can be termed as adaptive echo canceller.This open loop procedure 

requires frequent measurements of the impulse response for adjustments. The 

continuous transmission of test pulses is undesirable. The speech or data sig

nal itself can be used in place of test signals. An estim"te or replica of echo 

is generated by synthesising a linear approximation to the echo path through 

the filter. Which is then subtr"cted from the returned signal. As a result an 

error sign"l is generated, which is used by "n adaptive algorithm to modify and 

update the tap-weights of the "da"tive filter (or the filter co-efficients). This 

type of echo canceller can be termed" self-ad"ptive echo canceller [27], because 

it automatically tracks any variations in the echo path. In the present thesis we 

are concerned only with digital dat" echo cancellers. 

A digital transversal filter of the type used in echo cancellers as an adaptive 
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filter with adjustable tap weights is as shown in Figure 2.5. 

2.10 Echo cancellation for full duplex data 

transmission 

Echoes are generated in the telephone network at the hybrids irrespective of 

the nature of the signals being transmitted. i.e. whether the signal is human 

voice or digital data. In case of human speech a small amount of echo or an 

echo with a small delay can be tolerated. Even a certain amount of echo known 

as sidetone is necessary to avoid the dullness in conversation over a telephone 

network. But digital data transmission is a different case. No sidetones are 

required and even small amount of echoes with a very short delay are also intol

erable. Full duplex digital data can be transmitted on a four wire private line, 

one pair for transmission in each direction. Connections for lull duplex trans

mission of digital data can also be established by dialing tluough the switches 

of the telephone network over a single pair of cables. A local hybrid is required 

at the subscriber's premises to convert the four wire circuit of the data trans

mitter/receiver to the two wire circuit of the telephone network and vice versa. 

Echoes may also be generated at this local hybrid. 

Although basically the canceller in this case is similar to the one required 

for human speech (i.e., a tra.nsversal adaptive filter with tap weights updated 

regularly along the gradient of some cost function of the error), there are some 

important differences worth noting [26]. The first difference is the placement of 

the echo canceller in the circuit. Voice echo cancellers are part of the telephone 

network and are not required to be placed at the subscriber's premises. Where 
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Figure 2.9: Placement of data echo canceller in case of full duplex digital data 

transmission over single pair of cables in the telephone network 

as the data echo canceller would be placed at the subscriber's premises as part 

of the data (transmit/receive) equipment. Placement of the echo canceller for 

data transmission is as shown in Figure 2.9. With reference to Figure 2.9 when 

A transmits data, the first echo received is that from its local hybrid, followed 

by the ringing in the two wire telephone circuit between A's local hybrid and 

the hybrid at A's central office. This early echo is quite harmless during voice 

communications. But for data transmission .this is as harmful as the delayed 

echo. This early echo will remain there even if the four wire circuit (for long haul 

communications) is absent. To counter this problem, data echo canceller must 

be placed at the data equipment. Another difference arises from the necessity of 

placing the echo canceller at the data equipment. In addition to the early echoes 

there is delayed echo as well. This problem can be solved by splitting the filter 
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into two adjustable transversal filters separated by a bulk delay [26J. The third 

difference is in the properties of the signals used for speech and digital data. 

The statistical properties of the speech signals are complicated and difficult to 

quantify. They can be described in broad terms only. e.g., bandwidth, the 

range of fundamental frequencies that might be encountered, etc., whereas data 

signals have much simpler statistical properties. The sequences of data symbols 

Xk (selected from some alphabet, e.g., ±! for binary sequencf>..s) may be assumed 

to be sequences of independent and identically distributed variables. 

The stochastic gradient or least mean square (LMS) algorithm is the most 

popular practical adaptation algorithm in current use. For a speech echo can

celler where the canceller is not dedicated to a particular subscriber, adaptation 

must occur for each new call. Speech quality may be significantly degraded 

during the adaptation period. In the data echo canceller case, adaptation is 

part of the initialisation period, during which transmission of useful data is not 

possible. Thus it is desirable to decrease the adaptation period, i.e. to increase 

the speed of convergence of the adaptation algorithm. Also adaptation is very 

slow in the presence of fM-end signaling. Recent reseilrch [84, 85J shows that 

the use of an adaptation algorithm based on the nonquadratic cost function le I' 
in general could be advantageous. This work investigates this area further to 

find out the range of power metric T for the highest convergence rates possible 

for various levels of convergence and far-end signals power. 



Chapter 3 

Proposed adaptive algorithm 

3.1 Introduction 

The newly proposed adaptation algorithm (Section :J.2) is presented and mathe

matically derived in this chapter. Mathematical analysis of the newly proposed 

adaptive algorithm is carried out. Conditions for the convergence of the mean 

of the tap error vector are derived along with the derivation of the stability 

limits of the step size It. Conditions for the convergence of the variance of the 

tap error vector have also been derived along with the stability limits for the 

step size /1. The proposed algorithm is very similar to the famous least mean 

square (LMS) [86J-[88J algorithm. The LMS algorithm uses a power metric of 

2. Whereas, in the proposed algorithm, non quadratic power metrics such as 

2.1, 2.2, ... etc. are used. 

28 
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3.2 Proposed adaptive algorithm 

Various adaptation algorithms are in use in adaptive filtering applications. 

Stochastic gradient [1, 3, 25, 54, 89, 90J algorithms remain popular because 

of their numerical robustness and simplicity in calculation, even though they 

are slow in convergence. To increase the efficiency of the digital data transmis

sion over telephone lines, it is important to increase the convergence rate of the 

adaptation process in digital data echo cancellers. The mean square function 

is optimal for Gaussian signals. However we are dealing with the non-Gaussian 

signals where mean square function is non-optimal. Thus we propose a cost 

function ~k to be minimised as: 

~k = E[led'J where T 2: 2.0 

In principle, T could be any rational number greater than or equal to 2.0 as long 

as adaptation algorithm remains convergent. For simulation purposes we took 

the values of T with an interval of 0.1 so that, T = 2.0,2.1,2.2, .... Figure 3.1 

gives a visual impre.ssion of the gradients of led' for some selected values of T. 

The proposed adaptation algorithm can be obtained by replacing the mean 

square function in the LMS algorithm with the above mentioned Ilon-Euclidean 

cost function. The new algorithm can be written as: 

The variables and parameters are defined in Section 3.:3. The above is essen

tially a general form of the LMS algorithm. We can easily obtain the LMS 

algorithm by replacing T with 2 in the newly proposed algorithm. Hence the 

LMS algorithm becomes a special case of the proposed algorithm. 
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The adaptation process will lead to quicker convergence as T is increased be

yond 2 as long as the convergence factor Jl remains within the stable limits. The 

proposed adaptation algorithm is mathematically derived in the next section. 

Mathematical analysis with respect to stability, convergence, time constants, 

etc. are carried out in this chapter. To practically show the advantages of the 

new algorithm, computer simulations were performed. Three different echo path 

models, in the simulations with binary as well as quaternary data sequences, 

were used. Details of the experiments and their results are discussed in later 

chapters. 
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Figure 3.1: lekl T is plotted verslls led for variolls values of T. Different slopes 

of curves at both sides of the crossover point led = 1 are evident. 
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3.3 Derivation of the adaptation algorithm 

With reference to Figure 4.4, the error signal ek in terms of the echo path ontpnt 

Yk, far-end signal Jk and synthetic echo signal Yk is 

(3.1 ) 

The ontput of the estimated echo path Yk can be written as: 

N-I 

Yk = L h"Xk_" = htXk = X~hk (3.2) 
n=O 

Where N is the number of filter co-efficients, 11" is the value of the nth estimated 

co-efficient of the filter at kth time sample and Xk_" is the stored value of the 

input sequence (near-end signal) n symbols before. 

The cost function ~k to be minimised is: 

~k = E[led T
] where T:::: 2.0 (3.3) 

The minimum value of the cost function can be obtained by differentiating (3.3) 

with respect to each element of the impulse response h of the adaptive filter 

and then setting all the partial differentials equal to zero. 

8~ = E [£(hIT)] = 0 
8h 8h 

(3.4) 

Equation (:3.4) can be differentia.ted by substitution. 

Let u = led and Y = UT 
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Thus dy = TUT-I 

du 

and du (1 if ek > 0 ) 
dek = -1 if ek < 0 

It is obvious from the above equation that du/dek can also be written as sign( ek). 

Applying the chain rule of differentiation we can obtain: 

dy dy du T-I . 
- = --- = TU slgn(ed 
dek du dek 

Substituting u = lekl we get, 

Thus, 

dy I IT I' ( ) - = T ek - sIgn ek 
dek 

o~ [I IT-I' ( ) 0 ] oh = E T ek sIgn ek oh ek 

= E [TlekIT-ISign(ed o~ (Yk + Jk - htXd] 

:~ = E [-Tlek!T-lsign(ek)xk] = 0 (3.5) 

o~/oh is the set of N differential terms. All these terms can be collected to form 

a vector known as the gradient vector '\7. Equation :3..5 can also be written in 

matrix form as below. 

8U8ho xkledT-1 sign( ek) 

'\7= 
oU8h l 

= -TE 
:ck_IledT- 1 sign( ed 

(3.6) 

o~/ohN_I xk_N+llekIT-lsign( ed 

Xk 

'\7=-TE 
Xk_1 

x IedT-I .. ign(ek) 

Xk-N+I 
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(3.7) 

The calculatiQn .of gradient 'V in EquatiQn (3.7) is nQt a simple task. This 

is because it invQlves the applicatiQn .of the statistical expectation QperatQr E. 

The knQwledge .of the signal statistics required in (3.7) can be replaced by a 

training sequence. The training sequence is available in the case .of the echQ 

canceller as the data sequence itself. The cQ-efficients .of the adaptive filter 

are then calculated and updated by an adaptive algQrithm. We use here the 

methQd .of steepest descent [15]. An initial guess h. at time sample k is made 

and the gradient vectQr 'V • .of the E [Iekn surface is calculated. The gradient 

'V given by (:3.7) at time sample k becQmes the nQisy .or stQchastic gradient V k> 

by remQving the statistical expectatiQn 

(3.8) 

(:3.9) 

TQ .obtain the new estimate h'+1 .of the adaptive filter cQ-efficients, a scaled 

versiQn .of the gradient is subtracted fr.om the previQus estimate of the adaptive 

filter cQ-efficients as fQllows, 

(3.10) 

The small PQsitive scaling CQnstant Jl is knQwn as the step-size .or gain .of the echQ 

canceller. The value .of /1 plays an impQrtant role in determining the cQnvergence 

speed and stability [71]. By substituting (3.9) intQ (:3.10) we .obtain the final 

result, 

(3.11 ) 
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Equation (3.11) represents the general form of the stochastic gradient algorithm 

with nonquadratic exponent T. If we set T = 2, then (3.11) will represent the 

well known LMS algorithm. 

3.4 Conditions for the convergence of the 

mean of the tap error vector 

We now find the conditions for the convergence of the mean of the tap error 

vector. We will show that E[vkJ -+ 0 as k tends to infinity, where Vk = hk - h. 

We take a relatively simple case of smaller deviations of hk from h. We assume 

that Xk and Jk are zero mean non-Gaussian signals independent to each other, 

the autocorrelation matrix <Pxx of the input signal Xk is positive definite, and 

the echo path is stationary. By subtracting h from both sides of (3.11), we get: 

(3.12) 

From (3.1) and (3.2) we have 

(3.13) 

Substituting (3.13) into (:3.12) 

(3.14) 

A little manipulation with (:3.14) will give, 

(3.15) 

Since 
X.Vk 

I
t I because fk < I 
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as Vk is assumed very small. Applying the binomial theorem [91J to (3.15) and 

ignoring higher order terms, we get 

Vk+1 S;' Vk + Il7xksign(JdIAIT-1 (I - (7 _ I)x~~k) 

VkH S;' Vk + 1'7xksign(A)IAIT-1 -1'7(7 -1)IAIT-2xkx~Vk 

The autocorrelation matrix q,xx, of the input signal is denoted by 

(3.16) 

(3.17) 

(:3.18) 

The middle term on the right hand side of (3.17) will vanish after taking math

ematical expectations of both sides, as E[xd = O. It is assumed that A, Xk, 

and Vk are independent to each other. 

E[Vk+IJ S;' E[VkJ -1'7(7 -I)E [lfdT-2]q,xxE[VkJ (3.19) 

E[Vk+d S;' (I - 1'7( 7 - I)E [IAIT-2]q,xx) E[VkJ (3.20) 

Let 

(3.21 ) 

Equation (:3.21) can be written in canonical form as, 

o 
At 

o 8" 

8 ~ 81'1'18d < I, i = I, ... , n; AA t = 1 (3.22) 

Then (3.20) will become 

(3.23) 
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We can now choose Jt in such a way, that all the leading diagonal elements of 

a in (3.21) will have absolute values less than l. 

0< It < r{r _ I)E
2
UAlr-2J Ai' i = 1, ... , n (3.24) 

Where Ai are the eigenvalues of "'xx. Equation (3.24) will give n values. The 

lowest of these values, or the upper bound on I' can be obtained using the 

maximal eigenvalue Amax of <Pxx 

2 
o < It < r-2 r{r -1)E[lfkl Pmax 

(3.25) 

Let L2 norm of E[vk+d be denoted by Vk+l, then 

(3.26) 

From (3.22), (3.23) and (3.26) we obtain, 

(3.27) 

o 

Or (3.28) 

Inequality (3.28) suggests that the adaptation process will lead to the conver

gence E[vkJ -> 0, when k tends to infinity. This of course is a local convergence 

and cannot be extrapolated other than the bounds on I' stated in (3.25). The 

condition set in (:3.25) might be difficult to check in practice. We can, how

ever, bound the maximal eigenvalue of a positive definite matrix by its trace, 

tr(<pxx) = nE[xiJ. So we obtain an easily applied sufficient condition for the 

convergence of the mean of the tap error vector of the proposed adaptive algo

rithm: 
2 o < It < ----~--~~-

nr{ r - I)E [lfk!r-2J E [x%J 
(3.29) 
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3.5 Time constants 

We now proceed to the evaluation of the time constants of the adaptive process. 

The time constant of a mode of convergence is the time taken by that mode 

to converge to 36.8% of its initial value. Again we assume that the current 

estimate of the adaptive filter co-efficients hk is in the vicinity of the target 

filter taps h, so that approximation (3.20) holds. For the ahove we also assume 

that the vectors Vk and Xk are independent of each other. From Equations 

(3.18) and (:3.20) we deduce that generally there will he n different modes of 

convergence corresponding to the n different values of <Pxx. Accordingly there 

will he n different relaxation time constants of the filter taps. 

1 
Ti = ILr(r -1)E[I/k!T 2]Ai' i = 1,2, ... ,no (3.30) 

Where Ai are the eigenvalues of the autocorrelation matrix <Pxx of the input 

signal. 



Chapter 4 

Modelling 

4.1 Introduction 

This chapter discusses the simulation setup and procedures for computer si m

ulations. Modelling of binary and quaternary data is discussed in the begin

ning, followed by the three echo path models used in the simulations of digital 

data echo canceller. Simulation setup is illustrated with the help of the block 

diagrams. Performance measure and simulation procedure is described next. 

Specific computer codes written for these simulations are added in Appendix B. 

4.2 Modelling the data streams 

The near-end signal sequence :"k is modelled by a non-Gaussian pseudo random 

bipolar sequence from the set {I ,-I}. The far-end signal sequence Jk is also 

modelled by an independent random bipolar sequence from the set {I ,-I}, which 

is subject to an attenuation J modelling the transmission loss. The far-end 

signal power level is kept below the near-end signal power level by a certain 

:l9 
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amount which dictates the value of J (Appendix A.I). 

The four level near-end signal sequence Xk is modelled by a non-Gaussian 

pseudo random four level sequence from the set {3, 1 ,-1 ,-3}. Far-end signal 

sequence Jk is also modelled by an independent pseudo random four level se

quence from the set {:3,1,-1,-:3}, which is subject to an attenuation J modelling 

the transmission loss. 

4.3 Echo path models 

The echo path was modelled in two different ways. A single pole single zero 

model and a numerically generated model. The single pole single zero model 

was further split into two with different decaying sequences. So we end up with 

three echo path models as described below. 

4.3.1 First model 

The echo path is modelled by a single pole and single zero digital filter for 

simplicity. The zero is placed at z = 0 and pole at z = a. Thus the transfer 

function of the echo path is 

z 
H(z) = -- where 0 < a < 1 

z-a 

i.e. a is positive as well as inside the unit circle in the z-plane. 

(4.1 ) 
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Figure 4.1: Impulse response sequence of the echo path filter for the first echo 

path model. 
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The value of a has been chosen in this way to fulfil the conditions of stability. 

The transfer function of Equation 4.1 can be re-arranged as 

1 -I -I -I 2-2 
H(,) = = (1 - az ) = 1 + az + a z +... (4.2) 

1 - az- I 

The impulse response of the filter is {ak
} which is a decaying sequence since 

lal < 1. The feedback co-efficient of the echo path filter is chosen in such a way 

that the power level of near-end transmitted signal will be attenuated by 60 dB 

in 32 samples. The 60 dB power level attenuation is chosen arbitrarily. Since 

we are using a 32 stage filter, the series is truncated after:32 samples. Figure 4.1 

shows the impulse response sequence of the echo path filter for the first model. 

A calculation of the feedback co-efficient a is given below. 

or 20 x :31 loglo a = -60 

-60 
or a = 10 215"X3T 

or a = 0.800250 

The transfer function of the echo path becomes 

H(z) = (1 - 0.800250z- l r l 

= I + 0.800250z- 1 + 0.640400z-2 + ... + 0.001000z- 31 

The co-efficients of the successive powers of z in the first :32 terms of the series 

are the co-efficients (tap values) of the echo path FIR filter. These are taken as 

the target tap co-efficients for the data echo canceller, as shown below. 

h(O) = 1.00000 
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4.3.2 Second model 

h(l) = 0.800250 

h(2) = 0.640400 

h(31) = 0.00100 

43 

The second echo path model used in simulations is also a single pole single 

zero model as described in the first model description with the transfer function 

given in Equation 4.1 and Equation 4.2. The only difference is in the choice of 

the feedback co-efficient (I. For the second echo path model, (I is chosen such 

that the power level of the near-end transmitted signal will be attenuated by 

120 dB in 32 samples. The filter coefficients thus obtained are as given below. 

h(O) = 1.00000 

h(l) = 0.640400 

h(2) = 0.41011:3 

h(:31) = 1.00000 E - 06 

The series is truncated after :32 samples here as well. Figure 4.2 shows the 

impulse response sequence of the echo path filter for the second model. 

--------
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Figure 4.2: Impulse response sequence of the echo path filter for the second echo 

path model. 
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4.3.3 Third model 

45 

The third echo path model is numerically generated. It is a simplified form 

of the actual echo impulse responses of various telephone network connections 

from a British international gateway [2J. First a diagram with ringing near the 

end, was drawn on a piece of paper. It was then sampled, filter coefficients 

were measured and recorded for future use. The coefficients thus obtained are 

as given below. 

{h} = {I, .98.5, .978, .955, .929, .895, .8.58, .820, .774, .71.5, .6.50, .575, .505, 

.425, .:332, .2:35, .14.5, .050, -.048, -.116, -.158, -.186, -.195, 

-.175, -.140, -.085, -.009, .060, .098, .105, .07:3, O.O} 

The impulse response of th" fllt."r IIsp.d in the third model of echo path is shown 

in Figure 4.3. 
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Figure 4.3: Impulse response of the filter used in the third echo path model. 
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Figure 4.4: Simplified block diagram of the simulation setup used for most of 

the computer simulations. Xk is the input signal sequence at the near-end, Zk 

is the far-end signal sequence and h is the attenuated far-end signal sequence 

with attenuation J. Yk is the output of the actual echo path, Yk is the output 

of the estimated echo path and ek is the error signal. 

4.4 Simulation setup 

The simplified block diagram of simnlation setup is shown in Figure 4.4. The 

simulator is a direct system modelling type where the echo canceller is trying 

to model the echo path. The data echo canceller is modelled as a 32 tap linear 

time varying FIR adaptive filter whose co-efficients are updated regularly by the 

adaptation algorithm. The output of the adaptive filter which is an estimate 

of the echo path is then suhtracted from the signal which is SUIll of echo signal 

and far-end signal. The difference of these two is called the error signal. 
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Figure 4.5: Simplified block diagram of the simulation setup used for computer 

simulations when dispersion was also added to the far-end signal sequence. Xk 

is the input signal sequence at the near-end, Zk is the far-end signal sequence, 

fk is the attenuated far-end signal sequence with attenuation f and dk is the 

dispersed as well as attenua.ted far-end signal sequence. Yk is the output of the 

actual echo path, rh is the output of the estimated echo path and ek is the error 

signal. 

error signal = (far-end signal + echo signal) - (estimate of echo 

signal) 

The error signal is then used by the adaptation algorithm to update the co

efficients of the adaptive filter in order to get the best estimate of echo path, so 

that the error signal could be minimised. 

Dispersion can be added to the far-end signal in addition to the attenuation. 

Some simulations are also performed with added dispersion. The simulation 

setup used for these kind of computer simulations is given in Figure 4.5. 
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4.5 Performance measure 

We have used the average of normalised tap-error vector to demonstrate the 

behaviour of algorithm, below the far-end signal power level. The performance 

measure PCk) used in the present data echo canceller algorithm is as given below. 

where, 

h =cooefficient vector of the echo path fil ter, 

h =co-efficient vector of the filter estimating the echo path, and 

E is the statistical expectation operator for ensemble averaging. 

(4.3) 

This kind of averaging helps in smoothing out any noise present in the cOllver

gence curves. The ideal situation is that the averaging should be over an infinite 

ensemble, which is impractical. A more practical way of approximating statis

tical expectation is to average over a suitable finite number of examples. The 

number chosen here is 20, which is large enough to provide rea$onably smooth 

results. Equation 4.3 with averaging 20 times becomes 

_ ~ ~ (2:;;';01 (h(n) - h(n)f) 
PCk) - 20 L..J ",N-I (/ ( ))2 

1;;;;1 L....,t=O t 11.. 

(4.4 ) 

Where N is the number of taps and is equal to 32 in our case. Four different con

vergence levels were chosen as performance goals for their respective situations, 

which are, -:35, -40, -45 and -50 dB. 
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4.6 Simulations 

Computer simulations were carried out on SUN SPARC stations using the FOR

TRAN computer language. Computer codes are given in the Appendix. All the 

results presented in this report are obtained using "rand(O)", a random number 

generator from the Sun FORTRAN library. 

The new adaptation algorithm as discussed earlier (Equation 3.11) was used. 

The cost function power T was varied starting always from T=2.0, then incre

menting in steps of 0.1 for each simulation. For each set of simulations, far-end 

signal power level along with the convergence level were fixed with reference 

to the near-end signal level. An optimum step size value fl was used for each 

individual simulation depending upon the value of cost function power T, far

end signal power level and convergence level for that particular simulation. A 

slightly larger I' will result in a higher level of convergence and a slightly lower 

than the optimum I' will result in a lower than the required convergence level, 

if all the other parameters are kept constant. The value of I' which is called 

optimum here will give the required convergence level. e.g. for T = 2.2, far-end 

signal level at -15 dB, third echo path model, and binary signals, the value of 

fl is 0.004 to achieve a convergence level of -:35 dB. If all the other parameters 

are kept constant, a value of I' higher than 0.004 will result in a convergence 

level higher than -:35 dB. On the other hand if the value of I' is lowered than the 

0.004 keeping all the other parameters constant, the resultant convergence level 

will fall down accordingly. [n this case the value of I' which gives the required 

convergence level of -:35 dB (20 dB lower than the far-end signal level of -15 

dB), or I' = 0.004 is designated as the optimum value of I' 

The optimum value of step size for each simulation was determined prac-
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tically by running the program several times. Each time raising or lowering 

the value of p. to achieve the required convergence level. Once the required 

convergence level is achieved, the value of p. used to get that was labelled as 

optimum value of I' and was then used in ensemble averaging. Before recording 

the convergence time, each simulation was ensemble averaged over twenty times 

to reduce noise in the convergence curves. A typical convergence curve is shown 

in Figure 4.6. In Figure 4.6, the smn of squares of tap errors normalised by the 

sum of squares of target tap values is plotted in dBs against the number of iter

ations. The same curve is shown with averaging by twenty times in Figure 4.7. 

The same curve was ensemble averaged by 50 and lOO times. Ideally the aver

aging should be over infinite number of examples or a very very large number, 

which is impractical for these simulations. The curve with 100 times averaging 

was clearest of all but it also takes more time as well. There is relatively more 

noise in the plot shown in Figure 4.7 but 20 times averaging is much quicker 

to achieve than that of lOO times. A compromise has to be made between the 

time taken and the noise left behind, depending upon the requirement of the 

job. Finally it Wil..- decided that 20 times averaging is suitable for our purpose. 

Practically the 20 times and 100 times averaging makes no difference in our 

results. 
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Figure 4.6: A typical convergence curve. 
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Figure 4.7: Convergence curve of Figure 4.6 with 20 times averaging. 
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The aim of the experiment was to find out the increase in the rate of initial 

convergence by using the non quadratic cost function power T. Also to find out 

the region of low sensitivity to the variations in T if there is any. 

The simulations were carried out in such a way that convergence level IS 

always a few decades below the level of the far-end signal. This is necessary in 

order to extract the useful information (i.e. far-end signal), from the incoming 

signal that has been corrupted, by an echo signal of power level higher than 

the far-end signal one. Typically, a received signal-to-uncancelled echo ratio of 

better than 20 dB is required [2]. For the sin11llations presented in this thesis, 

convergence wa" achieved at 20 dB or two decades below the far-end signal power 

level. A range of far-end signal power attenuation levels was used as described 

in the next chapter. Convergence time, in terms of number of iterations, was 

observed and recorded for each individual simulation and then plotted against 

cost function power T for each set of simulations. 



Chapter 5 

Simulations with binary data 

5.1 Introduction 

This chapter describes various simulation methods and results. Computer sim

ulations were performed with pseudo random non-Gaussian binary data with 

the two levels of + 1 and -1, as described in Section 4.6. Four cases, with various 

far-end signal levels added to the returned signal, were studied in order to il

lustrate a range of possible operating conditions. The far-end signal levels used 

were -15, -20, -25 and -:30 dB. In all these cases, convergence was achieved 20 dB 

below the far-end signal level. Three different echo path models as described in 

Section 4.3, were used. Calculated and measured step sizes of the convergence 

process are tabulated. Later simulations are also performed with the higher 

value of T switched back to 2.0 and vice versa during the course of convergence. 

Switching behaviour of gradient is investigated. Simulations are also performed 

with dispersion added to the far-end signal in addition to the attenuation. 

54 
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5.2 Simulations with binary data 

A pseudo random sequence of values +1 and -1 is used as non-Gaussian bi

nary signal at the input (transmitter) of the near-end of our echo canceller 

model. Part of this input or transmitted signal is reflected back from a point 

of impedance mismatch (echo path) as shown in Figure 4.4. This reflected or 

returned signal which is now distorted by the echo path transfer function is re

ceived at the receiver of the near-end of our echo canceller model, along with the 

attenuated far-end signal. The far-end signal sequence is modelled by a similar 

but independent pseudo-random sequence of values + 1 and -1 with a certain 

attenuation factor. Transfer function of the echo path is modelled as a digital 

FIR filter of length 32 using three different echo path models, as described in 

Section 4.3. The transfer function of the echo path is estimated by a digital 

adaptive filter of length :.l2. The output of the adaptive filter is then subtracted 

from the returned signal to obtain an error signal. The error signal is then used 

by the newly developed adaptation algorithm (:3.11) to calculate and update 

the co-efficients of the adaptive filter, which in turn calculates a new and better 

estimate of the echo path in the next cycle. In this way the process leads to

wards convergence. The new algorithm (:3.11) was developed with the intention 

of speeding up the process of convergence in terms of the number of iterations. 

Computer simulations are performed to look at this decrease in convergence 

time. 

Coefficients of the adaptive filter were reset at the start of each convergence 

process, or simulation. At each time step or the sampling instant, the difference 

of the coefficients of the echo path filter and the adaptive filter was taken, 

squared and normalised by the square of the echo path filter coefficients. These 
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near-end far-end conver (far-end max. T for the 

signal signal -gence signal level) fastest convergence 

level level level -( convergence 1st 2nd 3rd 

dBs dBs dBs level) dBs model model model 

0 -15 -:35 20 3.1 3.6 2.6 

0 -20 -40 20 :3.0 :3.1 2.5 

0 -25 -45 20 2.8 3.0 2.5 

0 -30 -50 20 2.7 2.8 2.4 

Table 5.1: Various combinations of power levels and the maximum values of cost 

function power T attained for the fa.~test convergence at or below a particular 

convergence level. Data streams were binary. 

values, obtained with the appropriate convergence factor or step size Jl- and 

cost function power T, were then plotted for a sufficient number of iterations. 

The curves obtained in this way were similar to those of Figures 4.6 and 4.7. 

Desired convergence levels were achieved after a number of tries by modifying 

step size I' while keeping the rest of the parameters constant. Convergence 

times were observed and recorded from these curves. An appreciable decrea..~e 

in convergence time with increasing cost function power T can be observed from 

the above mentioned record of convergence times. 

Various levels of far-end signals and convergence were used in simulations. 

Four levels of far-end signal (-15, -20, -25 and -30 dB) were selected for presen

tation in this thesis. Convergence was always achieved 20 dB below the far-end 

signal levels. Respective pow"r levels in decibels along with some related infor-
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mation are summarised in Table 5.1. 

The decrease in convergence time with the increase in cost function power 

T is presented in graphical form in Figures 5.1-5.4. In its most basic form, 

convergence time in terms of the number of iterations is plotted versus cost 

function power T. Change in convergence time with respect to the change in 

cost function power T can be readily observed from such a curve. Four figures are 

presented here, one for each far-end signal level. Each of these figures contain 

simnlation results of all three echo path models used. 

Figures 5.1-5.4 show the results of simulations for the far-end signal levels 

of -15, -20, -2.5 and -:30 dB respectively. It is obvious from these figures that the 

shape of all these curves is essentially similar. The convergence time (in terms 

of the number of iterations) reduces as we go on increasing cost function power 

T. In the initial portions of the curves, convergence time is more sensitive to 

the changes in cost function power T. As we go on increasing T, this sensitivity 

gradually decreases. At a certain value of T, the algorithm stops converging 

exactly at a particular target convergence level, however, it may converge below 

that level. We may continue increasing T to achieve convergence below the tar

get level and record the convergence time of the crossing point of the curve and 

the target convergence level. Soon after, the convergence process starts slowing 

down with further increments in the value of T. The end result is that we obtain 

a bathtub like feature by plotting convergence time versus T. A certain value 

of T or a range of the va.lues of T achieve the minimum convergence time for 

a particular combination of echo pa.th model and far-end signal. These maxi

mum values of T for the minimum possible convergence time are sllIllmarised in 

Table 5.1. 
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Figure 5.1: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -15 dB and convergence was achieved at 

-35 dB as compared with that of the near-end signal. 
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Figure 5.2: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -20 dB and convergence was achieved at 

-40 dB as compared with that of the near-end signal. 
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Figure 5.:3: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -25 dB and convergence was achieved at 

-45 dB as compared with that of the near-end signal. 
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Figure 5.4: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -30 dB and convergence was achieved at 

-50 dB as compared with that of the near-end signal. 
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Figures 5.1-5.4 also incorporate the effects of the echo path models for the 

respective far-end signal levels. Characteristics of the echo path filter play an 

important role. Area under the transfer function curve of the echo path relates 

to the signal power by the Wiener-Khinchine theorem at a shift of zero [92]. Ac

cording to Wiener-Khinchine relations, the zero-frequency value of the spectral 

density of a stationary random process equals the total area under the graph of 

the auto correlation function, i.e. 

(5.1 ) 

The mean square value of the output of a linear filter is given by, 

(5.2) 

Where IH(z)1 is the magnitude of the transfer function. As we observe from the 

three different models used here that the area under the curve of the transfer 

function of the echo path model (see Figures 4.1-4.3) affect these curves and 

determine their relative length, percentage reduction in convergence time, etc. 

e.g. in Figure 5.1, convergence time reduces by 79% for the second echo path 

model, whereas it undergoes a reduction of 55% for the third echo path model. 

Reduction in convergence time is computed by comparing the minimum con

vergence time with that of the mean square convergence time. Mean square 

convergence time for the third echo path model is already better than the first 

and the second models. Therefore, comparatively less reduction in convergence 

time may be achieved for an echo path model, which already has comparatively 

better convergence time for the mean square function, and vice versa. 

The relative improvement in convergence time is more for models with rela

tively small transfer function areas (Equations (5.1) and (5.2)) (e.g. the second 
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echo path model). The models with larger transfer function areas (e.g. the third 

echo path model) can only achieve a relatively small decrease in convergence 

time with increase in T. A smaller transfer function area means a higher value 

of the maximum T for the minimum possible convergence time, more tolerance 

and vice versa. 

The same curves provide different information if presented in a different way. 

Another way of looking at the above mentioned results is to examine all four 

cases of different far-end signals for a particular echo path model in a single 

diagram. Figures 5.5-5.7 show all four cases of the same model in one figure 

respectively. By inspecting these figures we observe that the curves mostly 

overlap each other. Variations in far-end signal level affect the length etc. of 

the curves. Relative reductions in convergence time remain nearly the same for 

all four far-end signal power attenuation levels in a particular echo path model. 

This observation leads to the conclusion that the reduction in convergence time 

is independent of the power attenuation levels of the far-end signal. On the 

other hand, it is evident from figures 5.1-5.4, that the reduction in convergence 

time does depend upon the type of the echo path model. Figures 5.5-5.7 also 

indicate that the maximum value of T, for the lowest convergence rate, is higher, 

for the less attenuated signals, and vice versa. It is evident from Figures 5.1-.5.4 

that the above mentioned parameters also depend upon the type of echo path 

model. 

While the curves start at different points they rapidly converge. All three 

echo path models follow the same pattern with regard to the starting points in 

these curves. The starting points i.e. the convergence time at T = 2 is higher 

for more attenuated far-end signal and vice versa. 
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Figure 5.5: Convergence time versus cost function power T is plotted for the 

first echo path model and all four far-end signal levels of -15, -20, -25 and -30 

dB. 
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Figure 5.6: Convergence time versus cost function power T is plotted for the 

second echo path model and all four far-end signal levels of -15, -20, -25 and -30 

dB. 
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Figure 5.7: Convergence time versus cost function power T is plotted for the 

third echo path model and all four far-end signal levels of -15, -20, -25 and -30 

dB. 
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Learning curves for the third model in Figure 5.1 

Figures 5.8-5.17 are the learning curves for the third echo path model and far

end signal level of -15 dB. Each of these curves constitute a single point in 

the lowest curve in Figure 5.1. Normalised tap-error vector is plotted versus 

number of iterations. Each curve is averaged 20 times. Convergence level is 

set at -35 dB. We continue achieving this level till r = 2.6. For r = 2.7 we 

cannot achieve this convergence level as the algorithm becomes unstable. We 

can, however, achieve a convergence level lower than -35 dB. p. is decreased as 

well to keep the algorithm stable. We can now measure the convergence time 

(in terms of number of iterations), when learning curve crosses the -35 dB level. 

Convergence is comparatively slower when achieved at a lower level. This effect 

results in the turning point in the lowest curve in Figure 5.1. From this point 

onwards, higher values of r results in further slowing down of the convergence 

process as we have to decrease p. every time to keep the algorithm stable. 

Simulations with identical (unit) power of the echo path models 

Simulations were also performed with identical power of the impulse responses 

of the three echo path modds. To normalise the power of each of the impulse 

response to 1, each weight of a particular impulse response was divided by the 

square root of the sum of the squares of all the weights in a model. Com

puter simulations were performed in a similar way as for the results shown in 

Figure 5.1. The results of these simulations are presented in Figure 5.18. A com

parison of Figures 5.1 and 5.18 reveals that there isn't much difference especially 

in the general shape of the curves. The only difference is that comparatively 

higher values of r are achieved for all the three models. These simulation re-
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suIts show that different echo paths behave differently even when their power is 

normalised. 
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Figure 5.8: Learning curve for T = 2.0. 
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Figure 5.9: Learning curve for T = 2.1. 
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Figure 5.10: Learning curve for T = 2.2. 
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Figure 5.11: Learning curve for T = 2.3. 
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Figure 5.12: Learning curve for T = 2.4. 
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Figure 5.14: Learning curve for T = 2.6. 

normalised tap-error vector norm, dBs 
0 I I I I I 

-5 T = 2.7-

-10 

-15 -
-20 -

-25 

-30 r 
-35 r -

-40 
, 

0 500 1000 1500 2000 2500 3000 
number of iterations 
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Figure 5.18: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -15 dB and convergence was 

achieved at -35 dB as compared with that of the near-end signal. All the echo 

path models used are normalised to 1. 
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5.3 Convergence level and some aspects of 

calculated and measured step size of the 

convergence process. 

We can calculate the upper bound on step size {I using Equation (3.29) for each 

value of cost function power T and various far-end signal levels. These calculated 

values of the upper bounds on {I can be compared with those obtained by 

experiment. Computer simulations were performed to obtain the experimental 

maximum achievable values of {I. The simulation results show that in all cases, 

experimentally measured values of I' falls well below the upper bound set by 

Equation (:3.29). 

Computer simulations for this purpose were performed using binary data 

sequences, for the first echo path model, and without switching back to lower 

gradient for lekl ?: 1 during convergence. All the four cases offar-end signal level 

i.e. -15, -20, -25 and -30 dB were studied. For each simulation, step size {I was 

increased, keeping T constant, and without putting a restriction on convergence 

level. Results were obtained after averaging three times for relatively better 

readability of convergence level. For the same T, I' was further increased in the 

next run. This process continued until the algorithm became ullstable. In this 

way it is possible to obtain the maximum achievable value of I', I'max measured 

with a certain T and far-end signal level. 

Calculated upper bounds on I', {lmax calculated from Equation (3.29) for 

various values of T are recorded in tabular form along with the measured values 

of I'",ax and corresponding convergence levels. Tables 5.2-5.5 give a comparison 

of the calculated and measured values of I'",ax with the relative information of 
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convergence level and T for the far-end signal levels of -15, -20, -25 and -30 dB 

respectively. 

A few deductions can be made by a close look at Tables 5.2-5.5. The first 

one is that /Lmax measured is well below the upper bounds /Lmax calculated set 

by Equation (3.29) for all the tabulated cases. This fact is obvious from the 

comparison of the second and third columns of the said tables. 

The last columns of the tables under consideration, provide the correspond

ing convergence levels for each /Lmax measured. As we know that convergence 

level increases with the increASe in IL and vice versa, while keeping the rest of 

the parameters constant. This means that these convergence levels (given in 

the fourth columns) are, the maximum achievable convergence levels for the 

particular values of T as they correspond to the maximum measured value of 

/L. We now make a unique conclusion that for a particular far-end signal level 

and echo path, each T has a maximum achievable value of convergence level. 

Convergence can be achieved, in principle, anywhere below this level, as /L can 

be decreased as required, without compromising the stability of the convergence 

process. The stability of the convergence process is disturbed only when /L is 

increased beyond ILmax measured. 

It is also observed that the maximum achievable convergence level decreases 

with the increase in T. as well as with the decrease in the far-end signal level. 

For example in Table 5.2, maximum achievable convergence level is -10 dB for 

T = 2.0, -24 dB for T = 2.5 and -:34 dB for T = 3.0. If we have to compare 

different levels of the far-end signal for the same value of T, say T = 3.0. Then 

it is -34, -42, -49 and -57 dB for the corresponding levels of far·end signal as 

-15, -20, -25 and -:30 dB (Tables 5.2-5.5). 

In Tables 5.2-5.5 ILmax measlLrcd decreases with the increase in T. Initial 
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higher and later lower values of /lmax measured are the result of the correspond

ing initial higher and later lower values of convergence level. However in the 

simulations of Section 5.2, optimnm value of /l, increases with the increase in T. 

That is a result of keeping the convergence level constant while increasing T. In 

Tables 5.2-5.5, /lmax calculated increases with the increase in T. This is because 

of the presence of the term I/dT
-

2 in Equation (3.29). As III < I, an increase 

in T results in a decrease in IfdT
-

2 • If a term decreases in the denominator of 

a fraction, the whole fraction increases. 

The big difference between I'max calculated and I'max measured could be 

the result of two factors. The first one is the assumption that we are already 

very near to the minimum point at the start of our analysis. I'max calculated 

is obtained from the results of these analysis. This assumption (Section 3.4) 

may have contributed in widening the gap between /lmax calculated and /lmax 

measured. The second factor could be the approximations made in the analysis 

while obtaining the expression for the calculation of /lm.x calculalcd. This may 

as well have resulted in widening the gap between I'",.x calculated and /lmax 

measured. 
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cost function far-end signal is at -15 dB 

power JImax /Lmax convergence 

T calculated IneclSured level, dBs 

2.0 0.031 0.028 -10 

2.1 0.0:32 0.026 -12 

2.2 0.0:33 0.02:3 -16 

2.3 0.035 0.021 -18 

2.4 0.0:37 0.019 -21 

2.5 0.040 0.016 -24 

2.6 0.042 0.014 -26 

2.7 0.046 0.012 -28 

2.8 0.049 0.010 -:30 

2.9 0.054 0.009 -:32 

:3.0 0.059 0.007 -:34 

:3.1 0.064 0.006 -:35 

: : 

Table 5.2: Calculated and measured values of step size fI corresponding to 

various values of cost function power T along with the maximum achievable 

values of convergence level in decibels. Signal sequences are binary. Far-end 

signal is at -15 dB as compared with that of the near-end signal. The first echo 

path model is used. 
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cost function far-end signal is at -20 dB 

power ILmax J-lmax convergence 

T calculated measured level, dBs 

2.0 0.0:31 0.028 -15 

2.1 0.034 0.027 -18 

2.2 0.0:38 0.024 -23 

2.3 0.042 0.023 -25 

2.4 0.047 0.019 -28 

2.5 0.05:3 0.017 -:30 

2.6 0.060 0.014 -:3:3 

2.7 0.068 0.012 -:36 

2.8 0.078 0.011 -:38 

2.9 0.090 0.009 -40 

3.0 0.104 0.008 -42 

:l.l 0.121 0.007 -44 

: : : 

Table 5.:3: Calculated and measured values of step size p. corresponding to 

various values of cost function power T along with the maximum achievable 

values of convergence level in decibels. Signal seqnences are hinary. Far-end 

signal is at -20 dB as compared with that of the near-end signal. The first echo 

path model is used. 
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cost function far-end signal is at -25 dB 

power J.Lmar JLmax convergence 

T calculated measured level, dBs 

2.0 0.031 0.029 -18 

2.1 0.0:36 0.028 -24 

2.2 0.042 0.025 -28 

2.3 0.050 0.022 -32 

2.4 0.059 0.019 -35 

2.5 0.070 0.017 -37 

2.6 0.084 0.015 -40 

2.7 0.102 0.013 -42 

2.8 0.124 0.011 -45 

2.9 0.151 0.009 -47 

:3.0 0.185 0.008 -49 

3.1 0.228 0.007 -51 

: 

Table 5.4: Calculated and measured values of step size It corresponding to 

various values of cost function power T along with the maximum achievable 

values of convergence level in decibels. Signal sequences are binary. Far-end 

signal is at -25 dB as compared with that of the near-end signal. The first echo 

path model is used. 
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cost function far-end signal is at -30 dB 

power /lmax JLmax convergence 

T calculated measured level, dBs 

2.0 0.031 0.030 -21 

2.1 0.0:38 0.028 -30 

2.2 0.047 0.025 -35 

2.:3 0.059 0.022 -38 

2.4 0.074 0.020 -42 

2.5 0.094 0.017 -45 

2.6 0.119 0.015 -47 

2.7 0.15:3 0.013 -50 

2.S 0.197 0.011 -5:3 

2.9 0.254 0.010 -54 

:3.0 0.:329 O.OOS -57 

3.1 0.429 0.007 -59 

: : 

Table 5.5: Calculated and measured values of step size I' corresponding to 

various values of cost function power T along with the maximum achievable 

values of convergence level in decibels. Signal sequences are binary. Far-end 

signal is at -:30 dB as compared with that of the near-end signal. The first echo 

path model is used. 
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5.4 Dispersion of far-end signal in addition to 

attenuation 

For the preceding computer simulation purposes we have used only attenuation 

in the far-end signal. The present thesis is based on various levels of attenuation 

such as -15, -20, -25 and -30 dB but no dispersion at all in the incoming far-end 

signal. The real systems may introduce both the attenuation and dispersion in 

a signal during the course of its passage through the channel. We therefore, also 

look at whether the algorithm behaves similarly when dispersion is introduced 

into the far-end signal in addition to the attenuation. 

The addition of dispersion into the far-end signal is modelled by passing 

the signal through a transversal digital filter after attenuation. The required 

dispersion can be added simply by setting the coefficients of the digital filter 

with certain values. Let us call this filter the far-end dispersion filter. For 

simplicity we choose a :32 tap FIR filter similar to the one used for the first and 

second echo path models. i.e. the transfer function of the filter is z/(z - a). 

The feedback coefficient a is selected arbitrarily in such a way that the 32nd 

coefficient of the far-end dispersion filter is at -100 dB as compared with that of 

the first one. A detailed procedure for the calculation of the feedback coefficient 

a is explained in Section 4.3. Using this procednre, a came out to be equal 

to 0.689778. Numerical values of all the :32 tap coefficients are summarised in 

Appendix A.2.3. The simulation setup used is given in Figure 4.5. For computer 

simulations the attenuation level of the far-end signal is arbitrarily chosen as 

-1.5 dB with the corresponding convergence level as -35 dB. The rest of the 

simulation procedure is similar to that explained in Section 4.6 and 5.2. Starting 
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from 2.0, T was incremented by 0.1 at each simulation. The corresponding 

optimum value of step size p. was used which was calculated using the steps 

described in Section 4.6. Each simulation result was ensemble averaged by 

20 times before recording the convergence time. The resulting convergence 

times are plotted versus cost function powers T, in Figure 5.19. A look at this 

figure shows that the introduction of dispersion in the far-end signal does not 

violate the basic argument, i.e. convergence time reduces with the increase in T. 

Ignoring the additional noise and absolute values in Figure 5.19, the basic shape 

is similar to that of the middle (first echo path model) curve of Figure 5.1. So 

the new adaptation algorithm remains valid whether the dispersion is present 

in the far-end signal or not. 
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Figure 5.19: Convergence time versus cost function power T is plotted. Con

vergence was achieved at -:35 dB. Far-end signal is attenuated at -15 dB and 

passed through a dispersion. 
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5.5 Achievement of extended tolerance 

Referring to the figures of Section 5.2 we have a maximum value of T for the 

fastest convergence, in each case. Now is it the absolute maximum or can we 

play with and stretch the curve a bit further in search of a wide region of the 

low sensitivity of convergence time to the variations in T? The answer to the 

above question is that let us first investigate the parameters causing instability. 

Then we may be able to control some of these. 

If we look at the adaptation algorithm (:3.11) we find that this is due to 

the high values of the gradient and error signal ek. In the modified stochastic 

gradient algorithm there is a term 1ek\(T-I). As ek crosses the limits of ±l, 

with T > 2 or (T - 1) > 1, a situation arises where a positive number greater 

than 1 is being raised to the power of another positive number greater than 1. 

This results in a bigger number which in turn can produce a larger ek in the 

·next iteration resulting again in a larger than the previolls lekl(T-I) and so on, 

leading towards instability. A typical error signal is plotted against number of 

iterations in Figure 5.20. 

The instability can be handled for a while by reducing the gradient i.e., by 

reducing either the exponent T or the error signal ek. In search of a wider range 

of low sensitivity region near the ends of the curves and to explore further 

the usefulness of the algorithm, the exponent T was switched from a higher 

valne to a lower one during the convergence whenever ek reaches or crosses 

the limits of ± 1. And was switched back to the respective higher valne when 

ek fell again in the limits of ±1. For this purpose a check was performed on 

ek during each iteration and action was taken accordingly. The switching was 

continued throughout the whole simulation and in all simulations for the sake 
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of consistency. The value chosen for lower cost function power was 2.0 as in the 

LMS algorithm. Results of the computer simulations performed in this way are 

given in the next section. 

The exponent T and its relative optimum step size It were switched from 

higher values to lower ones (those for LMS algorithm) and back, depending 

upon the value of the error signal ek, as given below 

if led < I then, cost function's exponent = T, step size = Il 

where T > 2.0, It is the optimum value of step size for T 

if lekl :::: 1 then, cost function's exponent = 2.0, step size = 112 

112 is the optimum value of step size for T = 2.0 



CHAPTER 5. SIMULATION.') WITH BINARY DATA 

3 

2 

E 1 
R 
R 
o 
R 
S 0 
I 
G 
N 
A 
L -I 

-2 

-3 

-4 L-____ L-__ ~ ____ ~ ____ ~ ____ _L ____ _L ____ ~ __ ~ 

o 500 1000 1500 2000 
Iterations 

2500 3000 3500 4000 

87 

Figure 5.20: A typical error signal ek versus convergence time in terms of the 

number of iterations. This error signal corresponds to T = 2.0, Jl. = 0.00085, 

far-end signal level at -20 dB, convergence level at -40 dB and binary (±l) data 

for the first echo path model. 
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5.6 Stretching tolerance by switching to lower 

gradient during convergence 

The simulation resnlts presented in this section are obtained by performing 

computer simulations in a similar way to that of Section 5.2. The computer 

simulations were performed with the same parameters, i.e. the signal sequences 

were pseudo random and binary. The same four attenuation levels of far-end 

signals were used, which are -15, -20, -25 and -:30 dB. Resulting in four conver

gence levels of -:35, -40, -45 and -50 dB respectively. The difference is that in the 

present case the cost function power T was switched back and forth along with 

the corresponding step size p, during the course of convergence. This was done 

according to the criteria set in Section 5.5. The rest of the procedures remain 

the same as previously described in Section 4.6 and 5.2. Different power levels 

used in simulations along with the maximum values of cost function power T 

attained are summarised in Table ,5.6. 

Figures 5.21-5.24 show the results for the far-end signal levels of -15, -20, 

-25 and -30 dB respectively. Each of the figures contain the results of all three 

echo path models for a particular far-end signal level and convergence level. By 

observing the curves in these four figures, we can easily conclude that there are 

some features which are common with those of the Figures 5.1-5.4. Convergence 

time decreases as we increase cost function power To Initially the decrease in 

convergence time is fast. This decrease becomes slower in the next part of the 

curves. In these later parts of the curves convergence time does not change 

while we keep on changing T. These parts of the curves provide us with the 

tolerance. Convergence time is tolerant to the changes in T for a certain range 
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near-end far-end conver ( far-end max. value of 

signal signal -gence signal level) T attained 

level level level -( convergence 1st 2nd 3rd 

dBs dBs dBs level) dBs model model model 

0 -15 -35 20 3.7 3.9 3.1 

0 -20 -40 20 :3.:3 3.4 2.9 

0 -25 -45 20 3.1 3.2 2.7 

0 -:30 -50 20 2.9 :3.0 2.6 

Table 5.6: Various combinations of power levels and the maxi mum val ue of cost 

function power T for fastest convergence with each combination. Data streams 

were binary. With switching of gradient during convergence. 

of T depending upon the other parameters. This tolerance gives us a working 

range of T, a better choice of design for real systems. A bathtub like feature 

is emerging from the curves. This means that after the plateau of tolerance, 

convergence time once again starts increasing with increments in To The present 

form of the algorithm (i.e. with switching to lower gradient during convergence 

as per requirement) results in an extended range of T as compared with that of 

the non-switched case. 
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Figure 5.21: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -15 dB and convergence was 

achieved at -35 dB as compared with that of the near-end signal. Gradient 

was switched back and forth during convergence. 
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Figure 5.22: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -20 dB and convergence was 

achieved at -40 dB as compared with that of the near-end signal. Gradient 

was switched back and forth during convergence. 
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Figure 5.23: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -25 dB and convergence was 

achieved at -45 dB as compared with that of the near-end signal. Gradient 

was switched back and forth during convergence. 
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Figure 5.24: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -:30 dB and convergence was 

achieved at -50 dB as compared with that of the near-end signal. Gradient 

was switched back and forth during convergence. 
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Some features of the curves in these figures are similar to that of the non

switched case. e.g. initial points of the curves are higher for comparatively 

smaller area transfer function echo path models (refer to Equations (5.1) and 

(5.2)). Which means more percentage decrease in convergence time if the echo 

path is of small area transfer function type. The lengths of the curves are also 

dependent upon the characteristics of the transfer function. The smaller the 

area of the transfer function is the larger the length of these curves will he. In 

other words we will achieve a higher value of T for the fastest convergence. 

The most important feature of interest, after reduction in convergence time, 

is the extended tolerance of the convergence time to the variations in T. 

As in Section .5.2, the same results (Figures 5.21-5.24) are presented m a 

different way. All the curves for a particular echo path model are combined in the 

same figure for comparison among various levels of far-end signal. Figures .5.25-

5.27 represent results of simulations for all the four far-end signal levels for the 

first, second and third echo path models respectively. 

As it is obvious from these figures, the curves are similar to that of Fig

ures 5.5-5.7 except for the extent of the tolerant portion of the curves. After 

the separate start all the curves in a figure trace nearly the same path, before 

jumping up. Generally the less attenuated far-end signal curve starts from a 

relatively lower point and more attenuated far-end signal curve starts from a 

relatively higher point. The not so strict observance of this rule here, is, because 

of the measurement and observation noise and the close proximj ty of the points 

to each other. The tails of the curves end at different values of T along x-axis. 

If the far-end signal is less attenuated, the corresponding curve has a relatively 

longer tail and vice versa. 
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Figure 5.25: Convergence time versus cost function power T is plotted for the 

first echo path model and all four far-end signal levels of -15, -20, -25 and -30 dB. 

Gradient was switched back and forth during convergence. 
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Figure 5.26: Convergence time versus cost function power T is plotted for the 

second echo path model and all four far-end signal levels of -15, -20, -25 and 

-30 dB. Gradient was switched back and forth during convergence. 
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Figure 5.27: Convergence time versus cost fnnction power T is plotted for the 

third echo path model and all four far-end signal levels of -15, -20, -25 and 

-30 dB. Gradient was switched back and forth during convergence. 
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5.7 Switching behaviour 

It is interesting to know how often the gradient is switched during convergence 

and how long it keeps going. The case of the first echo path model with far

end signal at -15 dB is chosen arbitrarily for computer simulations to find the 

number of switchings. Simnlations were performed in a similar way as described 

earlier in this section. Convergence was achieved at -35 dB in each case without 

averaging. It was observed after the simulations that switchings take place for 

comparatively small amounts of time. The number of switchings back to lower 

gradient remain around 200 or below, for this particular case of first echo path 

model and -15 dB far-end signal. It is also worth noting that no switching 

occurs beyond 1000 iterations. The number of switchings is decreased as T is 

increased. After reaching a minimum at T = :3.4, the number of switchings 

started increasing once again. This effect is similar to that of the decrease 

in convergence time with the increase in T up to a certain T, and increase in 

convergence time with the increase in T after that. The result is presented in 

graphical form in Figure 5.28 where the number of switchings is plotted versus 

T. If we ignore absolute values, the shape of this figure is similar to the middle 

curve of the Figure 5.21. A selection of the switching sequences for the four 

different values of T, i.e. T = 2.1, 2.7, 3.4 and :3.8 are shown in Figures 5.29-

5.32. From these figures we can readily observe the decrease in the number 

of switchings as T is increased, and near the end an increase in the number of 

switchings as T is increased. 
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Figure 5.28: Number of switchings versus cost function power T. For the caBe 

of binary signal sequences when far-end signal is at -1.5 dB and convergence is 

achieved at -35 dB for the first echo path model. 
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Figure 5.29: Switching sequence for T = 2.1. Simulations are performed with 

binary data sequence.s when far-end signal is at -15 dB and convergence is 

achieved at -:35 dB for the first echo path model. 
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Figure 5.30: Switching sequence for T = 2.7. Simulations are performed with 

binary data sequences when far-end signal is at -15 dB and convergence IS 

achieved at -35 dB for the first echo path model. 
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Figure 5.31: Switching seqllp-nce for T = :3.4. Simulations are performed with 

binary data sequences when far-end signal is at -1.5 dB ,wd convergence is 

achieved at -:35 dB for the first echo path model. 
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Figure .5.32: Switching sequence for T = 3.8. Simulations are performed with 

binary data sequences when far-end signal is at -15 dB and convergence is 

achieved at -35 dB for the first echo path model. 
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5.8 Conclusions 

We can safely conclude that the non-quadratic cost function reduces the con

vergence time considerably as compared with that of the LMS algorithm. 

Reductions in convergence time largely depends upon the area under the 

transfer function curve of the echo path model (refer to Equations (5.1) and 

(5.2)). Small area transfer functions tend to achieve relatively larger reductions 

in convergence time and vice versa. Large area transfer functions have compar

atively better convergence times for mean square function anyway. Reductions 

in convergence time are almost independent of the level of far-end signal. The 

power of the far-end signal has a larger effect on the tails of the curves. The 

larger the power, the longer the tails i.e. a higher value of maximum T for fastest 

convergence and vice versa. 

We also conclude that the gradient can be switched back and forth from a 

higher to a lower and from a lower to a higher value during convergence process. 

The result is the achievement of an extended portion of the curve with greater 

tolerance and lower sensitivity to the variations in T. This tolerance gives a 

better choice to the designer for the range of T while designing real systems. 

Switchings occur only during the initial iterations of the convergence process. 

The nnmber of switchings tend to decrease with the increase in T. After reaching 

a certain minimum, the number of switchings starts increasing once again near 

the tail of the convergence time curve. This observation is similar to that of the 

decrease in the convergence tinle with the increase in T. 

The argument of reduction in convergence time with increase in T remains 

valid after adding dispersion in the far-end signal sequence. 



Chapter 6 

Simulations with quaternary 

data 

6.1 Introduction 

Quaternary data simulations and results are presented in this chapter. Com

puter simulations were performed with pseudo random non-Gaussian data with 

four levels of +3, +1, -I and -3, as described in Section 4.6. In order to illus

trate a region of possible operating conditions, four cases with different far-end 

signal levels added to the returned signal were studied, each in two different 

ways. The far-end signal levels used were -15, -20, -2.5 and -:30 dB. In all these 

cases, convergence was achieved 20 dB below the far-end signal level. Three 

different echo path models, described in Section 4.:3, were used. Simulations are 

performed in the normal way as well as with the higher value of T switched back 

to 2.0 and vice versa during the course of convergence. 

10.5 
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6.2 Simulations with quaternary data 
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A pseudo random sequence of values +3, + 1, -1 and -3 is used as a non-Gaussian 

qnaternary signal at the input (transmitter) of the near-end of our echo canceller 

model. The echo of the input, or the reflected portion of the input signal 

sequence is received at the near-end along with the attenuated far-end signal. 

The far-end signal sequence is also modelled from a similar but independent 

sequence of values +3, + 1, -1 and -:3 with some attenuation introduced into it. 

Modelling of the four level data streams is discussed in detail in Section 4.2. 

The transfer function of the echo path is modelled as a digital echo path filter of 

length 32. The three echo path models used here are the same as for binary data 

sequences. Modelling of the echo paths is described in Section 4.3. The transfer 

function of the echo path is estimated by a digital adaptive filter of length 32 

using the newly developed adaptation algorithm (3.11). The estimate of the 

echo path is then compared with that of the actual echo path. The resultant 

error signal is then used to obtain the new estimate of the echo path. In the 

process, we obtain a better than previous estimate at each iteration, which leads 

to convergence. The rest of the procedure is similar to that already described in 

the first few para.graphs of Section 5.2. After performing computer simulations 

we obtain the desired convergence cmves. Convergence times in terms of the 

number of iterations were observed and recorded from these curves. These data 

are presented here in graphical form in Figures 6.1-6.4, from which we can 

easily see the extent of reduction in convergence time with the increase in cost 

function power T. 

Four different levels of far-end signal and convergence are used in the simu

lations with four level data, similar to that with the binary data. Convergence 
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near-end far-end conver (far-end max. value of 

signal signal -gence signal level) T attained 

level level level -( convergence 1st 2nd 3rd 

dBs dBs dBs level) dBs model model model 

0 -15 3" - " 20 3.7 4.0 2.8 

0 -20 -40 20 3.3 3.8 2.6 

0 -2,5 -45 20 3.2 :3.2 2.6 

0 -30 -50 20 2.9 3.1 2.5 

Table 6.1: Various combinations of power levels and the maximum values of cost 

function power T attained for the fastest convergence with each combination. 

Data streams were quaternary. 

was always achieved 20 dB below the far-end signal levels. Respective power 

levels in decibels, along with the maximum values of T attained for the fastest 

convergence in individual cases, are summarised in Table 6.1. 

The results of the simulations with four level data are presented in a similar 

graphical form as were the simulations with binary data in the previous chapter. 

Convergence time in terms of the number of iterations versus cost function power 

T is plotted. Related curves are combined in single figures, so that a comparison 

could be made among various features of the curves, in addition to the most 

significant observation of the decrease in convergence time with the increase in 

cost function power T. Four figures are presented here. Each figure contains 

simulation results for all three echo path models for a particular attenuation 

level of the far-end signal. This way of presenting results provides a chance to 
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compare the effects of different echo path models. 

Figures 6.1-6.4 show the resnlts of simnlations for the far-end signal levels 

of -15, -20, -25 and -30 dB respectively. The shape of all the curves in these fig

ures is essentially similar. Absolute values are not the same, but there are some 

general trends. e.g. the convergence time (in terms of the number of iterations) 

tends to decrease as we go on increasing cost function power T. In the initial 

portions of the curves, convergence time is more sensitive to the changes in cost 

function power T. As we go on increasing cost function power T, sensitiveness 

gradually decreases similar to the case of simulations with binary data. In the 

case of four level data, however, there is more noise in the curves. At a certain 

value of T the algorithm stops converging exactly at a particular target level, 

however, it may still converge below that level. We may continue increasing T 

by achieving convergence below the target level and recording the convergence 

time of the crossing point of the convergence curve and the target convergence 

level. The convergence process starts slowing down with further increments in 

the value of T. The end result is that we obtain a bathtub like feature by plot

ting convergence time versus T. A certain value of T or a range of the values 

of T achieve the minimum convergence time (or the fastest convergence), for 

a particular combination of echo path model and far-end signal. These maxi

mum values of T for the minimum possible convergence time are summarised in 

Table 6.1. 
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Figure 6.1: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -15 dB and convergence was achieved at 

-35 dB as compared with that of the near-end signal. 
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Figure 6.2: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -20 dB and convergence was achieved at 

-40 dB as compared wi th that of the near-end signal. 
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Figure 6.3: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -25 dB and convergence was achieved at 

-45 dB as compared with that of the near-end signal. 
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Figure 6.4: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -30 dB and convergence was achieved at 

-50 dB as compared with that of the near-end signal. 
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The effects of the characteristics of the echo path models are evident from 

these figures. The type of echo path model determines the relative length, 

percentage reduction in convergence time, etc. All three echo path models 

(see Figures 4.1-4.3) used here have different areas under the curves of their 

respective transfer functions (refer to Equations (5.1) and (5.2). The echo path 

models with small transfer function area result in relatively large decreases in 

convergence time and vice versa. e.g. in Figure 6.1, convergence time reduces 

by 74% for the second echo path model, whereas it reduces by 47% for the third 

echo path model. Reductions in convergence time are computed by comparing 

the minimum convergence time with that of the mean square convergence one. 

Mean square convergence time for the third echo path model is already better 

than the first and the second ones. Therefore, comparatively less reduction in 

convergence time may be achieved for an echo path model, which already has 

comparatively better convergence time for the mean square function, and vice 

versa. 

The improvements in convergence time are greater for models with relatively 

small transfer function areas (refer to Equations (5.1) and (.5.2)) (e.g. the second 

echo path model), and vice versa. A smaller transfer function area means a 

higher value of the maximum T for the minimum possible convergence, and vice 

versa. Nonetheless all the three echo path models exhibit a general' trend of 

decrease in convergence time for all four far-end signal attenuation levels. 

The above mentioned results can be presented in a different way to extract 

different information. Instead of combining curves belonging to the same far-end 

signal level and to the different echo path models in a single diagram, we may 

combine curves belonging to the same echo path model and to the different levels 

of the far-end signal in a single diagram. Figures 5.5-5.7 show the four cases of 
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the far-end signal levels for particular echo path models, in single diagrams. 

The curves in these figures almost overlap each other. We can safely conclude 

that the variations in the attenuation level of the far-end signal affect the length, 

etc. of the curves. Reductions in convergence time remain nearly constant for all 

four far-end signal power attenuation levels for a particular echo path model. It 

can be concluded from this observation that the reduction in convergence time 

is almost independent of the variations in the power attenuation level of the 

far-end signal. Figures 5.5-5.7 also indicate that the maximum value of T, for 

the lowest convergence rate, is higher, for the less attenuated signals, and vice 

versa. 

Although the curves overlap with each other, generally each one has a slightly 

different convergence time for the mean square function. These can be observed 

as the starting points of the curves in Figures 5.5-5.7. The starting points are 

higher for more attenuated far-end signals, and vice versa. 
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Figure 6.5: Convergence time versus cost function power T is plotted for the first 

echo path model and all four far-end signal levels of -15, -20, -25 and -30 dB. 
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Figure 6.6: Convergence time versus cost function power T is plotted for the 

second echo path model and all fom far-end signal levels of -15, -20, -25 and 

-30 dB. 
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Figure 6.7: Convergence time versus cost function power T is plotted for the 

third echo path model and all four far-end signal levels of -15, -20, -25 and 

-30 dB. 
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6.3 Stretching tolerance by switching to lower 

gradient during convergence 

A somewhat detailed discussion about switching from higher to lower gradient 

and vice versa during convergence is given in Section 5.5. The same reasoning 

can well be applied here on four level data. The required effect is the extension 

in the tolerance range in each of the individual curves described in the previous 

section. The simulation results presented in this section are obtained by per

forming computer simulations in a similar way to that of Section 6.2. Most of 

the parameters remain the same. i.e. the signal sequences remain pseudo ran

dom quaternary from the set {-a, -1, + 1, +:3}. The same four attenuation levels 

of -15, -20, -25 and -ao dB are used for the far-end signal. This results in four 

convergence levels of -:35, -40, -45 and -50 dB respectively. Optimum step size J1. 

was empirically determined for each individual case. The only difference is that 

in the present case the cost function power T was switched back and forth along 

with the corresponding step size It, during the course of the convergence. This 

was done according to the criteria set in Section 5.5. The rest of the procedure 

remains the same as previously described in Section 6.2. Different power levels 

used in simulations along with the maximum values of cost function power T 

attained for the fastest convergence, are summarised in Table 6.2. 

Figures 6.8-6.11 show the results for various far-end signal levels. Each of 

the figures contain the results of all three echo path models for a particular 

far-end signal level and the corresponding convergence level. By inspecting the 

convergence time curves in these fOllr figures we observe that some of the features 

are similar to those of the Figures 6.1-6.4. Convergence time decreases as we 
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near-end far-end conver (far-end max. value of 

signal signal -gence signal level) T attained 

level level level -( convergence 1st 2nd 3rd 

dBs dBs dBs level) dBs model model model 

0 -15 3" - <l 20 6.0 6.6 4.5 

0 -20 -40 20 4.7 5.0 3.8 

0 -25 -45 20 :3.8 3.9 3.3 

0 -ao -50 20 :3.3 3.6 3.0 

Table 6.2: Various combinations of power levels and the maximum values of cost 

function power T attained for the fastest convergence with each combination. 

Data streams were quaternary. Switching of gradient was performed during 

convergence. 

increase cost function power T. Initially the decrease in convergence time is fast. 

Gradually it becomes slower. Then no change occurs in convergence time with 

the increase in T. These later parts of the curves provide us wi th the tolerance. 

Convergence time tolerates the changes in T for a certain range of T. A bathtub 

like feature emerges when convergence time once again starts increasing with 

the increase in T. The present form of the algorithm (i.e. with switching to 

lower gradient during convergence as per requirement) results in an extended 

range of T (Figures 6.8-6.11), as compared with that of the non-switched case 

(Figures 6.1-6.4). 
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Figure 6.8: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -15 dB and convergence was achieved at 

-35 dB as compared with that of the near-end signal. Gradient was switched 

back and forth during convergence. 
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Figure 6.9: Convergence time versus cost function power T is plotted for all three 

echo path models. Far-end signal is at -20 dB and convergence was achieved at 

-40 dB as compared with that of the near-end signal. Gradient was switched 

back and forth during convergence. 
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Figure 6.10: Convergence time versus cost function power T is plotted for all 

three echo path models. Far-end signal is at -25 dB and convergence was 

achieved at -45 dB as compared with that of the near-end signal. Gradient 

was switched hack and forth during convergence. 
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Figure 6.11: Convergence time versus cost function power r is plotted for all 

three echo path models. Far-end signal is at -:30 dB and convergence was 

achieved at -.50 dB as compared with that of the near-end signal. Gradient 

was switched back and forth during convergence. 
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Some features of the curves are similar to those of the curves for the non

switched case. e.g. initial points of the curves on the y-axis (mean square con

vergence time), are higher, for the small area transfer function of the echo path 

models (refer to Equations (5.1) and (5.2)), and vice versa. More percentage 

reduction in convergence time for small area transfer function echo paths, and 

vice versa. The lengths of the curves are also dependent upon the character

istics of the echo path model. The smaller the area of the transfer function of 

the echo path model, the greater the lengths of these curves will be. In other 

words, we will achieve a higher value of T for the fastest convergence in each 

individual case. The most important feature of our interest after the reduction 

in convergence time, is, the extended tolerance of the convergence time to the 

variations in T for a certain range of T. 

For comparison of the effects of various far-end signal levels for a particular 

echo path model, the same convergence time curves are presented in a different 

way. i.e. by collection of all four cases of far-end signal levels in a single diagram. 

One diagram (Figures 6.12-6.14) for each of the echo path models. These are 

the same curves as were in Figures 6.8-6.11, but are combined differently to 

extract different information. 

A look at these figures shows that the curves in each of the figures overlap 

each other before jumping up, as in a similar ca.~e for binary data sequences. 

The starting points on the y-axis (convergence time in terms of the number of 

iterations) are generally higher for more attenuation in the far-end signal and 

vice versa. These are not so strictly followed rules because of the close proxinuty 

of the curves with each other in the presence of observational noise. Attenuation 

in the far-end signal affects the lengths of the curves. Less attenuation, longer 

tails, larger regions of convergence time tolerance to T, and vice versa. 
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Figure 6.12: Convergence time versus cost function power T is plotted for the 

first echo path model and all four far-end signal levels of -15, -20, -25 and -30 dB. 

Gradient was switched back and forth during convergence. 
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Figure 6.13: Convergence time versus cost function power T is plotted for the 

second echo path model and all four far-end signal levels of -15, -20, -25 and 

-30 dB. Gradient was switched back and forth during convergence. 
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Figure 6.14: Convergence time versus cost function power T is plotted for the 

third echo path model and all four far-end signal levels of -15, -20, -25 and 

-30 dB. Gradient was switched back and forth during convergence. 
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Switching behaviour 6.4 
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The switching behaviour of nonquadratic adaptation algorithms in the case of 

the four level data sequences can be obtained in a similar way as in the case 

of binary data sequences. The first echo path model with the far-end signal at 

-15 dB was chosen for simulations. Simulations were performed in a similar way 

as described in Section 6.:3. Convergence is achieved at -35 dB. No averaging 

is done. After compiling the results of the simulations it is observed that a 

relatively small number of switchings take place. However, in absolute terms 

they are nearly double to the ones for binary data sequences. i.e. the number 

of switchings remain below or around 400, as compared with that of the figure 

of 200, in the previous chapter. The number of switchings versus T is plotted 

in Figure 6.15 

Figure 6.15 shows that the number of switchings decrease initially as T is 

increased. They increase once again near the end of the curve with the increase 

of T. The number of switchings is higher for T = 2.1. It keeps on decreasing 

as T is increased for some time and then fluctuates in the remaining part of 

the curve. These fluctuations are due to the four level signal sequences. The 

Figure 6.15 shows that the reduction in the number of switchings is less for the 

present case as compared with the ones with binary data sequences shown in 

Figure 5.28. A selection of the switching sequences for the four different values 

of T, i.e. T = 2.1, 3.7, 5.2 and 6.7 are shown in Figures 6.16-6.19. From these 

figures we can readily observe the decrease in the number of switchings, with 

the increase in T and then increase once again at the end. 
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Figure 6.15: Number of switchings versus cost function power T. For the case of 

quaternary signal sequences when far-end signal is at -15 dB and convergence 

is achieved at -35 dB for the first echo path model. 
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Figure 6.16: Switching sequence for T = 2.1. Simulations are performed with 

quaternary data sequences when far-end signal is at -15 dB and convergence is 

achieved at -35 dB for the first echo path model. 
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Figure 6.17: Switching sequence for T = :3.7. Simulations are performed with 

quaternary data sequences when far-end signal is at -15 dB and convergence is 

achieved at -:35 dB for the first echo path model. 
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Figure 6.18: Switching sequence for T = 5.2. Simulations are performed with 

quaternary data sequences when far-end signal is at -15 dB and convergence is 

achieved at -a5 dB for the first echo path model. 
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Figure 6.19: Switching sequence for T = 6.7. Simulations are performed with 

quaternary data sequences when far-end signal is at -15 dB and convergence is 

achieved at -;35 dB for the first echo path model. 
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In the case of the four level data sequences, the non-square cost functions reduce 

the convergence time considerably as in the case of binary data sequences. 

Reductions in convergence time mainly depends upon the characteristics of 

the echo path. An echo path model with a small area under the transfer function 

curve (refer to Equations (5.1) and (5.2)) results in relatively large reductions 

in convergence time and vice versa. This effect is similar to that for the case 

of binary data. We obtain a comparatively larger range of low sensitive region 

to T for an echo path model with a relatively smaller area under the transfer 

function curve. 

Convergence time reductions are nearly independent of the level of the far

end signals. We obtain, in general, a larger range of low sensitivity to T for a 

less attenuated far-end signal and vice versa. 

As for the case of binary signal sequences, the gradient along with its cor

responding optimum step size It can be switched back and forth, for the four 

level signal sequences as well, according to the requirements during the process 

of convergence. The switching results in an extended range of low sensitivity 

to To A similar bathtub like feature emerges in the convergence time curves 

of the switched simulations, i.e. at the tail of the curves, convergence time in

creases once again with the increase in cost function power T. As the extension 

of low sensitivity to T is concerned, the switched case responds more to the 

variations in the power attenuation level of the far-end signal sequences than to 

the variations in the characteristics of the echo path. 



Chapter 7 

Conclusions 

7.1 Summary of achievements 

New adaptation algorithms based on cost function E[ledT
], where T is a rational 

number greater than or equal to 2.0, were derived and analytically verified for 

convergence. Stochastic gradient techniques were used for development of these 

adaptation algorithms. Althongh mean square algorithms have already been 

proved optimum for Gaussian data in contemporary literature, the idea behind 

this study was to develop algorithms for non-Gaussian data, that are relatively 

faster in convergence as compared with the mean square ones. As faster algo

rithms are required for applications in digital data commllllicatiolls systems, the 

proposed adaptation algorithms were tested in digital data echo cancellation. 

Simulation results have shown that the new algorithms are superior to the mean 

square ones with respect to substantial improvements in convergence time. A 

great number of simulations were performed in the presence of far-end signals 

of various power attenuation levels, with different echo path models, with two 
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level as well as four level digital data and dispersion in the far-end signal in 

addition to the attenuation. Results of all these experiments have confirmed 

the substantial improvements in convergence time comparative to mean square 

algorithms. 

Simulations with binary data 

Four power attenuation levels of far-end signal (-1.5, -20, -25 and -30 dB) and 

three echo path models were used for computer simulations incorporating two 

level digital data streams. Simulation results have been presented in Chap

ter 5. From these results we can conclude that the adaptation algorithms using 

nonquadratic cost function powers reduce the convergence time considerably as 

compared with that of the LMS algorithm. 

Decrease in convergence time largely depends upon the area under the trans

fer function curve of the echo path model (refer to Equations (5.1) and (5.2)). 

Lesser area transfer functions t.end to achieve relatively higher reductions in 

convergence time and vice versa. Reductions in convergence time are almost 

independent of the attenuation level of the far-end signal. Relative power of 

the far-end signal has a larger effect on the tails of the convergence time curves. 

Less attenuation (more power) results in longer tails, i.e. a higher value of T for 

the fastest convergence, larger region of tolerance of convergence time to the 

variations in T and vice versa. 

We also experimented with changing cost function power T during conver

gence, according to certain criteria described in Chapter 5. From there we can 

conclude that the gradient can be switched back and forth from a higher to 

a lower value and vice versa, during the convergence process. The result of 

this study is the achievement of the extended portions of the convergence time 
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curves with greater tolerance and lower sensitivity to the variations in T. That 

means convergence rates do not change appreciably by changing cost function 

power T in that region. This effect gives a better choice of T to the designer 

while designing real systems. At the end of the convergence time curves, con

vergence time starts increasing once again with the emergence of a bathtub like 

feature. It was observed that switchings occur only during initial part of the 

convergence process. The number of switchings tends to decrease with the in

crease in T. After reaching a certain minimum, the numher of switchings start 

increasing once again and that happens near the tail of the convergence time 

curve. 

Dispersion was also added to the far-end signal in addition to the attenuation 

for one case. Simulation results show that the basic argument of reduction in 

convergence time or increase in convergence rate remains valid for this case. 

Simulations with quaternary data 

The same four far-end power attenuation levels (i.e. -15, -20, -25 and -30 dB) 

and the same three echo path models were used for computer simulations incor

porating four level data streams, as in the case of binary signals. It is concluded 

that in the case of four level data sequences as well, the non quadratic cost func

tion increases the convergence rate considerably. 

Increase in convergence rate depends upon the characteristics of the echo 

path. An echo path with smaller area under the transfer function curve (refer 

to Equations (5.1) and (5.2)) tends to produce higher convergence rates and 

vice versa. This observation is similar to that with the binary data one. We 

ohtain comparatively larger range of low sensitive region to T for an echo path 

model with relatively small<,r area under the transfer fUllction curve. 
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Increase in convergence rate is almost independent of the attenuation level 

of the far-end signal. We obtain, in general, a larger range of low sensitivity to 

T for a less attenuated far-end signal and vice versa. 

Cost function power, along with the corresponding optimum step size Jl were 

switched back and forth as per requirements during the convergence, for the 

four level data sequences as well. The switchings have resulted in an extended 

range of low sensitivity to T. A similar bathtub like feature have emerged in 

the convergence time curves of the switched simulations. i.e. at the tail of the 

curves, convergence time increases once again with the increase in cost function 

power T. Lengths of the convergence time curves, obtained with the switched 

gradient, are more sensitive to the attenuation level in the far-end signal than 

to the variations in the characteristics of the echo path. 

7.2 Suggestions for future research 

Nonquadratic error criteria led' based on rational numbers (rather than just 

2.0 or its integer powers) have huge potential of applications in areas like digital 

signal processing and control. At present, most of the adaptive signal processing 

and adaptive control applications revolve around the mean square error criterion 

for its simplicity and ease in implementation, ease in mathematical analysis and 

proven convergence properties. However, mean square error criterion is bounded 

with the Gaussian nature of the data. For non-Gaussian data the superiority of 

the nonquadratic cost functions over the quadratic ones have been established 

in this thesis for at least one application of adaptive filtering (i.e. digital data 

echo cancellation). 

One multifacet area for future work could be to look into all kinds of appli-
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cations of adaptive filters in adaptive signal processing (e.g. digital data equal

isation), and adaptive control, where the data sequences are non·Gaussian. 

Nonquadratic cost functions are applied only on stochastic gradient methods 

for the work presented in this thesis. A future work could be to investigate the 

application of nonquadratic cost functions with other algorithms, e.g. recursive 

least squares (RLS), etc. 



References 

[IJ Shah, S. A. H. and Cowan, C. F. N.; "Modified stochastic gradient algo

rithm using nonquadratic cost functions for data echo cancellation," lEE 

Proceedings on Vision, Image, and Signal Processing, vo!. 142, no. 3, pp. 

187-191, June 1995. 

[2J Adams, P. F.; "Adaptive filters in Telecommnnications" in Adaptive filters, 

by Cowal1, C. F. N. and Grant, P. M.; Prentice Hall, El1glewood Cliffs, New 

J eresy, 1985. 

[:3J Walach, E. and Widrow, S.; "The Least Mean Fourth (LMF) Adaptive 

Algorithm and its Family," IEEE Transactions on Information Theory, vo!. 

IT-3D, no. 2, pp. 275-283, March 1984. 

[4J McCool, .1. M. and Widrow, S.; "Principles and applications of adaptive 

filters: A tutorial review," IEEE International Symposium on circuits and 

Systems, Houston, vo!. :3, pp. 114:3-1157, April 1980. 

[5J Koford, J. S. and Croner, G. F.; "The use of an adaptive threshold ele

ment to design a linear optimal pattern classifier," IEEE Transactions on 

Information Theory, vo!. IT-12, no. 1, pp. 42-50, .January 1966. 

140 



REFERENCES 141 

[6J Krishna, V. H. and Reddy, D. C.; "Design of adaptive filters for a class 

of non-uniformly sampled signals," Signal Processing, vo!. 31, no. 1, pp. 

81-89, March 199:3. 

[7J Grant, P. M.; "Digital signal processing, part 1: digital filters and the 

OFT," Electronics & Communication Engineering Journal, vo!. 5, no. 1, 

pp. 13-21, February 1993. 

[8J Gitlin, R. D., Mazo, .1. E. and Taylor, M. G.; "On the design of gradient 

algorithms for digitally implemented adaptive filters," I EEE Transactions 

on Circuit Theory, vo!. CT-20, no. 2, pp. 125-1:36, March 197:3. 

[9J Diniz, P. S. R. and Biscainho, L. W. P.; "Optimal variable step size for the 

LMS/Newton algorithm with application to subband adaptive filtering," 

IEEE Transactions on Signal Processing, vo!. 40, no. 11, pp. 2825-2829, 

November 1992. 

[lOJ Kwan, H. K. and Li, Q. P.; "High-speed realisation of adaptive linear phase 

FIR digital filters," lEE Proceedings, Part F, vol. 140, no. I, pp. 48-54, 

February 199:3. 

[l1J Cowan, C. F. N.; "Performance comparisons of finite linear adaptive fil

ters," lEE Proceedings, Part F, vo!. 134, no. :3, pp. 211-216, June 1987. 

[12J Honig, M. L. and Messerschmitt, D. G.; Adaptive filters: structures, al

gorithms and applications, Kluwer Academic Publishers, Norwell, Mas

sachusittes, 1984. 

[l3J Cowan, C. F. N. and Grant, P. M.; Adaptive filters, Prentice Hall, Engle

wood Cliffs, New .Jeresy, 1985. 



REFERENCES 142 

[14] Mulgrew, B. and Cowan, C. F. N.; Adaptive filters and equalisers, Kluwer 

Academic Publishers, Norwell, Massachusettes, 1988. 

[15] Widrow, B., Steams, S. D.; Adaptive signal processing, Prentice Hall, En

glewood Cliffs, New .Jeresy, 1984. 

[16] Haykin, S.; Adaptive filter theory, 2nd edition, Prentice Hall, Englewood 

Cliffs, New Jeresy, 1991. 

[17] Alexander, S. T.; Adaptive signal processing: theory and applications, 

Springer-Verlag, New York, 1986. 

[18] Haykin, S.; Introduction to adapti"e filters, Macmillan, New York 1984. 

[19] Monzingo, R. A. and Miller, T. W.; Introduction to adaptive arrays, Wiley

Interscience, New York, 1980. 

[20] Goodwin, G. C. and Sin, K. S.; Adaptive filtering, prediction and control, 

Prentice Hall, Englewood Cliffs, New .Jeresy, 1984. 

[21] Goodwin, G. C. and Payne, R. L.; Dynamic system identification: experz

ment design and data analysis, Academic Press, New York, 1977. 

[22] Chen, W. Y. and Haddad, R. A.; "Dual mode adaptive signal processing," 

Computers & Electrical Engineering, vo!. 18, nos. :3-4, pp. 261-275, 1992. 

[2:3] Duttweiler, D. L.; "A twelve channel digital echo canceller," IEEE Trans

actions on Communications, vo!. COM-26, no. 5, pp. 647-65:3, May 1978. 

[24] Honig, M. L.; "Echo cancellation of voiceband data signals using RLS and 

stochastic gradient algorithms," IEEE Transactions on Communications, 

vo!. COM-33, no. 1, pp. 65-7:3, .January 1985. 



REFERENCES 143 

[25J Gritton, C. W. K. and Lin, D. W.; "Echo Cancellation Algorithms," IEEE 

ASSP Magazine, vo!. 1, no. 2, pp. 30-38, April 1984. 

[26J Sondhi, M. M. and Berkley, D. A.; "Silencing Echoes on the Telephone 

network," Proceedings of the IEEE, vo!. 68, no. 8, pp. 948-963, August 

1980. 

[27J Sondhi, M. M. and Presti, A. U.; "A Self-Adaptive Echo Canceller," Bell 

Systems Technical.Journal Briefs, vo!. 45, no. 10, pp. 1851-1854, December 

1966. 

[28J Godard, D.; "Channel equalisation using a Kalman filter for fast data trans

mission," IBM Journal on Research and Development, vo!. 18, no. 3, pp. 

267-273, May 1974. 

[29J Lucky, R.; "Automatic equalisation for digital communicati.on," Bell Sys

tems Technical Journal, vo!. 44, no. 4, pp. 547-588, April 1965. 

[30J Gersho, A.; "Adaptive equalization of highly dispersive channels for data 

transmission," Bell Systems Technical .Journal, vo!. 48, no. 1, pp. 55-70, 

January 1969. 

[31J Nissen, C. W.; "Automatic channel equalisation algorithm," Proceedings 

of IEEE, vo!. 55, no. 5, p. 698, May 1967. 

[32J Gibson, G .. 1., Siu, S. and Cowan, C. F. N.; "The application of nonlinear 

structures to the rp.constmction of binary signals," IEEE Transactions on 

Signal Processing, vo!. :39, no. 8, pp. 1877-1884, August 1991. 



REFERENCES' 144 

[33] Proakis, J. G.; "Adaptive digital filters for equalisation of telephone chan

nels," IEEE Transactions on Audio Electroacoustics, vo!. AU-18, no. 2, pp. 

195-200, .June 1970. 

[34] Makhoul, .1.; "Linear prediction: a tutorial review," Proceedings of IEEE, 

vo!. 63, no. 4, pp. 561-580, April 1975. 

[35] Gray, A. H. and Markel, .1. D.; Linear Prediction of Speech, Springer

Verlag, Berlin, 1976. 

[36J Atal, B. S. and Schroeder, M. R.; "Adaptive predictive coding of speech 

signals," Bell Systems Technical Journal, vo!. 49, no. 8, pp. 1973-1986, 

October 1970. 

[37J Atal, B. S. and Schroeder, M. R.; "Predictive coding of speech and sub

jective error criteria," IEEE Transactions on Acoustics, Speech and Signal 

Processing, vo!. ASSP-27, no. :3, pp. 247-254, June 1979. 

[38J Widrow, B. et a!.; "Adaptive noise cancellation: principles and applica

tions," Proceedings of IEEE, vo!. 6:3, no. 12, pp. 1692-1716, December 

1975. 

[39J Friedlander, B.; "System identification techniques for adaptive noise can

celling," IEEE Transactions on Acoustics, Speech, and signal Processing, 

vo!. 1, no. 1, pp. 699-709, October 1982. 

[40J Harrison, W. A., Lim, .1. S. and Singer, E.; "A new application of adaptive 

noise cancellation," IEEE Transactions on Acoustics, Speech, and Signal 

Processing, vo!. ASSP-:34, no. I, pp. 21-27, February 1986. 



REFERENCES 145 

[41] Hamming, R. W.; Digital filters, 2nd ed., Prentice-Hall, Englewood Cliffs, 

New Jeresy, 1983. 

[42] Gold, S. and Rader, C. M.; Digital processing of signals, McGraw-Hill, 

New YOrk, 1969. 

[43] Peled, A. and Liu, S.; Digital signal processing: theory design and imple

mentation, Wiley, New York, 1976. 

[44] Adams, P. F., Harbridge, .1. R. and Macmillan, R. H.; "A MOS integrated 

circuit for digital filtering and level detection," IEEE Journal of Solid State 

Circuits, vo!. SC-16, no. 3, pp. 183-190, .June 1981. 

[45] Kallman, H. E.; "Transversal filters," Proceedings of IRE, vo!. 28, no. 7, 

pp. 302-310, July 1940. 

[46] Zohar, S.; "New hardware realisations of non-recursive digital filters," IEEE 

Transactions on Computers, vo!. C-22, no. 4, pp. 328-:347, April 1973. 

[47] Herrmann, O. and Schuessler, W.; "Design of nonrecursive digital filters 

with minimum phase," Electronic Letters, vo!. 6, no. 11, pp. 329-330, 28th 

May 1970. 

[48] Seeker, F. K. and Rudin, H. R.; "Application of Automatic Transversal Fil

ters to the Problem of Echo Suppression," Bell Systems Technical .Journal, 

vo!. 4.5, no. 10, pp. 1847-1850, December 1966. 

[49] Horna, O. A.; "Echo canceler with adaptive transversal filter utilizing 

pseudo-logarithmic coding," COMSAT Technical Review, vo!. 12, no. 2, 

pp. 39:3-428, Fall 1977. 



REFERENCES 146 

[50J Roberts, R. A. and Mullis, C. T.; Digital signal processing, Addison Wesley, 

Reading, Massachusettes, 1987. 

[51J Sherman, S.; "Non· mean square error criteria," IRE Transactions on in

formation Theory, vo!. IT-4, no. 3, pp. 125-126, September 1958. 

[52J Brown, .1. L.; "Asymmetric nonmean square error criteria," IRE Transac

tions on Automatic Control, vo!. AC-7, no. 1, pp. 64-66, January 1962. 

[53J Zakai, M.; "General error criteria," IEEE Transactions on Information The

ory, vo!. IT -10, no. I, pp. 94-95, January 1964. 

[54J Douglas, S. C. and Meng, T. H. ·Y.; "Stochastic gradient adaptation under 

general error criteria," IEEE Transactions on Signal Processing, vo!. 42, no. 

6, pp. 1:335-1351, June 1994. 

[55J Schultz, W. C. and Rideout, V. C.; "Control system performance measures: 

past, present and future," IRE Transactions on Automatic Control, vo!. 

AC-6, no. 1, pp. 22-:35, February 1961. 

[56J Chambers, .1. A., Tanrikulu, O. and Constantinides, A. G.; "Least mean 

mixed-norm adaptive filtering," Electronics Letters, vo!. :30, no. 19, pp. 

1574-1575, 15th September 1994. 

[57J Sethares, W. A.; "Adaptive algorithms with nonlinear data and error func

tions," iEEE Transactions on Signal Processing, vo!. 40, no. 9, pp. 2199-

2206, September 1992. 

[58J Jun, B. ·E. and Park, D ... 1.; 'Novel steepest descent adaptive filter derived 

from new performance function with additional exponential term," Signal 

Processing, vo!. :36, no. 2, pp. 189-199, March 1994. 



REFERENCES 147 

[59] Keerthi, S. S. and Gilbert, E. G.; "Optimal infinite-horizon control and the 

stabilization of linear discrete-time systems: state-control constraints and 

nonquadratic cost functions," IEEE Transactions on Automatic Control, 

vo!. AC-31, no. 3, pp. 264-266, March 1986. 

[60] Fang, G. S.; "Voice channel echo cancellation," IEEE Communications 

Magazine, vo!. 21, no. 9, pp. 11-14, December 198:3. 

[61] Could, R. C. and Helder, G. K.; "Transmission Delay and Echo Suppres

sion," IEEE Spectrum, vo!. 7, no. 4, pp. 47-54, April 1970. 

[62] Brady, P. T.; "A Statistical analysis of ON-Off Patterns in sixteen conver

sations," Bell Systems Technical .Journal, vo!. 47, no. 1, pp. 7:3-91, .January 

1968. 

[63] Marcos, S. and Macchi, 0.; .Joint adaptive echo cancellation and channel 

equalization for data transmission," Signal Processing, vo!. 20, no. 1, pp. 

43-65, May 1990. 

[64] Bershad, N .. 1. and Bonnlet, M.; "Saturation effects in LMS adaptive echo 

cancellation for binary data," IEEE Transactions on Acoustics, Speech, 

and Signal Processing, vo!. :38, no. 10, pp. 1687-1696, October 1990. 

[65] Messerschmitt, D. G.; "Echo cancellation in speech and data transmission," 

IEEE Journal of Select"d Areas in Communications, vo!. SAC-2, no. 2, pp. 

283-297, March 1984. 

[66] Koll, V. C. and Weinstein, S. B.; "Simultaneous two-way data transmis

sion over a two-wire circuit," IEEE Transactions on Communications, vo!. 

COM-21, no. 2, pp. 14:3-147, February 1973. 



REFERENCES 148 

[67] Gilsallz, M., Pedron, F. and Siles, .1. A.; "Adaptive echo canceling for 

baseband data transmission," Electrical Communication, vo!. 59, no. 3, 

pp. 3:l8-344, \985. 

[68] Agazzi, 0., Messersclunitt, D. G. and Hodges, D. A.; "Nonlinear echo 

cancellation of data signals," IEEE Transactions on Communications, vo!. 

COM-:lO, no. 11, pp. 242\-24:l:3, November 1982. 

[69] Hu, R. and Ahmed, H. M.; "Echo cancellation in high speed data trans

mission systems using adaptive layered bilinear filters," IEEE Transactions 

on communications, vo!. 42, nos. 2-4, pp. 655-66:3, February/March/ April 

1994. 

[70] Borys, A., Rupperecht, W. and Trick, U.; 'Influence of nonlinearities on 

echo cancellation in two-wire full-duplex data transmission," NTZ Archiv, 

vo!. 8, Part 8, pp. \8.5-190, \ 986. 

[71] Murano, K., Unagami, S. and Amano, F.; "Echo cancellation and applica

tions," IEEE Communications Magazine, vo!. 28, no. \, pp. 49-55, .January 

1990. 

[72] Cioffi,.1. M. and Kailath, T.; "An efficient RLS data-driven echo canceller 

for fast initialization of full-duplex data transmission," IEEE Transactions 

on Communications, vo!. CO M-:13, 1l0. 7, pp. 60 \-6\\, .July 1985. 

[73] Dimolitsas, S. and Cunn, .1. E.; "A length adaptive, transversal data echo 

canceior," Signal Processing, vo!. 12, no. :1, pp. :l2\-324, 1987. 



REFERENCES 149 

[74) Vip, P. C. -Wo and Etter, D. M.; "An adaptive multiple echo canceller for 

slowly time-varying echo paths," IEEE Transactions on Communications, 

vo!. 38, no. 10, pp. 169:3-1698, October 1990. 

[75) Weinstein, S. B.; "A passband data-driven echo canceller for full-duplex 

transmission on two-wire circuits," IEEE Transactions on Communications, 

vo!. COM-25, no. 7, pp. 654-666, July 1977. 

[76) Mueller, K. H.; "A new digital echo canceler for two-wire full-duplex data 

transmission," IEEE Transactions on Communications, vo!. COM-24, no. 

9, pp. 956-962, September 1976. 

[77) Macchi, O. and Marcos, S.; "Modeling and asynchronous data echo can

celler," IEEE Transactions on Communications, vo!. :37, no. 1, pp. 7.5-79, 

January 1989. 

[78) Kanemasa, A. and Niwa, K.; "An adaptive·step sign algorithm for fast con

vergence of a data echo canceller," IEEE Transactions on Communications, 

vo!. COM·35, no. 10, pp. 1102-1108, October 1987. 

[79) Bsu, W., Chui, F. and Bodges, D. A.; "An acoustic echo canceler," IEEE 

Journal of Solid-State Circuits, vo!. 24, no. 6, pp. 16:l9-1646, December 

1989. 

[80) Cioffi,.1. M. and Ho, M.; "A finite precision analysis of the block-gradient 

adaptive data· driven echo canceller," IEEE Transactions on Communica· 

tions, vo!. 40, no. 5, pp. 940-946, May 1992. 



REFERENCES 150 

[81) Cioffi, J. M.; "A fast echo canceller initialization method for the CCITT 

V.32 modem," IEEE Transactions on Communications, vo!. 38, no. 5, pp. 

629- 638, May 1990. 

[82) Alvestad, T. and Eriksen, T. J. -C.; "Echo canceler for two-wire data 

modems," Electrical Communication, vo\. 59, no. :3, pp. 333-337, 1985. 

[83) Sondhi, M. M.; "An Adaptive Echo Canceller," Bell Systems Technical 

Journal, vo\. 46, no. :3, pp. 497-511, March 1967. 

[84) Siu, S. and Cowan, C. F. N.; "Performance analysis of the Lp norm back 

propagation algorithm for the adaptive equalisation," lEE Proceedings-F 

Radar and Signal Processing, vo\. 140, no. I, pp. 43-47, February 1993. 

[85) Cowan, C. F. N. and Mirza, M. R.; "On the use of non-Euciidean cost 

functions in adaptive echo cancellers," lEE Coloquium on 'New Directions 

in Adaptive Signal Processing' (Digest no. 039), London, UK, pp. 10/1-3, 

16 February 199:3. 

[86) Caraiscos, C. and Liu, B.; "A roundoff error analysis of the LMS adaptive 

algorithm," IEEE Transactions on Acoustics, Speech and Signal Process

ing, vo!. ASSP-32, no. I, pp. :34-41, February 1984. 

[87) Kwong, R. H. and .Johnston, E. W.; "A variable step size LMS algorithm," 

IEEE Transactions on Signal Processing, vo!. 40, no. 7, pp. 16:3:3-1642, .July 

1992. 

[88) Bitmead, R. R.; "Convergence in distribution of LMS-type adaptive param

eter estimation," IEEE Transactions on Automatic Control, vo!. AC-28, no. 

1, pp. 54-60, January 1983. 



REFERENCES 151 

[89) Mathews, V .. 1. and Xie, Z.; "A stochastic gradient adaptive filter with 

gradient adaptive step size," IEEE Transactions on signal Processing, vol. 

41, no. 6, pp. 2075-2087, June 1993. 

[90) Mathews, V .. 1. and Cho, S. H.; "Improved convergence analysis of stochas

tic gradient adaptive filters using the sign algorithm," IEEE Transactions 

on Acoustics, Speech, and Signal Processing, vol. ASSP-:35, no. 4, pp. 450-

454, April 1987. 

[91) Bajpai, A. C., Calus, I. M. and Fairley, .1. A.; Mathematics for engineers 

and scientists, Volume I, Wiley, London, 197:3. 

[92) Haykin, S.; Communication systems, Wiley, New York, 1978. 



Appendix A 

N urnerical values 

A.1 A calculation of the numerical value of 

the far-end signal attenuation 

A calculation is shown below to determine the multiplier J for the two alphabets 

of the bipolar far-end signal sequence. We take the case when far-end signal 

power level is 15 dB below as compared with that of the near-end signal power. 

1010glO ( POwel·/nr_",d) = -15 dB 
Powe1'uear_end 

20 I ( 
1 V/ar-end 1 ) - 1" or og10 - - cl 
I ~~ear-end I 

or 1 V/nr-end I· 10-ll -c-:--:----"';- = 20 

I v,H~ar-end I 
If we take the near-end signal as our reference point with its power at 0 dB, 

then 1 v, .. nr-end 1 becomes 1 and the above equation reduces to 
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near-end signal far-end signal 

power level dBs power level d Bs multiplier f 

0 -15 0.177827941 

0 -20 0.1 

0 -25 0.056234133 

0 -:30 0.0:31622777 

Table A.1: Various far-end signal levels used in the simulations along with the 

corresponding values of multiplier f used to obtain the far-end signal sequences 

from the sequence {I ,-I} and {:l, 1,-1,-3}. 

or V/ar - end = 0.177827941, -0.177827941 

Thus the far-end signal is a pseudo random sequence taken from the set 

{0.177827941, -0.177827941 }. Thus the number 0.177827941 is the multiplier 

f to the sequence {I, -I}, to obtain the far-end signal level of ·15 dB. Similar 

calculations were performed to find out the alphabets of the far-end signal se

quences for the far-end signal levels of -20, -25, and -:30 dBs. Different far-end 

signal levels used in the simulations and the relative multipliers f to obtain 

these, by multiplying with the sequence from the set {I,-I} are shown in Ta

ble A.!. 

A.2 Numerical values of filter coefficients 

Numerical values of the filters' coefficients or tap gains for the first and second 

echo path models and of the dispersion filter of the far-end signal are recorded 



APPENDIX A. NUMERICAL VALUES 154 

here for reference. The numerical values of the coefficients of the the third echo 

path model are given in Section 4.3. 

A.2.1 Numerical values of the filter coefficients for the 

first echo path model 

A calculation to obtain these values is given in Section 4.:3. The filter coefficients 

thus obtained upto 6th decimal place are aB below. 

{h} = {1.000000, 0.800250, 0.640400, 0.512480, 0.410112,0.:328192, 

0.2626:35,0.210174,0.168192,0.1:34596,0.107710, 0.086195, 0.068978, 

0.055199,0.04417:3,0.0:35:350,0.028289, 0.0226:38, 0.018116, 0.014497, 

0.011601,0.009284,0.0074:30,0.00.5946,0.004 758,0.00:3808,0.00:3047, 

0.0024:38,0.001951,0.001562,0.001250,0.001000 } 

A.2.2 Numerical values of the filter coefficients for the 

second echo path model 

A calculation to obtain these va.lues is given in Section 4.:3. The filter coefficients 

thus obtained upto 6th decimal place are as below. 

{h} = {1.000000, 0.640400, 0.410112, 0.2626:36, 0.168192, 0.107710, 

0.068978,0.04417:3,0.028289,0.018116,0.011601, 0.007430,0.0047.58, 

0.003047,0.001951,0.001250,0.000800,0.000512, 0.000:328,0.000210, 

0.0001 :35, 0.000086, 0.000055, 0.0000:35, 0.00002:3, 0.000014, 0.000009, 

0.000005,0.00000:3,0.000002,0.000001,0.000001 } 
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A.2.3 Numerical values of the filter coefficients used for 

the dispersion of the far-end signal 

A calculation to obtain these values is given in Section 4.3. The filter coefficients 

thus obtained upto 6th decimal place are as below. 

{h} = {1.000000, 0.689779, 0.475794, 0.32819:3, 0.226380, 0.156152, 

0.107711,0.074296,0.051248,0.035350,0.024:384, 0.016819,0.011602, 

0.008003,0.005520,0.00:3808,0.002626, 0.001812, 0.001250,0.000862, 

0.000595,0.000410,0.00028:3,0.000195, 0.000135, 0.00009:3, 0.000064, 

0.000044,0.000030,0.000021,0.000014,0.000010} 



Appendix B 

Computer programmes 

B.l Fortran source code used for binary data 
sequences without switching of gradient 
during convergence 

program noquadl 
c 
c Declarations of variables 
c 

c 

double precision taphat(O::31 ),taptar(O::31) 
double precision yk,ybat,ek,taperror(0::31 ),fx 
double precision taphatn(O::31) 
double precision dsumhi,dsUlnhiJl,tau,a,tau 1 
dou ble precision x( -:31 :0) ,loopgain,s,loopgainl 
real bit,zl ,z2,average 1 (50000) 
real hsum,q,pq 
integer n,m,i,k,p,pp,k 1,1,11 ,12,mp 
integer average2(50000) 

c Opening the input data file for echo path models 
c 

c 

open(2,file= 'modeL! ',status= 'unknown', 
+ access= 'sequential' ,form= 'formatted ') 

c Opening the output file 
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c 

c 

open( 1 ,file= 'fort. 1 ' ,status= 'unknown', 
+ access= 'sequential' ,form= 'formatted') 

c Input from keyboard starts 
c 

c 

write(*,*) 
wri te(*, *)" cost function power tau" 
read(*,*)taul ! Read current value of tau 
write(*,*) 
write(*,*)"number of points for iteration" 
read(*,*)m! Read number of iterations 
write(*,*) 
write(*, *)"interval for plotting" 
read(*,*)pp !Used only for storing and plotting 
write(*,*) 
write(* ,*)"step size" 
read(*,*)loopgainl ! Read current value of step size 
write(*,*) 

c Input from keyboard ends 
c 

n = 32 ! Number of filter coefficients 
mp = m/pp! Number of total plotting points 
11 = 20 ! Number of averagings 
dsumhi = 0.0 
do ID i = O,n-I 

read(2,*)a! Read echo path data 
taptar(i) = a! Generation of target filter co-efficients 
dsumhi = dSlllllhi + (taptar(i) )**2 

10 continue 
c 

do 40 I = I,mp 
average I (I) = 0.0 
average2(1) = 0 

40 continue 
c 
c Start of the averaging loop 

157 
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c 

20 

c 

do 90 I = 1,11 
12 = 0 
do 20 i = -n+I,O 

x(i) = 0.0 ! Forcing initial conditions to zero 
taphat(-i) = 0.0 ! Initialisation 

continue 
kl = 0 

c Start of iteration loop 
c 

do 80 k = 0,111 
zl = rand(O) ! Generation of near-end signal starts 
if(zl .ge. 0.5) then 

bit = 1.0 
else 

bit =-1.0 
end if 
x(O) = bit! Near-end signal 
z2 = rand(O) ! Generation of far-end signal starts 
if(z2 .ge. 0.5) then 

bit = 1.0 
else 

bit = -1.0 
end if 
fx = bit*0.177827941 attenuated far-end signal 
yk = 0.0 
yhat = 0.0 
do 50 i = O,n-I 
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yk = yk + taptar{i)*x( -i) ! Target or echo path fil-
ter output 

put 
50 

yhat = yhat + taphat(i)*x(-i)! Adaptive filter out-

continue 
ek = (yk + fx) - yhat ! Error.signal 
tau = tau I 
loopgain = loopgain 1 
if (ek.lt.O.O) then 
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+ 

70 

s = -1.0 
else 

s = 1.0 
end if 
dsumbiJl = 0.0 
do 70 i = O,n-I 

taphatn (i )=tapbat( i)+ tau *Ioopgai n *x( 0- i)* 
(( dabs( ek) )**( tau-I.O))*s 
taperror(i) = taptar(i)-taphatn(i) 
dSllmbiJl = dsumbiJl + (taperror(i))**2 
tapbat(i) = tapbatn(i) 

continue 
I' = k/pp 
pq = pp 
q = float(k)/pq 
if( q.eq.float(p) )then 

bsum = dsumbiJl/dsumbi 
12 = 12 + 1 
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averagel(12) = average 1 (12) + (IO.O*logIO(bsum)) 
if(J.eq.! )then 

end if 

average2(12) = k 
end if 

do 78 i = -:31 ,-I 
xCi) = x(i+l) 

78 continue 
80 continue! End of iteration loop 

write(*,*)" averaging loop no" ,I! Ecbo tbe counter on screen 
90 continue! End of tbe averaging loop 

do 100 I = l,mp ! Write to output file 
wri tee I, *)average2(1 ) ,average 1 (I) I (float(ll)) 

100 continue 
close(l,status='keep') ! Close output file 
close(2,status='keep') ! Close input file 
stop 
end 
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B.2 Fortran source code used for binary data 
sequences with switching of gradient dur-
• lng convergence 

program noquad2 
c 
c Declarations of variables 
c 

c 

double precision taphat(O::31 ),taptar(O::31) 
double precision yk,yhat,ek,taperror(0::31 ),fx 
double precision taphatn(O::31) 
double precision dsumhi,dsumhiJJ,tau,a,taul 
double precision x( -:31 :O),loopgain,s,loopgainl 
real bit,zl ,z2,averagel (50000) 
real hsum,q ,pq 
integer n,m,i,k,p,pp,k 1,1,11 ,12,mp 
integer average2(50000) 

c Opening the input data file for echo path models 
c 

c 

open(2,file='model.l ',status= 'unknown', 
+ access='sequential' ,form= 'formatted') 

c Opening the output file 
c 

c 

open( I ,file= 'fort.! ',status= 'unknown', 
+ access= 'sequential' ,form= 'formatted ') 

c Input from keyboard starts 
c 

write(*, *) 
write(*,*)"cost function power tau" 
read(*,*)taul ! Read current value of tau 
write(*, *) 
write(*,*)"number of points for iteration" 
read(*, *)m ! Read number of iterations 
write(*, *) 
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c 

write(*,*)"interval for plotting" 
read(*,*)pp !Used only for storing and plotting 
write(*,*) 
write(*,*)"step size" 
read(*,*)loopgainl ! Read current value of step size 
write(*,*) 

c Input from keyboard ends 
c 

n = :32 ! Number of fil ter coefficients 
mp = m/pp! Number of total plotting points 
11 = 20 ! N umber of averagings 
dsumhi = 0.0 
do 10 i = O,n-I 

read(2, *)a ! Read echo path data 
taptar(i) = a! Generation of target filter co·efficients 
dsumhi = dsumhi + (taptar(i))**2 

10 continue 
c 

d0401=1,l11p 
average I (I) = 0.0 
average2(l) = 0 

40 continue 
c 
c Start of the averaging loop 
c 

20 

c 

do 90 I = I,ll 
12 = 0 
do 20 i = -n + 1,0 

x(i) = 0.0 ! Forcing initial conditions to zero 
taphat(-i) = 0.0 ! Initialisation 

continue 
kl = 0 

c Start of iteration loop 
c 

do 80 k = 0,111 
zl = rand(O) ! Generation of near-end signal starts 
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ter output 

put 
50 

+ 

if( z I .ge. 0.5} then 
bit = 1.0 

else 
bit = -1.0 

end if 
x(O} = bit! Near-end signal 
z2 = rand(O} ! Generation of far-end signal starts 
if(z2 .ge. 0.5} then 

bit = 1.0 
else 

bit = -1.0 
end if 
fx = bit*0.177827941 ! attenuated far-end signal 
yk = 0.0 
yhat = 0.0 
do 50 i = O,n-I 

yk = yk + taptar(i}*x(-i} ! Target or echo path fil-

yhat = yhat + taphat(i}*x(-i}! Adaptive filter out-

continue 
ek = (yk + fx) - yhat ! Error signal 
if(dabs(ek}.ge.1.0}then ! Switching of gradient starts 

else 

end if 

tau = 2.0 ! Switch back to lowest value of T 

loopgain = 0.0009 ! Switch back to I' for T = 2 

tau = taul 
loopgain = loopgainl 

if (ek.lt.O.O) then 
s = -1.0 

else 
s = 1.0 

end if 
dsumhiJl = 0.0 
do 70 i = O,n-I 

taphatn(i }=taphat(i }+tau *loopgain*x(O-i}* 
(( dabs( ek) }**( tau-I.O} }*s 
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70 

taperror(i) = taptar(i)-taphatn(i) 
dsumhiJl = dsumhiJl + (taperror(i))**2 
taphat(i) = taphatn(i) 

continue 
p = k/pp 
pq = pp 
q = float(k)/pq 
if( q.eq .float(p) )then 

hsum = dsul11hiJl/dsul11hi 
12 = 12 + I 
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averagel(l2) = averagel(l2) + (IO.O*logIO(hsul11)) 
if(l.eq.1 )then 

end if 

average2(12) = k 
end if 

do 78 i = -31,-1 
x(i) = x(i+ I) 

78 continue 
80 continue! End of iteration loop 

write(*,*)" averaging loop no",1 ! Echo the counter on screen 
90 continue! End of the averaging loop 

do 100 I = 1,I11P ! Write to output file 
write( I, *)average2(1 ),averagel (I) / (float(ll)) 

lOO continue 
close(l,status='keep') ! Close output file 
close(2,status='keep') ! Close input file 
stop 
end 
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B.3 Fortran source code used for quaternary 
data sequences without switching of gra
dient during convergence 

program noquad3 
c 
c Declarations of variables 
c 

c 

double precision taphat(0::3! ),taptar(O::31) 
double precision yk,yhat,ek,taperror(O::31 ),fx 
double precision taphatn(0:31) 
double precision dsulllhi,dsumhiJl,tau,a,taul 
double precision x( -:31 :O),loopgain,s,loopgain 1 
real bit,zl ,z2,average 1 (50000) 
real hSUlll,q,pq 
integer n,lll,i,k,p,pp,kl ,1,11 ,12,mp 
integer average2( 50000) 

c Opening the input data file for echo path models 
c 

c 

open(2,file= 'model.! ' ,status= 'unknown', 
+ access='sequential' ,forlll='formatted') 

c Opening the output file 
c 

c 

open( 1 ,file= 'fort. 1 ' ,status='unknown', 
+ access= 'sequential' ,form= 'formatted') 

c Input from keyboard starts 
c 

write(*, *) 
write(*,*)"cost function power tau" 
read(*,*)taul ! Read current value of tau 
write(*,*) 
write(* ,*)"number of points for iteration" 
read(* ,*)lll ! Read number of iterations 
write(*,*) 
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c 

write(*,*)"interval for plotting" 
read(*,*)pp !Used only for storing and plotting 
write(*, *) 
write(*, *)"step size" 
read(*, *)Ioopgainl ! Read current value of step size 
write(*, *) 

c Input from keyboard ends 
c 

n = 32 ! Number of filter coefficients 
mp = m/pp! Number of total plotting points 
11 = 20 ! Number of averagings 
dsumhi = 0.0 
do 10 i = O,n-I 

read(2,*)a ! Read echo path data 
taptar(i) = a! Generation of target filter co-efficients 
dsumhi = dsumhi + (taptar(i) )**2 

10 continue 
c 

do 40 I = I,mp 
average I (I) = 0.0 
average2(1) = 0 

40 continue 
c 
c Start of the averaging loop 
c 

20 

c 

do 90 I = I,ll 
12 = 0 
do 20 i = -n+I,O 

x(i) = 0.0 ! Forcing initial conditions to zero 
taphat(-i) = 0.0 ! Initialisation 

continue 

kl = 0 

c Start of iteration loop 
c 

do 80 k = O,m 
zl = rand(O) ! Generation of near-end signal starts 
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ter output 

put 
50 

if(zl .ge. 0.75) then 
bit = :3.0 

elseif(zl .ge. 0.5) then 
bit = 1.0 

elseif(zl .ge. 0.25) then 
bit = -1.0 

else 
bit = -3.0 

end if 
x(O) = bit! Near-end signal 
z2 = rand(O) ! Generation of far-end signal starts 
if(z2 .ge. 0.75) then 

bit = :3.0 
elseif(z2 .ge. 0.5) then 

bit = 1.0 
elseif(z2 .ge. 0.25) then 

bit = -1.0 
else 

bit = -:3.0 
end if 
fx = bit*0.177827941 ! attenuated far-end signal 
yk = 0.0 
yhat = 0.0 
do 50 i = O,n-I 

yk = yk + taptar(i)*x(-i) ! Target or echo path fil-

yhat = yhat + taphat(i)*x(-i)! Adaptive filter out-

continue 
ek = (yk + fx) - yhat ! Error signal 
tau = taul 
loopgain = loopgainl 
if (ek.lt.O.O) then 

s = -1.0 
else 

s = 1.0 
end if 
dsumhiJl = 0.0 
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+ 

70 

do 70 i = O,n-I 
taphatn (i )=taphat(i)+ tau *Ioopgai n *x( O-i) * 

(( dabs( ek) )**( tau-I.O) )*s 
taperror(i) = taptar(i)-taphatn(i) 
dsumhiJl = dsumhiJl + (taperror(i))**2 
taphat(i) = taphatn(i) 

continue 
I' = k/pp 
pq = PP 
q = float(k)/pq 
if( q.eq.float(p) )then 

hSUIll = dSUIllhiJl/dsulllhi 
12 = 12 + 1 
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average 1 (12) = averageI(l2) + (IO.O*logIO(hsum)) 
if(l.eq.I )then 

end if 
end if 

average2(12) = k 

do 78 i = -:31 ,-1 
x(i) = x(i+I) 

78 continue 
80 continue! End of iteration loop 

write(*,*)" averaging loop no",1 ! Echo the counter on screen 
90 continue! End of the averaging loop 

do lOO I = I,IllP ! Write to output file 
writer 1, *)average2(l ),averageI (1)/ (float(lI)) 

1 00 continue 
closer 1 ,status= 'keep') ! Close output file 
close(2,status='keep') ! Close input file 
stop 
end 
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BA Fortran source code used for quaternary 
data sequences with switching of gradient 
during convergence 

program noquad4 
c 
c Declarations of variables 
c 

c 

double precision taphat(O:31 ),taptar(O:31) 
double precision yk,yhat,ek,taperror(O:31 ),fx 
double precision taphatn(O::l1) 
double precision dsumhi,dsumhill,tau,a,tau 1 
double precision x( -:31 :O),loopgain,s,loopgain 1 
real bit,zl,z2,averagel(50000) 
real hsum,q,pq 
integer n,m,i,k,p,pp,k 1,1,11 ,12,mp 
integer average2(50000) 

c Opening the input data file for echo path models 
c 

c 

open(2,file= 'model. I ',status='unknown', 
+ access= 'sequential' ,form= 'formatted ') 

c Opening the output file 
c 

c 

open( I ,file= 'fort. I ',status= 'unknown', 
+ access= 'sequential' ,form= 'formatted') 

c Input from keyboard starts 
c 

write(*, *) 
write(*, *)" cost function power tau" 
read(*,*)taul ! Read current value of tau 
write(*, *) 
write(*,*)"number of points for iteration" 
read(*, *)m ! Read number of iterations 
write(*,*) 
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c 

write(*,*)"interval for plotting" 
read(*,*)pp !Used only for storing and plotting 
write(*,*) 
write(*, *)"step size" 
read(*,*)loopgainl ! Read current value of step size 
write(*,*) 

c Input from keyboard ends 
c 

n = :32 ! Number of filter coefficients 
mp = m/pp! Number of total plotting points 
11 = 20 ! Number of averagings 
dsumhi = 0.0 
do 10 i = O,n-I 

read(2, *)a ! Read echo path data 
taptar(i) = a! Generation of target filter co-efficients 
dsumhi = dsumhi + (taptar(i))**2 

10 continue 
c 

do 40 I = I,mp 
average 1 (I) = 0.0 
average2(1) = 0 

40 continue 
c 
c Start of the averaging loop 
c 

20 

c 

do 90 I = 1,11 
12 = 0 
d020i=-n+I,0 

x(i) = 0.0 ! Forcing initial conditions to zero 
taphat( -i) = 0.0 ! Initialisation 

continue 
kl = 0 

c Start of iteration loop 
c 

do 80 k = O,m 
zl = rand(O) ! Generation of near-end signal starts 
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ter output 

put 
50 

if( z 1 .ge. 0.75) then 
bit = 3.0 

elseif(zl .ge. 0.5) then 
bit = 1.0 

elseif(zl .ge. 0.25) then 
bit = -1.0 

else 
bit = -3.0 

end if 
x(O) = bit! Near-end signal 
z2 = rand(O) ! Generation of far-end signal starts 
if(z2 .ge. 0.75) then 

bit = 3.0 
elseif(z2 .ge. 0.5) then 

bit = 1.0 
e1seif(z2 .ge. 0.25) then 

bit = -1.0 
else 

bit = -3.0 
end if 
fx = bit*0.177827941 ! attenuated far-end signal 
yk = 0.0 
yhat = 0.0 
do 50 i = O,n-I 

yk = yk + taptar(i)*x(-i) ! Target or echo path fil-

yhat = yha.t + taphat(i)*x(-i) ! Adaptive filter out-

continue 
ek = (y k + fx) - y hat ! Error signal 
if(dabs(ek).ge.1.0)then ! Switching of gradient starts 

else 

end if 

tau = 2.0 ! Switch back to lowest value of T 

loopgain = 0.0009 ! Switch back to I' for T = 2 

tau = taul 
loopgain = 100pgain1 

if (ek.lt.O.O) then 
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+ 
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s = -1.0 
else 

s = 1.0 
end if 
dsumhiJl = 0.0 
do 70 i = O,n-I 

tapbatn (i )=tapbat(i)+ tau *Ioopgai n*x( O-i)* 
(( dabs( ek) )**( tau-I.O) )*s 
taperror(i) = taptar(i)-taphatn(i) 
dsumhiJl = dsumhiJl + (taperror(i))**2 
taphat(i) = taphatn(i) 

continue 
p = k/pp 
pq = pp 
q = float(k)/pq 
if( q.eq.float(p ))then 

hsum = dsumhiJl/dsU111hi 
12 = 12 + I 
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averagel(l2) = averagel(l2) + (10.0*logI0(hsU111)) 
if(l.eq.1 )tben 

average2(12) = k 
end if 

end if 
do 78 i = -:ll ,-I 

x(i) = x(i+l) 
78 continue 
80 continue! End of iteration loop 

write(*,*)" averaging loop no",1 ! Echo the counter on screen 
90 continue! End of the averaging loop 

do lOO I = 1,111P ! Write to output file 
write(l, *)average2(1),average 1 (1)/( float(ll)) 

I 00 continue 
close(l,status='keep') ! Close output file 
close(2,status='keep') ! Close input file 
stop 
end 
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B.5 Fortran source code used for binary data 
sequences with dispersion added to far
end signal 

program noquad5 
c 
c Declarations of variables 
c 

c 

double precision taphat(O::H ),taptar(0:31) 
donble precision yk,yhat,ek,taperror(0:31 ),fx( -:11 :O),fd 
double precision taphatn(O::ll) 
double precision dsumhi,dsumhiJ),tau,a,taul,b 
double precision x( -:31 :O),loopgain,s,loopgain 1 
real bit,zl ,z2,averagel (50000) 
real hsum,q,pq 
integer n,m,i ,k,p,pp,k 1,1,11 ,12,mp 
integer average2(50000) 

c Opening the input data file for echo path models 
c 

c 

open(2,file= 'mode!. 1 ' ,status= 'unknown', 
+ access = 'sequential' ,form='formatted') 

c Opening the output file 
c 

c 

open( 1 ,file= 'fort. 1 ' ,status= 'unknown', 
+ access= 'sequential' ,form= 'formatted') 

c Opening the input dispersion data file 
c 

c 

open(3,file='disp' ,status= 'unknown', 
+ access= 'sequential' ,form='formatted') 

c Input from keyboard starts 
c 

write(*,*) 
wl'ite(*,*)"cost function power tau" 
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c 

read(*,*)taul ! Read current value of tau 
write(*,*) 
write(*,*)"number of points for iteration" 
read(*, *)m ! Read number of iterations 
write(*,*) 
write(*,*)"interval for plotting" 
read(*,*)pp !Used only for storing and plotting 
write(*,*) 
write(*, *)"step size" 
read(*,*)loopgainl ! Read current value of step size 
write(*,*) 

c Input from keyboard ends 
c 

n = :32 ! Number of filter coefficients 
mp = m/pp! Number of total plotting points 
II = 20 ! Number of averagings 
dsumhi = 0.0 
do 10 i = O,n-I 

read(2, *)a ! Read echo path data 
taptar(i) = a ! Generation of target filter co-efficients 
read(2, *)b ! Read dispersion filter data 
ftar(i) = b ! Generation of dispersion filter co-efficients 
dsumhi = dsumhi + (taptar(i) )**2 

10 continue 
c 

do 40 I = I,mI' 
average I (I) = 0.0 
average2(l) = 0 

40 continue 
c 
c Start of the averaging loop 
c 

do 90 I = 1,11 
12 = 0 
do 20 i = -n+I,O 

x(i) = 0.0 ! Forcing initial conditions to zero 
taphat( -i) = 0.0 ! Initialisation 
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c 

continue 
k1 = 0 

c Start of iteration loop 
c 

do 80 k = O,m 
zl = rand(O) ! Generation of near-end signal starts 
if(zl .ge. 0.5) then 

bit = 1.0 
else 

bit = -1.0 
end if 
x(O) = bit! Near-end signal 
z2 = rand(O) ! Generation of far-end signal starts 
if(z2 .ge. 0.5) then 

bit = 1.0 
else 

bit = -1.0 
end if 
fx(O) = bit*0.177827941 ! attenuated far-end signal 
yk = 0.0 
yhat = 0.0 
fd = 0.0 
do 50 i = 0,n-1 
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yk = yk + taptar(i)*x(-i) ! Target or echo path fil-
ter output 

put 

50 

yhat = yhat + taphat(i)*x(-i) ! Adaptive filter out-

fd = fd + ftar(i)*x(-i) ! Dispersion filter output 
continue 
ek = (yk + fd) - yhat ! Error signal 
tau = tau1 
loopgain = loopgain 1 
if (ek.lt.O.O) then 

s = -1.0 
else 

s = 1.0 
end if 
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70 

dsumhiJl = 0.0 
do 70 i = O,n-I 

taphatn (i)=taphat(i) + tau *Ioopgain *x( 0- i)* 
(( dabs( ek ))**( tau-I.O) )*s 
taperror(i) = taptar(i)-taphatn(i) 
dsumhiJI = dsumhiJl + (taperror(i))**2 
taphat(i) = taphatn(i) 

continue 
I' = k/pp 
pq = PP 
q = float(k)/pq 
if( q.eq.float(p) )then 

hsum = dsumhiJl/dsumhi 
12 = 12 + I 
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averagel(l2) = averagel(12) + (IO.O*logIO(hsum)) 
if(l.eq.1 )then 

average2(l2) = k 
end if 

end if 
do 78 i = -:31,-1 

x(i) = x(i+l) 
fx(i) = fx(i+l) 

78 continue 
80 continue! End of iteration loop 

write(*, *)" averaging loop no",1 ! Echo the counter on screen 
90 continue! End of the averaging loop 

do lOO I = I,mp ! Write to output file 
write( I, *)average2(I ) ,average I (1)/ (float(ll)) 

lOO continue 
close(l,status='keep') ! Close output file 
close(2,status='keep') ! Close input file 
close(:3,status='keep') ! Close dispersion data file 
stop 
end 




