Community Energy Storage: A smart choice for the smart grid?
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Abstract

Energy storage can help integrate local renewable generation, however the best deployment level for storage remains
an open question. Using a data-driven approach, this paper simulates 15-minute electricity consumption for house-
holds and groups them into local communities of neighbors using real locations and the road network in Cambridge,
MA. We then simulate PV for these households and use this framework to study battery economics in a high PV
adoption, high electricity cost scenario, in order to demonstrate significant storage adoption. We compare the results
of storage adoption at the level of individual households to storage adoption on the community level using the aggre-
gated community demands. Under the simulated conditions, we find that the optimum storage at the community level
was 65% of that at the level of individual households and each kWh of community battery installed was 64-94% more
effective at reducing exports from the community to the wider network. Therefore, given the current increasing rates
of residential battery deployment, our research highlights the need for energy policy to develop market mechanisms

which facilitate the deployment of community storage.

Keywords: Community energy storage, battery energy storage, distributed PV, smart energy communities,
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1. Introduction

It is well known that the generation from roof-top
PV systems is not generally aligned with peak electric-
ity loads and this can lead to limits on the proportion
of solar generation that can be integrated in traditional
systems [1]. Until recently this has not caused signif-
icant concern for grid operators as PV adoption rates
have been low, however several factors mean this is now
changing, including continual declines in the price of
solar panels [2], continually increasing residential elec-
tricity prices, favorable public opinion towards solar [3]
and strong government support mechanisms [4]. As a
result, evermore households are installing roof-top PV
systems. This has led to significant concerns regarding
the over-prevalence of PV generated electricity in elec-
tricity networks [5, 6].

Concurrent with increasing residential electricity
prices, the rewards for exported solar electricity are
falling. Therefore, local PV self-consumption is gain-
ing attention in several countries [7, 8]. Energy storage
is one effective way of allowing a larger fraction of de-
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mand to be met by PV-generation [9] and recent work
has demonstrated that batteries can be used to increase
the amount of PV that can be reliably integrated into the
distribution network [10]. Other methods of increasing
PV penetration include novel curtailment methods [11]
and better PV and demand forecasting [12]. However,
motivated by progress in battery development and pub-
lic attention, recent studies have examined the techno-
economic impacts of PV-coupled batteries in individual
dwellings, examining the required conditions for eco-
nomic profitability in terms of capital expenditure as
well as retail tariffs and export prices [13, 14, 15]. To-
gether with storage for frequency control, PV-coupled
batteries have become a key business area for energy
storage developers, with regions such as Germany and
California leading the way [16].

In contrast to storage in individual dwellings, energy
storage can also be introduced for communities, i.e.
Community Energy Storage (CES) [17]. The CES is
then shared between members of the smart energy com-
munity, who are typically (although not exclusively) lo-
cated in close proximity. Already many countries have
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Nomenclature

Acronyms
CES Community Energy Storage
EAC Equivalent Annual Cost
EAV Equivalent Annual Value
EFC Equivalent Full Cycles
IRR Internal Rate of Return
NPV Net Present Value
Subscripts
i for the i-th consumer
j for the j-th cluster
y for the y-th year

Parameters and Variables
uniformly distributed random variable

€ .
in the range [-1, 1]
chg | - dis battery charging/discharging efficiency
nee
(%)
neid | ex electricity price for the grid, for
exported solar ($/kWh)
C; cost of electricity for consumer i ($)
crv cost of electricity with PV only ($)
CF, cash flow in year y ($)

J within cluster sum of squares
K number of clusters
Li battery lifetime (years)
OM operation & maintenance cost ($)
PB battery power (kW)
PpRehg  pRdis battery rated charge/discharge (kW)
sM monthly saving ($)
SoC battery state of charge (kWh)
socmn | .
S OC™max min/max battery state of charge (kWh)
change in battery state of charge
ASOC (kWh)
cj centroid location of the j™ cluster
capCost total capital costs ($)
d; demand of consumer i (kW)
d? initial demand of consumer i (kW)
l; location of consumer i
e discount rate (%)
S PV generation of consumer i (kW)
t time period (15-minute timestep)
At duration of time period ¢

experienced increases in “renewable energy communi-
ties”, groups of neighbors motivated to reduce their en-
ergy costs and promote the development of renewable
energy [18]. In general, the CES then acts as an en-
ergy management system for the community. Related
to the local energy communities concept are microgrids,
localised electrical systems that can operate indepen-
dently from the larger grid [19]. The topic of optimizing
microgrids for renewable integration has gained much
attention in the last decade [20], as well as their interac-
tions with electricity markets [21] and ability to provide
demand response [22] with electric vehicles and station-
ary energy storage devices [23]. Recent research has
also studied the optimal power flows between clusters
of microgrids [24] and optimized over multiple crite-
ria, including costs and robustness related factors [25].
While microgrids imply independent control from the
wider electrical network and clear electrical boundaries,
smart energy communities can form in localised sec-
tions of the main electricity system without significant
autonomy.

Similar to the advantages for community renewable
energy, potential advantages of CES acknowledged in

the previous literature are economies of scale for batter-
ies and benefits related to the lower likelihood of short
duration consumption peaks [26]. However, a system-
atic comparison of batteries for individual dwellings and
communities in terms of size, location, electricity flows
and economic attractiveness is so far lacking and this
study aims at providing insights into the optimum ag-
gregation level of storage deployment next to the con-
sumption centres. One particular problem in the study
of smart energy communities is the lack of location
data associated with openly available electricity meter
data, due to privacy concerns. Therefore, in this work
we simulate community formation by connecting to-
gether neighboring households along the road network
and matching real monthly consumption values to data
sources where 15-minute consumption is available [27].
We also simulate realistic PV generation profiles based
on real PV generation data. We then use the household
demand profiles or the aggregate community demand
profiles to estimate an economically optimum level of
storage for each household and community respectively,
with the main contribution of our work being a compar-
ison between the two storage scales.




We utilize monthly electric bills obtained from a lo-
cal electric utility in Cambridge and smart meter data
from the Pecan Street project, based in Austin Texas.
This provides a source of 15-minute resolution electric-
ity data for in excess of 1000 households, as well as
solar generation with the same temporal resolution for
those households with rooftop PV installed [28]. Figure
la shows the daily load and generation data for an ex-
ample home on a typical April day. We define mislaign-
ment as the proportion of a consumer’s solar generation
that they do not consume, as shown in Equation 1.

L PV exported
misalignment = —— (D)
Total generation

Figure 1b shows the distribution of total misalign-
ments for consumers in the Pecan Street data with PV
installations for the month of April. It can be seen that
the misalignment between the generation and consump-
tion is significant and observe that the average misalign-
ment for all homes over the month of April is 57%,
therefore only 43% of electricity they produce matches
their demand. We also compare the misalignment esti-
mated at two temporal resolutions and see that higher

temporal resolutions are important for accuracy [7].
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Figure 1: (a) a daily load and generation profile in April. (b) monthly
misalignment values between generation and demand for all homes

The rest of this paper is structured as follows. Sec-
tion 2 describes the creation of the local smart energy
communities, the simulation of the 15-minute electricity
consumption and PV generation, and the battery model.
Section 3 gives the simulation results, including the ef-
fects of the simulated batteries and the economic re-
sults, Section 4 provides a brief discussion and Section
5 presents the main conclusions.

2. Methods

2.1. Creating local smart energy communities

To form the communities we use monthly electric
bills from an electric utility in Cambridge, MA, which

INPUTS
Set of unvisited nodes (buildings)
and the joining network
Set of root nodes (buildings)

For each root node, populate a heap
queue that initially contains only the root

node

Set a tentaive distance to all the
unvisited nodes as infinity

!

Set the root nodes as visited and mark
each root node as the current node in
the queue

I
Y

For each current node, consider all the unvistited adjacent
nodes and calculate (distance to current node)+(distance
from current node to the root node) along the network

A {

If the distance to a node is less than the
current marked distance for that node then
update the node tentative distance

!

For each heap queue pick the unvistsied node with the closest
distance to the root node and remove it from the unvisited
nodes, adding it to the queue. Set this as the current node

Return all queues and the
shortest paths from the
roots to all visited nodes

Figure 2: Flow chart illustrating the community forming algorithm.

contain monthly consumption and addresses for 4574
households. Our aim is to make communities formed of
groups of neighboring households, hence we join con-
sumers along the road network. Firstly, we establish a
root node for each community by clustering the address
locations into 200 groups using longitude/latitude val-
ues obtained by geolocating. The clusters are formed
using k-means and the euclidean distance metric. The
k-means approach iteratively moves K cluster centroids
to minimize the objective function:

j=1 i

N

Uij=c))? )
=1

Here, [;; is the i-th household location which has
been assigned to the j-th cluster with centroid location
c¢j. Then, to establish root nodes for each of the com-
munities we find the central point of the cluster and take
the root node as the node closest to that point. All of
the locations corresponding to the geo-located addresses
are then connected to the road network available from
Open Street Maps. Each community is then grown out-



wards from the root node along the road network using
a multi-source breadth-first search method based on the
Dijkstra shortest path algorithm. A flow chart of the
algorithm is shown in Figure 2. This aims to provide
realistic communities of neighbors (Figure 3) formed of
localised groups of households. It is also worth noting
that the connections between the community members
could provide an approximation for the electrical distri-
bution network, which typically follows roads. How-
ever, this is not always the case and the exact topology
of the network is not openly available due to security
constraints.

2.2. Simulating 15-minute demand and generation

Each of the household consumers (i.e. each of
the buildings) in our smart energy communities has a
monthly electric consumption associated with it. Firstly,
we compare the monthly consumption distributions for
all households between the Pecan Street data and the
Cambridge data and find that the distribution for April
best matches Cambridge in July, which is likely due to
the low electric cooling loads at this time in Austin.
Additionally the Cambridge distributions are similar
throughout the year (see Figure 4). Restricting to the
month of April yields 484 Pecan households with a
complete month of data. We bin both datasets into
distinct monthly usage brackets and for each of the
Cambridge households a Pecan Street demand profile
in April in the same monthly usage bracket is ran-
domly selected, scaling by a constant factor to match
the exact Cambridge usage. Random noise of the form
di(t) = d?(t)(l +0.2¢) is added, where d?(t) is the initial
demand of the consumer i at time ¢, d;(¢) is the demand
after noise has been added, € is a uniformly distributed
random variable in the range [—1, 1] and the factor of 0.2
is added to keep the demand within 20% of the Pecan
Street profile.

To simulate each household’s PV generation, we use
the real generation profiles available in the Pecan Street
data. We observe that for the Pecan Street house-
holds with PV, the distribution of the ratio between their
monthly generation and consumption is best described
by a lognormal probability distribution, as shown in Fig-
ure 5. Furthermore, we note by comparing solar irradi-
ance data from the National Solar Radiation DataBase
(NSRDB) [29] for the nearest weather stations that the
yearly average Cambridge irradiance is closest to the
February irradiance profile for Pecan Street. Therefore,
for each Cambridge household we randomly select a
Pecan Street PV profile in February, with the probabil-
ity of accepting that selection given by the lognormal

probability distribution of the ratio of generation to con-
sumption. In this way, the Cambridge PV profiles are
modeled after real PV generation profiles, and we en-
sure that the ratio between generation and consumption
is preserved.

This leaves us with one month of simulated 15-
minute demand and one month of potential PV gener-
ation for the simulated households. In the rest of our
work we consider that 40% of households choose to in-
stall rooftop-PV. It is important to note that since the
solar adoption is random, a given community may have
significantly more or less than 40% solar adoption (al-
though we choose an adoption scenario where all com-
munities have at least one solar installation). We find
that as a result of this probabilistic adoption the solar
penetration ranges from 17-80% within the individual
communities, which generalizes our results to a high de-
gree.

2.3. Household and Community batteries

We develop a model for lithium ion batteries for res-
idential storage since this technology is already pre-
dominant for both residential and utility applications,
given its good C-rates, no memory effect, slow calen-
dar losses and low maintenance costs [30]. The charge-
discharge equation is shown by Equation 3. S OC(?) is
the battery’s state of charge at time # and AS OC(t) is the
change in the state of charge, which can be either pos-
itive (charging) or negative (discharging). The battery
must always obey the constraints in Equations 4 and 5.
We denote the charging and discharging efficiencies of
the battery as 1% and %* respectively. The change in
the battery’s state of charge AS OC(¢) is related to the
power transfer P2(¢) at period ¢ by Equations 6 and 7.

SOC(1) = SOC(t - 1) + AS OC(7) (3)
S0C™" < §OC(f) < S OC™* 4)
PR,diS < PB(t) < PR,Chg (5)

PB(t)Am ™8 = AS OC(t) for PB(£), ASOC(1) > 0 (6)

B
Pn(dt,lm = ASOC(t) for PE(1),ASOC(1) <0 (7)

In our simulations, we assume that batteries are used
to minimize the cost of either a household’s or a com-
munity’s total electricity. The cost of electricity at a par-
ticular time period for consumer (i.e. a household or
community) i, C;(¢), is dependent on whether the con-
sumer is net importing or exporting at the time, and is
expressed conditionally in Equations 8 and 9.
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Figure 3: Illustrating the communities created. The inset at the bottom left shows the distribution of community sizes and the inset in the top right

zooms in to show the local community highlighted in red.
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Figure 4: The distribution of monthly usage for Cambridge and
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in all months (2015)
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Figure 5: (a) Generation to consumption ratio for Pecan Street house-
holds fitted by a lognormal probability distribution. (b) The simulated
Cambridge distribution.

Ci(t) = [di(t) - s;(t) + PE(D] At ®)
for di(t) + PE(t) > 5:(1)
Ci(t) = [si(t) — (di(t) + P2(1))|Atn™ )

for di(t) + P2(t) < si(1)

Here d;() is the consumer (household or community)
demand at time ¢, s;(f) is any PV generation, Pf(t) is
the battery action and 74" and n°* are the costs for grid
electricity and the reward for excess solar respectively.
The battery is scheduled as framed in Equation 10 (for
1 month — i.e. 2880 15 minute time periods).

Minimize Z Ci(t) (10)

1=11,...,12880

When considering a battery for an individual house-
hold, d;(¢) is the electric usage of that household and
s;(t) is their PV generation at time 7. Surplus PV (if
not stored by the household) is used by the community
neighbors or exported from the community to the wider
network if no neighbors require electricity. When con-
sidering a community, d;(¢) is the sum of the demand of
all households in the community and s;(¢) is the sum of
all the PV within the community at time 7. Therefore,
surplus PV from a household is first used by the neigh-
bors before being stored or exported from the commu-
nity.
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Consumer i's demand, dj(t)

Consumer i's generation, sj(t)
Storage properties

¥

For each time
period, t
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Update SOC(t)
Update ASOC(t)

e
YES
Return battery operation, Py(t)
Return State of Charge, SOC(t)

Figure 6: Flow chart depicting the battery scheduling algorithm.

Equation 10 is essentially a simple unit commitment
problem with one controllable aspect — the battery. The
result of the minimization in Equation 10 is then the
schedule of operation of a consumer’s battery which
minimizes their electricity bill. We explicitly form this
problem as a cost minimization to reflect the primary in-
terest of domestic consumers for using batteries, which
is to reduce their electricity costs [31] and note that this
is also a primary reason in the formation of renewable
energy communities [18]. This optimum schedule of
battery operation depends on the electricity price (¢"¢)
and the income per kWh for exporting solar to the net-
work (7¢Y). If the income from solar export is lower
than the price for grid electricity then consumers can re-
duce their electricity bill by storing electricity (forfeit-
ing the income for PV export) and avoiding purchase
from the grid by using the battery, provided the differ-
ence in prices is sufficient given the round trip efficiency
of the battery — explicitly when 78" > 7¢%/(nchspdis).
Furthermore, if 78" and 7% are constant then the op-
timum battery schedule from a costs minimization per-
spective is a strategy that charges at the maximum rate
when there is solar that would otherwise be exported
until the battery is fully charged and discharges when
the solar generation can no longer meet all the local de-
mand. A schematic of the algorithm to schedule the bat-

tery operation is shown in Figure 6. This strategy is co-
incident with a strategy that maximizes the consumers
self-consumption.

In the simulated month, the total saving provided by
consumer i’s battery is expressed by:

>oam  an

In Equation 11, the first term represents the con-
sumer’s monthly electricity bill with PV-only includ-
ing the income from surplus PV as calculated in Equa-
tions 8 and 9 with P® = 0. Explicitly, C/V(r) =
[di() = si()] Atn¥"¢ if di(t) > s;(¢) and CiPV(t) = —[si(t)—
di(1)]Atn®* if di(f) < s;(f). The second term in Equation
11 is the consumer’s electricity bill including the PV
and battery system as calculated in Equations 8 and 9.
The total benefit of the battery is positive if the savings
are greater than the cost over its lifetime, Li. To assess
this we use the discounted cash flow model which dis-
counts future cash flows by the discount rate . so that
the time value of money is accounted for. Li is estimated
in years by Li = 3000/(12xEFC), which assumes that
each battery can perform 3000 equivalent full cycles and
EFC is the equivalent full cycles performed during the
simulated month. The Equivalent Annual Cost (EAC)
of each consumer’s battery is then expressed by Equa-
tion 12.

(1 + b

EAC; = Costi————+——
capCos T+ i =1

+ OM; 12)

OM; is the annual operation and maintenance cost of
the battery and capCost; is the capital cost. Since our
simulation is monthly, we extrapolate the monthly bat-
tery savings S ¥ to annual values, therefore the Equiva-
lent Annual Value is:

EAV; = 12x S? - EAC; (13)

This is reasonable as the Cambridge demands are
similar throughout the year (Figure 4b), however a key
assumption is that the seasonal variations in solar are
ignored. While this could be improved, this approach
is an improvement on other works which have simply
considered an average day [32]. We discuss the effect
of using a winter month on our estimated storage via-
bility in the results section. Additionally, while it would
be preferable to use yearly data, restricting our search
of the Pecan Street data to households with yearly data
left significantly fewer households.

For each household or community, we consider fea-
sible battery sizes in the range 0-250 kWh and select



the battery size which maximizes EAV; in Equation 13.
The upper range of 250 kWh is selected based on the
maximum battery size which has a positive EAV for any
community. Figure 7 summarizes the process schemat-
ically.

Range of battery sizes
considered 0-250 kWh

v

calculate capital cost
and maintenance cost

T

IC - Cost minimization
onsumer generation I\ Return optimum schedule
of battery operation for

- N electricity bill minimum
grid import price ¢

From battery
schedule calculate
lifetime

I solar export reward

Return battery
size that
maximizes EAV

Figure 7: Summarizing the entire process for estimating the battery
size which maximizes EAV for each household or community.

Finally, we then estimate the Internal Rate of Return
(IRR) for each of the household and community bat-
teries. IRR is defined as the discount rate required for
the Net present Value (NPV) of the battery to be zero.
The NPV is the sum of the present values of anticipated
monetary flows regarding the battery over the course of
its lifetime, as shown by Equation 14. Each yearly net
cash flow CF) is the sum of the yearly cash inflows and
outflows, i.e. the annual battery savings and any expen-
diture for that year (including capital and maintenance
costs) respectively. Therefore IRR is found by solving
Equation 14 for NPV= 0.

(14)

In order to estimate the battery cost we assume that
it is composed of three main components. These in-
clude the cell costs, the inverter costs and the mainte-
nance costs which are modeled depending on the bat-
tery size. Although Balance of Plant (BOP) costs are
sometimes considered separately, many modern battery
manufacturers integrate these within the cell costs that
they quote. We assume cell costs of $250/kWh, inverter

costs of $500/kW [33] and annual maintenance costs
of $10/kW [34]. Additionally, the inverter is sized to
match the maximum charge/discharge rates of the bat-
tery and a reasonable estimate for lithium-ion batter-
ies performing stationary applications is 0.5 X S OC™**.
This is a typical value for stationary energy storage ap-
plications — much higher C-rates have been demon-
strated and are typically proposed for transport applica-
tions, however these are detrimental for cycling capacity
[35]. Our battery costing model assumes that the cell
stack cost increases linearly with the battery capacity
but there is cost reduction with the scale for the inverter
and maintenance costs. This was confirmed with several
battery and inverter manufacturers and developers and
based on these discussions we assume that the inverter
costs scale to the power of 0.7 after 3kW and the main-
tenance costs scale to the power of 0.6 after 10kW as
a first attempt to model these economies of scale. This
cost model has also been used in [36]. This leads to a
calculated capital cost of $6,200 for a 14kWh battery
and a yearly maintenance cost of $80, and is similar
to the anticipated capital cost of the 14kWh/7kW Tesla
Powerwall 2 [37] (quoted at $6,200 including the sup-
porting hardware) and including the inverter. Figure 8
shows the battery costs as a function of the capacity.

20000 200
= Capital cost

17500 - r175 %

—— Operation and Maintenance cost

15000 - 150

12500 - 125
10000 - F 100
7500 A F75

5000 1 F50

Capital Cost inc. inverter ($)
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Annual maintenance cost ($
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T T T T 0
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Figure 8: Capital and maintenance costs against battery size in kWh.

2.4. Summary

A summary of the battery properties is given in Table
1.

We assume electrical costs of n8"@=$0.35/kWh
and that exported solar electricity is rewarded at
m¢*=%$0.05/kWh. Our reasons for adopting these prices
is to demonstrate a regime in which there may be sig-
nificant storage adoption and because $0.05/kWh is a
typical price level for wholesale electricity in our simu-
lated region. It is worth noting that in 2015 the average
price of residential retail electricity in Massachusetts



Table 1: Simulated battery properties. These properties are reflective
of Lithium ion batteries using nickel manganese cobalt chemistry with
a typical nominal voltage of 3.6-3.7V/cell.

Property Value of Function
Lithium ion cell $250/kWh
cost
C-rate (charge 05
and discharge) '
Inverter cost
(3kW) $1500

[Inverter cost

Tnverter cost | 34wy x([Capacity (kW)]/3)°7

O&M cost
(10kW) S100
[O&M cost

O&M cost (10kW)]x([Capacity(kW)]/1 0)0'6
Cha{glng 94.8%
efficiency

D1sch.arglng 94.8%
efficiency

Max. allowed
cycle depth %
Lifetime cycles 3000

was $0.19/kWh and it is widely understood that at cur-
rent US prices neither batteries nor PV are economic
without subsidies [38, 39]. However, electricity prices
all across the world are rising and in other developed
nations the price of electricity is significantly higher. In
Germany prices are typically around $0.36/kWh and in
the UK the average electricity price is $0.25/kWh. Ex-
port rewards for PV generation are also falling rapidly
[13].

In all our calculations we assume a round-trip battery
efficiency of approximately 90%, with equal charging
and discharging efficiencies. It is worth noting that in
other storage technologies (for example in compressed
air energy storage) charging and discharging efficien-
cies could be substantially different. We use a timestep
At = 15 minutes and a discount rate 7/ = 5%. When
calculating the IRR we also assume that retail electric-
ity prices rise at 2% per year and Operation and Main-
tenance costs (OM) also rise at 2% per year.
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Figure 9: (a) The benefit and costs of battery against battery size. For
this particular community we see that the net benefit is maximized at
83kWh. (b) The load profile of the community with and without an
83 kWh battery.

3. Simulation Results

3.1. Optimum storage size for one community

Figure 9 illustrates how the optimum size of battery is
calculated for one community (the process is the same
for each community as well as for each household). For
this community, the cost of very small battery systems
is greater than the potential savings, however, as the bat-
tery capacity is increased the savings introduced by the
battery become greater than the costs. When this is true
there is a net economic benefit to the battery. The rate of
increase in the battery savings eventually decreases and
subsequently intersects again with the equivalent annual
cost of the battery — at this point there is no net ben-
efit from installing storage and the annualized saving
is equal to the cost. Between these two values there is
a clear maximum in the EAV, which for the particular
community in Figure 9 occurs at 83 kWh. We consider
that the point of maximum total benefit is the optimum
economic level of energy storage. Figure 9b shows the
effect that the 83 kWh battery has on the load profile of
the community. It is clear that the storage substantially
reduces the surplus solar electricity which is exported to
the wider electrical grid. However, it is not the best eco-
nomic choice to store all of the surplus solar energy, as
to do this would require over-sizing the battery for most
of its use.

3.2. Results for all households and communities

Using the same approach, it is possible to calculate
the optimum storage level for all of the communities as
well as for all the individual households. Distributions
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Figure 10: Distributions for the optimum battery capacities. (a) For the individual households with PV. (b) For the communities. (c) Optimum

battery capacity against the fraction of households with PV.

of the optimum battery sizes are shown in Figure 10.
Although when sized for individual households the bat-
teries installed have smaller capacities, we find that the
total storage capacity installed in the household scenario
is 13.0 MWh compared to only 8.5 MWh in the commu-
nity scenario. For communities, 39% do not require any
storage due to the aggregating effect of the community
(in general, communities with less than 26% PV pene-
tration do not require storage). In addition, we find that
due to higher inverter and maintenance costs per unit
capacity, smaller battery systems below 4kWh are not
found to be economic. Typically, we find the optimum
capacity for households is in the 5-22 kWh range, with
the average optimum at 12 kWh. It serves as valida-
tion that this does indeed correspond to typical battery
sizes available on the residential storage market. For
communities, the corresponding range is much larger,
spanning 5-200 kWh, due to the different community
sizes and PV penetration levels. Figure 10c shows that
for communities in which it is economic to install a bat-
tery, the capacity increases by approximately 1.7 kWh
per household for a 10% increase in solar adoption.

Table 2 compares the household and community bat-
tery scenarios for the simulated month. We find that
community batteries generally offer better return on in-
vestment than household batteries. We also see that for
communities, the battery IRR increases as the fraction
of households with PV in the community increases (see
Figure 11). Considering the smart energy communi-
ties, CES is also much more effective at reducing the
imports and exports between the communities and the
wider grid. In total, the monthly imports for all the
communities were reduced by 91 MWh, from a total
of 2523 MWh to 2432 MWh with community batteries.
This compares to a reduction of 60 MWh with house-
hold batteries. While the total reduction in imports is
small, it is informative to compare against the maximum

Table 2: Comparison of Community batteries to households batteries.

Individual | Commu-
household nity
batteries batteries
Total demand
(MWh) 3244 3244
Solar generation
(MWh) 851 851
Base imports 2523 2523
Base exports (MWh) 130 130
Total storage
capacity (MWh) 13.0 85
Average IRR (%) 8.0 9.3
Imports with storage
(MWh) 2464 2432
Exports with storage
(MWh) 49.5 27.8
Import reduction per
kWh storage (kWh 4.6 10.7
per kWh storage)
Export reduction per
kWh storage (kWh 6.2 12.0
per kWh storage)

possible reduction. This is equivalent to the base ex-
ports — the total solar generation that is unused. Hence
the community batteries reduced imports by 70% of the
maximum including the losses in the battery compared
to 46% with household batteries. The corresponding re-
duction in exports is larger in both cases - due to the effi-
ciency loss of the battery. For community batteries this
was 102 MWh while for household batteries it was 80
MWh. These values represent 78% and 62% of the total
potential reduction in exports respectively. The reduc-



tion in exports with household batteries also does not
translate directly into a reduction in the community ex-
ports, because consumers are scheduling their batteries
according to their own load profile, thus they often store
solar energy when it could be used by their community
neighbors. This has the effect of increasing the overall
community imports due to the efficiency penalty asso-
ciated with the battery. Calculating the reductions per
unit of storage installed further emphasizes the advan-
tages of community batteries. Each kWh of community
battery reduced the monthly imported electricity on av-
erage by 10.7 kWh and the corresponding exports by
12.0 kWh, compared to 4.6 kWh and 6.2 kWh respec-
tively for household batteries.
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Figure 11: Internal Rates of Return for batteries. (a) For the indi-
vidual households (green) and the communities (blue). (b) The IRR
of community batteries against the fraction of PV households in the
community.

3.3. Sensitivity to the solar resource

Finally, we examine the sensitivity of the results to
the solar resource. To do so we model PV generation
from the month of January in Cambridge, when the solar
resource is significantly smaller than the yearly average.
To simulate the solar PV profiles for our Cambridge
households we use Pecan solar data for December. We
also ensure that each Cambridge household is assigned
generation data from the same Pecan PV installation as
for their yearly average generation. We find that the
community battery IRRs suffer significantly, with the
average IRR falling from 9.3% to 4.6%, whereas the
corresponding reduction for household batteries is much
more modest, dropping only from 8.0% to 7.1%. The
explanation for this is that the optimum storage size for
households is generally smaller than their solar exports,
and therefore even with January solar production the re-
duction in the use of household batteries is small. Con-
versely the optimum community battery capacities store
much higher proportions of the excess solar production,
so they are under-utilized to a much greater extent when
the solar production is decreased. However, community
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storage was still far more effective at reducing imports
and exports. This result is in agreement with a previous
study which informed that the community scale helps to
increase the size of the optimal battery capacity relative
to the maximum storage demand, defined as the largest
daily PV surplus energy throughout the year [40]. The
corresponding values were an import reduction of 5.6
kWh and export reductions of 6.2 kWh per kWh of com-
munity battery capacity installed, compared to 2.4 kWh
and 3.8 kWh per kWh installed for household batteries.

4. Discussion

In our analysis, storage is operated to minimize the
cost of a consumer’s electricity, which under our as-
sumed pricing structure is equivalent to the operation
which maximizes PV self-consumption. However, there
are many other applications for storage to create value.
These include provision of ancillary services [41] and
participation in energy markets with fluctuating prices
[42], although a minimum size threshold is required
for the latter [43]. One method of further incentiviz-
ing community storage could be through capacity tariffs
[44] which explicitly reward the limitation of imports
and exports in power terms. These tariffs are already of-
fered by utility companies to medium and large indus-
trial customers and are expected to become more rele-
vant for residential consumers in future, especially with
the anticipated increase in the deployment of electric ve-
hicles and heat pumps.

This work raises questions in terms of storage own-
ership and operation — i.e. which parties can have a
financial interest in storage. While for individual house-
hold storage it seems clear that the household owner or
occupant should be able to own and operate the stor-
age, a CES system could be community-owned, utility-
owned, owned by the Distribution network operator
(DNO), or owned by a combination of stakeholders.
The relevant electricity tariff structure would have to ac-
count for the stakeholders involved [45]. While house-
hold consumers are offered a standard set of electricity
tariff options, any CES must be negotiated on a case-by-
case basis. Therefore, policy developments which intro-
duce standardized community storage options would be
invaluable in understanding the financial arguments.

It is likely that the framework we have developed is
useful for other purposes. To create the local communi-
ties, we have employed aspects graph theory which has
yielded estimates for the local topology of the distribu-
tion network. Each household is a connected node in the
network and we have simulated electricity consumption
and generation at each node in the network. It would



serve as a validation to compare the network topology
produced with a real distribution network, however this
information is typically unavailable due to security con-
cerns. If this could be done, however, then different spa-
tial deployments of PV and storage could be studied, to
find the locations in the network where benefits were
maximized, for example, by minimizing line losses in
the distribution network and delaying (or even avoid-
ing) investments in infrastructure such as transformers
or extra transmission capacity.

5. Conclusions

Our results illustrate that community energy storage
has a number of advantages over household storage
including, decreasing the total amount of storage de-
ployed, decreasing surplus PV generation which must
be exported to the wider network and subsequently in-
creasing the self-sufficiency of local smart energy com-
munities. The increase in community self-sufficiency
arises from the fact that household batteries are sched-
uled according to the needs of the individual house-
holds, and thus often store excess solar when it could
be used by neighboring households.

In terms of economic arguments, we found that IRR
values were higher for community storage than for
household storage. Additionally, for community storage
the IRR increased with the amount of PV in the commu-
nity. However, this meant that it was also more sensitive
to the solar resource, suffering significantly more than
household IRR if the solar resource was decreased.

Therefore finally, due to the system-wide benefits
of community storage, we argue that specific market
mechanisms should be developed which favor commu-
nity storage deployment, especially in regions where the
proportion of solar households is high or is expected to
rise significantly in future. This is especially important
because of the high energetic costs of batteries and the
finite nature of materials required for battery manufac-
ture. This work is timely due to the potential for a boom
in household battery adoption in high solar regions.
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