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ABSTRACT 

Investment in sport technologies are expected to grow by 40.1% during 2016-2022 

reaching approximately $3.97 billion by 2022. As well the recent changes in technology 

regulations by The Federation Internationale de Football Association (FIFA) since the 

2018 World Cup created promising football technologies. This research questions 

addressing the issue of what is the value of such technologies for professional football 

teams? and what are the benefits of these technologies? This is achieved by developing a 

framework for understanding the value co-creation process from the knowledge discovery 

systems in the football industry. The framework aids in mapping the resources, 

pinpointing the outputs, identifying the competencies leading into capabilities, and finally 

in realisation of the value of the final outcomes in that journey. On another words, 

different teams have different resources that allow them to achieve certain outputs. These 

outputs enable the coaching team to achieve and maintain certain abilities. By changes in 

practice the will improve the team ability and enhance their analytical capabilities. 

Therefore, that will allow and aid the coaching team to gain new outcomes such as 

improving training strategies, transferring players, and informative match strategies. 

Additionally, improved understanding of the value co-creation process from the 

knowledge discovery systems in the football industry answering, why are some teams 

better able to gain value from investment in knowledge discovery technologies than other 

teams in the football industry. The framework has been developed in three phases in 

which semi-structured interviews where used in the first and second phases for 

developing and validating the framework respectively. The third and final phases is 

verifying the framework by developing a knowledge discovery maturity model as an 

online assessment’s tool in operationalising the research findings. The main contributions 

of this research are the adaptation and customisation  of Melville et al. (2004) to develop 

a value co-creation process form knowledge discovery resources. Moreover, applying 

Agile (APM, 2015) artefacts and techniques and tools in improving the value co-creation 

process between coaches and data analysts. That’s aided in developing the value co-

creation knowledge discovery framework in football analytics. Additionally, the 

development of a key performance indicators balanced scorecard and its adaptation as a 

in understanding the relationships between the key performance indicators (i.e. physical, 

psychological, technical and tactical performance indicators).  Finally, the development 
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of the knowledge discovery maturity model in football analytics which was used in 

understanding and pinpointing areas of strength and weakness in the utilisation of the 

various football resources used in football analytics (human resources, technological 

resources, value co-creation resources and analytical models used). 
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GLOSSARY  

Term Details Definition (as defined by this research) 

KD Knowledge Discovery 

A systematic iterative procedure intended to 

enable the development of models and 

frameworks that can be used to study 

specific phenomena. 

KDR 
Knowledge Discovery 

Resources 

KD resources used in the KD framework 

(i.e. technological resources, human 

resources, value co-creation resources and 

their sub-models.  

KPI 
Key Performance 

Indicators 

Are used to measure players performance 

actions based on the related events or 

actions during a match or training. 

MM Maturity Model 
A multi-phases assessment model to reflect 

on current practices. 

KDMMFDA 
Knowledge Discovery 

Maturity Model 

The KDMMFDA developed in this research 

to assess the coaching team FDA strength 

and weakness.  

CT Case Team  - 

FDA 
Football Data 

Analytics 
- 

PA Performance Analysis - 

KDV 
Knowledge Discovery 

Value  
- 

User stores  - 

are a technique for the development of the 

features required to meet the specific goals 

of users 

Sprint - 
A method used to improve communication 

and gathering requirements. 

Retrospective - 

It a technique for maintaining the iterative 

need between the questions, research and 

result so that level or collaboration is 

achieved as will leading enhancing maturity 

level in the collaboration process over time. 

Transfer 

Strategy 
- 

The mechanisms that a team manager 

utilises to select and recruit players in 

fulfilment of the aim of achieving his 

overall objectives. 

 

Match 

strategy 
- 

The process of using a match model to 

understand the strength, weaknesses, 

opportunities and threats (SWOT) of 

opponents in the match environment, in 

order to help the team winning the match. 

Tactical 

KPIs 
- 

Are metrics that are intended to measure the 

ability of players to position themselves 
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effectively in such a way the probability of 

passing, possessing, scoring and 

intercepting are improved. 

Technical 

KPI 
- 

It is the ability to control the ball for the 

sake of accomplishing the required tasks 

effectively and efficiently. 

Physical 

KPIs 
- 

Are those physiological and fitness 

measures for the players’ abilities. Some of 

them are traits that cannot be changed, such 

as the height and ambidexterity while 

others can be improved by training such as 

speed, high/moderate intensity running and 

recovery rate. 

Psychological 

KPIs 
- 

Referees to the ability to play in the 

standard performance under different 

psychological pressures, which can be 

called “resilience indicator”. 

Predictive 

models 
- 

Are equations or estimations used to 

estimate the probability of scoring in a 

variety of different situations. 

Context-

based 

modelling 

 

Is defined in this research as the 

identification and measurement of the 

players’ KPIs in different training and 

match context 

Comparative 

modelling 
 

Is a statistical method for the comparison 

between players or teams utilising different 

KPIs. 

Synergetic 

modelling 
 

Is a technique used to identify the 

correlation in a player performance with 

others in the team 
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Table of Case Studies  

Wave One – Developing the framework 

Code Team / Bodies Role 

W1TD Football National Teams Technical Director & Expert 

(Coach, Player in Different 

Leagues)  

W1FC2 Football Club - 1st Team Coach 

W1DA3 Football Club - 1st Team Analysts  

W1DA4 Football Club 1st Team Analysts  

W1FC5 Football Club - Olympic 

Team 

Head Coach  

W1DA6 Football Club - Olympic 

Team 

Analyst  

W1FC7 National Olympic Team Coach 

W1FC8 Football Club - 1st Team Coach 

W1FC9 Football National Teams Assistant Coach  

W1DA10 Football Club 1st Team UK Analysts  

W1BM11 Football Organisation - UK Performance Analysis Team 

Member 

W1BM12 Football Organisation - UK Performance Analysis Team 

Member 

W1BM13 Football Organisation - KSA Technical Committee 

W1RS14 Rugby Club Director of Performance Analysis 

W1PSC15 Sports Data Consultancy  Data/Video Analysts  

W1BM16 Football Organisation - KSA Technical Committee 

W1PSC17 Sports Data Specialists - UK Representative - Sports Data 

Specialist 

W1PSC18 Sports Data Specialists - 

International 

Representative - Sports Data 

Specialist 

W1PSC19 Sports Consultancy - KSA Manager – Football Data Specialist  

W1PSC20 Sports Consultancy - KSA Representative - Football Data 

Specialist 

W1PSC21 Sports Data Specialists Live Scouting Administration 
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Wave Two – Validating the framework 

Code Team / Bodies Role 

W2TD1 Football National 

Teams 

Team Director – Former Player – Former 

Coach 

W2EM2 Football Federation Executive Manager of the Technical 

Committee 

W2TCM3 Football Federation Technical Committee Member – 

Professional coach 

W2FC4 

 

Football Federation - 

Football Club Academy 

Professional Coach – Academy Director – 

Former National Team Coach  

W2FC5 Football Federation - 

Football Club Academy 

Professional Coach – Academy Director –

National Youth Team Coach – Scouting & 

Talent Identification 

W2FC6 Football Federation - 

Football Club Academy 

Professional Coach – Professional Player 

Mentor  

W2FC7 The UK Football 

Association 

Professional Coach 

W2FTM8 The UK Football 

Association 

UK Team Manager 

W2SC9 University Principal Lecturer in Sports Coaching 

Science 

W2TD10 Football Federation Ethics Discipline Committee 

 

 

Wave Three – Verifying the framework  

Case Code Team Role Team / Bodies 

Case 1 C1P1 CT1 Video Analyst Football Club - 1st Team 

Case 2 
C2P1 

C2P2 

CT2 Assistant Coach  

Data Analyst 

U19 National Team  

Case 3 C3P1 CT3 Data Analyst  National Olympic Team 

Case 4 C4P1 CT4 Assistant Coach  Football Club - 1st Team 

Case 5 C5P1 CT5 Football Coach Football Academy Club 
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Football data analysis, Performance analysis, value co-creation in football, competences 

and capabilities in football team, Resource basest view in football, football coaching, 

football data analysis, football data analytics, KPI Balanced scorecard.  
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Chapter 1  Introduction, Research Question, Aim and 

Objectives 

1.1 Introduction 

Investments in sports technology exceeded $1 billion in 2015 (Magee, 2015). However, 

it is unclear whether football teams are able to realise the expected value from these 

technologies, or what reasons could explain some teams obtaining a greater benefit than 

their competitors. This chapter introduces the current research project into this issue. It 

begins by identifying the research problem, based on real life needs, then provides a brief 

outline of the key literature to identify what is known and the gaps in formal 

understanding of the variation in realising value from investment in technologies. Based 

on the knowledge gaps and the research problem, the following section the research 

question, aim and objectives are presented, and supplemented with an overview of the 

overall structure of this thesis. 

1.2 Research Problem  

Sports technology is believed to improve team performance by enabling superior 

measurement, monitoring and planning of performance. According to the Analytical 

Research Cognizance (Infoholic Research, 2016), the Worldwide Sports Analytics 

market is expected to grow by 40.1% during 2016–2022, reaching approximately $3.97 

billion by 2022. Other studies have predicted that the sports analytic field will experience 

growth from $764.3 million in 2016 to $15.5 billion by 2023 (Infoholic Research, 2016), 

with wearable technologies predicted to grow annually by 20% to reach $29 billion 

market value by 2022 (CCS Insight, 2018). PlayerTek a company, recently acquired by 

Catapult, experienced a 365% increase in the market of amateur and semi-professional 

football clubs in Europe and Asia during 2017 (Lemire, 2018). Catapult estimates that 

10,000 elite teams are being targeted by football wearables devices in 2018. Indeed, 

hundreds of start-up companies have been established to serve this market, including 

major players like Nike, Adidas, Amazon and Microsoft at the Hype Foundation event 

(BBC News, 2017). Although the producer side of these technologies has already 

demonstrated exceptional profitability, with many companies doubling their profits semi-

annually, the value of such technologies is less clear from the consumer side. What is the 

value of such technologies for professional football teams? How can teams benefit from 

https://www.ccsinsight.com/press/company-news/3375-ccs-insight-forecast-predicts-apple-watch-and-hearables-to-fuel-growth-in-wearables
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such technologies? Can all teams obtain the same value from investment in such 

technologies? This research seeks to provide new insights into these questions. 

1.3 Research Motivations 

In order to address the aforementioned questions, this research adopts a Knowledge 

Discovery (KD) approach, predicated upon the main argument that knowledge is a key 

power that could enable coaches to better understand the weaknesses and strengths of 

their teams, as well as those of their opponents. This kind of understanding would 

facilitate and support more effective planning for player transferring, training, and match 

strategies. These various insights may provide a way for teams to gain a competitive 

advantage. In other words, new knowledge may be crucial in optimising the performance 

of individual players and entire teams. 

According to the information technology value framework, investment in technology 

only provides meaningful value to organisations when they have the suitable 

organisational resources, which are called organisational complementary resources 

(Melville and Kraemer, 2004). Accordingly, realising the expected value from the 

investment in technology requires two types of resources to be synchronised and 

orchestrated — technological and organisational resources (Piccoli and Ives, 2005; 

Badewi et al., 2018). Technological resources are the hardware and software required to 

enable changes in the practices. In this study, KD resources can be defined as the 

hardware and software applications necessary to discover new knowledge that could help 

coaches to improve their team match strategies. The technologies primarily addressed in 

the literature are wearable sports devices (Dellaserra, Gao and Ransdell, 2014), cameras 

(Ding and Fan, 2006; Sugimoto et al., 2012), GPS technologies (Rangsee, Suebsombat 

and Boonyanant, 2013), and body sensors (Marin-Perianu et al., 2013).  All of these 

technologies create a massive amount of data every day (Rein and Memmert, 2016). 

These technologies have been studied in terms of their usability (Marin-Perianu et al., 

2013), usefulness (Dellaserra, Gao and Ransdell, 2014), and effectiveness (Clemente et 

al., 2013; Rein, Raabe and Memmert, 2017). The summary of such findings is that no one 

universally agreed upon answer why some teams are better in using these kinds of 

technological resources. Additionally, to date, no dedicated research has been undertaken 

to provide a detailed explanation of the different wearable technologies that could help in 

discovering knowledge. 
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Technology alone is not sufficient to create value without the support of human resources. 

Relative few studies have examined human resources (in terms of skills, competences, 

and knowledge) as the main producer of such knowledge (i.e. the data analyst) (Wright 

et al., 2013; O’Donoghue and Holmes, 2014; Wright, Carling and Collins, 2014; 

Scheider, Ostermann and Adams, 2017). Limited papers have focused on the resources 

required by the consumer of the knowledge (e.g. the coach). Clarification is also required 

about the relationship between the producer and consumer of this knowledge. Is it a ‘give-

and-take’ selling process (i.e. data analyst produces the knowledge based on 

specifications and sell it to the coach)? Or it is a value co-creation process (i.e. data 

analyst shall work closely with the coach to develop new knowledge)? If it is a value co-

creation process, what are the tools and methodology that could frame such process? The 

previous literature has not dealt with these issues. 

Although KD relies on human and technological resources to create value to the coach 

by increasing the probability of winning matches, the mechanisms connecting resources 

and value are unclear. One way in which to connect the relationship between resources 

and benefits is through the use of benefits map frameworks (Ward and Daniel, 2012; 

Jenner and APMG International., 2014; Serra and Kunc, 2015; Badewi, 2016). However, 

benefits maps have not been used in sports analytics studies to explain the relationship 

between resources, mechanisms to deliver benefits, the required changes in practices, and 

the potential benefits of investment in such technologies. 

This research aims to use software engineering tools in KD, as a knowledge gap also 

exists in maturity models for data analytics in football information systems. One of the 

first maturity models developed in information systems literature was by Churchill et al. 

(1969), which was subsequently improved by Nolan (1975) and McFarlan et al. (1983) 

to explain the ability of organisations to effectively adopt the applications of different 

information systems. Maturity models were then used in more than 150 information 

systems sub-domains (Chen and Nath, 2018), ranging from classic fields, like software 

development (CMMI), to contemporary areas, such as e-business (Pranicevic, Alfirevic 

and Stemberger, 2011), business analytics and KD (El-Gayar et al., 2011). However, 

these studies focus on business applications, rather than on sports knowledge discovery 

applications and technologies. This contribution to knowledge could help technologists 

in sports science to develop tailored roadmaps for teams to improve their abilities to 
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compete through KD resources. Accordingly, this research aims to utilise the knowledge 

maturity model to assess the ability of teams to realise value from KD systems. 

1.4 Research Question 

Why are some teams better able to gain value from investment in knowledge discovery 

technologies than other teams in the football industry?  

1.5 Research Aim 

To develop a framework for understanding the value co-creation process from the 

knowledge discovery systems in the football industry. 

1.6 Research Objectives 

1- To operationalise the expected value of KD to the coaching team. 

2- To identify and taxonomise the KD resources and design a model to understand 

the role of each class of football technologies in improving coaching performance. 

3- To identify and frame the role of different knowledge, skills and competences 

required from the producer (i.e. data analyst) and consumer of the knowledge (i.e. 

coach) to enable the expected value from the KD to be realised. 

4- To frame the value co-creation process and augment it with different tools to 

improve its value. 

5- To develop resource-based maturity model to identify the weaknesses and 

strengths in the augmentation of the resources to get value from knowledge 

discovery activities. 

1.7 Research Main Contributions  

This section presents the two major contributions of the research which are, the 

Knowledge Discovery Value Co-Creation Framework for Football Data Analytics 

(KDVCCFFDA) and the Knowledge Discovery Maturity Model for Football Data 

Analytics (KDMMFDA). The detail of the initial development of the proposed 

KDMMFDA were introduced and discussed in Chapter 2 , section 2.5. Then, the proposed 

KDVCCFFDA is improved and enhanced after interviewing experts in the sports industry 

as discussed in Chapter 4  and Chapter 5 . The KDMMFDA then developed to 

operationalise the research findings in aiding and pinpointing areas of strength and 

weakness for teams or players in improving football data analytics. The following 
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sections is to present the main contributions of the research to aid in navigating to related 

materials within the thesis.   

1.7.1 Knowledge Discovery Value Co-Creation Framework for Football Data 

Analytics - KDVCCFFDA 

The first contribution of the research is in the development of the KDVCCFFDA which 

consists of 4 main models; the technological resources model, the human resources 

model, the value co-creation model, and the key performance indicators model. The 

framework was developed in three phases. The framework development phases are 

discussed in detail in sections 3.3. First, the initial framework which was developed from 

literature (see section 2.5). Then, the improvement and enhancement of the framework is 

discussed in Chapter 4  and Chapter 5   A compacted version of the final framework - 

KDVCCFFDA is presented as hyperlinked diagram for easily presentation and navigation 

to the related sections within the thesis as shown in Error! Reference source not found.. 

The figures highlight the main models of the framework and the shows the transformation 

of utilising the KD resources, leading to outputs, aiding in improving the capabilities, to 
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Figure 1-1: Hyperlinked Figure of the Framework - © by the researcher 
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outcomes that enable the realisation KD value. The detailed framework is presented here 

in Figure 1-2, as well to show an in-depth view of the models and sub models within 

framework.   
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Figure 1-2: Detailed KDVCCFFDA - © by the researcher 
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1.7.2 Knowledge Discovery Maturity Model for Football Data Analytics - 

KDMMFDA 

The next contribution of this research in the development of the KDMMFDA in which 

aided in operationalising the research findings as well in assessing teams football data 

analysis. The KDMMFDA were proposed in Chapter 2 in section 5.7. it is based on 4 

maturity levels (i.e. Ad-hoc, Defined, Managed and Optimised. It aids in understanding 

areas of improvements in human resources, technological resources, knowledge 

discovery co-creation and analytical models developed. An overview of the final Model 

can be seen in Chapter 5 section

1.8 Thesis Structure  

This thesis is organised into seven chapters. After introducing the research question, aim, 

and objectives in chapter 1, chapter 2 reviews the relevant literature and sets the 

theoretical foundations of this research. Chapter 3 presents the research methodological 

approach, strategy, and tools that this research uses to answer the research question and 

fulfil the research objectives. The analysis and findings are presented in three chapters. 

Two chapters outline the development and final versions of the chosen analytic 

approaches (knowledge discovery framework and its subset models and the maturity 

model) using data obtained from interviews with representatives of 7 teams in Saudi 

Arabia (13 coaches, team managers, and data analysts). Chapter 4 focuses on the 

identification and role modelling the technological and human resources required in 

delivering value. Then, chapter 5 operationalises the definition of KD value in the football 

sector. The main practical output of chapter 4 and 5 is the proposal of a knowledge 

discovery maturity model, which is validated using findings from 14 data analysts, team 

managers, and coaches from 5 teams. In fulfilment of this aim, chapter 6 discusses the 

application and validation of the KD maturity model. Finally, chapter 7 summarises and 

consolidates the research findings.   
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Chapter 2  Literature Review 

2.1 Introduction 

This chapter seeks to develop the theoretical basis for the current research through a 

comprehensive review of salient literature. The aim of this chapter is to provide a coherent 

and active review that not only engages with the relevant papers to illustrate the 

knowledge gap and the potential contribution of this study, as well as to critically engage 

with the literature to enable the construction of a new analytic framework and its concepts. 

In this way, the chapter provides a sound basis with which to inform data collection, 

particularly in terms of creating interview and codes for data analysis, and the discussion 

of findings. The literature approach tends to be a mixture of qualitative systematic  

review/qualitative evidence synthesis (Grant, M. J. and Booth, A. 2009) in which to 

understand and enrich and meet the scope and depth of the research.  

In the following sections (sections 2.2 and 2.3), this literature review defines the concept 

of ‘knowledge’ within the context of the current research, enabling the discussion of 

Knowledge Discovery (KD) to be well-articulated and framed. This is followed, in 

section 2.4, by an overview of the main theories underpinning KD and its value in the 

context of modern sport. Based on these theoretical foundations, section 2.4 provides a 

focused review of the use of KD in the football industry, in order to clearly illustrate the 

knowledge gap and importance of the current research. As the literature does not agree 

on one specific framework with which to investigate the value realisation from KD in the 

football industry, a critical discussion is provided of the three analytic frameworks 

proposed for data collection and analysis: the value framework, which is adopted from IT 

Business literature (Melville and Kraemer, 2004); the value co-creation framework, from 

IT marketing literature; and the Agile framework, adapted from software engineering 

literature. Section 2.5 examines the value framework for KD in the specific football 

context, then outline the applicability and theoretical underpinnings of value-creation and 

Agile methods for KD in this context. Finally, the chapter (section 2.6) reviews the 

literature on the use of maturity models in software engineering and data analytics in 

order to inform the design of the model used in this research. Section 0 concludes the 

chapter with a summary of findings that outlines the critical review of literature in the 

context of the current study.  
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2.2 Definition of Knowledge  

Comprehensive engagement with the process of “Knowledge Discovery” (KD) requires 

a thorough understanding of the hierarchy of knowledge. This concept refers to a means 

of conceptualising and defining the relationships between information. One such 

approach to categorising and analysing information in a hierarchical system is the DIKW 

(Data, Information, Knowledge, and Wisdom) pyramid (Rowley, 2007, p. 163). Data are 

objective, discrete, facts and consequently have no intrinsic meaning without being 

processed or organised (Awad and Ghaziri, 2004; Baškarada and Koronios, 2013; 

PhridviRaj and GuruRao, 2014). They are simple records of observations, events, things 

or actions (Boddy, Boonstra and Kennedy, 2005; Turban, Rainer and Potter, 2005; 

Laudon and Laudon, 2006), meaning that they require interpretation in order to gain 

meaning or applicability (Baškarada and Koronios, 2013).  

Broadly speaking, many published sources agree that information is distinct from data. 

Essentially, data that has been aggregated and processed to offer insights and 

understanding of a particular topic can be thought of as information (Bocij et al., 2015). 

In addition to inherent advantage of being synthesised and consolidated, information is 

valuable for comparison and prediction (Laudon and Laudon, 2006), as well as facilitating 

decision making (Awad and Ghaziri, 2004). As a specific example of this, information 

can be a useful tool to predict behaviour in a given context (Laudon and Laudon, 2006), 

or making data retrieval and processing simpler or more effective (Hevner and Chatterjee, 

2010). The conversion of data into useful information is most often achieved through 

statistical, arithmetic, or algorithmic models (Laudon and Laudon, 2017), which produce 

information that is structurally different and is therefore useful in different kinds of 

applications.  

Knowledge enables experts to understand and interpret information, thereby enabling 

them to give more accurate and meaningful opinions (Turban, Rainer and Potter, 2005; 

Bocij et al., 2015). Unlike data, which is a property of things, knowledge is a property of 

people, and therefore leads to certain behaviour (Boddy, Boonstra and Kennedy, 2005, p. 

9), which means that the development of knowledge is invariably closely related to the 

interpretation of people and information. The construction of knowledge from 

information therefore requires some degree of subjective interpretation of background 

and communication (Chi, Slotta and De Leeuw, 1994). Data can be conceptualised using 
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information theory reasoning (Shannon, 1948; Mishra, Akman and Mishra, 2014).  In 

effect, data can be thought of as patterns that have no meaning, while information is data 

that has been consolidated to give it meaning, and knowledge refers to “information 

incorporated in an agent's reasoning resources“ (Aamodt and Nygård, 1995, p. 197). 

Finally, wisdom describes accumulated knowledge, which has changed behaviour, 

capabilities and practices of an individual, group or population (Jessup and Valacich, 

2003). In other words, wisdom is the manifested capacity to utilise knowledge (Jashapara, 

2011, pp. 17–18), realising the translation of knowledge into new practice. This is an 

abstract level that gives foresight (Awad and Ghaziri, 2004, p. 40).  

2.3 Knowledge Discovery (KD) Definition 

The current research defines the process of KD as a systematic iterative procedure 

intended to enable the development of models and frameworks that can be used to study 

specific phenomena. The KD process involves exploration, observation, description, 

analysis, synthesis and testing (Fayyad, Piatetsky-Shapiro and Smyth, 1996; Kwasnik, 

1999). There are three principle approaches to KD: descriptive statistics, which are 

utilised to quantify facts; visual data mining, which enables relationships to be explored 

in depth; and machine learning, which aims to create the conditions, predictions and rules 

for given contexts, enabling specific scenarios to be simulated and tested (Bandaru, Ng 

and Deb, 2017).  

In essence, KD describes the results obtained from extracting useful information from 

large quantities of data (Agrawal and Shafer, 1996). This has resulted in KD being 

perceived as an approach (Mariscal, Marbán and Fernández, 2010), a methodology 

(Alsultanny, 2011), and a technique (Hegland, 2001). However, KD differs from other 

approaches, including performance analysis (PA) (Garganta, 2009b), data mining (Chen 

and Liu, 2009), and big data (Kalambe, Pratiba and Shah, 2015; Rein and Memmert, 

2016). KD seeks to discover and investigate knowledge (Bandaru, Ng and Deb, 2017), 

usually in general terms rather than in a single dataset. In contrast, data mining is 

concerned with investigating specific databases (Bramer, 1999; Larose and Larose, 

2014), while big data focuses on the speed and volume of the data extracted from diverse 

sources (Sagiroglu and Sinanc, 2013). Therefore, KD can be understood as a higher level 

than big data, data mining and performance analysis, as it seeks to unearth knowledge 

about the adoption of technological platforms and systems (Wu et al., 2014), in addition 
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to the creation or development of new models for defining, testing or understanding 

concepts or phenomena (Larose and Larose, 2014). In this sense, KD is a way for 

organisations to find ways to outperform their competitors (Manco et al., 2016). In 

summary, KD describes a process for using tools and instruments to find knowledge and, 

in this sense, has a broader concept and function than data mining, performance analysis, 

or big data analysis.  

2.4 KD in the Football Industry  

The KD approach has had a profound impact on the performance of sports teams in 

numerous fields (Ofoghi et al., 2013), through the use of a range of algorithms, including 

neural network, genetic algorithm, machine learning, and heuristic analysis (Rein and 

Memmert, 2016; Constantinou and Fenton, 2017; Hoch et al., 2017). However, it is 

important to note that the current research is predicated upon a different understanding of 

KD than the majority of extant football literature, which principally focus only on the use 

of data mining tools, rather than specifically examining KD as a tool to inform data 

analysis and the improvement of coaching practices. This approach can be seen in a recent 

study that utilised a hierarchical KD approach to compute and measure key team 

performance indicators at the individual, group, tactical and team level (Hoch et al., 

2017). This enabled the development of a human-like approach to improve individual and 

team performance. However, the development of a single unified analytic model may be 

more relevant in the field of data mining than KD, as the latter requires a focus on both 

qualitative and quantitative data, as well the process by which data and information are 

utilised.  

2.4.1 Objectives of KD in Football 

The literature on football coaching has examined the value of KD from a host of different 

perspectives. Analysis of team performance has been shown to a competitive advantage 

to the participating team (Kuper and Szymanski, 2018), resulting in higher win ratios 

(Wooster, 2013) due to the ability of informed coaches to make superior decisions 

(Groom, Cushion and Nelson, 2011; Wright, Atkins and Jones, 2012; Wright et al., 2013). 

This section seeks to synthesise the literature and obtain a holistic view of the potential 

objectives of the KD approach. KD can support the effective storage and retrieval of 

historical data, granting the head coach access to new KPIs and even creating 

opportunities for additional, previously unknown, performance indicators to be 
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uncovered. These outcomes can enable the development of more effective, tailored 

coaching practices and strategies, improving team capacity and ultimately offering 

competitive advantage to the team.  

2.4.1.1 To develop decisions based on Objectives and Evidence-based  

KD can offer a systematic, objective documentation of data, which is essential to help 

coaches make better decisions, by removing individual bias, perception errors and 

subjectivity. Without this systematic documentation, analysing and documenting the data, 

coaches will use their own experience, which is called the critical incident technique 

because coaches remember only critical events not objectively all events (Flanagan, 

1954). 

The integration of technology into the coaching process is recognised as one way in which 

to foster objectivity and encourage fact-based decision-making. Proponents of this 

approach cite the fallibility of human memory, with some studies suggesting that most 

coaches can only accurately recall 30-50% of the events in the most recent games that 

they have watched (Franks and Miller, 1986, 1991; Laird and Waters, 2008). This limited 

recollection illustrates the inherent value of having a system like KD, which includes data 

collection and database technology, meaning that it is able to gather and store data about 

key events that occur throughout specific matches (Nicholls and Worsfold, 2016). Access 

to this kind of data can increase the effective memory of coaches to incorporate all KD-

captured events in the team history. This can potentially encapsulate long periods of time 

(Franks and Miller, 1986, 1991), reducing subjectivity (Horton et al., 2014) and the 

selective interpretation and perception of past events (Hughes and Franks, 2004), thereby 

enabling more accurate, effective decisions to be made. 

2.4.1.2 To Create Change in Practices, and Match Strategies 

The integration of the discipline of  KD through data analysis into football has led to 

numerous examples of positive changes to the philosophies, approaches, and practices of 

coaches (Reep and Benjamin, 1968), with studies of statistical analysis showing 

measurable improvements in coaching practices and capabilities (Pollard, 2002; Doyle, 

2007). An example of the positive impact of data analysis can be seen in the rejection of 

‘possession football’, with analysis leading teams to adopt more direct strategies that 

involve fewer passes per team possession (Bate, 1988). This is evidenced in the new 

approaches used by professional and national teams, as illustrated by Olsen and Larsen 
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(1997), who studied the playing style of the Norwegian national team. They found that 

performance analysis had drastically changed the playing style of the team. This 

importance has been recognised by new research, such as the studies by the Carling 

research group, which documented the emergence of approaches and practices among 

professional clubs (Carling and Dupont, 2011a; Collet, 2013a; Carling et al., 2014). For 

instance, the knowledge that players should maintain a minimum constant speed of 24 

km/h during a game has made speed a preliminary selection criteria during recruitment 

(Carling and Dupont, 2011b).  

2.4.1.3 To develop new KPIs and New Coaching Perspectives 

KD resources track and measure a wide range of events and contexts, opening new 

opportunities for analysis. This has led to the design of new key performance indicators, 

which offer coaches deeper, more accurate insights into match performance dynamics 

(Hughes et al., 2012; Mackenzie and Cushion, 2013; Wright, Carling and Collins, 2014; 

McLean et al., 2017). New data models can also grant access to new coaching 

perspectives, potentially uncovering correlations between superficially unrelated factors 

and a better understanding of their influence at an individual and group level, leading to 

the effective development and improvement of overall team performance (Bampouras et 

al., 2012; Sarmento, Pereira, et al., 2014; Wright, Carling and Collins, 2014).  

In essence, KD provides enhanced performance analysis to coaching teams, enabling new 

perspectives into match events to be captured and analysed, then processed in terms of 

different scenarios and contexts. This approach is based upon the notion that better 

understanding of player performance and the performance of their competitors, the more 

effective plans that can be developed, leading to improved results at a match level. Given 

this perspective, the following section will review the literature on performance analysis, 

after which a discussion will be provided of the kinds of strategic improvement that 

football teams might be possible to achieve through KD performance analysis. 

2.4.2 Performance Analysis in Football 

KD resources improve the effective use of Performance Analysis (PA) to improve 

coaching practices and obtain better match results. The inception of PA can be traced to 

the 1960s, with the analysis of team performance in American football and basketball, 

albeit through annotation and coding notes rather than technological approaches (Carling 

et al., 2005; Hughes and Franks, 2007). However, PA has evolved from a simple, linear 
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process utilising descriptive schemas and flow charts (Cushion, Armour and Jones, 2006) 

to an advanced science that represents a complex, complementary interdisciplinary 

approach involving the use of sport, behavioural and data sciences are to obtain detailed 

insight into sport performance (Stein et al., 2017a).  

PA is a well-established tool in the world of elite sport (Wright et al., 2013) and has 

become integral to modern football coaching approaches (Hodges and Franks, 2002; 

Stratton et al., 2004; Carling, Williams and Reilly, 2005; Groom, Cushion and Nelson, 

2011; Cushion and Lyle, 2016). This has led to substantial growth in research in this 

discipline (Lago-Ballesteros and Lago-Peñas, 2010). The majority of extant research in 

this discipline is focused on analysis methods (e.g. Lorains et al. 2013) or outputs (e.g. 

Liu et al. 2016), with PA becoming increasingly sophisticated and complex (Groom, 

Cushion and Nelson, 2011). Research trends are increasingly focused on modelling the 

interactions between specific KPIs, which will be discussed in more detail in the 

following section (Cushion, Armour and Jones, 2006). The complexity of these 

parameters and needs necessitate the use of KD, as a systematic analytical approach with 

which to explore interactions between known (in databases) and unknown variables 

(derived through special sensors or through deriving the current database). The next 

sections discuss and expound upon these known variables, that is the KPIs, and introduce 

the analytical models that are currently used.  

2.4.2.1 Key Performance Indicators (KPIs) 

Each key moment or action in a game that can be numerically documented is referred to 

as an event. Events record the action, location and time of each event, in addition to any 

other information deemed important. As an example of this, a football pass would be 

recorded as the action (passes), the location in the field (X, Y coordinates) and the time 

that the pass was made, as well as potentially any relation or effect of the pass on the 

game. Researchers refer to each of these events as a Key Performance Indicator (KPI). 

These parameters enable individual or team attributes to be described and evaluated 

(O’Donoghue, 2008; Parmar et al., 2017), and are most commonly used to compare 

players or teams (Hughes and Bartlett, 2002; Collet, 2013b; Liu, M. A. Gómez, et al., 

2016). In some scenarios, KPIs can also predict the outcomes of matches (Min et al., 

2008; Huang and Chang, 2010), with the difference between teams that win and lose 

being visible in terms of differences in certain game-related KPIs (e.g. quality of 



16 

 

opposition, total number of shots on goal, or quantity of ball possession) (Hughes and 

Franks, 2005a; Collet, 2013c; Winter and Pfeiffer, 2016; Tenga, Mortensholm and 

O’Donoghue, 2017; Fernandez-Navarro et al., 2018a). There is a close relationship 

between KPIs and KD, with KD being used to analyse, understand and control 

phenomena identified from new attributes, and KPI informing the performance and 

behaviour of players during a given match. The identification of these KPI provides a 

better understanding and therefore improvement of individual and team performance, 

including valuable insights into opponents. It has been claimed that more sophisticated, 

customised KPI can also grant insights into the behaviour and performance of players, 

leading to more effective match planning and performance. Synthesis of literature 

indicates that KPIs are typically classified as being physical, technical, tactical or 

psychological indicators, all of which can help a coach to better understand a team and 

their needs (Parmar et al., 2017). 

2.4.2.1.1 Physical KPIs 

Traditionally, physical attributes and fitness are the main indicators in the analysis of 

sports performance (Bloomfield, Polman and O’Donoghue, 2004; Woods et al., 2016; 

Yang et al., 2018). In terms of football match results, high intensity running with the ball 

is a critical factor (Randers et al., 2010), although it should be noted that different 

positions have specific bioenergetics, physical, physiological requirements (Di Salvo et 

al., 2010; John Moores and Reilly Building, 2010). As an example of this, match 

performance is influenced by the ability of the midfield players to run quickly over long 

distances, because of their vital link role between attackers and defenders (Hughes et al., 

2012; Vilar et al., 2013). This difference can be seen in terms of the distance covered by 

elite midfield players (11.5km) in comparison to elite attackers and defenders (10-10.5 

km) (Mohr, KRUSTRUP and BANGSBO, 2003). 

Physical KPIs are concerned with profiling and understanding players in terms of a wide 

range of factors. These include, but are not limited to: maximum speed and recovery time 

(Carling, Le Gall and Dupont, 2012; Ndlec et al., 2012; Collet, 2013c); and low speed, 

medium speed, or high speed running (Di Salvo et al., 2009; Gregson et al., 2010). Studies 

have examined player behaviour under fatigue, in order to examine whether, and to what 

extent, speed and reaction time are affected (Lyons, Al-Nakeeb and Nevill, 2006; Min et 

al., 2008; Rampinini et al., 2009; Ndlec et al., 2012), including examination of factors 



17 

 

that include fatigue from overfilled calendars (Bradley et al., 2014), from fasting during 

Ramadan for Muslim football players (Zerguini et al., 2007), and the effects of fatigue 

among substitutes and replaced players (Carling et al., 2014). Analysis suggests that the 

performance of football players is affected by a number of factors including short 

recovery periods between matches and even the playing formation, which had a larger 

effect on results than the impact of fatigue (Bradley et al., 2011; Carling and Dupont, 

2011b). 

2.4.2.1.2 Technical KPIs 

Technical capabilities describe the ability of players to control the ball (Hoernig et al., 

2016). Extensive investigations have been conducted into the relationship between this 

factor and physical KPIs (Kempton et al., 2015), with studies identifying a positive 

correlation between technical KPI and physical KPIs in the prediction of match 

performance (Gibson Moreira et al., 2015). Consistent with this logic, technical 

performance tends to significantly decline during the second half of a match (Rampinini 

et al., 2009; Carling and Dupont, 2011b), with the last five minutes of games seeing the 

largest fall in technical skills due to the impact of fatigue on physical performance 

(Sarmento, Marcelino, M. Teresa Anguera, et al., 2014).  

Annotations capabilities are essential in understanding this relationship between physical 

KPIs and technical KPIs. This approach enables considerations like different dribbling 

styles to be annotated and analysed in terms of the success ratios of each KPI per player 

or per team. Another factor, which is one of most important technical KPI in football, is 

the ability to control the ball. Analysis shows that higher levels of control yield significant 

gains in the space and time available to perform a given action with the ball (Tenga, 2010; 

Hoernig et al., 2016). 

2.4.2.1.3 Tactical KPIs 

In studies of sport, tactical KPIs are those indicators focused on match tactics and the 

successful implementation of planning (Tenga, 2010), including such considerations as 

successful constructive passes, team possession, ability to regain possession, and 

conversion rate (e.g. shots on goal to scoring a goal). There is a high correlations between 

the tactical KPIs and other KPIs. Hughes and Franks explained the relationship between 

the tactical KPIs and other KPIs in their book as follow: 
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“Tactical performance indicators seek to reflect the relative importance of the use of pace, 

space, fitness and movement, and how players use these aspects of performance, of 

themselves and their opponents, targeting the technical strengths and weaknesses of the 

respective performers” (Hughes and Franks, 2004, p. 175). 

Tactical KPIs such as ball possession, (Collet, 2013c; Barreira, J. J. Garganta, et al., 

2014), crosses (De Baranda and Lopez-Riquelme, 2012), or interceptions and clearance 

(Lago-Peñas, Lago-Ballesteros and Rey, 2011; Barreira, J. Garganta, et al., 2014; Woods 

et al., 2016) can potentially be strong predictors for match results (Clemente et al., 2014; 

Kempton et al., 2015; Winter and Pfeiffer, 2016). For example, a study of the Norwegian 

professional football league found that tactical KPIs relating to possession, including such 

considerations as directness of offence or ability to penetrate opposite defence, were an 

effective way to distinguish teams (Tenga et al., 2010b). These insights also provided 

meaningful strategic insights, such as the relative strength of counter-attacks versus 

complex attacking patterns when playing against an imbalanced defence. Meaningful 

gains in understanding can also be obtained from the use of KPIs to study certain actions 

in the context of success, like quantitative KPIs that study the importance of ball 

possession by examining the relative probabilities of goals being scored or conceded 

(Pollard and Reep, 1997). 

Perhaps the most important tactical KPI in analysis of football is the passing accuracy 

and success (Hughes and Franks, 2005b; Tucker et al., 2005; Taylor et al., 2008a; 

Gyarmati, 2016; Rein, Raabe and Memmert, 2017). This is particularly important in the 

context of fatigue, with studies showing poorer tactical performance of Italian league 

players, as measured by differences between first and second half performance in terms 

of involvement with the ball, number of short passes and number of successful passes 

(Rampinini et al., 2009), which negatively affected the amount of time that players spent 

in defence, midfield or attack (Lago, 2009; Ndlec et al., 2012; Sarmento et al., 2017). 

2.4.2.1.4 Psychological KPIs 

Physical, technical or tactical performance can vary widely depending on context and the 

mental pressure on players. These factors KPIs are known as psychological KPIs. As an 

example of this, game location has been shown to have a profound impact on technical, 

tactical and physical performance (Carling and Dupont, 2011b; Hughes et al., 2012; 

Gibson Moreira et al., 2015). Psychological KPIs can be used to explain why players 
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demonstrate significantly higher performance levels when playing at home, due to the 

‘home advantage’ (Jacklin, 2005; Hughes et al., 2012; Škegro, Milanović and Sporiš, 

2012; Collet, 2013b; Liu, M. A. Gómez, et al., 2016; Den Hartigh et al., 2018; Fernandez-

Navarro et al., 2018a). The reduced stress involved in playing at home can be reflected 

through higher numbers of goals scored (Poulter, 2009; Armatas and Pollard, 2014; 

Bialkowski et al., 2014); more shots being taken on goal (Taylor et al., 2008b; Lago-

Peñas, Lago-Ballesteros and Rey, 2011; Sampaio et al., 2012); more crosses (Lago-Peñas, 

Lago-Ballesteros and Rey, 2011; Sampaio et al., 2012), more successful passes, more 

successful dribbles and more corners (Lago and Martín, 2007; Poulter, 2009; Collet, 

2013b), as well as improved discipline, in terms of fewer fouls (Poulter, 2009) and fewer 

yellow cards (Lago-Ballesteros and Lago-Peñas, 2010; Liu et al., 2015)..  

2.4.2.2 Analytics Models 

Analytic models are algorithms that can describe or explain, certain solutions or 

behaviours (Hazır, 2015) . The three main type of analytic models are: descriptive 

analytics, which focuses exclusively on frequency and ratios; context analytics, which 

measures sensitivity to different contexts; and predictive analysis, which utilises the other 

approaches to simulate likely match outcomes in particular scenarios (Sarmento, 

Marcelino, M Teresa Anguera, et al., 2014). A brief discussion of these models is given 

below. 

2.4.2.2.1 Descriptive Analytics 

Event data is the lowest level of analysis in football performance management. This kind 

of data focuses on those actions that are “match-relevant and happening during the match” 

(Stein et al., 2017b). From a technical perspective, events are timestamped occurrences 

of known and defined categories that are deemed important in that context. They may 

also be annotated with spatial coordinates or additional information, such as the players 

involved in the event. These data are then saved in semi-automatic coding video analysis 

applications (Tovinkere and Qian, 2001; Xie et al., 2002; Assfalg et al., 2003a; Ekin, 

Tekalp and Mehrotra, 2003; Xu et al., 2008). A popular system for the classification of 

events is in terms of actions taken on the ball and those that occur off the ball (Maksai, 

Wang and Fua, 2015; Kamble, Keskar and Bhurchandi, 2017). Another approach is to 

classify events in terms of time, such as the start and ends of a given period, or in terms 

of the ball, such as the occurrence of a foul situation during a free kick (Liu, M.-A. 
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Gómez, et al., 2016; Stein et al., 2017a; McKenna et al., 2018a). Event data is typically 

compiled by counting the frequency of each event in a particular match or tournament 

(Stein et al., 2017a). A descriptive summary of events in a football game are listed below 

(see Table 2-1: Sample of events). 

Table 2-1: Sample of events from (Stein et al., 2017c) 

Event Description 

Foul Penalty Free kick on the goal defended only by the goalkeeper 

Foul direct free kick Free kick that is allowed to be directly shot into the goal 

Foul indirect free kick Free kick that is not allowed to be directly shot into the goal 

Foul throw in Throw in that is not correctly executed 

Halftime Start First or second half starts 

Offside Player is in an offside position 

Out for goal kick Ball passes the end line after an opponent touched it 

Out for corner Ball passes the endline after a player from the own team 
touched it Out for throw in Ball passes the sideline of the soccer pitch 

Goal Awarded when the whole of the ball crosses the whole of the 
goal-line Shot on target Any shot attempt that would or does not enter the goal if left 
unblocked Shot not on target Any shot attempt that would or does enter the goal if left 
unblocked Pass Ball touch from one player with direction towards a team 
mate Reception Ball touch made by the player after receiving it from another 
player Clearance Hard ball touch where the player tries get the ball away from 
the current zone on the pitch Hold of ball Play action when the keeper takes the ball with his hands 
without danger Running with ball Used by the player to move the ball around without passing 
it to another player Cross Hard ball touch where the executing player is positioned in 
the final third of the field Neutral contact Characterized by ball touch which is difficult to control 

Pass assist The last pass to a teammate in a way that leads to a goal 

Cross assist The last cross to a teammate in a way that leads to a goal 

Catch Keeper catches the ball and hold it in his hands on a 
dangerous situation Catch drop Keeper does not manage to hold the ball but lets it bounce 
of the hands again Drop of ball Keeper drops the ball after having caught it or holds it in 
order to play the ball Punch Keeper punches the ball with his hand away 

Diving save Keeper jumps to a side to catch the ball 

Drop kick Kicking a ball that is dropping to the ground as it starts to 
bounce up Yellow card Displayed by referee to indicate that a player has been 
cautioned for a foul Red card Displayed by referee to indicate that a player has been 
dismissed from the field for a foul 
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Halftime Ends First or second half ends 

Substitution Replacing one player with another during a match. 

2.4.2.2.2 Context Analytics 

As discussed above, in the overview of psychological KPIs, the factors influencing player 

and team performance are neither fixed nor constant. In addition to being influenced by 

psychological factors, there are a number of important non-psychological considerations 

that should also be integrated into analysis. One such factor is the impact of weather, 

including humidity, temperature and wetness, with some players being more vulnerable 

to climatic factors than others (Lago, 2009; Lago-Peñas, Lago-Ballesteros and Rey, 2011; 

Castellano, Casamichana and Lago, 2012; Collet, 2013b). Another important non-

psychological issue for a player is the reaction, behaviour, and performance of their 

opponents (Tenga et al., 2010a; Sarmento, Marcelino, M. Teresa Anguera, et al., 2014), 

with logistic regression analysis of tactical KPIs demonstrating that opponent strength is 

associated positively with passes, but negatively with ball possession (Tenga et al., 

2010a; Vilar et al., 2013; Sarmento et al., 2017). Other studies have supported this 

assertion that opponent strength influences technical skills, with dribbles being affected 

(Taylor et al., 2008b), and physical indicators, with players tending to run for shorter 

distances with the ball (Carling and Dupont, 2011b; Orth et al., 2014). 

Recent research supports the idea that indicators are context based, meaning that analysts 

should situate KPIs in specific contexts (Hodges and Franks, 2002; Williams and Hodges, 

2005; Koehn and Morris, 2012; Mackenzie and Cushion, 2013; Fernandez-Echeverria et 

al., 2017). For instance, player-opponent interaction results in players adjusting their 

performance to reflect the capacity of opponents (Moll, Jordet and Pepping, 2010; Vilar 

et al., 2013; Sarmento et al., 2017). This observation is not completely new, with older 

studies suggesting that chance is not an important determinant in match outcome (Reep 

and Benjamin, 1968, p. 585). 

2.4.2.2.3 Predictive analysis 

The effective integration of multiple KPIs can produce models capable of predicting 

match outcomes in specific scenarios (Min et al., 2008; Haghighat, Rastegari and 

Nourafza, 2013). However, this remains a relatively unexplored area in the literature, 

although certain recent studies have sought to map out likely probabilities for winning or 

scoring for specific teams in different match scenarios (Huang and Chang, 2010; De 
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Baranda and Lopez-Riquelme, 2012; Mahony, Wheeler and Lyons, 2012; Ruiz-Ruiz et 

al., 2013; Machado, Barreira and Garganta, 2014; Ibáñez et al., 2018). Perhaps the most 

promising avenue of predictive analysis is sensitivity analysis, which entails the 

construction of models with parameters that can be altered to measure different outcomes 

(O’Donoghue and Cullinane, 2011; Collet, 2013b). Predictive systems adopt a dynamic 

approach to the consideration of contextual factors (e.g. goal scoring during the first 5 

minutes and last 5 minutes of the match) (De Oliveira Bueno et al., 2014) and factors 

during the match (e.g. fatigue level and stress) (Rampinini et al., 2009; Redwood-Brown 

et al., 2012; Sarmento et al., 2017). The development of such models is potentially 

challenging and requires in-depth investigation, as well the implementation of accurate 

KD models by the teams involved, resulting in relatively few papers having been 

published in this area. 

2.5 Theoretical Development: Resource-Based View  

The effective creation and application of knowledge requires a number of considerations. 

In the modern global context, a key issue is the investment and design of technologies 

that are able to obtain, process and disseminate data (Gullo, 2015). There can be a diverse 

range of factors to explain why certain organisations use such technologies more 

effectively than their competitors, enabling them to gain a competitive advantage. In the 

context of football clubs, it remains unclear how clubs’ benefit from these technologies, 

as these factors influencing Return On Investment (ROI) in KD are multivariate and 

complex. This issue of ambiguity has also been recognised in IT literature (Chae, Koh 

and Park, 2018), with the result that there has been extensive investment into IT business 

value research (Schryen, 2013). These studies suggest that beneficial outcomes are more 

closely related to implementation of strategies than utilisation of key technologies 

(Badewi et al., 2018). In other words, the success of IT-enabled business transformation 

is primarily attributable to issues relating to ‘people’ (Kotter, 1995).  

This kind of question can be answered through the theoretical lens of the resource-based 

view, which argues that performance variation primarily occurs as a result of resources 

(Barney, 1991), which can be financial, human, organisational or technological (Melville 

and Kraemer, 2004). This approach specifically attributes variation in performance to the 

heterogeneous distribution of available resources between organisations (Peteraf and 
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Barney, 2003). Resources are technological and organizational complementary resources 

(Melville and Kraemer, 2004). 

There are wide ranges of technological resources and approaches that can assist 

organisations in augmenting or leveraging data. Examples of these resources include 

collaboration (Serrador and Pinto, 2015), distributed learning (Lara et al., 2014; Khajah, 

Lindsey and Mozer, 2016),  KD (Mariscal, Marbán and Fernández, 2010), knowledge 

mapping (García-peñalvo and Conde-gonzález, 2017) or intelligence (Brooks, El-Gayar 

and Sarnikar, 2015). Collaboration and distributed learning technologies foster more 

effective and constructive collaboration between individuals in a given organisation 

(Duffield and Whitty, 2015). KD technologies enable the exploration of internal and 

external knowledge, whereas organisations can use knowledge mapping technologies to 

track and catalogue internal data and knowledge application technologies enable existing 

knowledge to be utilised in more effective ways. Finally. intelligence technologies enable 

performance tracking and the analysis of competitors (Sun, Sun and Strang, 2018). The 

current research is focused on KD technology, because of its close relationship with all 

other knowledge related technologies. 

But technological resources alone are not sufficient to realise the promised value. In this 

context, value is found in the effective integration of technological resources with other 

complementary resources (Melville and Kraemer, 2004), using both in tandem to 

effectively and efficiently realise value (Nevo and Wade, 2010). This has been observed 

in IT-enabled customer service departments, where investment in technology yields 

measurable benefits to the business when IT resources complement organisational 

complementary resources (Nevo and Wade, 2011). Research suggests that differentiated 

performance and competitive advantage are largely attributable to human and 

organisational complementary resources (Bendoly, Rosenzweig and Stratman, 2007). In 

a study of 13 companies that had adopted Enterprise Resource Planning Systems, Badewi 

(2018) found that each technological resource required certain complementary resources 

for optimal functioning.  In the same vein, According to a study by Stratman and Roth 

(2002), human resources are a differentiating factor in successfully achieving sustainable 

competitive advantage from Enterprise Resource Planning (ERP) systems. 

Human resources are referred to as ‘human capital’ in sports literature (Felin and 

Hesterly, 2007) and are acknowledged as crucial to team performance (Dawson and 
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Dobson, 2002). The quality (i.e. skills, knowledge and abilities) of sportspeople and 

coaches is a key differentiating factor in team performance (Smart and Wolfe, 2003; 

Holcomb, Holmes Jr. and Connelly, 2009; Jones, Harris and Miles, 2009). However, 

irrespective of their value, certain human resources (e.g. knowledge or competencies) are 

difficult to imitate because they arise from extensive training, experience or specific 

contexts (Wright, McMahan and McWilliams, 1994). Other organisational resources are 

also difficult to imitate and cannot be transferred, such as culture (Wright, McMahan and 

McWilliams, 1994), or communication and collaboration (Kerr and Jackofsky, 1989). 

Similarly, routines in coordination and collaboration to develop strategies are 

organisational capabilities difficult to imitate (Grant, 1991; Winter and Szulanski, 2002; 

Helfat and Peteraf, 2003). Basketball studies have shown that these routines can be a 

differentiating factor in team performance (Berman, Down and Hill, 2002).  

2.5.1 Proposed KD Value Framework in Football Data Analytics  

The creation of value through investment in technology can be understood from reactive 

or proactive perspectives. Reactive theories primarily deal with perceptions of IT and the 

effect that this has on behaviour (DeLone and McLean, 1992; Petter, DeLone and 

McLean, 2008; Venkatesh and Bala, 2008; Venkatesh, Thong and Xu, 2012). In contrast, 

proactive approaches focus on the ways in which technological investment tends to shape 

the process of value creation (Peppard, Ward and Daniel, 2007; Venkatesh and Bala, 

2008; Venkatesh, Thong and Xu, 2012; Ward and Daniel, 2012). Examples of proactive 

theories include value management and benefits management. A hybrid stream also 

exists, which seeks to better understand value creation in this context by categorising 

factors as organisational complementary resources and technological resources (Melville 

and Kraemer, 2004). In the context of this study, technological resources describes the 

key features, ancillary systems, technological artefacts, and characteristics of a given 

technology (Badewi et al., 2018). Effective integration of these technologies requires the 

presence of the correct organisational complementary resources, which are referred to as 

KD human resources in the current research. These include attitudes, perception, 

alignment, culture, norms, competences, skills, and organisational structure. The current 

research is adopting the framework proposed by Melville (Melville and Kraemer, 2004) 

to investigate and understand how teams can create value from KD. However, while 

coherent, the Melville framework can be criticised as being too generic to operate as the 
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sole form of analysis for technological value creation. Therefore, this study will also 

utilise map framework as an analytic framework to better investigate the process of 

converting resources into outcomes, leading to changes being implemented to ultimately 

realise value or benefits. 

The diagram below illustrates the discussion that will follow. It begins by underlining the 

value of the KD approach. As KD is a system, a review will then be provided of the 

technological platform, its technical requirements, and salient software applications. 

Finally, the last section discusses key human resources in terms of the various KD 

stakeholders and the value co-creation process as a whole.  

 

Knowledge 
Discovery Human 

Resources

Knowledge 
Discovery 

Technological 
Resources

New Key 
Performance 

Indicators

New Data Analytic 
Models

Improve 
understanding of 

the team and 
opponent 

performance 

Change in Coaching 
Strategies

Match Performance

Knowledge 
Discovery Resource

Outputs Outcomes
Knowledge 

Discovery Value

 

Figure 2-1: Proposed KD Value Framework in Football – © by the researcher 

2.5.1.1 KD Technological Resources in football 

KD systems require the integration of technology to gather accurate, meaningful data, 

which can then be analysed and reported, in order to provide usable insights to coaching 

teams (Maren et al., 2005; Mooney et al., 2011). In order to establish an effective KD 

system, it is most important for the technological infrastructure to be able to capture and 

analyse. Event capture technologies seek to identify, measure, track and report changes 

in the subject matter under analysis (Fuss, Düking and Weizman, 2018). These include 

wearable technologies that track the movements of players (Li et al., 2016; Mara et al., 

2017), those that quantify patterns of motion (Stein et al., 2015), and those that chart 

internal body behaviour in different scenarios (Moll, Jordet and Pepping, 2010; Humana, 

2011; Düking, Holmberg and Sperlich, 2017; Hoch et al., 2017). In contrast, data analysis 

technologies identify, codify, correlate, and group data in order to process it into new and 



26 

 

usable forms of information, which can then be converted into knowledge (Seshadri et 

al., 2017). 

 

 

Figure 2-2: KD Technological Resources – © by the researcher  

2.5.1.1.1 Data Sources Technology 

In this research, data sources technologies serve to measure, track, and report issues that 

have the potential to improve team performance. In broad terms, these technologies can 

be classified into third party datasets (InStat, 2018; OPTA, 2018; STATS, 2018; 

STATSports, 2018); optical devices (Farin, 2005; Ronkainen and Harland, 2010; Trewin 

et al., 2017); environmental sensors (Leser, Baca and Ogris, 2011; Rein and Memmert, 

2016); and wearable sports devices (Li et al., 2016; Lemire, 2018). 

The third-party databases function as the source of the data. This is a comparatively cost-

effective stage of the process as there are many such databases available on the market, 

such as InStat Opta, STATSports and Stats (formerly ProZone). The main units of third-

party databases are generally teams and the players metrics (Tunaru and Viney, 2010;  

Liu et al., 2013). These details can then be extracted, analysed and evaluated using 

customised tools or applications to develop understanding about the various outcomes of 

a game (Cobb, Unnithan and McRobert, 2018). A number of different aspects of a match 

can be covered, including technical analysis, physical overview, or the ranking and 

contribution of a given player during a match (Casamichana et al., 2014), as well as 

analysis of possession or passing at individual or team level (Di Salvo et al., 2007).. More 

detailed KPI can also be extracted (J. Liu et al., 2013). This could entail analysis on 

passes, which might produce insights into numbers of passes, ratio of successful and 

unsuccessful passes, or numbers of passes made backwards or over short or long range 

(Hughes and Franks, 2005b; Cochrane, 2011; Sampaio et al., 2012; Carling et al., 2014). 
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The comparison of the Opta measurement with an independent measurement in the 

Spanish league found that the average difference of event time was 0.06±0.04 s for OPTA, 

with a kappa value of 0.92, indicating a high level of reliability (H. Liu et al., 2013). Other 

independent studies have demonstrated the reliability of Stats (formerly ProZone) 

(Rampinini et al., 2007; Di Salvo et al., 2010). Given their acknowledged reliability, this 

affordable and accessible data has been utilised in the current research (Cobb, Unnithan 

and McRobert, 2018).  

Nevertheless, the technical limitations of these databases makes them insufficient for KD 

and data mining tools, leading to the recommendation that datasets must be developed “ 

further to compete with the array of additional parameters offered by new technologies such as global or 

local positioning system technology” (Casamichana et al., 2014, p. 701). For this reason, teams must 

create and maintain their own primary databases to supplement secondary databases. The 

second technology to collect data is the optical devices. 

Optical devices, primarily in the form of automatic video tracking and electronic 

transmitters (O’Donoghue, 2006; Carling et al., 2008; Camerino et al., 2012), have a well-

recognised role in the collection of team performance data (Groom and Cushion, 2004; 

Mara et al., 2017). These optical devices are fitted with algorithms that are capable of 

differentiating players in terms of their faces and shirts, enabling speed and type of 

movement to be measured and categorised (Assfalg et al., 2003b; Farin, 2005; Ding and 

Fan, 2006; Schlipsing et al., 2017). Automatic video tracking records the movements of 

each player, whether during training or match conditions (Zhou and Zhang, 2017), with 

newer optical devices enabling real-time auto-scaling data capture (Ryoo, Kim and Park, 

2018). Importantly, optical devices only capture movement indicators, rather than 

information on internal factors or the external environment.  

Environmental sensors measure external factors that can influence individual and team 

performance, including temperature, altitude, pressure and humidity (Hiscock et al., 

2012; Bradley et al., 2014; Fernandez-Navarro et al., 2018b). However, although these 

factors have been recognised as influential over the success of business operations 

(Jagadish et al., 2014), the literature has neglected their use in the KD process. As the 

current research takes a prospective approach to KD, the data collection technologies will 

focus on those environmental factors that may directly or indirectly affect performance, 

rather than focusing exclusively on player behaviour.  
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The final data sources technologies are wearable devices that are attached to the bodies 

of players to measure their external behaviour (movement) and internal behaviour 

(circulation) (Chambers et al., 2015). There are number of well-known examples of these 

technologies. For example, the Geographic Positioning System (GPS) relays data via 

space satellite (Rangsee, Suebsombat and Boonyanant, 2013) and Local Positioning 

System (LPS), which allows activities to be tracked via a nearby machine that monitors 

the wearable device (Frencken, Lemmink and Delleman, 2010; Leser, Baca and Ogris, 

2011). Another form of wearable device is the accelerometer, which measure the number 

of steps taken by an individual, and heart rate monitors, which count and record heartbeats 

(Casamichana et al., 2014; Li et al., 2016; Bowen et al., 2017). GPS, accelerometer and 

heart rate monitors are often integrated into a single wearable device called an ‘Integrated 

wearable device’ (IWD) (Dellaserra, Gao and Ransdell, 2014; Li et al., 2016), many of 

which are capable of using a locomotor to measure the frequency of certain categories of 

movements (e.g. sprinting and jogging) (Dwyer and Gabbett, 2012) or measuring the 

frequency of contacts (e.g. closeness to other players) (Macutkiewicz and Sunderland, 

2011). Finally, textile wearable devices contain integrated sensors to monitor body 

kinematics and physiological signals (Coyle et al., 2009; Dalsgaard and Sterrett, 2014), 

enabling coaches to monitor players during training sessions without requiring the use of 

external devices. 

2.5.1.1.2 Data Analysis Technologies  

Data analysis technologies generate quantitative and qualitative analyses of individual 

players and teams, providing rigorous feedback to athletes and coaching teams (Booroff, 

Nelson and Potrac, 2016). In the context of this research, the chosen data analysis 

technologies are software-based annotation technologies and data mining technologies.  

The function of annotation technologies is to enrich collected data, thereby enabling the 

analyst to process it with the chosen KPIs to reach the desired goals, often including 

enriched visual data (Cobb, Unnithan and McRobert, 2018). Annotation analysis is the 

most popular analysis among coaches (Booroff, Nelson and Potrac, 2016), with the 

majority of professional teams worldwide using this approach in the discovery and 

measurement of performance knowledge (James, 2006). Annotation is perceived to be 

relatively straightforward (Booroff, Nelson and Potrac, 2016) and able to cover numerous 

vital movements, including shots, corners, aerial challenges, crosses, tackles and passes 
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(Martin et al., 2018; McKenna et al., 2018b). The annotation of movements can grant 

coaches a deeper insight into their players, enabling them to give better, more targeted 

feedback (Ives, Straub and Shelley, 2002; Stratton et al., 2004; Groom, Cushion and 

Nelson, 2011). These insights have also provided additional understanding of the 

relationship between injury occurrence and in-game behaviour (Carling, Gall and Reilly, 

2010); the factors influencing reductions of skill in skilled physical performance (Carling 

and Dupont, 2011b); and monitoring load in both training and competition (Gaudino et 

al., 2013).  

As a sole performance analysis approach, this approach can become a bottleneck in the 

KD process (Carling et al., 2013). Prior to the advent of wearable devices, non-annotated 

actions were not analysed or considered in terms of match strategies (Wright, Carling and 

Collins, 2014). Classically, notational analysis during games involved manually 

annotating each event recorded on camera during a match (Martin et al., 2018). This 

traditional reliance on cameras was high inefficient, leading to the adoption of other 

qualitative tools, like Quintic, Dartfish, Sportscode and, MatchViewer (Wright et al., 

2013; O’Donoghue and Holmes, 2014; Kite and Nevill, 2017; Martin et al., 2017). The 

objectivity of annotation analysis has been significantly improved through the 

introduction of specialised software applications, such as SportsCode, TRACAB, Focus 

X2, ProZone, and Sport Universal Process AMISCO Pro (Carling, Williams and Reilly, 

2005; O’Donoghue and Holmes, 2014; Fernandez-Navarro et al., 2016; Martin et al., 

2017).  

Currently, wearable devices provide a degree of automatic annotation, although reliable 

capture of specific movements requires a programmer to set an appropriate algorithm. 

Both research and applied settings commonly utilise this approach to record incidence 

and outcomes of behaviour, which enables the investigation of certain technical aspects 

of football performance (Assfalg et al., 2003b; Canales, 2014; Stein et al., 2016; Xue et 

al., 2017). However, an important criticism of annotation analysis is the inability to 

precisely track complex biomechanical, physiological, tactical or technical aspects of 

sport (Sampaio et al., 2015). Annotation analysis is also reductionist, meaning that its 

analysis ignores important contextual factors (Groom, Cushion and Nelson, 2011; 

Booroff, Nelson and Potrac, 2016), and reactive, because of the unstructured focus on 

critical moments in a performance, (Groom, Cushion and Nelson, 2011). Because of this, 



30 

 

irrespective of its advantages, annotation analysis, should be supplemented with other 

data analytic technologies (Stein et al., 2017a).  

The main roles of data mining technologies are grouping and correlating data, or 

uncovering patterns, influences and effects manifested in a certain data set (Olson, 2018), 

which enable new insights to be extracted by analysts. Data mining can use a number of 

different programming and analytical languages, including R, Python, and Java. Tools, 

packages and visualisation tools typically utilise Python, R, or Structured Query 

Language (SQL). Meanwhile, the various packages and Application Programming 

Interfaces (API)s used to collect and process data are generally in Python and R, with 

extraction and processing normally involving XML data feeds run through analytics 

platforms like RapidMiner, WEKA, KNIKE RStudio, and SPSS, as well as through 

visualisation platforms like Tableau, QlikView, Crystal Reports, D3.js, or Alteryx 

(Thuraisingham, 2014; Slater et al., 2017). Statistical analyses in the literature are 

typically conducted using software applications and packages, such as SPSS, SAS, 

RapidMiner, WEKA and RStudio. These analyses can be most efficiently integrated 

using programming for data and analytics, such as R, Python, or MATLAB (Slater et al., 

2017; Olson, 2018). Given the array of available software and options, one of the main 

challenge for data analysis technologies, which includes both data mining and annotation 

analysis, is the cost involved in the purchase, deployment and utilisation of such 

technologies (Martin et al., 2018) 

2.5.1.2 KD Human Resources in football  

KD is a socio-technical process (Ho, 2017), arising from the interaction between 

individuals and technology. Because of this, the successful functioning of KD requires 

the people involved to have the correct skills and competences, otherwise the 

technological outcomes will not produce the expected benefits (Groom and Cushion, 

2004; Carling, Williams and Reilly, 2005). This requirement extends to all individuals 

involved in the analysis process, such as coaches and team managers, rather than just the 

analyst (Medeiros, 2017; McKenna et al., 2018a). The following section will present and 

examine the roles involved in the KD process, then outline the way that the interaction 

between these roles in the agile value co-creation process results in the discovery of new 

knowledge. 
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2.5.1.2.1 Football Team Management Role 

Proper teamwork requires clarity of roles (Bray and Brawley, 2002), otherwise effective 

teamwork will be compromised and group satisfaction is likely to fall (Eys et al., 2005; 

Fletcher and Arnold, 2011). Clarity of roles does not mean that each role is isolated, 

however. Instead, it means that all members of the team should be aware of the 

responsibilities and requirements of the others. Analysts enquired about preferred playing 

style and key priorities, but have knowledge about concepts like goals, chances and set 

plays. This perhaps help communication and brainstorming among the analysts and the 

coaching team (Lyle, 2003; Nash and Collins, 2006). In the context of the management 

of a football team, the key roles are team manager, coach, and data analyst, each of which 

can be a single individual or a group, depending on the particular needs of the club 

(Zambon Ferraresi, Lera López and García Cebrián, 2017). 

2.5.1.2.2 Team Manager Objectives and Competencies Role 

The primary responsibility of a team manager is to oversee the financial performance of 

the team (Watts and Wruck, 1988; C. P. Barros and Leach, 2006; Kelly, 2008; Hamil and 

Walters, 2010; Zambom-Ferraresi, Lera-López and Iráizoz, 2017; Kilpatrick, 2018);  or 

to maximise profit (El-Hodiri and Quirk, 1971; Szymanski and Smith, 1997; Rohde and 

Breuer, 2017). Extensive research has investigated the topic of maximising the financial 

returns of football clubs (Szymanski and Smith, 1997; Garcia-del-Barrio and Szymanski, 

2009; Hamil and Walters, 2010; Kuper and Szymanski, 2018), although recent research 

has tended to emphasise sustainability over profit. There is an established assumption that 

sports managers maximise utility to achieve non-profit goals, consuming resources in 

pursuit of satisfaction rather than profit (Sloane, 1971). In this sense, it is important to 

distinguish between performance success, which refers to the ability of a coach to win 

matches, and profit success, which describes the ability of a team manager to ensure 

financial sustainability and profitability (Carlos Pestana Barros and Leach, 2006).  

(Plumley, Wilson and Ramchandani, 2017) state that there are three primary cases that 

might arise in terms of the relationship between financial success and winning match 

success. In the first scenario, greater profits might improve team performance, or more 

successful teams might become more profitable. In this case, no conflict exists between 

satisfying the desire of shareholders to obtain profit and the desire of fans to win. This 

relationship is typical of the situation in the stock market model of ownership of privately 
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owned clubs (Wilson, Plumley and Ramchandani, 2013). In the second case, successful 

performance does not necessary result in increased profitability. A correlational study 

into the relationship between profit and the league positions of 40 football clubs (1978-

1997) found no significant evidence that changes in league position brought a 

corresponding change in profit (Szymanski and Kuypers, 2000, p. 22). Finally, in the third 

scenario, successfully winning matches might cause or be attributed to lower profits, such 

as when players are overpriced or there is poor investment at the club. This relationship 

would require shareholders to decide upon an acceptable balance between profit and 

performance. In all cases, there is a fundamental link between sporting and financial 

activities and this association is essential for the operation and sustainability of football 

clubs (Szymanski and Kuypers, 2000, p. 22). 

In summary, the role of the team manager is to balance performance and profit, although 

with an emphasis on profit in order to satisfy stakeholders. There is generally a more 

positive relationship between financial performance and team performance among teams 

listed on the stock market than teams that are either privately or publicly owned. 

Nevertheless, poor investment can harm teams, even when they are successful. However, 

examination of the team manager is beyond the scope of this study, because concentrating 

on financial aspects could adversely affect the quality of this research.  

2.5.1.2.3 Coach Objectives and Competences 

The sole objective of the team coach is to help the team to win matches (Cushion, 2001; 

Ingle, 2013; Vilar et al., 2013; O’Donoghue and Robinson, 2016). As a consequence of 

this, coaches invest heavily in analysis of performance and associated problems using a 

range of data, reports and videos (Wright, Atkins and Jones, 2012). Some coaches utilise 

sophisticated, objective data, while others rely more heavily on personal intuition and 

judgment (Adjei et al., 2013; Medeiros, 2017). Many models exist to conceptualise and 

investigate the myriad competences required by team coaches. The first is Santos et al.’s 

(2010) theory, which focuses on a number of competences: annual and multi-annual 

planning; practice and competition orientation; and personal and coaching education. 

Additionally, coaches who are cooperative and work effectively with data analysts 

invariably use data more effectively to develop advanced plans and training scenarios 

(Martin et al., 2018).  
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In many clubs, data analysts, and particularly performance analysts, play an instrumental 

role in the coaching process (Groom, Cushion and Nelson, 2011; Nelson, Cushion and 

Potrac, 2013). Coaching involves guiding players, but also leading and building trust 

between the coach and his players, which benefits from transparent, objective 

performance analysis technologies (Nelson, Potrac and Groom, 2014). Coaches also 

sometimes act politically with the motivations and intentions of the team (Booroff, 

Nelson and Potrac, 2016). In this scenario, analysis can become a tool to assert power, 

which can harm the perceptions, relationships and culture of the club (Booroff, Nelson 

and Potrac, 2016).  

2.5.1.2.4 Data Analyst Competences 

Performance analysts work within the football coaching team to ensure that all data is 

utilised efficiently and effectively (Davenport and Harris, 2007). Data analysts play a 

critical role in team success, with research demonstrating that coaches supported by data 

analysts receive more information and are therefore better able to understand match 

dynamics than when coaches attempt to fill analytical roles themselves (Martin et al., 

2018). In some teams, the data analyst role involves teams of specialists, working in 

recruitment analysis, opposition analysis, and even academy analysis (Hatton, 2013; 

Wright et al., 2013, 2016). However, despite this growing prevalence, the role of data 

analyst is relatively recent within team management as a whole. For example, according 

to a recent survey on Australian football, only 13% of the coaches have access to data 

analysts, which limits their advanced planning potential (Martin et al., 2018). 

It is important to note that the role of data analyst is different from that of sport scientist. 

A performance analyst at a large club, such as in the English Premier League, will focus 

on examining match strategies and team performance, whereas the sport scientist will be 

responsible for the physical aspects of performance (Garganta, 2009a; Wright et al., 2016; 

Sarmento et al., 2017). Data analysts must demonstrate statistical and technological 

competences, enabling them to effectively utilise sophisticated data analytics 

technologies (Wright, Carling and Collins, 2014; McKenna et al., 2018a).  

2.5.2 Modelling Development Approached: Agile Value Co-creation Approach 

In modern football teams, data analysts produce data and the coach or team manager 

consumes that data. This relationship benefits from close cooperation and interaction, in 

order to ensure that the analyst properly understands the needs of the consumers and is 
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therefore able to translate them into statistical models for the testing or exploration of 

certain aspects or issues. As summarised in Table 2-2, there are two main model 

development approaches: Waterfall (also called Push), which is a relatively simple 

process that fits clear outputs, and Agile, which is more suitable for outputs that are 

complicated and difficult to express. 

Knowledge creation is fuzzy and challenging to articulate clearly in advance (Du 

Chatenier et al., 2009). Therefore, development of tailored, needs-based solutions 

requires collaboration between the model producer and model consumer. In other words, 

the discovery of new useful knowledge requires constructive positive cognitive sharing 

and interaction among different stakeholders (e.g. data analysts, team managers, coaches, 

physiotherapists) (Jones, Harris and Miles, 2009; Martindale et al., 2010). This 

collaboration is known as the value-co-creation process (Prahalad and Ramaswamy, 

2004). The following sections outline the model development approach to illustrate the 

use and validity of the value co-creation approach. This is followed by an in-depth 

discussion of agile value-creation models and the various tools involved in agile models.  

Table 2-2: Push versus value co-creation production created by the researcher 

 Push Production Value Co-creation Production 

Waterfall Traditional project 

management approach 

Client is involved in designing the 

solution but not involved in producing 

the solution 

Agile Client is involved in the 

production, but the scope is 

ambiguous, but the client is 

not involved in the 

production 

Client is involved in designing the 

solution and involved in producing it.  

Knowledge Discovery Agile value co-

creation approach  

 

2.5.2.1 Knowledge Development Approaches: Waterfall versus Agile  

The traditional waterfall approach is most appropriate and efficient when working with a 

clearly defined and deliverable scope in a stable environment, often over repeated projects 

(APM, 2015). In contrast, the agile approach is more suitable with vague scopes or 

requirements, which need flexibility and regular stakeholder feedback. Agile 

methodologies benefit from clear, scheduled tasks, carried out quickly, flexibly, in 

phases, and with adaptation following a clear well-understood plan. As an example of 

this, the digital services in the United Kingdom government utilise an agile approach 

(GOV.UK, 2018).  
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Development of tailored, needs-based solutions requires collaboration between the model 

producer and mod el consumer. In other words, the discovery of new useful knowledge 

requires constructive positive cognitive sharing and interaction among different 

stakeholders (e.g. data analysts, team or measure key metrics (Carling, Williams, et al. 

2005; Hughes 2004; O’Donoghue 2006). The use of waterfall depicts a simple, linear 

process in which the consumer clearly articulates their requirements and the producers 

fulfil those needs. However, given the complexity and iterative requirements of coaching 

(Lyle, 2003), agile approaches may be more useful. This approach encourages close 

collaboration between client and producer, which is especially useful when the needs are 

not clearly identified and the producers therefore do not have clear guidelines. For 

instance, telling stories as an agile based tool can improve collaboration in football teams 

at the management level (Perin, Vuillemot and Fekete, 2013). This perspective argues 

that the job of the data analyst is therefore to listen to the coach about the stories, to tell 

stories and to express findings, rather than to provide an exhaustive list of statistics about 

games or players. This is reflected in the review of literature, which did not find explicit 

research to demonstrate how agile development can develop new models in the 

knowledge discovery approach.  

2.5.2.2 Agile Based Approach  

Modern dynamic digital services utilise iterative approaches to manage complex 

challenges, such as those discussed above. Agile offers a way to overcome the rigidity of 

the traditional project management approach, which suffers from “too much planning” 

(Boehm, 1996) and is challenged by the inability of specifications to differentiate and 

clarify deliverables from prototype. In addition, early specification of requirements can 

lead to extraneous features being added, the lack of opportunities to alter or develop 

functionality, and the immutability of focus, which is especially problematic given the 

likelihood that requirements or environments will change. In a study of 1386 projects, the 

relationship between planning and delivering promises was found to be an inverted U 

(Serrador and Rodney Turner, 2014).  

Agile approaches share certain values and principles, as underlined in the Agile Manifesto 

(http://agilemanifesto.org/) (Collier and Highsmith, 2010; Sutherland and Schwaber, 

2017), emphasising flexibility, leanness and engaging the clients (Conboy, 2009). 

Traditional project management methodologies experience difficulties in dynamic 
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environments (Collyer et al., 2010), leading to increased reliance on Agile, which utilises 

minimal documentation to make the approach more flexible, while also increase 

responsiveness to changing conditions (Serrador and Pinto, 2015). Agile methodologies 

encourage iterative user engagement throughout the developmental cycle (Serrador and 

Pinto, 2015), with daily meetings to ensure that clients are updated, involved, and satisfied 

throughout the process (Mann and Maurer, 2005). 

Historically, these kinds of methodologies when software developers sought better 

practices and key values with which to manage the development process (Beck et al., 

2001).  

Establishing solid theoretical foundations for the definition of agile methodology in the 

specific context of the current research requires a review and synthesis of the three most 

relevant definitions in the literature. The first definition is a software development 

practice that seeks to manage issues relating to high levels of uncertainty, dynamic and 

frequent changes, short development cycle, digital deliverable and custom based systems 

(Abrahamsson et al., 2002; Dingsøyr et al., 2012; Hobbs and Petit, 2017). The second 

definition focuses on the ‘evolutionary’ aspect of the development process: 

“Agile software development is an evolutionary (iterative and incremental) approach 

which regularly produces high quality software in a cost effective and timely manner via 

a value driven lifecycle” (Ambler, 2009, p. 6). 

According to this definition, agile methodology is disciplined and self-organising, with a 

high degree of collaborative from active the active involvement of stakeholders to ensure 

that their diverse, evolving needs are met. The final definition transcends the narrow 

understanding in software engineering to encapsulate the diverse needs of the market and 

technology. In this sense, Agile refers to the ability of a team to respond quickly to the 

technological or market needs of customers or stakeholders, enabling “better project and 

product performance in an innovative and dynamic project environment” (Conforto et al., 

2016, p. 547).  

As the concept of required knowledge is fuzzy in terms of usability, usefulness, and 

fitness, different definitions are required for the projects used to uncover or develop 

knowledge. Building on previous definitions, this methodology is a co-created iterative 

approach to the development of customised solutions to fuzzy problems. This research is 

informed by the Agile approach to the discovery of knowledge as a deliverable, which is 
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produced by data analyst in conjunction with continuous interaction with the coaching 

team. The Agile approach can utilise a number of different tools and techniques: user 

stories, on demand scheduling (Kanban), sprint, retrospective, and burn down charts. 

These will be discussed in more detail in the following sections.  

2.5.2.2.1 User Stories  

'User stories’ refers to a technique for modelling and understanding the multitudinous 

requirements of users in an agile project. These stories serve as building blocks to 

conceptualise and inform projects (Inayat et al., 2015), utilising the stories to divide up 

the work to be completed by the team, working in consultation with customers or owners 

of a product (Agile Alliance, 2018a). User stories were first introduced as a part of the 

traditional XP practices (Beck, 1999) and later as a core component of the XP2 

evolutionary practices, reflecting the importance of obtaining and understanding user 

requirements to make meaningful improvements to software or application quality (Beck 

and Andres, 2004). 

A user story is a way to capture a technology application or software functionality. Each 

story should address: who (the type user or consumer of the piece of technology), what 

(the need to develop or use the technology), and why (the benefits and outcomes) (Patton, 

2014). User stories are scheduled and extracted from backlogs that sort and rank 

according to their particular importance, relevance, category or scope within the cycle or 

iteration (Dimitrijević, Jovanovic and Devedžić, 2015).  

2.5.2.2.2 Story Mapping 

User Story Mapping is a usage-centric approach in which agile teams visualise the stories 

that they are working on (Rubin, 2012), using terms like ‘activity’ or ‘epic’ to reflect on 

the primary categories of the task, and ‘task’, ‘theme’ or ‘subtask’ to reflect on less 

important categories (Rubin, 2012; Patton, 2014). Using a Story Mapping approaches 

encourage user-centred design and decomposition of story requirements in the workflow 

context (Rubin, 2012; Taibi et al., 2017). The effect of this is that agile teams can obtain 

a better overview and understanding of the stories at a low level, as well as a high level 

understanding of the entire project to ensure commonality of vision (Taibi et al., 2017). 

2.5.2.2.3 Agile Release Planning 

The purpose of the release planning technique is organising, categorising, and prioritising 

user stories during the mapping process. Effectively, release planning is a roadmap of the 
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release plans for a particular project (Dimitrijević, Jovanovic and Devedžić, 2015).The 

release planning technique groups related user stories in terms of the area of functionality 

within the final application, product or service (Heldman, 2011). In Scrum (an Agile 

approach), this approach is referred as Scrum Resales Planning, which focuses on what 

will be delivered and how that aim will be achieved (Sutherland and Schwaber, 2017). 

All members of the Agile team should be involved in these types of planning activities, 

thereby ensuring consistency of approach to user stories (Alliance, 2018) and agreement 

on deadlines and the number of releases required (Cohn, 2004).  

2.5.2.2.4 On-Demand Task – a Kanban Technique  

Kanban is the method that Toyota devised to implement an Agile methodology (Ahmad, 

Markkula and Oivo, 2013; Saltz, Shamshurin and Crowston, 2017; Agile Alliance, 

2018b). In this approach, tasks are scheduled on-demand or as a Work In Progress (WIP) 

(Ahmad, Markkula and Oivo, 2013). Kanban focuses on visualising the WIP and 

associated work iterations as fully transparent (Matharu et al., 2015). In contrast to Scrum, 

Kanban allows iterations to be changed (Wang, Conboy and Cawley, 2012), with WIP 

enabling stories to be delivered in other ways, as each piece of work is updated as it is 

completed. 

2.5.2.2.5 Sprint  

Sprints is the most common short Agile technique (Baird and Riggins, 2012; Hobbs and 

Petit, 2017). It is mostly used in Scrum because iterations are time limited, with work 

being forbidden on additional User Stories or changes (Rubin, 2012). Every Sprint 

includes specific Sprint Backlog items that are prioritised based on the decision of the 

Scrum Product Owner and the Scrum Team decided which work to carry on and for how 

long (Adjei et al., 2013; Sutherland and Schwaber, 2017).  

2.5.2.2.6 Retrospective 

The retrospective technique enabled teamwork to be improved by reviewing the feedback, 

advantages and disadvantages after every Sprint (Stellman and Greene, 2014). The 

process of sharing feedback with the team is a crucial final step of the Scrum or XP. This 

enables plans and improvements to be carried forward to the next spring, improving the 

output and performance, as well as increasing trust within the team. The development of 

intra-team trust is the main goal of this stage in the iteration (McHugh, Conboy and Lang, 

2012). However, because retrospective enables the verification and validation of team 
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progress, if all members are not present at these meetings then the team may be adversely 

affected (Drury, Conboy and Power, 2012; McHugh, Conboy and Lang, 2014).  

2.5.3 Agile Value Co-creation  

Value co-creation is a client-centred strategy (Nambisan and Baron, 2009) that originated 

in marketing literature as a way to conceptualise the design of services through and based 

on the client (Prahalad and Ramaswamy, 2004; Auh et al., 2007). This concept was later 

utilised in the development of service-oriented architecture in IT research (Ordanini and 

Pasini, 2008). In terms of football literature, value co-creation has been employed in the 

design of strategic governance models to oversee the integration of local trusts and 

football clubs (Castro-Martinez and Jackson, 2015). However, value co-creation has not 

been specifically defined in terms of sport management. Therefore, a definition has been 

adapted from other disciplines to match the current context. Accordingly, this research 

defines value co-creation as the process of collaboration among the members of the 

coaching team (team manager, coaches, data analyst and sports scientist) to create new 

analytic models and use new technologies to discover knowledge in the datasets. This 

strategy seeks to blend different perspectives to obtain a mutually valued outcome 

(Prahalad and Ramaswamy, 2004). In this vision, all participants (i.e. data analyst, 

coaches, team manager, and other stakeholders) have their own views, needs, and 

interpretations of the data. For instance, while a coach manager might have a preference 

for visualised techniques, such as video analysis, the data analyst is likely to be more 

quantitative oriented. Combining these views may produce deeper, more insightful 

analysis of data through the development of new models (Mackenzie and Cushion, 2013).  

Presentation and interpretations may also be affected by social environment, the 

philosophy of individuals or their roles, and the particular qualities of recipients (Groom, 

Cushion and Nelson, 2011; Barbour, Treem and Kolar, 2017). By extension, any 

proposed intervention of video analysis from an analysts would entail careful 

consideration of the format, design of session and delivery, and specific targeted outcome 

(Groom, Cushion and Nelson, 2011). Hence, communication during the value co-creation 

process is vital to ensure understanding of the reports and associated technology outputs 

(Booroff, Nelson and Potrac, 2016), as misunderstandings can result in incorrect or 

unwanted consequences, lack of commitment, and limited or incorrect understanding of 

the various metrics (Wright, Atkins and Jones, 2012). 
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Much of the literature stresses the importance of trust and respect in the collaboration 

between the members of the team, including manager, coach, and data analyst, as well as 

including athletes, assistant coaches, and administrators (Potrac, Jones and Armour, 2002; 

Jones, Armour and Potrac, 2004; Cushion, Armour and Jones, 2006; Potrac and Jones, 

2009; McGarry, T., O’Donoghue, P., & Sampaio, 2013, pp. 175–186). Trust can improve 

understanding and reduce conflict between stakeholders (Groom, 2012; Groom, Cushion 

and Nelson, 2012), ultimately improving the value co-creation process.  

In summary, stakeholders collaborate to produce a fuzzy output (knowledge), based on 

fuzzy requirements (knowledge requirements for taking a proper decision), creating the 

need to combine concepts (the agile approach and the value co-creation process) to create 

the Agile value co-creation process. This new process facilitates understanding of the 

creation and discovery of knowledge, ultimately improving the co-creation development 

process.  

2.6 KD Maturity Models (MMs) 

Maturity Models (MMs) are developmental models that describe the ability of an 

organisation or system to produce a specific outcome or logical relationships between the 

development routes of certain dimensions, attributes, or processes (Kuznets, 1966). Early 

forms of maturity are evident in the work by Maslow (1970), Kuznets (1966), and Nolan 

(1973; 1979), who created a hierarchy of human needs, economic growth, and IT 

progression in organisations, respectively. Maturity models assume that organisational 

development is predictable and structured. For this reason these models are extensively 

used in Information Systems (IS) literature, especially in data analytics (Chen and Nath, 

2018). The current research is primarily focused on these models in the organisational 

context. 

MMs help organisations to meet performance objectives by providing valuable insights 

into current levels of capability, process, and resource development (Cosic, Shanks and 

Maynard, 2012), as these theories offer a systematic overview of organisational capacities 

along a particular projected path (van de Ven and Poole, 1995; Gottschalk, 2009). In other 

words, MMs are “a set of characteristics, attributes, indicators, or patterns that represent progression 

and achievement in a particular domain or discipline” (Caralli, Knight and Montgomery, 2012, p. 3). In 

IS literature, MMs demonstrate the process through which organisations attain certain 
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levels of technical competency and strategic alignment (Becker, Knackstedt and 

Pöppelbuß, 2009a).  

MMs are utilised in the current research. In order to provide a coherent understanding of 

the rationale for this and a theoretical basis for the use of this model, the following section 

discusses the purpose for the development of maturity models. This is followed by an 

overview of the structure of MMs, including key mechanisms, components, and the main 

aspects in the design, after which the section presents the presenting different approaches 

and types of MM. This discussion concludes with a critical examination of the literature 

on MMs in the field of data analytics, which is believed to be the closest form of MM that 

can utilised within the context of KD in football. 

2.6.1 Maturity Model Purposes 

MMs have three possible purposes of use: descriptive, prescriptive, and comparative (De 

Bruin et al., 2009). In other words, MMs are used to describe current situations, predicting 

possible futures based on identified areas of weaknesses, or comparing different cases 

based on a particular set of measures. Each purposes of use is described in more detail 

below. 

A descriptive purpose for MMs uses diagnostic tools to investigate certain attributes and 

practices in order to identify areas for development and provide an informative 

assessment to stockholders (Becker, Knackstedt and Pöppelbuß, 2009b; Maier, Moultrie 

and Clarkson, 2009). This enables MMs to evaluate or control progress and inform 

developmental initiatives (Iversen, Nielsen and Norbjerg, 1999), utilising sets of 

characteristics, goals, indicators, practices and processes  to better understand and assess 

the patterns of work in an of the organisation (Rosemann and Bruin, 2005; De Bruin et 

al., 2009). In contrast, a prescriptive purpose evaluates the current maturity of an 

organisation to create viable strategies and paths towards desired levels of development 

(Becker, Knackstedt and Pöppelbuß, 2009b). Finally, a comparative purpose compares 

data from a current MM with historical data in order to benchmark internal and external 

performance and progress (De Bruin et al., 2009; Maier, Moultrie and Clarkson, 2009).  

2.6.2 Maturity Models Structure  

In broad terms, MMs are measures that create a sequenced progression path from one 

state to a desired mature state (Becker, Knackstedt and Pöppelbuß, 2009a; Gottschalk, 

2009). This involves two main components: Maturity Levels and Measured Components. 
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Maturity Levels, or stages, represent different levels of progress or improvement over 

time. These levels are characterised in terms of stages-of-growth models, stage models, 

or stage theories (Prananto, McKay and Marshall, 2003) and must be aligned with the 

culture, strategies and structure of the organisation.  

Measured Components are the processes that deliver the needs of the proposed Maturity 

Levels (Pöppelbuß and Röglinger, 2011). These components are often organised 

hierarchically into multiple layers (Rosemann and Bruin, 2005) and include competence 

objects, maturity levels, criteria, and methods for data collection and analysis (M.C. Paulk 

et al., 1993). Fraser et al. (2003) state that these components usually consider the 

following, as part of the activities undertaken at certain levels of maturity: levels, 

descriptors, descriptions for each level, capability areas (dimensions), activities for each 

capability area, and a description of each activity. Finally, general frameworks exist to 

inform the structure and function of MMs, creating a practical approach for the design 

and use of these models (Pöppelbuß and Röglinger, 2011). 

2.6.3 MM Approaches 

There are three main approaches taken by MMs: progression, capability, and hybrid 

(Mehravari, 2014). A progression model is a lifecycle approach that focuses on improving 

organisational maturity, with no relation to process or capability. A capability model 

focuses on improving performance in terms of process and goals from one maturity level 

to the next through the assessment of processes and capabilities (Wendler, 2012). Finally, 

a hybrid model mixes both models, with maturity being constructed to reflect on 

development in terms of improvements in performance (Eppler, 2014).  

Maturity models can be either focus on a single process or the entire set of available 

processes (Proença and Borbinha, 2016). In the former scenario, the MM investigates the 

capability to complete a specific task, such as obtaining or designing a technology, 

whereas the latter approach examines the ability of the entire organisation to complete 

tasks efficiently (Rosemann and Bruin, 2005; Hammer, 2007).   

2.6.4 Capability Maturity Model (CMM) 

The Capability Maturity Model (CMM) was one of the most common MMs in literature 

and in professional contexts. This framework was designed to assess and develop 

software processes and performance in the software industry (Caralli, Knight and 

Montgomery, 2012). CMM examined three components: Key Process Areas (KPAs), 
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Process Capability and Maturity Levels (Mark C. Paulk et al., 1993). The CMM was 

adapted by companies and universities, and was extended to better focus on certain 

organisational requirements (Dawson, 2009). The CMM was replaced by the 

Compatibility Maturity Models Integration (CMMI) framework in 2010 (CMMI, 2010; 

CMMI Product Team, 2010, 2018).  

The Capability Maturity Model Integration (CMMI) was created in 2000, with the 

creation of a single framework from three integrated MMs. This framework, the 

Capability Maturity Model for Software, System Engineering Maturity Model and the 

Integrated Product Development Capability Maturity Model, has subsequently informed 

the development of other MMs, such as the People Capability Maturity Model (P-CMM). 

Versions of the CMMI framework exist for acquisition, development, people and 

services, and a new version (V2.0) of the CMMI Development Framework was recently 

released(CMMI Institute, 2018).  

The adoption of the CMMI framework results in improvements in key processes areas, 

increased organisational capability and higher levels of maturity (Software Engineering 

Institute, 2005, 2010; CMMI, 2010; CMMI Institute, 2018). CMMI assesses 

organisational change in terms of the match between business strategies and capability 

levels, which are specific developmental goals, or maturity levels. The function of CMMI 

versions is to provide information for adaptation or modifications based on a specific 

score to meet the organisational or team needs in the fulfilment of specific sets of 

strategies.   

2.6.5 Data Analytics Maturity Models 

MMs for data analytics systems measure the ability of organisations to integrate and 

utilise knowledge in organisational decision-making (Popovič, Coelho and Jaklič, 2009; 

Popovič et al., 2012; Chen and Nath, 2018). For instance, Chen and Nath (2018) 

investigated management perceptions and attitudes. They discovered that the maturity of 

business analysis influences both process performance and organisation performance. As 

will be discussed in detail below, Business Analytics Maturity Models are generally 

classified into technical focused, organisation focused or mixed.  

2.6.5.1 Technical Focused Maturity Models 

Technical MMs focus on technical aspects of IT infrastructure in terms of connectivity, 

data warehousing, integrability and security, with earlier versions focuses on those 
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aspects most relevant to enterprise data architecture and Business Intelligence (BI) 

applications. Examples of technical MMs include Watson et al.’s (2001) Data 

Warehousing Maturity Model, which uses levels of growth to classify technical 

capabilities into three stages (initiation, growth and maturity), which are defined by nine 

characteristics of enterprise data warehouses. Another example is Eckerson’s (2004, 

2009) six-stage MM for data technology implementation, which was inspired by human 

growth. The final example is Tan et al.’s (2011) Enterprise BI Maturity Model, which 

measures four dimensions (analytics capabilities, data warehousing architecture, 

information quality, and master data management) to determine five maturity levels.  

These technology focused maturity models are criticised for a failure to recognise the 

relationship between BA technology and the culture, powers, processes, strategy and 

structure of organisations (Lahrmann et al., 2011). 

2.6.5.2 Organisation Focused Maturity Models  

Organisation MMs are the other category of BA, with an exclusively non-technical focus 

on people aspects of a company. The first example of this kind of MM is Gartner’s 

Maturity Model for Business Intelligence and Performance Management, which uses a 

five-point scale to evaluate dimensions including availability of performance metrics, 

levels of business sponsorship, organisational structure support, and scope of the BA 

initiative (Rayner and Schlegel, 2008). The second example is Capgemini’s (Capgemini, 

2012) Predictive Analytics Maturity Framework Assessment which seeks to maximise 

business benefits by the evaluation and optimisation of the maturity of the predictive 

analytics environment of an organisation in terms of its competence, deployment, 

enablers, governance, strategy and vision. The third example is Davenport and Harris’s 

(Davenport and Harris, 2007) DELTA model (Data, Enterprise orientation, analytics 

Leadership, strategic Targets and Analysts) which focuses on a number of analytical 

factors in an organisation: “Analytically Impaired, Localized Analytics, Analytical 

Aspirations, Analytical Companies and Analytical Competitors”. Another organisation 

MM was developed by Harriott (2013) to assess the effectiveness of analytics strategy 

and then develop structured development paths to optimise value output from investment 

in business analytics. Harriott’s MM uses seven dimensions, which are “business 

challenges, data foundation, analytics implementation, insight, execution and 

measurement, distributed knowledge, and innovation”. The final example is The Data 
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Warehousing Institute (TDWI) model, which looks at readiness for analytics, culture, data 

management, internal politics, and skill sets, in order to categorise an organisation in 

terms of five levels of analytics maturity. This enables identification of business drivers 

and cultivates a positive BA environment, in which analytics are properly integrated and 

strategically aligned (Halper and Stodder, 2014).  

These kinds of BA MM are criticised for ignoring technological aspects of business. This 

led to the development of the third stream of BA MM, which focuses on the integration 

and alignment of technical and organisational dimensions.  

2.6.5.3 Integrative Maturity Models 

One of the most notable capability-focused MMs is the BA Capability Maturity Model 

(BACMM) (Cosic, Shanks and Maynard, 2012). The BACMM focuses on assessing 

capability in governance, culture, technology and people, evaluating a range of technical, 

organisational and strategic issues on a five-level scale of maturity from ‘non-existent’ to 

‘optimized’. This comprehensive approach has resulted in the BACMM being criticised 

for its generality, as the model is broadly applicable to most IS contexts and phenomena. 

There is also little evidence of empirical testing to validate the claim that the BACMM 

leads to a sustainable competitive advantage. 

In general, impact-focused BA MMs focus on organisational performance and decision 

enablement. As an example of this, Teradata’s BI and DW Maturity Model examines the 

impact of analytics on certain business processes and decision capabilities in terms of five 

maturity levels: reporting, which seeks to categorise events; analysing, which looks at the 

reason for events; predicting, which tries to determine likely future events; 

operationalising, which looks at current events; and activating, which describes the push 

to make events occur (Olszak, 2016).  

The IDC’s Big Data and Analytics Maturity scope examines organisational development 

towards the effective and efficient use of data in decision making (Vesset et al., 2013). 

This model examines quality of data, strategic clarity, people (skills and culture), process 

improvement, and sophisticated of technology. These are graded in terms of five stages, 

from ‘Ad Hoc’ to ‘Optimized’, to predict maturation of organisational capabilities. IDC 

states that technological and data capacity develops faster than strategic intent and people. 

Similarly, the Business Intelligence Maturity Hierarchy (BIMH) illustrates the knowledge 

management capability of organisations in terms of data, information, knowledge and 
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wisdom (Rajterič, 2010). Finally, Lahrmann et al. (2011) studied an impact-focused 

maturity model of BA with 103 business and IT practitioners. Their study validates the 

theory that a MM based on deployment of BA technology lead to greater internal process 

efficiency and overall performance in the adopting organisation. The assessment of BA 

maturity should involve the measurement of those areas most affected by analytics(De 

Bruin et al., 2009; Souza and Gomes, 2015). However, the review of MMs suggests that 

many models focus on certain aspects of BA maturity, rather than comprehensively 

examining all related aspects and considerations.  

2.6.6 Criteria for a “Good” Maturity Model 

MMs face certain inherent challenges which should be overcome during the development 

of a model. Ahlemann et al. (2005) state that MMs should have a solid empirical base, 

software tool support, standardization, flexibility/adaptability, benchmarking 

applicability, certification, disclosure of potential for improvement, evidence of 

correlation between maturity model adoption and performance. Good capability 

assessment models should be cost-effective, reliable and valid, as well as using good 

academic evidence (Simonsson, Johnson and Wijkström, 2007), however many MMs are 

overgeneralised and do not have a sufficiently rigorous empirical base (Benbasat et al., 

1984; King and Kraemer, 1984a; Rosemann and Bruin, 2005; McCormack et al., 2009). 

Additionally, MMs are not applicable for all industries or sectors (Mettler and Rohner, 

2009). Even when they are applicable, the design must clarify the need for continuous 

improvement before prescribing a set sequence towards a specific “end state” (King and 

Kraemer, 1984b) leading some authors to design MMs as lifecycles or continuous 

processes (Becker, Knackstedt and Pöppelbuß, 2009b; De Bruin et al., 2009; Maier, 

Moultrie and Clarkson, 2009; Mettler, Rohner and Winter, 2010; Solli-Sæther and 

Gottschalk, 2010; van Steenbergen et al., 2010).  
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2.7 Synthesis of the Literature Review 

The literature review for this research covers the following areas to aid in developing and 

understanding the width and depth of the research. Additionally, to aid in improving the 

current Football Data Analytics practices within the coaching team. Table 2-3 highlight 

the major research subjects that are investigated in this research to develop the models, 

framework and the maturity model. 

Table 2-3: Research Subjects used in this research 

Subjects  Related Paper Subjects Sections 

Knowledge 
To understand the definition of knowledge and the key differences 

between Data, Information, Knowledge and wisdom. 
2.2  

Knowledge 

Discovery 

To look at the definitions and the descriptions of KD in the 

computing, informatics, information technology, information systems 
2.3 

KD in the 

Football 

Industry 

This is to review the related applications on KD in the domain of 

football. Also, the objectives of using KD, Data Mining, Data 

Analysis and related subject in football data analytics. Also, to 

reflects on the current needs of developing performance analysis 

applications in football based on the variations of the KPIs (i.e. 

psychological, physical, technical and tactical). Finally, to look at the 

subjects of FDA used in football in order to understand the analytical 

model used in this research area. 

2.4 

Knowledge 

Discovery 

Value  

Most of the studies focus on the what would football data analysis 

would benefit researches with minimal focusing in what would be the 

value of FDA. The review in this subject addresses these concerns.   

That aided in the development of the initial framework. 

2.5 

The initial 

KDV 

Framework in 

Football Data 

Analytics  

The scope of the area of the literature it to build the framework, the 

models and sub-models needed to address the needed of the research. 

The subjects covered here are the Technological Resources in 

football (i.e. data sources and data analysis technologies), The KD 

Human Resources (i.e. Team management roles, competences for the 

different roles (i.e. team managers, coaches, data analysts, and the 

members of the coaching teams). Additionally, it covers the Agile 

approaches, tools and artefacts that are best suitable to use in 

addressing the research needs. Finally, it reviews the principles of 

developing Maturity Models (MM) (i.e. purpose, structure, 

approaches, the variant application of MM and the criteria of 

developing good MMs)  

2.6 
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2.8 Summary 

This chapter sought to review and synthesise the literature relevant to the knowledge 

discovery process and associated resources, with particular reference to football. Based 

on this review, the Melville framework has been adopted to structure our understanding. 

This paradigm argues that technological and complementary resources are important for 

the delivery of outcomes, with consideration of human resources, technological resources 

and value. A definition was provided of the concept of value in the context of KD to 

develop a new functional definition for the sports industry. As the main mechanism for 

the realisation of value through the KD system is performance analysis, a review was then 

conducted into analytic methods and KPIs. The second section models for use by football 

teams, the literature in this area was outlined, with particular reference to MMs and data 

analytics. The next chapter will introduce the methodology utilised as this research aims 

to operationalise the results into a maturity model for use by football teams, the literature 

in this area was outlined, with particular reference to MMs and data analytics. The next 

chapter will introduce the methodology utilised to extend, improve and validate the 

Melville framework, as outlined in the literature, to fit the needs of the football industry. 
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Chapter 3  Research Methodology 

3.1 Introduction 

This chapter aims to provide a detail examination and discussion of the research 

philosophical stances to answer this research question and fulfil the objectives of the 

current study. Based on the question and the philosophical stances embraced, the research 

strategy is developed to inform the adoption of the research methods and analytical 

approach. This chapter begins with a discussion of the research philosophy, following 

this with the resultant research strategy, presented in terms of research methods. This is 

followed by the research analytic approach proposed to provide insightful knowledge 

from the research activities. Finally, the chapter concludes by looking at the research 

ethics governing the data collection and analysis process, and the process by which the 

quality of the current research was maintained. 

3.2  Research Paradigm 

This research aims to develop a framework for understanding the value co-creation 

process in the football industry through the use of knowledge discovery systems. In order 

to develop the philosophical stances governing the research strategy by which to fulfil 

this aim, it is necessary to first identify the nature of knowledge (ontology) and how to 

obtain this knowledge (epistemology). 

The two main research concepts are the interpretive paradigm and the positivist paradigm, 

each of which is built upon certain ontological, epistemological and axiological stances 

(Creswell and Miller, 2000). The ontology defined “what” is the knowledge and 

characteristics of the knowledge (Teddlie and Tashakkori, 2012). This can be a single 

global reality or numerous different contextual realities (Walsham, 2014). Ontological 

stances can characterise the definition of science in terms of relationships between 

concepts (Poli and Obrst, 2010) or the understanding of a given phenomenon (Walsham, 

1997). The positivist paradigm defines knowledge as a set of relations between different 

concepts (Venkatesh, Thong and Xu, 2012), whereas the interpretivism paradigm 

believes that knowledge cannot be understood through relationships and requires in-depth 

investigation.  Because of these beliefs, positivists define a framework as a set of 

propositions and models as sets of tested relations while interpretivists define a 

framework as an abstraction of reality and models as sub-sets of that framework 
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(Tashakkori and Creswell, 2008). The model is defined as a set of tested relations for the 

positivists while interpretive defines the model as a sub-set of the framework (Gregor and 

Hevner, 2013). The aim of the current research is to develop a framework for 

understanding the value creation process, rather than testing it. Therefore, the knowledge 

shall be framed based on the interpretive ontological stance, in which reality is abstracted 

in terms of value creation in the knowledge discovery process, rather than testing 

relationships between concepts. 

Ontology discusses whether reality is external and unknown, or internal and known. In 

other words, ontology governs the question of whether respondents are assumed to 

‘know’ the knowledge, which the researcher must grasp, or the respondents are assumed 

to not ‘know’ the knowledge, meaning that the researcher should discover the relationship 

between concepts. Positivism primarily believes that knowledge is unknown and that 

correlations should be derived to test propositions; interpretivism mainly believes that 

knowledge is known and so researchers should capture the insights of participants. 

Because the KD process happens intentionally, the respondents shall be informed of the 

intentions and rationales of their activities, meaning that the interpretivist ontological 

stance is most appropriate for adoption in this research. 

Epistemology is concerned with the question of ‘how’ to gain knowledge (Lincoln, 

Lynham and Guba, 2011). Here, positivists believe that the best way to gain knowledge 

is to take an active position in setting propositions, from the literature, and testing it. In 

contrast, interpretivists believe that researchers should understand the knowledge, 

enabling them to draw the abstraction of reality in a framework, in its context (Walsham 

and Waema, 1994). The interpretivist believes that the researcher shall understand the 

knowledge, to draw the abstraction of reality in a framework, in its context, which is 

called social construction of reality. The current research follows the interpretivist 

paradigm to socially construct reality in the context through face-to-face discussions with 

each participant, supplemented by examination of their practices and behaviours. This is 

important because the different financial support and resources available to coaches in 

each team creates differences based on context. Furthermore, each manager has an 

individual rationale for the various practices involved in their role, making reality 

different in each context. This is important because the contingency theory stipulates that 

there is no correct prescription for all managerial and decision making issues, because the 
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best mechanism should be used to fulfil specific aims in specific contexts (Drazin and de 

Ven, 1985). Accordingly, it could be important to understand each coach practices, 

rationales, and intentions alone then consolidating different views in different contexts to 

develop a comprehensive framework.  

Axiological stance defines the level of subjectivity or objectivity in a given piece of 

research. Positivists believe that researchers are fairly objective and that they use 

objective tools to test the propositions of their studies (Mertens, 2007) . In contrast, 

interpretivists believe that a researcher will inevitably have a subjective understanding of 

contextual factors and, by extension, reality. From this perspective, the background and 

education of the researcher influences how the perception and interpretation of interviews 

and facts surrounding them. Accordingly, the researcher has taken many courses in 

coaching and data analytics to be able understanding the participants thoroughly.  

Although this can provide insights to a problem, too much subjectivity can destroy the 

credibility of the research, which is a risk inherent to interpretive research, such as the 

current study. For this reason, this research will adopt a conceptual framework derived 

from the literature to guide the data collection, data analysis, and reporting process 

(Aliseda, 2006). This framework is not intended to limit or propose certain relations, but 

rather to highlight the concepts that need to be investigated to ensure less subjectivity in 

perception and understanding. This is supplemented by use of validation techniques, to 

ensure that respondents have similar understanding of the researcher, and the use of a 

verification tool to construct new arguments for those with less knowledge or awareness. 

3.3 Research Strategy  

This research is a multi-phased (three) study based on a design science research 

methodology (March and Smith, 1995), meaning that it seeks to address and develop a 

solution for a certain problem (Peffers et al., 2007). The aim of the current research is to 

answer the following question: 

“Why are some teams better able to get value from investing in knowledge discovery 

technologies than others in the football industry?” 

A maturity model was required to assess the abilities of teams to realise the value gained 

from investment in KD technologies. In the specific context of this study, design science 

differs from traditional research approaches in the sense that it not only attempts to 

understand the reasons for differences in realising the value, but also seeks to develop 
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tools for teams to benchmark their capabilities.  The development of such a tool requires 

that research concepts be identified, taxonomised, and operationalised into scales for 

assessment (Gregor and Hevner, 2013). In the current research, this process involved 

operationalising the expected value of KD to the coaching team, identifying and 

categorising KD resources, and depicting a model of the role of football technologies in 

improving coach performance.  This was carried out to enable the research to identify and 

frame the role of different knowledge, skills and competences required from producer 

(i.e. data analyst) and consumer of the knowledge (i.e. coach), thereby enabling the 

expected value from KD to be realised. 

As recommended by design research (Hevner, 2007), this research is organised into three 

phases. The first phase sought to understand the AS-IS to develop a framework that 

explains variations in understanding to develop the initial framework, models, and tools 

based on an assessment of coaching awareness and use of KD in developing football 

related strategies. The second phase involved the development of the maturity model.  

Finally, the aim of the third phase was validating the framework and verifying the 

maturity model, in order to ensure the quality of the research outputs. The interviewees 

listed in Table 3-1, Table 3-2, and Table 3-3 will be discussed, analysed, referred, and 

discussed in more details in Chapter 4 Chapter 5 Chapter 6 .  

3.3.1 First wave of interviews: Developing the framework  

Development of the framework started with in-depth interviews with experts, coaches, 

data analysts and coaches. The following sections outline and discuss the sampling 

method, interview guide and analytic approach adopted in the development of the 

research framework utilised in the current research, as well its subset models and tools. 

3.3.1.1 Sampling  

The sampling approach adopted in this research is purposeful and selective (Suri, 2011). 

This means that the selection of respondents is based on strict criteria, in order to inform 

the development of a constructive framework to aid teams for improving the value 

realisation from investing in KD technologies. Because of this aim, well-informed 

opinions were required, which means that participants needed to be experienced. 

Therefore, the first criteria were three years of experience in football. The second was 

that experts had senior positions in their teams (only team managers, coaches, and data 

analysts). The third criteria were that participants had to be based in the chosen 
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geographical scope of this study: i.e. Saudi Arabia. Interviews with experts from the 

British League were used to advise on the current status of Saudi practices, so that a 

constructive framework can be developed. A pilot study was conducted and then 

interviews were held to discover current practices in utilising the KD technologies in 

Saudi Arabia. Participants were coaches, data analysts and team managers from the 

premier league, youth league, second league, and Olympic league in Saudi Arabia, as well 

as certain high-level decision makers in the Saudi Arabia Football Association. Since 

2018, there are sixteen teams in the Saudi Professional League (SPL) (GSA, 2018), as 

well as one Olympic team, a youth team, and a national team (SAFF, 2018). These teams 

constitute the population of this research. Invitations were sent to all eligible coaches, 

team managers, and data analysts in Saudi Arabia. Interviews were scheduled for a 

duration of 1-2 hours, in an attempt to understand their perspectives on optimal usage of 

KD resources.  

Table 3-1: Wave 1 - Initial Participants – Framework Development 

Code Team / Bodies Role 

W1TD Football National Teams Technical Director & Expert (Coach, 

Player in Different Leagues)  

W1FC2 Football Club - 1st Team Coach 

W1DA3 Football Club - 1st Team Analysts  

W1DA4 Football Club 1st Team Analysts  

W1FC5 Football Club - Olympic Team Head Coach  

W1DA6 Football Club - Olympic Team Analyst  

W1FC7 National Olympic Team Coach 

W1FC8 Football Club - 1st Team Coach 

W1FC9 Football National Teams Assistant Coach  

W1DA10 Football Club 1st Team UK Analysts  

W1BM11 Football Organisation - UK Performance Analysis Team Member 

W1BM12 Football Organisation - UK Performance Analysis Team Member 

W1BM13 Football Organisation - KSA Technical Committee 

W1RS14 Rugby Club Director of Performance Analysis 

W1PSC15 Sports Data Consultancy  Data/Video Analysts  

W1BM16 Football Organisation - KSA Technical Committee 

W1PSC17 Sports Data Specialists - UK Representative - Sports Data Specialist 

W1PSC18 Sports Data Specialists - 

International 

Representative - Sports Data Specialist 

W1PSC19 Sports Consultancy - KSA Manager – Football Data Specialist  

W1PSC20 Sports Consultancy - KSA Representative - Football Data 

Specialist 

W1PSC21 Sports Data Specialists Live Scouting Administration 



54 

 

3.3.1.2 Interview Guide 

The invitation was accepted by five teams from the premier league, the Olympic team, 

the youth team and the national team. The research utilised semi-structured interviews, 

examining components of the conceptual framework. As a brief summary, these 

components are value (i.e. benefits), outcomes (enhanced use of data analytic models and 

key performance indicators in planning and coaching), the technological resources, 

human resources (required skills, competences and knowledge), and value co-creation 

process and tools. The questions focused on the current and required knowledge of 

coaches and data analysts regarding the effective utilisation of KD technological 

resources. Since KPIs are the main outputs of KD, questions also discussed the main KPIs 

used by the team manager and data analyst, how they were developed, and how they 

benefit from KD resources. Finally, interview questions focused on the value co-creation 

process across the stakeholders, looking at issues like communication, tools, and 

mechanisms used in listening and understanding the needs or expectations of 

stakeholders, and the types of knowledge required by the team. 

3.3.1.3 Analytic Approach adopted 

As the sample size in the current research was too small for thematic analysis, other 

analytic approaches were evaluated for adoption. The closed coding was used to guide 

the data collection and analysis process (Charmaz, 2006). The theoretical lens of this 

research was provided through a combination of the Melville framework, benefits 

mapping, value co-creations, and Agile frameworks, which are discussed in depth in the 

final chapter.  Closed coding does not mean rejecting other interesting ideas (Urquhart, 

Lehmann and Myers, 2010), instead providing a flexible, open starting point for the 

analysis. The significance of the rationale is weighted in terms of the plausibility and 

feasibility of a statement, as perceived by the researcher, rather than number of 

respondents. Although this approach has an obvious inherent bias, the results of the 

research were contrasted with the literature to ensure the validity of the research findings, 

as well as being subjected to the aforementioned validation and verification process in 

the final phase.  

3.3.2 Developing the Maturity Model 

Maturity Model (MM) were developed using the results from the previous phase. The 

MM was adopted for this development process and customised to meet with the specific 
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needs of this research, as they, e.g. CMMI and DELTA (see section 2.6.5) was originally 

intended for use in software development, therefore requires adaption for new analytic 

contexts (Kim and Grant, 2010). However, this research aims to developing new analytic 

models to develop new technologies are similar process. This research borrowed the 

CMMI from the software engineering literature to apply its approach to KD literature.  

Questions were prepared on the Likert scale (5 items, from strongly disagree to strongly 

agree). The maturity model was designed immediately prior to the framework being 

completed. The face validity of the model was ensured by having three interviewees 

answer the questionnaire, to ensure that any misunderstanding or miscommunications 

were eliminated, which improved question clarity and focus for the respondents.  

3.3.3 The Second Wave of Interviews: Validating the Framework 

The second wave of the interviews were intended to validate the results of the first wave, 

as well as to validate the maturity model. This wave focused on obtaining data from 

experienced individuals in senior positions, due to the belief that they would have greater 

insight into the applicability and usefulness of such technologies. Interviews were 

conducted with those in the Saudi Arabian Football Federation positions, such as the 

executive manager of the technical committee, technical committee members, and the 

director of the Academy of Football. Senior figures from local teams were also 

interviewed to gain their perspectives on results. 

Table 3-2: Wave 2 - 2nd Participants (Framework Validation) 

Code Team / Bodies Role 

W2TD1 Football National Teams Team Director – Former Player – Former 

Coach 

W2EM2 Football Federation Executive Manager of the Technical 

Committee 

W2TCM3 Football Federation Technical Committee Member – 

Professional coach 

W2FC4 

 

Football Federation - Football 

Club Academy 

Professional Coach – Academy Director – 

Former National Team Coach  

W2FC5 Football Federation - Football 

Club Academy 

Professional Coach – Academy Director –

National Youth Team Coach – Scouting & 

Talent Identification 

W2FC6 Football Federation - Football 

Club Academy 

Professional Coach – Professional Player 

Mentor  

W2FC7 The UK Football Association Professional Coach 

W2FTM8 The UK Football Association UK Team Manager 

W2SC9 University Principal Lecturer in Sports Coaching 

Science 

W2TD10 Football Federation Ethics Discipline Committee 
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3.3.4 Third Wave of Interviews: Verifying the framework 

The last wave sought to assess the weaknesses and strengths of each team regarding the 

technological and human resources required to use KD effectively. Data analysts and 

coaches from five teams completed the assessment and were sent the analysis, after which 

their feedback was received and analysed. The five teams represent different leagues in 

Saudi Arabia, in order to achieve a representative view of teams in different categories. 

Thus, two teams were selected from the professional league, Olympic national team, 

under 19s national team, and one team from the secondary league.   

Table 3-3: Wave 3- 3rd Participants (Verification and MM - Application) 

Case Code Team Role Team / Bodies 

Case 1 C1P1 CT1 Video Analyst Football Club - 1st Team 

Case 2 
C2P1 

C2P2 

CT2 Assistant Coach  

Data Analyst 

U19 National Team  

Case 3 C3P1 CT3 Data Analyst  National Olympic Team 

Case 4 C4P1 CT4 Assistant Coach  Football Club - 1st Team 

Case 5 C5P1 CT5 Football Coach Football Academy Club 

3.4 Research Quality  

The research quality process serves to ensure that a study produces outcomes that reflect 

reality and that the data obtained are suitable to address the research question, especially 

given the subjectivity way in which human understand and process ideas, which is 

integral to interpretivist research. During this process, five main indicators are considered 

in order to determine quality: reliability, validity, credibility, reflexivity and 

transferability. These criteria will be briefly outlined below in general terms, and then 

discussed in detail in the following sections. 

Reliability describes the truthfulness of participants in a study (Rossman and Rallis, 

2003), which is important because people can become inclined to misrepresent their 

perspectives or to give intentionally mislead with their answers for a variety of reasons, 

including a dislike for being observed, a feeling of shyness, or even because of a perceived 

lack of security (Kirk and Miller, 1986). In recognition of this tendency, a number of 

specific measures were adopted to ensure the integrity of the interview and to guarantee 

the ability, and willingness, of participants to speak freely on the topics under 

investigation.  

Validity describes the accuracy with which a researcher has understood the statements 

and utterances of the participants in their study (Arksey and Knight, 1999; King and 
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Horrocks, 2010). Therefore, I took extensive notes and paraphrased the answers of 

respondents, then checked these interpretations with the interviewees in order to assess 

whether my understanding of their meaning was a fair representation of the meaning that 

they had intended to convey.  

Credibility describes the correctness of any records made of participant contributions, in 

terms of accuracy in the `observations and transcripts (Lincoln and Guba, 1985). 

Throughout the three waves of interviews, there were prolonged engagements with 

experts in this domain in order the understand the context and dialects of the coaches, 

team managers, analysts and relevant stakeholders. Additionally, I took professional 

analysis courses, official coaching certificates, attended workshops, conferences and 

professional training to gain as much as possible of up to date experts’ knowledge within 

the field. Moreover, I met with football journalists, football associations and football 

federations members to gain knowledge of current trends and current practices and issues 

of this area of the research (Lincoln and Guba, 1985). In order to ensure that a high degree 

of credibility was achieved, all interviews were recorded, transcribed and translated. 

Exceptions were made in those situations where participants explicitly forbade 

recordings, such as for reasons of security. In these cases, a degree of credibility was 

sacrificed in return for access to valuable data.  

Reflexivity describes the relationship and the reflection of the researcher on his research. 

It is a process of which the researcher engages with his research, communicate with 

interviewees, develop and improve knowledge in the research area, observe and analyse 

interviews and questioners.  This should lead to maturing the knowledge gained from 

aliening that with literature readings to consolidate concepts and understanding. As well 

to which the framework utilised in the study is trustworthy and the rationale for the 

interpretation of data is suitable for its intended purpose. In consideration of this issue, 

the literature was evaluated to ensure that the researcher was cognizant of the salient facts. 

Finally, transferability, which concerns the applicability of the research practices and 

finding outside the research context and how this research could aid in other research 

areas. 
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Table 3-4: Summary of research qualities 

Research 

Quality 

Definition Measure used 

Reliability Participants are telling 

the truth and their 

discourse is constant over 

time. 

Asking the same question in different 

ways at different times.  

Showing a consent form to confirm that 

all data gathered are confidential and will 

not be shared with anyone. 

Validity Ensure that the 

understanding of the 

researcher matches that 

of participants. 

Paraphrasing the answers and ensuring 

similar results. 

Emails were sent to give confirmation of 

the interviews. 

Credibility  Ensuring that everything 

written is correct, truthful 

and trustworthy. 

Consistency of the report with few 

contradictions between findings by using 

a recorder and recording interviews, then 

checking transcripts.  

Reflexivity Ensuring that the 

researcher’s 

understanding is correct, 

and her interpretations 

are the most suitable in 

the context. 

Evaluating different possible 

understandings of the facts using 

literature review and different rationales.  

3.5 Research Ethics 

This research study targets experts in the domain of football coaching because the study 

involved human participants, it was necessary to consider ethics and gain ethical approval 

from the researcher’s university. Ethical approval was granted based on that. Towards 

this informed consent was conducted whereby participants were informed about the 

purpose of the study and their consent was gained. The participants were also informed 

about their right to withdraw from the study at any time. 

3.6 Chapter Summary 

This chapter aimed to discuss and set the methodological foundations for this research. 

This is an interpretive research adopting design science strategy to develop a framework 

for understanding the value co-creation process of the Knowledge discovery resources in 

Football so that a maturity model can be used to assist the team manager evaluating their 

teams’ abilities to realise value from investing in the KD. The literature is used to set the 

theoretical lens for this study and set the methodological basis for defining the sample, 

interview guide and analytic approach of this research. This research follows three phases: 

developing the framework, developing the maturity model, and validating and verifying 
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the maturity model and the framework. The next chapter will be the first of three in 

depicting the findings.   
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Chapter 4  Knowledge Discovery Resources 

4.1 Introduction 

The analysis is presented over two chapters while the validation and verification are 

devoted in a separate chapter. This chapter aims to investigate the required resources for 

gaining value from the knowledge discovery activities while the following chapter 

focuses on the value of the knowledge discovery activities. These couple of chapters are 

ended by value co-creation knowledge discovery maturity model to operationalise these 

research findings into an assessment tool that can help team managers for gauging their 

capabilities to realise value from knowledge discovery.   

This chapter adopts Melville et al. (2004) framework in identifying and classifying the 

required resources.  According to Melville et al. (2004), the value from investment in 

technology comes from IT resources and complementary resources (i.e. people/human 

resources). The same framework is adopted in this research to understand the required 

resources.  

This chapter structures as follow. After spotlighting the required IT resources as an 

infrastructure for the knowledge discovery activities, Human resources and their 

competences are identified. Based on the common challenges faced in the HR 

communications, proposed Agile methods for improving the knowledge discovery 

process.   

4.2 The KD Technological Resources Model 

The first model of this research is to understand the role of IT resources in the knowledge 

discovery.  In this model, it shows that there are five types of technologies are perceived 

to be critical for the knowledge discovery.  They are tracking technologies, body sensors, 

annotation software, database interfaces, and knowledge discovery analytics. They have 

been classified into hardware and software categorise as visualised in the Figure 4-1.   

Data capturing technologies in terms of tracking technologies and body sensor aim to 

capture live data in the match time and in the training time. The annotation software is to 

give meanings to different data taxonomies and ontologies. The historical data are 

combined in the analysis through having an analytic interface to retrieve and use historical 

data. Finally, data analytics systems consolidate these data, after cleaning them, to 

develop new analytic models or KPIs for discovering new knowledge.   
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Figure 4-1: IT Resources model for enabling knowledge discovery - © by the researcher 

4.2.1 Hardware required to collect the data 

The KD process in the football industry requires technologies to record and track the 

players’ movements and to measure the external environmental factors.  The technologies 

can be classified into body sensors and tracking technologies. Body sensors are those 

wearable devices that track the body physical performance. The body sensors outputs 

include the heart rate, VO2 max, and B2mx (Oxygen in blood).    

“Yes, maybe I know where you are going. I have many positions in the field, but also I have 

many kind of measuring VO2 max, I can check if the player breath under masses, have all 

kind of information. I want to show you know,  let’s see what happen” W1FC2 

In contrast, tracking technologies measure and report the positions, movements and 

actions of players, in addition to weather indicators such as temperature and humidity. 

Tracking technology generates massive data that can motivate the coach to explore and 

discover the implications and uses of these data. This argument is conditioned by certain 

capabilities required from the coach, as will be discussed in team manager and coach 

competences sections.     

Not all teams in the sample were found to have access to similar technologies: two teams 

out of eight have all technologies, with seven having tracking technologies, and one team 

(T3) having no access to any form of technology at the time of interview. Two months 
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after the interview, the researcher was informed by the team analyst that they had bought 

tracking technology. Limited or no access to tracking and annotation technologies can be 

perceived as a disadvantage that constrains the KD process, however manual data 

collection is a viable substitute to other technologies.  

 “We do that manually. We do very primitive analysis due to limited access to first hand data. 

Through my assistants, we can calculate number of successful and unsuccessful passes and 

number of shooting. We cannot do more due to the technological constraints.”  W1FC8 

The managers or the coaches of teams without KD technologies must often rely on 

secondary data or analytic reports published by specialised companies. However, these 

commercial secondary data have certain inherent limitations, because the data are not 

updated, not in-depth, and not customisable. Outsourced analysis from external sources 

is limited to camera-based data, which still lacks the use of sensors in tracking physical 

performance. The outsourced analysis can feed in tactical and technical performance and 

basic physical performance.  

“Just the one I show you before, Stats. With Olympic team we use video and trying to get 

GPS data" W1DA4. 

“We use InStat before with national teams but now I only use visual observations.” W1FC5 

4.2.2 Software: Knowledge Discovery System 

Software applications required for KD are three: data base interfaces, annotation, and 

analytics.  The three technologies are perceived to be important. The first software 

required, which is usually web-based service outsourced from external vendor, is the 

interface for accessing the vendor data of other teams and other matches in the league. 

This is the most accessible and prevail across the teams that are affordable to subscribe. 

“I provide the data in different format to reflect in his view. We use Opta reports and InStat 

to access secondary databases for getting information about players and teams in the 

league” W1DA4. 

“Yes, that is the problem I had, when I first got Opta data about last year, and when I got it 

last time, I was amazed about it, what is this. It was 90 minutes of events-based dataset of 

everything happening in the Match. What will I do with this, I have not seen dataset like 

this before. I said ok, that is a good thing, it is a good structure and good quality.”  W1TD. 
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Using this data, a coach or data analyst can model and understand the performance and 

behaviours of opponent teams in a variety of different situations. The second software 

application is for annotation, based upon code data received from the sensors and tracking 

technologies. These technologies generate huge quantities data, which can be coded and 

annotated for comparison with external data, or which can be modelled and analysed by 

analytic applications.  

“With Olympic team video analysis and observations. Stats, ProZone when I was the analyst 

of the first team.” W1DA6 

“Regarding the methodology, I was thinking about linking the data between the 1st team and 

the Olympic team, not only using one tool or application, but using any suitable, useful 

technologies that could provide a future benefit. All the data we have starts from the 1st 

team, though. There is nothing from the teams before.” W1DA4. 

The main benefits of annotating the primary data is the availability and its depth, which 

are not available in the secondary data. However, it needs more technical human 

resources, as will be discussed later. The reason is that it implies more coding and 

customisation abilities than the standard reporting system such as Opta and InStat. Thus, 

fewer teams are adopting this type of applications.  

“We have software to annotate movements.  It gives us the information about the real time 

and game we can see that the midfield covered more distance then the forward player, the 

midfield they covered the medium speed in the game 5km per hours and the forward 

covered less distance that speed in the game use 10 or 8 km in the average so that the 

different.” W1FC2 

Finally, the data analytic applications can facilitate the development of sophisticated 

analytic models to enable the creation of effective, targeted knowledge (e.g. predictions, 

estimations, probabilities, scenarios, confirming and verifying certain believes or plans) 

to meet the specific needs of each team.  

 “We use Top Sports Lab to predict performance and injuries” W1TD 

“We use fitness data, we work also with InStat football (InStat Scout) very nice algorithms 

and key performance indicators for players and teams’ performance (technical and tactical 

data).” W1TD 
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In summary, all of the teams utilise software applications that provide access to secondary 

data. Four of the eight are using the annotation technologies. The reason for this choice 

seems to be less concerned with the technology and more with the perceptions of the team 

managers and the specific capabilities of the data analysts, as will be discussed in the 

human resources sections below.  

Interface 
Application

Annotation 
Application

Analytic 
Application

Updated 
Database

Other teams 
data

Coding and organising data 
the team performance

Data ready 
for analysis

Hardware Live data

New 
Knowledge

 

Figure 4-2: A model to show the relationship between different software applications and hardware in 

discovering knowledge - © by the researcher 

4.3 The KD Human Resources Model 

The main actors in the value creation process are the consumer of the knowledge (i.e. 

team manager) and the producer of the knowledge (i.e. data analyst). The various 

capabilities and the relationships between these parties in the KD process are outlined in 

diagrammatic form below in Figure 4-3. 
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new data-lead insightful ideas

Communication 
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deliver the right knowledge to the 
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Creating insightful data 
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Coach Competences

Data Analyst Competences

Proper communication channels →  
getting insights from the right 

stakeholders
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knowledge into actions 

(Wisdom)

Competences Capabilities KD  outcomes KD Value

Technology Competences

 

Figure 4-3: A model to explain the role of different competences for discovering knowledge for football teams - © by the researcher
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4.3.1 Consumer of the Knowledge: Coach Competences  

The head coach is expected to have complementary skills that enable him to communicate 

with the data analyst, to understand the data and, to recommend new exploratory 

questions in such a way that new, pertinent, useful knowledge can be discovered and 

utilised in the fulfilment of team aims. Without such competencies, communication is 

likely to be influenced negatively, resulting in the KD process suffering.  

“Honestly the board members they did not have sport technical background, so in this case 

you can only offer basic details. On the other hand, I was developing some reports, and I 

email it.  But there was no feedback and there was no specific methodology, there were no 

time for this, and the time was limited and only for one season.” W1DA4. 

The main competences required here are statistical competences are to read the reports, 

which refers to the ability to interpret the reports and to translate their strategies/ideas into 

hypotheses/questions, and technological competences, which involve knowing the 

limitations and capabilities of the systems. Although data analysts have a responsibility 

for analysis, mutual understanding is instrumental in improving the KD process. It can be 

difficult to establish mutual understanding when the team manager does not possess the 

requisite competences.  

“[There is a] lack of knowledge among head coaches. This is the main reason for no 

engagement in the knowledge discovery process from the systems.” W1TD 

The summary of key findings is summarised in Table 4-1. 

Table 4-1: Summary of key findings regarding the role of the coach competences on the effectiveness of 

knowledge discovery process 

 Findings  

1 The team coach perception of the usefulness of the knowledge discovery and positive 

attitude towards the knowledge discovery technologies play a role in utilising benefits.  

2 The problem formulation is based on the team coach’s ability to comprehend the 

problem 

3 The team coach  is bounded in his ability to comprehend the problem by his perception 

and his understandings 

4 Team coach who has more experience and awareness of the knowledge discovery tools 

and knows more about the data science, are able to articulate the problem in a more 

detailed and data driven way  

5 Team coach who are aware of relevant data and have analytical understanding of 

available data are able to address their team performance needs precisely. 
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6 Team coach who has more closed relationship and more frequent meetings with the data 

analysts are more able to define their needs in a more specific and clear way. Also the 

reports used are richer than others 

7 The problems are structured over the time. Each coach by the time has certain needs and 

certain problems. This can hinder the team manager to be able to discover and explore 

new insights from the data. 

4.3.1.1 Statistical Competences  

KD axioms are based on the discovery of insights from data that enable the discovery of 

new knowledge. Research states that the attitude of team managers regarding statistics 

can determine the intention to use KD practices. According to the theory of reasoned 

action, when users believe that a system could improve performance and productivity, 

their intention to use the system improves (Ajzen and Fishbein, 1980).     

 “So, what I believe is that we are not ready yet, with data science and only few coaches use 

it or either afraid of it, they do not use it because they are afraid of it but I believe that its 

will be one of the most important aspect of football” W1TD. 

“Couches are too afraid, there are no secrets” W1TD. 

The knowledge and awareness of the statistics and acknowledging the importance of it 

plays a significant role in shaping the attitude toward the use of statistics in discovering 

knowledge.  

“Were to board members were not aware of the benefits these tools or this information could 

help and supports them, were thy naïve about it, don’t know what the outcomes of it, what 

they could achieve of this, what opportunities of could lead to, the technical staff were 

worried about what data could leak or exposed or the players could not understand it and 

cannot digested it, many things really, and my responsibilities were very limited as an 

analyst.” W1DA4. 

On the other side, some coaches have a belief in and understanding of statistics, enabling 

them to do more through the KD process.  

 “Statistics are all information that we know about the players. We can rely on it. We process 

and clean data to be used by data analyst and myself. I am repeating that statistics are very 

powerful and can change the game rules, only if you understand, read and able to interpret 

them. In this way, it can transform the team manager thoughts, expectations, and 

strategies” W1FC9 
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If the coach knows statistics, he will be able to propose questions and ideas that can be 

answered through the data. 

“Depends on the coach, for example, other coaches may ask more about players data 

because he is into analysis and technologies” W1DA4. 

“It is honestly depending on the coach and what information he wants to use to his 

advantage, and fully know how to use it and utilise it.” W1DA4. 

 “When I was working in Marseille with “Marcelo Bielsa" and he is crazy about statistics 

and performances, we collect all of the data and based in these data we talk about fitness. 

Marcelo knows very well what he wants from the data and how to deploy them in his match 

strategy development” W1TD.   

The coach can recommend how analysis should be done, in order to ensure that he can 

access the required outputs. 

 “It depends what I need from the data. I direct the data analyst how to analyses to get what 

I want. The more the classifications of the data, the more I will be able to get what I want” 

W1FC7. 

4.3.1.2 Technology Competences 

More useful and relevant knowledge is created when team managers are better equipped 

to use and understand the functions and capabilities of data analytic systems.  

“[We are] Happy about the system used in the Saudi Team. I think in general that data mining 

can be much more successful, and I think the issue is a lack of knowledge among the head 

coaches can be a bit of a problem.” W1TD.   

In other words, coaches must believe that the system constitutes an effective mechanism 

with which to improve their job as coaches.  

 “I take all this information.  Then I take decision depends on how my player need sprint 

session or strength session, fortunate. I have all this information to help me. So, when I 

make my planning the main aims is the game.” W1FC2 

4.3.2 Producer of the Knowledge: Data Analysts Competences 

The modern game in football has been influenced by the emergence of numerous 

technologies over the last decade, which have had far-reaching repercussions for the 
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reading of results and prediction, through complex analysis across various levels of 

interpretation. These data gathering and collections practices, collaboration and processes 

are generally accepted as enriching the data available to coaching staff. However, the 

demanding, high-pressure nature of football competition requires practices to fulfil the 

required tasks meaningfully, efficiently and effectively while still meeting ongoing yet 

critical weekly deadlines. The producer of such knowledge is required to understand the 

needs of the knowledge consumers, which requires familiarity with football knowledge 

and the ability to construct reliable and effective communication channels with the 

consumers. In addition, analysts are expected, by default, to have strong statistical and 

numerical competences that enable them to effectively exploit the data and translate them 

into knowledge that meets the needs of consumers. The summary of competences are 

listed in Table 4-2. 

Table 4-2: List of competences required by the data analyst to have an effective knowledge discovery 

process 

Competence Rationale 

Communication 

Competences 

For collaboration  

Identifying/understanding the requirements and 

needs 

To identify which information shall be shared with 

different stakeholder (Motivational, envy)  

Football Planning 

Competences 

1) Communication/collaboration       2) Proposing 

new ideas to the coaching team 3) Interpreting the 

reports 4) Improving Active Listing 5) Expediting 

understanding required task.  

Statistical Competences Data mining / modelling for converting data into 

insightful reports, deriving insightful interpretation 

and reports from data (i.e. translating requirements 

into data and statistical algorithms) 

Technology 

Competences 

To identify/use the best hardware and software with 

lowest cost and highest effectiveness. Also improves 

the ability of use technologies more effectively and 

efficiently 

4.3.2.1 Football Planning Competences 

In order to have effective communication between the data analyst and team coach, it is 

essential for the data analyst to have good knowledge of football, as this can help in the 

communication/collaboration process, as well as with interpreting reports and proposing 

new ideas to the coaching team. 
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 “For me, before anything else, he shall have good knowledge and passion of the football 

technical, tactical, and physical aspects” W1FC7 

The consequence of this is that coaches sometimes set certain requirements in terms of 

education and background, while others give specialised training to their data analysts to 

get the right knowledge about football  

 “Having knowledge of football is critical. Also, having a technical and tactical perspective 

is important for me, because this helps me to communicate with him and can help him to 

give me interesting ideas through the data. Sometimes, I prefer if the data analyst has 

experience in coaching as well” W1FC8 

“It is vital to have a profound knowledge of the football. The analysts are working with team 

managers and others; he shall be able to see things differently. It is not only about data” 

W1FC7  

Communication not only comes from talking the same language, but also denotes the 

ability of the data analyst to translate and explain data in more useful ways (i.e. wisdom). 

 “That is why this needs to go step by step and as a sport scientist.  The most important thing 

is when you talk about data mining/science is to show people understandable data.”  

W1TD.   

Theme Sub theme 

Knowledge in football Communication (improve value creation process) 

Proposing new ideas 

Interpretations 

4.3.2.2 Statistical Competences 

Data analysts also require sophisticated numeric ability. Although this seems natural, in 

the context of the Saudi teams, some of the data analysts demonstrated a low level of 

familiarity with statistics, which resulted in the need to outsource reports from 

professional firms. However, it is generally argued that data analysts should be able to 

model data in appropriate time.  

 “He shall know statistics and familiar with SPL statistics to identify different useful KPIs” 

W1FC9 
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This statement is interesting because the understanding of the concept statistic is limited 

to the KPIs without modelling. In other words, the concept of modelling the data is not 

prevailing, with only two team demonstrating knowledge about the modelling process.  

 “When you have millions of data, you have to put them in a system, and you have to start 

looking for relations and correlation between the data. That’s your work.” W1TD.   

Other teams demonstrated a limited understanding of the statistics, with their apparent 

perspective being confined only to a perception of the role of the data analyst being to 

generate descriptive data.  

 “Faster analysis, qualitative insight than the stats we collect.” W1DA3 

Across all teams, a serious gap was identified between the analytic models discussed in 

the literature and the actual knowledge or practice of the data analysts in Saudi Arabia. 

No team used simulation models or sophisticated analytic models. This can be perceived 

as a weakness in their data analytic knowledge regarding quantitative analysis models, 

techniques, and software applications. None of the data analysts interviewed were aware 

of any data analytic models, as they relied exclusively on Excel software to perform basic 

mathematical calculations. Ironically, no data analytic staff came from statistical or 

mathematical backgrounds, with all noted analysts coming from sports, business, or 

physical background, with only a few having had training in statistics and numbers. This 

may be a factor undermining the value of KD resources in this context.  

4.3.2.3 Communication Competences 

Communication competences are another important area for data analysts. 

 “Communication is the key, it will be easier to work with him (coach) and do my job, you 

understand him. You know his goals, objectives, he is clear, you understand how he work, 

what he wants it will be easier for me to do my job. It is better than working with someone 

who does not have clear idea of what is he doing, or not organised it will be hard to be to 

do my job.” W1DA4. 

This research defines communication competences as the ability to listen actively and 

understand question in such a way that problems can be translated into sets of knowledge 

requirements, in addition to the ability to explain findings to the users of the data in 
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meaningful terms and circulate them to the right people with a level of trust. Trust and 

mutual understanding are complementing each other. 

 “This is a compulsory competence. He shall be trustfulness. Trust shall be in communication 

and circulating the knowledge, and in the quality of information presented. Without such 

trust, communication will never be established. Also, data analyst shall be able to 

understand the team managers’ information needs” W1FC9. 

Communication is critical to the knowledge co-creation in the coaching team, including 

the data analyst. 

 “You as a data analyst, sometimes you can see things differently. Also, could be against the 

beliefs and assumptions of the team manager. If there is a mutual trust between you and 

the team manager, he will listen to you. Communication is all about mutual understanding 

and trust between you and the team manager.  W1FC9 

There are two main competences that data analysts should develop in order to construct 

effective communication with their team managers: developing proper communication 

channels and determining the appropriate level of data interpretation.  

• Developing communication channels 

Data analysts need to construct proper communication channels to enable them to identify 

which, when, and to whom information should be released. Communication also involves 

circulating and distributing reports to the right persons at the right time.  

“The best data analyst for me is the one who understands what I want and knows very well 

which information can and shall be shared with the players and which are no” W1FC8 

“These data have high level of privacy. Data analysts shall not disclose or share any 

information in formal or informal meetings with anybody” W1FC7 

Certain information is also believed to have the potential to have negative psychological 

impacts on some players. For instance, in scenarios when the performance of the players 

on opposing teams are significantly better than the team, some coaches feel that arbitrarily 

sharing this information about their weakness could have a negative influence on 

performance and morale.   

“The reason why I hate the data analyst share information to players is that players are 

comparing each other’s too much. This has negative influences on their morale” W1FC8 
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According to the perspective of this team manager, telling players about their weaknesses 

in a more convenient way influences their morals.  

By having proper communication channels, the right person is expected to receive the 

right information and to inquire the useful information. This can lead to the delivery of 

the right knowledge to the right person, potentially improving the use and value of the 

knowledge. In addition, the interaction between required knowledge and what is available 

could stimulate the data analysts to think differently, leading to the discovery of new 

knowledge.  

• Interpretation level 

The reports created by data analysts are the ultimate knowledge with which team 

managers can improve performance. Even the presentation of this data is important, in 

order to maximise its usefulness.  

“No, the collections are good but the way of representing the data is not that good.” W1TD.   

“And the same for data scientist, you can come up with the best data ever but if you cannot 

convince the head coach to use those data to change his tactics what are you going to do 

with it. Then you are just analysing data for the sake of analysing data, which is not wrong 

at all - Because it is also a scientist”. W1TD. 

In order to be useful, reports must present findings in a comprehensible format that is 

easy to read and process. The findings illustrate that the overreliance on specialised jargon 

adversely affected the ability of some participating data analysts to effectively 

communicate their knowledge. 

 “So you see interpretation of data is very successful but yet again I may think people like 

you, data scientist, will be probably one of the most important people in a team but the 

biggest problem now is that people like you they are presenting their KPI’s to coaches 

while they should ask coaches, listen to the coach, what do you want to know, which KPI 

do you want to receive and then you need to make these KPI’s understandable and that is 

your challenge” W1TD.   

This indicates the importance of data analysts giving useful interpretations of the results 

in order to help the head coach to make the right decisions. At the same time, it must be 

remembered that excessive subjectivity of interpretation can also be misleading.  
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 “Sometime as an analyst there are boundaries, you don’t push too much, the head coach 

does not want too much interference with him. So, know it’s not providing information but 

interference in his work. You will find yourself ignored or even kicked out if you push it too 

much. There is thin line, provide information, back off, give him space and let him work 

with the data.” W1DA4 

These findings are an effective summary of the relative pros and cons of the 

interpretations that data analysts perform of the data. The pros are primarily related to the 

ability to help the coaching team understand data and obtain insightful ideas from reports. 

The cons pertain to the interpretations that are bounded by the knowledge that data analyst 

has in their specific field (here, football), which is closely related to the ability to inform 

or mislead the coach in terms of reaching effective decisions. 

 

Figure 4-4: Pros and Cons of data interpretation by the data analyst  

4.4 Proposed Value Co-creation Process Model 

The last section clearly advised that the key in the discovery of knowledge is 

communication between data analyst, coach, and other stakeholders. In other words, 

value is created through discursive and constructive communications: this is called the 

value co-creation process. In the classic approach, data analysts produce reports, 

regardless of the real needs of the head coach. This is a challenge perceived by the head 

coach. 

- Help the Coaching 
team to benefit from 
the data

- Gives insightful and 
new  ideas to the 
coaching team 

- The intrepretation is 
bounded by the 
technical abilities

- This could mislead 
the Coaching team if 
subjectivity interfers 
the implications of 
interpretationsA

d
va

n
ta

ge
 o

f 
D

at
a 

A
n

al
ys

t 
In

te
rp

re
ta

ti
o

n
D

isad
van

tage o
f d

ata an
alyst in

terp
retatio

n



 

75 

 

 “But most sport scientist they go to the raw data and develop some KPI’s and they say to 

the head coach. It should work the other way around” W1TD.   

In other words, the KD process traditionally begins with the production of the reports 

without filtering the knowledge to different actors, or even identifying their specific needs 

and requirements. 

 “Analysts record a game and then send the analysis to the locker room. All the information 

about the tactics and what happens in every match half. Then we try to fix our play or 

change our tactics.” W1FC2 

“Mostly Reports for the technical staff as well for the players.” W1DA4 

This approach limited the KD practices and abilities of the participating teams, since 

communication was one way and was not perceived as an effective co-creation process 

in discovering knowledge, resulting in harmful rigidity in the formulation of team 

strategy.  

 “There is no flexibility to change the team positions / game model. The change is for limited 

positions. The determination of the communications between the coach and data analyst is 

fixed and rigid.” W1TD.   

This even restricts the data analyst from discovering new knowledge, as there is no reason 

for that event to occur. 

 “Also, I was very limited in scope by what the needs and requirements of the team manager 

and I cannot do as I wish. If I had more responsibilities from the board member then it 

would be a different scenario.” W1DA4. 

However, this can be addressed by proper co-creation of the knowledge among the 

stakeholders. There are three proposed methods for improving the value co-creation 

process between data analysts and coaches: user stories, sprints, and backlog. These 

strategies are all borrowed from Agile methodologies literature and are discussed in more 

detail below. The process is visualised in Figure 4-5, and detailed in the following 

sections.  
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Consumer of the 
knowledge (e.g. 

Coach, team 
manager) 

Producer of the 
knowledge (i.e. 
Data Analyst)

Formulating the 
problem in stories 

and questions

Developing 
Backlog 

Verify the backlog 
using story 

mapping/question 
boards

Small Release with 
some preliminary 

analysis

Develop specific 
story cards to 

address specific 
points

Improving the 
Backlog

Discovering  
Knowledge in 

Sprints

Review releases
 with the consumer

Discovering new area of analysis/ Unsatisfying analysis direction
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Figure 4-5: The proposed Value Co-creation Process Model - © by the researcher 

4.4.1 User Stories / User Question   

In an Agile process, user stores are a technique for the development of the features 

required to meet the specific goals of users. User stories capture what needs to be 

discovered, based on their specifically articulated acceptance criteria (requirements, 

questions, and visions), in order to enable new insights to be achieved in the necessary 

domains. 

 “I tell the data analyst different scenarios of the match. Then I explain to him what my 

preferred scenarios is. The data analyst validates what I am saying using his data” W1FC5 

“You as a team manager, articulate your point of view in stories to simplify the identification 

of the required knowledge from the data analysts. As data analyst, you have to understand 

the knowledge required, the head coach objectives of the analysis, and understand the 

reason for asking of this thing in depth so that you can do your analysis” W1TD.   

In this way, user stories help to create a clear written list of what needs to be achieved, 

by whom and why, then allows that to be tracked and progressed further. There are many 

stakeholders involved in this process, including: players, head coach, assistant coaches, 

fitness coaches, data analysts and others (e.g. team manager). This process is based on 

training or match activities, scenarios, and practices that reflects the performances of 

players or the team. 

 “You need to understand the head coach philosophy and approach in training and setting 

match strategies. How can you know that? It is by meetings and listening to his stories” 

W1DA3. 
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This Agile collaboration technique helps the stakeholders achieve the following (Cohn, 

2004; Drury, Conboy and Power, 2012; Patton, 2014; Orłowski, Ziółkowski and 

Paciorkiewicz, 2017): 

• Identifying the promised scope for reaching the intended result by writing related 

questions to reach new insights. 

• Acceptance criteria and understanding about certain features during specific 

sprints to reach the intended insights of the analysis within the coaching team.  

• An approach of documenting, recordings the analysis process to maintain and 

preserve the processes and approaches taken, as well as the knowledge learned 

by the different sprints (approaches and processes).  

• Clarifying the problems to be analysed, breaking down larger questions or 

request into smaller manageable clearer questions/stories/requests, which can 

then be further divided into smaller analytical questions (stories dealing with a 

highly specific purpose). 

• Insights are then studied, investigated, evaluated and validated against 

questions, stories, and backlogs for confirmation of insights. 

• The insights reached are then used in the learning process, as well as for 

improving the development of new stories, questions or requirements.  

They are the simulated moments required by the head coach from the data analysts.  

Table 4-3: Generic Agile Story Template 

As <user> 

I want to <do something> 

So that I can <get benefits> 

 

Table 4-4: Proposed Agile Story Template - © by the researcher 

As a <PLAYER> 

In this role <ROLE>, 

In this location <POSITION>, 

When the team is <Moment of the Game>, 

I want to know <expected performance KPI> , 

So that I can <UNDERSTAND THIS SCENARIO> 
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4.4.2 Stories mapping / Questions board (mapping)   

Story mapping can also be an effective way to address limited understanding or 

knowledge about KD tools on the part of coaching team. Through story mapping, the data 

analyst can translate requirements into hypotheses to be tested or elaborated using 

statistics and data. 

Story mapping starting by a certain objective, then investigates possible scenarios that 

could influence whether or not these objectives are met. An example of this approach is 

provided below: 

Coach:  I believe our team players can perform longer than the competitors. Thus, I can 

bet over the last 10 minutes of the match. My players can cover more distance faster. I 

believe that we can play long ball in the last 10 minutes to score goals.  

Data analysts can operationalise this story into a set of arguments to be tested: Do our 

players perform well in the last ten minutes? Can our players perform competent long 

passes effectively? Do our attackers fall in off-side traps often? Are the defenders of our 

competitors always coming in front? By breaking down the story into quantitative 

questions (or cards), an analyst can gain a better understanding and translate the 

requirements of the coach into required data led information.  

4.4.3 The Story/Question/ Analysis Card 

As noted immediately above, stories can be structured using cards. This is an Agile 

artefact to capture, documents and organise conversations about stories to address 

questions and concerns about the analysis. The proposed story cards contents from a 

recent study by Patton (2014) which has been tailored to fit with the research scope: 

• Author: Stakeholder name for reference and also to clarify any additional 

information about this card. 

• Dates and time: When this card was born. 

• Short title: The story analysis/question card should include a short title reflecting 

that story/question. It should be meaningful and reflective, focusing on the task or 

question under analysis, enabling the conversation to run smoothly. It should 

reflect on the analysis task the stakeholders want to learn about. 

• Description: One or two sentences should briefly describe the action or subject 

required to examine. It should highlight who is this card about, as well as the 

action and the purpose for that action (benefits, values and importance). 
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• Purpose: The purpose of this card, the intended way that it will help, and its link 

to the analysis. 

• Story tracking number: A number for easy tracking and future referencing. 

• Estimate size or budget: The estimated time or duration of take, with weight and 

budget if needed.  

• System used: The tools or systems proposed for use in the discovery process, as 

well as applications, software or hardware requirements that assist in this process. 

• Value: The maximum time and effort accepted for getting the requirement. It is 

of the story/question in this sprint and how it is reflected in the goals of the 

intended sprint. Also, to reflect on if this value shared with another card. 

• Importance: The criticality of the card and its priority in this sprint, or other 

sprints, using a scaling system (numerical or alphabetical) or coloured indicator. 

• Dependencies: The link between the card and other cards. 

• Status:  A record of the progress of this card. 

• Requester: The stakeholders from the coaching team who requested the analysis. 

• Related Cards / Stories: Any relationship between this card and another one. 

• Acceptance Criteria: A number of criteria, usually 3-10, to enable a clear scope 

to be defined, as well as to ensure no ambiguity and uniform understanding across 

the team. 

 

The proposed examples here are to aid in showing how the FDA process can be done to 

ease in gathering the needs by coaches, data analysts and the coaching team. They are 

listed in the next page to ease of use.  

These are three proposed example cases for the use of story cards to identify knowledge 

requirements. These examples story cards are provided below: 
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Table 4-5: Example 1 - Story/Question Card 

Author Analyst 1 Story 

tracking 

number 

S12 Importance 2 

Title Defensive Third 

ability for player 5 

Dates and 

time 

18-02-2018 Value  

Dependencies Story 1 Estimate size 

or budget 

Light Data used Statistical 

data  

Purpose Analysing the defensive thirds players and their 

abilities for next match 

Metrics 

Requester Head 

Coach 

Description: As a <PLAYER #5> 

In this <Centre Back>, 

At this <Central defending Zone >, 

When the team is <Losing the ball>, 

We want to know <% of tackles>, 

So that we can <know his defensive ability/strength in the team defensive third> 

Acceptance 

Criteria 
• The zones/location where the tackles occurred 

• The frequencies in which these tackles occurred in the relevant locations 

• The players engaged in the tackles 

• The time stamps these tackles occurred with respect to match result 

 

Table 4-6: Example 2 - Story/Question Card 

Author Analysts 2 Story 

tracking 

number 

S13 Importance 1 

Title Next match midfield 

attacking strategy  

Dates and 

time 

18-04-

2018 

Value  

Dependencies Story 2 Estimate 

size or 

budget 

Light Data used Statistical 

data and 

technical 

data 

Purpose Analysing the best strategies for creating attacking 

opportunities for next match. 

Requester Head 

Coach 

Description: As a <midfield players> 

In Role <Midfield line>, 

At this Zone <central zone >, 

When the team is <in ball possession>, 

We want to know <attacking opportunities>, 

So that we can <possible attacking scenarios> 

Acceptance 

Criteria 
• significance level 

• Tested and verified using empirical data 

• Weakness of the opponents defending line 

• Strength of next match midfielder and attacking line  
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Table 4-7: Example 3 - Story/Question Card 

Author Analyst 1 Story 

tracking 

number 

S01 Importance 2 

Title Midfielders #8 attacking 

build up passes 

Dates and 

time 

20-03-2018 Value  

Dependencies Story 1 and Story 2 Estimate size 

or budget 

Medium  Data used Tactical 

and 

technical 

data  

Purpose Analysing the midfield players passes behaviours when 

building up attack 

Requester Assistant 

Coach 

Description: As a <PLAYER #8> 

In Role <Central Midfield>, 

At this Zone < Central Midfield Zone >, 

When the team is <in ball possession>, 

We want to know <distance covered during the 1st and 2nd half >, 

So that we can <the effective distance covered when the player is building up attacks> 

Acceptance 

Criteria 
• significance level 

• level of accepted error  

• Tested and verified using empirical data 

• Best collaborating players 

• Pros and cons of previous matches  

4.4.4 Sprint 

The sprint is a method used to improve communication and gathering requirements. A 

sprint is a time boxed Agile technique, with each time box determined in advance. The 

idea of the sprint is to ensure continuous, iterative data gathering and analysis.  

Matches are played weekly. Most teams asked the data analyst to develop one report after 

the match and 1 report before the match (answering queries).  

 “I do not give all reports one time. This is useless, if I gave all of the information one time, 

all of us will be confused. I will not be able to address his issues, and he will not be able to 

fit these analyses in his work. Different reports are produced in different times to ensure 

the mutual understandings and to address the real needs. The timing of reports is identified 

at the beginning of the week” W1FC7 

 “I do give daily reports for the match and the training, based on the needs and requirements. 

For the match for example, about the fitness, there is another person who gives report an 

out the tactics etc. I only give about fitness” W1FC2 

“One of my tasks is, after every match I make an analysis of what the team made, what we 

did well and what we need to improve to the next match. I always do this analysis after the 

match and we always have a plan for next match. So, we work on that and we try to achieve 

these objectives for the next match” W1DA3. 
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The main assumptions for these teams were that the data required should be structured 

and fixed through matches. However, the findings suggest that this did not always, or 

often, occur. Besides blocking KD practices, the matches and contexts are different, 

which by nature pushes team managers to look at new information for new matches.  

 “Also, it depends on the match from game to game, depends which categories of the match 

(A, B, C) which depends on the opponents, some matches you need more details and 

information, other ones not that much. With time and experience you really will know what 

you are looking for. “W1DA4. 

The proposed method is the sprint. In the sprint method, it could be expected to have 5 

sprints. Starts by a meeting with the team coach to identify the requirements using stories. 

The following day, 4 or 5 hours as a time box, the data analyst is working alone for 

working on the questions developed from the stories. Once the questions are identified, 

the next day meeting is to verify the questions and the potential use of the answers of the 

questions. 

 “We have several meetings to elaborate the understandings. It is very important to ensure 

both of you are on the same page. It is important to define appropriately what is the 

required information and how will be used” W1FC8 

The second time box is intended to derive answers to the questions. The function of the 

third day meeting is to discuss these answers and to produce any new questions. This case 

was only seen on one occasion in the current research, but not structured in the typical 

sprint structure outlined here. 

 “There are two separate processes here. There is a time for data analysts to do their analysis 

and other time for discussing the results”.  W1FC7 

“I used to work alone and sometimes I have meetings with the head manager, sport science, 

assistance coach. We usually have technical meetings before each game (a day or two days 

before) we explain the performance simple.” W1DA4. 

“What if Scenarios?” I.e. “if we have this information, can you resolve the problem” 

W1DA4. 

Small releases in the sprint can also be a way to avoid misunderstandings or poor 

interpretation of the data. 
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 “P2” for example is a player who always finishes the game with almost 100% passing rate, 

he never ever loses a ball, but he never passes the ball upfront. He recovers the ball and 

then he passes the ball to “P1”, it’s, done. So, you can say based on passing rate he is our 

best player, no of course he is not our best player. He does not lose the ball and that’s 

important because he is the link player.” W1TD.   

First Day Meeting
Identify the stories (Story 

Mapping)

 Sprint: Translate stories 
into questions

Second Day Sprint

Third Day Meeting
Discuss the questions and how 

the answers of the question 
could help

Sprint: Use the analytic 
systems to answer the 

questions

Fourth Day Sprint

Fourth  Day Meeting
Discuss the results and decide 
if new knowledge are required

Yes

Close the case

Open the case

No

Not 
Clear

Clear understanding

 

Figure 4-6: Sprint Model for KD value Co-creation framework - © by the researcher 
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The developed sprint model shown in Figure 4-6 was inspired by the SCRUM Agile 

methodology. A diagram of the SCRUM framework shown in Figure 4-7 to show where 

the sprit model should fit within an Agile methodology.  

 

Figure 4-7: SCRUM Framework 

Sprint is organised by a backlog that identifies the objective of the analysis, breaking it 

into small releases with certain acceptance tests. This backlog is revisited at the end of 

each release to set directions. The following section explains the application of the 

backlog, small releases, acceptance tests, and retrospective approaches in the specific 

context of football analysis. 

4.4.4.1 Backlog  

Backlog is a file utilised to document the objectives of the analysis. This includes a 

number of factors: the knowledge required (needs), the required software/applications, 

the required type of analysis, and the overall intended function of the data. The backlog 

is expected to contain all the thoughts and ideas that the team manager needs to be further 

explored. The team manager is responsible for formulating such a document with the 

assistance of the data analyst.  

 “The organisation of the information exchanges is the key. The documentation also improves 

communication between data analysis and team managers. In each document, there are 
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fields for the objectives of the analysis, the knowledge required and other things we need” 

W1FC8 

Despite the theoretical application of this document, the backlog is not always complete and 

comprehensive. Instead, it is a dynamic document that changes over time, as new stories or questions arise 

to be addressed, as reflects the analysis needs. On many occasions, team managers do not know the exact 

problem or knowledge required, so exploration of knowledge from data can potentially be a relatively 

unstructured process. An example of a proposed backlog is provided below from T3. This backlog 

concentrates on time, as this was the information that was useful to that team, at that point. 

“This process can help to identify all the required information for each scenario, and for 

each match.” W1FC8 
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Table 4-8: Example of Backlog file - © by the researcher 

Objective of the analysis  
Identify the weaknesses in the team X 

Day 1 Day 2 Day 3 Day 4  Day 5 Sprint Review 

Story 1:  Defence gaps       

Task 1: Comparison in speeds of defence of the 

opponent with attacker of our team 

       Day1 

  Task 2: Comparison in tactics abilities of 

defence of the opponent with attacker of our team 

     

Task 3: Identify best and weakest player in the 

defence 

      Day 2 

Task 4: Identify the weaknesses in potential 

passing in the defence 

     

Task 5: Review the plan and find out further 

investigative 

     Day 4 

Story 2: Midfields passes        

Task 1: Identify the potential weaknesses in 

passing between defence and midfields 

     Day 2  

Task 2: Comparison in speeds of midfields of the 

opponent with attacker of our team 

     Day 3 

Task 3: Comparison in tactics abilities of 

midfields of the opponent with attacker of our 

team 

     

Task 4: Identify potential opportunities and 

threats in the expected opponent strategy 

     Day 5 

Story 3: Attacks go through       

Task 1: Identify the weaknesses in passing 

between midfields and attackers 

     Day 4 

Task 2: compare attackers speed of the opponents 

with the defenders 

     

Task 3: set the possibilities of the match win 

under different scenarios 

     Day 5 

2.5.1.1 Small Releases with simple designs 

Instead of finishing the whole match analysis in one report, the data analyst breaks the 

task into several, iterative reports to ensure the continual progression towards the required 

knowledge/understanding of the problem. As discussed in earlier section on user stories, 

working on small releases uses a narrow, effective scope for the analytic approach. In 

other words, rather than focusing on a large, complex task, the analysis is conducted on 

small tasks in short sprints, which maintains the work-and-confirmation basis. This helps 

to engage the whole coaching team and stakeholders, especially given the ‘story-telling’ 

session after the sprint enables the current state of the analysis to be clarified, ensuring 

that the visions and requirements of stakeholders are met. 

“Our analysis is conducted through layers. I do not do all the analysis and knowledge 

discovery once. I break down the questions into 5 main questions covering different aspects 

such as the space, attacking style, corners, fixed balls, and develop probability-based 
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reactions and consequences for each proposed event. I trained on this way when I was in 

Belgium” W1TD.   

“When we do the analysis of the team, we don't take it separately we have to consider these 

actions with the team. When I start making the analysis after the game, I try to see the most 

information possible and focus on specific actions. Also look at the dynamics of the team 

as see each player as well. We need to consider several aspects of the match.” W1DA3 

Because knowledge required sometime vague and not well specified, the team manager 

can address the problem and data analyst can propose simple designs - initial information 

to address the problem 

“Similar as we are doing now we meet with the head coach, one to on, effective 

communications, and I get his request and provide it to him later once it’s done.” W1DA4.  

 “Head coach, assistance coach, fitness coach, sport science, goal keeper coach by the way. 

And I provide it the info for the players. Sometimes they ask about more info and I provide 

it to them based on their requests.” W1DA4. 

4.4.4.2 Acceptance Test – Story Acceptance Criteria  

After each release of data reports, the team manager validates and verifies the results to 

ensure that they contribute to the objectives. By defining acceptance criteria, the questions 

that are similar in scope can be grouped to ensure that issues are worked on effectively in 

sprints. This also helps to ensure that sufficient understanding of the outcomes of the KD 

activities are maintained throughout the process. 

“Another time for me to replicate and verify the processed knowledge through watching by 

myself the moment. Usually, analysis is supported by recorded events or simulations to 

help me verifying the analysis”. W1FC9. 

“With some data you can have some understanding, but the data is somehow is a good way 

to start but the not give you the full picture. The statistical data won’t give you the full 

picture but would be the starting point for your research. To make a good decision or good 

analysis you need to look at some videos to deliver to get the full picture.” W1DA3. 

4.4.5 Retrospective  

The backlog enables to have effective retrospective meetings. Retrospective technique 

will help in maintaining the iterative need between the questions, research and result so 

that level or collaboration is achieved as will leading enhancing maturity level in the 



 

88 

 

collaboration process over time. It occurs after each sprint to collect any improvements 

by the team. Receiving the team feedback. Linking the reached insights with the discovery 

process. Revisit the acceptance criteria and work on any enhancement or feedback about 

them to improve next sprints discovery process. 

“So, we know we have the log book and TM goal and objectives is clear (but people have 

different interpretations than the team manager)” W1FC2. 

Retrospective sprints provide an opportunity for the team to reflect on previous sprints, 

and then suggest plans to improve future sprints. In addition, this stage can help the 

coaching team find ways to increase the quality of analysis by improving work processes. 

Improvements and enhancements may be implemented at any time, so the sprint 

retrospective provides a formal opportunity to focus on inspection and adaptation to 

perform the next sprints with improved quality of analysis and understanding of the KD 

process. 

4.5 Summary 

This research has found that the value of an Agile system can be summarised into the use 

of new KPIs, which enable the coaching team to develop well-informed recruitment 

strategies, training strategies, and match strategies. These improved strategies then 

influence the main objectives of coaching teams, which are the financial return on the 

player and the match results. The beginning of the value story is the existence and usage 

of these new KPIs. In order to deliver these KPIs, two conditional capabilities (Agile and 

KD) should be considered. Agile capability refers to the ability of stakeholders to 

collaborate in such a way that the development process is lean and flexible, based on a 

high level of mutual understandings in the team. The Agile capability is developed 

through effective data governance systems and collaboration requirements, which include 

mutual understanding between stakeholders, frequent meetings, and the mutual 

acceptance of who shall interpret the data and to what level. The second conditional 

capability, KD, is a blended approach using technical and human resources. Technical 

resources include software and hardware, as well as the required technical abilities to use 

these technologies. The technical resources serve to collect, analyse and report the 

required KPIs at an affordable level of effort and cost, in a convenient time. The human 

resources in KD identify, develop, interpret and integrate KPIs into new practices, based 
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upon specialist skills, knowledge, and abilities (i.e. statistical, technological, and 

technical football competencies). 

Having outlined KD resources in detail, the following chapter seeks to critically discuss 

the value that these resources and approaches offer for the football teams who integrate 

them into their systems.   
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Chapter 5  Knowledge Discovery Value  

5.1 Introduction  

The aim of this chapter is to operationalise the value of the knowledge discovery.  If the 

knowledge discovery uses and benefits are not aligned with the mission, objectives and 

tasks of the team manager or the head coach, there is no value of it. As can be deduced 

from an extensive review of IT business value literature, the capabilities involved in using 

technology are intimately linked with the ability to derive value from that technology. 

Value is defined as the sum of the tangible and intangible benefits realised from the 

change in the current routine due to the existence of a new technology. Related to this, 

capability denotes the ability to realise the expected value from a certain resource (i.e. the 

technology). Thus, first, this section covers performance metrics leading his knowledge 

discovery direction. Based on this, as will be detailed in the second section, the main team 

manager or head coach strategies will be mapped. Since strategies are formulated based 

on data (i.e. raw facts), information (processed data) and knowledge (i.e. processed 

information), the next following sections are to identify and estimate the key performance 

indicators (as information) of the players and to identify the analytic models that could 

process these KPIs to deliver knowledge. At the end of this chapter, findings are 

summarised into the knowledge discovery framework and operationalised into a maturity 

model.  

 

Analytic 
Models 

•Playing positions

•Competitive Level

•Contextual  

•Predictive  

•Synergetic 

•Balanced KPIs

Key 
Performance 
Indicators

•Physical

•Technical

•Tactical

•Psychological

•Balanced 
Scorecard

Team 
Managers 
Strategies

•Transfer Strategy

•Training Strategy

•Match Strategy

Performance 
Metrics of the 
team 
manager

• Financial Returns

•Match Results

Figure 5-1:KD Value - © by the researcher 
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5.2 Performance metrics of the Team manager 

There are two main objectives for the managers of football teams: maximising the results 

of that team, measured in terms of winning ratios in championships and leagues; and 

optimising the return on investment with players. While significant, this latter objective 

is less commonly discussed, despite the fact that some team managers are searching for 

cheap, high performing players, often from South American or African countries, who 

can be recruited and then sold after development at vastly higher prices. These objectives 

are commonly achieved through three main strategies: transferring, training, and match 

strategy. These are discussed below. 

Team Manager Strategies

Developing Effective Transfer Strategy

Developing Effective Training Strategy

Developing  effective match strategy
Match Results

Financial Transfer Returns on Players

Team managers metrics

 

Figure 5-2: Team Manager Strategies leading to metrics - © by the researcher 

5.3 The KD Outputs: The Role of KD in Developing Effective 

Strategies  

The three aforementioned strategies that team managers (transfer strategy, training 

strategy and match strategy) use to achieve their objectives are not developed and 

operationalised at the same time. Knowledge Discovery outputs in terms of new KPIs and 

new data analytic models could help the coach capture more of the dimensions on the 

SWOT of his team and the opponent team which enables him to develop a better, 

knowledge based, and more insightful transfer, training, and matching strategies.  

Data analysis in professional sport occurs pre-match, during the match, and post-match. 

Pre-match analysis aims to set match strategy based on the current information and 

knowledge of the team and their opponents. During the match analysis aims to monitor 

and assess that match strategy. Finally, post-match analysis closes the loop by 

determining the feedback that informs training and transfer strategies. 

 “Different knowledge required different times. Some of them before the competitions, within 

the competitions, or even after the competition. The coach could not start his work without 

having some information about players’ KPIs.” W1FC7 
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Strategies

Team 
Formation

 

Figure 5-3: The role of the Knowledge Discovery in formulating team manager strategies Model - © by the 

researcher 

5.3.1 Transfer Strategy 

In this research, transfer strategy is defined  

“I use statistics to search for players. They allow me to value players in terms of number of 

matches played, number of scores, and overall performance records.” W1FC8 

According to this strategy, the optimal player is defined in terms on the specific objective, 

with variations in desired outcome informing the choice of the most appropriate 

methodology. There are two main objectives in player recruitment, namely to complete a 

Transfer for Investment or to Transfer for Match Results. 

5.3.1.1 Value-based transfer process: Transfer for Investment (Money, Exchange) 

In terms of Transfer for Investment, the optimal player should be chosen based on the 

differences between the actual market prices of players and the precise value of that 

particular player. The difference is the profit from buying players cheaply from a remote 

location and exposing him to the market through matches and games. Synthesis of 

interview data indicates that the steps were: determining the most appreciated KPIs in the 

market, locating a player who matches/exceeds these requirements, and identifying the 

highest possible price for that player. 

 “We already know that data driven approaches in sports can let you do a lot of important 

things such as finding undervalued talent to hire for the team or assessing player 

performance with things like GPS locators and heart rate monitors, and so on.” W1FC9 

“It also allows you to analyse gameplay by looking at the predictors of scoring or potential 

weaknesses in defence and while the first of these, finding undervalued talent, is typically 
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at the domain of the team manager, the other two along with many others are of direct 

concern to coaches.” W2FM8.  

In summary, the value-based process to transfer players is illustrated below (see Table 

5-1). KD is an effective way to identify the most valuable KPIs in the market. Data 

analytics can correlate between the market prices and KPIs per position, helping the team 

to locate and purchase undervalued players. KD can then help the players offering the 

highest potential expected ROI to be identified, by identifying those players with the 

highest required KPIs at the lowest price in the market. 

Table 5-1: Summary of value-based process to transfer players 

Step Step Evidence 

1 Defining the most appreciated 

KPIs in the market 

“Each position has its main requirements and KPIs. Some of them 

are more appreciated than others depend on the position”. W1FC9 

2 Identifying the players who 

possess these KPIs 

“So, you look at those data, you look at the technique of the players, 

how is their passing rate, do they lose the ball very quickly”. W1TD 

3 Identifying the actual market 

prices 

 “Financial wise, full data about the player, you know the value of 

the players, salaries, and bounces performance wise, all of these 

measurements. So, these data help not to be subjective, not a point of 

view, data, facts.” W1DA4 

4 Identify the fair market price  “When you renew players contracts, know how much they worth in 

the market, plan B, ultimate players.” W1DA4 

“All of that can be used to assess his value” W1FC8 

5 Identify the gap “determine the difference between the price and what should be” 

W1FC8 

6 Buy the player  

7 Expose him to the market 

5.3.1.2 Value-based transfer process: Transfer for Match Results 

In terms of Transfer for Match Results, the optimal player requires an in-depth 

understanding of the preferred strategy of the team manager, the required KPIs in the 

identified positions, the KPIs of the players currently holding positions, and the gap 

between the required and current KPIs. These metrics can help team managers to identify 

the best players to fulfil these requirements.  

“The roles determine the rates, not the other way around. When you put “Coach 8” as a 

midfield defender, his passing rate will be 99% when you put his as 10 then it will be 60% 

and you don't say because ‘“Coach 8” is 60% then we put him in 10! He had some skills 

which makes him for the 10 position, such as creativity, agility – these kinds of things. And 

based on his position, the rate starts to change. When you have a player at number 10, you 

don't look at his passing rate, but you look at how many assists, goals, etc. These are all 

that really counts. When you speak about a player at 6, you talk about passing rate being 

very important, so if he loses the ball many times, then every time counts. This is why I 

believe that the role determines the rates.” W1TD 
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The process for transferring a player based on match strategy is as follows: the team 

manager identifies his preferred strategy, then he defines the targeted KPIs for each 

position, based on his preferred strategy. Once this has been completed, the current KPIs 

of the current players are assessed and insignificant differences dealt with by training and 

strategy. Otherwise, the player will be replaced in that position by a more suitable 

alternative. 

The KD system can also help managers to identify the targeted KPIs relative to the 

indicators of other team players. For instance, defenders should run at a faster speed than 

the average speed of the attackers in the league. Midfielders should have a higher ability 

to run for long periods of time than the average of competitors. In this way, KD systems 

can identify the main KPIs required for different strategies, based on the KPIs in the 

current league. The benchmarking process can even be multi-dimensional, enabling 

coaching staff to optimise the players or their positional performance, thereby improving 

the overall performance of the team. 

KD systems can also define ‘significance’ based on historical performance and patterns 

of improvement. Furthermore, KD can correlate body measures with the different KPIs 

in an attempt to identify the maximum potential of each player, even after they have 

received training.  

 

 

 

 

 

Table 5-2: Value based transfer process: Transfer for match results 

The step Evidence 

Identifying 

the team 

manager 

preferred 

strategy 

“So, it depends again in the game model that you are playing but to get 

something in general it is very difficult of course, Central Defenders are 

taller than your full backs. So these things are normal but in general no, 

it depends on your game model.” W1TD 

“Also depends what the coach goals and objectives from the players of 

the team and team needs. Coaches some time like fast players, strong 

player and so on. Depends on the playing style of the team manager.  
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Also, Defensive aggressiveness and offensive aggressiveness which can 

be analysed from videos and matches. Also, and this has to reflect each 

positions and role.”  W1DA3. 

“Attacking player: (Assist and goals) - attacker - offensive = productivity 

score. Winger; how much he can pass, one-against-one, to create 

overlaps so that’s important. Midfield: there are two kinds of midfield 

player - defensive midfield player (6) and offensive midfield player (8). 

But it is difficult, everything depends on your playing model!”  W1TD 

Identify the 

KPIs 

required 

for each 

position 

“On average wing back covers distance more than others. But even when 

you talk about high look at Barcelona FC, they are all small, look at 

Bayern FC they are all tall” W1TD 

“It depends, if you are a winger or central striker, look to “Andy Carol” 

he is 2 meters, but he cannot play as winger. So when you ask about it 

again, you cannot determine like this, because you also you need to have 

this, it’s the size goal keeper need to be tall and fast, CD: tall, not fast, 

side defence, not tall, you need to run, striker should be tall, winger 

should be small but fast and based on this you can start to work.” W1TD 

“Attacking player: (Assist and goals) - attacker - offensive = productivity 

score” W1TD 

Assess the 

current 

players 

KPIs 

“I see some details about some player and later we tell them what they 

did well or not. Also, I analyse in team level and we show the team what 

they did good and wrong. All we provide feedback for the players and 

the team.”  W1DA3. 

Identify the 

significanc

e/insignific

ance of the 

gap 

“You look at fitness data (meters run over 24km/h this is very important 

factor) if you don't have this kind of players because it is genetically it 

is not something that you can train on you have physically fit player, so 

you do not have them. In this case you may need to substitute him” 

W1TD 

“If you have two different players. One of them is faster than the other. 

The slower one has bigger body than the faster one. It is critical to 

allocate players on the positions to fit the match strategy. If the ball is 

Substitute 

the current 

players 
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with 

significant 

gaps by 

others 

expected to be most of the time in centre line, who shall be the defender 

and who shall be in the midfield? W1FC7 

5.3.2 Training Strategy 

Training can be based match feedback or based on a trend in performance. This research 

argues for training to improve performance based on trends, rather than on feedback from 

a single match. One reason for this is that psychological factors can be an element in 

suddenly reducing the performance, so feedback from a single game may provide useful 

insights into psychological situations or for showing the level of progression in 

performance.  

 “Also, I see some details about some player and later we tell them what they did well or not. 

Also, I analyse in team level and we show the team what they did good and wrong. All we 

provide feedback for the players and the team.”  W1DA3. 

Therefore, this research seeks to utilise the advice of coaches to create training 

programmes based on a clear profile created for each player that ensures that they meet 

the minimum standards required and that they are the best fit for the team.  

 “yes, for the forward player, because this kind of player make a lot of sprint all the time, 

and this one move like this (tic) so the player will make longer sprint than this one” W1FC2 

“Also, the data we have is from match to match, A, B, C nothing in between there should be 

something between these matches link the training sessions, between A to B there should 

be a link between them, B to C there should be a line as well and so forth. You could 

compensate these limited by other technologies in order to have a consistence flow of 

data.” W1DA4. 

“All the information I get for the games for session training if I want improve, I would 

improve sprint – improve his sprints with respect to his positions” W1FC2 

“I take all this information and make session I want train another day strength then another 

day the speed. So that what I see the fitness in football then another sport” W1FC2 

If players demonstrate significant gaps between their own performance and the desired 

KPIs, then the team manager will buy new players. Otherwise, the head coach will train 
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these players to better fit their roles, with training primarily focusing on fitness and 

technical skills, like dribbling and interventions. However, there are no clear guidelines 

for when differences should be classified as significant. Although KD can support this 

decision-making process, ultimately the decision is dependent on the judgement of the 

managers. 

 “Software gives us different kind of information first they cover distance is different and the 

sprint are different also, so the session trainer has to specific for them I can’t make a 

session training the same for the forward and midfield or the back player, so I need to make 

deference with the distance covering the sprint for every kind of information the software 

gives me”. W1DA3. 

“The capacity to make a lot sprint and recover faster, when I say recovers faster is to make 

another fast sprint. For example, I make 20m high intensity 30km per hour that’s kind of 

movement maybe about 20 sec to recover to make another one. That’s important. Strength, 

to be strong all the time because in the forward he has to support, hold the defence”. 

W1FC2 

“When we came here we take the software we  analysis the game and the training session 

what I saw the player doesn’t cover 76m per min they cover 52 or 56 less then hour in their 

area in specific game, I take my excurses in each session they cover 52m per m so I need 

to improve that I need my player cover over 70m/m over ok, now how many sprint they 

make per session training maybe 24 I need to improve it 30 up over 30 so that can of 

meaning is reality that kind of information I take I make new excurses to try make the stress 

for them like this what it means I need to make one exercise to make the player make over 

30 sprint so with the staff a lot sprint with the ball definition cover cross, finishes, I don’t 

know like real movement I say Ramon I need that kind of excurses to improve the sprint in 

the game but for improve we have to train it not just say you need to do it.”  W1FC2 

5.3.3 Match Strategy 

In this research, match strategy is the process of using a match model to understand the 

strength, weaknesses, opportunities and threats (SWOT) of opponents in the match 

environment, in order to help the team winning the match. Based on this definition, the 

first step in devising the strategy is to do a SWOT analysis and the second is to use that 

analysis to devise the match model.  

 “If I can understand my team KPIs very well, my training path will be right and fit with the 

match strategy. My tactics are developed based on KPIs and capacity and limitations of 
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the players. By setting the weaknesses and strength of each player for each position, I can 

set the plan and define tasks for each players”. W1FC7 

SWOT analysis is to identify the strengths, weaknesses, opportunities, and threats for the 

team to win the match. All of these aspects are relevant and not fixed. They are relevant 

to the opponent situations. Thus, it is important to identify, compare and analyse these 

dimensions for both teams, which can be developed through knowledge discovery 

systems.  Indeed, it has been observed by most of the team manager starting point to 

formulate the match strategy is identifying the relative power and performance metrics of 

the competing team before anything else.  

“The first step I start with is to identify the relative strength and weaknesses of the opponent 

team relative to my team. Measures I use are number of successful passing, speed of 

covering, empty spaces, number of winning matches, how it plays in its home, abroad, when 

it plays with big team, with small team, formulating its attack, strength and weakness 

points, and sources of strength and weaknesses points” W1FC8 

“I start by identifying the main strength and weakness points of the opponent team relative 

to my team. I take care of detailed and general information about sources of strength point 

in the tactics of the opponent teams. I rely on the videos, statistics and other reports from 

my team. Believe me, if you missed any of these details you can lose the match easily”. 

W1FC9  

From the interviews, the most important dimensions can be classified into internal factors 

for identifying strength and weaknesses, and external factors with which to identify 

opportunities and threats. The internal factors can be classified into the performances of 

players in different positions in the team, as well as the overall level of team cohesion. 

This is important because different positions need different skills and abilities, which 

enable each position to fulfil certain functions in the match. These resources enable the 

team manager to select an optimal mix, based on the level of talent in the opposite team 

in each position. 

 “For example, you ask a Right Back (RB) that he cannot attack and only cover the Right 

back zone and he gave two assistances and score a goal maybe I’m not happy. This is 

taking in my mind, as I know the capacity of the opponent positions of the right back”. 

W1FC2 
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This gives a unique importance of the use of KPIs to measure the relative endowment of 

the skills required in each position with taking into consideration the opponent facing 

positions to each of them.  The second internal aspect is the team cohesions and the 

predicted consistency of the players’ performance in the match. This is also not a fixed 

measure, this relevant measure as it requires to assess the passing rate with taking into 

consideration the opponent team ability to intervene the ball. Likewise, the ability to do 

forward play and possess the ball for period of time can be relied on the dribbling ability 

and speed of the players, in comparison to the opponent team position players’ abilities. 

This gives another uniqueness of the importance to measure the team cohesion with taking 

into consideration the other team’s ability to intervene and to stop the team possession of 

the ball in the match. Currently, there is no unified approach to do that. It is based on the 

experience and the coach team knowledge and views. This gives a clear importance to 

use KD capabilities to build certain heat dynamic maps for simulating different scenarios 

in different conditions, as will be discussed later.  

 “To know his team performance, only.” W1DA4 

“So, it depends on the personality of the Head Coach. For example, if we have similar to this 

information with Fabio we could perform much better. It is honestly depending on the 

coach and what information he wants to use to his advantage, and fully know how to use it 

and utilise it.” W1DA4 

“For Forward Players, I think is to know really the stress the player has. I mean maybe is 

important for me to know how many stress has the player after the game or after the session 

training for to know how many time for them to recover, I can give know chart for the 

player how he is stress to that, the software give a lot of information but maybe I need 

another support about it always there is room for improvement” W1FC2. 

The heavy use of the data analytics makes the team as mechanics with high harmony and 

coherent performance. Because, as it is perceived by of the team managers, European 

leagues use the knowledge discovery and data analytic models extensively, there is a 

perception that it looks like “Chess” in how they formulate match strategy and how the 

match is played.  

“I prefer watch a game between Brazil and Argentina in opposite of Europe match because 

they play like chess”. W1FC9 
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Figure 5-4: The role of the Knowledge Discovery Indicators on the match analysis model - © by the 

researcher 

5.4 The KD Outputs: Balanced Key Performance Indicators Roadmap 

This section seeks to develop a road map to help team managers and data analysts to 

effectively process historical data to improve the effectiveness of team strategies and 

related policies.  

 “I believe anything can be measured. If it is measured, it can be theorised, valued and 

assessed. If you understand and measure how things work, you can control it. If you can 

control it, absolutely, you can win” W1FC7 

There is an insightful argument that the best way to understand any KPI or any analysis 

is to understand the context, taking into consideration other KPIs that can contribute to, 

and enrich understanding of, the variation in match performance. 

 “For examples, you may have a player that have high accuracy of passes, for example %90 

pass accuracy. Then when you look at the details of the players passes you see most of them 

to the side or to the back, it is different than a player who passes forward most of the time. 

You really need to have a lot of things when you one to consider some aspect of the 

analysis.” W1DA3 

The balanced scorecard of KPIs (Norton and Kaplan, 1998) is based on reading, 

analysing, and interpreting historical data and information based on a structured 

approach. Structured analysis can make KD activities more valuable by facilitating the 

use of Agile methods. In other words, structured analysis can help each step to be clearly 

formulated in each sprint, in order to improve match results by improving the 
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opportunities of scoring more goals and conceding fewer goals than the opposition teams, 

ultimately improving match performance as measured by the criterion of winning each 

game. These match performance indicators are constrained by other KPIs. Therefore, by 

building a map of indicators, the root reasons for key metrics can be investigated. 

In this study, the main factor cited by interviewees was tactical KPIs. These are influenced 

by the technical and fitness KPIs. Fitness KPIs influence technical KPIs. However, fitness 

KPIs are not sufficient to improve match performance without the addition of technical 

and tactical KPIs. Psychological KPIs influence all of these dimensions. The following 

sections provide an in-depth explanation of these relationships, using supporting evidence 

from the interviews.  

 “The most important KPIs are speed, tactics, technical, fitness. Sometimes you look at 

passing rate, the amount of recovery, distance run over 24 Km/h these kinds of thingsm, 

but it depends” W1TD. 

“All of the KPIs are correlated and interdependent. Speed is required to create successful 

passing. Successful passing is required for penetrating opponents team lines. This, if 

utilised successfully, leads to scores. Thus, all KPIs are required and complement each 

other’s” W1FC7 

Fitness

Technical

Tactical

Match 
Perfromance

Psychological

 

Figure 5-5: KPIs BSC - © by the researcher 

5.4.1 Tactical KPIs 

Tactical KPIs are metrics that are intended to measure the ability of players to position 

themselves effectively in such a way the probability of passing, possessing, scoring and 
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intercepting are improved. Tactical KPIs are measured in terms of players, units of play 

(set of players), tactical lines (e.g. attacking, defending, or midfield line), or by the team. 

These KPIs are then classified into passes, possession, and playing style.  

“Number of passes making significant attacks, number of constructive passes, number of 

goal keepers touches, making significant attacks, number of crosses and overs, all of these 

skills make much difference in the match results”.  W1FC8 

“The most important KPIs for winning the match is the players’ movements. How the player 

intervenes, receive and shoot the ball, which come from positioning in the right time and 

the right place during the match. All of that depends on the players’ abilities in being able 

to see himself in the pitch” W1FC9 

“Tactical skills are all about movements with ball and without the ball, and utilising spaces” 

W1FC7  

Tactical skills are perhaps the most important skills for modern footballers, with most 

valuable activities in the match being connected to these skills, even leading to ‘man of 

the match’ decisions. 

 “Who is the best player? If you want to know who the best player is, it is not the one runs 

most, or the fastest.  He is the one who has highest successful passes with least missing. 

The one who can receive the ball and send it back successfully. To identify the best player, 

you need to have KPIs and analytic system that can find him. You cannot find him by your 

eyes, since this can be illusion. Many things are taken into considerations such as number 

of constructive attacks, successful long balls, and initiating successful counter attacks” 

W1FC8. 

 “The player ability to play within a team is the key here. His ability to create new space, 

preparation for the successful attack, good possession of the ball, ability to intervene the 

ball and return it back to the attacker in short time. All of these skills make the team plays 

better and the team scoring abilities improve” W1FC7 

It is difficult to measure the quality of movement or positioning performance in the match 

through quantitative indicators. Thus, other metrics key factors are used as proximities to 

this ability.  

 “I think that’s most important, and the you look at their tactical skills, and that something 

you can measure (how many times they lose the ball, how they use their right/left foot, etc..) 
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and then you look at their tactical qualities. This how you determine a role in a team” 

W1TD. 

These key factors are the passing rate, scoring from assists, scoring from faults made by 

the opposition, interceptions, and stopping counter attacks quickly.  

“So, these are the things I were looking at. Then there are of course some underlying data 

like how many passes that we gave, what was the success rate we knew that with “T10” if 

the passing rate was less than 80% then we are not doing good. But as I already said before 

if P3 successful passes rate was less than 95% then he played a very bad game because he 

was a link player” W1TD. 

Tactical skills are important for all positions, but especially crucial for defenders to create 

successful counter attack, for the link player (e.g. midfielders) to build a successful attack, 

and for attackers to score.  

“The link player should not have less than 95% successful rate. And then you have “P6" 

(Number 10)  he is the one who has to create chances, for example if he has more than 80% 

passes rate then for sure he is playing a bad game which means he is always looking for 

easy solutions, he should take risks, he is the genius, he has the creativity so he should take 

risk, he should look for possibilities.” W1TD. 

“Maybe the location the player has, when I saw in the game to P5 playing, P5 have different 

movement then P4 because P5 can play back to goalie but P4 need to play forward. That 

kind of movement take you give to take good decision. But I can imagine I need to P4 

playing like P5 also. P5 playing like P4, but P5 has more tactic to play with the ball. 

W1FC2 

“So that means if you have 5 occasions and you score 2 or 3 goals and those are the most 

successful team. When you look at Chelsea FC or Leicester City FC this year they don’t 

have many chances, but when they have a chance they score and that’s very important.” 

W1TD. 

Head coach job is to understand and to predict the players’ capacities and position them 

of his team and the opponent teams.  

“Tactical performance is based on head coach ability to absorb different players KPIs in his 

team and the opponent team to fit players in the right places” W1TD. 
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Effectively, this consideration describes the ability of the head coach to comprehend 

different KPIs and to situate the players in different circles or domains on the pitch, 

thereby improving the controllability of the match. In this way, following the directions 

of the head coach can enhance the tactical abilities and performance of the players, 

resulting in better overall results for the team as a whole.  

“Player commitment is the key in tactical performance. I set circles to play for each player 

in such a way my tactics can win. Any leakage could have negative consequences. I wish if 

we can invent a technology to control players’ minds to ensure that” W1TD. 

The reason for this position is that the tactical performance of players is arguably more a 

function of the team manager than anything else and should therefore be assessed more 

in terms of the team than in terms of individual players. 

“Tactical performance is solely determined by the team manager capabilities to understand 

the match parameters and the players commitment to the training managers’ 

directions.”W1TD  

“the best player who understand and follow the train managers instruction with taking into 

consideration the match dynamics. this is very important to be able to see the opponent and 

his team movements. it is for me not a fixed calculated thing. it is a chemistry” W1FC9 

However, others who believe that tactical performance can be assessed per player as well 

as per team face this argument 

“It is important Information about the individual quality about the players of the team.  It 

covers Tactical information about the team.” W1DA4 

“It is usually when he plays a good game it means that his successful passes rate was about 

50%. Again, you have to look at player by player and that depends on the objective the 

head coach given” W1TD. 

Tactical performance also encapsulates the ability of a player to read the dynamic, fast-

moving situation of a match, including the movements and intentions of players and their 

positions. Without predicting the opponents and the performance of their players, it is 

difficult for a player to demonstrate tactical performance in terms of constructive long 

passes or crosses or the creation of a successful attack utilising a certain pass at the right 

time to the right player. All of these KPIs do not only come from the tactical capabilities 
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of individual players, but also from their fitness and technical capabilities, as the next 

quote highlights. 

“Finally, to measure the player performance, we looked at occasions, occasions like “clear 

cut chances or clear chances” and approaches to the goal. Then you calculate them and of 

course the performance is related to how many occasions you can create but according to 

me the most successful team in the world is specially how many occasions do you convert 

in a goal and the most successful team are the ones with more than 40% conversion rate” 

W1TD. 

Sources of tactical performance information are the players’ commitments to the team 

manager directions, in addition to their specific technical and tactical skills, as will be 

detailed in the following sections. 

Table 5-3: Sample of noted Tactical KPIs from the interviews 

Sample of Tactical KPIs 

Passes Indicators 

Overall all passes performance 

index  

 % of successful passes per match (e.g. spontaneous passes, 1 to 1 passes, unit 

passes, constructive passes, and long passes)  

% of successful spontaneous 

passes 

SP is defined as the passes without having a clear intention to build a 

constructive attack (i.e. due to pressure from opponents) 

% of successful 1 to 1 pass 1 to 1 pass is the several passes between two players only aiming to construct an 

attack, penetrate defensive line or shift the direction of the play 

% of successful unit passes  Unit passes are the several repeated passes between more than two players. 

% of successful constructive 

passes:   

Constructive passes are more than 2 passes with more than 2 players aiming to 

construct an attack or shift the play direction. (e.g. second ball and third ball) 

% of successful long passes Long passes is a movement of the ball from a zone to another zone or from 

tactical lines (e.g. from back to front, from the left side to the right side or from 

defending to attacking line). E.g. successful crosses/ counter attack 

% of successful interceptions  from short passes or long passes (crosses or counter attacks) 

Team Playing Style 

Time player with/without ball minutes played with or without the ball  

Time played per position in offence, defence, and midfield  

Ball recovery time Average time required to regain the ball 

Total Possession  % of the time the team hold the ball 

Distances between attackers and 

defenders  

The average distance between the attacking and defending lines. 

Maintain distance between 

players (close down space):  

The % of the time that distance between players within the ball range is lower 

than the coach defined space in each zone  

Offside (Tolerance) 

Management  

(such as % of the successful deliberate offside (avoidance) and % of the 

successful avoiding opponent deliberate offside) 

Player Positioning Performance 

Role rotations  % of successful (constructive change) changes of players’ positions in the pitch 

during the match. 

The duration of a player being in 

specific zone.  

The duration of a player being in specific zone. 

Player density: % of time played 

in the player specified zone  

The position where the player(s) playing in during the match. 

Marking (man to man marking – 

Zonal marking) :  

The ability of a player to mark an opponent’s players – or zonal area of the pitch 
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5.4.2 Technical KPIs 

 

In this research, technical skills are the different physical competences required by 

different positions in the game. It is the ability to control the ball for the sake of 

accomplishing the required tasks effectively and efficiently. It is defined in this research 

as different individual football physical competencies required to control or to regain the 

control, to direct the ball, and to build constructive movements during the match. They 

are classified into off the ball competences (ability to regain the control) and on the ball 

competences (ability to direct the ball towards a constructive movement). Examples of 

technical KPIs could be the ability to save the ball for a goalkeeper, interceptions for the 

defence players, or aerial skills for midfielders.  

 “It depends a positions by positions, you have goal keepers, defenders and so on.” W1TD. 

The one who cover the most important spaces in the ground is the one who has the fitness 

and technical skills. They are most important to be able to intervene opponent passes.  

“It is also a technical skill to be able to stop the ball in the right time in the right way” 

W1FC5. 

“You need to consider the position of the player, different aspect different characteristics 

and to see which player is best in which position.  Also depends what the coach goals and 

objectives from the players of the team and team needs” W1DA3. 

“For each position, there are certain essential technical skills. For instance, flanks should 

be able to control the ball and able to dribble. Also, defenders shall be able to play with 

head, aerial skills, and tackle the ball. “W1FC7 

Technical skills are essential compliments for tactical skills. Without good technical skills 

(e.g. dribbling, intervening), there will be less possibility to control the ball, giving fewer 

opportunities to score or contribute to goals. 

 “We can separate between the fitness and the tactics.” W1FC2 

However, these skills are not sufficient for tactical performance and match performance 

(scoring and guarding the goal).  
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 “Two players are different in their body size with different KPI indicators. one of them is 

big but heavy and slow, while the other is thin and fast. Fitness indicators can be 

misleading here. The heavy person can be positioned in the right place so that he could 

score better as his shoot is strong. But he has weakness in the speed. The other person who 

is thin, he can run fast, but he does not have such ability to shoot as strong as the other but 

can score from penetrating in the opponent lines” W1FC7 
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Table 5-4: Sample of noted technical indicators from the interviews 

Indicator  

Ball Regain  % Success rate of the attempts to regain control on the ball (e.g. tackles or 

interceptions) 

Dribbling % Success rate to take on (e.g. dribbling)  

Aerial Interaction % the players ability to win aerial interactions 

Ball control with 

speed 

Significant change in the speed with the ability to build a constructive pass 

or goal. i.e. 80% change in speed within 1 min leading to successful attack.  

Free Kicks   % of successful shots towards the goal in different situations (in plenty area, 

outside the plenty area, when marked by 1 person, by more than 1 person). 

Free Kicks Goals % of successful free kicks towards the goal from different zones (e.g. right, 

left, middle zones). 

Innovation index Number of innovative movements in the match (new dribbling, tackles, 

passes or movement) 

5.4.3 Physical KPIs 

In this research, Physical KPIs are those physiological and fitness measures for the 

players’ abilities. Some of them are traits that cannot be changed, such as the height and 

ambidexterity while others can be improved by training such as speed, high/moderate 

intensity running and recovery rate. These factors can be preliminary indicators for 

predicting match results 

 “As an example, normal team they run 800/900 meter in more than 24 km/h and the more 

successful teams they run 4/5 Km. That’s already a very important parameter. “W1TD. 

The most noted and observed by all participant as they are published online and relatively 

stable, although they can not be changed from match to match. W1DA3` 

“I take all the information about my player how many km they covered in the session how 

many sprints made in the game how many crosses how many tools. So, I take all the 

information then I make my decision then I know because I read many papers in football 

strength sprint speed condition” W1FC2. 

Some experts claim that these factors are relatively fixed for most teams, except the 

number of sprints and high intensity movement over distance, which means that these 

factors can help a team outperform their opponents. 

 “and when you speak about fitness it is specially about the distances they run more than 24 

km/h so the total volume they run is not important at all because if you look at the last 20 

years the total distances has not increased the only thing that was increased was the 

number of sprints and the distance in high intensity.”  W1TD. 
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Physiological measures can provide the basis for technical and tactical skills, as these 

skills are insufficient without them to get match results. 

Without the fitness aspects, talking about the technical and tactical aspect would make no 

sense. The ability to follow the ball depends on the ability to run easily and speedy, with 

taking the ability to observe others”. W1FC9 

“The technical and tactical skills are based on body movements. If the player does not have 

the ability to do these movements fast with high level of concentration, these skills can be 

demonstrated in the match. To do good passes and receive balls, you have to run and move 

faster than your opponent. Once the fuel finishes, the team will be defeated easily. “W1FC2 

Several factors were noted as being likely to improve the probability of better match 

results, in terms of scoring goals, or preventing opponents from scoring goals.  

 “but for me I knew that when we ran more than the opponents (24 km/h) the likelihood of us 

being more successful is higher, when we recover more balls in the final third, more 

occasions; specially the conversion rate.” W1TD. 

 “The critical KPIs for me are Meters in high intensity, 24Km/h, amount of occasions, the 

conversion rate; how many occasions you score, %of occasions you score, recoveries in 

the final third of the field.” W1TD. 

The interviewees suggest that fitness is only a contributor to tactical performance but is 

insufficient on its own to score in the match.   

 “There is a confusion here. Player X can have good sprints but number of unsuccessful 

passes. is it a tactical issue or physical issue? I think relying only on distance run per match 

could be misleading as a proximity for the tactical skills.” W1FC9 

There is some evidence to suggest that physical KPIs and tactical KPIs are sometimes 

mixed, because there is a high level of association between the two factors, with fast and 

fit players having more likelihood to possess the ball and make successful shots on goal. 

Additionally, fitness metrics are published and accessible, while tactical are not easily 

quantified (relying on video analysis rather than statistics) and therefore much less 

frequently published.  

“Here is the issue. There is confusion between tactical and fitness aspects. for example, if 

you find a certain player has not run much in the match, you can translate that as fitness 
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issue; but indeed, it can be tactical issue, and vice versa. To avoid such confusion, I prefer 

to use the computer for measuring the KM run in the match, but I prefer it based on the 

videos recorded. Statistics is difficult to help here”.  W1FC7 

 

 

 

Table 5-5: Sample of noted physical indicators from the interviews 

Physical Indicators Descriptive  

Player Speed Index Average player speed per match in different modes 

(low, moderate, high speed and sprint) with and 

without the ball 

Player speed in different running 

categories with the ball 

In low, moderate, high speed, and sprint with the ball 

Player speed in different running 

categories without the ball 

In low, moderate, high speed, and sprint without the 

ball 

Distance covered The total distance run during the match 

Distance covered with the ball  The total distance run during the match with Ball 

Distance covered without the ball  The total distance run during the match without the 

Ball 

Distance covered in different speed 

categories  

In low, medium, high speed, and sprint 

The maximum speed of shooting the ball  

The maximum distance of a throw in   

The maximum height of aerial action (i.e. 

jumping for header)  

 

5.4.4 Psychological KPIs 

These indicators measure the volatility in other KPIs in different contexts. Psychological 

KPIs referees to the ability to play in the standard performance under different 

psychological pressures, which can be called “resilience indicator”. As mentioned before, 

the physical performance of players is fixed and stable over time except some situational 

fluctuations. These fluctuations are reasoned to psychological issues.  

“I can give you an example. One player has 99% success of the intervening opponent passes 

as long as within 5 meters. I can rely on him. But, from my experience, any sequential 

missing the balls in this area is an important flag for psychological issues. Once they are 

resolved, the player performance return to his normal rate” W1FC7 

In this way, mental factors can affect all other measures in certain contexts.  

 “All of us has a fear of the psychological pressures. We have a serious fear of failure, which 

can influence our performance in a positive or negative way. But fear can increase the 
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possibility of mistakes which can be translated into goals. Team manager shall be able to 

manage the level of psychological parameters such as stress and fear of players to 

overcome them” W1FC7 

Environmental contexts can be influential in psychological factors and some individuals 

are psychologically affected by other players, which can affect their performance.  

 “It is crucial to understand the psychological factors affecting the players. Not even 

individual psychological issues but also psychological issues as a group. If the 

chemistry between players is not as should be, the performance will go seriously 

down” W2EM2 

Personality is an important factor here, with players having different attitudes to risks and 

opportunities: some are risk averse and have a defensive style under pressure, while others 

are risk takers who adopt more aggressive response in pressure. These personal 

characteristics can influence players in different positions and at different times. 

 “Ibrahimović is egocentric but every striker in the world is egocentric. You cannot but an 

egocentric player as central defender because he will take risk just to show off, so you 

cannot do this.” W1TD. 

Table 5-6: Sample of noted psychological KPIs from the interviews 

Indicator Description 

Resilience    % of change in the performance indicator in different contexts 

(e.g. opponents, home/away, fan support, get paid well)  

Ethical indicators  number of cards or injuring other players 

Discipline indicators % Body language/facial expressions of anger against the 

coach/referee decisions 

Manipulative indicators  Number of free kicks against opponent 

5.5 The KD Outcomes: Analytic Models 

Analytic models are used to combine different indicators for revealing and discovering 

some of new knowledge. There are different and integrative analytic models are 

underlined in the interviews. They are predictive, simulations, context based, comparative 

and synergetic analysis. Predictive models are to predict the probability of scoring in a 

match for different models. Predictive models are shortcuts of the simulation models 

which aim to identify weaknesses and strengths of each match model before the match. 

Simulation models can use sophisticated applications or based on scenarios and 

comparative analysis. Context based analysis aim to understand the players’ performance 

under different cases. Synergetic analysis is to find out the incremental performance of 

certain player when plays with a certain player, team or in a certain position. Indeed, all 
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of these models complement each other, and it is argued to work together at the same 

time.  

 “The data analytic systems enable me to see the situation better. I can set certain scenarios, 

and hypotheses; then testing them through the data. This helps a lot in setting the match 

model to improve the possibilities of winning” W1DA3. 

“Data modelling made the teams can read each other’s before the match. it seems like a 

machine.” W1FC9 

5.5.1 Predictive and Simulation Models 

Predictive models are equations or estimations used to estimate the probability of scoring 

in a variety of different situations. In effect, these models estimate the probability of 

delivering the objectives of the coach, in terms of scoring goals and obtaining a desired 

match result. 

 “If you play next game make sure that you play better because otherwise, I will be taking 

the decision next time to take you out of the field. So, he was using all of these data very 

well. His system was impressive. He uses this equation: occasions = goal attempt - 

approaches to the goal. Let's take a look at this last one in gameplay. Now data science 

and gameplay are when you start trying to model what's happening on the field to find the 

predictors of desired outcomes” W1TD. 

There are two main outcomes for simulation analysis: predicting the outcome of games 

in different scenarios (i.e. match model), and identifying the potential strengths, 

opportunities, threats, and weaknesses for each scenario. This analysis can enable a team 

manager to train the players or change his match model to improve the possibility of 

obtaining the desired results.  

Interviewees noted that simulation analysis can be achieved in a number of different 

ways. In fact, some did not even use any type of information technologies, using KPIs to 

mimic the match two days before it took place, which enabled the team manager to watch 

the simulated match, identify weaknesses and pressure points, and then ensure they are 

dealt with in the real match.  

 “In the last technical training, I ask the team to have a simulated match 48 hour before the 

real match. I ask the players to simulate the planned scenarios in fixed balls, building up 
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attacks, counter attacks, and corners. This can help the team and myself to identify the 

weaknesses in the expected match.” W1FC7 

This approach has many positive and weakness sides. The main advantage over the virtual 

one is it can be seen as training players on the expected match model. It can be expensive, 

costly, the simulated match may not fit with the real one, training coach may find this 

match model is not the best and needs to change it again. Thus, it is believed that the use 

of virtual simulation models can help to identify and anticipate the weaknesses, strength, 

opportunities, and threats before the match, or before the on-field-simulation. The main 

weaknesses of the virtual simulation that teams are not affordable or accessible to 

different team managers due to financial and people resources.  

“In pioneering teams, like in Europe, they use virtual simulations. This is very beneficial for 

them to identify the weaknesses and strengths based on the opponent team. It is used in 

Real Madrid, Barcelona, and others. These tools can help them but needs people who can 

use it and extract the required knowledge from it. Also, they are expensive” W1FC9 

 

5.5.2 Context based Modelling 

The context-based modelling is defined in this research as the identification and 

measurement of the players’ KPIs in different training and match context. Context here 

can be game location, quality of opposition, match status, and match timing (e.g. Match 

Half or extra time).  The reason for contextual analysis is the performance of players can 

be sensitive to certain contexts which shall be considered in setting different scenarios or 

in simulations.  

“We do different of series of comparisons through the application. Indeed, from my 

experience, the player performance changes from context to context. The KPIs are relevant 

to the context. By understanding these contextual factors, I can optimise the team 

composition KPIs to get the best. Also, all measures are identified with upper limit and 

lower limit to set for other unknown factors. This is the work of both train manager and 

data analyst.” W1FC7 

This modelling is not a one-time analysis, but rather it is based on a series of analyses to 

ensure that the measures used are reliable and valid. 
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 “And then I’m interested to see if P3 is playing a good game or not. Then I go layer by layer. 

and see how many meters, where did he run his meters, was it the first half or the second 

half, what was his average position, what was his opponents’ positions and go deeper and 

deeper and deeper. But when you ask me what should I do when I make my first analysis, 

which data I look at, these are the ones” W1TD 

According, to do that, the categorisation process is required to categorise the different 

states that players’ performance can be sensitive to.  

 “He will study it and meeting with the staff, assistance coach, fitness coach, based on each 

game, match to match, categories of the match, so in Cat A match P3 performance in this 

way, in Cat B match he perform in this way and so on. Home or away, team performance 

will be low because of the “pressure” crowd, audience. He defines the categories based on 

previous data, experience and so on.” W1DA4 

5.5.3 Comparative Modelling 

Comparative modelling is a statistical method for the comparison between players or 

teams utilising different KPIs. This form of analysis covers playing positions and 

competitive level to incorporate data from measures such as game result, tactical 

tisposition, or influence of fatigue. 

 “Also, specific data about each player performance. Also, opponent’s analysis. Also, 

information about scouting new players.” W1DA4   

“Comparisons is a strategic tool to identify the weaknesses in the opponent team. This opens 

opportunity to explore other different models to get the best of the match.”  W1FC7 

5.5.4 Synergetic Modelling 

Synergetic modelling is a technique used to identify the correlation in a player 

performance with others in the team. It is called synergetic because synergy is defined as 

one plus one is more than two. I.e. collaboration of different actors could improve the 

outcomes if each of them is working alone.  Football as a sport focuses on the 

collaboration of the players in the team. If there is not such collaboration between team 

members, the performance is expected to go down. The team members, if they work 

collaboratively, will be able to strength each other and improve their performance as one 

cohesive team.  
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 “Players are not machine. The psychological and fitness are inseparable. Sometimes even 

you can see psychological relations between players. Some players’ performance is highly 

correlated with others’ performance. These factors are important, but I am not sure how 

knowledge discovery or data analysis can help here”. W1FC7 

“Fitness, technical skills and other abilities are important, but working as a team is a 

different story. As a team they can strengthen each other.” W1P7 

Several participants noted that player performance is affected by other players, rising or 

falling in response to the ‘chemistry’ between them. 

 “When X, Y, and Z players play together in any team, the performance of the match changes 

radically. All of the KPIs of the players such as running, passes rates, and scoring, change 

to better if they play together.” W1FC7 

It has not been noted any systematic approach to find such synergetic impacts. What is 

suggested in this research is to use correlational analysis. But what is noted by the 

interviewees is using the context-based analysis. I.e. the impacts on performance if some 

players missing and some players in the match.   

“I tell you about one player called N, last year he was playing back to player L. If player L 

absent in any match, you can see player N performance goes down significantly. There is 

a chemistry between these players. But the same player does not have such chemistry with 

others in the team. This analysis if found by the context analysis when we noticed the player 

performance goes down without a clear reason.” W1FC8 

The drawback to this approach is the influence of chance, because it can be difficult to 

identify such factors on a certain player given that 10 scenarios for other 10 players will 

also be taken into consideration, which can make the analysis overwhelming. Thus, 

correlational analysis is recommended as a way to examine the different KPIs of players. 

Significant correlations can be signs of synergetic impact, based on the assumption that 

chemistry between the players with synergetic impact will have a consistent, measurable 

correlation as they influence each other.  

 “The Chemistry depends, on adding the weakness of the other” W1TD 
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The synergetic impact can be on tactical and physical KPIs, but do not typically support 

arguments for technical KPIs. Regarding the synergetic impact on tactical abilities, one 

interviewee said: 

 “Z" and “X”, one is offensive, and one is defensive. IF you have both of them defensive then 

you will never have a goal chance, because the two players are too similar” W1TD 

Whereas, the same participated said the following about synergetic impact on the 

technical abilities of players: 

So “Z” defensively is not but “X” is good, and it depends on their foot as well, “P1” is left 

footed “P2” is right footed, it brings balance in the team. One is good in the air one is 

good in the ground.” W1TD 

5.6 Knowledge Discovery Value Co-Creation Framework for Football 

Data Analytics (KDVCCFFDA) 

This underpinning framework to understand the value creation from the adoption of the 

KD technologies is the resource based view, adopted from Melville and Kraemer (2004). 

Besides, the benefits map as a structural framework, adopted from Ward and Daniel 

(2012), to break down the value creation process into outputs, capabilities, outcomes, and 

benefits (i.e. value). Moreover, the value creation process is not waterfall due to the 

fuzziness nature of knowledge. Accordingly the Agile methodology is adopted (Beck et 

al., 2001; APM, 2015) to ensure the process is Agile and both parties (head coach and 

data analysts) are taking active role in discovering knowledge.   

First, according to Melville framework, the resources are broken down into technological 

and complementary (or human resources). This research contributes to the knowledge by 

defining and taxomising the KD technological resources in the football industry. The 

Information Technology resources that aid in improving the understanding of the data 

available to the coaches and data analysts. These are Data capturing technologies, 

software applications for annotation and coding and lastly, databases, datasets and their 

interface to process and query the data available.   

Also, this research contributes by detailing the human resources required for creating 

value from the KD technologies in the football industry. The Human Resources in this 

research are as followed. The Data Analyst Competences found in this research are 
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planning football, statistical, technological and communication. They are to clarify and 

improve the competences in which knowledge can be built, processed and used. The 

knowledge in football competence of the data analyst are there to aid in identifying the 

suitable and best technologies in capturing and analysing match events. Additionally, that 

as well help in improving the communication and collaboration between data analysts 

and coaches and improving in processing the tasks required. Thus, improving the 

analytical models that address the several issues that are required by the data analysts. 

The competences of the various technological resources available in football will aid the 

data analysts to investigate suitable data capturing technologies, look for specific and 

databases or datasets that support and optimise the data processing and analysis needs. 

Thus, improves the KD analytical models developed.  

Next coaches’ competences are found to be the statistical and software application 

competences. The coaching statistical competence in this research is to reflect on the trust, 

motivation and courage of the coach in using statistical data within the coaching team. It 

is very important for assisting in the data planning, proposing new statistical analysis and 

develop custom fit coaching models for the coaching team. Alongside of that is the coach 

capability of using different software application in his coaching activates and how that 

is reflect in his positive and negative coaching practices due to the awareness of limitation 

and allowances of software technologies. The outputs of using these resources effectively 

are discovering new KPIs and developing their analytical models (i.e. discovering 

relationships between their own sets of KPIs (e.g. relationships between physical and 

technical KPIs). 

Because the knowledge is fuzzy in its nature, waterfall approach to discover knowledge 

is not a valid option. This research contributes to the Agile project management literature 

by underlining the role of the co-creation process in discovering new knowledge as 

project. The co-creation approach using Agile tools are found successful with the teams 

using them. Based on that, Value Co-creation tools are proposed. They are User Stories, 

Story Cards, Story Mapping Sprints, and Retrospectives. 

The use of benefits map structural framework is found to be useful here in breaking down 

the value creation process into set of connected boxes as illustrated in Figure 5-6. The 

capabilities would be in the coaching team abilities in determining and understanding 

players’ performance, identity the opponent’s strength and weaknesses as well the 
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opportunities and threats of next match.  That as well with aid in understanding more 

about the opponent’s teams’ players’ performance. The main outcomes that area 

highlighted by this research are the strategies in which the coaching team can reflect upon 

their practices. To elaborate more, developing effective training strategy are one result of 

the resources outputs and the coaching team capabilities. Based on the discovered KPIs 

and custom fit analytical models, the coaching team would be able to understand more 

about their training needs, area of weakness or strength, strength to utilise and optimise, 

weaknesses to avoid, work on and prepare for. By developing effective training strategy, 

match strategies can be improved. Having improved understanding about training needs 

and players capabilities (e.g. speed, sprints and passes and synergy between players) 

should aid in developing matches strategies. Also, reflecting in match training scenarios 

should reflect on improved match strategies. As a result of improved training and match 

strategies, understanding players and teams needs would be improved. Hence, assisting 

in developing effective recruitment and transfer strategies based on better understanding 

and reading of training and match strategies.  
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Figure 5-6: KD Value Co-creation Framework for football Data Analytics - © by the researcher
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5.7 Knowledge Discovery Maturity Model for Football Data Analytics 

(KDMMFDA) 

Knowledge Discovery Maturity Model for Football Analytics (KDMMFA) is developed 

to summarise the research findings and provide a useful tool for teams to assess their 

maturity in adopting knowledge discovery in their policies. The maturity model consists 

of four levels: Ad hoc, defined, managed, and optimised as will be detailed next.  

5.7.1 Ad hoc 

The first level, the ad-hoc, is unawareness or weak awareness of the KPIs, how to use 

them and how to put them into meaningful meaning. This level shows the coach is not 

interested and he does not care to consider KPIs in his training or match strategies. I.e. he 

might use videos and relying on qualitative analysis and experience to formulate 

strategies. This level assumes there is no existence of a data analyst. If existed, he has a 

minimal role in developing training and match strategies.  

5.7.1.1 IT Resources 

This level assumes that the team do not use or minimal use of technologies to capture the 

players’ KPIs and so no use of any software for discovering correlations or classification 

(e.g. clustering analysis) analysis. I.e. to operationalise the Ad Hoc IT resources levels, 

the criteria are  

- No existence of any technology that could code the players performance 

- No existence of any technology that could track the players’ performance (e.g. 

cameras) 

- No existence of any technology that could do analysis or correlations 

- No existence of database for the players performance  

5.7.1.2 Human Resources 

Human resources at the ad hoc level are minimal in terms of the required knowledge 

discovery competences for both 

- No data analyst employed 

- If a data analyst is employed, then is not aware of statistical tools  

- Data analyst is not aware of the software applications that could help in analysis 

- Data analyst is not aware of the football terms and concepts 

- Data analyst communication skills are limited or weak  
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- Coach not aware of the value of knowledge discovery in the planning process  

- Coach does not have specific attitude towards the use of data analytics in 

improving his strategies 

- Coach is not aware how KPIs and use of KPIs could improve the planning 

process.  

- Coach is not aware of software applications that could help in discovering 

knowledge in football.  

5.7.1.3 Agile Based Practices Resources 

Agile based practices resources are assumed to be minimal here with few use of them and 

with weak evidence of collaboration, communication, and/or trust between knowledge 

discovery actors (i.e. data analysts and coach). The items to be recorded as weakness at 

this level are: 

i. No use of stories in articulating problems  

ii. No clear vision of the full insight needed in the analysis 

iii. Lack of ability to of comprehensive analysis (partial task not the whole 

Inconsistency in the analysis outcomes 

iv. The tasks are not clearly identified for data analyst 

v. No clear timing of the meetings and production of reports 

vi. No lessons learned from the analysis process is documented 

vii. Lack of communication between the teams and/or stakeholders. 

viii. Limited contributions/collaboration by the stakeholders for developing the 

questions 

5.7.2 Defined 

In the “Defined” level, the team manager is aware of the different KPIs, analytics models, 

and how to use their results in the strategy development. This case could happen for new 

coach coming from abroad, but the club does not have sufficient resources to fund for the 

data analyst or technologies to have knowledge discover IT infrastructure. This is 

common in Olympic league and League 2.  
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5.7.2.1 IT Resources 

In the defined level, the minimum IT resources required for getting players’ performance 

are identified and used. At this level, the secondary data is only available from the third 

party but without access to any technology to track player performance. 

- The use of secondary database provided from third party. 

- No existence of any technology that could code the players performance. 

- No existence of any devices that could track the players’ performance (e.g. 

cameras/GPS). 

- No existence of any technology that could do analysis or correlations. 

5.7.2.2 Human Resources 

In the defined level of human resources, the data analyst is available but with minimum 

knowledge  of the statistics in terms of measuring the KPIs but not necessary being able 

to find correlational or clustering analysis. Also, at the defined level human resource 

manager knowledge in football is basic with basic communication skills. At this level of 

coach is aware of the importance of using statistics without having in-depth knowledge 

of statistics or use of the statistics in planning.  

- There is a data analyst but with minimal understanding of statistic terms (i.e. 

limited to comparison in figures). 

- The role of data analyst is limited to importing data from websites to write a 

report for the team manager. 

- Knowledge of football is limited to reports produced.  

- Communication skills are adequate. The communication is one way.  

- Coach  is aware of the availability of different tools and applications that could 

help in the knowledge discovery.  

- Coach is aware that there are statistical models that can be used to improve the 

planning.  

5.7.2.3 Agile Based Practices Resources 

Coach and data analyst are using basic agile methods to improve the constructive 

communication between members. The basic methods here is operationalised in terms 

having scheduled meetings with defined acceptance criteria for the reports and outputs. 

The defined level is operationalised into  
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- The coach and stakeholders having well established Insights and vision regarding 

the analysis needs 

- Meetings are done according to the sprints scheduling  

- Defined acceptance criteria for each sprint regarding the discovery  

- Encourage the knowledge discovery process by having set of stories/questions to 

work on in order to reach insights and vision of each sprints. 

5.7.3 Managed 

In the managed level, the team manager knows and utilises the basic features of data 

analytics. There are some coding applications that could quantify and measure the players 

performance such as SportsCode.  Basic analyses are done such as comparisons between 

players. The focus is mainly on the physical KPIs because technical KPIs are more 

difficult to be captured through basic tools. Correlational, multivariate or other 

knowledge discovery analytic models are missing. The knowledge discovery practices 

are limited to what can be known from comparison of the physical KPIs.  

5.7.3.1 IT Resources 

At the managed level, the team has access to different tracking technologies besides the 

availability of the secondary data. Besides the use of coding applications to track and 

monitor different events in the match. But at this level there is access to advanced analytic 

applications 

- Data analyst measures and uses coding application to get primary data of the 

players’ performance 

- GPS and other tracking devices are used 

- No advanced analytic software application  

5.7.3.2 Human Resources 

The data analyst at the managed level are able to use tracking technologies and use of 

excel in sorting, coding, saving, processing, and retrieving basic KPIs. The level of 

statistics use is average, mode, and median with no use of variations analysis.  Also, the 

data analyst could have a constructive communication with the coach since the knowledge 

in the football is profound to absorb the match strategies. Also, the communication is 

improved because the coach have accepted level of knowledge in understanding the 
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capabilities of coding application and awareness of the possibilities of using KPIs 

statistics in creating new match and training strategies.  

- Team of data analysts are coding the match performance and proposed opponent 

teams 

- Use Excel in comparing players and teams  

- Ability to use statistical modelling is limited  

- communication is two-way  

- There is awareness of the use of advanced statistical models. 

- Coach knows and uses the possible features of the coding applications  

- Coach is interested in different tools and applications that could help in the 

knowledge discovery.  

- Coach is interested in statistical models that can be used to improve the planning.  

5.7.3.3 Agile Based Practices Resources 

The communication is more structured so that the lessons learned can be documented 

constructively. The use of story cards, sprints and other agile techniques but the 

knowledge management in documenting and using the communications are not optimised 

and not used effectively.  

- Set up a tool for manging the KD process in terms of problem identification, user 

stories/questions generation,  

- Having and working on clear research framework to reach the vison and insights 

of each sprints. 

- Enforce learning from the reached results   

- Enforce modelling practices addressing the similarities in the analytical 

questions/stories in order for enhancement 

- Set up a clear KD analysis process based on the above and reflecting on them at 

the end of each sprints.  

5.7.4 Optimised 

The coach and data analyst are using advanced statistical models to do data mining and 

exploring new patterns in the data. This case can happen if the data analyst is well trained 

on advanced analytic models that can do contextual, predictive and simulations. These 

requires existence of advanced specialised analytic software applications. Also, it requires 

strong communications between the data analyst and beneficiaries of the knowledge.  
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5.7.4.1 IT Resources 

IT resources at the optimized level refers to the using the full potentials of the 

technological resources available for the knowledge discovery. This does not only include 

data capturing technologies but also data analytics technologies. I.e. the IT at the 

optimised level is operationalised into the following statements.  

- Besides the data coding system, there is a software that can correlate and 

differentiate concepts under investigation 

- Besides the tracking technologies, body sensors are used  

- Database is well structured, and data is clean 

- database includes the performance of the other teams in the league with the same 

level of details of the team 

5.7.4.2 Human Resources 

Data analyst and coach competences in the knowledge discovery at the optimised level is 

the highest. At the optimised level, the communication is highly structured and 

constructive. The competences of data analyst to inform new data lead strategies is 

profound. Also, the coach is able to translate the problems into clear stories can be 

translated into set of clear hypothesis or data inquiries. The data analyst has high level of 

competences on using analytic applications and artificial intelligence applications. Also, 

the coach has high data curiosity to understand planning and training problems better.  

- Data analyst is familiar and able to use the data analytic applications (Such as R 

and MATLAB) 

- Data analyst have good knowledge of different analytic models (such as Artificial 

Intelligence Algorithms, Multivariate analysis, and structured modelling) 

- Data Analysis has profound experience in football strategies (Training, 

transferring, and match strategies) 

- Communication is solid and constructive between team manager and data analyst 

- Coach has good knowledge and understanding of the statistical concepts and 

models (e.g. artificial intelligence algorithms) 

- Coach has good understanding of how different statistical applications and models 

can help in improving his strategy 

- Coach is a fan of data in planning  
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5.7.4.3 Agile Based Practices Resources 

Agile based practices at the optimised level aim to fully adopt Agile methods and 

techniques to improve the quality of the constructive communications that can lead to 

discovering new useful and insightful knowledge. The use of retrospective and lessons 

learned is competent enough to allow effective continuous improvement in the value co-

creation process through constructive communications.  

- Monitor and measure the KD analysis process quality (against, user questions, 

stories, stories/question mapping, acceptance criteria)  

- Enforce documentations, recording, and tracking process, model development in 

order to develop and tell informative and relative analysis stories 

- Enforce retrospective meetings to improve and issues in current sprint and 

improve future sprints.  

 

The next section will present the knowledge discovery maturity model for football 

analytics in a table format for the ease of visualisation and use. 
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5.8 KDMMFDA – Table Overview  

This section represents the KDMM for Football Analytics in a table formats for improving the visualisation of it. Please see table  

Table 5-7: KDMMFDA - © by the researcher 

 Ad hoc Defined Managed Optimised 

HR 

Resources 
• No data analyst 

employed 

• Data analyst is not aware 

of statistical tools  

• Data analyst is not aware 

of the software 

applications that could 

help in analysis 

• Data analyst is not aware 

of the football terms and 

concepts 

• Data analyst 

communication skills are 

weak  

• coach Manager not 

aware of the value of 

knowledge discovery in 

the planning process  

• coach manager does not 

have specific attitude 

towards the use of data 

analytics in improving 

his strategies 

• Team of data 

analysts are coding 

the match 

performance and 

proposed opponent 

teams 

• Use Excel in 

comparing players 

and teams  

• Ability to use 

statistical modelling 

is limited  

• communication is 

two-way  

• team manager knows 

and uses the possible 

features of the 

coding application 

• There is awareness 

of the use of 

advanced statistical 

models. 

• Team of data 

analysts are coding 

the match 

performance and 

proposed opponent 

teams 

• Use Excel in 

comparing players 

and teams  

• Ability to use 

statistical 

modelling is 

limited  

• communication is 

two-way  

• team manager 

knows and uses the 

possible features of 

the coding 

application 

• there is awareness 

of the use of 

advanced statistical 

models.  

• Data analyst is 

familiar and able to 

use the data analytic 

applications (Such as 

R and MATLAB) 

• Data analyst have 

good knowledge of 

different analytic 

models (such as 

Artificial 

Intelligence 

Algorithms, 

Multivariate 

analysis, and 

structured 

modelling) 

• Data Analysis has 

profound experience 

in football strategies 

(Training, 

transferring, and 

match strategies) 

• Communication is 

solid and 
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• Coach manager is not 

aware how KPIs and use 

of KPIs could improve 

the planning process.  

• Coach manager is not 

aware of software 

applications that could 

help in discovering 

knowledge in the 

football.  

constructive between 

team manager and 

data analyst 

• Team manager has 

good knowledge and 

understanding of the 

statistical concepts 

and models 

• Team manager has 

good understanding 

of how different 

statistical 

applications and 

models can help in 

improving his 

strategy 

IT 

Resources 
• No existence of any 

technology that could 

code the players 

performance 

• No existence of any 

technology that could 

track the players’ 

performance (e.g. 

cameras) 

• No existence of any 

technology that could do 

analysis or correlations 

• The use of 

secondary database 

provided from third 

party 

• No existence of any 

technology that 

could code the 

players performance 

• No existence of any 

devices that could 

track the players’ 

performance (e.g. 

cameras/GPS) 

• Data analyst 

measures and uses 

coding application 

to get primary data 

of the players’ 

performance 

• GPS and other 

tracking devices 

are used 

• No advanced 

analytic software 

application  

• Besides the data 

coding system, there 

is a software that can 

correlates and 

differentiate 

concepts under 

investigation 

• Besides the tracking 

technologies, body 

sensors are used  

• Database is well 

structured, and data 

is clean 
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• No existence of database 

for the players 

performance 

• No existence of any 

technology that 

could do analysis or 

correlations. 

• database includes the 

performance of the 

other teams in the 

league with the same 

Value  

Co-

Creation 

Activities  

• No use of stories in 

articulating problems  

• No clear vision of the 

full insight needed in the 

analysis 

• Lack of ability to of 

comprehensive analysis 

(partial task not the 

whole Inconsistency in 

the analysis outcomes 

• The tasks are not clearly 

identified for data analyst 

• No clear timing of the 

meetings and production 

of reports 

• No lessons learned from 

the analysis process is 

documented 

• Lack of communication 

between the teams and/or 

stakeholders. 

• Limited 

contributions/collaborati

on by the stakeholders 

for developing the 

questions 

• The team and 

stakeholders having 

well established 

Insights and vision 

regarding the 

analysis needs 

• Meetings are done 

according to the 

sprints scheduling  

• Defined acceptance 

criteria for each 

sprint regarding the 

discovery  

• Encourage the 

knowledge 

discovery process by 

having set of 

stories/questions to 

work on in order to 

reach insights and 

vision of each 

sprints. 

 

• Set up a tool for 

manging the KD 

process in terms of 

problem 

identification, user 

stories/questions 

generation,  

• Having and 

working on clear 

research 

framework to reach 

the vison and 

insights of each 

sprints. 

• Enforce learning 

from the reached 

results from the 

previous steps i 

and ii and reflect of 

that based on the 

acceptance criteria 

and the intended 

vision and insights. 

• Enforce modelling 

practices 

addressing the 

• Monitor and 

measure the KD 

analysis process 

quality (against, user 

questions, stories, 

stories/question 

mapping, acceptance 

criteria)  

• Enforce 

documentations, 

recording, and 

tracking process, 

model development 

in order to develop 

and tell informative 

and relative analysis 

stories 

• Enforce 

retrospective 

meetings to improve 

and issues in current 

sprint and improve 

future sprints.  
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similarities in the 

analytical 

questions/stories in 

order for 

enhancement 

• Set up a clear KD 

analysis process 

based on the above 

and reflecting on 

them at the end of 

each sprints.  

Analytics 

Practices 

 

 

• Team Manager does not 

worry much about the KPIs 

• Strategies are developed 

based on videos Sloley 

• Team manager relies on his 

coaching team opinions in 

developing strategies 

• Team manager is aware 

of the KPIs, but he 

cannot utilise them 

• Team manager is aware 

of different analytic 

models, but he is limited 

in the ability to utilise 

them 

• Team manager uses 

secondary data reports 

for planning  

• The comparative 

models (such as t test, 

u test) are used to 

compare teams, and 

players 

• The use of physical 

and technical KPIs are 

common but tactical 

KPIs are less 

• there is no use of 

advanced analytic 

models   

• Use of contextual 

analysis  

• use of predictive 

analysis 

• use simulations models 

• use most of KPIs  

• use advanced structured 

KPIs relations such as 

Structured Equation 

Modelling  
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5.9 Summary  

The aim of this chapter was to investigate the potential value from adopting knowledge 

discovery technologies in teams and to develop a maturity model for realising this 

potential value.  The knowledge discovery framework is developed and operationalised 

into maturity model in this chapter. To realise the knowledge discovery potential value, 

it is required to have the technological and human resources. When technological and 

human resources are orchestrated effectively using agile approach, new KPIs and analytic 

models can be developed which should inform useful and insightful planning and training 

practices so that the match results are improved. The maturity model assesses the 

existence of technological, competences of human resources and the adoption of agile 

based practices so that new KPIs and new analytic models can be developed to create 

useful knowledge for the coach.  
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Chapter 6  Knowledge Discovery Maturity Model – 

Analysis, Evaluation and Verification 

6.1 Introduction  

The aim of this chapter is to verify and validate the maturity model developed in the 

previous chapter. This validation and verification will also improve the validity of the 

framework as a whole. The chapter begins by describing the methodology used for the 

evaluation process, after which a background of the cases is introduced. The validation 

and verification process first focus on the maturity model, and then reflects on the use of 

the KPIs and analytic models in the development of strategies. Finally, this chapter 

presents the landmark feedback obtained from the participants in the current study. 

 

Figure 6-1: Chapter Structure 

6.2 Chapter Methodology 

Validation and verification are considerations involved in ensuring the quality of the 

research. Validation serves to ensure that experts agree with the framework and tools 

6.2. Chapter Methodology

Validation Method

Verification Methods

6.3. Cases Background

Case 1

Case 2

Case 3

Case 4

Case 5

6.4. Maturity Model Validation and Verification

V&V Data Analyst 
competences

V&V Team Manager 
Competences

V&V Technological 
Resources

V&V value co-
creation

6.5. The use of KPIs and Analytic Models 

KPIS

BSC

Analytic Models

Validating Strategies

6.6. Case Studies 
Feedback

Ease of use

Usefulness

Comperhensiveness 
and inclusiveness
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developed in this research; verification pertains to the use of the maturity model that 

operationalises the research findings and then a discussion of the results with cases. 

Validation involved face-to-face interviews conducted with nine experts, who gave 

opinions and insights on the framework, models, and tools. The details of these experts 

are in Chapter 3.  Their insights into the research elements were integrated to improve the 

weaknesses identified. Verification was conducted through five case studies (five football 

teams in Saudi Arabia).  

6.3 Cases Background 

Five teams were selected for involvement in this phase of the research. These teams were 

different from cases used in developing the maturity model and had different resources 

available for KD processes. The selection process sought to ensure that different teams 

with different resources were selected, to ensure that the verification would be 

meaningful. Two national teams are selected and three teams from the league (two of 

which held top records in the professional league and the third is an average team). One 

or two interviews were held with members of each team, in order to gain a deeper 

understanding and to ensure the validity of the responses for the model questions.  

The maturity model was operationalised into a set of questions with a score of five on a 

Likert scale (from strongly agree to strongly disagree). The questionnaire is in appendix 

A. The interviews were carried out face-to-face and took an average of 90 minutes. The 

results of the assessment were discussed back with the respondents, in order to obtain 

their feedback, as defined in the verification process.   

All teams’ data, backgrounds and records were obtained from the official Saudi Football 

Federation website: www.saff.com.sa, Saudi Professional League website: 

www.spl.com.sa, and from the official broadcasting sponsor: www.dawriplus.com.  The 

main reason for the limited background introduction of the team is to maintain the ethical 

anonymity practice and policies of the research. It is just to highlight the major 

achievements of the teams and their contributions. The summary of the findings of the 

teams’ assessments is in Table 6-1. 

 

 

 

http://www.saff.com.sa/
http://www.spl.com.sa/
http://www.dawriplus.com/
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Table 6-1: Summary of Cases Strength vs Weaknesses points 

Case Team Main strength points Main Weaknesses 

Case1 CT1 Resources – Data analyst background is professional football 

coaching. Existence of secondary data sets and use of video.  

Data analyst is called video analyst. 

There is no any role/position for 

analysing performance data.  

Case 2 CT2 Resources 

Bachelor’s Degree in Computer Science  

Training in football analytics and Coaching. 

 Use of advanced analytic models  

Case 3  CT3 Resources  

Master’s Degree in football performance analysis (Portugal)  

Coach Experience in the SPL 

Communications/ use of advanced 

analytic models  

Case 4 CT4 

 

Serbian Coach – Passionate of data analyst and know about 

statistics, the use of analytic software.- Existence of Electronic 

Performance Tracking System (EPTS) 

Agile – communication  

Case 5 CT5 Team manager strong attitude to use statistical.  

Great coaching experience 

Low resources. 

No dedicated full-time data analyst. 

6.3.1 Case 1: CT1 – Background  

CT1 Saudi Football Club is a Saudi Arabian professional football club based in the 

western region. It competes in the Saudi Professional League (SPL) and is one of the top 

teams in Saudi Arabian football. 

Domestically, CT1 have won many titles including the professional league, King Cups, 6 

Crown Prince Cups, Prince Faisal bin Fahd Cups and Super Cup. In terms of international 

club football, CT1 were the winter of several GCC Champions League titles and an Arab 

Club Championship, as well as reaching two AFC Champions League finals. Along with 

top Saudi Arabian football teams, CT1 is one of the four founding members of the SPL 

and have never been relegated from the top flight.  

Team manager / Head coach 

Since 2014, CT1 have great coaching teams that aid and lead to significant performance 

improvement. Coaches from different countries such as Switzerland, Portugal, Ukraine 

and Argentina are the latest coaching expertise joined this team.  

Data analyst  

The club has one data analyst who does video analysis and develops reports from STATS 

(formally ProZone) data about the players, lines, team performance and evaluates 

competitors. The background of the analyst was professional football coaching and 

training courses in football performance analysis.  

Technologies available  

The technologies available were video clips, and primary and secondary datasets. There 

was no clear evidence that the analyst used training datasets collected using EPTS 

resources or used training data produced in the report. 
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Models used  

Descriptive analysis (i.e. speed, distance, % of success)   

6.3.2 Case 2: CT2 – Background 

In 2016, this team qualified for the final against Japan, the winner of 2016 U19 Asian 

Federation Championship (AFC). Proceeding to the 2018 AFC U19, T2 have not lost any 

game in Qualifiers Group D. CT2 qualified to the Group Stage and will compete against, 

Malaysia, China P.R. and Tajikistan in October 2018. 

Head coach / Team Manager  

The head coach of CT2 is a Saudi Arabian coach. 

Data Analyst 

One full-time data analyst/video analyst (term used interchangeably). This expert has a 

bachelor’s Degree in Computer Science. Based on the interview with him, he started his 

analysis in football as a fan and developed by taking football analytics courses and 

football coaching training. The coaching team feel that the data analyst understands the 

training and coaching strategies and that he is delivering the required reports. The analyst 

understands that there are differences in statistical interpretations of the data and tries to 

develop these in a meaningful way. 

 Technologies 

The coaching team uses video clips, EPTS (polar belts and watch) and primary and 

secondary data.  

Value co-creation aspects  

There is a good culture within the coaching team, which was evident from the interviews, 

questions, and overall performance of the team. The communication, meetings and trust 

within the coaching team seems to have developed positive collaboration towards 

coaching and analysis queries. The team manager, coach and data analyst have worked 

together for more than a year.  

Models used  

Descriptive analysis  

6.3.3 Case 3: CT3 – Background 

CT3 has not qualified for the Olympics since 2000, however they were the Champions of 

the Arabian Gulf Cup in 2008. In 2017, the CT3 performed well in the qualifiers and 

qualified to the Group Stage. In November 2017, a new Argentinian coach was assigned 
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to the team, but the team did not qualify from the Group Stage. The current coach 

nationality is Saudi Arabian and is a successful head coach of a professional Saudi 

Arabian football team. 

Head coach / Team Manager  

The current coach of CT3, led the one his football team to the top four teams in the Saudi 

Arabian Professional League (SPL), which is a significant improvement from their poor 

performance from 2013. As a consequence, he was offered the role of head coach of the 

CT3 after last season. His coaching team are formed of 7 members: the team manager, 2 

assistant coaches, a manager, a physical coach, a goal keeper coach, and one data/video 

analyst.  

Data Analyst 

The video analyst of the CT3 have master’s qualifications in football analysis. The current 

resources used now are video clips, primary and secondary data.  

Technologies 

Video clips, and primary and secondary data. There is no use of purchased primary and 

secondary data. 

Models used  

Descriptive, and contextual analysis model is developed.  

6.3.4 Case 4: CT4 – Background 

After qualifying for the SPL, the management of CT4 invested heavily in developing and 

improving the coaching culture within the team. At an Olympic level, the CT4 Olympic 

team won the Saudi Arabian Olympic League in 2018. 

Head coach / Team Manager  

Great coaches have joined CT4 and it tends to develop good and strong team outcomes. 

One of their coaches was one of the great coaches that performed very well in the FIFA 

World Cup 2018. The CT4 team seems to seek specific coaching competences that fits 

their football team strategies from their approach of selecting coaches.  

Data Analyst 

The team data analyst in seems to perform the duties expected by the coaching team, 

including statistical interoperations of players, lines and overall team performance.  

Technologies 
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The resources used for players team performance analysis are video analysis, primary and 

secondary data. Additional analysis using sophisticated tools were stated but not clarified. 

There is no clear evidence that there are use of various Electronic Performance Tracking 

System (EPTS) devices. 

Models used  

The mostly developed analytical models were comparative and descriptive models, with 

an unusual focus on contextual analysis. 

6.3.5 Case 5: CT5– Background 

CT5 is one of the top classic football teams Saudi Arabian. It has been one of the top 5 

teams in the SPL during the last 10 years. The team competes across all different league 

competitions, maintaining a top ranking in the league, and are recognised for their 

excellent football academy.  

Head coach / Team Manager  

For the most of his professional career, the coach, was a former player of one of the top 

Saudi Arabian football clubs. He resigned as player in 2014 and started as a coach while 

undertaking his professional training. In 2016, he was recognised as one of top three 

young coaches in Saudi Arabia. He is one of few Saudi Arabian coaches to holds an Asian 

Federation Professional Coaching License, in recognition of the national shift towards the 

development of professional coaches to improve coaching and training standards.  

Data Analyst 

No dedicated performance analysts, but one is available part-time. That may have been 

influenced the collaboration between the coach and the analyst. 

Technologies 

Basic technological resources, such as video analysis from videos and observation.  

Models used  

The focus in the analysis model tends to be comparative, descriptive and simple statistics. 

6.4 Maturity Model Validation and Verification  

This section is structured according to the elements of the framework. The model consists 

of four main elements: data analyst competences, team manager competences, value co-

creation process, and technological resources. 

6.4.1 Data Analyst Competences 
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The key competences for data analysts are technology, statistics, football planning, and 

communications. The validation sought to ensure expert agreement with these elements. 

This followed by a verification through applying the tool on five cases. 

6.4.1.1 Validating the Human Resources Required  

There was acceptance of the model and results, with some comments supporting this 

position. All participants perceived football knowledge to be the most important factor, 

given its importance for discovering new knowledge from data, presenting the analysis in 

a useful and easy to understand way, and effectively understanding the needs of the coach. 

“I faced a problem with the data analyst in the youth team. Frankly speaking, I failed to work 

with him. As you have shown me, the data analyst needs the sense, the feeling and 

knowledge of football. Some analysts have strong knowledge about statistics and analysis, 

but no idea about football. I can confirm what you have said. I sometimes think that analysts 

should have at least minimal experience in coaching or has played football for a while. 

This can help building ideas and giving a better understanding.”  W2FC4  

“It is crucial that the data analyst be able to understand the coach approach and his style so 

that can give insightful recommendations based on the data. I struggled a lot with my 

previous data analyst who were lacking sufficient football knowledge” W2EM2 

As mentioned by other experts, it is critical that mutual understanding and communication 

are constructed between stakeholders. 

 “There has to be clear understanding in how you see the game. This only comes with time 

and by working together for a long time. The analyst understands when an attack starts 

and when it finishes – does it start in a building attack phase – does it start in creating an 

attack phase – so you need to have a clear understanding. If you have that, you can go a 

long way.” W2FTM8 

One of the participants addressed the effort and time spent to convey message to those 

data analysts who does not have sufficient experience in coaching and sports. 

 “I can give you an example. I told my analyst to analyse a certain corner in different 

scenarios for the defenders. He did not give me the full picture. He did not give me what I 

expected. The communication was not great because of his lack of knowledge in football. 

Sometimes I spent more than 2 hours to convey my requirements to him. It was a waste of 

time.”  W2FC4 
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Football knowledge was a key factor in improving the ability of analysts to augment the 

work done by coaches. 

 “Our Analyst who have worked with in the world cup is a very intelligent football guy who 

knew “what is what”, and what I was looking for - so when he came to say I asked I want 

to know how many times our central midfielders got into the right – he knew exactly what 

I meant by that.” W2FTM8 

“The analysts are doing a lot of statistics on, basically, how many transitions from attacking 

to defending and from defending to attacking but again there should be a clear 

understanding between the coach is when does it starts and when does it finish – it’s just 

had a clear and good understanding between the two people.” W2FTM8 

 Another perspective here is the diversity of the data analysts and coaches that are working 

together to collaborate in improving the KD process. W2FM8 stated that his team has two 

different coaches; one for in possession and one for out of possession. Both coaches work 

closely with the analyst to explore issues and formulate team strategy for different 

positions.  

“The analyst needs to understand how the coaches work. If you got a head coach, an assistant 

coach, and whatever coach – we have three coaches, a head coach, in possession coach, 

out of possession coach and we have to be in one room together for all three of us to come 

up with the right sort of information, because my view as head coach is different than the 

in-possession and out of possession coach – so we got to have a joint thinking between 

everybody and it takes time.” W2FM8 

6.4.1.2 Verification of the Data Analyst Competences  

According to the proposed framework, there are four competences required for effective 

KD processes: technology, statistics, football planning, and communications. All 

participants from the five cases agreed that these competences are the most required for 

the data analyst, evaluating them five out of five (with the average score for each 

competence/per team is plotted on a radar chart). Nevertheless, certain differences were 

identified, with the highest average being case 3 and the lowest case 5. 

“It’s important for the team analyst to know his role and boundaries like any other employee, 

and what data is required by the Team Manager/Head Coach. Knowing that it makes 

his/her job easier and more efficient, helping them to build a connection and trust with the 

Team Manager/Head Coach.” C1DA1 
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“It’s important for a team analysis to know what data he is required and what software/tools 

that can provide him/her with the information and not go wasting his/her time in looking 

in other data sources and is not relevant.” C1DA1 

 “The data analyst in our team is useful and productive” C2AC1 

Case 5 has a relatively low match performance. This case scored lower on all aspects than 

the other teams, perhaps because of a lack of resources and a part-time analyst with 

limited access to technologies. In contrast, the data analyst in case 3 has a master’s degree 

in data analysis and access to specialised software applications. The data analyst is full 

dedicated to the team.   

Case 1 and 2 are interesting because they demonstrate high technology competences, but 

relatively low average statistical competences. This may be because the data analysts are 

highly technology led, which gives access to descriptive statistics, but without training in 

sophisticated data analytics courses that have provided advanced statistical modelling 

techniques. Indeed, the data analyst in case 1 is called ‘video analyst’, which reflects that 

his duties involve analysing videos without focusing in data modelling for technologies. 

The budget of these two teams are much higher from others, enabling them to outperform 

others in buying new technologies. These teams have good results in using different KPIs, 

but not the highest, perhaps due to insufficient statistical competence. This performance 

could be due to the communication, football and technological competences of the data 

analyst. The participants agreed with this analysis.  
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Figure 6-2: Data Analysis Competences 

 

6.4.2 Coach Competences 

Two coach competences proposed in this research as requirements for knowledge 

discovery. They are awareness of benefits of using data in planning (i.e. how to use KPIs 

in planning) and attitude towards using these KPIs in planning.  

6.4.2.1 Validation of Coach Competences 

Experts agreed on these two factors. The main confirmed points are the awareness and 

knowledge of the use and the usefulness of knowledge discovery technologies.  

“Yes, I completely agree with you! I have seen many coaches who do not have any idea about 

the data analytics that could help them in managing and discovering knowledge from team 

performances. They got nothing from such technology because they do not know what they 

can get from them.”   W2EM2 

“Currently, what you need is awareness. Only 5 or 6 teams are using data analytics in the 

football. This is even very recently starting from two years ago only. In this year, they 

become 8 teams only using data analytics. Out of 170 teams, 162 team do not have data 

analysts and there is no use of any analytic tools. Do you want the reason? It is not because 
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of the budget; but there is lack of awareness of the usefulness of the power of data analytics. 

we need to spread such culture of using data analytics in football sports” W2TCM1 

6.4.2.2 Verification of Coach Competences 

In this research, two factors are proposed as being critical for team managers in order for 

them to realise the value from the knowledge discovery: attitude towards statistics and 

use of statistics in the analysis, and the knowledge and awareness of different analytic 

approaches. All cases agreed that these factors are vital, scoring five out of five, for 

translating the data analyst reports and analysis into strategies and performance. 

Regarding the current self-assessment, team managers for case 1 and case 3 have the most 

passion for the use of data in analysis, although their knowledge and awareness are less 

than case 4. Case 5 has the lowest knowledge and awareness of the data analysis models, 

but relatively high (4/5) awareness. The differences between awareness and attitude could 

be seen as a factor for learning and adopting new analytic models in the near future. This 

could be also explained in terms of the need for competent data analysis. Based on the 

average score of attitude and awareness, case 4 is the highest with a score of four and case 

5 is the lowest (2.88). The differences here are reflected in the budget allocated to data 

analysis technologies and resources. Case 5 has the lowest attitude towards the use of 

numbers in planning and the lowest knowledge about data analytics, possibly because the 

team is still relatively new and does not have access to resources. The coach is local, with 

no access to formal training on the use of data analytics on planning. Additionally, the 

management of case 5 has not invested in such technologies because there is limited belief 

in these technologies, whereas case 4 has a significant budget in these technologies.  
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Figure 6-3: Coach Competences 

 

6.4.3 Technological Resources 

The technological resources proposed are videos, databases, sensors and software 

applications. The following sections validate and verify these factors. 

6.4.3.1 Validating IT Resources Model 

In validation, the technological model proposed in the previous chapter was accepted by 

all nine interviewees. A comment was raised about the database and about the sufficiency 

of the model. The first uses FIFA videos and analysis, which provides a database of 

players. 

 “We use also FIFA videos and its analysis. It issues CD contains analysis of the world cup 

matches. It provides insightful analysis. We use these CDs to create benchmarks for our 

team performance. We use some videos as to improve our player and coaches’ 

competences” W2FC6 

The limitations of using FIFA CDs is that data are limited to only world cup matches, 

which is less useful for teams in the premier league. It is interesting that videos are being 

used to set new international benchmarks for the players.  The other comment was on the 

sufficiency of the model, with criticisms being targeted at the weakness of the model 

without support by experienced data analysts with different specialities.  
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 “I lead a national team for 4 years as a first coach. In the last season, we used different 

devices to track speed, distance, sprints, recovery rate, breath, and maximum distance in 

sprints. We get best use of it once we hired physical specialist who take control of the 

analytic process. He led the analysis process and present the reports weekly and 

disseminate relevant information to players. Also, he helped us in identifying new targets 

for players and investigating potential reasons for any gaps in the performance” W2FC4 

This point is addressed in greater depth in the human resources section, although the 

model framework clearly relies on both human and technical resources. Others supported 

the efficacy and appropriateness of the model.  

 “InStat, Camtasia, and Dartfish are used. Also, we use PowerPoint presentation to present 

the ideas and statistics to the coach. We present information about effective attacks, 

number of correct passes. We use videos to support the presentation of KPIs and some 

videos to clarify unique behaviours” W2FC5 

6.4.3.2  Verifying the IT Resources Model 

Teams have different evaluations of the importance of each technology. While the 

premium league teams (case 1, 4 and 5) evaluate the use of databases as the most 

important, with scores of 5 for all teams, the national teams (case 2 and 3) perceive these 

as less important, with scores of 3 for both teams. This may be due to the availability and 

reliability of the information for different teams. While the professional league teams can 

play more than 70 matches per year, the national team plays six or more friendly matches 

per year. Accordingly, national teams (case 2 and 3) are perceiving the use of videos and 

tracking sensors as more important during the training sessions, to give them more 

accurate, reliable measures than secondary reports produced for matches at relatively low 

intervals.  

“For Information Technology (IT) and the tools to use, it’s important to connect training 

sessions data with real life game data in order to get connected data of the player to 

improve his/her performance and to get the best outcome.” C1DA1  

Accordingly, the level of usage follows the same pattern: case 2 and 3 use more sensors 

than other teams in tracking player performance during training, whereas case 1, 4 and 5 

rely more heavily on databases than national teams.  

The use of software applications seems to be associated with the level of data analyst 

competences, as case 1 and 3 have higher competences than the average (see Data Analyst 
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Competences) and are also using more software applications than normal in the KD 

process. 

When comparing national teams, case 3 is doing slightly (0.6) better than case 2, perhaps 

because they have a more qualified data analyst, who has a master’s degree in football 

data analytics. This expertise might give the team an edge over case 2, whose data analyst 

bases insights on football experience, rather than formal education in quantitative 

analysis.  

 “Sometimes you want to explore or use a new tech, but you can’t because of financial 

matters” C2DA2 

Comparison of professional league teams averages, case 1 is the best while case 4 is the 

worst, with a difference of 1.2 in a scale of 5. This difference could be explained in terms 

of the greater resources available for KD in case 1. This variation can also be understood 

in terms of head coach/team manager passion and attitude towards the use of data in 

planning. Hence, case 1 is the highest in the head coach attitude, while 4 and 5 are the 

lowest on the same scale, as detailed in coach competences section.  

 

 

 

Figure 6-4: Technologies Used in Knowledge Discovery in Football 

6.4.4 Value Co-creation 
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Value co-creation activities are built upon three main factors: structured communication 

channels, use of storytelling, and sprints. The following sections seek to validate and 

verify these aspects. 

6.4.4.1 Validating the Value co-creation model   

In general, all participants in the validation process were engaged and interested in the 

tools proposed during the value co-creation model. Three had not adopted any of these 

tools, but they were interested and expressed a belief there is a need to apply them, while 

others already use some of these tools but not in a systematic way. The conclusion is the 

tools are validated as being useful for coaches and data analysts. The main comments are 

documented below serve as evidence for such validation. 

 “I completely agree with this framework. It makes sense in terms of the iterative and 

continuous work and meeting between the coach and data analyst. I believe the analyst is 

a member of the coaching team” W2FC6 

Similar feedback was received from another expert. However, he added the routinisation 

and documentation of such process would provide valuable lessons for learning for 

helping new members. 

 “Yes, I agree with having a systematic and lean approach in discovering knowledge. Also, 

documenting requirements and analysis to be as lessons learned. it will be very helpful in 

supporting new member joining our analysts’ team” W2FC5 

Tools were also validated by experts. Some teams use such tools without giving them to 

similar terms, whereas others found they are innovative and useful ideas. Starting with an 

examination of user stories/user questions: 

 “In the analysis process, we (coaching team) have around 35 questions about our team and 

opponent team. Questions such as speed, crossovers, and maximum sprints. By answering 

these questions, the picture becomes clear enough and from this point we can decide the 

direction of the knowledge discovery process” W2FC4 

Likewise, story cards were perceived as an innovative method that made sense to the 

participants. Some teams already use this artefact without calling it “story cards”. 

 “We sometimes have things similar to those cards. In questions, we ask about “areas of 

intensity and pressure of the attack from the opponent, players performance, the 
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performance in the wings, the main strength pitch areas of the opponents, recovery time of 

the players after sprints, distance between lines, the dispersion of players in the pitch, the 

timing of closing the gaps between the lines and time of increasing the gaps between the 

lines” W2TD1 

 Similarly, ‘sprint’ was perceived as a convincing and useful tool that some teams were 

already using.  

 “Some analysts give you the analysis on small batches. You as coach give them the highlights 

and directions and the role of the analyst is to go in-depth and go for details. Analysts are 

able to develop new insightful ideas, all what they need is the direction and guidance” 

W2TD1 

 “Each week the analysis is improved and updated. It is not the same thing. Each match needs 

new knowledge, new insights, and new strategies. It is not copy and paste. It is an iterative 

and evolving process” W2FC4 

“Yes, this is similar to what we do! Each period of time, data analysts update us with new 

fresh insights. We (the coaching team) sets the directions and they feed us from time to 

time” W2FC6 

6.4.4.2 Verifying value co-creation 

All teams agreed on the importance of structured communication between stakeholders. 

They also unanimously perceived the ideas of storytelling and sprints as being critical to 

ensure that team managers and data analysts understood one another and were working 

towards the same goal. In terms of self-evaluation of the performance on each aspect, 

case 3 rated itself as 5 out of 5 in structured communication, while case 2 was the lowest 

with score of 3.8. The reason here in that these variations could be understood in terms 

of the time working as one team, while the team manager and data analyst of case 2 and 

4 have only started working together recently (4 months and 2 months respectively), while 

case 3 has a relationship that was established more than a year ago, enabling creation of 

a structured communication channel. The use of sprints was roughly identical for all 

teams, with score of 4.5, except for case 3, which scored 4.75. This gives an indication 

that teams are consistent in their perception of the importance and usage of these tools for 

collaboration in the production of meaningful knowledge. 
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Finally, storytelling was used most often in case 5 (4) and least often in case 3 (3.4). There 

is no evident reason for this variation. It may simply be an expression of the preferences 

of the coach and data analyst, who prefer to rely on sprints than storytelling.  

 

 

Figure 6-5: Use of Value Co-Creation Tools 

 

6.5 The use of KPIs in the Cases 

The validation of KPIs occurs in four levels: the definition, importance, usage, and 

relations (for KPIs BSC). The structure of this section examines these issues with respect 

to the four main KPIs: physical, technical, tactical and psychological KPIs.  

6.5.1 Physical Indicators 

In this research, physical KPIs denote physiological and fitness measures for players. 

Some are traits that cannot be changed, such as height, while others can be improved by 

training such as speed or recovery rate. Physical KPIs are classified into speed, movement 

and distance. All the cases besides the experts interviewed, agreed on this definition, with 

all criteria given scores of 4 or more. Only two comments are proposed. Case 1 suggested 

adding an additional KPI to measure the ‘agility’ of players saying  

 “I connect “distance”, but endurance & stamina. And movement can be defined as change 

of direction & jump. And I would add “agility” as a physical.” C1TD 



   

 

149 

 

The second added the need for the use of intelligent technologies in measuring the 

tracking these physical KPIs.  

“It is important to reflect the use of intelligent system in measuring and tracking physical 

KPIs” C3P1 

All teams agreed on the importance of using physical indicators in planning, with all 

participants grading this as 5, apart from case 4 and case 5, who graded it 4. This lower 

score may reflect their perception that using numbers in planning is less important. This 

is reflected in usage levels for these indicators, with case 1, 2 and 3 scoring usage as five, 

in contrast to case 4 and 5, who scored usage as 3.5 and 3. The lowest was case, not only 

because of low interest in statistics, but also a lack of KD resources and limited access to 

a part-time data analyst, software applications and access to different databases.  

I think I might need to code the cases team with other codding names just to avoid 

confusion and be clear when discussing results not to get mixed with other teams in the 

framework. 

 

 

Figure 6-6: Use of Physical KPI 

6.5.2 Technical KPIs 

Technical KPIs are defined by this research as “different individual football physical 

competencies required to control or to regain the control, to direct the ball, and to build 

constructive movements during the match”. They are classified into off the ball 
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competences (ability to regain the control) and on the ball competences (ability to direct 

the ball towards a constructive movement)”. There is a strong agreement on this definition 

across the respondents. 

“Technical define as the level of player with the ball in controlling, passing, shooting, 

tackles, dribbling, and header.” Case 1 

“You should also add accuracy of long passes” Case 2 

Both comments are not contradictory with the definition or objective of this research. 

Accordingly, the definition is validated in this research. Case 1 adopts all indicators 

mentioned in this research while case 5 is the lowest. This finding is aligned with the 

research proposition that the factors mentioned in the maturity model can function as 

predictors for the level to which the indicators are used in planning. 
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Figure 6-7: Use of Technical KPIs 

6.5.3 Tactical KPIs 

Tactical KPIs are defined by this research as “as metrics to measure the players’ ability 

to position himself in the pitch effectively and efficiently in such a way the probability of 

passing, possessing, scoring and intercepting are improved”. The tactical KPIs are 

measured by player, unit of play (set of players), tactical lines (e.g. attacking, defending, 

or midfield line), or by the team. They are classified into passes, possession, and playing 

style.”  There is only comment received on this definition. 
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“Tactical is define as ball in possession “attacking”, ball out of possession “defending”, 

transition from attacking to defending, transition from defending to attacking. And may 

add individual player intelligent and insight.” C1DA1 

This comment supports the current definition rather than being contradictory. 

Accordingly, this definition is validated. The usage level is associated positively with the 

level of resources identified in the maturity framework. In other words, case 1 has the 

highest level of usage, whereas case 5 is the lowest. This finding verifies the arguments 

of the research that the factors identified enables teams to identify new knowledge by 

applying and innovating different KPIs.  

 

Figure 6-8: Use of Tactical KPIs 

6.5.4 Psychological KPIs 

This research defines psychological KPIs as the ability to play in the standard 

performance under different psychological pressures. I.e. psychological resilience 

indicator. All participants agreed on this without adding comment except for case 1 

“Psychological can be defined as playing under pressure, leadership, composure, anger, and 

motivation.” C1P1 

This definition is consistent with the definition in this research. Accordingly, this research 

definition of psychological KPIs is valid. The level of usage for this KPIs is the highest 

in case 1 (5) and lowest in case 5 (3). This resonates with to the coach management style 

and data analyst competences. These indicators are not normally incorporated into the 
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software packages available on the market, instead requiring special coding for resilience 

indicators and discipline indicators. Accordingly, its extensive KD resources enable case 

1 to adopt these indicators more effectively than case 5, which has very little investment 

in KD resources.  

 

Figure 6-9: Psychological Indicators 

6.5.5 KPI Balanced Scorecard 

The balanced scorecard metric was validated by asking the experts and cases under 

investigation about the level of their agreement with each of the statements. A 

presentation briefing was given on the scorecard. The respondents appraised the 

framework and unanimously agreed that it was accurate. The KPI balanced scorecard 

framework was revisited and positively reviewed by experts. The validation examined 

the importance of understanding the relationships between KPIs, the existence of such 

relations as proposed in the framework, and the acceptance on the categorisation of the 

KPIs.  

First, the importance of understanding the relationship between KPIs as an approach for 

knowledge discovery has been verified with all interviewees. The feedback addressed the 

role of such a model in KD.  

 “Statistics in itself add so little to an experienced coach. It is useful only if it is used to test 

such relations. It provides a concise and persuasive evidence for relationships between 

KPIs. This is the way the knowledge can be discovered” W2TD1 

“This is really good, you got really good information here” W2FM8 
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The other feedback addresses the importance of having knowledge discovery 

technological resources. This framework can work only if such technological resources 

are available.   

“This is very insightful and a rigours model. It is critical for discovering the knowledge and 

empowering the coach to discover the right knowledge for the game. But the main thing 

stopping me is the data. How can I get all of these data without having strong IT platform 

and centralised database? If I have such detailed information about the player performance 

in different contexts, I would say this framework will be useful. Also, I would like to add 

something here, the physical performance is monitored by a specialist who gives a detailed 

report about the player fitness. But it makes sense to connect that with other performance 

areas as you show here. I would be happy if you write this framework in a detailed book to 

be reference for discovering knowledge in football. I would say if this framework supported 

by videos and pictures, this could help a lot” W2FC5 

Second, the existence of these kinds of relationships has been verified and confirmed by 

participants. 

 “I agree with you. This makes sense to me. I see the most important things affect the match 

result and tactical skills are the physical and psychological performance. Most of big teams 

now have specialists in psychological and physical performance. The teams that can 

understand and manage these factors of the players, they are the winner” W2EM2 

In addition, there was broad agreement that tactical performance is primarily dependent 

on the ability of a player to understand the tactics of the game and match that 

understanding with high performance. 

 “The good attacker who has a good vision. He makes the play maker. Also, the good 

defender who can understand the opponent attackers’ tactics” W2TD1 

Tactical skills are confirmed as being critical for match success. 

 “a 90 min match I might not need all the player successful passes or shots however I will 

need the player critical passes that leads to a goal, created a chance/opportunity to attack 

and score that what will benefit me as a coach – not only 80% successful or 20% 

unsuccessful passes this reading does not help me a lot. This is very simple from 3/5 and a 

maximum of 6 if the player is a super star - He can create 6 attacking opportunists.” W1TD 
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Also, the influence of the psychological indicators on the physical, technical and tactical 

performance of players was recognised as being extremely significant.  

 “Yes, psychological factors play an important role in performance. You can see a player 

feel tired after 20 minutes. Even if his normal physical performance is far beyond that, he 

can get tired because of the stress. Stress pushes cortisone into the blood, which makes the 

body dysfunctional. This can influence the player performance in all aspects.” W2EM2 

“Yes, psychological factors influence the other aspects of a performance. If the mood is 

negative, the physical and technical performance will generally be weaker than expected. 

Even the ability to pass and or understand movements will be weakened. You are right, you 

connected these different elements together in a good way.” W2FC4 

A different review of the proposed framework focused on the belief that tactical 

performance can influence technical and physical performance. When opponents have 

stronger tactical skills, this can have a negative impact on the value of physical and 

technical skills in a team. 

 “Yes, but there are other factors not noted here. Something out of the framework; it is not 

connected with physical or tactical skills. The opponent ability to read my tactics and 

ability to control the game though the superior tactical performance. In this case, technical 

and physical performance could do nothing against such team” W2TD1 

In general terms, however, there was general acceptance of the categorisation, with 

unanimous acceptance of the definition and classification.  

“If my defender is not able to catch the attacker, the attacker is far faster than the defender, 

this of course will be analysed by physical measures and forward to physical specialist. If 

the attacker of the opponent team is clever enough in dribbling any my defender is not able 

to do proper interception, this will be covered in the technical training. Technical and 

physical indicators are different, but they are linked” W2FC5 

Physical and technical skills are mainly gifted skills which cannot be changed easily. In 

addition, they are most often used to compare the players in opponent positions (i.e. 

defenders and attackers) to explore area of weakness in the team and in the opponent one.    

“Technical skills and physical performance are something gifted to the player. Training can 

do few here” W2TD1 
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Experts agree on the importance of tactical skills and importance of training on them 

“Yes, tactical skills are the one. For instance, penetrating the defence lines need tactical 

skills. As a coach, with help of data analyst, identify the weaknesses in the opponent team. 

Here you can train player on specific key passes or throw passes that could penetrate weak 

areas in the opponent team. Here we present videos for the team players visualizing the 

tactics of the match to penetrate such lines in a specific time” W2FC6 

In addition, the framework was verified by asking respondents to evaluate the impact of 

each type of KPI (physical, technical, tactical, and psychological) using a continuous 

itemised (5-point Likert) scale to give more freedom for the evaluation. The summary of 

the verification process is tabulated below (see Table 6-2). According to the table, the 

ranking of the factors affecting the match performance is technical, tactical, physical and 

psychological factors. The framework rank order of the direct impacts is tactical, 

technical, physical and psychological factors. The difference between the verification 

result and the proposed framework is the order of technical and tactical. Three of 

respondents evaluate the tactical is more important while only two said the technical is 

more important than tactical. Furthermore, two participants evaluated the impacts as 

identical. Bearing in mind, the framework stating the tactical has only a direct effect while 

the technical has a direct effect and indirect effect (through tactical indicators), this can 

be a reason for the two respondents who evaluated the impact of technical KPIs is higher 

than the impact of tactical KPIs on the match performance. The role of psychological 

KPIs on technical, tactical, and physical performance is very close without significant 

differences among them. This also verifies the original framework. But the framework 

proposes psychological factors can influence the physical slightly more than technical 

KPIs however the verification showed something else. But because the difference in the 

score is only 1.1 out of 100, it cannot be argued the psychological impact on the technical 

is higher than the physical. But both the framework and verifications show the least 

impact of the psychological is on the tactical impact.  

The proposed framework is similar to the verification results in terms of identifying the 

factors affecting tactical performance. In order, they are technical, physical, and 

psychological. This research aims to develop this KPI BSC in order to illustrate how the 

interactions between KPIs shall be investigated to discover new knowledge and serve as 
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a road map for the discovery of new knowledge. Indeed, the participants in this study 

were pleased to adopt this framework in their daily data analysis  

 “Very comprehensive and useful! I will be happy if you write a book about that.  This can 

be a useful encyclopaedia for us in football knowledge discovery. This will help us in doing 

what we do” C2DA1 
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Table 6-2: Experts Evaluations regarding KPIs BSC 

BSC KPI 
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1- The role of physical/fitness indicators on the tactical 

indicators 
100 100 100 60 60 100 63 83.3 

 2  

2- The role of physical/Fitness indicators on the 

technical indicators 
100 82 100 70 50 100 66 81.1 

   

3- The role of physical/fitness indicators on match 

performance 
100 100 100 65 50 100 76 84.43 

3   

4- The role of technical indicators on tactical indicator 100 87 100 80 90 100 92 92.7  1  

5-The role of technical indicators on match 

performance 
100 95 100 75 90 100 93 93.3 

1   

6- The role of match tactical indicators on match 

result 
100 100 80 76 80 100 84 88.571 

2   

7- The role of psychological indicators on physical 

indicators 
100 85 30 70 40 100 39 66.3 

  2 

8- The role of psychological indicators on technical 

indicators 
100 90 40 70 40 100 32 67.43 

  1 

9- The role of psychological indicators on tactical 

indicators 
100 64 20 64 40 100 68 65.14 

 3 3 

10- The role of psychological indicators on match 

performance 
100 100 50 64 50 100 61 75 

4   

Average 100 90.3 72 69.4 59 100 67.4 79.73    
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6.6 Use of Analytical Models  

Validating the analytic models was challenging because interviewees were unfamiliar 

with statistical analysis, many using visual built-in tools. Many of the data analysts were 

not even familiar with custom made data solutions. However, they are involved in trials 

demonstrating the importance of such tools, even if they are not currently using them.  

 “this makes sense here. I can give you example to support your research. P7 and Rivas are 

two players. we spent lots of time understanding their performance. It was not clear for us 

the reasons for having different performances for each. After time, we have discovered that 

their performance affects each other. They are working closely as twins, if any of them is 

not playing, the other performance influenced negatively” W2EM2 

Participants acknowledged the importance of analytic tools, but with a relatively low level 

of usage or adoption. The highest level of adoption was team 4, while the lowest was case 

5. This variation can be explained by looking at the level of attitude and awareness of the 

coaches. The coach of team 4 is passionate about statistics, while the coach of team 5 has 

the least interest in data usage. All cases were below average on other scales, showing 

that there may still be a large scope for improvement if these teams utilise the power of 

KD.  

 

Figure 6-10:The Use of Analytic Tools 
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6.7 Validating the role of KD in creating effective strategies 

The participants agreed with the role of KD in the strategic models of team managers, 

with explicit comments addressing and magnifying the value of this model.  

6.7.1 Transferring Strategies  

All participants agreed that KPIs can play a significant role in the selection of players. 

However, one issue raised is that the current use of KPIs is insufficient on its own to 

obtain access to the best players. Accordingly, observation is necessary before taking 

decision, because of the weaknesses in terms of current KD practices.  

 “Yes, we do that, when we search for new players, we look at indicators about physical and 

technical performance. These figures are fixed and updated every 10 years. From age of 6 

to age of 16, the performance is standardised. After 16, the physical performance of players 

changes significantly, here you can know whose performance is the ‘standard’ or above 

‘standard’. Bu our current set of KPIs, to be honest, are not sufficient to taking decision of 

transferring. It is just a starting point. I need to see the player by myself to see his personal 

interaction with others. Also, my coach team comes to assess different aspects which we do 

not know how to quantify using technologies. May be knowledge discovery science could 

play a role here! Who knows?” W2TD1. 

 Similar perception perceived and noted by the youth team manager  

“Some coaches do skills/technical test for young player, evaluate and record it, this renewed 

every 10 years (based on the age categories (under 12 under 18 over 19).  We observe 

Players performance in the match besides using tracking devices and recording player 

performance.” W2FC5 

Also, that was highlighted by a Team Manager,  

“But again, if you work as an analysis and you know what I like in a footballer, what roles I 

expect a central midfielder to play and if the analyst know that then you could do your 

recruitment around that” W2FTM8 

6.7.2 Training Strategies  

Participants agreed that KPIs can play a significant role in training players. However, one 

point is raised here which is the effectiveness of training in improving players KPIs. The 

current use of KPIs do not show the maximum player performance can be achieved by 

training.  
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 “I agree with you! Not all skills can be trained. There are special skills that are gifted, such 

as playing by right and left legs. These are not trainable skills. Also, the ability to change 

performance is limited. You have to know the limits of your player. This can help you when 

deciding to train or transfer.” W2TD1 

“Some skills are not trainable at all. Each position needs some skills that some of them, 

especially technical and tactical skills, are not gained by training” W2EM2 

6.7.3 Match Strategies 

The main use for KPIs is the development of match strategy through comparison of 

dynamic team performance with opponent teams to discover areas for improvement and 

potential remedies for ongoing issues.  

 “This is what I want from the data analytics. I want to collect all useful and insightful 

information about the players in my team and the opponent team. Measuring everything 

whatever can be measured from technical and physical performance. Based on such 

comparisons, I define the game strategy and match tactics” W2FC5 

6.8  Case Studies Feedback 

The participants from the case studies stated that they were extremely happy with the 

analysis and the assessment. Overall, the feedback was extremely positive. 

“This is very insightful, thorough, and comprehensive. I believe it covers all aspects of KD.” 

C2DA1. 

“I hope that you can put all of these things together in one book to be a reference for coaches 

and data analysts for improving our performance” C2DA 

“Interesting research, useful and doable.” C3DA1 

“I agree with these findings! All good! I cannot agree more.” C4AC1 

6.9 Summary 

In order to validate and verify the research findings, a Knowledge Discovery Maturity 

Model (KDMM) was proposed in the previous chapter. In this chapter the maturity model 

was validated by experts and validated by 5 case studies. This step aided and supported 

in operationalising the research findings. The aim was to target heterogenous sample that 

should reflect variations of competences. That variations should be reflected on the 
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outcomes of KDMM across the different participants. Additionally, that will aid in 

spotlighting any weakness in the KDMM and aid in improving it. 

The KDMM considered the following competences. Human Resources Competences (i.e. 

data analyst competences, coach competences), Technological Resources Competences 

and Agile Value Co-creation Competencies. It inspected the use of different KPIs by the 

different cases. Furthermore, The KDMM investigated the participants understanding of 

the relationships between the different sets of KPIs to identify potential areas of 

improvements.  

Revisiting the outcomes of the KDMM, it is noticeable that there are variations between 

the data analyst competences across the five cases. The key highlighted by this chapter is 

that the improved realisation of the team’s available resources is derived from the human 

resources competences of the team. The key point is that even if some teams have 

exceptional technologies that does not mean they are exceptional in understanding their 

players’ performance than their opponents. It is an integrated cycle that require 

orchestrated utilisation of resources, competences and collaboration (i.e. Agile value co-

creation). That should aid in improving the KD process of the coaching team allowing 

them to better understand their team performance. For example, if the coach has low 

attitude in using data to build on the team strategies that wouldn’t assist him in realising 

the value of it. Additionally, it is noticeable that the data analyst knowledge of football is 

influencing the level of communications within the coaching team as seen in Figure 6-2. 

The could be perceived as a key in improving the value co-creation between the coach(s) 

and the data analyst. Finally, proposing the KPIs BSC was received positively by the 

experts. The visualisation of the sets of KPIs delivered improved and informative 

understanding of the possible relationship between them. That led into encouraging 

valuable discussions during one of the interviews. As an example, most of the experts 

agreed that tactical KPIs have a direct effect to match strategies. However, some experts 

emphasised that technical KPIs sets may have stronger effects on match outcomes. That 

does not contradict the research proposition, in fact, it supports that since technical KPIs 

sets have direct effect on tactical KPIs set directly and indirectly (see Figure 5-5). Due to 

the participants availability I was able to obtain limited feedback of the case studies. The 

feedbacks were positively encouraging and supporting future research collaboration in 

this area. The research findings were able to address professional concerns regarding their 
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team performance. Additionally, that aid them conceptually to spot out area of weakness 

and strength in their team and match analysis practices and activities (see 6.8 Case Studies 

Feedback).  

  



   

 

164 

 

Chapter 7  Discussion and Conclusion 

7.1 Introduction 

Knowledge Discovery (KD) is a new science that emerged concurrent with the concept 

of data mining and big data. The main difference between KD and other concepts is the 

focus on creation of knowledge through data analysis. In other words, KD is primarily 

concerned with complementing data reports with the observation of practices, as well as 

using experiences to create knowledge to enable organisations to outperform their 

competitors. This area is rapidly growing in the world of football, with investment in such 

technologies in the football industry exceeding $1 billion by 2015. However, as such 

investment only started in Saudi Arabia in 2016, this study has examined the question of 

why some teams can outperform others through these technologies. 

The Saudi Arabian sport context has yet to adapt to modern data analytics, meaning that 

a dedicated study that created one algorithm for a specific case would be likely to be 

undervalued. Therefore, the aim of this thesis has been to create a platform and a road 

map to unlock value from KD technology in a functional context. Thus, this research has 

attempted to develop a framework for understanding the value co-creation process 

between data analysts and head coaches using KD technologies. The development of such 

a framework enabled a maturity assessment tool to be created that was able to map the 

strengths and areas of improvement for teams, enabling them to gain value from KD 

technologies. Therefore, this research developed a taxonomy of KD technologies in 

football, identified required competences to utilise such technologies, the required KPIs 

and analytical models that could be a roadmap for data analytics and coaches for 

discovering knowledge, and identify the potential values that can be realised from them.  

This chapter begins by revisiting the research question, aim and objectives, then 

highlights the contributions of this study to the literature in this area. The implications of 

the research are then discussed. Finally, after identifying the challenges, this chapter 

outlines the limitations of the current study.  

7.2 Revisiting the Research Question, Aim and Objectives 

7.2.1 Research Question 

This research starts by this question “Why are some teams better able to gain value from 

investment in knowledge discovery technologies than others in the football industry?” 
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The reasons for this variance can be explained by the resource-based theory, with the core 

reason for different levels of value being the different availability of technical and human 

resources among teams. In other words, not all teams have the same access to 

technologies and not are equally in terms of their human resources competences. The 

value is only perceived if the KD technologies are used to improve the decision making 

process of coaches through improvising the abstraction and visualisation of the contexts 

in terms of using new KPIs and new analytic models. Through this better understanding 

of the contexts than competitors in terms of using these new KPIs and analytical models, 

effective changes can be made to the coaching and training practices. Otherwise, if they 

are not reflected in changes in coaching practices, the existence of these KD technologies 

could be valued as virtually negligible.  

7.2.2 Research Aim 

This study sought to develop a framework for understanding the variation in the value co-

creation process from the knowledge discovery systems in the football industry. 

This study has fulfilled its research aim. Value is only created when coaching practices 

are altered due to the existence of new knowledge. This knowledge can be operationalised 

into new sets of indicators, or alternatively into mathematical or visual models that can 

help coaches to see something that they could not have seen before. Additionally, the 

value is constructively co-created among stakeholders through dialectics and 

communications. These communications and interaction between different stakeholders 

then provide questions and inquiries that ultimately create the requisite knowledge. The 

ability to scope and address questions requires certain competences from the actors 

involved in the value creation process, however. Additionally, technological resources 

can enable and enhance the ability of actors to create new substantive inquiries. In terms 

of the findings of this study, technology is an enabler and a delivery mechanism, but not 

the sole reason for performance variation.  

The framework in this study consists of four main models: the technological resources 

model, the human resources model, the value co-creation model, and key performance 

indicators model, which creates a Balance Scored Card. This framework is mapped over 

the benefits map to show the interactions between different elements and to prescribe the 

journey from having the resources to realising the value from investing in this resources. 

The resources come together to build outputs which are new KPIs and new analytic 
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models. These outputs create explorative and exploitative capabilities in terms of ability 

to understand the team players’ and opponent team players’ performance so that the 

SWOT analysis for the matches can be created effectively. Through such understandings 

new outcomes come up in terms of the new insightful and knowledge-based training, 

transferring, and coaching strategies so that the performance results can be improved.  All 

of these models are integral components of the framework, enabling comprehensive 

understanding of the value co-creation process for KD systems. 

7.2.3 Research Objectives 

1- To operationalise the expected value of the KD to the coaching team 

The value of the KD process comes from the changes in coaching, training, and player 

transfer practices. This comes from the access to well-informed, evidence-based, 

verifiable knowledge, augments the decision-making process. However, KD refers to not 

only the use of indicators or visual analysis, but also the creation, association, correlation, 

and integration in analytic models of these indicators or visuals. Each new indicator can 

be seen as a potentially valuable perspective with which to better understand the 

performance of team players and their opponents, which creates new opportunities for the 

coach. Each new relationship between indicators can also be understood as new 

knowledge that could empower the coach to create robust plans relative to those 

opponents who do not have access to such knowledge. 

Value depends on the level of change made to practices and improvements made to 

performance. The level of change in practices is assumed to be reflected in terms of levels 

of new knowledge generated through KD activities.  

2- To identify and taxonomies the KD resources and depicts a model to understand 

the role of each class of football technologies in improving the coach performance.  

The term technological resources refer to hardware and software devices or systems. 

Technologies include data capturing technologies (tracking, body sensors), database 

interfaces, annotations software, and KD analytics. Data capturing technologies allow the 

coaching team to record data for further processing. Database interfaces support the 

coaching team with statistical datasets concerning players and teams. Some also come 

with visualisations and team specific reports (not customised based on the coaching team 

preferences). Annotation software helps to process, and code pre-set, or specified, events 

or football actions. Lastly, KD analytics applications help coaching teams to analyse data 
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for deeper insights through the development of customised models based on specific 

interests. The capabilities in using these technologies, adapting them to serve specific 

needs and coaching vison, and developing related analytical models are based on the 

coaching team needs.   

3- To identify and frame the role of different knowledge, skills and competences 

required from producer (i.e. data analyst) and consumer of the knowledge (i.e. 

coach) so that the expected value from the KD can be realised. 

The roles that need to be understood in terms of gaining value are consumer and producer. 

A producer needs to be competent in using statistical analysis, software applications, 

communications, and football planning competences. The more competences that a 

producer has, the more he will be able to contribute to the KD process and help the 

consumer digest and absorb knowledge, thereby enabling it to be reflected in practice. A 

consumer needs to have a strong attitude for quantitative analysis and reporting to be able 

to contribute to this process.  

4- To frame the value co-creation process and augmenting it with different tools to 

improve its value. 

As an approach for the improvement and encouragement of effective, efficient 

communications, this study proposes the use of agile approach tools and techniques. 

These should enable the formulation of superior communication processes and practices 

between the producer and consumer of knowledge, potentially helping the optimal 

benefits to be created and accepted. The key tools proposed for understanding analysis 

requirements and delivering solutions based on accepted criteria are Use Stories, Agile 

Release Planning and Story Mapping. Iterative validation and evaluation techniques for 

these deliverables (i.e. analysis, tasks, reports and stakeholders’ agreements) should be 

undertaken using Sprint and Retrospective approaches. 

5- To develop resource-based maturity model to identify the weaknesses and 

strengths in the augmentation of the resources to get value from knowledge 

discovery activities. 

The KD Maturity Model in Football Performance Analysis was developed to verify and 

apply the research findings. Because the research is proposing that clear criteria for KD 

processes and practices results in more effective and efficient KD outcomes, the levels of 

processes and practices need to differentiate between applicant maturity levels. This 
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research proposes the use of four levels: Ad-hoc, Defined, Managed and Optimised. 

These levels differentiate the capabilities to analyse football performance data with 

respect to people, namely the coaches, the data/video analyst(s), the coaching team and 

any other related stakeholder(s). Additionally, the levels are gradated with respect to the 

following Key Process Areas (KPA); Human Resources Competences, IT Resources 

Competences, Knowledge Co-Creating Practices, Use of KPI Competences and 

Analytical Modelling Competences. 

7.3 Contribution to Knowledge 

This study provides six main contributions to knowledge, as follows:  

1- A novel adoption and customisation of the framework proposed by Melville et al. 

(2004). It is the first research to use it for developing a framework for 

understanding the value co-creation process from the KD technological resources.  

2- A novel proposal and verification of Agile methods, as borrowed from software 

engineering  literature (Beck et al., 2001; APM, 2015). This provides valuable 

ways in which to improve the value co-creation process between coaches and data 

analysts for effective use of KD technologies. 

3- The novel development of a taxonomy of KD technologies in the football 

industry.  

4- The novel use of a KD maturity model utilising the resources approach. 

5- Clearly articulating the required competences from data analysts and team 

managers for the value co-creation process in KD in the football industry. 

6- The development of a novel KPI balanced scorecard, borrowed from 

organisational strategies literature (Kaplan and Norton, 1996) and its adaptation 

as a road map for the KD process in the football industry. 

7.4 Academic Implications 

This research in novel in integrating two complementary frameworks.  The first 

framework was originally developed by Ward and Daniel (2012) and subsequently 

extended in other studies (e.g. Serra and Kunc, (2015); Badewi, (2016)). This framework 

demonstrates how project outputs lead to outcomes that can be translated into capabilities 

and changes in performance (benefits). This research is the first to borrow these concepts 

from IT project management literature.  The current study has approached the data 
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analysis process as a value co-creation project that leads to benefits when the team 

strategy development is improved by superior understanding of the environment (through 

using new KPIs and data analytic models) through the ability to use KD technical 

resources.  

This research borrowed the second frameworks from IT business literature, which is 

resource based view in IT value creation (Melville and Kraemer, 2004). This is not the 

first research to utilise this approach for improving sports performance. The resource-

based view has been used to understand the resources required for team managers and 

coaches to improve their training and match strategies (Smart and Wolfe, 2003; Lechner 

and Gudmundsson, 2012; Costa et al., 2018). But this research is novel in using it for 

investigating the relationship between IT resources and organisational complementary 

resources in the creation of expected values in the knowledge discovery and in football 

contexts. In other words, exclusive reliance on IT resources is less effective than when 

the KD process is supported by complementary resources.     

Neither frameworks have been applied in previous studies of computing and football. The 

adaptation of these frameworks could provide deeper understanding of the practices and 

processes that exist between the coach and data analyst in analysing football data. This 

research is the first to combine two frameworks in KD literature to understand the value 

co-creation process. This process has been developed from IT resources and 

complementary resources to obtain new outcomes (using data analytics to derive new 

KPIs and data analytics models), new football team capabilities (better understanding of 

external and internal environment), and higher performance for the teams involved (ROI 

on players and match results). 

The analysis has informed the development of a new KD maturity model to assess the 

ability of teams to utilise KD in value creation. The corners of the maturity models are IT 

resources (hardware and software), competences of data analysts and competences of 

team managers, agile practices, and sophisticated use of KPIs and data analytics models. 

The levels of maturity are ad-hoc, defined, managed, and optimised, with ad-hoc 

reflecting a lack of resources required to realise value from KD technical resources to the 

optimised level, which describes the highest utilisation of the resources to gain value. 

7.5 Recommendations 

1- Recommendations for Data Analysts 
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Data analysts need to be competent in using numerical analysis, software applications, 

communications, and football knowledge. The more that an analyst (producer) has these 

competences, the better he will be able to contribute to the KD process and help the 

consumer digest and absorb knowledge, enabling it to be reflected in practices. In the 

modern context, KD tools are now too complex to be learned from online learning. 

Instead, they should be studied under formal education. However, there are no colleges 

or academic institutes in Saudi Arabia delivering training on KD tools, football, numerical 

analysis, and communications to data analysts. There is no certification or any awarding 

body for accreditation as a football data analyst professional. None of the respondents in 

this study had received formal training on football data analysis, instead coming from a 

range of unrelated backgrounds. In Saudi Arabia, no academic institution covers this 

field, which no research being conducted into the improvement of data analyst 

competences. This weakness was observed in interviews with local data analysts, who 

had limited knowledge regarding basic analytic approaches such as regression, 

correlation, and data mining techniques. Although some where aware of the technologies, 

only one demonstrated awareness of annotation or other technologies. Rapid changes in 

technologies necessitates the involvement of research institutes, such as the production 

of magazines to ensure that data analysts are kept aware of recent trends. However, no 

such specialised news source exists for the Arab audience.  

2- Recommendations for the Coach 

As the consumer of knowledge outputs, the coach should have a positive attitude towards 

the use of these quantitative analysis and reports in their practices, informed by profound 

knowledge of quantitative analysis to enable them to contribute to this process. Currently, 

most ‘big’ teams are led by international coaches who have developed knowledge and 

competences. However, local coaches are less capable with numbers and have poorer 

attitudes towards statistics, perhaps because current coach accreditation does not require 

study of KPIs or technologies in sports. All courses reflect coaching and techniques, but 

none include use of data or technology in training. Therefore, training in such 

competences is essential, as seen in data analysis courses introduced by associations in 

other countries, such as the Football Association in the UK. Coaches need to familiarise 

themselves with data analytics and new technologies to be able to communicate 

effectively and constructively with team data analysts.  
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3- Recommendations for Team Managers and Policy Makers 

Policy makers shall institutionalise the use of data analytics and KD logics in the 

ecosystem using different mechanisms. According to (Scott, 2010), institutional pressures 

can be mimetic, normative, or coercive. Mimetic pressures can occur when local teams 

compete against international teams several times, which will push coaches and data 

analysts to study what others are doing, potentially leading them to mimic these 

international teams and become more advanced. Currently, because the SPL lacks a data 

analytic and data knowledge culture, the attitude towards using data analytics for 

discovering knowledge is less than it should be. The next pillar of institutionalising KD 

logics is normative pressure, which pertains to the establishment of certification for 

practicing data analysis in football and coaching professions in Saudi Arabia. This 

accreditation would help increase the competence of human resources, enabling them to 

better cope with advances in technologies for absorption into the planning processes. 

Policy makers should therefore establish standards in coaching and data analysis 

informed by research, in an attempt to encourage adoption of KD principals in this 

industry. The last pressure is coercive, which means the use of laws and regulations to 

encourage data utilisation and protection of knowledge between teams.  

7.6 Research Challenges  

7.6.1 Acceptance of research practices 

One of the main challenges for this research was the collaboration with organisational 

bodies, which was problematic due to conservativeness and the competitive environment. 

As a result, communication and response took a very long time, which was exacerbated 

by the busy schedule of the target audiences (i.e. coaches and analysts). The large distance 

between cities also made it challenging to travel around and accept other invitation. 

Travel from Jeddah to Riyadh by air takes a minimum of 2 hours and about 3 hours to 

Dammam. Additionally, the cost in funding, time and effort was very high. This research 

involved more than 3 overseas trips and more than 15 domestic trips (i.e. by car or internal 

flights) to collect, validate and verify the data collected. More than 10 virtual meetings 

were also done, supplemented by numerous telephone calls. 

7.6.2 The collaborative culture between higher education and sports bodies 
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From the experiences of this research, it is apparent that no clear research collaboration 

exists between academia and sport authorities, perhaps due to minimal interest or a lack 

of clear guidelines in this area. However, I found great support and collaboration after 

visiting sport authorities in Saudi Arabia, who were very collaborative and supportive. 

Therefore, while the initial stages were very challenging, after meeting and discussing 

my research with representatives from these bodies, the process became easier.  

7.6.3 Collaborations, Connections and Transparency  

Relationships and connections are very critical in this kind of research, requiring 

extensive effort from the researcher in terms of travel and arranging meetings. 

Collaboration tended to be slow due to the busy schedules of the professionals in this 

field, which made scheduling data collection difficult. Transparency is also an extremely 

important concern in this field, due to the competition, sharing of information, education 

background and the tolerance for the impact of research in this field.  

7.6.4 Cost: Inability to meet all coaches/data analysts  

The cost for overseas and domestic travel required extensive investment of funds and time 

from the researcher. This part of the research was primarily funded by the researcher 

himself. Traveling time and distance (e.g. a minimum of 2 hours) made it challenging to 

address all invitations. This was exacerbated by the difficulties of arranging calls with the 

participating professionals.  

7.7 Research Limitations 

This research is interpretive in nature, aiming to understand and taxonomise the various 

factors contributing to the realisation of value from investment in KD technologies. As 

the study adopted a social construction of reality and qualitative, there are three inherent 

research limitations: generalisability/applicability in different sports/country contexts, the 

ability to test the results objectively, and the quantification of the impacts of different 

factors on performance. 

7.7.1 Generalisability/applicability of findings 

This research targeted top teams in different leagues in Saudi Arabia to develop a 

constructive framework that could serve as a roadmap for other teams to obtain value 

from investment in KD resources. Generalisability and applicability of the findings are 

limited to top teams in SPL. Precautions should be taken if the research recommendations 
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are applied to bottom teams, other sports in Saudi Arabia, or to football teams in other 

Arabic speaking countries in the Middle East.  

The comparison was made between top teams that had different levels of adoption for 

KD resources and therefore different levels of realising value from them. Even though 

the researcher had the opportunities to meet with a local Olympic team, with the national 

Olympic team and with high level sport authorities, there were clear indications that there 

is extremely limited usage of technologies outside the national team. Considering KD 

practices in teams from low leagues teams would be an excellent opportunity to see 

analysis affects their practices and enables their progression to higher leagues.  

This research has not studied or investigated the challenges faced by teams from lower 

leagues, who are likely to have less access to data analysis due to limited financial 

resources for hiring international coaches, data analysts, or even buying KD resources. 

This research therefore offers insights into the teams in the football sector in Saudi Arabia, 

but not bottom teams. The interviewees were also exclusively involved in the football 

industry, therefore care should be taken in the adaptation of findings or methodologies to 

other sports. Football has more financial resources than other sports in Saudi Arabia, as 

well as more competition and higher levels of care from sports policy makers. Application 

of the findings to other sports in Saudi Arabia could therefore entail other challenges. 

Finally, there is a limited degree of generalisability from Saudi Arabia to other countries 

in the Middle East. For example, the level of English among locals is different in countries 

such as Jordan, Lebanon, the Emirates, and Egypt, potentially making it easier for teams 

in these countries to stay up-to-date with recent updates in the field. However, teams from 

these nations are also likely to have less access to financial resources than Saudi teams, 

making investment in KD more difficult. All of these factors can create differences in the 

results and recommendations.  

7.7.2 Objective testing of results 

Since this research is qualitative in nature, the ability to test results objectively was a 

challenge. There are two epistemological stances: social construction of reality and 

positivist. In positivist research, there is an assumption that respondents do not know and 

the role of the researcher is to test theories using quantitative and objective tools using 

correlational analysis and regression methods. Due to the limited number of participants 

in Saudi Arabia, the significance of the results will less meaningful. Having constructed 
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the framework in this study, future research could test the components in wider contexts, 

such as a Middle Eastern study of different coaches/data analysts, or even a global study.  

7.7.3 Quantifications of the impacts of different factors on performance  

Since this research is qualitative, the ability to quantify the impacts is limited. There are 

some intuitive based tools that can be used to quantify qualitative inquiries, such as 

Analytic Hierarchy Process (AHP). However, the AHP requires extensive time and effort 

from the respondents, which was not feasibly in the current research due to the extreme 

time limitations placed on coaches and data analysts, which already affected willingness 

to participate in this study. This limited time and availability of participants, it was 

preferable to benefit from gaps in their extremely tight schedules by validating and 

verifying the maturity model, rather than quantifying and weighting different factors.  

7.8 Future Research 

There are two directions for future research that have arisen from the limitations of this 

research: namely, to quantify and test research findings, and replicate this research on 

different contexts. In addition, there are three other research opportunities inspired by the 

research findings: understanding the role of cultural values on KD, investigating the 

institutionalisation process of KD logics in the football industry, designing a new 

software application to manage the communications, and lessons learned in the 

knowledge discovery process. These are outlined below. 

7.8.1 Testing and Quantification of the research models 

As noted in the research limitations, although these findings have been validated and 

verified, they have not been objectively quantified or tested due to limitations of sample 

size. For this reason, future research should test the research results using questionnaires 

distributed to coaches and data analysts at football teams in different countries in order to 

reach a significant sample size (e.g. 60) (Hayes, 2012). Quantification can also be done 

through AHP, fuzzy logics, Delphi approaches, pairwise analysis and other tools. 

However, as noted above, these methods require more engagement from the coaches and 

data analysts, so should be undertaken as a part of future research to improve the quality 

of findings and to make them useful for wider audiences, as discussed in the next section. 
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7.8.2 Replicability of the study on other contexts 

The context of this research is football in Saudi Arabia. Different contexts include the 

level of team performance (top versus bottom league), country, or qualifications, 

background and education of the coach, background and education of the data analyst, 

and even the native language of the data analyst and coach. These factors may lead to 

different implications and recommendations. 

Even though the research findings offered new insights into KD in performance, it would 

be interesting to see how cultural background influence these practices. In Saudi Arabia, 

there are different forms of education, coaching systems and certification, as well as 

variation in terms of competition strength. The study in the KSA context can be taken as 

a foundation for other studies to be undertaken in countries and continents. The different 

FIFA certification also might influence KD activities, since other countries have different 

coaching programmes and levels. Additionally, low league teams should also be studied, 

as they may face different challenges and issues, including minimal access to financial 

resources, which hinders their ability to access the technological and human resources 

required for knowledge discovery.  

7.8.3 Investigating the institutionalisation process of the knowledge discovery 

logics in the football industry 

The recommendations of this research propose that institutional pressures are used to push 

teams to use KD tools, techniques, and approaches in dealing with data. Integrating 

knowledge discovery into team planning logics has not been studied in the literature. 

Indeed, there is a general lack of research into the values governing KD logics in the 

football industry as a whole, perhaps because practices are not sufficiently mature. 

Globally, KD and data analytics in general are still relatively new and need further 

investigation. 

This research illustrates the need for discovering insights into plans, the need for the 

communication and value co-creation process to be structured, the need for decisions to 

be augmented by verified knowledge, and the need for new dimensions of realities to be 

explored through the use of indicators and analytic models. There may be additional 

values past this initial list, so techniques and tools should be used to routinize and 

structure KD logics into the practices of contemporary teams to facilitate the rapid 

absorption of developments in technology.  
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7.8.4 Designing a new software application to manage the communications and 

lessons learned in the knowledge discovery process 

KD is a value co-creation process that uses constructive communications and available 

technological platforms with statistical and analytic models to gain new insights. 

Constructive communications can therefore help in the creation of new analytic models. 

Research should be conducted to systemize the communication process to enable the 

value co-creation process to become easier, faster, and more efficient in utilising lessons. 

Research should investigate the design of a library of questions, indicators, and analytic 

models that have the level of errors, relationships, acceptance criteria, and retrospectives 

required to track the evolution of KD. The technical perspective requires the development 

of new information architecture to map this knowledge for fast, efficient retrieval, 

filtering, optimisation, and evolved to develop new knowledge in shorter time and with 

less efforts.  

7.8.5 Benefits management techniques and approaches in Knowledge Discovery 

Benefits management is a new approach to the realisation of value from investment in 

change (Badewi, 2016; Breese, 2015; Serra and Kunc, 2016). It defines the ownership, 

identification, planning, realisation, auditing and exploitation of benefits (Ward and 

Daniel, 2011). The value from investing in knowledge discovery technology may be 

increased by structuring and framing KD based on benefits management. For instance, if 

a coach identifies the benefits from investment in KD technologies, this may be an 

opportunity to obtain benefits before procuring the technology. If benefits are planned 

before data analysts are hired, the job description and specifications for this position could 

be clarified and made more transparent and effective. Planning for benefits also creates a 

sense of ownership in terms of the perception of the need to change the practices to realise 

these benefits. Additionally, planning and framing the process for realising benefits could 

help a team manager audit and control the realisation process. Finally, exploiting benefits 

could help data analysts and coaches to brainstorm ways to realise new benefits from the 

current technologies, increasing utilisation of these technologies and raising the potential 

performance of the team. 
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Appendix (Questionnaire) 

KDMMFA Questionnaire 

This section includes the questionnaire used in developing the KDMMFDA.  
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Questionnaire 

© by the researcher 

Q1.2 In your football club what is your primary position - Please select the one is close to your responsibilities. 

Team Manager - Head coach - Assistance Coach (Second Coach) - Supporting Coach (Fitness, Physical, Goalkeeper and so on) - General 

Manager of Football - Data/Video Analyst - Other - Please specify 

Q2.1 This part of the Knowledge Discovery Maturity Assessment Model in Football is the Information Technology (IT), tools, 

technologies and infrastructure used by the team or club by the coaching team for collecting, obtaining and analysing the data. 

In your analysis practices, which, tools and technologies you often use?     

Use of recorded videos and clips in your analysis  

Use of professional football databases  

Use of purchased or obtained reports by professional football websites  

Use of LPS: Local Positioning System and GPS: Global Positioning System, technologies  

Use of football field (pitch) cameras  

Use of the body sensors  

Use other sports wearable devices  

Use specialised analytics software (e.g. SPSS and R) to enable you develop new algorithms (e.g. ANOVA, Correlations analysis and t test)  

Use of artificial intelligence analytics software (e.g. R software, Python) to develop new models (e.g. Neural Network and Genetic Algorithms) 

Q2.2 Any comments about the IT environment? 

 

Q3.1 The next part of the KDMAMF is focusing on the Data Analyst or (Video Analysts) Competency in analysing football data. 

Q4.1 Data analyst(s) availability at the club or the team as: 

Team of analysts - Part time team of analysts - One analyst - One part time analyst - No dedicated analysts  

Q4.2 The scope of the following questions is related to the Data Analyst or Video Analysts competences. 

 Where: 5= Very Competent - 4= Competent - 3= Average - 2= Weak competence - 1= Very weak competence 
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Data analyst is able to import relevant data from professional databases to include them in spreadsheet applications or software (i.e. Microsoft 

Excel or Apple Numbers). 

Data analyst is able to code the match key performance indicators and propose opponent teams’ analysis. 

Data analyst is able to use spreadsheet (i.e. "Microsoft Excel" and "Apple Numbers”) in comparing players performance and team’s 

performance. 

Data analyst is able to use "Excel" for statistical modelling. 

Data analyst is able to use sophisticated data analytic applications (i.e. SPSS and R) for doing structured statistical analysis such as  (i.e. 

ANOVA, Correlations analysis and t test) for testing proposed relations. 

Data analyst is able to use sophisticated data analytic applications (i.e. R software or Pythons) for utilising artificial intelligence (i.e. Neural 

Network and Genetic Algorithms) for discovering new pattern in the data.  

Data analyst knowledge and expertise of the football concepts, strategies, techniques, and approaches. 

Data analyst profound experience in football strategies (training, transferring, and match strategies). 

Data analyst ability to interpret the reports and provide useful meaning of the data.  

Data analyst ability to propose constructive and insightful football match analytical ideas from the data and data resources available.  

To define the communication requirements from the team managers or head coach (i.e. which reports are required and when to hand them). 

Data analyst ability to produce reliable reports (level of error in reporting data is accepted). 

Data analyst ability to define who shall be communicated, by what, and when (e.g. players, media, other members in the coaching team). 

Data analyst ability to intemperate and explain the technical report with an accepted level of interpretation (i.e. not too much subjectivity, not 

too few explanation and interpretation). 

Q4.3 Any comments about the Data analyst competencies 

 

Q5.1 The following part of the KDMAMF is focusing on the Team Manager or Head Coach competency in the analysis practices of football 

data.   

The Following questions are related to the Coach   

Team manager/Coach is a fan of data in planning  

Team manager/coach believes in the importance of statistics and analysis in improving the planning and developing match strategies  
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Team manager knowledge of statistical concepts and basic analytic models to compare between metrics (i.e. significance level and "t" test)  

Team manager knowledge of statistical models to explain and correlate different measures (i.e. when and why to use correlational analysis, 

regression, ANOVA, and cluster analysis)  

Team manager knowledge of statistical models to discover new insightful patterns in the data (i.e. when and why to use Neural Network, 

cluster analysis, pattern analysis and genetic algorithms) 

Q5.2 Any comments about the Team Manager / Head Coach environment and competencies? 

 

Q6.1 The next part of the KDMAMF is focusing on the Value Co-Creation analysis practices within the coaching team for analysing football 

data. 

The Following questions are reflecting the practices in the KD value co-creation process. 

There are set of questions to work on in order to reach insights and vision of each meeting. 

There are set of stories to work on in order to reach insights and vision of each meeting. 

A set of predefined models to describe the problem and integrate them in the stories. 

A set of predefined tools to describe the problem and integrate them in the stories. 

Well documentation of stories to be used for lessons learned and improving the story models. 

There are continuous and periodic meetings between the team manager/coach and analyst. 

There is clear schedule of meetings with predefined acceptance criteria for what will be discussed and what will be handed. 

A clear framework for the meetings so that Knowledge discovery process is integrated in the sprint process. 

Lessons learned are taking into consideration for improving sprints. 

There are meetings between the team manager/coach and analyst. 

The communication channels are defined (Who, what, when, and how). 

Clear communication channels with acceptance criteria of what the information require and why they are required. 

Knowledge Discovery is integrated in the communication process through setting communication process quality (user questions, stories, 

stories/question mapping, and acceptance criteria). 

Lessons learned are documented in the communications and taking into consideration for improving communications practices. 

Q6.2 Any comments about the KD value co-creation process? 
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Q7.1 The following part of the KDMAMF is focusing on the analysis practices, models and outcomes within the coaching team. 

The Following questions are reflecting the analysis outcomes of the analysis process and practices. 

Use of videos and clips in analysis. 

Use secondary data reports such as STATS, InStats and OPTA. 

Use of coding systems/techniques to track different players’ performance. 

Use of analytic models to measure the significance of the differences between players such as "t" test. 

Use of Advanced analytic tools to do context analysis. 

Use of advanced analytic tools to do simulation analysis. 

Use of advanced analytic tools to do structured analysis. 

Q7.2 Any comments about the Analysis environment and outcomes? 

 

Q8.1 The next part of the KDMAMF is to explore the awareness and use of football Key Performance Indicators (KPIs) during the analysis 

used by the coaching team within the team or club. 

Q9.1 Physical KPIs - are those physiological and fitness measures for the players’ abilities. Some of them are traits cannot be changed such 

as the height and ambidexterity while others can be improved by training such as speed, low/moderate/high intensity running, and recovery 

rate.  Physical KPIs are classified into speed, movement and distance. 

Do you agree with this definition? 

Strongly Disagree - Disagree - Neither agree nor disagree - Somewhat agree - Strongly agree  

Q9.2 Which indicators you most often currently use for evaluating physical performance? and if used or not what are their level of importance? 
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Player Speed: Average player speed per match in different modes (low, moderate, high speed and sprint) with and without the ball. 

Player speed in different running categories (low, moderate, high speed, and sprint) with the ball. 

Player speed in different running categories (low, moderate, high speed, and sprint) without the ball. 

Distance covered: The total distance run during the match. 

Distance covered with the ball. 

Distance covered without the ball. 

Distance covered in different speed categories (low, medium, high speed, and sprint). 

The maximum speed of shooting the ball. 

The maximum distance of a throw in. 

The maximum height of aerial action (i.e. jumping for header). 

Q9.3 Any additional comments about the use of Physical KPIs in player or team analysis? 

 

Q9.4 Technical KPIs are different individual football physical competencies required to control or to regain the control, to direct the ball, 

and to build constructive movements during the match. They are classified into off the ball competences (ability to regain the control) and on 

the ball competences (ability to direct the ball towards a constructive movement) 

Do you agree with this definition? 

Strongly Disagree - Disagree - Neither – Agree - Strongly Agree  

Q9.5 Which indicators you most often currently use? and if not, will you use it? - and what are their level of importance? 

% Success rate of the attempts to regain control on the ball (e.g. tackles or interceptions). 

% Success rate to take on (e.g. dribbling). 

% the players ability to win aerial interactions. 

Significant change in the speed with the ability to build a constructive pass or goal. i.e. 80% change in speed within 1 min leading to successful 

attack. 

% of successful shots towards the goal in different situations (in plenty area, outside the plenty area, when marked by 1 person, by more than 

1 person).  

% of successful free kicks towards the goal from different zones (e.g. right, left, middle zones).  
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Number of innovative movements in the match (new dribbling, tackles, passes or movement). 

Q9.6 Any additional comments about the use of Technical KPIs in player or team analysis? 

 

Q9.7 Tactical KPIs - are defined as metrics to measure the players’ ability to position himself in the pitch effectively and efficiently in such a 

way the probability of passing, possessing, scoring and intervening are improved. The tactical KPIs are measured by player, unit of play (set 

of players), tactical lines (e.g. attacking, defending, or midfield line), or by the team. They are classified into passes, possession, and playing 

style.  

Do you agree with this definition?  

Strongly Disagree - Disagree - Neither agree nor disagree – Agree - Strongly Agree 

Q9.8 Which indicators you most often currently use for evaluating passing and intercepting performance? and if not, will you use it? 

Overall all passes performance index: % of successful passes per match (e.g. spontaneous passes, 1 to 1 passes, unit passes, constructive 

passes, and long passes). 

% of successful spontaneous passes: SP is defined as the passes without having a clear intention to build a constructive attack (i.e. due to 

pressure from opponents). 

% of successful 1 to 1 passes: 1 to 1 passes is the several passes between two players only aiming to construct an attack, penetrate defensive 

line or shift the direction of the play. 

% of successful unit passes: unit passes are the several repeated passes between more than two players. 

% of successful constructive passes: constructive passes are more than 2 passes with more than 2 players aiming to construct an attack or shift 

the play direction. (e.g. second ball and third ball). 

% of successful long passes: Long passes is a movement of the ball from a zone to another zone or from tactical lines (e.g. from back to front, 

from the left side to the right side or from defending to attacking line). E.g. successful crosses/ counter attack. 

% of successful interceptions from short passes or long passes (crosses or counter attacks). 

Q9.9 Which indicators you most often currently use for evaluating team playing style? and if not, will you use it? 
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Team/player minutes played with or without the ball. 

Time played in offence, defence, and midfield. 

Ball recovery time: Average time required to regain the ball. 

Total Possession. 

Distances between attackers and defenders: The average distance between the attacking and defending lines. 

Maintaining distance between players (close down space): The % of the time that distance between players within the ball range is lower than 

the coach defined space in each zone. 

Offside (Tolerance) Management (such as % of the successful deliberate offside (avoidance) and % of the successful avoiding opponent 

deliberate offside.  

Q9.10 Which indicators you most often currently use for evaluating player positioning performance? and if not, will you use it? 

% of successful (constructive change) changes of players’ positions in the pitch during the match.  

The duration of a player being in specific zone. 

Player density: % of time played in the player specified zone. 

Marking (man to man marking – Zonal marking) : The ability of a player to mark an opponent’s players – or zonal area of the pitch. 

Q9.11 Any additional comments about the use of Tactical KPIs in player or team analysis? 

 

Q9.12 Psychological KPIs - is the ability to play in the standard performance under different psychological pressures.  I.e. psychological 

resilience indicator.  

Do you agree with this definition? 

Strongly disagree - Somewhat disagree - Neither agree nor disagree – agree - Strongly agree 

Q9.13 Which indicators you most often currently use for evaluating Psychological player performance? and their level of importance? 

Resilience: % of change in the performance indicator in different contexts (e.g. opponents, home/away, fan support, get paid well). 

Ethical indicators: number of cards or injuring other players. 

Discipline indicators: % Body language/facial expressions of anger against the coach/referee decisions. 

Manipulative indicators: number of free kicks against opponent. 

Q9.14 Any additional comments about the use of Psychological KPIs in player or team analysis? 
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Q10.1 The next questions will be regarding the Key Performance Indicators (KPIs) Balance Score Card (BSC). 

 

Q11.2 KPI Balanced scorecard relation importance. 

Not Important                               Important                               Very Important 

0 10 20 30 40 50 60 70 80 90 100 
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1- The role of physical/fitness indicators on the tactical indicators. 

2- The role of physical/Fitness indicators on the technical indicators. 

3- The role of physical/fitness indicators on match performance. 

4- The role of technical indicators on tactical indicator. 

5-The role of technical indicators on match performance. 

6- The role of match tactical indicators on match result. 

7- The role of psychological indicators on physical indicators. 

8- The role of psychological indicators on technical indicators. 

9- The role of psychological indicators on tactical indicators. 

10- The role of psychological indicators on match performance. 

Q11.4 Would you like to add any comments about the BSC? 

 

Q12.1 In which country do you currently work? 

Q13.1 Current Football/Soccer Team 

Q13.2 Please add your email address - A report will be sent to you after analysing the Interview / Online survey. 

Q13.3 First and last names. To contact you and address you in the report - if preferred. 
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