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Introduction  96 

Peripheral arterial disease is a highly prevalent and debilitating condition which affects more than 25 million patients in 97 

Europe and North America alone (Criqui et al., 1985; Fowkes et al., 1991). Peripheral arterial disease leads to the 98 

damage of blood vessels, which can be replaced by synthetic, autologous or allogeneic vascular grafts. Current 99 

replacement approaches employ biocompatible materials solutions that are not able to regenerate or grow with the 100 

patient. The gold standard for vascular grafting is autologous tissue, such as reversed saphenous vein graft (SVG) 101 

(Koyama et al., 2014). In despite of its low-cost and non-immunogenicity, autologous tissue does not represent the ideal 102 

solution due to its limited availability and size mismatch (Kakisis et al., 2005). Synthetic grafts, made of expanded-103 

polytetrafluoroethylene (ePTFE) or Dacron, have been reported to give successful outcomes in large diameter arterial 104 

reconstructions (>8mm), but not for small diameter arterial reconstructions (< 5 mm), due to thrombosis and limited re-105 

endothelialization (Whittermore et al., 1989; Yu et al., 2013). In addition, cryopreserved arterial allogeneic grafts have a 106 

limited availability and durability, due to calcification, immunogenicity and thrombogenicity (Daping et al., 2009). The 107 

shortcomings of the conventional grafts have prompt the investigation of new approaches for peripheral artery 108 

reconstructions, such as the fabrication of tissue-engineered small-diameter vessels. Several studies have reported on 109 

the development of small-diameter vascular using naturally derived proteins, such as collagen and fibrin (Clark et al., 110 
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1995 and Swartz et al., 2005, Dietrich et al., 2012, Aper et al., 2016, Schneider-Bartholda et al., 2016), and synthetic 111 

polymers (Roh et al., 2010). However, the inadequate mechanical properties of these grafts (Chaouat et al., 2006; 112 

Zhang et al., 2007; Zorlutuna et al., 2009) have prompted workers in the field to adopt alternative approaches, such as 113 

the use of decellularized tissue, which has been successfully used for tissue reconstructions, such as heart valves, 114 

bladder, tendons and meniscus (Affonso da Costa  et al., 2005; Atala et al., 2006; Ingram et al., 2007; Bobylev et al., 115 

2014; Neumann et al., 2014; Luo et al., 2014; Sarikouch et al., 2016, ). Decellularization represents a promising 116 

approach for overcoming the limited availability of autologous small-diameter vascular conduits, as well as the limited 117 

availability of histocompatible allogeneic grafts since decellularisation has the potential to remove the major antigenic 118 

determinants of allogeneic grafts. The latter has been effectively demonstrated by the successful translation of 119 

decellularised aortic and pulmonary allogeneic heart valves in the clinical setting (Sarikouch et al., 2016; Neumann et al., 120 

2014), whereas a number of studies have reported promising results with decellularized small-diameter vascular grafts 121 

(Gui et al., 2009, 2010; Hwang et al., 2011; Dall'Olmo et al., 2014;). The present study was a part of an overarching 122 

project that was aimed at creating a small-caliber arterial graft for clinical use, utilizing the decellularised rat aorta. This 123 

approach was chosen due to the arterial properties of the rodent graft and its suitable size for small-caliber arterial 124 

reconstructions in humans. To the best of the authors’ knowledge, such an approach has not been reported in the 125 

literature. Dark Agouti (DA) rat abdominal aortas were decellularized using the widely employed detergent sodium-126 

dodexyl-sulfate (SDS) (Hashimoto et al., 2010; Santoso et al., 2014; Struecker et al., 2014; Paniagua et al., 2015) in 3-127 

[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) buffer (Gui et al., 2009, 2010; Hwang et al., 2011; 128 

Dall'Olmo et al., 2014). Previously, we have reported on the effect of this modified decellularization protocol on the 129 

mechanical and histological integrity of DA rat aortas in vitro (Katsimpoulas et al., 2015). The present study was focused 130 

on assessing the performance of the decellularised graft under orthotopic allogeneic transplantation in inbred Wistar (W) 131 

rats without immunosuppression, prior to proceeding to heterotopic xenotransplantation. This specific animal model was 132 

chosen since the inbred W and inbred DA rats differed in both their major and minor histocompatibility loci (MHC I and 133 

II). Moreover, the orthotopic transplantation was chosen in order to assess the decellularised graft in the more 134 

demanding, higher pressure environment of the aorta. The elicited immune response was evaluated in terms of 135 

inflammatory cell infiltration into the implanted grafts, as well as in terms of the histoarchitectural and biomechanical 136 

changes in the implanted grafts, after 6 weeks of implantation.     137 

Material and Methods 138 

Experimental animals 139 



The study was conducted using 40 male inbred W and 20 male inbred DA rats, which were maintained in accordance 140 

with the European Directive 2010/63 for the protection of animals used for scientific purposes and the “Guide for the 141 

Care and Use of Laboratory Animals” (Guillen, 2012). All procedures were carried out in the animal facility of the 142 

Biomedical Research Foundation of the Academy of Athens (EL25BIO003). The experimental protocol was approved by 143 

the competent veterinary authority of the Biomedical Research Foundation of the Academy of Athens (7047/27-11-144 

2012), in accordance with the Greek legislation on the protection of experimental animals and the European Directive 145 

2010/63. 146 

Specimen procurement and dissection 147 

The abdominal aorta was approached via a midline laparotomy incision under isoflurane anaesthesia (IsoFlo, Abbott, 148 

UK; 2.5%, 0.5 l/min O2), as described by Onuta et al. (2007) and Hwang et al. (2011), and the side branches were 149 

carefully cauterized (HTC, FLAB, Italy). The aorta was then mobilized and transected between a point distally to the left 150 

renal artery and proximally to the iliac bifurcation. The harvested conduit was flushed with normal saline (Onuta et al., 151 

2007). Twenty native aortas from 10 DA (DA-W group; allogeneic control) and 10 W (W-W group; syngeneic control) rats 152 

were orthotopically implanted untreated in W rats. Moreover, 10 DA aortas were decellularized using a modified, protocol 153 

(Katsimpoulas et al. 2015) and implanted orthotopically in W rats (n=10; decell DA-W group). The implanted aortas were 154 

explanted after 6 weeks and tested histologically (n=2 from each group), immunohistochemically (n=2 from each group) 155 

and biomechanically (n=6 from each group). 156 

Decellularization 157 

The decellularisation of the rodent abdominal aortas was carried out as described previously (Gui et al., 2009) with 158 

modifications (Katsimpoulas et al. 2015). Briefly, 20 aortas of approximately 15 mm in length were incubated with 159 

CHAPS solution (8 mmol/L CHAPS [APPLICHEM, US], 1 mol/L NaCl, and 25 mmol/L EDTA in phosphate buffer saline 160 

[PBS; Sigma, Germany]) at pH 8 for 22 h, followed by brief washes in PBS. The aortas were further incubated with SDS 161 

solution (1.8mmol/L SDS [Sigma, Germany], 1mol/L NaCl, and 25 mmol/L EDTA in PBS) at pH7.5 for 24 h, followed by 3 162 

washes, 5 min each, in PBS to completely remove the detergent. Finally, and modifying the previously described 163 

protocol (Gui et al., 2010), the aortas were incubated at 37°C for 48 h in alpha minimal essential medium (a-MEM, Gibco 164 

Life Technology, Germany), containing 40% (v/v) fetal bovine serum (FBS, Gibco Life Technology, Germany) and 1000 165 

U/mL penicillin-streptomycin (Gibco Life Technology, Germany). FBS was added for removal of residual DNA from the 166 

scaffolds (Gui L et al. 2010), since it contains DNAses and RNAses activated at 37°C in incubator. In addition, FBS can 167 



be stored for a minimum 10 days at 4°C without altering its properties, while it has been approved by FDA for several 168 

cellular and tissue engineered products. On the other hand, protocols that use external DNAses and RNAses or EGM-2 169 

is of a higher cost due to the fact that a nuclease solution must be used immediately and is stable only for 3-5 h, creating 170 

storage issues (Ingram, J.H., et al. 2007; Gui et al., 2009). Moreover, this step does not alter the mechanical properties 171 

of the scaffold, as assessed by our group (Katsimpoulas et al. 2015). All decellularisation steps were carried out under 172 

agitation and sterile conditions. 173 

Implantation procedure 174 

Anesthesia and aortic mobilization were performed as in the case of donor preparation while heparin was added in a 175 

dose of 10 IU/100 g body weight intravenously. The aorta was transplanted just distally to the renal artery and proximally 176 

to the iliac bifurcation in an end-to-end continuous fashion with 8-0 polypropylene suture (Prolene, Ethicon, USA). No 177 

additional anticoagulation was administered postoperatively. Postoperatively, 5 mg/kg SC Carprofen (Rimadyl, Pfizer, 178 

UK) daily and 150 mg/kg SC Amoxicillin (Amoxil, GlaxoSmithKline, UK) twice a day was administered for 3 days, for pain 179 

and antibioprophylaxis, respectively. The recipient W rats were euthanized 6 weeks postoperatively, and the grafts, with 180 

~2cm surrounding tissue, were removed from the recipients.  181 

Histology 182 

The tissue morphology and cellular content of the native, decellularised and explanted grafts was assessed by histology. 183 

Whole aorta segments measuring 10 mm in length were isolated and fixed in 10% (v/v) neutral buffered formalin (Sigma-184 

Aldrich) overnight at 4°C. The samples were then dehydrated by sequential immersion in graded concentrations of 185 

ethanol (70% v/v, 90% v/v and 100% v/v) in distilled water for 1h each, before they were immersed three times in xylene 186 

for 1 h each time. The samples were then placed into metal molds that were partially filled with paraffin. The molds were 187 

transferred onto a cold plate, to initiate wax solidification and secure sample orientation, and then were filled with 188 

paraffin. The molds were placed onto the cold plate again, until the wax was completely solid. Subsequently, the paraffin 189 

blocks were removed from the molds and sectioned using a microtome at a thickness of 6 μm. Circumferential sections 190 

were cut from the central region of the grafts, in order to avoid the suture lines. Subsequently, the sections were 191 

transferred into a water bath at 50°C and onto microscope slides. The slides with the tissue sections were dried on a 192 

60°C hotplate. Prior to staining, the sections were dewaxed by sequential immersion in 2 individual pots with xylene for 193 

10 min each, and were then sequentially rehydrated by immersion in graded concentrations of ethanol (2×5 min 100% 194 

v/v, 1×2 min 95% v/v, 1×2 min 70% v/v) in distilled water. The general histoarchitecture of the grafts was evaluated using 195 



standard haematoxylin and eosin (H&E; Merck) staining. Sections were immersed into Mayer’s haematoxylin for 1 min, 196 

rinsed under tap water for 5 min and then immersed into eosin for 3 min. Masson´s trichrome was used to visualize 197 

collagen fibre alignment and cell nuclei according to the method described by the manufacturer (Sigma-Aldrich). Briefly, 198 

sections were treated with Weigert´s iron haematoxylin for 5min, then in Biebrich scarlet-acid fuchsin and aniline blue for 199 

6 and 5 min, respectively. Elastica Van Gieson was used to visualise elastic fibres and cell nuclei according to the 200 

manufacturer´s instructions (Sigma Aldrich). Briefly, sections were immersed in Weigert´s resorcin fuchsin solution for 11 201 

min, followed by Weigert´s iron haematoxylin and picrofuchsin solution for 5 and 2 min, respectively. All stained sections 202 

were dehydrated again in graded concentrations of ethanol (70% v/v, 90% v/v and 100% v/v) in distilled water, cleared 203 

with xylene and mounted with Corbit Balsam mountant. Images were captured using a Nikon TE300 Eclipse light 204 

microscope, incorporating a Nikon Digital Sight DS-U3 camera controller, and processed through the NIS-Elements D 205 

Microscope Imaging Software (Nikon Instruments). 206 

Immunohistochemistry 207 

The elicited immune response was evaluated in terms of inflammatory cell (T-cells, monocytes and macrophages) 208 

infiltration by immunohistochemical staining. The presence of smooth muscle cells (SMCs)/fibroblasts and endothelial 209 

cells (ECs) in the native and explanted grafts was also investigated by immunohistochemical staining. Whole aorta 210 

samples measuring 10 mm in length, were isolated and fixed in zinc fixative at 4°C, dehydrated, and embedded in 211 

paraffin wax, as described above. Circumferential sections (6 µm) were cut close to the central region of the samples, 212 

dewaxed, and stained. Monoclonal antibodies against CD31 (ECs; PECAM-1(M-20)-R; Santa Cruz Biotech), calponin 213 

(SMCs/myofibroblasts; 46794, Abcam), CD68 (monocytes and circulating and tissue macrophages; MCA341GA; AbD 214 

Serotec), CCR7 (M1 macrophage sub-type; rabbit monoclonal Anti-CCR7 antibody [Y59], ab32527, Abcam) and CD206 215 

(M2 macrophage sub-type; rabbit polyclonal to Mannose Receptor, ab64693, Abcam) were used to stain sections of 216 

native and explanted aortas (Brown et al.,2009; Brown et al., 2012). Explanted aortas were also stained with anti-CD3 217 

(T-cells at all stages of development; ab5690; Abcam) and anti-CD4 (T-regulatory and T-helper cells; ab125711; Abcam) 218 

antibodies. Fresh porcine mitral valve posterior leaflet was used as positive control for calponin staining, whereas spleen 219 

was used as positive control for T-cell staining. Isotype control antibodies (normal rabbit IgG for CD31, calponin and 220 

CD3, Calbiochem; mouse IgG1 for CD4 and CD68, Dako) and omission of the primary antibody (secondary antibody 221 

control) served as negative controls. Immunolabelling of anti-CD31, anti-CD68, anti-CD3 and anti-CD4 was carried out 222 

using the EnVision®+ Dual Link System-HRP (DAB+) (K4065, Dako). Hydrogen peroxide (Sigma) was used to block 223 

endogenous peroxidase. Images were captured under light microscopy, as described above. Immunofluorescence 224 



staining was conducted for the immunolabelling of anti-calponin, anti-CCR7 and anti-CD206. Briefly, samples were 225 

incubated in blocking medium (1% w/v BSA in PBS) for 60 min at RT, before they were washed once in TBS/Tween and 226 

twice in TBS, for 5 min each time. Incubation in primary antibody was carried out for 1 h at RT. All samples were then 227 

washed twice in TBS/Tween and twice in TBS for 5 min each and incubated with the secondary antibody (Alexa Fluor 228 

488, donkey anti-rabbit, IgG, Jackson) for 30 min in the dark at RT. The samples were then washed shortly in 229 

TBS/Tween and TBS and incubated in Roti®Mount FluorCare DAPI or in 1 uM DAPI solution (Life Technologies) for 15 230 

min at RT, followed by mounting. Images were captured using B-2A and UV-2A Nikon filters, with the microscope 231 

described above. 232 

Biomechanical characterization 233 

The mechanical integrity of the explanted grafts was assessed under uniaxial tension. Longitudinal samples (n=6 for 234 

each group) measuring 5mm in length by 2.5mm in width were isolated from the aortas and subjected to low strain-rate 235 

uniaxial tensile loading to failure, according to the method reported previously (Korossis et al., 2002), with minor 236 

modifications. The testing was conducted in a Zwick/Roell tensile tester (model Z 0.5) equipped with a 200N load cell. 237 

Prior to testing, the thickness of the samples was measured using a Sylvac position sensor equipped with a Kalibriert 238 

force sensor (model: µS246). The test sample was positioned between the position sensor and a bottom plate, and the 239 

position sensor was lowered in a gradual and controllable manner, till it touched the sample and a force was registered. 240 

The distance between the position sensor and bottom plate was recorded as the sample thickness. The thickness of the 241 

samples was measured at three different points along their length, and averaged. Subsequently, the samples were 242 

clamped at their ends, using sandpaper and a small amount of superglue to prevent slippage, under zero strain on the 243 

tensile tester, which was set to produce a specimen preloading of 0.005 N before the operating program started to 244 

acquire any data. During testing, the specimens were preconditioned for 10 cycles at a rate of 10 mm/min, before they 245 

were sequentially stretched to failure at the same rate. Failure was assumed when the first decrease in load was 246 

detected during specimen extension, whereas the mode of failure observed was near middle-section necking and 247 

rupture for all the samples tested. The sample extension (Δl, in mm) and corresponding generated load (F, in Newtons) 248 

that were recorded during the final loading to failure phase of the test, were converted to engineering strain (ε) and 249 

engineering stress (σ, in MPa), respectively (Korossis et al., 2002). The stress-strain behavior of each sample was 250 

analyzed by means of six parameters (Korossis et al., 2002), including the elastin (El-E) and collagen (Col-E) phase 251 



slopes, transition stress (σTrans) and strain (εTrans), ultimate tensile strength (σUTS) and failure strain (εUTS) . The 252 

biomechanical parameters for each sample were calculated and averaged over the number of samples in each group. 253 

Data analysis 254 

The biomechanical testing results were presented as means together with their 95% confidence limits (C.I.). The data 255 

was analyzed by one-way ANOVA, followed by calculation of the minimum significance difference (MSD). Statistical 256 

significance was determined at the 0.05 confidence level. 257 

Results 258 

Histological analysis 259 

The histological results of the native, decellularized and explanted syngeneic and allogeneic grafts are illustrated in 260 

Figure 1 and at higher magnification in Figure 2. The results indicated that there were no apparent differences between 261 

the histoarchitectures of native W and DA rats, with the aorta of both strains demonstrating a three-layered structure, 262 

comprising the tunica intima (outer layer of cells facing the lumen), tunica media, consisting of SMCs, collagen fibers and 263 

elastic fibers organized in a concentric fashion, and adventitia, mainly consisting of collagen fibers, fibroblasts and 264 

loosely-aligned elastic lamellae (Callanan et al., 2011; Allaire et al., 2012; Katsimpoulas et al., 2015). The decellularized 265 

DA rat aorta was shown to be completely void of any observable cells and cellular debris, while it maintained the general 266 

native trilaminar histoarchitecture with preserved collagen and elastic fibers. However, it also appeared swollen with 267 

obvious gaps in the extracellular matrix (ECM), especially at the sites in the adventitial layer that were heavily populated 268 

with cells. 269 

The explanted syngeneic grafts (W-W; Figure 1 & 2) demonstrated an intact media with intact collagen and elastic fibers, 270 

while their adventitia appeared more compact compared to their non-implanted control (W), suggesting the production of 271 

ECM. The syngeneic grafts also presented a noticeable intimal thickening and cellular content throughout their 272 

thickness. The explanted decellularized allografts (decell DA-W; Figure 1 & 2) showed a similar response to syngrafts, 273 

with preserved elastin and collagen fibers in the media and a more compact adventitia compared to their non-implanted 274 

control (decell DA). Moreover, they did not show any thickening of their intima, while they demonstrated a significant cell 275 

repopulation throughout their thickness, as evidenced by the H&E staining. The latter observation highlighted the non-276 

cytotoxic nature of the decellularised grafts, which resulted in cell colonization and subsequent ECM remodeling. On the 277 

other hand, the explanted allografts (DA-W; Figure 1 & 2) demonstrated disruption of the elastin and collagen network, 278 

as well as cellular loss in the media, as evidenced by H&E and the distinct gaps in the sites that were previously 279 



occupied by cells. Moreover, the DA-W allografts experienced cellular infiltration in the adventitia and adventitial fibrosis 280 

that resulted in a significant thickening of their adventitia, as well as neointimal formation.   281 

Immunohistochemical analysis 282 

The immunohistochemical results of the native and explanted syngeneic and allogeneic grafts are illustrated in Figure 3 283 

(CD31), Figure 4 (CD68), Figure 5 (CD3 and CD4), Figure 6 (calponin), Figure 7 (CCR7) and Figure 8 (CD206). ECs 284 

(CD31+) were observed in the lumen and vasa vasorum of the native DA and W aortas, and explanted syngrafts (W-W) 285 

and untreated allografts (DA-W) (Figure 3). In contrast, no CD31+ cells were not visible on the explanted decellularized 286 

allografts (decell DA-W; Figure 3). Putative SMCs or myofibroblasts (calponin+) were observed in the tunica media of the 287 

native DA and W aortas, and the explanted syngrafts (W-W), but not in the tunica media of the explanted untreated (DA-288 

W) allografts (Figure 6). Instead, the untreated (DA-W) allografts demonstrated calponin+ cells only in their intima. No 289 

calponin+ cells were observed in the decellularized (decell DA-W) allografts (Figure 6). The native DA and W aortas 290 

were stained negative for CD68 (circulating and tissue macrophages and monocytes; Figure 4), whereas some CD68+ 291 

infiltrates were observed in the adventitia and intima of the explanted syngrafts (W-W; Figure 4). Extensive infiltration of 292 

CD68+ cells was observed in the case of the untreated allografts (DA-W), which was spread uniformly throughout the 293 

thickness of these grafts (Figure 4). CD68+ cells were also observed in the sub-endothelial region of the intima, as well 294 

as the adventitia, of the explanted decellularized allografts (decell DA-W; Figure 4). However, the infiltration of CD68+ 295 

cells in the explanted decellularized allografts was only regional, and not spread throughout the graft, as in case of the 296 

explanted untreated allografts. In spite of the lack for CD68+ staining in the native DA and W aortas, CCR7+ cells (M1 297 

macrophage sub-type) were detected in these tissues (Figure 7). CCR7+ cells were also detected in the intima and 298 

media of the explanted syngrafts (W-W; Figure 7). Similar observations were apparent in the case of the explanted 299 

allografts (DA-W; Figure 7), in which CCR7+ infiltrates were observed in their intima and adventitia. On the other hand, 300 

the explanted decellularized allografts (decell DA-W; Figure 7).demonstrated a milder infiltration of CCR7+ cells, 301 

compared to the W-W and DA-W grafts, which was limited in their adventitia layer. No CD206+ cell infiltration was 302 

detected in any of the in native tissues (DA and W), or syngraft (W-W), untreated allograft (DA-W) or decellularised 303 

allograft (decell DA-W) explants (Figure 8). 304 

No T-cell infiltration could be observed in the explanted syngrafts (W-W; Figure 5), whereas a significant infiltration of 305 

CD3+ cells could be observed in the adventitia of the explanted untreated allografts (DA-W). Some localised CD3+ cell 306 

presence could also be observed in the adventitia of the explanted decellularised allografts (decell DA-W; Figure 5), but 307 



it was considerably reduced compared to the explanted untreated allografts (DA-W). The latter also demonstrated a 308 

sporadic infiltration of CD4+ cells in their adventitia, in contrast to the explanted decellularised allografts (decell DA-W), 309 

which did show any evidence of CD4+ cell infiltration (Figure 5). In general, the explanted untreated allografts (DA-W) 310 

demonstrated a prominent infiltration of mononuclear cells, which was significantly reduced in the case of the explanted 311 

syngrafts (W-W) and decellularised allografts (decell DA-W) (Figure 4 and 5). There was no unspecific staining observed 312 

for both the secondary antibody and the isotype controls of all the above-mentioned antibody-stains (Figures 3, 4, 5, 6, 313 

7, 8).  314 

Mechanical testing 315 

The mean biomechanical parameters of the explanted syngeneic and allogeneic grafts are illustrated in Figure 9. The 316 

same figure also features the corresponding mean biomechanical parameters of native W (W) and DA (DA) rat aortas, 317 

as well as of decellularised DA rat aortas (dec DA) that were produced using the same decellularisation protocol. This 318 

data, which was obtained using the same uniaxial tensile testing protocol as in the present study, was adopted from 319 

Katsimpoulas et al. (2015) and it was included in the analysis in order to better understand the potential changes in the 320 

biomechanics of the scaffolds following implantation. Statistically significant differences were found only in the collagen 321 

phase slope (Coll-E), ultimate tensile strength (σUTS) and thickness (p=0.025, 0.027 and 0.004, respectively). In all three 322 

cases, the statistically significant differences arose from the differences between the explanted untreated allograft (DA-323 

W) group and the other groups tested. Specifically, the DA-W group demonstrated the lowest Coll-E compared to the 324 

other groups, with the difference being statistically significant only compared to the decellularized DA (decell DA) group 325 

(MSD = 7.22). Similarly, the DA-W group achieved the lowest σUTS, with the difference being statistically significant when 326 

compared to the W and decell DA groups (MSD = 2.07). Moreover, the average thickness of the DA-W group was higher 327 

than any of the other groups, with the difference being statistically significant when compared to the native W and DA, 328 

and decell DA groups (MSD = 0.11). The explanted decellularised allograft (decell DA-W) group showed no significant 329 

differences compared to any of the other groups used in the study. 330 

Discussion 331 

The present study was a part of an overarching project that aimed at creating a small-caliber arterial graft for clinical use, 332 

utilizing the decellularised rat aorta. Along these lines, the work was focused on assessing the performance of the 333 

decellularised DA aorta, in terms of its biomechanical integrity and arterial compatibility, and potential immunogenicity, 334 

under orthotopic allogeneic transplantation in W rats, prior to proceeding to heterotopic xenotransplantation in a large 335 



animal in a future study. The orthotopic transplantation was chosen to assess the graft in the more demanding pressure 336 

environment of the aorta. In this study, native and decellularised aortas from inbred DA rats were orthotopically 337 

implanted into W inbred rats to simulate the allogeneic transplantation model, whereas W rat native aortas were 338 

orthotopically implanted into W rats as syngeneic controls. To date, there has been a scarcity of studies on DA rat 339 

tissues implanted into W rats; nevertheless, several studies have used tissues from other sub strains of W rats for 340 

transplantation into DA rats (Mennander et al., 1991; Mennander et al., 1993). These rat strains differ in their major and 341 

minor histocompatibility loci, and the immune response in allogeneic models with these strains, are mainly driven by the 342 

MHC I and II present on donor cells (Schmitz-Rixen et al., 1988). In this study, lymphocytes presence was investigated 343 

using anti-CD3 and anti-CD4 antibodies, since CD3 has been reported to be a pan-T-cell marker (Aniansson Zdolsek et 344 

al., 1999) and CD4 a marker for T-regulatory and T-helper cells (Corthay et al., 2009). Macrophages were detected by 345 

the anti-CD68 antibody, which has been reported as a marker for pan-macrophages (Murray et al., 2011), whereas the 346 

M1 and M2 macrophage sub-types were detected by anti-CCR7 and anti-CD206 immunofluorescent antibodies, 347 

respectively. M1 macrophages are typically activated by IFN-γ or lipopolysaccharides, producing proinflammatory 348 

cytokines, and are indicative of an immune response, whereas M2 macrophages are activated by cytokines, such as IL-349 

4, IL-10, or IL-13, and produce either proliferation-inducing polyamines or proline to induce collagen production. M2 350 

macrophages have been associated with wound healing and tissue repair and remodeling (Brown et al.,2009; Valentin et 351 

al., 2009; Brown et al., 2012; Jablonski et al., 2015; Sager et al., 2017) 352 

Allograft transplantation usually leads to chronic rejection, which mainly consists of inflammation and intimal thickening 353 

(Mennander et al., 1992). In particular, this degenerative process induces a complete loss of SMCs in the media that, in 354 

turn, induces media necrosis, elastin degradation, SMC migration towards the intima and intimal thickening throughout 355 

the length of the graft (Mennander et al., 1993). It has been hypothesized that medial necrosis might be due to a toxic 356 

effect of inflammatory cells present in the adventitia, especially lymphocytes, on SMCs in the media (Mennander et al., 357 

1993). In the present study, media necrosis, partial elastic fiber degradation, SMC migration towards the intima and 358 

lymphocyte (CD3+, CD4+) and macrophage (CD68+) infiltration in the adventitia were evidenced in the explanted 359 

untreated allografts (DA-W), which also demonstrated a prominent increase in thickness of their adventitia (Figure 1 and 360 

2). Donor ECs and SMCs were most probably the main antigenic targets of these infiltrates, since the DA-W grafts were 361 

stained positively for CD31 in their lumen (Figure 3) and presented a significant content of calponin+ cells in their intima 362 

(Figure 6). Similar results were described by Mennander et al. (1992) for DA rat thoracic aorta transplanted into Wistar 363 



Furth rats. The authors reported a peak of inflammatory cells and increase in adventitial thickness after 2 months 364 

implantation.  365 

The syngrafts showed a mild immune response, with an intact media (Figure 2) and no lymphocyte presence (Figure 5). 366 

Macrophages were observed in all explants, located mainly in the intima, media and adventitia of the allografts, and in 367 

the media and intima of the decellularized allografts and syngrafts (Figure 4). In all explants, the macrophages were 368 

identified as of the M1 sub-type (inflammatory; Figure 7), whereas no M2 macrophages (remodeling/repair) were 369 

observed in any of the explants (Figure 8). In contrast to the DA-W allografts, the explanted decellularized allografts 370 

(decell DA-W) induced an immune response similar to the syngrafts (W-W), with a reduced immune injury (Figure 2), low 371 

amount of lymphocyte infiltrates (Figure 5), and macrophages that were localized mainly in regions of the adventitia 372 

(Figure 7), although some macrophages were also observed in their intima region, as evidenced under CD68 staining 373 

(Figure 4). This regional macrophage presence in the decell DA-W allografts might be due to inconsistencies in the 374 

application of the decellularisation protocol, and subsequent cellular debris remnants in the grafts. However, these 375 

results suggested that the decell DA-W allografts demonstrated a similar performance to their W-W syngrafts 376 

counterparts, and that the decellularisation protocol was generally effective in removing the immunogenic material, such 377 

as cellular debris, of the grafts. 378 

The decellularized aortas, both prior (decell DA) and after (decell DA-W) transplantation, showed a well maintained 379 

trilaminar structure, typical to abdominal rat aorta (Allaire et al., 1994), with well-maintained collagen and elastic fibers 380 

orientated concentrically along the circumferential direction in the media, and elastin lamellae in the adventitia (Figure 1 381 

and 2). Elastic fibers and lamellae represent one of the main components of the aortic wall (Aikawa et al., 2009; 382 

Cavalcante et al., 2011). Reduction in the number of elastic fibers and elastic lamellae has been reported to cause a 383 

reduction of mural elastic resistance (Mello et al., 2004) that could contribute to aneurysm formation (Boutouyrie et al., 384 

1992). The histological analysis of the decellularized aortas prior to implantation revealed absence of any observable 385 

cells or cellular debris throughout the thickness of the arterial wall. The explanted decell DA-W allografts demonstrated 386 

extensive cellular population in their media and adventitia, as well as evidence of remodeling of the adventitia, which 387 

was rather disrupted by the decellularisation process (Figure 2). However, no ECs could be observed in the lumen of the 388 

decell DA-W allografts, as evidenced by the CD31 staining (Figure 3), or any detectable SMC presence, as evidenced by 389 

the calponin staining (Figure 5). On the other hand, the explanted DA-W allografts showed an overgrowth of their 390 



adventitia, probably due to the recruitment of fibroblasts by inflammatory cells, in an attempt to replace the allogeneic 391 

tissue (Mennander et al., 1992), as well as neointima formation (Figure 2). 392 

The histoarchitectural changes in the explanted DA-W allografts (Figure 1 and 2) had a direct effect on their mechanical 393 

properties. Specifically, the DA-W group demonstrated on average the lowest Coll-E and σUTS, and the highest 394 

macroscopic thickness, among the groups tested, indicating a deterioration of the integrity of these grafts (Figure 9). 395 

These changes in the mechanical properties of the DA-W allografts have the potential to induce long-term structural 396 

failure. Moreover, the reduced moduli measured for the DA-W explants, implied that there was a significant modulus 397 

mismatch between these allografts and the native aorta of the recipients. This could have potentially generated 398 

significant stress concentrations in the grafts and/or the surrounding aorta of the recipient, generating abnormal 399 

biomechanical stimuli to infiltrating cells. In addition, the high stress concentration regions could have potentially 400 

generated higher ECM damage, further attracting inflammatory and immune cells, and increasing the immunogenicity of 401 

these grafts. On the other hand, and in the absence of a functional vasa vasorum, the increase in the DA-W graft 402 

thickness in vivo could have generated progressively increased hypoxic conditions in the media of these grafts, which in 403 

turn caused higher migration of immune cells, such as macrophages, macrophages, neutrophils, dendritic cells, 404 

lymphocytes and immune lymphoid cells, whose characteristic ability is to infiltrate in tissues with low nutrients and 405 

oxygen levels (Krzywinska et al., 2018). 406 

 In contrast, the explanted decell DA-W allografts showed no significant differences in the mechanical properties 407 

compared to the native W rat aorta. Overall, these results suggested that the ECM of explanted decellularized scaffolds 408 

was more stable and better maintained after 6 weeks implantation, in contrast to that of the untreated DA-W allografts, 409 

which showed partial disruption of their elastic fibres, adventitia thickening and deteriorated mechanical properties, 410 

caused by the immune response of recipients. 411 

In conclusion, the results from this study demonstrated that the modified decellularisation protocol used in the present 412 

study did not induce significant biomechanical or histological alterations of the DA rat aorta in vivo, whereas the immune 413 

response of the recipients was improved by the decellularisation treatment compared to the untreated allografts. The 414 

latter elicited a significant adverse immune response, which resulted in adventitia fibrosis and thickening, media necrosis 415 

and neointima formation, whereas the syngrafts showed good tissue integration and mild immune response. Future work 416 

will assess the presence of nucleic acid and phospholipid remnants in the decellularised scaffolds. Moreover, future work 417 



will also assess the performance, remodeling and adaptation of the decellularised rat aorta graft in a heterotopic 418 

peripheral artery porcine model. 419 
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