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Abstract Studying nonlinear and potentially chaotic phenomena in geophysics from measured signals
is problematic when system noise interferes with the dynamic processes that one is trying to infer. In such
circumstances, a framework for statistical hypothesis testing is necessary but the nonlinear nature of the
phenomena studied makes the formulation of standard hypothesis tests, such as analysis of variance,
problematic as they are based on underlying linear, Gaussian assumptions. One approach to this problem
is the method of surrogate data, which is the technique explained in this paper. In particular, we focus on
(i) hypothesis testing for nonlinearity by generating linearized surrogates as a null hypothesis, (ii) a variant
of this that is perhaps more appropriate for image data where structural nonlinearities are common and
should be retained in the surrogates, and (iii) gradual reconstruction where we systematically constrain the
surrogates until there is no significant difference between data and surrogates and use this to understand
geophysical processes. In addition to time series of sunspot activity, solutions to the Lorenz equations, and
spatial maps of enstrophy in a turbulent channel flow, two examples are considered in detail. The first
concerns gradual wavelet reconstruction testing of the significance of a specific vortical flow structure
from turbulence time series acquired at a point. In the second, the degree of nonlinearity in the spatial
profiles of river curvature is shown to be affected by the occurrence of meander cutoff processes but in a
more complex fashion than previously envisaged.

Plain Language Summary Complexity and nonlinearity in physics and the geosciences are at
the heart of understanding a great number of processes. It can therefore be difficult to infer exactly what
is happening in a system due to this complexity. This paper examines various methods for generating
surrogate data for testing hypotheses about nonlinearity in data. That is, the surrogates provide the null
model and one looks to see if the real data has a value significantly different to the surrogates. Examples
are given for how a variable changes in time, how several variables measured at the same point change in
time, and how the spatial values for a variable change. In particular, we consider a method called gradual
wavelet reconstruction where we can systematically change the properties of the surrogates until there is no
longer a difference between data and surrogates and use this as a way to understand geophysical processes.
Examples of the use of this technique are given for understanding scour caused by turbulent flows
transporting sediment and how river meandering dynamics effect the curvature of the river channel.

1. Introduction
There is no double-blind, replicated trial for a tsunami, an earthquake, a tornado or an ionospheric per-
turbation (Simpson, 1963). Numerical models provide a means to study the dynamics of such phenomena
but are dependent upon the relevant process mechanics being understood. Thus, we need to complement
numerical investigation with field and laboratory work to gain as much information as possible about the
dynamics and contingent circumstances affecting such an event, thereby informing the development of the
more refined models of the future (Paniconi & Putti, 2015).

However, the process of measurement requires decisions to be taken on the variables to be measured, the
acquisition frequency, and the dimensionality of the data, which means that we only gain a partial insight
into the physics of the phenomenon under consideration. Given the complex, nonlinear, and nonlocal nature
of many of these processes (Arens et al., 2008; Goncharenko et al., 2010; Hannachi et al., 2017; Tsinober,
2013), as well as the unique contexts in which they operate due to the historical development of the salient
boundary conditions (Church & Slaymaker, 1989), it is not a trivial task to characterize the nature of this
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nonlinearity (Aguirre & Billings, 1995). It therefore follows that it is not sufficient to apply some measure
of nonlinearity, such as those reviewed by Schreiber and Schmitz (1997), to a geophysical system and state
that the value is x; rather, one should also test to see if this value is statistically significantly different to
what one might expect by chance. However, as already stated, we have no double-blind replicated trial for
the natural event so we cannot undertake more “experiments” for field measurements, for example, and
there are very rarely appropriate statistical tests for particular hypotheses regarding nonlinear phenomena.
Therefore, how should we proceed? The suggested approach in this paper is through the use of synthetic,
surrogate data that are built with certain properties and to which the observed data may be compared (Kantz
& Schreiber, 1997; Schreiber & Schmitz, 1996; Theiler et al., 1992). After discussing the types of data that
may be studied, and the way in which hypotheses may be tested, we consider two examples where the use
of surrogate data-based hypothesis testing has helped to (a) further understanding of geophysical processes
and (b) permitted refined inference of processes from observations of landscape. A particular focus of this
work is the gradual reconstruction framework for undertaking further investigations of data once significant
nonlinearity has been detected. The primary focus of this article is on time series, or one-dimensional spatial
data, although we do also discuss spatial imagery. For a general overview of key aspects of nonlinear time
series, the reader is recommended to take a look at Bradley and Kantz (2015).

2. Synthetic, Surrogate Data Algorithms
Following the groundbreaking work of Ed Lorenz in the 1960s on chaos theory (Lorenz, 1963), a corpus of
work emerged in the 1970s and 1980s that derived other strange attractors from simple sets of coupled ordi-
nary differential equations (Hénon, 1976; Rössler, 1976), studied these dynamics in some detail (Pomeau &
Manneville, 1980), and developed a suite of methods for the analysis of nonlinear systems (Grassberger &
Procaccia, 1983; Kaplan & Yorke, 1979; Takens, 1981; Wolf et al., 1985). However, assuming such a method
has been employed, it is still not clear what the meaning of the result is given noise in the measurement
process. Error bars may be employed, but that requires a model for the error, which may not be known for a
non-Gaussian measure of a nonlinear system. A more recent development has been the formulation of the
theory of pullback attractors for the analysis of nonautonomous dynamical systems where the forcing is time
dependent (Pierini et al., 2018). The case where this forcing is stochastic in time leads to a random attractor
(Chekroun et al., 2011), which may be analyzed by an ensemble of model simulations (Van Schaeybroeck
& Vannitsem, 2016). These techniques are extremely useful for characterizing the variability in the attrac-
tor dynamics as a consequence of temporal variability from model simulations but are less applicable to
experimental problems where the aim is to infer something about the dynamics from the measured signal.

Hence, as stated by Theiler et al. (1992, p. 78), an alternative is to

“… specify a well-defined underlying linear process or null hypothesis and to determine the distribution
of the quantity we are interested in (dimension say) for an ensemble of surrogate data sets which are just
different realizations of the hypothesized linear stochastic process. Then, rather than estimate error bars on
the dimension of the original data, we put error bars on the value given by the surrogates.”

Here the use of “dimension” means the correlation dimension for the attractor for a potentially chaotic
phenomenon (Grassberger & Procaccia, 1983). The simplest way to generate a linearized variant of a source
data set is by a modified Fourier phase randomization procedure. A linear model for a phenomenon (here
assumed to be a time series, ut) may be expressed as an autoregressive process (Brockwell & Davis, 2013)

ut = a0 +
Q∑

q=1
aqut−q + 𝜎𝜖, (1)

where the aq are coefficients, 𝜎 captures the standard deviation of the random error, and 𝜖 is a zero mean,
unit variance Gaussian noise. Use of the Wiener-Khintchine theorem means that in the Fourier domain, this
autoregressive model is equivalent to specifying the amplitudes of the Fourier transform for ut. However,
nothing is stated about the Fourier phases. This observation resulted in the first proposal for a rigorous sur-
rogate data algorithm by Theiler et al. (1992)—the amplitude-adjusted Fourier transform (AAFT) method.
In addition to a phase randomization, this method also recognized that surrogates needed to mimic the
observed values for a data series so that the surrogate data could be a legitimate realization of the process
studied. These ideas underpinned what is perhaps the most widely used surrogate data algorithm, which has
seen subsequent applications in economics, neuroscience, and geophysics—the iterated AAFT (IAAFT).
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Figure 1. A time series for 𝛾3, the third variable in the Lorenz system, and its surrogate series are shown at coarse
(panels a to d) and more refined (panels e to h) resolutions. Panels (a) and (e) show the original data. In panels (b) and
(f) are shown the random shuffle step, 𝛾 (0)3 of the iterated amplitude-adjusted Fourier transform algorithm. The first
complete iteration of the iterated amplitude-adjusted Fourier transform algorithm, 𝛾 (1)3 , is shown in (c) and (g), and the
final, converged iteration, 𝛾 (∞)

3 , is given in (d) and (h). The two gray arrows relate to features described in the text.

2.1. The Iterated Variant of the AAFT Method
The IAAFT method was proposed by Schreiber and Schmitz (1996) as an improved surrogate generation
algorithm. Given a time series, u(t), one first stores these values in ranked order, and the amplitudes of its
Fourier transform,

|F|(𝜔) =
||||||

N−1∑
t=0

utei2π𝜔t∕N
||||||
, (2)

where 𝜔 is frequency. The initial surrogate, u(0)
t is a random shuffle of ut. The algorithm then proceeds

through the following steps:

1. Impose the correct periodicities by taking the Fourier transform of u(0)
t , retaining the phases, and replacing

the amplitudes by |F|(𝜔).
2. Take the inverse Fourier transform to produce a new time series, which will have the desired periodic

structure but will no longer retain the original values of ut. Hence, impose the original values via an
amplitude adjustment step to produce u(1)

t . The amplitude adjustment consists of ranking the observed
values and substituting them for the value from the original data with the same position in the ranked list.

These two steps are repeated until u(∞)
t is generated, a surrogate with the same values as ut and a represen-

tation of the Fourier spectrum that is sufficiently precise to a selected error tolerance. It is this data set that
gives us the surrogate, that is, ût ≡ u(∞)

t .

We consider the generation of an example IAAFT surrogate in Figure 1 based on the Lorenz (1963) equations
but using a value for the Rayleigh parameter, k2, that is much higher than normal, resulting in a dynamical
system that has been considered as a simple model for intermittent turbulence (Pomeau & Manneville,
1980). Specifically, we solve

d𝛾1

dt
= k1(𝛾2 − 𝛾1),

d𝛾2

dt
= −𝛾1𝛾3 + k2𝛾1 − 𝛾2,

d𝛾3

dt
= 𝛾1𝛾2 − k3𝛾3,

(3)
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Figure 2. The square of the Fourier amplitudes as a function of frequency for 𝛾3 (black), 𝛾 (∞)
3 (gray and displaced

vertically by dividing by 100), and 𝛾
(0)
3 (gray and displaced vertically by multiplying by 1,000).

with k1 = 10, k2 = 167, and k3 = 8∕3 and extracted a time series for 𝛾3 consisting of 8,192 samples,
obtained at 100 samples per unit time, following an initial simulation for 1,000 time steps to lose any effect
from initial conditions. The original series and then the different steps of the IAAFT algorithm are shown
in the different rows of Figure 1, with the right-hand panels magnifying a portion of the left-hand panels.
While all rows consist of the same values for the data, it is clear that the random shuffle in the second row has
no appropriate autocorrelative structure. However, this is visually broadly correct by just the first iteration
in the third row and the fourth row is not visually too different to the third, indicating a rapid convergence
rate for this time series. The values for |F(𝜔)|2 in Figure 2 highlight that the Fourier amplitudes are captured
with excellent fidelity in the surrogate, which is displaced vertically downward as one of the series is not
visible otherwise. For example, the error in the representation of the primary peak at 𝜔 = 2.88 is 0.0125%.
That the random shuffle, before the imposition of the Fourier amplitudes yields a white noise is clear from
the upper gray line in Figure 2.

Despite the excellent preservation of the Fourier amplitudes, and while the surrogates and original data
consist of exactly the same values, it is clear that there are some differences in the shape of the time series.
The two gray arrows in Figure 1 show two such aspects of the signal: At the low frequencies emphasized
in the left panel, there is a clear tendency for a gradual increase in the amplitudes of the higher-frequency
oscillations before a sudden reduction in amplitude. At the higher frequencies emphasized in the right panel,
the rising limb of one of these high-frequency oscillations appears to be much steeper than the recessional
limb. Such features are not seen in the surrogate series. This would lead to the hypothesis that these are a
significant aspect to the nonlinear nature of the process driving this signal. Thus, a measure of the signal
asymmetry, such as that presented below, could be applied to the original data and surrogates to see if this
hypothesis is borne out statistically.

While the IAAFT algorithm generally converges well, there may be issues with particular data sets. This
could motivate one to embed the algorithm within a global convergence framework such as simulated
annealing. However, a more straightforward method to improve convergence was pointed out by Venema
et al. (2006) who imposed the original values in a gradual fashion. Another issue with the technique can
emerge as a consequence of a lack of matching of the beginning and end of the data set. Because the Fourier
transform is periodic, a harmonic is propagated into the surrogates if there is a major discrepancy in the first
and last values of the original data set (implying a dramatic, near-instantaneous change from the Nth value
to the first in a periodic domain). An example of this phenomenon is shown in Figure 12 of Keylock (2007).
This can be handled by choosing a subsample of the original data such that the Nth and first values are sim-
ilar, but this may be restrictive for environmental data that are hard to acquire. An alternative is to adopt a
wavelet transform for surrogate generation, with the concomitant improvements that occur because of the
localized nature of a wavelet with finite support (Keylock, 2007; Mallat, 1999; Percival & Walden, 2000).

2.2. Dealing With Multiple Time Series
Given that the basis for the IAAFT algorithm is the generation of linearized surrogates, it would be
useful to formulate a variant suitable for a measurement program where multiple time series are acquired
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Figure 3. A subsection of the time series for the three terms, 𝛾 i, in the
Lorenz equations is shown in the upper panel with a realization in the
lower panel using the iterated amplitude-adjusted Fourier transform
algorithm that retains the original cross correlation between the surrogate
series. In each panel, from top to bottom are shown 𝛾1 and 𝛾2 (in gray) and
then 𝛾3. They are displaced vertically by 0, −100, and −250, respectively.

simultaneously. If the IAAFT algorithm in the form described above is
adopted, then the null hypothesis is effectively that

There is no significant difference between the n time series and n lin-
ear variants drawn from the same distribution function and sampled
independently.

The last part of this statement is problematic for a null hypothesis of lin-
earity for multiple time series because the variance-covariance matrix is
clearly a property of the linear system and covariances will not be pre-
served, except by chance, using IAAFT surrogates. Going further than
variances and covariances, it is the cross-correlation structure that is
crucial if one wishes to work with the null hypothesis that

There is no significant difference between the n time series and n linear vari-
ants drawn from the same distribution function and sampled from the same
linear system.

The way to handle this was pointed out by Prichard and Theiler (1994)
who noted that the key quantity is the difference in the Fourier phases
between any given pair of signals. Hence, assuming that one has two
series, in addition to storing the values and Fourier amplitudes for both
series in the IAAFT algorithm, one also stores the Fourier phase differ-

ences between them. When the first series is randomly shuffled to produce u(0)
t , the second series is initialized

from the phases of this random shuffle with the phase difference imposed. An example of the use of this
cross-correlation preserving algorithm is provided in Figure 3 where the upper panel shows the time evolu-
tion of the three terms in the Lorenz equations, 𝛾 i, and the lower panel shows three corresponding surrogate
series, 𝛾i. For the original data, the maximum cross correlation between 𝛾1 and 𝛾2 occurs at a lag of 𝜏 = 0.04
and is Rmax

𝜏
(𝛾1, 𝛾2) = 0.91, while Rmax

𝜏
(𝛾1, 𝛾3) = 0.12 and Rmax

𝜏
(𝛾2, 𝛾3) = 0.13, occurring at 𝜏 = −6.48 and

𝜏 = −4.88, respectively. All these statistics were preserved to close to machine precision in the surrogates.
That is, the standard deviation of Rmax

𝜏
(�̂�1, �̂�2) for 39 surrogates including those shown was 2 × 10−16 with a

mean of 0.91 as required.

2.3. Two-Dimensional Data
To illustrate the generation of surrogates for two-dimensional data, we show in Figure 4a a plane in the
longitudinal (x) and transverse (z) directions of the enstrophy for a direct numerical simulation of a turbulent
channel flow at a channel centerline Reynolds number of 22,625 (Graham et al., 2016; Li et al., 2008). The
height from the lower boundary of this plane is y+ = 180, where the plus indicates inner-scale (wall)
units, according to y+ = yu𝜏∕𝜈, where 𝜈 = 5 × 10−5 is the (dimensionless) kinematic viscosity and u𝜏 =
4.997 × 10−2 is the (dimensionless) friction velocity at the wall. With the velocity gradient tensor given by

A =
𝜕ui

𝜕x𝑗
≡

⎛⎜⎜⎜⎝

𝜕u1
𝜕x1

𝜕u1
𝜕x2

𝜕u1
𝜕x3

𝜕u2
𝜕x1

𝜕u2
𝜕x2

𝜕u2
𝜕x3

𝜕u3
𝜕x1

𝜕u3
𝜕x2

𝜕u3
𝜕x3

⎞⎟⎟⎟⎠
, (4)

where x is a length and u is an orthogonal velocity component, one may decompose A into strain, S, and
rotation, Ω, components

S = 1
2
(A + A∗),

𝛀 = 1
2
(A − A∗).

(5)

The enstrophy is then given by 1
2
||𝛀||2, where ||… || is the Frobenius norm, that is, ||𝛀|| = √

tr(𝛀𝛀∗), where
the asterisk indicates the (complex) conjugate. The field in each panel of Figure 4 consists of 256 × 256 values
obtained in a region of extent 𝜋h, where h is the channel half height. Here we generate surrogates for the
scalar enstrophy field using a two-dimensional variant of the time series methods. An alternative approach
is to study values for the enstrophy at a point relative to surrogates of the velocity gradient tensor itself, which
requires a method for generating synthetic velocity gradient tensors (Keylock, 2017a). However, because the
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Figure 4. A plane indicating the enstrophy in a turbulent channel flow obtained from a direct numerical simulation is
shown in (a). Three IAAFT surrogates are shown in panels (b) to (d). The scalebar indicates the values in terms of the
base 10 logarithm of the dimensionless inverse time squared. The extent of the plane in the horizontal and transverse
directions is 𝜋 × h, where h is the dimensionless channel half height.

mathematical basis for this approach (linear algebraic manipulation) is rather different to the Fourier- and
wavelet-based methods focused upon in this paper, we do not discuss this technique further here.

Three example IAAFT surrogate data sets are shown in Figures 4b–4d, and it is clear that the surrogate data
have the appropriate values and the appropriate sizes of the flow structures, while randomizing the locations
of high and low enstrophy regions. The two-dimensional IAAFT was applied by Venema et al. (2006) for
studying the properties of cloud fields and also used as a synthetic cloud generator. In our experience, the
gradual convergence for the IAAFT algorithm becomes more necessary with 2-D data than for time series
or one-dimensional spatial series. The approach we tend to adopt of the methods suggested by Venema et
al. (2006) is to impose 20% of the original values in the amplitude adjustment step until convergence occurs
with these values and then include an additional 20% of the values, continuing until all are included. With
strongly extremal distributions for the original data, it may also facilitate convergence by working with the
logarithm of the original data when building surrogates.

However, there is an issue with the use of IAAFT surrogates for imagery, which is that the sharp interfaces
that define lineaments or delimit the foreground from the background are not perhaps of primary scientific
interest but are nonetheless nonlinear features of the imagery. Thus, it would be preferable to have a sur-
rogate algorithm that preserved these features, while randomizing the locations of the values in the image
and other nonlinear properties. For example, because of the swirling nature of high enstrophy events, reen-
trant angles in the boundary between high and low enstrophy regions will reduce the typical separation
between enstrophy maxima and minima compared to IAAFT surrogates that give more rounded regions
(Figures 4b–4d). This is shown in the top row of Figure 5 where the probability is given for different values
for the distance, D, defined for each local enstrophy maximum in the Figure 4a with a value greater than 10
(dimensionless) as the distance to the closest local enstrophy minimum with a value less than 0.1 (i.e., in
the log10 units used, the spatial separation between 101 and 10−1 maxima and minima). It is clear that the
IAAFT surrogates cannot mimic the observed D because of the absence of the nonlinear, swirling shape in
the IAAFT surrogates. Results are given in both normalized (right panels) and nonnormalized (left panels)
form as the exact number of local maxima is not necessarily constant between data and surrogates. That
there is very little difference between the left and right panels shows that this is a minor effect.

Sharp interfaces are of particular importance for enstrophy fields because, when one writes the evolution
equations for Ω2 and S2, the total strain, the nonlocal contributions from the pressure Hessian impact
directly upon the total strain field rather than the enstrophy field (Tsinober, 2001). The pressure Hessian is
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Figure 5. Values for the quantity D, the minimum distance between each regional enstrophy maximum and its closest
minimum are shown in black, expressed both as raw counts (left-hand panels) and as a percentage of the number of
identified maxima (right-hand panels). Values for 19 surrogates are shown as gray lines in each panel with IAAFT
surrogates in the top row and IAAWT surrogates in the bottom row. Values for D are in terms of 𝜋h, where h is the
dimensionless channel half height. IAAWT = iterated amplitude-adjusted wavelet transform; IAAFT = iterated
amplitude-adjusted Fourier transform.

defined as H(p) = 𝜕2p
𝜕xi𝜕x𝑗

and is the relevant contributing term to the equation for the Lagrangian transport of
the velocity gradient tensor, which is derived by taking the spatial gradient of the Navier-Stokes momentum
equation

𝜕

𝜕t
A + −→u · ∇A = −A2 − H(p) + 𝜈∇2A. (6)

This means that the strain field appears more diffused at high Reynolds number because the pressure con-
tributions to the dynamics are integrated over a volume surrounding the selected spatial location (Ohkitani
& Kishiba, 1995), while the evolution of the enstrophy is only a direct function of the local straining of
enstrophy and the (small) viscous contribution.

A synthetic data method was recently proposed that retains the objective of preserving edge characteristics
in the surrogates, and this is termed the iterated amplitude-adjusted wavelet transform (IAAWT) tech-
nique (Keylock, 2017b). Example surrogate fields generated with this algorithm are shown in Figure 6. The
root-mean-square errors between the original image and the IAAFT and IAAWT surrogates are not too
different (means of 10.59 and 8.88, respectively), but it is very clear that the IAAWT surrogates preserve
the image structure to a much better degree, while still clearly randomizing the locations where enstrophy
maxima and minima occur. That there is no significant difference between the original data and IAAWT sur-
rogates in the bottom row of Figure 5 provides quantitative support for the better preservation of the shape
of the high enstrophy regions.

The appealing thing about the IAAWT algorithm is that it is qualitatively identical to that for the IAAFT
method. The difference arises in the mathematical transform that underpins it, with the Fourier transform
replaced by a complex-valued discrete wavelet transform (Kingsbury, 2001). The consequence of this is that
the multifractal structure of the original image is fixed to a level given by the convergence error tolerance in
the algorithm, thus, fixes in place the image structure. Because the wavelet phases are still randomized, the
locations of the maxima and minima, and other image properties are randomized subject to the multifractal
preserving constraint as seen in Figures 6b–6d.

2.4. The Gradual Reconstruction Philosophy
Given a rejection of the null hypothesis using linearized, IAAFT surrogate data, the natural follow-up
questions include

• How nonlinear are the data?
• How does the degree of nonlinearity vary as a function of the strength of the forcing applied to the system?
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Figure 6. A plane indicating the enstrophy in a turbulent channel flow is shown in (a) obtained from a direct
numerical simulation, and three iterated amplitude-adjusted wavelet transform surrogates are shown in panels (b) to
(d). The scalebar indicates the values in terms of the base 10 logarithm of the dimensionless inverse time squared. The
horizontal and vertical extent of the plane is 𝜋 × h, where h is the dimensionless channel half height.

In addition, if a set of surrogate data are generated that capture the nonlinearity in the original data at a
given significance level, then they can potentially be used as a means to generate boot-strapped versions of
those original data that preserve key nonlinear aspects.

The gradual reconstruction framework (Keylock, 2010) was introduced to tackle these questions. The idea
is to define a continuum of surrogate data generators defined over, 0 ≤ 𝜌 ≤ 1, where 𝜌 = 0 is a linearized,
IAAFT surrogate and 𝜌 = 1 is the original data set itself. The continuum is populated by constraining the
degree of Fourier phase randomization from no constraints (𝜌 = 0) to fully constrained (𝜌 = 1). To do this
requires a modification to the surrogate generation method, and the approach taken was to use a wavelet
basis. Wavelets had been used for surrogate generation before in medical signal processing (Breakspear et al.,
2004; Bullmore et al., 2001). However, these methods were really wavelet implementations of the AAFT
or IAAFT methods. Recalling that a wavelet transform of a time series is a simultaneous, time-frequency
decomposition (Foufoula-Georgiou et al., 1994; Mallat, 1999), it was first noted by Keylock (2006) that if the
IAAFT algorithm is applied to each scale (frequency band) of an undecimated wavelet transform (one where
there are N wavelet coefficients at each scale, j = 1, … , J, where N is the number of samples in the time
series), a randomization method can be developed that has no impact on the energy at a given scale, because
the exact values are preserved, and is a legitimate realization of the wavelet transform at this scale because
the preservation of the autocorrelation mimics the support of the wavelet. An alignment step may also be
added that builds back in the interscale coupling (Prichard & Theiler, 1994). This idea was first used for
testing aspects of signal stationarity, a topic subsequently developed using windowed Fourier transforms by
Borgnat, Flandrin and coworkers (Borgnat & Flandrin, 2009; Borgnat et al., 2010). In a recent review paper
on surrogate data methods, Lancaster et al. (2018) tested a number of methods at different noise levels with
regards to their ability to detect the peak in the wavelet bispectrum between two test signals. This becomes
more difficult with increasing noise because of the harmonics produced. They found that our approach (the
wavelet IAAFT or WIAAFT method) performed very well in this regard (Figure 33 of their study).

Given that the wavelet decomposition provides information on the energy in the signal in time and fre-
quency, by fixing in place the largest n squared wavelet coefficients of a total of N × J coefficients, such that
a given proportion of the total energy of the original signal, 𝜌, is fixed, it is possible to appropriately con-
strain the degree of randomization of the Fourier phases when the wavelet transform is inverted (Keylock,
2007). This requires a wavelet transform that is exactly invertible, which is why we moved away from the
continuous wavelet transform, commonly adopted in geophysics (Torrence & Compo, 1998) to the use of
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Figure 7. Surrogate data for 256 years of sunspot activity using gradual wavelet reconstruction. The original data are
shown in black in each panel, while 39 surrogates are shown in gray, for the stipulated value of the gradual wavelet
reconstruction parameter, 𝜌. Data taken from the original data product by WDC-SILSO, Royal Observatory of Belgium,
Brussels, http://www.sidc.be/silso/home (Van der Linden & SIDC team, 2018).

the maximal overlap discrete wavelet transform (Percival & Walden, 2000), which is constructed using a
hierarchy of filter banks in the same way as a discrete wavelet transform but is also undecimated like the
continuous wavelet transform. See Keylock (2010) for further discussion on the merits of this transform for
surrogate data generation.

An example of how surrogate data can be generated by this gradual wavelet reconstruction (GWR) method
is given in Figure 7 based on 256 years of sunspot activity from 1700 to 1955. When 𝜌 = 0 and 39 IAAFT
surrogates are generated (top-left panel), the maximum value for sunspot activity could occur anywhere in
time. As the phases become locked in as more and more wavelet coefficients are fixed in place, the maximum
is first restricted to the peaks of the 11-year Hale cycle for sunspot activity (𝜌 = 0.25), is then prevented from
occurring during the Dalton Minimum (1796–1820) at 𝜌 = 0.55 and finally becomes locked to either one
of the two largest values arising in 1947 and 1778, respectively (𝜌 = 0.70). Clearly, if there was a significant
difference between data and surrogates based on testing with IAAFT surrogates, as 𝜌 → 1 the probability of
rejecting a null hypothesis decreases. Thus, it is possible to define a value for 𝜌, denoted 𝜌crit above which a
significant difference is not observed. This can then characterize how nonlinear the data are, as explained
more thoroughly in the next section.

Of course, this approach can be applied directly to two-dimensional data but may also be combined with the
IAAWT algorithm introduced in section 2.3 rather than the IAAFT algorithm. In this case, it is the wavelet
phase that is constrained rather than the Fourier phase in the randomization. This technique, termed grad-
ual multifractal resolution was introduced by Keylock (2018) in a time series context and is used in a spatial
sense for the first time in Figure 8. Here 𝜑 is the control parameter used to index gradual multifractal resolu-
tion in a directly analogous fashion to the manner than 𝜌 indexes the GWR technique. The value for 𝜖 stated
next to the panels for the surrogates is the root-mean-square error between the original image and the syn-
thetic field shown. These values may be compared directly to the mean values for the IAAFT and IAAWT
surrogates of 10.59 and 8.88 stated earlier, and it is clear that 𝜖 decays rapidly with 𝜑 as the value is only 1.96
at 𝜑 = 0.25. This explains the visual similarity between the original data (top-left panel) and the surrogates.

3. Undertaking Hypothesis Testing With Surrogate Data
3.1. Basic Procedures
The number of surrogate data needed for a particular statistical test depends on the significance level
required and the nature of the test (one tailed or two tailed). A two-tailed test is one where the alternate
hypothesis is that there is a significant difference, irrespective of its nature. A one-tailed test specifies the
nature of this difference (greater than or less than). For a significance level, 𝛼, one needs to generate at least
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Figure 8. Gradual multifractal reconstruction of the enstrophy field according to the gradual multifractal
reconstruction parameter, 𝜑. The 𝜑 = 0 end of the continuum is the iterated amplitude-adjusted wavelet transform
algorithm used in Figure 6, while 𝜑 = 1 are the original data. Intermediate values for 𝜑 are shown in the other panels
together with 𝜖, the root-mean-square error over the image for the difference in the values between the original field
and the surrogate shown.

(1∕𝛼) − 1 surrogates for the one-tailed case and (2∕𝛼) − 1 for the two-tailed case. A greater number of
surrogates improves the statistical power of the test.

Given some measure of the nonlinearity of the data set (see below), calculated for the data and surrogates,
if the value for the data is greater or less than that for all the surrogates (assuming a two-tailed test), then a
significant difference may be deemed to exist. Alternatively, if the values for the measure for the surrogates
are distributed according to a particular distribution function, one may use the fitted distribution to define a
distance between the original data and the surrogates. Thus, if the value for the measure for the surrogates
was Gaussian, with M indicating the measure, o the original data and s the surrogates, the distance would be
z(M) = (|Mo − Ms|)∕𝜎(Ms), where the overbar is an average and 𝜎 is a standard deviation, and z(M) > 1.96
would imply a significant difference at the 5% level for a two-tailed test.

As an example, there are 19 surrogates used in each panel of Figure 5. With a null hypothesis that the average
value for D is not significantly less for the original data than the linearized, IAAFT enstrophy images, we
find we can reject this hypothesis at the 5% level but fail to reject it at this level using the IAAWT surrogates.

3.2. Measures Adopted
The key aspect to hypothesis testing with surrogate data is the formulation of the null hypothesis, which
will imply some measure of the data, which needs to be calculated for both data and surrogates. A very
useful overview of a number of different methods for characterizing nonlinear or complex systems was
provided by Schreiber and Schmitz (1997), who examined methods closely associated with studying chaotic
systems through embedding such as the correlation dimension (Grassberger & Procaccia, 1983) as well as
nonlinear prediction error, higher-order cumulants (e.g., ⟨utut−𝜏ut−2𝜏⟩ for lag 𝜏), and what they called the
time reversibility, which is also known as the time asymmetry

MA =
⟨|ut − ut+𝜏 |3⟩⟨|ut − ut+𝜏 |2⟩

3
2

. (7)

They found that the nonlinear prediction error was an effective measure to choose in general, while Small
and Judd (1998) emphasized correlation dimension as a useful test statistic. We would concur with this
suggestion when testing for chaos in time series but would also suggest that MA is particularly useful when
studying the shape of a signal rather than the potential connection to underpinning dynamical equations.
A relevant example is analyzing the asymmetry in river hydrographs due to the steep rising limb and more
gradual recessional limb (Keylock, 2012).
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Figure 9. Turbulent structures evaluated from a flume experiment. The right-hand panel indicates the distribution
functions for the values of surrogate data at different values for the control parameter 𝜌 for studying the vortical
structures in turbulence using a symbolic sequence method. The horizontal dashed line shows the actual number of
observed instances of the identified critical sequence. “Multi” on the abscissa shows surrogates generated using the
multivariate time series approach of Prichard and Theiler (1994). The left-hand panel shows the coordinate and
convention systems for defining the vortical symbolic sequences based on the fluctuating part of three orthogonal
velocity components. The typical path through these data for the case studied is shown by the gray line. This figure
is a modified version of two figures that appeared in Keylock, Lane, et al. (2014). It is reproduced with permission
of the AGU.

Note that sometimes a measure innately yields a single value for testing, such as the maximal Lyapunov
exponent for a data set, while others are obtained for multiple points in time or space and the final sum-
mary measure is commonly a statistical moment of these multiple values. For example, when examining
the shape of bedforms developed in an experimental study of river processes at different discharges, we took
two approaches (Keylock et al., 2014). In the first, we used MA applied to the increments of the neighboring
elevations (values for z at 𝜏 = 1), that is, in (7), ut − ut + 𝜏 was replaced by zt − zt + 1 or zx − zx + 1, depending
if we sampled the time series of bedforms advected beneath a probe (t), or a spatial transect at the end of the
experiment (x). In the second approach, we retained the values for the increment skewness as a function of
spatial position,

MA(x) = |zx − zx+1|3. (8)

As an alternative to a statistical expectation, we undertook a state-space embedding of this spatial series,
MA(x) (Grassberger & Procaccia, 1983; Takens, 1981). A transportation distance metric (Moeckel & Murray,
1997) was then used to evaluate the distance in this embedding space between the probability distribution
for the original data and each of the surrogates, DT(o, si), and that between each of the surrogates, DT(si, sj),
(see Small & Tse, 2004, for a discussion of how to select the embedding dimension and embedding lag in such
methods). The existence of a significant difference in the central moment for the set of DT(o, si) compared to
DT(si, sj) then indicated the embedded distribution function of MA(x) for the data was significantly different
to that for the surrogates.

3.3. Degree of Nonlinearity as Established by 𝝆crit
With GWR, given the rejection of the null hypothesis for the IAAFT surrogates, the degree of nonlinearity
may be established by constructing surrogates in the interval 0 < 𝜌 < 1 and then examining the existence
of any significant difference as 𝜌 decreases. Thus, using Figure 9 and excluding the right-most boxplot, which
is generated in a different way, we see that at 𝜌 ≥ 0.9 there is no significant difference between data and
surrogates because the boxplots of the values for the measure adopted overlap with the value for the original
data as given by the dashed line. This high value for 𝜌crit = 0.9 implies a complex system where a high
degree of the phases in the original data must be fixed in the surrogates in order to replicate the observed
behavior.

Another way in which 𝜌crit can be used is to determine, for a particular data set, how sensitive to particular
forms of nonlinearity the data are. For example, Keylock (2010) looked at the relation between the time
series for the longitudinal and vertical components of the velocity in a neutral turbulence boundary layer
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Table 1
Definition of Octants Derived From the Signs of the Fluctuating Velocities

u′
1 u′

2 u′
3

Octant Longitudinal Transverse Vertical
−1 + − +
+1 + + +
−2 − − +
+2 − + +
−3 − − −
+3 − + −
−4 + − −
+4 + + −

as a function of 𝜌. It was found that the phase synchronization between the velocity components, used as
a measure of nonlinear association (Kreuz et al., 2007), resulted in 𝜌crit ∼ 0.1, while when applied to the
Hölder series extracted from each time series (used as a means to determine the multifractal structure of
the signal and the turbulence intermittency (Keylock, 2009), the value was 𝜌crit ∼ 0.4. Thus, greater phase
information had to be retained in the surrogates to get the correct relation between the series in terms of
the turbulence intermittency. One other distinct application of the method has been as a means to perturb
inlet boundary conditions to a numerical simulation (Keylock et al., 2011). In this case, for 𝜌 ≥ 𝜌crit there is
no significant difference between the value for a specific physical quantity at a particular position and that
found for the original boundary conditions, and the sensitivity of the flow variable can be characterized as
a consequence.

4. Example Applications
4.1. Inferring Turbulence Structure From Single-Point Instrumentation
As it provides a well-known source of nonlinearity in the physics of many geoscientific phenomena, turbu-
lence is a common choice of application for both developing methods in nonlinear science (Frisch & Parisi,
1985; Takens, 1981) and using those methods to understand process dynamics. This includes the application
of surrogate data methods (Basu et al., 2007; Keylock et al., 2015; Poggi & Katul, 2009). The example in this
section is concerned with the common situation in practice where inferences on the dynamics are based on
what may be determined from measurements of several velocity components at a single point. Near bound-
aries, it is common to decompose the flow into quadrants based on the signs of the fluctuating values for
the vertical and horizontal velocity components (Bogard & Tiederman, 1986; Brunet et al., 1994; Willmarth
& Lu, 1972) because these components generate the dominant Reynolds stresses in an idealized boundary
layer. However, in the natural environment, eddy shedding from a rough boundary means that the trans-
verse velocity component is also potentially significant. Thus, with a Reynolds decomposition applied to
each velocity component to obtain a fluctuating velocity signal by mean subtraction, u′

i = ui − ūi, we can
classify into octants according to Table 1 and Figure 9.

Keylock et al. (2014) grouped consecutive occurrences of the same type into an octant event and then studied
the sequences of these events for flow structures generated downstream of a parallel-channel confluence
(Best & Roy, 1991; Bradbrook et al., 1998) with an erodible bed. At the location where sediment entrainment
was at a maximum, the dominant octant sequence was {− 2, − 1, − 4, + 4, + 3, + 2, − 2}, as shown by the
gray line in the left panel of Figure 9. The core to this structure was the {− 1, − 4, + 4} part as determined
by the high Markovian transition probabilities between these states. This {− 1, − 4, + 4} sequence occurred
147 times in 300 s of data, which corresponded precisely to the dominant period to the shed turbulence,
which was 2 s. This implied that the scour at this location was driven by a coherent structure consisting
of a set of octants rather than driven by Reynolds stress (to which quadrant 4 contributes positively, but
quadrant 1 contributes negatively), or the individual quadrants/octants. Various research questions then
followed from these observations:

1. To what extent could 147 occurrences of the {− 1, − 4, + 4} have arisen by chance?
2. To what extent is the transverse component a significant part to this structure, or does it really reduce to

a quadrant formulation?
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Figure 10. Cumulative probability plots of peak values per octant for the instantaneous stress (longitudinal-vertical
component) truncated at a lower cumulative probability of 0.2 to enhance visibility. The gray lines in each plot delimit
the lower and upper bounds of the results for 19 surrogates data sets generated with the IAAFT algorithm and the
dashed line is obtained from the data. From top to bottom, octants −1, −4, and +4 are shown, with the left and right
plots discriminating between occurrences within the −1, − 4, and +4 sequence or not. This figure is modified from
Keylock, Lane, et al. (2014). It is reproduced with permission of the AGU.

3. Is scour driven by the frequency of occurrence of the flow structures represented by this octant sequence,
high stresses in general for these octants, or the stresses induced by flow structures with this octant
sequence?

Concerning the former, the right-hand panel of Figure 9 shows the GWR results for the number of
{− 1, − 4, + 4} occurrences based on 39 surrogates for each 𝜌. That is, the GWR algorithm was applied to
each velocity component independently (so the cross correlation was allowed to build up as 𝜌 increased)
and then the octants and octant sequences were extracted. This panel also shows the results for IAAFT sur-
rogates with cross correlation preserved in the algorithm as described in section 2.2, as indicated by “Multi”
on the abscissa. It is clear that 147 occurrences could not arise by chance for a linear signal irrespective of if
the cross-correlation structure is preserved, and 𝜌crit = 0.9 at the 5% level emphasizes this.

In terms of the second question, it was found that the {1, 4} quadrants occurred 318 times in 300 s. This does
not match the dominant periodicity to the flow and, while it was significantly different to the maximum
value from IAAFT surrogates (259), was only so by 23%, as opposed to the 268% difference for {− 1, − 4, + 4}
occurrences at 𝜌 = 0. Related to the second question are the results shown in Figure 10 for the peak instanta-
neous stresses in an octant event at the location for maximum scour. When comparing the−4 and+4 octants,
which are clearly the same quadrant, the stress distributions are rather different compared to IAAFT surro-
gates. Considering the left-hand panels and therefore ignoring the octants that arise in the {− 1, − 4, + 4}
sequence, while the distribution function for 𝜌|u′

1u′
3| for +4 does yield more high stress events than for

−4, the more obvious difference is that the distribution for the latter is not significantly different to IAAFT
surrogates.

This figure also helps to answer the third question as it is clear that the −4 and +4 octants when occurring
in the {− 1, − 4, + 4} sequence (right-hand panel) exert higher stresses than when they arise in a differ-
ent sequence, both in absolute terms and relative to IAAFT surrogates. Thus, coherent structures are more
important for sediment entrainment than particular individual events. However, what was also shown by
Keylock, Lane, et al. (2014) was that when compared to IAAFT surrogates with the cross correlation pre-
served, no octant was significantly different to the surrogates irrespective of the octant sequence. Hence,
the nonlinear structure of the velocity time series is critical to explaining scour at a parallel channel conflu-
ence, but the key role of the nonlinearity is to enhance the frequency of the {− 1, − 4, + 4} octant sequences
that generate the peak stresses. These peak stresses can be captured by linear IAAFT surrogates with the
appropriate cross-correlation structure, but the frequency of these structures cannot.
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Figure 11. The degree of nonlinearity (DNL) of river meander curvature sequences is shown as a function of 𝜌 for
precutoff (circles) and postcutoff (triangles) centerline curvatures, where 𝜌 is the GWR parameter controlling the
amount of nonlinearity preserved in the surrogates. For both the precutoff and postcutoff curvatures, three bold line
segments highlight the three largest change increments that contribute the most to the total DNL (defined at 𝜌 = 0), as
illustrated for the fourth increment, i = 4. This figure is modified from Schwenk and Foufoula-Georgiou (2017). It is
reproduced with permission of the AGU.

4.2. Nonlinearity in River Meander Curvature
Recent work by Schwenk and Foufoula-Georgiou (2017) has looked at the extent to which river meander
bend curvature profiles (curvature as a function of distance downstream) extracted from aerial photography,
satellite imagery, and numerical simulation encode nonlinear variability in channel form as a consequence
of the processes acting. As described in general terms in section 3.2, their approach was based on a state space
embedding of the curvature time series and an evaluation of the distance between embedded probability
distributions using the transportation distance, DT . The definition of the degree of nonlinearity, DNL, is then
simply the absolute difference in mean values:

DNL = |DT(o, si) − DT(si, s𝑗)|. (9)

The surrogates underpinning DNL were generated according to GWR and the results for the numerical
simulation are shown in Figure 11 for two time periods: after 450 years of simulation and before meander
cutoffs began to occur (square symbols) and after 7,000 years when the channel was in an approximate
steady state (triangles). In both cases, for 0.7 ≤ 𝜌 ≤ 0.9 the DNL value drops dramatically indicating that
surrogates for both signals require a significant proportion of the phase information to be fixed in place
before they can begin to mimic the characteristics of the modeled meander bend evolution. What is also
very clear is the higher DNL values for the precutoff time frame, highlighting the important role of meander
bend cutoffs in reducing the nonlinearity of the curvature series (Camporeale et al., 2008), even though the
sudden changing of the channel slope and, thus, discharge and bed shear stresses can promote nonlinear
effects. It is also the case that for both data sets the three segments highlighted in bold (thus, 30% of the
wavelet energy) accounted for just over 60% of the total DNL. However, an examination of which coefficients
in the wavelet transform were fixed in these segments found that in the precutoff case these coefficients
corresponded to the fully developed meander bends with only 5% of the DNL arising from the small and
large scales associated with cutoff activity. In contrast, for the later time period, 46% of the DNL for these
segments was associated with these cutoff-related scales.

As a consequence, this study succeeded in two important ways relative to previous work:

• The use of a hypothesis testing framework resulted in an ability to detect and quantify significant form
nonlinearity due to meandering. Thus, it was determined for the first time that process nonlinearities are
encoded in meander planform structure.

• The use of GWR meant that the manner in which cutoffs reduce planform nonlinearity could be resolved,
and the answer was dependent on the spatial configuration of meanders. Because cutoffs spread the
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spectral energy of the curvature signal into a range of frequencies, the energy represented by fully devel-
oped meander bends was reduced. However, this was only an 8% reduction, while the contribution of these
scales to the DNL declined by 41%.

5. Summary and Conclusion
Linearized surrogate data such as those obtained with the IAAFT algorithm are a very useful tool for the
geoscientist interested in elucidating the importance of nonlinear effects in a great many fields. While there
has typically been an emphasis on the study of time or spatial series data, there is no reason that imagery or
higher dimensionality data cannot be studied in this way, as we have shown with the analysis of enstrophy
in a turbulent channel flow. However, many features in imagery and higher dimensional analysis have sharp
interfaces that are typically not realized from a linear realization of the data. This means that more nuanced
hypotheses about properties of such data need to fix the interfaces in place in the surrogates to preserve such
elements. The recently introduced IAAWT algorithm (Keylock, 2017b) does this by preserving multifractal
structure and may be used, for example, for studying the coupling between velocity and intermittency in
turbulence time series (Keylock et al., 2012).

In this paper, we have also outlined the utility of the gradual reconstruction philosophy for generating sur-
rogate data to populate a continuum from a starting null hypothesis (such as the data are a sample from
a linear process as tested with the IAAFT algorithm) to the data themselves. Not only does this provide a
means to characterize how nonlinear a data set is from the determination of 𝜌crit but then studying how 𝜌crit
varies as a function of an experimental control variable can result in scientific conclusions about how the
importance of nonlinearity changes (Keylock et al., 2014).

While this gradual reconstruction framework is a general formalism, it is tailored to preservation of statisti-
cal measures rather than dynamical measures of the data at the 𝜌, 𝜑 = 0 limit (i.e., the Fourier amplitudes
or multifractal structure rather than, say the maximal Lyapunov exponent). This means that in order to gen-
erate synthetic data that preserve the relevant dynamical properties, it is necessary to first find the critical
value for the parameter. This may take some time and for certain measures to which the data are very sen-
sitive may constrain variability to relatively few degrees of freedom, particularly if the original values for
the data are retained in the surrogates. In such cases it would be advantageous for surrogate data methods
to exist that are targeted at preserving such dynamical measures directly. To do this for multiple time series
then requires the design of surrogate generation methods where the measure of coupling between the time
series to be preserved is more refined than the Fourier phase difference that is employed when the null
hypothesis is that the data are realizations from a linear system (Prichard & Theiler, 1994). For example, an
obvious extension to the IAAWT algorithm (Keylock, 2017b) would be to preserve the wavelet phase differ-
ences between series so that the locations of “bursts” of activity detected across more than one time series
can be fixed in the synthetic data.

One important recent innovation in the analysis of nonlinear systems is the use of network representations
of system dynamics (Boers et al., 2015; Tejedor et al., 2018; Zhang et al., 2017). Such methods have shown
that they are able to capture dynamical properties of continuous dynamical systems, such as the maximal
Lyapunov exponent (McCullough et al., 2015). However, an as yet underexplored area is the fusion of net-
work representations and surrogate data and the manner in which the network evolves, both in terms of the
internode connectivity and the strength of interaction between nodes. This is also an area where a gradual
reconstruction approach is of potential utility, in that it can be used to generate time series for which the
internode connectivity is identical to the original data but for which the strength of interaction still varies.
Thus, the surrogates provide a means to study the sensitivity of the dynamics with respect to data with
identical network topology.

Another area that may benefit from a greater fusion between surrogate data methods and traditional
approaches is ensemble model forecasting. Model ensembles are used as a means to deal with the uncer-
tainty in model formulations and data, as well as the nonlinear dynamics of the associated systems, with
ensemble spread used as a measure of model uncertainty (Grimit & Mass, 2007). While recent work has
considered the statistical characterization of the error in such ensembles (Van Schaeybroeck & Vannitsem,
2016), how the variance derived from such an ensemble relates to that for appropriately constrained surro-
gate outputs from one model is not a topic that has been explored sufficiently. However, what this permits is
a capability to assess the variance of the ensemble, the surrogates for each ensemble member and that for all
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surrogates of all ensemble members. This provides alternate perspectives on the way in which the ensemble
spread may be evaluated because a variance can be associated with each ensemble member. Application of
extreme value theory in this context is also relevant, and we touched on this issue in work that placed con-
fidence intervals on generalized extreme value distribution fits to hydrological maxima using constrained
surrogates (Keylock, 2012). What will perhaps be of increasing interest in the future is the application of
extreme value theory to the Poincaré returns of the strange attractor and how these then impact on observ-
ables like precipitation and temperature (Faranda et al., 2017). An interesting potential development is then
the construction of appropriate synthetic data directly within phase space, rather than for (multiple) time
series of system outputs. This difference in philosophy can be seen in work in turbulence, where recent
approaches model the dynamics in the space of the invariants of the tensor (Wilczek & Meneveau, 2014).
Thus, surrogate data for the tensor (Keylock, 2017a) are of greater utility in this case than those for time
series outputs, such as the IAAFT and IAAWT algorithms.

Hence, as nonlinear analysis methods develop, and new forms of data become more readily available, the
development of surrogate data methods needs to keep pace to facilitate the statistical interpretation of exper-
imental or modelling results. More generally, it is hoped that the existing methods presented and discussed
in this paper can be employed more widely in geoscience to enhance understanding of nonlinear systems.

Acronyms
AAFT amplitude-adjusted Fourier transform
CWT continuous wavelet transform
DNL degree of nonlinearity
GWR gradual wavelet reconstruction
IAAFT iterated AAFT
IAAWT iterated amplitude-adjusted wavelet transform
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