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ABSTRACT: Tool wear in machining processes can have a detrimental impact upon the surface finish 
of a machined part, increase the energy consumption during manufacture and potentially, if  the tool 
fails completely, damage incurred may require the part to be scrapped. Monitoring of the tools condition 
can therefore lead to preventative steps being taken to avoid excessively worn tools being used during 
machining, which could cause a part becoming damaged. Several studies have been devoted to condition 
monitoring of the machining process, including the evaluation of cutting tool condition. However, these 
methods are either impractical for a production environment due to lengthy monitoring time, or require 
knowledge of cutting parameters (e.g. spindle speed, feed rate, material, tool) which can be difficult to 
obtain. In this study, we aim to investigate if  tool wear can be directly identified using features extracted 
from the electrical power signal of the entire Computer Numerical Control (CNC) machine (three phase 
voltage and current) captured at 50 KHz, for different cutting parameters. Wavelet packet transform is 
applied to extract the feature from the raw measurement under different conditions. By analyzing the 
energy and entropy of reconstructed signals at different frequency sub-bands, the tool wear level can be 
evaluated. Results demonstrate that with the selected features, the effects due to cutting parameter varia-
tion and tool wear level change can be discriminated with good quality, which paves the way for using this 
technique to monitor the machining process in practical applications.

of direct methods such as stopping requirements 
during production, indirect methods are more suit-
able for industrial applications (Zhu et al. 2009).

With indirect methods, different measurements 
can be collected and analyzed to evaluate the tool 
condition, including acoustic emission (Prickett & 
Johns 1999, Karimi et al. 2013, Hass et al 2013), 
cutting force (Dimla & Lister 2000, Li et al. 2006, 
Deng et al. 2013, Lee et al. 2006), vibration (Yesily-
urt & Ozturk 2007, Zhang & Chen 2007, Lamraoui 
et al. 2014), temperature (Byrne 1987, Davoodi & 
Hosseinzadeh 2012), spindle power/current (He 
et  al. 2017, Li et  al. 2000, Simoneau & Meehan 
2013), etc. However, several of these methods 
often require expensive sensing equipment (Nouri 
et  al. 2015) and can be difficult to install due to 
the need for close proximity to the cutting tool and 
workpiece, meaning they can be impractical for 
large production environments. Additionally, the 
classification of tool wear from the collected data 
is challenging due to the high sensitivity of data 
to the cutting parameters (i.e. spindle speed, feed 
rate, depth and width of cut, material, tool type). 
Thresholding of time domain data has been used 
as a method of classifying tool wear (Shao et al. 

1 INTRODUCTION

Tool wear and subsequent failure of tools during 
the manufacturing process will have a significant 
impact on the economics of machining, and about 
25% of machine down time can be attributed to 
the direct results of tool wear failure (Altintas & 
Yellowley 1989). Moreover, the development of 
tool wear will give rise to inconsistencies in sur-
face finishes and geometric tolerances, affecting 
the quality of manufactured products. Therefore, a 
series of studies have been devoted to monitoring 
systems detecting underperforming tooling and 
improving machining efficiency and productivity.

The monitoring techniques for tool wear can 
be divided into two categories, direct and indi-
rect methods (Bhattacharyya & Sengupta 2009, 
Teti et  al. 2010). With direct methods, tool wear 
is evaluated by analyzing the cutter itself, such as 
measuring the surface roughness and flank wear, 
etc. On the other hand, indirect methods apply 
either model-based or data-driven techniques to 
the measurements like cutting force, tool vibration 
and output power for evaluating tool wear condi-
tions. It should be noted that due to the restrictions 
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2004), however, this requires large amounts of cali-
bration and training data which is time consuming 
to collect and reduces the robustness of the system 
to a limited set of cutting conditions. Several stud-
ies of investigated frequency and time-frequency 
domain analysis to reduce the sensitivity to classi-
fication to cutting parameters (Kuljanic et al. 2009, 
Liao et  al. 2007, Huang et  al. 2010, Lauro et  al. 
2004], however, most of these methods require 
specialist monitoring equipment which pose the 
challenges described above.

Within this research we investigate the poten-
tial of a low cost, non-invasive sensing approach 
which is also cutting parameter agnostic to the 
problem of tool condition monitoring, which has 
so far not been identified within existing literature. 
The investigated solution uses current and volt-
age sensors across electrical three phase input to 
the machine to monitor the overall machine power 
consumption, whilst classification of the signal is 
conducted though time-frequency analysis using 
wavelet packet transform.

In Section 2 the diagnostic approach using the 
wavelet analysis is described. Section 3 details the 
experimental methodology and results, and Sec-
tion 4 concludes the findings and highlights limita-
tions and future work.

2 DIAGNOSTIC APPROACH

Although several studies have been performed 
for condition monitoring of the milling process 
using wavelet transform [Choi et al. 2004, Li et al. 
2008, Zhong et  al. 2010], these have mainly used 
vibration or cutting force measurements in the 
analysis instead of electrical power consumed 
by the machine. Moreover, the effectiveness of 
wavelet transform in discriminating tool wear 
level operated at varying cutting parameters still 
requires further investigation.

In this study, wavelet packet transform (WPT) 
is selected to evaluate the tool wear level. The rea-
son of using WPT is that compared to wavelet 
transform, which only filters the signal to get the 
low-pass results (approximation), WPT can filter 
the signal to obtain both low-pass and high-pass 
(detailed) results (depicted in Figure  1). There-
fore, more information can be extracted from the 
original signals using WPT [Torrence & Compo, 
1995]. The extracted wavelet coefficients Cj,k can be 
expressed using Eq. (1).

C f t t dtj k j k, ,( ) ( )= ∫ ψ  (1)

where f(t) is the original signal, ψj,k is the wavelet 
function, j and k are the scale and shift parameters, 
this can be expressed in Eq. (2).

ψ ψj k t
j

t k
j, ( ) = −
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1  (2)

It can be seen from Figure 1 that the applica-
tion of WPT provides a sub-band filtering of the 
original signal into progressively finer equal-width 
intervals with the extracted packets of wavelet 
coefficients, i.e. the ith packet of wavelet coef-
ficients at jth level represent the information of 
original signal within the frequency sub-band of 
iF i Fs

j
s

j/ , ( ) / ,2 1 21 1+ ++[ ]  where Fs is the sampling 
frequency.

With wavelet coefficients, the time-history of 
signals at different frequency sub-bands can be 
reconstructed using Eq. (3).

f t C C tj j k j k
k

( ) ( ), ,= ∑ ψ  (3)

where C is a constant independent of signals.
With these constructed signals, energy and 

entropy are calculated from each signal using Eqs. 
(4) and (5).

Es f t f t dt= ∫ ( ) ( )  (4)

H p x p xs i i
i

N

= −
=
∑ ( ) log ( )10

1

 (5)

where Es and Hs are the energy and entropy of the 
signal, p(xi) in Eq. (5) is a probability of the signal 
with value of xi.

The energy of reconstructed signals represents 
the amount of information within different fre-
quency sub-bands, while entropy of reconstructed 
signals can indicate the signal disorganization at 
the frequency sub-bands. It is expected that these 
two features would be sensitive to the change of 
cutting parameters and cutting tool wear level, 
thus can be used for the discrimination of cutting 
tool levels. This will be further investigated in the 
following section.

It can be seen that with the use of WPT, the orig-
inal signals can be decomposed and reconstructed 

Figure 1. Two-level wavelet packet transform, where A 
and D are the approximation and detail by filtering the 
signal at the previous level.
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at different frequency ranges, from which the fre-
quency information can be related to the signals 
in the time domain, and better used for the feature 
extraction and fault diagnosis.

3 PERFORMANCE OF DIAGNOSTIC 
APPROACH

3.1 Experiments

In the study, HSS-Co8 is selected as the end milling 
tool due to its ease of wear measurement, which 
is a high speed steel containing 8% cobalt with 4 
flutes. Two end milling tools with different diame-
ters are selected herein for the analysis. Table 1 lists 
the characteristics of these end milling tools, where 
LOC refers to the tool’s length of cut.

In the experiments, each end mill 
was assigned a work piece of dimension 
150 mm × 120 mm × 30 mm, and the plate mate-
rial was selected as commercial aluminum grade 
6082 T651, which is a common alloy used in 
manufacturing.

Cutting parameters used in the tests were 
selected according to the manufacture’s recom-
mendation, which are listed in Table 2.

For the duration of each cutting session the 
energy monitoring device was connected to the 
system, which collected the current and voltage 
measurements at a sampling frequency of 50 kHz. 
During each session, the tools were used to per-

form climb milling on the work pieces. The number 
of passes, cut depth and cutting radius are selected 
as 10, half  of the cutter diameter, respectively.

It should be mentioned that after each cutting 
session, the tools were used to machine the car-
bon steel to induce wear (40  min initially, subse-
quently 20  min), and this process was repeated 
until 100 min, where full tool wear was observed. 
Table  2 lists the cutting parameters used for dif-
ferent cuts and corresponding wear measurements.

3.2 Discrimination of different cutting tools 
with different wear level

In this section, the current and voltage from two 
end milling tools with 8  mm and 10  mm cutting 
diameters are collected at 0  min and 100  min, 
which represents the intact and fully worn tools. 
The reason of selecting these measurements is 
that the collection process will not interrupt the 
machining process, and the installation of sensors 
will not add complexity of monitoring systems, 
thus the results can be better applied in the prac-
tical machining process.With current and voltage 
measurements, the instantaneous power can be 
calculated using the following equation.

P t v t i tins ( ) = ( ) ( )  (6)

where v(t) and i(t) are the collected voltage and 
current measurements at time t.

Figure  2 depicts the instantaneous powers for 
8  mm and 10  mm tools at intact and fully worn 
conditions. It should be mentioned that only 
power from single pass cutting is illustrated herein, 
as the powers of 10 passes have a similar trend. In 
the current study, only the power from a single pass 
is analyzed. Table 3 lists the average and maximum 
instantaneous power at each condition. It can be 
seen from the table that the instantaneous power 
will be increased with cutting tool wear.

From the instantaneous powers shown in 
Figure 2, the cutting tools with different diameters 
and cutting parameters, and the same tool with dif-
ferent wear levels cannot be discriminated easily in 
the time-domain, as the signals from different con-
ditions have a similar shape, thus the four different 
conditions cannot be discriminated using only the 
power amplitude variation.

As described in section 2, WPT is applied to the 
instantaneous power to extract wavelet coefficients 
and reconstruct signals at different frequency sub-
bands. In the current study the WPT is used to 
decompose the original signal over 8 levels. This 
decomposition level is selected by considering both 
the range of frequency sub-band and computational 
time. In the current study the Shannon wavelet  

Table 1. Characteristics of end milling tools.

Mill Dia. 
(mm)

Shank Dia. 
(mm)

LOC  
(mm)

Overall  
length  
(mm)

No.  
teeth/ 
flutes

 8.0 10 19 69 4
10.0 10 22 72 4

Table  2. Cutting parameters and corresponding wear 
measurements.

Dia. 
(mm)

Cut  
no.

Time 
(min)

Spindle  
speed 
(RPM)

Feed  
rate 
(m/min)

Localized  
tool wear 
(mm)

 8 1   0 4000 580 0
 8 2  40 4000 580 0.182
 8 3  60 4000 580 0.279
 8 4  80 4000 580 0.327
 8 5 100 4000 580 0.493
10 1   0 3100 600 0
10 2  40 3100 600 0.185
10 3  80 3100 600 0.434
10 4 100 3100 600 0.582
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function is used in the WPT analysis, which can be 
written as follows:

Ψ j k
iktt jsinc jt e, ( ) ( )= 2π  (7)

Table 3. Average and max instantaneous power.

Condition

Average  
power  
(W)

Max  
power  
(W)

8 mm tool at 0 min 1593.7 3277.4
8 mm tool at 100 min 1989.6 4890.1
10 mm tool at 0 min 1712.3 3827.7
10 mm tool at 100 min 2537.5 5971.5

Figure 2. Instantaneous power of two cutters at intact 
and fully worn conditions.

Figure  3. Energy and Entropy distributions of 8  mm 
cutter at intact and worn conditions.

Energy and entropy are then calculated from 
each reconstructed signal. Figure  3 depicts the 
distribution of energy and entropy over the whole 
frequency range. It should be noted that as the 
distributions are similar for the two end milling 
tools, only energy and entropy distribution from 
the 8 mm tool are illustrated herein.

It can be seen from Figure 3 that the energy dis-
tribution shows similar trends for both intact and 
worn conditions, and the maximum energy is con-
centrated at around 700 Hz. However, the entropy 
distributes well along the whole frequency range, 
and the entropy distribution at intact and worn 
conditions shows clear variation. This indicates 
that the energy features can provide more consist-
ent results, while entropy features are more sensi-
tive to the change in the cutting parameters.

In this study, the two highest energies and 
entropies at the intact condition are selected for 
the discrimination, as they represent the most 
information and disorganization in the original 
signal. Figure 4 depicts the discrimination results. 
It should be noted that each point in Figure 4 rep-
resent the feature calculated with a two-second 
length instantaneous power signal.

From Figure 4, it can be seen that with selected 
energy and entropy features, all four different 
states, i.e. two end milling tools with two wear lev-
els, can be discriminated with good quality, indi-
cating that not only the worn condition can be 
identified clearly for the same cutting tool, but the 
different cutting tools with similar worn levels can 
also be separated accurately.



1481

When this approach is used in practical appli-
cations, the state of  the end milling tool can be 
determined with the minimum Euclidean dis-
tance between features (two highest energies 
or entropies) of  instantaneous power from the 
unknown state and the features shown in Fig-
ure 4. It should be mentioned that as the analy-
sis is computational efficient (only taking about 
20 seconds to gain the results), this approach can 
be used in the practical application for on-line 
monitoring purposes.

3.3 Discrimination of different cutting tools 
with different wear level and similar 
instantaneous power

The performance of WPT in discriminating cut-
ting tool conditions is further investigated using 
the data from the end milling tools at different cut-
ting parameters but having similar instantaneous 
power, which makes it extremely difficult for dis-
crimination using time-domain techniques.

In this study, two sets of data are used for the 
analysis, including end milling tools with diam-
eters of 6 mm and 10 mm at different wear levels 
and cutting parameters. Table  4 lists the cutting 
parameters of these two end mill tools and the cor-
responding wear measurements.

Figure  5 depicts the instantaneous powers 
from these two end milling tools. Similar instan-
taneous power can be observed due to the com-
bination of  different wear levels and cutting 
parameters. The average instantaneous powers 
from these conditions are listed in Table 5. It can 
be seen that these two conditions will provide 
similar average instantaneous power, while clear 

variation is observed in the wear level, which is 
listed in Table 4.

WPT described in section 2 is applied to extract 
the wavelet coefficients over 8 levels, and signals at 
different frequency sub-bands are reconstructed. 
The two highest energies and entropies are then 
selected for the discrimination. Results are depicted 
in Figure 6.

It can be seen from Figure  6 that with the 
selected energy and entropy, the two end milling 
tools can be discriminated with good quality, indi-
cating the effectiveness of the proposed approach 
in identifying the states of different end mill tools 
at varying cutting parameters.

Figure 4. Discrimination results using two highest ener-
gies and entropies.

Table  4. Cutting parameters and corresponding wear 
measurements.

Dia. 
(mm)

Spindle  
speed 
(RPM)

Feed  
rate 
(m/min)

Time 
(min)

Wear  
measurement 
(mm)

 8 4000 580 60 0.279
10 3100 600  0 0

Table 5. Average and max instantaneous power.

Condition

Average  
power  
(W)

Max  
power  
(W)

8 mm tool at 60 min 1810.1 4461.2
10 mm tool at 0 min 1712.3 3827.7

Figure 5. Instantaneous powers from 6 mm and 10 mm 
diameter end mill tools.
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4 CONCLUSIONS

In this paper, the discrimination of end mill tools 
with different diameters, wear levels, and cutting 
parameters is investigated. Wavelet packet trans-
form is applied to extract wavelet coefficients from 
the original signal. Signals at different frequency 
sub-bands are then reconstructed using wavelet 
coefficients from which energy and entropy are 
calculated. The two highest energies and entropies 
are selected to discriminate different cutting tool 
states.

Two cases are used in this study to investigate 
the performance of the proposed method; cutting 
tools with different diameters and wear levels, and 
cutting tools with different diameters and wear 
level but similar instantaneous powers. Results 
demonstrate that with the proposed approach, the 
state of the cutting tool can be discriminated with 
good quality, both the tool wear level and cutting 
parameters can be discriminated.

Whilst these initial results are promising fur-
ther work is required to expand the analysis over 
a wider range of cutting parameters to establish if  
the methodology holds. Additionally, refinement 
of the sensor measurement and tool monitoring 
service is required. At present signal analysis is per-
formed off-line, whilst data is captured at higher 
frequency (50khz) increasing the cost of equip-
ment and time of analysis. Optimization of this 

methodology is required in order to enable on-line 
monitoring.
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