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Abstract 
 

This study theoretically investigates the changes in the energy spectrum of 
the graphene monolayer subjected to different periodic potential to allow 
manipulation of the energy spectrum. Floquet theory and the resonance 
approximation are used to analyse the energy spectrum. Thus, we reviewed the 
application of single laser potential; linearly polarised and circularly polarised 
and concluded that the gap opening in the spectrum is determined by the 
polarisation of the laser field. Then we apply a time periodic electric filed and 
found that such single potential is not enough to break the topological 
symmetry. 

We investigate the manipulation of the spectrum in 1- spatial periodic 
magnetic field and 2- linearly polarised laser beam with an external periodically 
modulated static magnetic/electric field. We investigated in particular, the 
creation and the destruction of the Dirac-Weyl points. We found that at certain 
conditions the graphene is transformed into the two-dimensional Weyl metals, 
where each of the two original graphene Dirac cones is split into pairs of the 
Weyl cones. We also show that altering the laser's beam incidence (tilting) angle 
may lead to appearing and disappearing of the pairs of Weyl points, the opening 
gap in the spectrum, and its efficient manipulation. Deformation and symmetry 
breaking can be achieved via different laser’s frequencies and amplitudes, hence 
the anisotropy can be controlled. 
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 1 Introduction 
 

1.1 Introduction to graphene 

New materials have always been the key to new technologies. Just when 
scientists draw the boundaries to materials’ dimensions and structures, a new 
material appears and becomes potentially promising. In 2004, a material “does 
not resemble any known material” [1] was listed as one of the new man maid 
materials that will shape the future [2][3][4]. It was a two-dimensional Carbon 
sheet, or a monolayer of graphite, or what is called Graphene. 

Theorists believed that thermal fluctuations forbid the stability of two-
dimensional structures as Landau and Peierls argued [5]. Thus, 2D materials 
where built on top of 3D matching crystals to avoid the displacement of atoms 
due to temperature fluctuation. However, in 2004 the Manchester research 
group led by Geim and Novoselov proved that a monolayer of Graphite can exist 
in a free state [6][7]. Such a discovery led to new chapters marked with 
Graphene, which actually was invented 440 years before it was proven.  

Graphene crystal is worthwhile, not just for its amazing properties but also 
because it allowed the demonstration of other 2D crystals like silicene and 
germanene [8]. These crystals became obtainable as suspended films, in liquid 
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suspension, and on top of non-crystalline substrates. The ability to be able to 
design such materials, atom by atom, attracted a huge amount of research. 
However, this is not the only reason of the huge interest in graphene. A number 
of motivations can be listed. First, Graphene has promising technological 
applications, because it allows the control of carrier densities by application of 
gate voltages, which is essential in designing electronic devices. Furthermore, 
the silicon-based electronics becomes limited in terms of reduction; so 
graphene-based electronics could exceed that limitation. A second factor to the 
huge interest in the graphene field study is that it is connecting the condensed-
matter physics and the high-energy physics. Graphene has shown exotic 
quantum behaviour at room temperature, and a relativistic behaviour, which 
can help in investigating quantum-field theoretical models [2][9]. Moreover, 
graphene gained a lot of interest outside the scientific community being the 
material best in everything. It is only one atom thick/thin, harder than diamond, 
stronger than steel, more flexible than rubber, and a better conductor than 
copper[10][11][12][13]. Therefore, graphene discovery is only a beginning to a 
rich knowledge and applications. 

1.2 Thesis objectives and motivation 

Since this gapless material has been demonstrated, the main problem that 
has been investigated is the gap band opening and controlling in the energy 
spectrum of graphene. A variety of methods have been established to open a gap 
in graphene’s band, some are based on deforming the honeycomb structure of 
graphene, where other maintain it. All the methods that include 
functionalization processes, physical or chemical, allow gap opening even 
though they reduce the mobility and the on-state current of the charge carriers 
(such as covalent modifications of the graphene lattice, graphene nanomeshes 
and graphene nanoribbons …etc.)[14][15][16][17][18]. The deformation of the 
honeycomb structure can be realized to introduce scattering centres, producing 
non-controllable band gaps and enhancing electrons’ effective mass[19].  
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In order to maintain the carriers’ high mobility in graphene, its honeycomb 
structure has to be preserved.  Substrate-induced bandgap opening is an 
example for a structure preserving method, however, the gap induced is non-
tuneable [20][21].  Another method that preserve the hexagonal crystal is 
Graphene superlattices, which is not only simply modelled but also offers 
practical possibilities and applications[22][23][24][25][26]. As the thin layers 
of alternating crystals in a graphene superlattice have different band structures, 
a periodic potential will be created with a tuneable periodicity [27]. As result, 
the transition from valence to conduction will be allowed through minibands 
with a gap that can be controlled by the superlattice period[24]. A gap opening 
can also be obtained by applying a strain on graphene, which has shown stability 
with large strains[21][27][28]. One of the most effective methods is the 
application of an external field[29][30][31], which creates atomic sites with 
different electric potentials. However, this modification is only valid of multi-
layered graphene. In a single layer graphene (SLG), applying a vertical field is 
will not introduce a gap in the band structure as the two sublattices in the crystal 
structure remains equivalent[19][24]. Hence, there is a demand for effective gap 
opening and electronic zone manipulation methods in SLG that will maintain 
the high carrier mobility and allow manipulation of Dirac points[32][33].  

To control and to manipulate electron spectrum of graphene, periodic 
electric or magnetic fields can be applied in the existence of periodic electrostatic 
potentials (so-called graphene superlattices). Yet, the nanofabrication is 
required for graphene superlattices and this is of a high cost and does not 
provide a perfect tunability in modifying electron spectra. Recently, an analogy 
was found between electron spectrum in graphene superlattices and the 
spectrum in externally applied laser fields[32]. The application of laser fields to 
graphene creates a band gap structure in electron spectra (so-called Stark effect, 
causing the gap in the graphene spectrum). Moreover, such an effect can be 
easily controlled by changing the laser field amplitude and frequency. Applying 
different laser frequencies or amplitudes changes the size and location of the gap 
in the spectrum.  Moreover, it was proven that, by applying laser fields, new 
Dirac points can be formed [32] and can be easily manipulated[33]. 
Nevertheless, the question remains if the laser-generated Dirac points in the 
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SLG electronic structure can be treated in the same manner as the usual 
graphene Dirac point and if and how the laser-induced Dirac cones is 
distorted/squeezed near these their Dirac points? 

1.3 Aims 

In this thesis we consider in details modification of the electron spectrum 
of graphene superlattices to control and manipulate Dirac cones.  

The purpose of this study is to provide a theoretical analogy to superlattices 
graphene, by applying different periodic potentials to a single layer of graphene. 
The analogy is based on preserving the honeycomb structure of graphene and 
apply adjustable potentials. The aim of the approach is to investigate the gap 
opening in different periodicities and different polarisations. Then, the study 
focuses on duality between periodic potentials that are adjustable to allow Dirac 
points destruction/creation, Dirac cone symmetry and deformation, and energy 
gap opening/closing. The manipulation and tuning of the energy spectrum is 
based on parameters changing 

The proposed theatrical model is promising in term of controlling Dirac 
cone structure in graphene spectrum.  

1.4 Thesis outlines 

Chapter 1 introduces graphene as the first stable 2D crystal and the 
research gap in the topic of graphene.  Then Chapter 2 and Chapter 3 offer 
literature review of graphene’s discovery, properties, fabrication, band structure 
theories, and applications.  

Chapter 4, explains the theory of the used model using Floquet theory and 
resonance approximation to solve the 2D Dirac equation for electrons in 
graphene superlattices.  
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In Chapter 5, we introduce the problem of graphene in a single periodic 
potential by considering the case of time periodic laser with different 
polarisation and static electric/magnetic field.  

Chapter 6, gives the detailed investigation of the graphene spectrum in 
the application of laser field and static electric/magnetic field. We show how the 
spectrum behaves in different sittings of the applied potentials. 

Chapter 7 summarises the findings of the research. 
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 2 Background 
 

2.1 Demonstration of graphene 

Graphene has been an academic material for more than sixty years, used to 
describe physical properties of carbon materials and a model for one and two-
dimensional quantum electrodynamics [5]. There were many successful 
attempts to produce some forms of Graphene compounds before 2004, and it 
was used to study the carriers’ dynamics in Graphite.  

The band structure of graphene was first introduced by Wallace 1947 using 
tight binding model[34]. Then, a thin layer of graphene oxide was recognized, 
using transmission electron microscopy by Ruess and Vogt 1948 [35][36][37]. 
After that, in 1960s, Boehm et al demonstrated a sample of graphene oxide, and 
they were the first to actually call it “Graphene”[35][38][39].  

The late illustration of Graphene can be related to two main reasons. The 
first is that it was believed that graphene couldn’t be produced in a free state 
form as temperature prevents the crystal stability. Secondly, even if such believe 
was not considered true, there were no experimental tools to construct a one 
atom thin sheet of graphite[1][40]. 

In 2004, Geim and his research group demonstrated graphene sheets off a 
graphite substrate by using a scotch tape. Then, their sample was placed on a 
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SiO2 substrate and identified as being a one layer crystal using simple optical 
microscopy[5].  A more recent tool was using Raman spectroscopy, which allows 
faster selection. Consequently, graphene sheets can be produced freely, without 
resting on a substrate. Additionally, multilayer flakes of graphene became 
selectable[40]. Graphene plays a master role in understanding the carriers’ 
behavior of other carbon allotropes. 

2.2 Graphene as carbon atoms/crystal 

2.2.1 Bonding in graphene 

Carbon is considered the element of life, as it is the basis of organic 
components. Carbon systems and allotropes show a variety of properties, which 
can be regarded to the flexible bonds of carbon. Graphene is an allotrope of 
carbon, arranged in a hexagonal honeycomb lattice of a one atomic layer (Figure 
2.1). In quantum information process, graphene structure is referred to as 
chicken wire[41].  

 

Figure 2.1 Hexagonal honeycomb lattice for SLG 

 

Carbon has four valence electrons in the electronic structure is (1s)2 (2s)2 
(2p)4. It is possible that these electrons form four sp3 orbitals, in the case of 

diamond. In graphene though, the electrons form one π bond (𝑝5 orbital) and 

three sp2 orbitals, a mixture of orbitals (s, p8&	p9). These orbitals are all mixed 

together roughly equally and rearrange themselves in a plane at 120° angles 
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forming σ bonds (Figure 2.2). The superposition mixing of s, p8&	p9 states have 

the significant electron probability in the xy plane and they are called "sp;" 

hybridization as one s orbital is mixed two p orbitals. The p< atomic orbital is left 
separated and unhybridized. 

The sp; states form 3 σ − bondig	bands and 3 σ∗ − antibonding bands, while 

the p< states forms 1 π − band and 1 π∗ − band.  Consequently, forming 8 bands 
in total.  

The three σ − bondig	bands are the hybrid covalent bonds between the 

three nearest neighboring atoms between the atoms sites in the xy plane. These 
bonds hold the honeycomb structure together and have the lowest energy being 

all below Fermi level.  In the ground state, the σ − bondig	bands are completely 

filled, thus they play no role in electronic conduction in graphene. The σ∗ −

antibonding bands are all above the Fermi level. Therefore, in ground state they 

are all empty. Since there is a finite gap between the minimum energy of the σ∗ 
bands and Fermi level, these bands are neglected.  

 

Figure 2.2 Atomic orbitals in graphene made up of 𝜎 hybridized bonds and 𝜋 
bonds in the hexagonal configuration 

120∘ 

𝜎 𝜎 
𝜎 
𝜋 

𝜋∗ 

a) Top view b) Side view 

c) hexagonal configuration 
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The unhybridized 𝑝5 orbital forms a delocalized 𝜋 bond, by overlapping 

with a 𝑝5 from the next neighboring atom. The formed p band is perpendicular 

to the plane containing the three σ bonds (𝑥𝑦 plane). The 𝜋 states and 𝜋∗ states 

are at close energy levels, allowing the 𝜋 electron to move freely between the 
atoms in the crystal. This electron is responsible for the high conductivity of 

graphene and also high light absorption. The movement of the delocalized 𝜋 
electron is discussed in the tight binding section.  

 2.2.2 Crystal structure of graphene 

 

Figure 2.3 Graphene honeycomb lattice, showing 
the two triangular Bravais sublattices (A and B) 

each having the two basis vectors aK⃗ M = a/2	O3, √3R 

and aK⃗ ; = a/2	O3, −√3R with a lattice spacing a =

0.142	nm = 1.42	A°  

The hexagonal lattice of graphite is not a Bravais lattice, because atoms in 
the next unit cell are not equivalent. Therefore, graphene lattice can be looked 
at as two triangular sublattices (A and B) with two atoms basis (A and B) (FIG 
2.1). The basis vectors for each triangular lattice are[42]: 

A B 

a

1 

a2 
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 �⃗�M =
𝑎
2
O3, √3R,						𝑎𝑛𝑑						�⃗�; =

𝑎
2
O3,−√3R ( 2.1) 

With lattice spacing (the nearest neighbor distance) 𝑎 ≈ 1.42	𝐴°, and a unit cell 

of an area 𝐴]^ =
_√_`a

;
= 0.051	𝑛𝑚;. In such lattice, the density of carbon atoms is 

𝑛^ =
;
def

= 39	𝑛𝑚h; = 3.9 × 10Mj𝑐𝑚h;. It is worth emphasizing that the density of 

the π electrons is equal to the density of carbon atoms. However, this is not the 
density of charge carriers, which has to be measured under the application of 
electric field. 

The primitive cell of graphene is chosen to contain 1 atom from each sublattice 
as the Bravais lattice is considered a two atoms basis A and B. The primitive cell 
is represented by the vectors a and a2 as the following diagram shows.  

 

Figure 2.4 The reciprocal lattice for graphene showing the first Brillioun zone  

with primitive vectors 𝑏K⃗ M = 2𝜋/3𝑎	O1, √3R and 𝑏K⃗ ; = 2𝜋/3𝑎	O1, −√3R. The first 

Brillioun zone is the hexagonal grey lattice within the reciprocal lattice. The 
conical points K and K’ at the corners of the first Brillioun zone are connected 
to the remaining four corners by the translational vectors in the reciprocal 
lattice.   

 

 

𝐾′ 

b1 

b2 

𝐾 

𝑀 
𝑘q 

𝑘r 
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To define the reciprocal lattice in graphene, we consider the triangular 
sublattices. Thus, the reciprocal vectors are[42]: 

 𝑏K⃗M =
;t
_`
	O1, √3R and 𝑏K⃗ ; =

;t
_`
O1,−√3R ( 2.2) 

The first Brillouin can be drawn in the reciprocal space by connecting six 
inequivalent points. It consists of two point, K and K’, which are special high-
symmetry points including M. The points are represented by wave vectors [42]: 

 𝐾KK⃗ u = ;t
_`
v1, M

√_
w and 𝐾KK⃗ = ;t

_`
v1,− M

√_
w ( 2.3) 

where, 	𝑀KK⃗ = |
2𝜋
3𝑎 , 0} ( 2.4) 

 The remaining four corners can be connected to the point K and K’ by the 
translational vectors in the reciprocal lattice[42][43]. 

2.3 Properties of graphene 

2.3.1 Graphene electrical properties 

The electrical properties of graphene are determined by its structure. Being 
a monolayer of carbon atoms indicates a certain bonding type as described 
before in previous sections. The three strong σ bonds are responsible for the 
tightly binding structure, which is why graphene is useful in electronics as it has 
high elasticity and strong resistance against destruction. Yet, it can be stretched 
and bent easily due to its monolayer structure. So, the flexibility of graphene can 
be related to the σ bond, which is responsible for the robustness property in all 
carbon allotropes. Each of the three σ bonds in will form a covalent bond with 
the neighboring atom and that is the reason for, making graphene crystal 100 
times stronger than steel. On the other hand, the π bond is formed by one p 
orbital leaving the conduction band half filled, thus giving metallic properties to 
graphene. So, this bond is responsible for the heat and electricity carry of 
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graphene[44][45].  The single π bond is responsible for electrical conductivity 
as it leaves one electron free to move above or below the graphene sheet. 
Furthermore, the atom-atom bonds are enhanced in graphene by the 
overlapping of the neighboring π orbitals.  

The electrical properties of a material can be explained by looking at its 
behavior under the application of an electrical field. In a metal or a 
semiconductor, carriers (electrons and holes) response to electric field by 
moving through the material. The measure of how quickly carriers propagate is 
called mobility and it is usually specified in units of cm2 V-1 s-1. Each material 
shows different mobility, therefore, it can be used to identify the conductivity in 
different materials. 

The mobility of graphene varies as the fabrication method produces 
different structure quality. It has been suggested that in perfect crystal of an 
exfoliated graphene can reach a mobility of 200,000 cm2 V-1 s-1[46]. Taking into 
consideration the concentration of the carriers in graphene with such high 
motilities, graphene has a very high electrical conductivity. Because of the 
linearity of low energies near the 6 corners of the Brillouin zone (Dirac points) 
in graphene (the energy-momentum relation), electrons and holes have zero 
effective mass.  Electronic conductivity can be enhanced by doping, as at the 
Dirac points the density of states is zero, and doping will change the Fermi level 
and will create better conducting material.  

Regardless of the concentration of carriers in graphene at Dirac points 
(which is zero), graphene experiments indicated that the minimum conductivity 
in graphene has been found to be double the mobility observed in quantum wires 

(σ0 ∼ 4e2/h)[2]. Ballistic transport can be performed by the charge carriers, with 

no scattering, in graphene at room temperature[47]. Large Coulomb energies 
are responsible for magnetism and collective effects in graphene. 

2.3.2 Graphene thermal properties 

The study of the phonon dispersion of graphene or the lattice vibrational 
modes leads to understanding of the thermal properties of graphene. The ability 
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of conducting heat in suspended graphene is allowed by ballistic phonons, which 
has been illustrated by the use of high-resolution vacuum scanning thermal 
microscopy[48]. On the other hand, if graphene is placed on a substrate, the 
number of scattering will increase, hence, the thermal conductivity will 
decreases. So, due to the scattering heat will be lost in the substrate[29]. The 
thermal conductivity decreases furthermore if the number of layers in graphene 
was increased. The mean free path of thermal phonons in many layers graphene 
is larger than the mean free path in graphene on substrate[30]. Any additional 
disorder due to fabrication for example will reduce the thermal conductivity 
even more.  

It has been reported that in freely suspended sample of graphene, thermal 
conductivity of at room temperature can reach about 2000–4000 W m-1 K-1 [31]. 
Which is one of the highest thermal conductivity of any known materials. The 
thermal conductivity of graphene on substrate (silicon-dioxide for example), can 
reach a value of about 600 W m-1 K-1[49]. In both cases, the thermal conductivity 
of graphene is very high, however, it is strongly affected by environment 
(interaction, defects, edged…etc).  

Considering an almost pure sample of suspended graphene, the electrical 
transport in the sample changes with temperature. In low temperature, the 
electrical resistivity can be negligible due to low scattering. Therefore, the carrier 
can be ascribed a mean free path. As the temperature increases, the electrical 
resistivity changes in dependence of the carriers’ density. In the case of high 
density, graphene shows a metallic behavior. The conductivity decreases with 
the increasing temperature, due to electron-phonon scattering. However, it is 
still considerably small scattering as the observed mobility still high (~120,000 
cm2/Vs at T≈240 K). On the other hand, in low carrier density, graphene exhibit 
a non-metallic behavior, thus the conductivity decreases with the decreasing 
temperature[50]. 
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2.3.3 Graphene photonic properties 

      Graphene is a material of high transparency, as it is an atom thin with a 

single π bond. It has been shown that a single layer of graphene transmits ∼97% 

of the incident light, absorbs ≈ 2.3% (regardless of its wavelength) and reflects 
<0.1%, which is very low reflection[11]. Nevertheless, the wide range of 
absorption indicates there is a strong graphene-light interaction. Graphene does 
not produce resonant fluorescence, as relaxation in graphene is fast. Even in 
strong electromagnetic filed, as graphene atoms are in a single quantum state.   

Thus, graphene is promising for the use in photonic devices as it makes an 
excellent conductive electrode. Being highly conductive with high light 
transmission makes graphene a candidate for solar cells, flat panel displays, 
touch screens, OLEDs, and it has been suggested for the use of small screens [1]. 
So, the usage of graphene in such electronic and photonic applications is actually 
dependent on the full control over the band structure of graphene. This includes: 
“lateral size, layer thickness homogeneity, and purity”[11].  

2.4   Fabricating graphene 

      Graphene is a one layer of graphite, it is a 2D crystal, and it takes more 
than one layer to build up a 3D crystal. It will take up to 11 layers of graphene to 
reach 3D structures, so any 10 layers or less is still a 2D crystal. This number of 
layers was specified based on the electronic structure, which evolves with the 
number of layers and at 10 layers the structure approaches the 3D limit of 
graphite. Then, a more distinguishable feature of a graphene and its bilayer is 
that they are both gapless semiconductors having simple electronic spectra, with 
only one type of holes and one types of electrons. The electronic spectra become 
complicated in the three layers graphene (or more), the conduction and valence 
band overlaps, and appears a number of charge carriers’ types[5].  

      Graphene is extracted from graphite using three methods, which can 
produce samples of graphene with full preservation of the hexagonal structure. 
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The physical properties’ of graphene depends on its quality which depends on 
the fabrication method. The three methods are (in order of producing the best 
quality graphene):  

1. The mechanical exfoliation technique (from bulk graphite). 
2. The vacuum epitaxial growth technique (on SiC substates). 
3. The chemical vapor deposition (on metals). 

2.4.1 The mechanical exfoliation or cleavage 

      This exfoliation technique, elaborated mainly by the Manchester group, is 
one of the simplest methods of fabricating graphene. The process is mainly 
peeling a bulk of graphite, by exfoliating the bulk with a scratching substrate 
(scotch tape). Mainly by folding and unfolding the sticky substrate on the bulk, 
a thinner sample of graphite will be produces on the substrate.  The first sample 
could contain tens or hundreds of graphene layers. Thus, by repeating the same 
process one can reaches a single layer of graphene (FIG 2.2). Then, by looking 
at the simple optical interference patterns, or Raman spectroscopy, a single layer 
of graphene can be identified.  

      Few problems with the exfoliated graphene: 1. The monolayer graphene 
will be distributed on the substrate. 2. Only small quantities of graphene can be 
produced each time.  However, the produced samples have a high quality 
structure (in term of defects) and a very high mobility that at room temperature 

can excess 15,000	𝑐𝑚;𝑉hM𝑠hM [51]. 
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[52] 

Figure 2.5 Mechanical exfoliation method 

 

2.4.2 The vacuum epitaxial growth technique 

      The epitaxial growth technique, developed by the Atlanta group[53], is an 
alternative method to the mechanical cleavage. This process basically consists of 
evaporating silicon carbide (SiC), which will be plated on a silicon wafer, to form 
graphene. In SiC (4H or 6H) hexagonal crystal, silicon is less tightly bonded. At 
a temperature of about 1300° C, silicon atoms start evaporating and only carbon 
atoms remain on the surface forming graphitic layers as the process continues 
(FIG 2.3).  

The number of these layers can be controlled if one uses Si-terminated 
(0001) surface, which graphitize slowly, allowing the formation of a single layer 
of graphite (graphene) or two as aimed[43]. If C-terminated (0001) surface was 
used in the vacuum epitaxial growth, then larger numbers of graphene layers 
will be formed as this type of surface allows a very fast graphitization 
process[43]. 

The analysis of the epitaxial graphene shows that this type has a quality less 
than the one of the exfoliated graphene. First, the epitaxial-grown graphene 
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usually has some structural defects, due to the high temperature some carbon 
atoms burns during the process[54]. The structural defects can be spotted by the 
use of Raman topography[55][56][57]. Second, the layers in epitaxial graphene 
are less tightly bonded than the exfoliated graphene layers, due to the large 
distances between the layers in the formation process. These distances can be 
determined by X-ray measurements[58].    

As a consequence of these characteristics, epitaxial graphene is less chosen 
as sample in transport measurements (in contrast to the exfoliated graphene).  
Also, the mobility of the epitaxial graphene is smaller than the mobility of the 
exfoliated graphene; however, it is better than the mobility of the CVD graphene. 
The study of epitaxial graphene by Raman topography has shown that: the 
thickness, the stacking and the homogeneity of the graphene layers, all affect its 
mobility[56].  In room temperature, the mobility of epitaxial grown graphene 

can reach 5,000 cm2V−1s−1 (in the case C-terminated (0001) surface)[51]. 

[52] 

Figure 2.6 Epitaxial growth method 
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2.4.3 The chemical vapor deposition (CVD)  

    This approach was first reported in 2008/2009 [CVD+1CVD].  Its potential 
is the easily mass production of graphene with low cost; therefore, this method 
is usually used for industrial purpose [55][59]. In this method, a sample of 
carbon atoms abides to a metallic surface, which helps decomposing the 
chemical bonds in carbon aside with the high temperature involved in the 
process. The easiest substrate to transfer graphene from is copper-foil, thus it is 
mostly chosen in the CVD method.  

The carbon atoms reaction to the high temperature on the metallic 
substrate is basically is a repositioning behavior. Each carbon atom starts 
occupying a position on the surface, pushing the neighboring atom to the sides 
of the substrate. The process simply continues until a one layer of carbon is 
formed or at the edge of the metallic substrate (FIG 2.4). Hence, the larger the 
surface is, the larger production results. In the meanwhile, carbon atoms start 
an order of a hexagonal (honeycomb) lattice in some places on the surface before 
the whole sample is crystallized to form graphene. This means that at each initial 
spot of crystallization, the lattice produced can be differently oriented from the 
other layers. 

[52] 

Figure 2.7 Chemical Vapor Deposition 
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As these different oriented crystallizations spread and meet, line defects 
will occur causing what is called grain boundaries[60].  These boundaries are, 
aside from other defects, the main reason of the low mobility of CVD graphene 
(in comparison to the exfoliated and epitaxial graphene)[60]. The transmission 
electron microscopy (TEM) and scanning electron microscopy (SEM) can be 
both used in defects determination of CVD graphene[49]. In short perfectly 
structured CVD graphene (no grain boundaries), the mobility can reach 2, 700 

cm2V−1s−1[60]. 

2.5    Quantum behavior of graphene 

Graphene exhibits a fast motion of charge carriers, due to their zero 
effective mass, hence providing a very useful model to examine electrodynamics 
phenomena without the need to costly acceleration equipment [29]. 
Furthermore, graphene shows quantum behaviours at room temperature. This 
is also another factor making graphene a recommended candidate for studying 
such behaviours with no need to cooling mechanisms [2]. 

 

2.5.1 Anomalous quantum Hall effect (QHE) 

In an electrical conductor and under the application of magnetic field, a 
voltage difference is created in the conductor, which is called Hall effect. At low 
temperatures and very strong magnetic field, the Hall effect (or Hall resistance) 
becomes quantised. This is called Integer QHE, however, in the case of 
quasiparticles the QHE becomes fractional [50][11]. 

QHE has been reported in graphene experiments within a SLG at room 
temperature [36][2]. Although the samples showed quantised resistance, the 
integer QHE is not exactly the same as in 2D semiconductors. The quantum 

conductivity is shifted in graphene by M
;
	𝜎�, which is the minimum conductivity). 

This shift can be controlled by doping [5]. On the other hand, the fractional QHE 
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in graphene is, similarly in semiconductor devices, correlated to the electron-
electron interaction.  

2.5.2 Perfect Klein tunnelling 

In quantum mechanics, a particle can pass through a barrier regardless of 
the classical condition, where the kinetic energy of the particle K has to be larger 
than the potential U, in a phenomenon known as tunnelling. In 1929, Klein dealt 
at the electron scattering from a barrier with the application of Dirac equation. 
He showed that if the potential is of some order of the electron mass, then the 
electron will always tunnels through the barrier [5].  

This quantum behaviour can occur in graphene and electron exhibits a 
perfect transmission through the potential barrier [29] [54]. However, the 
perfect tunnelling occurs only under several conditions. The shape of the 
potential barrier is essential factor in the behaviour of the tunnelling, also the 
energy of the tunnelling electron in respect to the potential height [55]. 
Moreover, the angle of the incident electron also contributed to the smoothness 
of the tunnelling in graphene [53][51]. 

2.6 Graphene devices 

2.6.1 Graphene sensors 

The need of high sensing in small dimensional devices and circuits is never 
limited. Graphene-based sensors is a well preforming high precision detectors 
due to the high mobility, low scattering and noise of graphene sheets [61]. 
Consequently, the graphene-based sensors are time resolving due to graphene 
properties [29]. The fabrication of such devices is based on simple structuring 
knowledge, as a quantum dot with two Nanoribbons on either side will act as a 
charge sensor [37].  The high sensitivity in these devices is influenced by the 
conductivity of graphene stripes, which is sensitive to defecting and importing 
[29].  
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The use of graphene ribbons and graphene meshes in these devices can be 
regarded to their role in creating a gap band in the energy of graphene [62]. The 
difficulty in the application of graphene-based devices in general is the gapless 
feature and the Klein tunnelling in graphene, which makes controlling the 
transportation of electrons a challenging task [61].  

2.6.2 Graphene transistors 

Semiconductors devices has reached a limited speed and dimensional 
reduction. Thus, emphasising the need to a new material such as graphene, with 
new possibilities in terms of scaling and mobility [14]. Implying and controlling 
of devices and circuits is based on transistors, which is about to be “reborn” with 
the application of graphene transistors [29]. The main challenge in the transit 
process is the zero gap structure of graphene. Transistors can be used as a logical 
controlling element if it can switch from a state to another (from ON state to 
OFF state). Therefore, the task in graphene transistor making is to create and 
control a gap band in the energy spectrum. The use of carbon nanotubes and 
graphene Nanoribbons is a method of producing the required gap. Furthermore, 
other methods can be applied to obtain the same aim with the use of channels of 
bilayer graphene (BLG), graphene oxide or graphene with impurity [5]. Hence, 
changing the band structure of graphene creates an energy gap.  

Several graphene transistors designs have been proposed recently. For 
example, graphene oxide transistor provides a simple application and can result 
in channel mobility up to 100 cm2 V-1 s-1 [59]. Also, carbon nanotubes transistors 
were designed, and it promises to produce high mobility transistors due to the 
ballistic transport in carbon nanotubes [34]. 

2.6.3 Graphene photonic devices 

The transparency of the thin graphene sheets makes them ideal for 
photonic devices. The monolayer structure allows a small light absorption [60]. 
Many proposed application is graphene based such as small touching screens, 
solar photonic devices and photonic transistors. The principle of photo-
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conduction increases the number of charge carries in graphene, due to the 
excitation caused by the photons absorption. Therefore, the conduction is a 
subject of increase [29].  

2.7 Summary 

The demonstration of graphene has led to many possibilities due its unique 
structure and properties. Graphene is a single layer of graphite sheet, which is 
made of carbon atoms arranged in a hexagonal lattice structure. The hexagonal 
structure is usually looked at as two sublattices with two atomic cites A and B.  
Such configuration allows the valence electrons in carbon to be arranged into 

forming one 𝜋 bond and three 𝜎 bonds. The 𝜋 states are in lose energy levels 
allowing the electron to move freely (massless) from an atom to another. This 
bond is responsible of graphene electronic properties such as: high mobility, 
heat and electrical conductivity, and light transmission. The properties of 
graphene depend on the quality of its fabrication method, where mechanical 
exfoliation producing best graphene quality, while vacuum epitaxial growth and 
chemical vapor deposition provide less quality. Graphene shows anomalous 
quantum behaviors such as fractional Hall effect and perfect Klein tunneling. 
Thus, graphene is promising in studying quantum behaviors and for new 
quantum applications such as in sensors, transistors and photonic devices.   
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 3 Graphene Energy 
Band 

 

3.1 Band theory 

     Wallace introduced the band structure of graphene in 1946 [32]. His aim 
at that time was to study the structure of graphite. He considered one layer of 
graphite, which is graphene now, to explain some of the physical properties 
through the band theory. Wallace showed that the σ bonds do not play part in 
conductivity, whereas the π bond leaves the conduction band half-filled. That is 
why he concluded that Graphite can be treated as having one conduction 
electron, and that the electrical conductivity in the 2D crystal of graphite 
theoretically exists. Wallace also concluded that at six points of the Brillouin 
zones (which is called Dirac points), the electronic spectrum in graphene is 
gapless and has the form of a canonical Dirac spectrum. Later on (after 2004), 
it was proven by experiments that the charge carriers in graphene were actually 
Dirac fermions[5]. 

      When studying the electronic band structure of graphene, one is 
considering the energy bands of π electrons. As discussed before in chapter 2, 
the π electrons are the responsible for the electronic properties in graphene. 
Furthermore, the σ electrons have energies too low than the Fermi level[23].  
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     The π energy bands in graphene can be described through Bloch’s theorem, 
tight binding model, and Dirac equations.  

3.2 Bloch’s theorem 

      The best way to describe Bloch’s theorem is by saying that it represents the 

periodicity of a wavefunction 𝜓 over a periodic crystal structure with a lattice 

vector 𝑅�  [23]: 

 𝜓(𝑟) = 	 𝑒��.�𝑢(𝑟) ( 3.1) 

where, 𝜓 is the electron’s wavefunction in a crystal (usually refered to as Bloch’s 

wavefunction), 𝑟 is the position, 𝑘 is the crystal wave vector, and 𝑢 is a periodic 
wavefunction which has the same periodicity as the crystal, hence [23]: 

 𝑢(𝑟 + 𝑅�) = 	𝑢(𝑟)	 ( 3.2) 

The concept of the electronic band structure is based on representing the 

energy eigenstate of an electron as Bloch’s wave 𝜓�,�. The index 𝑛 refers to the 

discrete bands, which may share the same wave vector 𝑘. Because 𝑘 is periodic, 

hence 𝜓�,� = 	𝜓�,���� , then one can describe all the 𝑛 Bloch’s waves within the 

first Brillouin zone.  

Although electron transport in graphene is determined by Dirac equation, 
the need to solve Schrodinger equation is essential if a periodic potential is 
applied. Thus, it is needed to distinguish semiconducting properties.  

Finding a solution to Schrodinger equation in 2D crystals could be obtained 
using a number of methods. Nevertheless, there are some general characteristics 
to the solution no matter how it was gained.  

These properties could make the calculation easier, or it could allow some 
approximation to obtain a general understanding of the Block wave. Basically, if 
a periodic potential is applied to a periodic function (periodic with respect to the 
crystal), then all Schrodinger equation solution of the electron wave should be 
of the form of a Bloch’s wave with the same periodicity equation (3.1). 
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It is rather useful to expand the potential and the electron wave function 
into Fourier series and represent the Schrodinger equation to obtain specific 
solutions [46][47].   

Each atom has four atomic orbitals to be considered in the Bloch wave 

function as an 8 terms function [62]:	 

 
𝜓�K⃗ = 	�𝑒��K⃗ .�K⃗ {𝑏d�𝜑d� + 𝑏d��𝜑d�� + 𝑏d��𝜑d�� + 𝑏d��𝜑d��

�

+ 𝑏��𝜑�� + 𝑏���𝜑��� + 𝑏���𝜑��� + 𝑏���𝜑���}	 

 

( 3.3) 

where 𝜑d�, 𝜑d��, 𝜑d��&	𝜑d��are the 𝑠, 𝑝q, 𝑝r&	𝑝5 atomic orbital wavefunctions for 

atomic site A, and 𝜑��, 𝜑���, 𝜑���&	𝜑���are the 𝑠, 𝑝q, 𝑝r&	𝑝5 atomic orbital 

wavefunctions for atomic site B. Therefore, for each value of wave vector 𝑘K⃗  in the 

1stBZ, there are eight bonds and hence eight energy spectrums 𝜀�O𝑘K⃗ R. 

3.3 The tight binding model for electrons in 
hexagonal lattice 

      Tight binding model is a method uses a set of wave functions to calculate 
the electronic band structure. The basic assumption made in this approach is 
that the ionic potentials (or the crystal potential) are strong. Due to that, when 
an electron passes on while moving through the lattice, the electron is captured 
by the ion for a period of time, before the electron tunnels to another ion. During 
the capturing time, the electron orbits around the ion. As a result, the wave 
function of the electron becomes the same as the orbital function of the atom 
[23].  

      In the case of honeycomb lattices, the tight binding model is based on 
constructing a wavefunction as a superposition of the atoms’ orbital 
wavefunctions. The atoms considered are the atoms in the Bravais lattice 
described by the lattice vectors [22]: 
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 𝑅� = 𝑚�𝑎M + 𝑛�𝑎; ( 3.4) 

where, 𝑚�	𝑎𝑛𝑑	𝑛�𝜖	ℤ.  

      The produced wavefunction is called “trail wavefunction”, and it is 
symmetrical under the translation of the lattice vector. The simplest case in 
approaching the tight binding model is to consider a Bravais lattice with one 
atom, and hence one electron, per unit cell. The tight binding Hamiltonian for 

an electron ℓ is[23]: 

 𝐻ℓ = −
ℏ;

2𝑚	∆ℓ +	�𝑉O𝑟ℓ − 𝑅�R
 

�¡M

,	 ( 3.5) 

where, ℓ is an integer for any arbitrary electron, ∆ℓ= 	∇ℓ;= v £
£q
+ £

£r
w
;
	is the two 

dimensional Laplacian operator, 𝑟ℓ = (𝑥ℓ, 𝑦ℓ) is the electron’s position, 𝑚 is the 

mass of the electron, 𝑅� is the ion’s site, 𝑉 is the potential energy felt by the electron 

because of the ions, and 𝑁 is the number of the lattice points. 

     So, the total Hamiltonian of the lattice is[23]: 

 𝐻 =	�𝐻ℓ

 

ℓ

 ( 3.6) 

Electrons’ motion in graphene is controlled by the nearest-neighbor 

approximation. The moving electrons are the 𝜋 electrons only, and they motion 

with a hopping parameter 𝒕 [49]. This hopping process only occur within one 
sublattice atom to another, such that there is no electron hopping from the 
sublattice A site to another A site.  

The tight binding Hamiltonian in term of the wave vector 𝑘K⃗ , is a 2 by 2 
matrix [22]: 

 𝐻¦O𝑘K⃗ R = § 0 𝒕	𝑆(𝑘K⃗ )
𝒕	𝑆∗(𝑘K⃗ ) 0

©	 ( 3.7) 

where,𝒕 is the first hopping parameter and	𝑆O𝑘K⃗ R is given by: 
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 𝑆O𝑘K⃗ R =�𝑒��K⃗ ªKK⃗

ªKK⃗

= 2 exp |
𝑖𝑘q𝑎
2 } cos§

𝑘r𝑎√3
2 © + exp(−𝑖𝑘q𝑎) ( 3.8) 

Therefore, the energy can be defined as: 

 𝐸O𝑘K⃗ R = 	±𝒕¯𝑆O𝑘K⃗ R¯ = ±𝒕°3 + 𝑓O𝑘K⃗ R ( 3.9) 

where 

 𝑓O𝑘K⃗ R = 2 cosO√3𝑘r𝑎R + 4 cos§
√3
2 𝑘r𝑎© cos |

3
2 𝑘q𝑎} ( 3.10) 

Because of band crossing, 𝑆O𝐾KK⃗ R = 𝑆(𝐾KK⃗ u)[41].  Therefore, when calculating the 

Hamiltonian, only next-nearest-neighbor hopping should be taken into account 
and all other hopping parameters can be neglected (hence, we include the two first 

hopping parameters 𝒕	&	𝒕′ and neglect 𝒕′′ and higher). The energy can then be 
found to be [22]: 

 𝐸O𝑘K⃗ R = 	±𝒕¯𝑆O𝑘K⃗ R¯ + 𝒕′𝑓O𝑘K⃗ R = ±𝒕°3 + 𝑓O𝑘K⃗ R + 𝒕′𝑓O𝑘K⃗ R ( 3.11) 

The second term is responsible of breaking the electron-hole symmetry. It shifts 

K points from 𝐸 = 0 to 𝐸 = −3𝒕′ without changing the symmetrical nature of the 
Hamiltonian near the conical points. The symmetrical behaviour of the electron 
and hole Hamiltonian is topologically protected within the BZ. 

3.4 Energy spectrum in graphene 

3.4.1 Dirac points 

The energy spectrum in graphene can be explained by understanding the 
crystalline structure in figure (3.1). Looking at the energy spectrum at one corner 
of the Brillouin zone, there will be two bands, which we can label as – and + for 
now, both having the same number of states. As in graphene there is only one π 
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electron per atom, then the electron will occupy a state of spin up ↑, or a state of 

spin down ↓. The band with the lower energy is the – band, which is the valence 
band. The electron will occupy a state in this lower band making the valence 
band fully occupied. The + band, which is the conduction bad, will be left 
completely empty. Therefore, the Fermi level will be at the point where the 
valence band and the conduction band touch. This point is what is called Dirac 
point, where the conduction band and the valence band form reversed 
canonicals. The electrons in graphene have zero effective mass, meaning that 
they can be treated as massless fermions using Dirac equations, which is 
described in the following section. Thus, the six corners of the 1stBZ in graphene 
are called Dirac points in analogy to the zero-mass limit of the relativistic Dirac 
equation, where electron and positron bands touch at zero momentum. 

The conduction and the valence bands meet exactly and only at the six 
corners of the 1stBZ. The upper and the lower cones are referred to as the electron 
and hole cones. The six Dirac points are noted as three K points representing 
sublattice sites A, and K’ points for sublattice B. The electronic states located 
near the cones are described by two set of 2D spinors [48], with zero number of 
states at K and K’ points. Although the valence and the conduction bands touch 
at six Dirac points, they never overlap. Because of Dirac points, graphene is 
considered a zero-bandgap semiconductor or a semimetal. 

 3.4.2 Dispersion relation 

Semiconductors usually form parabolic dispersion relation near Fermi 

energy, apart from graphene, which has a linear dispersion of the 𝜋 band with 
the separation distance. Graphene has unique properties because of this linear 
dispersion relation. Photons are also characterized by a linear dispersion 
relation because of kinetic energy being much larger than its mass energy. 
Therefore, the electrons in graphene can be considered ultra-relativistic 

particles as they copy the behavior of photons. The Fermi velocity (𝑣µ) of 

graphene electrons is 300 times smaller than the speed of light, thus 𝑣µ is energy 
independent. Thus, the energy around K points for electron in graphene is 
proportional to momentum as: 
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 𝐸O𝑘K⃗ R = ℏ𝑣µ|𝑝| ( 3.12) 

where ℏ is Planck’s constant, 𝑣µ is Fermi velocity and 𝑝 is the momentum. 

 

Figure 3.1 The gapless energy spectrum as a function of wave vector kK⃗   
(a) showing the valence band (upper spectrum) and conduction band 
(lower spectrum). The Fermi level is at the canonical points (Dirac 
points), where the valence band osculate the conduction band. (b) The 
hexagonal first Brillouin zone showing the only 6 corners conducting the 

𝜋 and 𝜋∗ bands (K and K’ points). The gap between the valence and the 
conduction band occur at the M points. 

 3.4.3 Massless Dirac fermions in graphene 

At very low energy, the two sublattices A and B, (hence the two conical 
points K and K’), should be taken into account when finding the Hamiltonian 
such that[22]: 

 𝐻¦ = §𝐻
¦¸ 0
0 𝐻¦¸¹

©	 ( 3.13) 

where: 
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 𝐻¦¸ = −𝑖ℏ𝑣µ�⃗�	∇	 ( 3.14) 

 𝐻¦¸¹ = 	𝐻¦¸º	 ( 3.15) 

having �⃗� = O𝜎q, 𝜎r, 𝜎5R are the 2D Pauli matrix = v0 1
1 0w , v

0 −𝑖
𝑖 0 w , v

1 0
0 −1w. 

This Hamiltonian in equation 3.10 is a two-dimensional Dirac Hamiltonian 
for massless fermions [22]. The low-energy-momentum dispersion relation can 
be written as [22]: 

 𝐸O𝑝q, 𝑝rR = 	±𝑣µO𝑝q; + 𝑝r;R
M
; ( 3.16) 

where, O𝑝q, 𝑝rR are the electron momentum, 𝑣µ is the Fermi velocity, and 𝐸 is the 

energy spectrum, which equals zero at Dirac points. Although graphene is a 
gapless semiconductor, sometimes it is applicable to create a gap in the 
graphene’s band structure. Such a goal can be achieved using various techniques 
like selective doping, applying a gate voltage, substrate engineering, or 
deposition of molecules on graphene layer[49]. Some methods are described 
later in this chapter.  

3.5 Dirac equation 

       To describe the electrical properties of materials it is sufficient to use 
Schrodinger equation, however, not in the graphene case. The charge carriers in 
graphene exhibit relativistic behaviour of quasiparticles with low energies and 
can be easily and accurately described by Dirac equation. These quasiparticles 
could be considered as massless electrons or charged neutrinos and they called 

massless Dirac fermions. Dirac equation basically describes a wave function 𝜓 
with four components by four coupled differential equations [49].  

Graphene is a zero-gap semiconductor, with low-energies quasiparticles 
that can be describes by the Hamiltonian [49]: 
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 𝐻¦ = 	ℏ𝜈µ ¼
0 𝑝q − 𝑖𝑝r

𝑝q + 𝑖𝑝r 0 ½ = 	ℏ𝜈µ	�⃗�. 𝑝 ( 3.17) 

where, the Dirac-like Hamiltonian is	𝐻¦ , Fermi velocity is 𝜈µ , the quasiparticles 

momentum is 𝑝 = O𝑝q, 𝑝rR, and Planck constant is considered ℏ = 1 . The energy 

can be found by simply finding the eigenvalues of the Hamiltonian: 

 𝐻¦	𝜓d,� = 𝐸	𝜓d,�  ( 3.18) 

The lattice of graphene is a hexagonal lattice (honeycomb lattice) that is 
made up of two sublattices referred to as sublattice A and sublattice B. Both 
equivalent sublattices are associated with cosine-like energy bands that intersect 
at zero near the boundaries of Brillouin zones. Therefore, the energy spectrum 
in graphene forms two canonical sections.  

If a charged particle in moving in an electromagnetic field (classically), 
then the fields are defined by static and vector potentials such that[22]:  

 𝐸 =	−∇𝑈(𝑥) −
1
𝑐 §
𝜕𝐴(𝑡)
𝜕𝑡 © ( 3.19) 

 𝐵 = 	∇ × 𝐴Â(𝑥)	 ( 3.20) 

where, 𝑈 is static potential, 𝐴 and 𝐴Âare vector potentials, and c is the speed of 

light which is replaced in graphene by Fermi velocity 𝜈µ . 

Then the system is described by the classical Hamiltonian for a charged 
particle [22]: 

If charged carriers are in motion in graphene, behaving as zero mass 
particles, then their dynamics can be described by 2D Dirac Hamiltonian as the 
solution to: 

which is expressed as[30]: 

 𝐻¦	𝜓d,� = 𝑖
𝜕
𝜕𝑡 	𝜓d,�  ( 3.21) 
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 𝐻¦ = Ã�⃗�. Ä𝑝 − 𝐴(𝑡) −	𝐴Â(𝑥)Å + 	𝑈(𝑥)Æ ( 3.22) 

In this equation 𝐴(𝑡) is the potential of time dependent electric field, 𝐴Â(𝑥) =

(𝐴Â(𝑥),𝐴rÂ(𝑥)) is magnetic potential, and 𝑈(𝑥) is SE field.   

3.6 Symmetry and symmetry breaking 

As has been discussed, graphene has a filled valence band that touches an 
empty conduction band in six conical points, where Fermi energy lies with no 
gap energy. The gapless structure of graphene is not the reason of the unusual 
electrical properties but rather the chiral nature of the electron states and the 
high symmetry between electrons and holes, thus these quantities need to be 
conserved. 

Since there are two sublattices per unit cell, at Dirac point two linear energy 
dispersions intersect as independent from each other, which result in the 
existence of pseudospin. The Dirac spinors are represented by the two 
sublattices, so “pseudospin-up” is sublattice A and “pseudospin-down” is 
sublattice B. However, it is actually a chiral pseudospin, which is a quantum 
number resulted from the lattice structure and is used to distinguish the 
electrons in the sublattices of graphene. Chirality connects electrons and holes 
in graphene so one can tell that they are originally form the same sublattice [5]. 

Considering the direction of motion 𝑝 or 𝑘K⃗ , then the chirality in graphene the 
projection of electrons in positive (k state) and for holes is negative (-k state), 

except that: 𝜀O𝑘K⃗ R ≠ 𝜀O−𝑘K⃗ R but rather 𝜀O𝑘K⃗ + 𝐾KK⃗ R = 𝜀O−𝑘K⃗ − 𝐾KK⃗ R.  

There are two more internal degrees of freedom in graphene: 1- isospin, 

which is the valley of the conical point 𝐾	&	𝐾′ usually represented by + and -, and 
2-real spin, which is just the spin for Dirac fermions. The Hamiltonian of 

graphene is therefore represented by an 8 × 8 matrix that produces a dispersion 

energy that has threefold symmetry. In the Hamiltonian, �⃗� refers to pseudospin 
of the quasiparticles rather than the real spin of electrons. 
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 At the conical points, the zero gap state is symmetrical, thus it is time (𝑇) 

symmetric and inversion (𝐼) symmetric [63]. So the following conditions has to 
hold for the gapless state to be described as T and I invariant: 

 𝑇: 𝐻¸ = 𝐻¸u∗ = 𝐻¸	 ( 3.23) 

 𝐼: 𝐻¸ = 𝜎q𝐻¸u𝜎q = 𝐻¸	 ( 3.24) 

 𝑇𝐼:𝐻¸ = 	𝜎q𝐻¸∗ 𝜎q = 𝐻¸  ( 3.25) 

Then, if a perturbation, invariant for T and I, is applied to graphene it can 
cause some deformation to the spectrum such as shifting a conical point, but it 
cannot cause a gap opening as the sublattices remains equivalent. Consequently, 
to allow gap opening in the graphene, the inversion symmetry has to be broken.  

Due to symmetry, different classes of topological semimetals have been described 
[64]. One type is the 3D Dirac semimetal is distinguished by its Dirac cone having 
a fourfold degeneracy. It emerges from twofold degeneracy of the time symmetry 
(T invariance) plus twofold degeneracy of the spatial inversion symmetry (P 
invariance).  Another topological metal type is Weyl semimetals, which appears in 
the breaking of either symmetries (T or P). Thus, this type has a twofold 
degeneracy cones forming two Weyl points, which always appears in pairs. The 
pair hold two different topological charges +1 and -1, caused by the chirality of the 
Weyl fermions. Therefore, Weyl points form some kind of “magnetic” monopoles 
in momentum space.  

3.7    Gap induction in graphene 

Although graphene has properties with the potential to replace silicon in 
electronical applications, the zero-band gap structure stands as an obstacle. 
Graphene has a low on off ratio because of its energy band structure. Thus, gap 
opening problem in graphene is one of the most researched aspect of graphene. 
Studies and experiments aim to obtain a gap band without compromising 
graphene’s properties. This section discusses some of the gap induction 
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techniques.  

3.7.1 Deforming the honeycomb structure methods 

3.7.1.1 Carbon nanotubes 

The accidental discovery of Carbon nanotubes in 1991 has established a 
demanding research topic, as it is an essential part of the new generation of 
devices [55]. The physical properties of the nanotube, confined in very small 
structures remarkably, promises to provide a range of advanced applications. 
Perfect and pure nanotubes are more producible now with the achieved 
development of the synthesis techniques [56].   

 [29][29] 

Figure 3.2 One-dimensional carbon nanotube 

Carbon nanotubes are basically cylindrical tubes of graphene stripes with a 
very small radius (Figure 3.2). They can be produced to a significant length, and 
still considered a one-dimensional structure [57]. It can be fabricated with a 
monolayer graphene or multilayered, and the chiral index modifies the 
electronic band structure in the produces nanotubes. Hence the physical 
properties are determined by the structure, size and topology of nanotubes. 
Thus, nanotubes allow gap opening in the graphene band structure.  

The energy gap in the nanotubes is proportional to the radius, which is 
determined by the boundary conditions of the graphene strips used in the 
formation. These boundary conditions will illustrate the conduction of the 
nanotubes, thus an armchair boundary conditions indicates conducting and 
semiconducting, while the zigzag boundary conditions only allow conduction 
behavior [56][58]. The energy states of the nanotubes are also specified by the 

𝐶𝑎𝑟𝑏𝑜𝑛	𝑁𝑎𝑛𝑜𝑡𝑢𝑏𝑒𝑠 
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boundary conditions. Such simple basics is associated with the fact that the 
production volume is still below industrial limit with the amount of cost and 
techniques involved, in addition, the manipulation of nanostructure is still a 
challenging aspect [56]. Nevertheless, nanotubes are likely candidate for 
building graphene-based devices, such as transistors, where nanotubes works as 
efficient channels between the source and the drain [29].  

 

Figure 3.3 The edge of graphene nanoribbons determines the conduction 
behavior in the stripes. 

3.7.1.2 Graphene nanoribbons 

The graphene stripes with a very narrow width are called graphene 
nanoribbons. Nanoribbons can be fabricated simply by cutting carbon 
nanotubes longitudinally [29]. They are known to be a useful technique in 
creating an energy gap in graphene spectrum. Therefore, graphene would gain 
metallic properties or semiconducting properties depending on the structure of 
nanoribbons (the arm chair edge indicates a metallic and semiconducting 
behavior, and the zigzag edge indicates a metallic behavior only) (FIG 2.7) [37].  

The size of the band gap in nanoribbons is influences by the width of the 
graphene sheet, the structure defects and the edges. Changing the width in 
practice requires high precision nanometers and nanofabrication; hence it can 
be hardly controlled. Moreover, the fabrication defects in the structure of the 

Armchair 

boundary 

Zigzag 

boundary 
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sheet or in the uniformity of the edges is highly possible, therfore the 
manufacturing of nanoribbons devices still requires more developments [37]. 
Above all, the phonon scattering due to the defects or the edges of the 
nanoribbons cause a decrease in the mobility [29].  

3.7.2 Structure preserving method 

3.7.2.1 Substrate induced band gap opening 
The isolation of graphene on an insulating substrate was reported on 2004, 

however gap opening in epitaxial graphene on hexagonal Boron Nitride (h-BN) 
was experimentally realized in 2002 [65]. This method was the first reported 
method in graphene gap opening allowing an energy gap of around 0.5 eV. 
Following up, a number of experiments achieved substrate induced band gap in 
graphene [66].  

Recent theoretical research has been focusing on introducing energy gap to 
graphene on substrates such as h-BN, copper and SiO2. The minimum gap 
opening achieved was close to 0.1 meV and the maximum was around 0.52 eV. 
The studies were conducted to explore the validity of the substrate growth 
process or gate voltage application to preserve the semiconducting and semi-
metallic features [67][68].  

 

3.7.2.2 Superlattices gap opening 
One of the greatest achievements in semiconductor physics is the work of 

Esaki and Tsu of superlattices[69]. Since then superlattices has been studied in 
depth and had influenced the field. Many phenomena have been determined by 
superlattices, such as “negative differential conductivity, Bloch oscillations, gap 
openings at the mini-Brillouin-zone boundary formed by the additional periodic 
potential and so on”[70]. The production of superlattices usually is based on 
metalorganic vapour phase epitaxy and molecular beam epitaxy [71]. For 
graphene, fabricating superlattices can be achieved either by: 

1. impurities, which are positioned and aligned using or scanning 
tunnelling microscopy[72][73]. 
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2. by epitaxial growth on top of a structured substrate [58]. 

3. by applying a local top- gate voltage to graphene [74][75].  The resulting 
material consists of two crystals aligned together, as a result the energy band 
structure of the materiel changes.  

 Graphene superlattices have gained a huge interest for theoretical physics, 
investigating to generate periodic potential or barrier structure using 
electrostatic and magnetic potentials[32][76][70][77][78][79][80][81][82]. One 
of the features of graphene superlattices is that in a 1D periodic potential 
superlattices the velocities of charge carriers show a strong anisotropy. 
Therefore, the charges mobile in one direction only with a constant velocity[70]. 
Such anisotropy results from formation of new Dirac points in the energy 
spectrum with new zero energy states. It has been shown that the emerged states 
can be controlled by altering the parameters of the periodic potentials [83][84]. 
Graphene superlattices have experimental realization. However, the fabrication 
tools and techniques are based on nanofabrication, which are of expensive cost, 
long fabrication time, and limited fabrication structures[85]. Therefore, 
theoretical periodic potential superlattices provides a promising tool with the 
features of superlattices.  

In many researches, the investigation of charge carriers in graphene 
superlattices is based on calculating the energy dispersions, the group velocities 
and the energy-gap openings[70]. The massless charge carriers in graphene are 
described by Dirac equation, where the resulting energy dispersion near Dirac 
points is linear and isotropic[30][34][53][70][86][87]. Many models 
demonstrated that the wavefunction of the quasiparticles in graphene has two 
components represented by the two trigonal sublattices.  Therefore, within the 
effective-Hamiltonian formalism, the two amplitudes can be represented by a 
spinor with two components and is called a pseudospin. This spinor results from 
the structure of the wavefunction and it is not related to the real spin or chirality. 
If an external periodic potential is applied to graphene, the spatial period of the 
superlattice potential is usually much larger than the nearest-neighbour 

distance between the carbon atoms in graphene =∼1.42A ̊. Consequently, there 

will not be a state scattering near Dirac points and hence no gap 
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opening[86][88][89].  

The purpose of this research is to show that applying two different 
potentials to a SLG can create gap opening and furthermore, provides 
theoretically investigated analogies to graphene superlattices that are affordable 
and highly controlled.  

3.8    Summary 

 Graphene band structure is different from other semiconductors. In 
graphene the energy is given by a linear dispersion in momentum due to the 
massless behavior of electrons at Dirac cones. The electrons travel freely between 
graphene atoms in light of Bloch’s theory and the tight binding model. Around 
Dirac points represents the singularity of graphene, where electrons are 
considered Dirac fermions. Thus, Dirac Hamiltonian is used to describe the 
dynamics of electrons in graphene, which holds a number of symmetries. 
Therefore, inducing a gap in the energy spectrum of graphene requires symmetry 
breaking at Dirac points. Some of the gap inducing methods are based on 
deforming the honeycomb structure of graphene such as carbon nanotubes and 
carbon nanoribbons. These methods introduce scattering centers which reduces 
the electrons mobility in graphene.  Other methods preserve the crystal structure 
of graphene for example, substrate gap opening and superlattices gap induction.   
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 4 Theory 
 

4.1 Massless Dirac fermions in graphene 

From the previous chapter we can conclude that charge carriers in graphene 
can be considered massless Dirac fermions. They are identical particles with half 
integer spin, they have a very small mass, they obey Pauli exclusion principle, and 
they can be described with Fermi-Dirac statistic (in case of equilibrium).  
Therefore, an analogy between electron spectrum of graphene and Dirac fermions’ 
spectra can be established [30].   

There is a gap for research in optical properties of graphene. Respectively, 
there is an interest studying the electron behaviour of graphene in strong laser 
fields. Moreover, the symmetry in massless Dirac fermions needs to be 
investigated more, in different periodic fields (electric and magnetic). In the case 

of special periodic potentials, the energy spectrum 𝜀(𝑘K⃗ ) splits into a number of 
subbands. This happens when the potential has a special period larger than 
interatomic distances. The electron waves are then reflected by such potentials 
and due to constructive interference, the electron spectrum is split with gaps. This 
reflection and interference do not occur in the case of time periodic potential [41]. 
However, a change in the electron energy spectrum can occur. Floquet theory can 
be used to analyse and control such a change in time-periodic potential systems. 
In this chapter we describe the basic approach to our study. 
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4.2 Floquet theory 

Floquet theory is a branch of the theory of ordinary differential equations 
relating to the class of solutions to periodic linear differential equations analogues 
to Bloch theory. Floquet theory plays an essential role in analysing dynamical 
systems. Using the theory, periodic systems can be transformed to linear forms. 

Floquet theory can be used to solve the time dependent Schrödinger equation:  

 𝑖	
𝜕
𝜕𝑡 Ψ

(𝑥, 𝑡) = 𝐻¦(𝑡)Ψ(𝑥, 𝑡)					 ( 4.1) 

Floquet theory illustrates that time periodic potentials transfers the electron’s 
energy into a quasi-energy confined within its Brillouin zone	

(−t
º
< 𝜀 < t

º
	),where, 𝑇 is the time period of the spatially homogenous field. 

Therefore, Floquet theory gives a solution of the form: 

 Ψ(𝑥, 𝑡) = 𝑒h�ÐÑ	Φ(𝑥, 𝑡)					 ( 4.2) 

where Φ(𝑥, 𝑡) = Φ(𝑥, 𝑡 + 𝑇), and 𝜀 is the quasienergy or Floquet energy. 

The initial energy spectrum splits into several subbands (Floquet Bloch 
bands) [30][90]. These changes enlighten the possibility of “gapping” in 
quasiparticles[43]. 

     The analogy between graphene in spatial periodic fields and time periodic 
fields can be explained from a mathematical perspective by Floquet theory as it 
forms a linear differential equation as [42]: 

 �̇� = 𝑀(𝑡)𝑥	 ( 4.3) 

where, 𝑀(𝑡) is a 𝑛 × 𝑛 with a period of T piecewise continues function, 

𝑥 is a column vector of length n, however, no need to be periodic but has to be 

of the form: 𝑥 = 𝑒ÔÑ𝐽(𝑡). Where, 𝐽(𝑡) is periodic in 𝑇 and 𝜇 is of nth order. 

Therefore, the wave functions Φ(𝑥, 𝑡) should also be a solution to Schrödinger 
equation: 
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 𝐻¦(𝑡)	Φ(𝑥, 𝑡) = 𝜀	Φ(𝑥, 𝑡)			 ( 4.4) 

where	Φ(𝑥, 𝑡) can be expanded as [10]: 

 Φ(𝑥, 𝑡) = � 𝜑�(𝑥)𝑒h��×Ñ
Ø

�¡hØ

 ( 4.5) 

Using resonance approximation [91] this solution can be expanded with 
exclusion of high frequencies.  The resonance effect results from the rate of change 
in the subsystem–reservoir interaction modes. Since it is not possible to 
accurately calculate the frequency and the lifetime of the resonance, the associated 
eigenfunctions cannot be accurately determined. Thus, an approximation of the 
eigenstates is considered [92]. 

4.3 2D-Dirac Hamiltonian 

Graphene is a zero-gap semiconductor, with low-energies quasiparticles that 
can be describes by Dirac Hamiltonian in equation (3.22). The lattice of graphene 
is a hexagonal lattice (honeycomb lattice) that is made up of two sublattices 
referred to as sublattice A and sublattice B. Both equivalent sublattices are 
associated with cosine-like energy bands that intersect at zero near the boundaries 
of Brillouin zones. Therefore, the energy spectrum in graphene forms two 
canonical sections where the charged carriers’ are in motion which is described by 
2D Dirac equation [5]: 

 Ã�⃗�. Ä𝑝 − 𝐴(𝑡) −	𝐴Â(𝑥)Å + 	𝑈(𝑥)Æ𝜓d,� = 𝑖	𝜕𝜓d,�/𝜕𝑡	 ( 4.6) 

We will consider the units 𝑒 = ℏ = 𝑣µ = 1, where  𝐴(𝑡) is the potential of time 

dependent electric field, 𝐴Â(𝑥) = (𝐴Â(𝑥),𝐴rÂ(𝑥)) is the magnetic potential, and 

𝑈(𝑥) is the static electric field. The special periodic electro-static potential 𝑈(𝑥), 

or the vector magneto-static potential 𝐴Â(𝑥), each should have large periods in 
respect interatomic distance.  

 The electron wave function 𝜓 is represented by two components 𝜓d and 𝜓�, 

referring to the electrons in the two triangular sublattices 𝐴 and 𝐵.  
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 𝜓 = |𝜓d𝜓�
}		 ( 4.7) 

Substituting a solution of the wavefunction using Floquet theory eq. (3.6) 
[93] and the potentials, then by rearranging and cancelling high harmonics terms, 
we end up with an equation of the form: 

𝑀		

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜓d

��

𝜓���

𝜓d�h

𝜓��h

𝜓dh�

𝜓�h�
𝜓dhh
𝜓�hh⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 	𝜀

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜓d

��

𝜓���

𝜓d�h

𝜓��h

𝜓dh�

𝜓�h�
𝜓dhh
𝜓�hh⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ( 4.8) 

Equation (4.14) can be solved for 𝜀O𝑘q, 𝑘rR numerically or analytically if 

high oscillation terms are neglected. The matrix M can be represented by a general 
form as a solution to the 2D equation as the following matrix: 

( 4.9) 

where 𝑘 = 𝑘q − 𝑖𝑘r, hence,  𝑘∗ = 𝑘q + 𝑖𝑘r, 𝐶, 𝐶�&	𝐶ßare constants that can be 

determined by the initial conditions, 𝐴�Â  is the amplitude of the magnetic potential, 

𝑈�is the amplitude of the electric potential, 𝑓 = 𝜇	𝑜𝑟	𝑘� is the frequency of the 

applied potential, 𝐴�is the laser amplitude which in the case of circularly polarised 

laser will be multiplied in the matrix by O1 ± 𝑖𝑒�àR , 𝜔 is the laser frequency, and 

𝜃 is the angle between the laser and the applied field.  

𝜔
2  𝑘 + 𝐶𝑓 𝐶�𝑈� 𝑖𝐶ß𝐴�Â		 0 −|

𝐴�
2 }𝑒

h�ã 0 0 

𝑘∗ + 𝐶𝑓 
𝜔
2  −𝑖𝐶ß𝐴�Â 𝐶�𝑈� −|

𝐴�
2 }𝑒

�ã 0 0 0 

𝐶�𝑈� 𝑖𝐶ß𝐴�Â 
𝜔
2  𝑘 + 𝐶𝑓 0 0	 0 −|

𝐴�
2 }𝑒

h�ã 

−𝑖𝐶ß𝐴�Â 𝐶�𝑈� 𝑘∗ + 𝐶𝑓 
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�ã 0 

0 −|
𝐴�
2 }𝑒
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−𝜔
2  𝑘 + 𝐶𝑓 𝐶�𝑈� 𝑖𝐶ß𝐴�Â		 

−|
𝐴�
2 }𝑒

�ã 0 0	 0 𝑘∗ + 𝐶𝑓 
−𝜔
2  −𝑖𝐶ß𝐴�Â	 𝐶�𝑈� 

0 0 0 −|
𝐴�
2 }𝑒

h�ã 𝐶�𝑈� 𝑖𝐶ß𝐴�Â	 
−𝜔
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0 0 −|
𝐴�
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�ã 0 −𝑖𝐶ß𝐴�Â		 𝐶�𝑈� 𝑘∗ + 𝐶𝑓 
−𝜔
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4.4 Summary 

Charge carriers in graphene are treated as massless Dirac fermions, which are 
described by the 2D Dirac equation. Block theory allows the use of Floquet theory 
to obtain a linear solution for Schrodinger’s equation. Then the resonance 
approximation can be used to obtain the dynamical behaviour and energy 
spectrum in graphene from the solution of Dirac Hamiltonian.   
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 5 Graphene in Laser 
Field  

 

5.1 Energy spectrum in periodic potential 

     The study of electron transport in graphene devices is usually approached 
by studying graphene superlattices. In addition, they allow for electron spectra 
manipulation. Yet, the nanofabrication of graphene superlattices is of a high cost 
and does not provide a perfect tunability in modifying electron spectra. Therefore, 
an analogy was found between electron spectra in graphene superlattices and 
Dirac-fermions spectra in laser field [30]. The application of laser fields to 
semiconducting lattices, such as graphene, creates a band gap structure in 
electron spectra. Moreover, such an effect can be easily controlled. The laser fields 
create a Strack effect in the energy band structure, causing the gap creation [30]. 
Applying different laser frequency or amplitude changes the size and location of 
the gap in the semiconductor.  This is promising in term of obtaining spectra in 
graphene, in each time-dependent or spatial-dependent potential. Moreover, 
provides an analogy to spectra in graphene superlattices [30].  

The next section will show the problem of analytically finding the electron 
spectrum in graphene in both linearly and circularly polarised laser fields (LPL & 
CPL) based on the work done by Savel’s and Alexandrov [30]. Then we will apply 
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the same calculation approach the problem of electron spectrum in graphene in 
SE field.  

The aim of this chapter is to establish the approach to the problems of finding 
the energy spectrum of the electrons in graphene using the 2D Dirac equation 
(3.6), which describes the electrons’ motions in 2D graphene lattice.  

5.2 Graphene in time periodic laser field 

5.2.1 Graphene in linearly polarised laser field LPL 

In the application of LPL field, we will only consider the electric potential, 

as the magnetic field is negligible. Hence, we will consider 𝑈(𝑥) = 0 ,  𝐴Â = 0, and 

the laser time-periodic electric field is 𝐸q(𝑡) = 	−
äd�
äq

 and 𝐸r(𝑡) = 	−
äd�
äÑ

.  In the 

case of LPL, the potential can be of the form [30]: 

 𝐴q(𝑡) = 𝐴� cos(𝜔𝑡)		  &   𝐴r(𝑡) = 0 ( 5.1) 

The frequency of the harmonic field is known to be of the form: 𝜔 = ;t
º

, and 

the electron wave function can be written as two functions [30]: 

 𝜓d,� = 	𝜙d,�(𝑡) expO𝑖𝑘q𝑥 + 𝑖𝑘r𝑦R ( 5.2) 

The function 𝜙d,�(𝑡) only depends on time. Subsitiuting the wave function and 

the potential into the 2D Dirac equation (4.6), we obtain the differential equation: 

𝑖
𝑑
𝑑𝑡 |

𝜙d
𝜙�
} = æ

0 O𝑘𝑥 − 𝐴𝑥(𝑡)R − 𝑖	 v𝑘𝑦 − 𝐴𝑦(𝑡)w

O𝑘𝑥 − 𝐴𝑥(𝑡)R + 𝑖	 v𝑘𝑦 − 𝐴𝑦(𝑡)w 0
ç|𝜙d𝜙�

} ( 5.3) 

𝐴q(𝑡) can be rewritten as:  

 𝐴q(𝑡) = 𝐴�O𝑒�×Ñ + 𝑒h�×ÑR ( 5.4) 
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This is an ordinary differential equation, of the form: �̇� = 𝑀(𝑡)𝑥. Hence, we 

can use Floquet theory to find the solution. The 2 × 2 matrix is: (i) periodic in T 

(as 𝐴q(𝑡) = 𝐴� cos(𝜔𝑡) and 𝜔 = ;t
º

), (ii) piecewise continues function (as 𝐴(𝑡) =

|
𝐴q
𝐴r
}	) . On the other hand, 𝜙d,� has to be of the form 𝑒ÔÑ𝐽(𝑡). Therefore, we can 

consider a general standing wave oscillating in a quantum system travelling 
through a harmonic potential (resonance approximation [30]): 

𝜙d,�(𝑡) = 	 𝑒�ÐÑ 	|𝐷d,�� 	𝑒
�éê
a + 𝐷d,�h 	𝑒

ë�éê
a + 𝐷d,�� 	𝑒

ì�éê
a + 𝐷d,�h 	𝑒

ëì�éê
a ……}      ( 5.5) 

where, 𝐷d�, 𝐷��,𝐷dhand 𝐷�h are four variables associated with the waves 

travelling direction (𝑒
�éê
a  to the right and 𝑒

ë�éê
a  to the left). 

 To find an analytical solution we ignore all terms with fast oscillations which 

are all terms with 𝑛 > ±1	(e.g. 𝑒
±ì�éê
a , 𝑒

±ï�éê
a … ), therefore, 

 𝜙d,�	(𝑡) = 	 𝑒�ÐÑ 	|𝐷d,�� 	𝑒
�×Ñ
; + 𝐷d,�h 	𝑒

h�×Ñ
; } ( 5.6) 

Substituting (5.4) and (5.6) that into equation (5.3) we will obtain four 
equations such as: 

 𝐷d� v
𝜔
2 − 𝜀w +	𝐷�

� v−O𝑘q − 𝑖𝑘rRw +	𝐷dh(0) +	𝐷�h |
𝐴�
2 } = 0 ( 5.7) 

 𝐷d�(0) +	𝐷�� |
𝐴�
2 } +	𝐷d

h v
𝜔
2 − 𝜀w + 𝐷�

h v−O𝑘q − 𝑖𝑘rRw = 0 ( 5.8) 

 𝐷d� v−O𝑘q + 𝑖𝑘rRw +	𝐷�� v−
𝜔
2 − 𝜀w + 𝐷d

h |
𝐴�
2 } +	𝐷�

h(0) = 	0 ( 5.9) 

 𝐷d� |
𝐴�
2 } +	𝐷�

� v−
𝜔
2 − 𝜀w + 𝐷d

h v−O𝑘q + 𝑖𝑘rRw +	𝐷�h v
𝜔
2 − 𝜀w = 	0 ( 5.10) 
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We can combine these four equations to produce a four by four matrix 𝐿: 

 

⎣
⎢
⎢
⎢
⎡ −𝜔/2 −O𝑘q − 𝑖𝑘rR
−O𝑘q + 𝑖𝑘rR −𝜔/2

0 															𝐴�/2
𝐴�/2 															0

0 															𝐴�/2
𝐴�/2 																0

𝜔/2 −O𝑘q − 𝑖𝑘rR
−O𝑘q + 𝑖𝑘rR 	𝜔/2 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡𝐷d

�

𝐷��
𝐷dh
𝐷�h⎦
⎥
⎥
⎤
= 	𝜀	

⎣
⎢
⎢
⎡𝐷d

�

𝐷��
𝐷dh
𝐷�h⎦
⎥
⎥
⎤
 ( 5.11) 

This is simply an eigen value problem that can be solved by setting the 
determinant equal to zero: 

 det[𝐿 − 𝜀] = 0 ( 5.12) 

Therefore [30], 

 𝜀 = ±ó
𝜔; + 𝐴�;

4 + 𝑘; ± °𝑘;𝜔; + 𝐴�;𝑘q; ( 5.13) 

where 𝑘; = 𝑘q; + 𝑘r; and 𝐴� can be defined at t=0.  

Taking each sign at a time (± inside and outside the square root), this equation 
will produce four energy spectra (FIG 5.1). 

The given spectra (FIG 5.1 & 5.2) show two upper bands representing the hole 
states and two lower bands for the electron states. The spectrum shows 2 Dirac 

points along the 𝑘q axis where the cones change size with different laser 
parameters without a gap opening at any case.  
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(a) 

 
       (b)            (c) 

Figure 5.1 2D Electron spectra for SLG 𝜀(𝑘q, 𝑘r) in LPL fields with units of 𝜋/𝑇 

considering (a) 𝜔 = 1 and 𝐴� = 1 (a) showing the gapless spectra at (𝑘r =

0)	where the hole states in the upper bands and electron states in the lower 
bands have no gap, the figure shows that changing the laser parameter only 

affect the size of the cone however does not allow a gap opening (b) 𝜔 = 0.5 or 

𝐴� = 0.5 (c)	𝜔 = 1.5 or 𝐴� = 1.5.  
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(a)  

(b)  

Figure 5.2  𝜀(𝑘q, 𝑘r) in 3D plot for SLG in LPL field  

(a) the upper bands are hole states and the lower 
bands are electron states touching in 2 Dirac points 
with no gap opening (b) showing the two Dirac cones 
to be ellipses near with single Dirac points for each 

cone (𝜔 = 1 and 𝐴� = 1 in units of 𝜋/𝑇). 

 

5.2.2 Graphene in circularly polarised laser field CPL 

Applying a CPL field will result in a duality between the electrical and the 
magnetic field hence it cannot be neglected. Therefore, we will consider a laser 
field that is arbitrary polarised [62]:  

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

ky

kx

-2.145

-1.854

-1.564

-1.274

-0.9844

-0.6943

-0.4043

-0.1143
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𝐴q(𝑡) = vdô
√;
w cos(𝜔𝑡)	and 𝐴r(𝑡) = vdô

√;
w cos(𝜔𝑡 + 𝜑) ( 5.14) 

or 𝐴q(𝑡) = v dô
;√;
w O𝑒�×Ñ + 𝑒h�×ÑR and 𝐴r(𝑡) = v dô

;√;
w O𝑒�(×Ñ�à) + 𝑒h�(×Ñ�à)R, ( 5.15) 

𝐴q(𝑡) = 𝛽O𝑒�×Ñ + 𝑒h�×ÑR and  𝐴r(𝑡) = 𝛽O𝑒�(×Ñ�à) + 𝑒h�(×Ñ�à)R   ( 5.16) 

where 𝛽 = dô
;√;

 Then, by using the same 𝜙d,�	(𝑡) as in equation (5.7) and the 

same approach from the previous calculation we will find: 

 

⎣
⎢
⎢
⎢
⎡ −𝜔/2 −𝑘q + 𝑖𝑘r
−𝑘q − 𝑖𝑘r −𝜔/2

0 		𝛽 − 𝑖𝛽𝑒�à

𝛽 + 𝑖𝛽𝑒�à 															0
0 𝛽 − 𝑖𝛽𝑒h�à

		𝛽 + 𝑖𝛽𝑒h�à 																0
𝜔/2 −𝑘q + 𝑖𝑘r

−𝑘q − 𝑖𝑘r 	𝜔/2 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡𝐷d

�

𝐷��
𝐷dh
𝐷�h⎦
⎥
⎥
⎤
= 	𝜀	

⎣
⎢
⎢
⎡𝐷d

�

𝐷��
𝐷dh
𝐷�h⎦
⎥
⎥
⎤
 ( 5.17) 

If the determinate is set equal to zero, then we will find: 

 𝜀 = ±ö
𝜔; + 𝐴�;

4
+ 𝑘; ± ó𝑘; §𝜔; +

𝐴�;

2
© + 	𝑆(𝜑)	 ( 5.18) 

where 𝑆(𝜑) = 𝐴�÷ sin; v
à
Mø
w + 𝐴�;𝑘q𝑘r cos(𝜑). FIG 4.3 shows the energy spectrum 

at a chosen phase shift 𝜑.  

 
Figure 5.3 2D Electron spectra for SLG 

𝜀(𝑘q, 𝑘r) in CPL fields for a chosen phase shift 

 𝜑 = 𝜋/2 with units of 𝜋/𝑇, considering (a) 

𝜔 = 1 and 𝐴� = 1, showing the gapped band 

structure at 𝑘r = 0,	where the hole states in the 

upper bands and electron states in the lower 

bands with no gap.  
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        (a)       (b) 

Figure 5.4 𝜀(𝑘q, 𝑘r) in 3D plot for SLG in CPL field for a chosen phase shift 

𝜑 = 𝜋/2, where the upper bands are hole states and the lower bands are 

electron states with a gap opening in between (b) showing the spectrum to 

form a single circular structure (𝜔 = 1 and 𝐴� = 1 in units of 𝜋/𝑇). 

 

The spectrum forms a gapped structure where the conduction and the 
valence bands are in off state. Changing the laser parameters does not allow a 
touching point. As the laser in this case is circularly polarised, it combines two 
types of potentials: electrostatic and magnetostatic. This combination allows 
quasi-isotropic gap in the energy spectrum [5][9]. 

The solution function 𝜙d,�(𝑡) (eq. 5.7), can be expanded to higher terms like 

of the order with 𝑛 > ±3, so: 

𝜙d,�(𝑡) = 	 𝑒h�ÐÑ 	|𝐷d,���	𝑒
_�×Ñ
; + 𝐷d,��h	𝑒

�×Ñ
; + 𝐷d,�h�	𝑒

h�×Ñ
; + 𝐷d,�hh	𝑒

h_�×Ñ
; } ( 5.19) 

 
Such consideration will give a bigger matrix. In the LPL application the matrix 

is of the following form:  

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

ky

kx

-2.332

-2.062

-1.792

-1.522

-1.252

-0.9815

-0.7114

-0.4413
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( 5.20) 
While in the application of the CPL filed the matrix is given by:  
 

 ( 5.21) 
 

3𝜔
2  𝑘q − 𝑖	𝑘r 0 −𝐴�

2 		 0 0 0 0 

𝑘q + 𝑖	𝑘r 3𝜔
2  

−𝐴�
2 		 0 0 0 0 0 

0 −𝐴�
2 		 

𝜔
2  𝑘q − 𝑖	𝑘r 0 −𝐴�

2 	 0 0 

−𝐴�
2 		 0 𝑘q + 𝑖	𝑘r 

𝜔
2  −𝐴�

2 		 0 0 0 

0 0 0 −𝐴�
2 		 

−𝜔
2  𝑘q − 𝑖	𝑘r 0 −𝐴�

2 		 

0 0 
−𝐴�
2 	 0 𝑘q + 𝑖	𝑘r 

−𝜔
2  −𝐴�

2 	 0 

0 0 0 0 0 −𝐴�
2 	 

−3𝜔
2  𝑘q − 𝑖	𝑘r 

0 0 0 0 −𝐴�
2 		 0 𝑘q + 𝑖	𝑘r −3𝜔

2  

 

3𝜔
2  𝑘q − 𝑖	𝑘r 0 

−𝐴�
2√2

		O1

− 𝑖𝑒�𝜑R 
0 0 0 0 

𝑘q + 𝑖	𝑘r 3𝜔
2  

−𝐴�
2√2

		O1

+ 𝑖𝑒�𝜑R 
0 0 0 0 0 

0 

−𝐴�
2√2

		O1

− 𝑖𝑒h�𝜑R 

𝜔
2  𝑘q − 𝑖	𝑘r 0 

−𝐴�
2√2

		O1

− 𝑖𝑒�𝜑R 
0 0 

−𝐴�
2√2

		O1

+ 𝑖𝑒h�𝜑R 
0 𝑘q + 𝑖	𝑘r 

𝜔
2  

−𝐴�
2√2

		O1

+ 𝑖𝑒�𝜑R 
0 0 0 

0 0 0 

−𝐴�
2√2

		O1

− 𝑖𝑒h�𝜑R 

−𝜔
2  𝑘q − 𝑖	𝑘r 0 

−𝐴�
2√2

		O1

− 𝑖𝑒�𝜑R 

0 0 

−𝐴�
2√2

		O1

+ 𝑖𝑒h�𝜑R 
0 𝑘q + 𝑖	𝑘r 

−𝜔
2  

−𝐴�
2√2

		O1

+ 𝑖𝑒�𝜑R 
0 

0 0 0 0 0 

−𝐴�
2√2

		O1

− 𝑖𝑒h�𝜑R 

−3𝜔
2  𝑘q − 𝑖	𝑘r 

0 0 0 0 

−𝐴�
2√2

		O1

+ 𝑖𝑒h�𝜑R 
0 𝑘q + 𝑖	𝑘r −3𝜔

2  
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The eigen-energies given by the determinant of (5.20) & (5.21) show a 
repeated periodic structure in the energy spectrum (FIG 5.5). 

 
      (a)              (b) 

Figure 5.5 2D Electron spectra for graphene in laser fields with units of 𝜋/𝑇 

considering 𝜔 = 1 and 𝐴� = 1 for a higher approximation for Floquet waves 

(a) Electron spectrum for graphene in LPL (𝑘r = 0). 𝜀(𝑘q, 𝑘r) shows the hole 

states in the upper bands and electron states in the lower bands with no gap. 

(b) The energy spectrum for graphene in CPL field with phase shift 𝜑 = 𝜋/2. 

The spectrum has a gap band at all laser parameters. 

5.3 Graphene in spatially periodic field 

In this part, we will apply a spatially periodic potential to a graphene lattice. 
We will consider a static potential of the form:  

 𝑈(𝑥) = 	𝑈� cos( 𝑘�𝑥)	  ( 5.22) 

Considering 𝐴(𝑡) = O𝐴q, 𝐴rR = 0 and 𝐴Â(𝑥) = 	0, with a wavefunction of the 

form: 

 𝜓 = |𝜓d𝜓�
} = |𝜙d

(𝑡)
𝜙�(𝑡)

} 𝑒���q����r  ( 5.23) 

We substituted (5.22) and (5.23) into the 2D Dirac equation (4.6), and hence 
obtained: 

 | 𝑈� cos(𝑘�𝑥) −𝑖(𝜕/𝜕𝑥) − 𝜕/𝜕𝑦
−𝑖(𝜕/𝜕𝑥) + 𝜕/𝜕𝑦 𝑈� cos(𝑘�𝑥)

} |𝜙d𝜙�
} = 𝑖

𝑑
𝑑𝑡 |

𝜙d
𝜙�
} ( 5.24) 
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To obtain a solution, we use Bloch wave function and resonance 
approximation to find the electron energy spectrum [64]:   

 𝜙d,� = 𝑒�ÐÑ����q����r |𝜓d,�� 	𝑒
��ôq
; + 𝜓d,�h 𝑒

��ôq
; } ( 5.25) 

where, 𝜓d� is a component of the electron wave function, resembles the 

sublattice 𝐴 and the direction +.  

From there, we will have four equations that can be represented by the matrix 
equation: 
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    ( 5.26) 

Solving this as an eigenvalue problem gives an energy spectrum of the form: 

𝜀 = ±ó𝑘; + �ôa�ùôa

÷
	± °𝑘q;𝑘�; + 𝑘;𝑈� −

_�ôaùôa

ú
	  ( 5.27) 

The spectra of the SLG at 𝑘r = 0, shows gapless Dirac cones (Figure 5.6). 

Applying the SE filed with different frequency or different amplitude does not 
introduce a gap in the band structure.   

 

Figure 5.6 𝜀(𝑘q, 𝑘r) for SLG in a SE field shows gapless Dirac cones  

considering 𝜔 = 1, 𝐴� = 1, 𝑘� = 1 and 𝑈� = 1 at 𝑘r = 0 
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In BLG, the method of applying a vertical-external electric field has been 
found to be one of the most effective theoretical and experimental methods, which 
preserve the graphene’s structure and thus the electrons’ mobility, and results in 
a gap opening in the spectrum. The vertical electric field breaks the symmetry 
inversion and can introduce a tunable gap up to 0.25 eV in BLG[17]. However, 
applying the same method to SLG does not result in an energy gap formation 
because the two sublattices in the monolayer structure remain equivalent [17].   

5.4 Summary 

     We investigated the gap opening in SLG in three cases; 1-lineraly polarised 
laser LPL, 2- circularly polarised laser CPL, and 3- static electric field SE. A 
general conclusion has been drawn from the investigation in the application of the 
laser field. The polarization of the laser determines the gap opening in the 
graphene spectrum.   

In the application of laser field, the polarization of the laser is found to be the 
key difference to the gapped band structure. The LPL produces an anisotropic 
gapless energy spectrum [81], however permits an alteration to Dirac’s cone shape 
and Dirac points positions. In contrast, the CPL field produces a graphene 
spectrum with a wide isotropic gap [30]. 

 The obvious limitation of both cases are that each case allows only one option 
of gap structure without providing the transfer form gapless to gapped spectrum 
(and vice versa). So, it has been demonstrated theoretically that applying a laser 
field (an electromagnetic field) to graphene produces a band structure that 
depends on the polarization of the applied filed.  
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 6 Electron States in 
Magnetic Field 

 

6.1 The effective Hamiltonian of graphene in 
magnetic field 

The application of quantized magnetic fields to graphene has allowed the 
realisation of massless Dirac fermions and the discovery of anomalous QHE 
[31][41]. This section provides a brief introduction to graphene’s electrical 
properties in magnetic field. Next it theoretically examines SLG in time periodic 
magnetic field, and then SLG in static magnetic field with the application of 
linearly polarised laser to draw a conclusion. 

In massless Dirac fermions, if a uniform magnetic field 𝑩 is applied then 
the fermions will have eigen energies of [41]: 

 𝐸�± = 	±ℏ𝜔^√𝑛 ( 6.1) 

where, 𝜔^ is the cyclotron frequency = |ü|𝑩
ß^

 and 𝑛 = 0,1,2… 
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This results in a number of levels, which is referred to as Landau levels. 
They are known to be the discrete energy of electron moving in two dimensions 
under the application of magnetic field [94].  

In graphene, if a magnetic field is applied to the crystal, then	𝑩 usually have 

a magnetic length 𝑙� much larger than the interatomic distance 𝑎, where 𝑙� =

	° ℏ^
|ü|𝑩

. Generally only 𝜋 electrons are taken into consideration while looking at 

the transition of carriers in graphene, with the assumption that there is no 

hopping within each sublattices, hence, no crossing between electrons 𝐴 and 

electrons 𝐵. Therefore, the effective Hamiltonian is taken with respect of the 

hopping parameter 𝒕 [41]: 

 𝐻¦üþþ = 𝒕(𝜋ÿ) ( 6.2) 

The operator 𝜋ÿ  can be found in the original Hamiltonian of a magnetic field 
applying on Bloch states [41]: 

 𝐻¦ =
𝜋ÿ;

2𝑚 + 𝑉(𝑟) ( 6.3) 

Thus, 

 𝜋ÿ; = �̂� −
𝑒
𝑐 𝐴 ( 6.4) 

The operator can be represented as [41]: 

 𝜋ÿh = 	𝜋ÿq − 𝑖	𝜋ÿr  and  𝜋ÿ� = 	𝜋ÿq + 𝑖	𝜋ÿr ( 6.5) 

 where, Ä𝜋ÿq, 𝜋ÿrÅ = 	−	Ä𝜋ÿr, 𝜋ÿqÅ =
�ü
ℏ^
𝑩	    ( 6.6) 

The effective Hamiltonian then can be found to be of the form [41]: 

 𝐻 = 𝑣µ |
0 𝜋ÿh
𝜋ÿ� 0 } ( 6.7) 
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The application of a magnetic field alone does not affect the symmetry of 
graphene lattice between electron states and hole states. However, in the case of 
high magnetic fields, an energy gap can be formed within Landau levels due to 
either: (i) spin splitting; or (ii) sublattice symmetry breaking, where the 
introduced gap is either a consequence of magnetic interaction or many-body 
entanglement [94] [95]. In general, magnetic field causes a shift to the Landau 
levels [94].  

6.2 Graphene in a time-periodic magnetic field 

     The same approach again can be used in the case of time periodic 
magnetic potentials in x and y given as: 

 𝐴qÂ(𝑥) = 𝐴�Â cos(𝜃) cos(𝜔𝑡)    , 𝐴rÂ(𝑥) = 𝐴�Â sin(𝜃) cos(𝜔𝑡) ( 6.8) 

In this case, we can seek a solution of the form: 

Ψd,� = 	 𝑒ü
�"ê#�$��#�$�� 	|𝜓d,���	𝑒

ì�éê
a + 𝜓d,��h	𝑒

�éê
a + 𝜓d,�h�	𝑒

ë�éê
a + 𝜓d,�hh	𝑒

ëì�éê
a }    ( 6.9) 

Applying the potential along two axes in equation (4.6) make finding 
an analytical solution for the energy spectrum more complicated, however, 
a numerical solution has been found in (Figure 6.1) as the determinant of 
the following 8 by 8 matrix: 



 59 

( 6.10) 

 

 
 
Figure 6.1 Electron spectrum for graphene in time-periodic magnetic field 

In units of 𝑘q = 2:−2	, 𝑘r = 0	,𝜔 = 1	, 𝐴�Â = 1	, 𝜃 = t
;
  showing gapless structure   

 

Although the application of an external magnetic field causes a deformation 
in the energy band structure, it can be found that gap opening is not achieved at 
the zero states as they are topologically protected. The change in band structure 
in the case of time dependent fields is related to the change in the periodicity of 
the Bloch amplitude, which evolves under the application of external fields. A 
minor change in the width of the band could accrue because of the speed of the 
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time dependence which causes a small change in the probability of inter-band 
transition.  

6.3 Graphene superlattice in static magnetic field 

6.3.1 SLG in linear laser and static magnetic field 

     In the second case we will consider a static magnetic field applied vertically 

on the graphene sheet. The laser will be applied with a chosen angle 𝜃 in respect 
to the static field. The graphene’s electron state can be considered as: 
  

 
Ψ = 𝑒h�ÐÑ����q����r ¼𝜓d,���	𝑒

�×Ñ
; ��Ôq; + 𝜓d,��h	𝑒

�×Ñ
; h�Ôq; + 𝜓d,�h�	𝑒

h�×Ñ
; ��Ôq;

+ 𝜓d,�hh	𝑒
h�×Ñ
; h�Ôq; ½ 

 
( 6.11) 

Then we apply a static magnetic potential 𝐴Â, in the y direction with 𝐴�Â  

amplitude and 𝜇Â  frequency of the form: 

 𝐴Â(𝑥)q = 0	, 𝐴Â(𝑥)r = 𝐴�Â cos(𝜇𝑥) ( 6.12) 

With the linearly polarised laser: 

 𝐴(𝑡)q = 𝐴� cos(𝜃) cos(𝜔𝑡) 	𝑎𝑛𝑑	𝐴(𝑡)r = 𝐴� sin(𝜃) cos(𝜔𝑡) ( 6.13) 

where 𝜔 = 1, 𝐴� = 1 , 𝐴�Â = 1	&	𝜇 = 1 with units of 𝜋/𝑇 at chosen phase shifts. 
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Figure 6.2 Schematic representation of the orientation set up 
for graphene in linearly polarized laser field applied in addition 
to an external spatially periodically modulated magnetic field 
which is applied perpendicular to the graphene sheet. The 
polarisation of the laser field is applied at a chosen incidence 

angle 𝜃 with respect to the orientation of the static field 

 
Solving Dirac equation in the same proposed steps in model section 

equation (4.6), gives the an 8 × 8 matrix (equation 6.14), which determent can 

be found numerically to find the gapless energy spectrum 𝑘r = 0 (Figure 6.3).  

The structure shows 3 Dirac points when the laser is perpendicular but then it 

shows a different structure if we change 𝜃. Therefore, the spectrum needs to be 
investigated as the laser’s parameters change. 

Laser field 

Magnetic field 

Graphene sheet 

𝜃 
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( 6.14) 
 
 

          
        (a)                        (b) 

Figure 6.3 𝜀O𝑘q, 𝑘rR of SLG in the application of LPL field with a SPM field  

in the units of 𝜋 𝑇⁄ , considering 	for a chosen orientation	𝜃 = 0. (a) At,	𝜔 =

1, 𝜇Â = 1, 𝐴�Â = 1 and 𝑘r = 0 the spectrum shows no gap across 𝑘q  axis (b) 

different low-band structure across 𝑘q  axis with no Dirac cones or points 

for 𝐴�Â = 1.1, 𝐴� = 1.3, 𝜔 = 2.2	&	𝜇 = 2.3. 
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6.3.2 Graphene spectrum in laser rotation  

To investigate the effect of the laser orientation we applied the laser in 
different angles holding the other parameters the same. Consequently, the 
orientation of Dirac points changed with similar angle to that of the laser’s 

(Figure 6.4). It shows the contour plot of the low-energy spectrum 𝜀O𝑘q, 𝑘rR 

taken in the vicinity of each K and K’ points of the Brillouin zone for a single 
layered graphene in the perpendicular periodically modulated magnetic field 

and a linear polarised laser field tilted at different angles 𝜃 with respect to each 

other. The contour plot of the energy spectrum when 𝜃 = 0 show the symmetry 

axes of the spectrum to be horizontally oriented parallel to 𝑘q axis which 
coincides with the polarisation of the electromagnetic laser field. As we rotate 

the laser field polarisation on 𝜃 = 𝜋/4	or 𝜋/2 angle, the Weyl Dirac points of the 
spectrum also rotates (see, panels b-e in Figure 6.4). 

 

 
Figure 6.4 Electron spectrum 𝜀(𝑘q, 𝑘r) in graphene in linearly polarized 

laser field with spatially periodic magnetic field with different orientations 

(a)	𝜃 = 0  (b) 𝜃 = 𝜋 6⁄ . (c) 𝜃 = 𝜋 4⁄ . (d) 𝜃 = 𝜋/6. (e)  𝜃 = 𝜋/2. Showing the 
energy spectrum rotating with the magnetic field by the same angle without 

any change in the number of Dirac points. (considering 𝜔 = 1, 𝜇 = 1, 𝐴� =

1 and 𝐴�Â = 1 in units of 𝜋 𝑇⁄ ). 
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(a) 

  
      (b)                                           (c) 

Figure 6.5 A three-dimensional plot and its cross sections of the energy 

spectrum 𝜀O𝑘q, 𝑘rR of a SLG obtained in LPL field together with SPM field. 

The spectrum obtained with the parameters: 𝜔 = 1, 𝜇Â = 1 and 𝐴�Â = 1 for 

chosen fields orientations. (a) the spectrum shows two Dirac-Weyl points 

associated with Dirac cones and one highly anisotropic gapless point at 𝜀 =

0, corresponding both,  𝑘q = 0   and 𝑘r = 0.	    These two Dirac-Weyl points 

shifted in the  𝑘q  direction correspond to the creation of the monopole and 
the anti- monopole in the energy spectrum and are topologically protected. 
(b) we see this cross section while on the plot (c) we present the cross 

section of the spectrum taken at 𝑘q = 0.  

 
 

 The static magnetic field is always applied perpendicular to the graphene 
sheet. Usually we should expect Landau Quantisation here and Landau spectrum 
consisting of Landau Levels if the spatial modulation period is very large. 
However, in additional linear polarised laser field and in the static field with the 
periodic spatial modulation the low energy spectrum from a first glance we see 

three Dirac points oriented parallel to 𝑘q axes, when the wave vector 𝑘r = 0 (see, 

the Figure 6.4).  It is clear that this “tripling” is related to the spatial modulation 



 65 

of the magnetic field in x- direction which is   creating domain walls parallel to 
the y- axes. However, a more precise inspection of this part of energy spectrum 
in the vicinity of the zero energy reveals that we have here two Dirac-Weyl points 

and one highly anisotropic gapless Dirac-like point at 𝜀 = 0, corresponding to 

both,  𝑘q = 0   and 𝑘r = 0.	     

The two Dirac-Weyl points shifted in the  𝑘q direction correspond to the 
creation of the monopole and the anti- monopole in the energy-momentum space 
having the form of Dirac cones in the vicinity of the zero energy. When these 
cones are separated in the momentum space they are topologically protected, and 
we cannot create a gap in the spectrum. But they can annihilate each other when 
you will be located at the same place and there an energy bandgap can be created. 
Note that the original Dirac point (in our notation here it is located at K or K’ 

points of the Brillouin zone but at the values,  𝑘q = 0   and 𝑘r = 0) is now strongly 

deformed and lost its linear character along  𝑘q    direction.  

The formation of the two Dirac-Weyl singularities in the vicinity of the K 
and K’ points is a result of the dynamical topological phase transition created by 
an application of the both periodically modulated spatial and dynamical laser 
field. The position of these two Dirac-Weyl points can be rotated by the changes 
of the angle between the laser field polarisation and the direction of the applied 
field of the periodic spatial modulation, see the Figure 6.3, where for an 
illustration the calculations have been done with the values of the parameters: 

𝜔 = 1, 𝜇Â = 1 and 𝐴�Â = 1. From this Figure 6.4 we see that when the polarisation 

direction changes by 𝜋/2 the position of these two Weyl-Dirac points is 
perpendicular to their original orientation, when the direction of the laser field 
polarisation and of the modulated field coincide (see, the Figure 6.5).  

Therefore, Dirac points rotates by angle equals to the laser rotation angle 

𝜃, as we indicated before. The Figure 6.6 shows that the rotation of Dirac points 
does not fit a perfect circle (position wise) but it does in term of angles. The 

following plot represents Dirac points coordinates in 𝑘q&	𝑘r as the laser rotates 

a full circle (data in the table below). It can be argued that the energy solution is 
polarised in pseudospin by the direction of the magnetic field[41]. 
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Table 6-1 The coordinates of the side Dirac points in Figure 6.5-a as a function of 𝜃. 

𝜃 𝑘q 𝑘r 

0 1 0 

30 0.8261 0.4783 

45 0.6818 0.6818 

60 0.5 0.8636 

90 0 1 

120 -0.5 0.8636 

135 -0.6818 0.6818 

150 -0.8261 0.4783 

180 -1 0 

210 -0.8261 -0.4783 

225 -0.6818 -0.6818 

240 -0.5 -0.8636 

270 0 -1 

300 0.5 -0.8636 

315 0.6818 -0.6818 

330 0.8261 -0.4783 

360 1 0 

 
 

 
Figure 6.6 The rotation of Dirac points positions in Table 6-1 in laser rotation 
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6.3.3 Graphene spectrum at different laser frequencies 

Similarly, the SPM field is theoretically applied vertically to the graphene 

sheet, and the LPL is applied with a chosen angle 𝜃 in respect to the static field. 

The spectrum near 𝜀 = 0, forms three zero energy points when the laser 

frequency is 𝜔 = 1. Applying different frequency causes the spectrum to split in 
various ways causing changes in numbers of Dirac points and shapes of Dirac 
cones (see Figure 6.7). To determine these changes, the shapes, types and 

numbers of the cones have to be analysed as 𝜔 changes.  

 
Figure 6.7 The energy spectrum of SLG in the 
application of SPM and LPL as laser frequency changes  

considering 𝜔 = 1, 𝜇 = 1, 𝐴� = 1 and 𝐴�Â = 1 in units 

of 𝜋 𝑇⁄  

 
The side cone in (Figure 6.7) has been found to form an elliptical shape at 

all 𝜔 sittings (Figure 6.8). To examine how the cone change/maintain shape as 
it expands we have measured the aspect ratio of a number of ellipses among the 
cone. The figure below shows a side ellipse expansion to be having the same 
anisotropy with a shared centre point (Figure 6.9).  
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   (a)             (b) 

Figure 6.8 The linear cross section of the energy spectrum 
for low and high laser frequencies (a & b respectively) 

 

 
Figure 6.9 The cross area of the side elliptical cone  

having a fixed anisotropy of 𝛼 = 2.1 for 4 ellipses 
with a shared origin point (1,0) representing the 
spread of a cone 

 

For instance, at 𝜔 = 1, the side ellipse has a vertical orientation with an 

origin point O𝑘q, 𝑘rR = (1.0), which is the zero energy point at this case. Vertical 

ellipses have a Cartesian equation of: q
a

(
+ ra

`
= 1. In momentum space we will 

consider the vertical ellipse equation to be  ��
a

(
+ ��a

`
= 1. The core ellipse has an 

equation of  ��
a

�.�)
+ ��a

�.M)
= 1, with foci 𝐹�Mand 𝐹�;. The foci length c is given by 𝑐; =

𝑎; − 𝑏;, and the aspect ratio 𝛼 = `
(
. The ellipse in this case has the anisotropy of 

𝛼 = �.M)
�.�)

= 2.1, which can be written as 2.1: 1 as the aspect ratio of a circle is 1: 1.  
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To determine wither this ellipse represents a cone, the ellipses have to 
maintain the same aspect ratio as we move away from zero energy. So, as the 

cone spreads, the anisotropy of the ellipses was found to be fixed to 2.1: 1 (Table 
6.2). This means that this is a cone. As the frequency increases the cones get 
sharper (Figure 6.10), hence the aspect ratio increases (Table 6.3). 

 
 

Table 6-2 The major axis, minor axis, foci length and aspect ratio, 

for the side ellipse showing fixed 𝛼 for different cones 

𝜔 a b c 𝛼 

1 

0.1951 0.0976 0.169 2.1:1 

0.439 0.2195 0.3802 2.1:1 

0.6098 0.3049 0.5281 2.1:1 

0.7317 0.3659 0.6337 2.1:1 
 

 

 
Figure 6.10 The aspect ratio of the side Dirac cone as a function of laser 

frequency in LPL and SPM 

 
 

Table 6-3 The aspect ratios 𝛼 for the side cone at different laser’s frequencies 

𝜃 0° 

𝜔 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 

𝛼 1 1.1 1.3 1.5 1.7 1.9 2.1 3.1 
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On the other hand, the middle cone in Figure 6.7 can be seen to exhibit 

some transformations as the laser frequency changes. Starting at 𝜔 = 1, the 
middle cone can be seemed to be forming a quadratic curve than can be 

described as a Cassini oval. This single loop has two fixed foci points (±𝐴, 0), 
and the product of the distance from any point on the spectrum to the foci’s is 

fixed by the value 𝐵;. The curve has an equation of the form: O(𝑘q − 𝐴); +

𝑘r;RO(𝑘q + 𝐴); + 𝑘r;R = 𝐵;. By 𝜀O𝑘q, 𝑘rR = 0.  

The type of these cones have been identified by taking linear cross sections 

across the spectrum at different laser frequencies. For 𝜔 = 1, the side cone 
forms a Dirac cone, with a single Dirac point. The middle cone however is 
parabolic as the conduction and the valence bands touch in a line as we zoom in 

across 𝑘q axis (refer to Figure 6.11). The cut along the 𝑘r axis in Figure 6.9 

confirms that the band is parabolic at (𝑘q, 𝑘r) = (0,0) and 𝜔 = 1. Near the zero-

energy point 𝜀 = 0 at 𝑘q = 𝑘r = 0, the spectrum no longer forms a cone since it shows 

parabolic dependence on momentum for the energy cross-section at 𝑘r = 0 and linear 

like dependence for the energy cross section at 𝑘q = 0. This can be interpreted as 

divergence of anisotropy 𝛼 when 𝑘q tends to zero. 
The splitting and change of shape in the spectrum in different frequencies 

can be associated with Cassini ovals as the following. For small frequencies 𝜔 <

0.5, the spectrum forms two Cassini ovals, with fixed foci points 𝑃 and 𝑃′ at 
(±0.5,0). However, B is different for each 𝜔. At 𝜔 = 0.1, 𝐵 = 0.45 which is 

smaller than 𝐴 indicating that the shape of the ovals is going to consist of two 

loops (Figure 6.12). Then as 𝜔 is increased 𝐵 will increase to become 𝐵 = 0.48	 ≈

𝐴 at 𝜔 = 0.3 forming the shape of lemniscate of Bernoulli. When 𝜔 = 0.5, then 

𝐵 = 0.8 which is larger than 𝐴, so the spectrum will be one loop of Cassini oval. 

For higher 𝜔, the spectrum is split to three ovals, where the middle oval is 

Cassini oval, with varying foci points and shape as 𝜔 changes. 
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  (a) 

  
       (b)                  (c) 

Figure 6.11 The cut line of the middle oval in the energy 
spectrum for graphene in linear laser and static magnetic field. 
 (a) shows the middle cone in the energy spectrum (b) a 
zoomed plot of the middle cone showing the upper and the 

lower bands to be parabolic (c) the cut of the oval along the 𝑘r 

axis at 𝑘q = 0, confirming that the connection between the 
bands is a line. Thus in (a) the spectrum has a parabolic-type 

dependence in 𝜀 ∝ 𝑘q; and in (b) shows linear-type dependence 

𝜀 ∝ |𝑘r	|. This indicates infinite anisotropy at 𝑘q = 𝑘r = 0. 
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Figure 6.12 Cassini ovals in the energy spectrum of SLG in the application of 

SPM and LPL with different laser frequencies 𝜔 

 
As Cassini ovals change in numbers, shapes and positions, the foci points of 

the Cassini ovals also change with the frequency as in Figure 6.12. For 𝜔 ≤ 0.5, 

the foci points are the middle points between Dirac points, and for 𝜔 > 0.5, Dirac 
points represents the foci points of Cassini ovals.  So, the transition point is at 

the frequency where the two loops split into three loops at 𝜔 > 0.5. For all 𝜔 ≠

1, the spectrum has 4 Dirac points and 4 Dirac cones. At 𝜔 = 1, the spectrum 
has three Dirac cones with three Dirac points.  
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Figure 6.13 The positions of Cassini ovals foci points and Dirac points for 

different frequencies. 

 

6.3.4 Graphene spectrum in different laser amplitude  

The energy spectrum of SLG has been investigated in SPM and LPL with a 
range of laser amplitudes.  Applying a laser with a small amplitude causes a gap 
opening in the centre of the spectrum (Figure 6.14-a). As the amplitude increases 

the gap becomes narrower until it reaches zero point at 𝐴� = 1. Before this point 

the spectrum has two Dirac cones/points, and at 𝐴� = 1 Dirac points become 

three, then for 𝐴� > 1 we see four Dirac points. Dirac points move apart from 
the centre as the amplitude increases (Figure 6.14-b). The spectrum has been 

found to form a parabolic cone at 𝐴� = 1, which then become a typical Dirac cone 

for 𝐴� > 1 (Appendix 1).  
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(a)       (b) 

Figure 6.14 The energy spectrum 𝜀O𝑘q, 𝑘rR of SLG in the 

application of SPM field and a LPL with different amplitudes 
 showing (a) a gap reduction as the laser amplitudes increases 
(b) a split in the middle oval producing two cones each with a 
single Dirac point 
 

The counter plot of the spectrum (Figure 6.15) shows the in-change shape 

and position of Dirac cones as 𝐴� varies. The side cone can be seen to form an 
elliptical cone, with an anisotropy that changes with different laser amplitudes. 
As Figure (6.16) illustrates, the aspect ratio of the side cone decreases as the 
amplitude increases (Table 6.4). 

 
Figure 6.15 Counter plot of 𝜀O𝑘q, 𝑘rR for monolayer graphene in the 

application of SPM field and a LPL with different amplitudes 𝐴�  

considering 𝜔 = 1, 𝜇 = 1, and 𝐴�Â = 1 in units of 𝜋 𝑇⁄  
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Figure 6.16 The aspect ratio of the side cone for a number of laser’s 

amplitudes 𝐴� 

 
Table 6-4 The axis of the side cone ellipse in Figure 6.15 as the laser 

amplitude changes 

Amplitude 

𝐴� 

Major axis 

𝑎 

Minor axis 

𝑏 

Focal length  

𝑐 

Aspect ratio 

𝛼 

0.8 0.58 0.25 0.27 2.33 

0.9 0.54 0.25 0.23 2.17 

1 0.5 0.25 0.19 2 

1.1 0.5 0.29 0.17 1.75 

1.2 0.46 0.29 0.13 1.57 

 
 The change in the middle cone can be described by the size of the gap 

opening, then by the splitting of the cone. From Figure (6.14), it can be seen that 
for small laser amplitudes there is a gap opening that can be controlled by 

changing the 𝐴�.  The plot represents the size of the gap as a function of the laser’s 
amplitude.  
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Figure 6.17 The size of the gap in the energy spectrum a function of 

the laser’s amplitude 

 
The spectrum forms different shape of loops that can be assigned to Cassini 

ovals (refer to Figure 6.18). As the ovals change in shape, the positions of Dirac 
points change according to Figure 6.19, where the number of Dirac points 

increased for amplitudes larger than 𝐴� = 1. 
 

 
Figure 6.18 Cassini ovals in the energy spectrum of graphene in the 

application of SPM field and LPL with a range of amplitudes 𝐴� 
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Figure 6.19 The positions of Dirac points in the spectrum of SLG in the 

duality of LPL and SPM field as the laser’s amplitude changes 

 

6.4 Dirac cones manipulation  

The energy spectrum in SLG can be highly controlled if more than one laser 
parameter changes at the same application. Since the spectrum has been found 
to maintain its symmetry in laser rotation, this allows the choosing of the 

orientation of the Dirac points in an angle equal to the laser angle 𝜃.  The 

following Figure 6.20 of the spectrum displays the orientation of 𝜃 = 𝜋/4 for 
different laser frequencies. The spectrum shows the exact structure and 

numbering at each 𝜔 as in 𝜃. To confirm the symmetrical rotation of 𝜀(𝑘q, 𝑘r), 

we measured the aspect ratio of the side cone different angles and found 𝛼 to be 
2.1:1 (Table 6.5 & Figure 6.21). 
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Figure 6.20 Counter and 3D plots for the spectrum 
in a chosen orientation with different frequencies 

in units of 𝜋 𝑇⁄ considering 𝜇 = 1, 𝐴� = 1 and 𝐴�Â =

1 in units of  
 

 
Table 6-5 The aspect ratio of the side cone as the energy spectrum rotates by 

the angle 𝜃 
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Figure 6.21 The aspect ratio 𝛼 as a function of laser angle 𝜃 

 
 In the following application we chose a desired energy structure for SLG. 
The desired orientation of 2 vertical Dirac points with a middle gap of the size is 

0.4 (units of 𝜋/𝑇). Therefore, the laser settings are: 𝜃 = 𝜋/2, 𝐴� = 0.2 and 𝜔 =

1. The resulted spectrum will be of the form as in Figure (6.22).  
 

    
    (a)             (b)  

Figure 6.22 The energy spectrum of SLG controlled by LPL and SPM  

Showing (a) 2D display of 2 Dirac points parallel to the 𝑘r axis with a 

mini gap in the middle (b) the 3D display of the spectrum 

6.5 Space shift symmetry breaking 

To be able to understand the motion of electrons’ in the proposed systems, 
the symmetry breaking needs to be understood. The system of SLG in SPM and 
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LPL can be shown to be symmetric under time inversion, space inversion, and 
both. This was approached by solving Schrodinger equation and reproducing the 
energy bands (Figure 6.23).  With space shift the symmetry of the system is 
broken, we chose a shift of half period. Time shifting though does not break the 
symmetry (Figure 6.24). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.23 The energy spectra of graphene in linear laser and static magnetic 
field  

(a) considering 𝜔 = 1, 𝜇Â = 1 and 𝐴�Â = 1 for a chosen orientation of the laser 

𝛼 = 0 given in the units of 𝜋 𝑇⁄ , (b) The spectra under time inversion 𝑡 → −𝑡. 

(c) Space inversion 𝑥 → −𝑥. (d) Time and space inversion. The spectra of the 
system is symmetric under these inversions. 

 
The reason for the breaking the inversion symmetry is that the two sublattices 

are no longer equivalent. This is due to the interactions between the massless 
particles in graphene with the high external field. Applying a magnetic field alone 
or a LPL field alone does not break the inversion symmetry. The effect of electron-
phonon couplings can be neglected. However, if the two fields are combined, then 
their effect break the chiral symmetry. As a consequence, a dynamical band gap 
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will be induced in the energy spectrum of graphene due to the nonlinear 
dependence of the magnetic field [96].  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Figure 6.24 The energy spectra of graphene in linear laser and static magnetic 
field 

 in the units of 𝜋 𝑇⁄ , (a) The spectrum of the energy considering 𝜔 = 1, 𝜇Â = 1 

and 𝐴�Â = 1 for a chosen orientation of the laser at  𝜃 = 0, given by the blue 

spectrum for comparison (b) The spectra under time shift 𝑡 → 𝑡 + t
;
, being 

symmetric. (c) Space shift 𝑥 → 𝑥 + t
;
, showing a break in symmetry. (d) Time 

and space shift introduces symmetry breaking 
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6.6 Summary  

We investigated the change in the energy spectrum of SLG in the application 
of two potential of LPL and SPE fields. This duality aims to control and manipulate 
Dirac points by changing the lasers’ parameters.  

The spectrum of graphene in this model is found topologically symmetrical as 

the laser is rotating, where the spectrum rotates with the same laser angle 𝜃 with 
no other changes. The spectrum was found to be time and space symmetric. 
However, space shift breaks the spectrum symmetry causing the gap opening in 
the energy band. The spectrum was further investigated with different laser 

frequencies 𝜔. It has been found the spectrum changes the shapes and the number 
of cones as the frequency changes. The chiral symmetry is though broken, causing 
a gap band induction in the energy spectrum. This implies that the laser in this 
proposed model can be applied in any angle desired and the frequency and the 
amplitude can be used to control the splitting and the gap creation. 

Overall, we shown that static periodically modulated magnetic/electric field 
together with linearly polarised laser field induce dynamical topological phase 
transitions in a single graphene layer. There in the vicinity of the original K and K’ 
Dirac points the pairs of Weyl-Dirac cones are created. Then the graphene layer 
may be viewed as two-dimensional Weyl metal. The created Weyl metal energy 
spectrum is invariant under the laser field rotation when there is only spatial 
modulation of magnetic field.  However, when the static electric field is periodically 
modulated, the system shows additional symmetry breaking phenomenon where 
additional pairs of the Weyl-Dirac cones are created.  We show that this effect is 
controlled by a laser field tilting from the graphene plane where the modulated 
electric field is embedded.  We expect that the described effect may be used in novel 
optoelectronic devices and the predicted phenomena will be observed in the future 
experiments. 

The change in the energy band shape and Dirac points position is caused by 
the broken symmetry due to effect of the two applied fields: LPL and SPM. The 
coupling introduced a nonlinear effect, determined here by a parabolic cone, 
which causes the gap opening in the spectrum.  Consequently, the duality of the 
fields allows Dirac points manipulations by changing only the laser’s parameters. 
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The spectrum behaves as Cassini ovals in laser’s alteration, where these ovals 
change shape and position in general, but change in number around the parabolic 
point.     This form of change in anisotropy introduced anisotropic transport that 
can be controlled by the laser.
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 7 Graphene 
Superlattices in Static 
Electric Field 

7.1 Graphene in linearly polarised laser and static 
electric field 

For a graphene crystal with electron wave function given by ( 6.11), in the 

application of LPL with 𝐴� amplitude and frequency 𝜔 = ;t
º

, given by ( 6.13), we 

theoretically apply a spatial periodic electric (SPE) field of the form:  

 𝑈(𝑥) = 𝑈�	cos(𝜇𝑥) ( 7.1) 

where 𝑈� is the magnetic amplitude and 𝜇 is the magnetic frequency. The electric 

field will be in plane with the graphene sheet (Figure 7.1) considering 𝜔 = 1, 𝐴� =

1 , 𝑈� = 1	&	𝜇 = 1. 
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Figure 7.1 Schematic representation of the orientation set up for 
graphene in linearly polarized laser field applied in addition to 
an external spatially periodically modulated electric field SPE 
which is located in the graphene plane while a linear polarised 

laser field is tilted by angle 𝜃 with respect to the orientation of 
the electrical field 

 
Substituting the wave function and the potentials into the 2D Dirac equation 

( 3.22), we will obtain a differential equation with 8 × 8 matrix M given by (7.2). 
The energy spectrum is given by the determinant of M matrix in Figure 7.2. An 
energy band gap is obtained within the miniband structure. The number of Dirac 
points changes as the laser phase changes (See Figure 7.2 a, b, c & d for details). 
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                     (a)                                                       (b) 

 
  (c)      (d) 

Figure 7.2 Electron spectra for graphene in LPL field in the existence of SPE field 

with units of 𝜋 𝑇⁄  (a) Considering 𝜔 = 1, 𝜇 = 1, 𝑈� = 1 and 𝐴� = 1 for a chosen orientation 

𝜃 = 0. The spectrum shows the hole states in the upper bands and electron states in the 

lower bands with 𝑘r = 0. A gap can be seen within the band structure. (b) viewing the band 

structure in the y direction shift (𝑘r = 0.5) (c) The energy spectrum for graphene in linearly 

polarised laser field for the chosen orientation 𝜃 = 𝜋 2⁄  showing a change in the number of 

Dirac points (reduction) in contrast to the case where 𝜃 = 0 (d) showing the spectrum at 

𝑘r = 0.5. 

 
If we apply a static periodically modulated electric field and the linearly 

polarized laser field in the plane of the graphene sheet there are arise two pairs of 

the Weyl-Dirac points.  In this case when 𝜃 = 0 the energy spectrum shows that 
Dirac cones of graphene split into several mini bands (see, Figure 7.3-a). The case 
is very similar to the model presented in chapter 6, the spectrum has two Dirac-
Weyl point and one central original Dirac point. However, the elongation of this 

central point is different, it occurs along 𝑘r axes. All these points are located along 

the 𝑘q axis and the spectrum seems to be gapless. The 3D plot (see, the Figure 7.3-
b) shows the shape of these Dirac and Weyl cones and that the middle Dirac cone 

is elliptically shaped. When the angle 𝜃 changed from 0 to  t
;
		the number and 

positions of Dirac-Weyl points changed to four (see, Figure 7.3-c), indicating a 
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dynamical symmetry breaking phenomenon arising in the band structure with 
changes of the different laser beam orientations.  

 
 

 
(a) 

 
(b)         (c)  

Figure 7.3 Electron spectra 𝜀O𝑘q, 𝑘rR for graphene subjected to linearly 

polarised laser fields with a static spatially-modulated periodic electric field. 

In the calculations we used the parameters 𝜔 = 1, 𝜇 = 1, 𝑈� = 1 and 𝐴� = 1 

for each of chosen orientations, 𝜃. (a) The spectrum shows gapless multiple 
crossing at the plane crossing the kx axes. (b) showing two Weyl-Dirac located 
symmetrically with respect to the central Dirac point at K or K’ place in the 

Brillouin zone. All these three gapless points are along 𝑘q  axis at the value, 

𝑘r = 0. (c) The spectrum rotated by an angle equal to the laser’s beam 

orientation, i.e., 𝜋/2, forming two pairs of Weyl-Dirac cones symmetrically 
positioned around K or K’ points of the Brillouin Zone. 
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 7.2 The duality of static electric field and a rotating 
laser 

The change of the laser orientation with respect to the electric field will cause 
Dirac point to rotate and reposition (Figure 7.4).  

 

 
Figure 7.4 Electron spectrum 𝜀(𝑘q, 𝑘r)  in graphene 

in LPL field with SPE field in different orientations. 

 (a) 𝜃 = 0 (b) 𝜃 = 𝜋/6, (c) 𝜃 = 𝜋/4 & (d) 𝜃 = 𝜋/3 
showing the energy spectra rotating and 
repositioning of Dirac points as their number is 
increasing as the electric field reaches an angle of 

𝜋 2⁄  with respect to the laser field (e) 𝜃 = 𝜋/2. (𝜔 =

1 , 𝑈� = 1 and 𝐴� = 1 in units of 𝜋 𝑇⁄ ). 

 
 
To investigate the change in the spectrum in details, surface contour plots 

were shown at different laser field angles.   For 𝜃 = 0 there are three gapless points 
where the top and bottom energy bands touch each other. The two side cones in 

Figure 7.5-a can be approximated as squeezed Dirac cones,  𝜀; = 𝑎	(𝑘q); + 𝑏O𝑘rR
;, 
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while near the middle point, the structure shows a curve of energy 𝜀; = 𝑎(𝑘q); +

𝑏O𝑘rR
÷, where a and b some real parameters. As the laser is rotating Figure 7.5-b, 

where the laser is applied at 𝜃 = 𝜋/4, two changes occur: 1- the spectrum is rotating 
in a similar manner and 2- the middle point experience a splitting where the energy 
cut transforms into two squeezed cones. The result is a spectrum which has 4 Dirac 
points.  When the laser field orientation changes further, to become perpendicular 

with 𝜃 = 𝜋/2, the spectrum is rotated by 𝜋/2 forming 4 Dirac-Weyl cones 
symmetric about the pole (see, the Figure 7.5-c), which is associated with K or K’ 
of the graphene Brillouin zone.  

 
 

 
           (a)                 (b)   (c) 

Figure 7.5 The surface contour plot of the energy-momentum 

dispersion, 𝜀O𝑘q, 𝑘rR, for a monolayer graphene subjected to in-

plane static periodically modulated electric field and a linear 

polarised laser field tilted at the angle 𝜃 to the graphene plane 
 (a) the case when the polarisation of the electromagnetic laser 
field coincides with the direction of the modulated electrical field, 

i.e.  𝜃 = 0; Here we see a pair of the Weyl points located far apart 
from each other. In a centre there is an elongated valley where a 
new pair of Weyl points is going to be nucleated, when the tilting 

angle increases, i.e.  when 𝜃 ≠ 0; (b) The snapshot of the 

spectrum taken when the tilting angle 𝜃 = 𝜋/4; We see already 
two pairs of the Weyl points here (c) The snapshot spectrum 
displaying two symmetrical pairs of the Weyl points taken at 

their perpendicular orientation, i.e. at 𝜃 = 𝜋/2. 
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Table 7-1 The change in Dirac cone’s aspect ratio with different Laser incident angle 

𝜃 𝛼 side cone 𝛼 middle cone 

0 1.667 6 

𝜋/6 1.933 1.974 

𝜋/4 1.829 1.2 

𝜋/3 1.667 1 

𝜋/2 1.447 1.447 

2𝜋/3 1.667 1 

3𝜋/4 1.829 1.2 

5𝜋/6 1.933 1.974 

𝜋 1.667 6 

7𝜋/6 1.933 1.974 

5𝜋/4 1.829 1.2 

4𝜋/3 1.667 1 

3𝜋/2 1.447 1.447 

5𝜋/3 1.667 1 

7𝜋/4 1.829 1.2 

11𝜋/6 1.933 1.974 

2𝜋 1.667 6 

 
 

For a single layer graphene under the application of linear laser field and static 

electric field with 𝜃 = 0, the energy spectrum will form three Dirac cones (Figure 
7.5-a). We have shown that laser rotation will cause rotation and splitting in the 
spectrum. The middle cone and the side cone both change aspect ratio as the laser 

changes angle 𝜃. The change in the aspect ratio for the middle cone shows a great 

decline from 𝜃 = 0 as the cone splits into two cones that rotates back to become 

one cone when the laser angle 𝜃 = 𝜋 as seen in following Figure (7.6). The side cone 

change aspect ratio as well as rotating. At 𝜃 = 𝜋/2, the middle cones and the side 
cones become identical with the same aspect ratio while the number and positions 
of Dirac cones and points change.  
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In this research we examine the spectrum to identify the type of the cones 
and the connection between the upper and lower bands. This can be achieved by 

taking a cut along both axis 𝑘q&	𝑘r (Figure 7.8). The middle cone is found to form 

a parabolic cone showing a line connection between the upper and the lower bands 
(Figure 7.8-a&b). The side cone is found to be a Dirac cone with one Dirac point 
and an aspect ratio of 1.8:1.    

 

 
        (a)         (b) 

Figure 7.6 The energy spectrum 𝜀O𝑘q, 𝑘rR of graphene under the application of 

linearly polarised laser and static electric filed for a chosen orientation 𝜃 = 0  

 considering 𝜔 = 1, 𝜇 = 1, 𝑈� = 1 and 𝐴� = 1 (a) the upper and the lower 
bands touch in three areas: two side cones and an ellipse at the centre (b) the 

counter plot showing the three ellipses to be oriented parallel to 𝑘q  at 𝑘r = 0 

 

 
Figure 7.7 The aspect ratio of the side and middle 

cones 𝛼 as a function of the laser angle 𝜃 
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       (a)  

    
          (b)                 (c) 

 
Figure 7.8 The 𝜀O𝑘q, 𝑘rR cut of graphene in 2D along the 𝑘q  axis  

(a) showing the three touching points where 𝜀O𝑘q, 𝑘rR = 0 (b) the 

middle zero energy cone zoomed to show the connection point 
between the upper and the lower bands (c) the same scale for the 

zoomed cone showing the cone to be parabolic along the 𝑘raxis. 

 

7.3 SLG in static electric field and LPL in different 
frequencies and amplitudes 

As we change the frequency or amplitude of the laser, the spectrum has been 
found to form Dirac cones (Appendix 2). The positions of the Dirac points are the 

same for the same pairs for 𝜔 = 𝐴� (Figure 7.9) although the spectrum cone aspect 
ratio varies in the change of the frequency from the change in the amplitude 

(Figure 7.10). It shows a firmer parabolic curve around the value  𝐴� = 1, which 
can be the transition point where the dispersion relation changes to nonlinear 
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dependency of the external electric field. Such an effect results in breaking the 
symmetry of the energy spectrum. 

 

 
               (a)                  (b) 

Figure 7.9 The positions of Dirac points on the spectrum where 

energy =0 in LPL and SPE giving Dirac cones for all 𝜔 and 𝐴�. 
The different colours represent different Dirac points pairs 

 
 

 
Figure 7.10 The energy spectrum of SLG in the application 

of SPE and LPL for two different laser parameters 𝜔	&	𝐴� 
showing both cases to have the same Dirac point and 
different cone aspect ratio. The solid lines present the 

upper and lower bands when the laser is set to 𝜔 = 0.9 & 

𝐴� = 1. The dashed lines give the upper and lower bands 

for laser settings 𝜔 = 1 & 𝐴� = 0.9 

 
 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

k x

0 0.5 1 1.5 2
A0

0

0.5

1

1.5

2

k x

-2 -1 0 1 2
ky

-1.5

-1

-0.5

0

0.5

1

1.5



 94 

 Plotting the spectrum in 3D as the frequency of the laser changes (Figure 7.11) 

shows that at 𝜔 = 1.5 the upper and lower bands are connected in 6 positions; 4 
on the centre loop and two on the side cones. The connection on the centre at the 

points O𝑘q, 𝑘rR = (±0.19,0) represents Dirac points as well as O𝑘q, 𝑘rR = (0,±0.56) 

(Appendix 3).  
The change in the shape of the spectrum forms an evolving 2 pairs of Cassini 

ovals for frequencies smaller than the parabolic point, while for higher frequencies 
the spectrum forms 1 pair of Cassini ovals and one middle loop. As the frequency 
increases the deformation in the middle loop increases as Dirac points (see 
Figures 7.11 & 7.12) 
  

               
        𝝎 = 𝟎.𝟓	                     𝝎 = 𝟏         𝝎 = 𝟏.𝟓 

 
Figure 7.11 The change in the shape and the zero points energy points in graphene 
spectrum under the application of static electric field and linearly polarised laser 
with different frequencies.  
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Figure 7.12 The deformation in graphene spectrum under the application of 
static electric field and linearly polarised laser with different laser’s frequencies  

 
 

 This change can be used to change Dirac points. The shift in the spectrum 
applies to the shape and number of the cones as well as the position and numbers 
of Dirac points. Since the dispersion relation in the vicinity of K points in directly 
and strongly dependent on the symmetry of the graphene spectrum, the gap 
opening can be completely obtained through the broken symmetry.  

 The energy spectrum responds to the change in the laser’s amplitude by shifting 
and splitting in the zero energy points. A decrease in the spacing between the 
valence and the conduction band results from applying a laser with small intensity. 
The increase in the laser’s amplitude increases the distance between the valence and 
the conduction bands, however, the number of Dirac points does not change in 
amplitude alteration (see Figure 7.13). In addition, the cones represent Dirac cones 
at all amplitudes (Appendix 4). 
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       𝑨𝟎 = 𝟎.𝟓	                        𝑨𝟎 = 𝟏                   𝑨𝟎 = 𝟏.𝟓 

 
Figure 7.13 The change in the shape and the cones of graphene spectrum under the 
application of static electric field and linearly polarised laser with different amplitudes 

 𝐴� = 0.5, 1, 1.5 in units of t
º
 showing different cones and different Dirac points. 

 
The deformation in the spectrum energy as a result of the change in the lasers’ 

amplitude can be seen in Figure (7.14). Such as the spectrum forms perfect Dirac 
cones with small aspect ratio at high laser amplitude. Whereas at low 
amplitudes, the cones deform and expand as a one loop. The number of zero 
energy points however remains constant.   
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Figure 7.14 The splitting in graphene spectrum under 
the application of static electric field and linearly 
polarised laser with different laser’s amplitudes 

   
Preparing this module for practical application requires the investigation of a 

detectable quantity such as the single particle currents in graphene. 𝑗�  operator can be 
calculated (with components in x and y) at chosen laser orientation and wave vector 

𝑘K⃗ = :𝑘q, 𝑘r, where the current operator is given by:  

 𝑗� = 	𝜓∗𝜎�	𝜓 ( 7.3) 

(see examples in Appendixes 5).  
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7.4 Time and space shift symmetry breaking 

This system can be shown to be symmetric under time inversion or space 
inversion or both by solving Schrodinger equation and reproducing the energy 
bands (FIG 19).  With time and space shift the symmetry of the system is broken, 
we chose a shift of half period (FIG 20). 

 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 7.15 The symmetry of energy spectra of graphene in LPL and SPE  

(a) in the units of 𝜋 𝑇⁄ , considering 𝜔 = 1, 𝑈; = 1 and 𝐴� = 1 for a chosen 

orientation of the laser (𝜃 = 0). (b) The spectra under time inversion 𝑡 →

−𝑡. (c) Space inversion 𝑥 → −𝑥. (d) Time and space inversion. The spectra 
of the system are symmetric under these inversions 

 
Applying a laser field in the existence of an electric filed parallel to graphene 

sheet causes a transformation of the Dirac dispersion relation in the vicinity of K 
point. Such transformation can cause a gap opening at K points if the laser applied 
is of a high intensity. The dispersion relation becomes more nonlinear as the 
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intensity increases. It is suggested that the nonlinearity in the Dirac-type 
dispersion relation transforms the massless Dirac to massive fermions [97]. 

 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 

 Figure 7.16 The symmetry of the energy spectra of graphene in LPL and SPE  

in the units of 𝜋 𝑇⁄ , (a) considering 𝜔 = 1, 𝑈� = 1 and 𝐴� = 1 for a chosen 

orientation of the laser (𝜃 = 0). (b) The spectra under time shift 𝑡 → 𝑡 + t
;
, 

being symmetric. (c) Space inversion 𝑥 → 𝑥 + t
;
, showing a break in 

symmetry. (d) Time and space shift introduces symmetry breaking 

 

7.5 Summary 

This chapter introduces the module of single layer graphene in the application 
of linearly polarised laser field and spatially periodic electric field. Overall, this 
investigation highlighted the relativistic properties of graphene by changing the 
Dirac-Cone spectrum of charge carriers. The theoretical modification of the 
spectrum is approached by applying high-frequency laser fields in the presence of 
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static electric/magnetic fields. The number of Dirac points, the shape of Dirac 
cones and the gap in spectrum can all be controlled by changing the laser’s 
parameters. The energy spectrum in graphene exhibit a topological phase 
transition. In the vicinity of the original K and K’ Dirac points, pairs of Weyl-Dirac 
cones are formed. 

A symmetry breaking is introduced due to the application of the two fields. The 
rotation of the laser creates additional symmetry breaking as additional pairs of 
the Weyl-Dirac cones are formed in the spectrum.  If the modulated electric field 
is fixed, tilting the laser alone can control the effect induced in the spectrum.  

The change in the frequency and the amplitude of the laser result in a 
deformation of the energy spectrum. Different pairs and shapes of Cassini ovals 
induce in the spectrum indicating a symmetry breaking. Such effect causes a gap 
opening at the K points if the applied laser is of a high intensity. The nonlinearity 
in the Dirac dispersion relation increases furthermore with the increase in the 
laser amplitude. 

In different potentials the spectrum shows different anisotropy, which can be 
further changed in specific potentials applications by changing their parameters. 
Thus, the modification of the anisotropy of the Dirac cone causes 
destruction/creation of Dirac points, hence electron transport can be modified. 
We showed that anisotropic transport in monolayer graphene can be controlled 
by changing high-frequency lasers’ parameters, which even allow generation of 
infinite anisotropy. 

Such module can be highly efficient in controlling the splitting and creation of 
Dirac points in the single layer graphene. Furthermore, it can create novel 
properties for optoelectronic devices.  
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 8 Summary and 
Conclusion 

The general aim of this research is to theoretically investigate the manipulation 
of Dirac points in the single layer graphene by studying electron spectra in graphene 
superlattice in Floquet-Bloch states under the application of different periodic 
potential.  

An introduction to the topic is provided in Chapter 1, in addition to the aim 
and motivation of this research as the demonstration of graphene in 2004 has opened 
great research and application opportunities. 

Chapter 2 provides an overall background to graphene structure and its 
properties. The one layer of carbon atoms in a honeycomb crystal allowed the 
applications and testing of quantum theories and behaviours. Graphene has shown so 
far extraordinary properties, such as high electrical and thermal conductivity, 
transparency and flexibility. Graphene can be produced in small quantities with 
almost perfect structure (exfoliation or epitaxial growth), or in huge quantities with 
some defect (chemical vapour deposition). This gapless band structure is not the 
reason of graphene being unique, but graphene’s quantum behaviour in room 
temperature is rather remarkable such as: anomalous Quantum Hall Effect and perfect 
Klein tunneling.  Therefore, graphene based devices are an attractive subject for 
research and application. 

Chapter 3 reviewed in details the energy band structure of graphene, which 
was described a long before was actually produced in a free state. It has a gapless band 
structure at six Dirac points, where electrons transport within two sublattices with 
hopping process. The energy spectrum of graphene is well described using Bloch wave 
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in the tight binding model using Dirac equation. The development of these devices is 
based on the improvement of gap creation and control in the graphene band structure. 
Graphene can be widely applied due to its properties to form carbon nanotubes, 
nanoribbons, sensors, transistors and many photonic devices. Gap induction is an 
essential requirement for using graphene in electronic application. It has to be noted 
that the gap induction method could affect the novel properties of graphene, thus 
affecting its capability as high mobility material. Within this context, graphene 
superlattices are of a great focus for theoretical and experimental investigation. They 
are mainly used to understand the gap opening and Dirac points emerging in graphene 
near zero energy.  The application of external field is an essential element in such 
development; therefore, the energy spectrum of graphene in some field is investigated 
in this research.  

Chapter 4 illustrated the theoretical calculating to obtain the energy spectrum 
of graphene superlattices. In graphene the behaviour of charge carries can be 
demonstrated by the 2D Dirac equation. The solution of the Dirac Hamiltonian can 
become a simple eigen value problem using Floquet theory. The theory assists in 
transforming periodic dynamical systems into linear forms by solving Schrödinger 
equation.  The obtained solution can be approximated to exclude resonance terms. The 
final solution can be found analytically or numerically to produce the energy spectrum 
of graphene. 

Chapter 5 reviewed an investigated the gap opening in single layer graphene 
SLG in a single field application using three potentials; 1-lineraly polarised laser LPL, 
2- circularly polarised laser CPL, and 3- static electric field SE. We concluded from the 
investigation that the gap opening in the graphene spectrum is determined by the 
polarization of the laser. For the linearly polarised laser, the spectrum has no gap 
opening at any laser parameter, while in the circularly polarised laser, the spectrum 
developed a gap energy at all laser parameters. In the application of time periodic 
electric filed, energy gap cannot be induced in the spectrum of graphene. In the 
application of electric field alone, the sublattices remains equivalent which does not 
break the topological symmetry of the energy dispersion. 
 Chapter 6 examined two different theoretical modules for spectrum 
manipulation in single layer graphene. In the first, a spatially periodic magnetic field 
is vertically applied to a single layer graphene sheet. The spectrum showed Dirac cones 
at zero energy points, with stationary states elsewhere which indicates decaying states. 
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The other module proposes the duality of a linear polarised laser in the application of 
a vertical static magnetic field. The static magnetic field hand transforms the electron 
spectra into mini bands. Overall, it was found that changing in the laser’s parameters 
is enough to produce different Dirac points’ dynamics while the topological symmetry 
of the spectrum is preserved. There in the vicinity of the original K and K’ Dirac points 
the pairs of Weyl-Dirac cones are created. Then the graphene layer may be viewed as 
two-dimensional Weyl metal. The created Weyl metal energy spectrum is invariant 
under the laser field rotation when there is only spatial modulation of magnetic field. 
In addition, the change in the laser frequency and amplitude provided different 
Cassini ovals in the energy spectrum that should further splitting and creation of Dirac 
points indicating a further symmetry breaking and a controllable anisotropy. 

Chapter 7 presented duality of linear polarised laser and static electric filed 
which was applied in plane to the single graphene sheet. We showed that static 
periodically modulated electric field together with linearly polarised laser field induce 
dynamical topological phase transitions in a single graphene layer. However, when the 
static electric field is periodically modulated, the system shows additional symmetry 
breaking phenomenon where additional pairs of the Weyl-Dirac cones are created.  We 
show that this effect is controlled by a laser field tilting from the graphene plane where 
the modulated electric field is embedded. The change in the other laser parameters 
proposes high deformation in the spectrum cones slowing different anisotropic 
transport. Additionally, manipulation of electron current in graphene is allowed by 
laser-field-controlled band structures.  

We expect that these modules may be used in novel optoelectronic devices and 
the predicted phenomena will be observed in the future experiments.  In practice, 

applying a small DC electric field can induce the pseudo-periodic 𝜀(𝑘q(𝑡)) Bloch 
oscillations. The predicted spectrum in this study can be experimentally measured, 
directly, by applying a weak probe field in additional to static fields. The duality 
between the electron spectrum in time-periodic laser fields and spatially periodic 
electrostatic fields offers an experimental approach to spatially periodic graphene 
superlattices [30].  
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Appendices 
1. Dirac cones in the energy spectrum of SLG in SPM and LPL with different 

frequencies 
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2. Dirac cones in the energy spectrum of SLG in SPM and LPL with different 
amplitudes 

𝐴� A B C 
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3. Dirac cones in the energy spectrum of SLG in SPE and LPL with different 
frequencies 
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4. Dirac cones in the energy spectrum of SLG in SPE and LPL with different 
amplitudes 

𝐴� A B C 
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0.9 

  
𝑘q = 0.03 

 
𝑘q = 1.38 
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𝑘q = 0 

 
𝑘q = 1.41 

1.1 
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𝑘q = 0.11 
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1.5 
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𝑘q = 1.61 
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1.7 

  
𝑘q = 0.28 

 
𝑘q = 1.69 

1.9 

  
𝑘q = 0.37 

 
𝑘q = 1.78 

2 

  
𝑘q = 0.41 

 
𝑘q = 1.825 
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5. The mean current < 𝑗q,r > calculated for (a) an applied static electric field (𝑈� = 1,	𝜇 = 1) 

with the application of  linearly polarised laser field at incident angles 𝜃 (𝜔 = 1, & 𝐴� = 1) 

and the current is shown to be periodic asymmetric with no common peaks between 𝑗q 

and 𝑗r. (b) The mean current < 𝑗q,r > calculated for an applied static magnetic field (𝐴�Â =

1 & 𝜇Â = 1) with the application of linearly polarised laser field at incident angles 𝜃 (𝜔 =

1 & 𝐴� = 1). The current is shown to be asymmetric with peaks at 𝛼 = t
÷
	, _t
÷

 . The current 

is looks to be a direct current with peaks at t
÷
, t
;
& _t

÷
. The red curve represents 𝑗q and the 

blue is 𝑗r. The single particle currents are asymmetric.  
Laser Linear Parameters 
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Electric 

(a) no common peaks 

 

𝑘q = 1	, 

	𝑘r = 1 

𝜃 = 0→ 𝜋 
𝜔 = 1, 

	𝜇 = 1 

𝐴� = 1 
 

 
𝑈�
𝐴�Â

= 1 
Static 

Magnetic 

(b) peaks: t
÷
	 , _t
÷
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