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Abstract

This study theoretically investigates the changes in the energy spectrum of
the graphene monolayer subjected to different periodic potential to allow
manipulation of the energy spectrum. Floquet theory and the resonance
approximation are used to analyse the energy spectrum. Thus, we reviewed the
application of single laser potential; linearly polarised and circularly polarised
and concluded that the gap opening in the spectrum is determined by the
polarisation of the laser field. Then we apply a time periodic electric filed and
found that such single potential is not enough to break the topological

symmetry.

We investigate the manipulation of the spectrum in 1- spatial periodic
magnetic field and 2- linearly polarised laser beam with an external periodically
modulated static magnetic/electric field. We investigated in particular, the
creation and the destruction of the Dirac-Weyl points. We found that at certain
conditions the graphene is transformed into the two-dimensional Weyl metals,
where each of the two original graphene Dirac cones is split into pairs of the
Weyl cones. We also show that altering the laser's beam incidence (tilting) angle
may lead to appearing and disappearing of the pairs of Weyl points, the opening
gap in the spectrum, and its efficient manipulation. Deformation and symmetry
breaking can be achieved via different laser’s frequencies and amplitudes, hence

the anisotropy can be controlled.
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1 Introduction

1.1 Introduction to graphene

New materials have always been the key to new technologies. Just when
scientists draw the boundaries to materials’ dimensions and structures, a new
material appears and becomes potentially promising. In 2004, a material “does
not resemble any known material” [1] was listed as one of the new man maid
materials that will shape the future [2][3][4]. It was a two-dimensional Carbon

sheet, or a monolayer of graphite, or what is called Graphene.

Theorists believed that thermal fluctuations forbid the stability of two-
dimensional structures as Landau and Peierls argued [5]. Thus, 2D materials
where built on top of 3D matching crystals to avoid the displacement of atoms
due to temperature fluctuation. However, in 2004 the Manchester research
group led by Geim and Novoselov proved that a monolayer of Graphite can exist
in a free state [6][7]. Such a discovery led to new chapters marked with

Graphene, which actually was invented 440 years before it was proven.

Graphene crystal is worthwhile, not just for its amazing properties but also
because it allowed the demonstration of other 2D crystals like silicene and

germanene [8]. These crystals became obtainable as suspended films, in liquid



suspension, and on top of non-crystalline substrates. The ability to be able to
design such materials, atom by atom, attracted a huge amount of research.
However, this is not the only reason of the huge interest in graphene. A number
of motivations can be listed. First, Graphene has promising technological
applications, because it allows the control of carrier densities by application of
gate voltages, which is essential in designing electronic devices. Furthermore,
the silicon-based electronics becomes limited in terms of reduction; so
graphene-based electronics could exceed that limitation. A second factor to the
huge interest in the graphene field study is that it is connecting the condensed-
matter physics and the high-energy physics. Graphene has shown exotic
quantum behaviour at room temperature, and a relativistic behaviour, which
can help in investigating quantum-field theoretical models [2][9]. Moreover,
graphene gained a lot of interest outside the scientific community being the
material best in everything. It is only one atom thick/thin, harder than diamond,
stronger than steel, more flexible than rubber, and a better conductor than
copper[10][11][12][13]. Therefore, graphene discovery is only a beginning to a

rich knowledge and applications.

1.2 Thesis objectives and motivation

Since this gapless material has been demonstrated, the main problem that
has been investigated is the gap band opening and controlling in the energy
spectrum of graphene. A variety of methods have been established to open a gap
in graphene’s band, some are based on deforming the honeycomb structure of
graphene, where other maintain it. All the methods that include
functionalization processes, physical or chemical, allow gap opening even
though they reduce the mobility and the on-state current of the charge carriers
(such as covalent modifications of the graphene lattice, graphene nanomeshes
and graphene nanoribbons ...etc.)[14][15][16][17][18]. The deformation of the
honeycomb structure can be realized to introduce scattering centres, producing

non-controllable band gaps and enhancing electrons’ effective mass[19].



In order to maintain the carriers’ high mobility in graphene, its honeycomb
structure has to be preserved. Substrate-induced bandgap opening is an
example for a structure preserving method, however, the gap induced is non-
tuneable [20][21]. Another method that preserve the hexagonal crystal is
Graphene superlattices, which is not only simply modelled but also offers
practical possibilities and applications[22][23][24][25][26]. As the thin layers
of alternating crystals in a graphene superlattice have different band structures,
a periodic potential will be created with a tuneable periodicity [27]. As result,
the transition from valence to conduction will be allowed through minibands
with a gap that can be controlled by the superlattice period[24]. A gap opening
can also be obtained by applying a strain on graphene, which has shown stability
with large strains[21][27][28]. One of the most effective methods is the
application of an external field[29][30][31], which creates atomic sites with
different electric potentials. However, this modification is only valid of multi-
layered graphene. In a single layer graphene (SLG), applying a vertical field is
will not introduce a gap in the band structure as the two sublattices in the crystal
structure remains equivalent[19][24]. Hence, there is a demand for effective gap
opening and electronic zone manipulation methods in SLG that will maintain

the high carrier mobility and allow manipulation of Dirac points[32][33].

To control and to manipulate electron spectrum of graphene, periodic
electric or magnetic fields can be applied in the existence of periodic electrostatic
potentials (so-called graphene superlattices). Yet, the nanofabrication is
required for graphene superlattices and this is of a high cost and does not
provide a perfect tunability in modifying electron spectra. Recently, an analogy
was found between electron spectrum in graphene superlattices and the
spectrum in externally applied laser fields[32]. The application of laser fields to
graphene creates a band gap structure in electron spectra (so-called Stark effect,
causing the gap in the graphene spectrum). Moreover, such an effect can be
easily controlled by changing the laser field amplitude and frequency. Applying
different laser frequencies or amplitudes changes the size and location of the gap
in the spectrum. Moreover, it was proven that, by applying laser fields, new
Dirac points can be formed [32] and can be easily manipulated[33].

Nevertheless, the question remains if the laser-generated Dirac points in the



SLG electronic structure can be treated in the same manner as the usual
graphene Dirac point and if and how the laser-induced Dirac cones is

distorted/squeezed near these their Dirac points?

1.3 Aims

In this thesis we consider in details modification of the electron spectrum

of graphene superlattices to control and manipulate Dirac cones.

The purpose of this study is to provide a theoretical analogy to superlattices
graphene, by applying different periodic potentials to a single layer of graphene.
The analogy is based on preserving the honeycomb structure of graphene and
apply adjustable potentials. The aim of the approach is to investigate the gap
opening in different periodicities and different polarisations. Then, the study
focuses on duality between periodic potentials that are adjustable to allow Dirac
points destruction/creation, Dirac cone symmetry and deformation, and energy
gap opening/closing. The manipulation and tuning of the energy spectrum is

based on parameters changing

The proposed theatrical model is promising in term of controlling Dirac

cone structure in graphene spectrum.

1.4 Thesis outlines

Chapter 1 introduces graphene as the first stable 2D crystal and the
research gap in the topic of graphene. Then Chapter 2 and Chapter 3 offer
literature review of graphene’s discovery, properties, fabrication, band structure

theories, and applications.

Chapter 4, explains the theory of the used model using Floquet theory and
resonance approximation to solve the 2D Dirac equation for electrons in

graphene superlattices.



In Chapter 5, we introduce the problem of graphene in a single periodic
potential by considering the case of time periodic laser with different

polarisation and static electric/magnetic field.

Chapter 6, gives the detailed investigation of the graphene spectrum in
the application of laser field and static electric/magnetic field. We show how the

spectrum behaves in different sittings of the applied potentials.

Chapter 7 summarises the findings of the research.



2 Background

2.1 Demonstration of graphene

Graphene has been an academic material for more than sixty years, used to
describe physical properties of carbon materials and a model for one and two-
dimensional quantum electrodynamics [5]. There were many successful
attempts to produce some forms of Graphene compounds before 2004, and it

was used to study the carriers’ dynamics in Graphite.

The band structure of graphene was first introduced by Wallace 1947 using
tight binding model[34]. Then, a thin layer of graphene oxide was recognized,
using transmission electron microscopy by Ruess and Vogt 1948 [35][36][37].
After that, in 1960s, Boehm et al demonstrated a sample of graphene oxide, and

they were the first to actually call it “Graphene”[35][38][39].

The late illustration of Graphene can be related to two main reasons. The
first is that it was believed that graphene couldn’t be produced in a free state
form as temperature prevents the crystal stability. Secondly, even if such believe
was not considered true, there were no experimental tools to construct a one

atom thin sheet of graphite[1][40].

In 2004, Geim and his research group demonstrated graphene sheets off a

graphite substrate by using a scotch tape. Then, their sample was placed on a



SiO2 substrate and identified as being a one layer crystal using simple optical
microscopy[5]. A more recent tool was using Raman spectroscopy, which allows
faster selection. Consequently, graphene sheets can be produced freely, without
resting on a substrate. Additionally, multilayer flakes of graphene became
selectable[40]. Graphene plays a master role in understanding the carriers’

behavior of other carbon allotropes.

2.2 Graphene as carbon atoms/crystal

2.2.1 Bonding in graphene

Carbon is considered the element of life, as it is the basis of organic
components. Carbon systems and allotropes show a variety of properties, which
can be regarded to the flexible bonds of carbon. Graphene is an allotrope of
carbon, arranged in a hexagonal honeycomb lattice of a one atomic layer (Figure
2.1). In quantum information process, graphene structure is referred to as

chicken wire[41].

Figure 2.1 Hexagonal honeycomb lattice for SLG

Carbon has four valence electrons in the electronic structure is (1s)2 (2s)>2
(2p)4. It is possible that these electrons form four sp3 orbitals, in the case of
diamond. In graphene though, the electrons form one 7w bond (p, orbital) and
three sp2 orbitals, a mixture of orbitals (s, p& py). These orbitals are all mixed

together roughly equally and rearrange themselves in a plane at 120° angles



forming o bonds (Figure 2.2). The superposition mixing of s, ps& p, states have
the significant electron probability in the xy plane and they are called "sp?"
hybridization as one s orbital is mixed two p orbitals. The p, atomic orbital is left

separated and unhybridized.

The sp? states form 3 0 — bondig bands and 3 6* — antibonding bands, while
the p, states forms 1 m — band and 1 * — band. Consequently, forming 8 bands

in total.

The three ¢ — bondig bands are the hybrid covalent bonds between the
three nearest neighboring atoms between the atoms sites in the xy plane. These
bonds hold the honeycomb structure together and have the lowest energy being
all below Fermi level. In the ground state, the o — bondig bands are completely
filled, thus they play no role in electronic conduction in graphene. The ¢* —
antibonding bands are all above the Fermi level. Therefore, in ground state they
are all empty. Since there is a finite gap between the minimum energy of the ¢*

bands and Fermi level, these bands are neglected.
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Figure 2.2 Atomic orbitals in graphene made up of ¢ hybridized bonds and =

bonds in the hexagonal configuration



The unhybridized p, orbital forms a delocalized = bond, by overlapping
with a p, from the next neighboring atom. The formed p band is perpendicular
to the plane containing the three o bonds (xy plane). The 7 states and 7* states
are at close energy levels, allowing the 7 electron to move freely between the
atoms in the crystal. This electron is responsible for the high conductivity of
graphene and also high light absorption. The movement of the delocalized =

electron is discussed in the tight binding section.

2.2.2 Crystal structure of graphene

Figure 2.3 Graphene honeycomb lattice, showing

the two triangular Bravais sublattices (A and B)
each having the two basis vectors 3; = a/2 (3,V3)
and 3, = a/2 (3,—V3) with a lattice spacing a =
0.142 nm = 142 A°

The hexagonal lattice of graphite is not a Bravais lattice, because atoms in
the next unit cell are not equivalent. Therefore, graphene lattice can be looked
at as two triangular sublattices (A and B) with two atoms basis (A and B) (FIG

2.1). The basis vectors for each triangular lattice are[42]:



a a
al = 5(3,\/5), and az = 5(3, _\/g) ( 2.1)
With lattice spacing (the nearest neighbor distance) a ~ 1.42 A°, and a unit cell

2
ofan area 4, = 3‘/?1 = 0.051 nm?. In such lattice, the density of carbon atoms is

n. = = =39nm=2 = 3.9 x 10¢m~2. It is worth emphasizing that the density of

uc

the m electrons is equal to the density of carbon atoms. However, this is not the
density of charge carriers, which has to be measured under the application of

electric field.

The primitive cell of graphene is chosen to contain 1 atom from each sublattice
as the Bravais lattice is considered a two atoms basis A and B. The primitive cell

is represented by the vectors a and a2 as the following diagram shows.

key

A

b

1

\
\
\
\
\
K

Figure 2.4 The reciprocal lattice for graphene showing the first Brillioun zone

with primitive vectors b; = 2w/3a (1,v3) and b, = 2/3a (1, —V3). The first
Brillioun zone is the hexagonal grey lattice within the reciprocal lattice. The
conical points K and K’ at the corners of the first Brillioun zone are connected
to the remaining four corners by the translational vectors in the reciprocal

lattice.

10



To define the reciprocal lattice in graphene, we consider the triangular

sublattices. Thus, the reciprocal vectors are[42]:
i 2 ' 2

The first Brillouin can be drawn in the reciprocal space by connecting six
inequivalent points. It consists of two point, K and K’, which are special high-

symmetry points including M. The points are represented by wave vectors [42]:

gr—2m(q 1 g_2(s_1
K' = o (1, 3) and K = o (1, @) (2.3)
— 2T
where, M = (—,O) (2.4)
3a

The remaining four corners can be connected to the point K and K’ by the

translational vectors in the reciprocal lattice[42][43].

2.3 Properties of graphene

2.3.1 Graphene electrical properties

The electrical properties of graphene are determined by its structure. Being
a monolayer of carbon atoms indicates a certain bonding type as described
before in previous sections. The three strong o bonds are responsible for the
tightly binding structure, which is why graphene is useful in electronics as it has
high elasticity and strong resistance against destruction. Yet, it can be stretched
and bent easily due to its monolayer structure. So, the flexibility of graphene can
be related to the o bond, which is responsible for the robustness property in all
carbon allotropes. Each of the three o bonds in will form a covalent bond with
the neighboring atom and that is the reason for, making graphene crystal 100
times stronger than steel. On the other hand, the st bond is formed by one p
orbital leaving the conduction band half filled, thus giving metallic properties to

graphene. So, this bond is responsible for the heat and electricity carry of

11



graphene[44][45]. The single it bond is responsible for electrical conductivity
as it leaves one electron free to move above or below the graphene sheet.
Furthermore, the atom-atom bonds are enhanced in graphene by the

overlapping of the neighboring 7 orbitals.

The electrical properties of a material can be explained by looking at its
behavior under the application of an electrical field. In a metal or a
semiconductor, carriers (electrons and holes) response to electric field by
moving through the material. The measure of how quickly carriers propagate is
called mobility and it is usually specified in units of cm2 V-* s-1. Each material
shows different mobility, therefore, it can be used to identify the conductivity in

different materials.

The mobility of graphene varies as the fabrication method produces
different structure quality. It has been suggested that in perfect crystal of an
exfoliated graphene can reach a mobility of 200,000 cm2 V-t s1[46]. Taking into
consideration the concentration of the carriers in graphene with such high
motilities, graphene has a very high electrical conductivity. Because of the
linearity of low energies near the 6 corners of the Brillouin zone (Dirac points)
in graphene (the energy-momentum relation), electrons and holes have zero
effective mass. Electronic conductivity can be enhanced by doping, as at the
Dirac points the density of states is zero, and doping will change the Fermi level

and will create better conducting material.

Regardless of the concentration of carriers in graphene at Dirac points
(which is zero), graphene experiments indicated that the minimum conductivity

in graphene has been found to be double the mobility observed in quantum wires
(00~ 4e?/h)[2]. Ballistic transport can be performed by the charge carriers, with

no scattering, in graphene at room temperature[47]. Large Coulomb energies

are responsible for magnetism and collective effects in graphene.

2.3.2 Graphene thermal properties

The study of the phonon dispersion of graphene or the lattice vibrational

modes leads to understanding of the thermal properties of graphene. The ability

12



of conducting heat in suspended graphene is allowed by ballistic phonons, which
has been illustrated by the use of high-resolution vacuum scanning thermal
microscopy[48]. On the other hand, if graphene is placed on a substrate, the
number of scattering will increase, hence, the thermal conductivity will
decreases. So, due to the scattering heat will be lost in the substrate[29]. The
thermal conductivity decreases furthermore if the number of layers in graphene
was increased. The mean free path of thermal phonons in many layers graphene
is larger than the mean free path in graphene on substrate[30]. Any additional
disorder due to fabrication for example will reduce the thermal conductivity

even more.

It has been reported that in freely suspended sample of graphene, thermal
conductivity of at room temperature can reach about 2000—4000 W m- K- [31].
Which is one of the highest thermal conductivity of any known materials. The
thermal conductivity of graphene on substrate (silicon-dioxide for example), can
reach a value of about 600 W m K-1[49]. In both cases, the thermal conductivity
of graphene is very high, however, it is strongly affected by environment

(interaction, defects, edged...etc).

Considering an almost pure sample of suspended graphene, the electrical
transport in the sample changes with temperature. In low temperature, the
electrical resistivity can be negligible due to low scattering. Therefore, the carrier
can be ascribed a mean free path. As the temperature increases, the electrical
resistivity changes in dependence of the carriers’ density. In the case of high
density, graphene shows a metallic behavior. The conductivity decreases with
the increasing temperature, due to electron-phonon scattering. However, it is
still considerably small scattering as the observed mobility still high (~120,000
cm2/Vs at T=240 K). On the other hand, in low carrier density, graphene exhibit
a non-metallic behavior, thus the conductivity decreases with the decreasing

temperature[50].
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2.3.3 Graphene photonic properties

Graphene is a material of high transparency, as it is an atom thin with a
single 7t bond. It has been shown that a single layer of graphene transmits ~97%
of the incident light, absorbs = 2.3% (regardless of its wavelength) and reflects
<0.1%, which is very low reflection[11]. Nevertheless, the wide range of
absorption indicates there is a strong graphene-light interaction. Graphene does
not produce resonant fluorescence, as relaxation in graphene is fast. Even in

strong electromagnetic filed, as graphene atoms are in a single quantum state.

Thus, graphene is promising for the use in photonic devices as it makes an
excellent conductive electrode. Being highly conductive with high light
transmission makes graphene a candidate for solar cells, flat panel displays,
touch screens, OLEDs, and it has been suggested for the use of small screens [1].
So, the usage of graphene in such electronic and photonic applications is actually
dependent on the full control over the band structure of graphene. This includes:

“lateral size, layer thickness homogeneity, and purity”[11].

2.4 Fabricating graphene

Graphene is a one layer of graphite, it is a 2D crystal, and it takes more
than one layer to build up a 3D crystal. It will take up to 11 layers of graphene to
reach 3D structures, so any 10 layers or less is still a 2D crystal. This number of
layers was specified based on the electronic structure, which evolves with the
number of layers and at 10 layers the structure approaches the 3D limit of
graphite. Then, a more distinguishable feature of a graphene and its bilayer is
that they are both gapless semiconductors having simple electronic spectra, with
only one type of holes and one types of electrons. The electronic spectra become
complicated in the three layers graphene (or more), the conduction and valence

band overlaps, and appears a number of charge carriers’ types[5].

Graphene is extracted from graphite using three methods, which can

produce samples of graphene with full preservation of the hexagonal structure.
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The physical properties’ of graphene depends on its quality which depends on
the fabrication method. The three methods are (in order of producing the best

quality graphene):

1.  The mechanical exfoliation technique (from bulk graphite).
2. The vacuum epitaxial growth technique (on SiC substates).

3. The chemical vapor deposition (on metals).

2.4.1 The mechanical exfoliation or cleavage

This exfoliation technique, elaborated mainly by the Manchester group, is
one of the simplest methods of fabricating graphene. The process is mainly
peeling a bulk of graphite, by exfoliating the bulk with a scratching substrate
(scotch tape). Mainly by folding and unfolding the sticky substrate on the bulk,
a thinner sample of graphite will be produces on the substrate. The first sample
could contain tens or hundreds of graphene layers. Thus, by repeating the same
process one can reaches a single layer of graphene (FIG 2.2). Then, by looking
at the simple optical interference patterns, or Raman spectroscopy, a single layer

of graphene can be identified.

Few problems with the exfoliated graphene: 1. The monolayer graphene
will be distributed on the substrate. 2. Only small quantities of graphene can be
produced each time. However, the produced samples have a high quality
structure (in term of defects) and a very high mobility that at room temperature

can excess 15,000 cm?V~1s~1 [51].
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Figure 2.5 Mechanical exfoliation method

2.4.2 The vacuum epitaxial growth technique

The epitaxial growth technique, developed by the Atlanta group[53], is an
alternative method to the mechanical cleavage. This process basically consists of
evaporating silicon carbide (SiC), which will be plated on a silicon wafer, to form
graphene. In SiC (4H or 6H) hexagonal crystal, silicon is less tightly bonded. At
a temperature of about 1300° C, silicon atoms start evaporating and only carbon
atoms remain on the surface forming graphitic layers as the process continues
(FIG 2.3).

The number of these layers can be controlled if one uses Si-terminated
(0001) surface, which graphitize slowly, allowing the formation of a single layer
of graphite (graphene) or two as aimed[43]. If C-terminated (0001) surface was
used in the vacuum epitaxial growth, then larger numbers of graphene layers

will be formed as this type of surface allows a very fast graphitization

process[43].

The analysis of the epitaxial graphene shows that this type has a quality less

than the one of the exfoliated graphene. First, the epitaxial-grown graphene
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usually has some structural defects, due to the high temperature some carbon
atoms burns during the process[54]. The structural defects can be spotted by the
use of Raman topography[55][56][57]. Second, the layers in epitaxial graphene
are less tightly bonded than the exfoliated graphene layers, due to the large
distances between the layers in the formation process. These distances can be

determined by X-ray measurements[58].

As a consequence of these characteristics, epitaxial graphene is less chosen
as sample in transport measurements (in contrast to the exfoliated graphene).
Also, the mobility of the epitaxial graphene is smaller than the mobility of the
exfoliated graphene; however, it is better than the mobility of the CVD graphene.
The study of epitaxial graphene by Raman topography has shown that: the
thickness, the stacking and the homogeneity of the graphene layers, all affect its

mobility[56]. In room temperature, the mobility of epitaxial grown graphene

can reach 5,000 cm?V~1s 7! (in the case C-terminated (0001) surface)[51].

1 A small amount of silicon carbide 3 Silicon molecules ‘evaporate’ from
(about 10mm x 10mm) is placed in a the surface, leaving layer of graphene
box with a small hole in it -
—,,‘_//\\\‘ |
e . i Hicon
~ arbi

molecules
L

2 The box is sealed in a vacuum or X
argon and heated to about 1,500°C Sample size
About 100mm

Applications
Transistors and
other electrical
devices

[52]

Figure 2.6 Epitaxial growth method
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2.4.3 The chemical vapor deposition (CVD)

This approach was first reported in 2008/2009 [CVD+1CVD]. Its potential
is the easily mass production of graphene with low cost; therefore, this method
is usually used for industrial purpose [55][59]. In this method, a sample of
carbon atoms abides to a metallic surface, which helps decomposing the
chemical bonds in carbon aside with the high temperature involved in the
process. The easiest substrate to transfer graphene from is copper-foil, thus it is
mostly chosen in the CVD method.

The carbon atoms reaction to the high temperature on the metallic
substrate is basically is a repositioning behavior. Each carbon atom starts
occupying a position on the surface, pushing the neighboring atom to the sides
of the substrate. The process simply continues until a one layer of carbon is
formed or at the edge of the metallic substrate (FIG 2.4). Hence, the larger the
surface is, the larger production results. In the meanwhile, carbon atoms start
an order of a hexagonal (honeycomb) lattice in some places on the surface before
the whole sample is crystallized to form graphene. This means that at each initial

spot of crystallization, the lattice produced can be differently oriented from the

other layers.
1 A substrate (usually copperj is 7 3 Carbon atoms from the methane
heated in a furnace at low pressure to | are deposited on to the copper.
about 1,000°C. This anneals the They crystallise as a continous
copper graphene sheet
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Figure 2.7 Chemical Vapor Deposition
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As these different oriented crystallizations spread and meet, line defects
will occur causing what is called grain boundaries[60]. These boundaries are,
aside from other defects, the main reason of the low mobility of CVD graphene
(in comparison to the exfoliated and epitaxial graphene)[60]. The transmission
electron microscopy (TEM) and scanning electron microscopy (SEM) can be
both used in defects determination of CVD graphene[49]. In short perfectly

structured CVD graphene (no grain boundaries), the mobility can reach 2, 700

cm2V_1s_1[6o].

2.5 Quantum behavior of graphene

Graphene exhibits a fast motion of charge carriers, due to their zero
effective mass, hence providing a very useful model to examine electrodynamics
phenomena without the need to costly acceleration equipment [29].
Furthermore, graphene shows quantum behaviours at room temperature. This
is also another factor making graphene a recommended candidate for studying

such behaviours with no need to cooling mechanisms [2].

2.5.1 Anomalous quantum Hall effect (QHE)

In an electrical conductor and under the application of magnetic field, a
voltage difference is created in the conductor, which is called Hall effect. At low
temperatures and very strong magnetic field, the Hall effect (or Hall resistance)
becomes quantised. This is called Integer QHE, however, in the case of

quasiparticles the QHE becomes fractional [50][11].

QHE has been reported in graphene experiments within a SLG at room
temperature [36][2]. Although the samples showed quantised resistance, the

integer QHE is not exactly the same as in 2D semiconductors. The quantum
conductivity is shifted in graphene by% d,, which is the minimum conductivity).

This shift can be controlled by doping [5]. On the other hand, the fractional QHE

19



in graphene is, similarly in semiconductor devices, correlated to the electron-

electron interaction.

2.5.2 Perfect Klein tunnelling

In quantum mechanics, a particle can pass through a barrier regardless of
the classical condition, where the kinetic energy of the particle K has to be larger
than the potential U, in a phenomenon known as tunnelling. In 1929, Klein dealt
at the electron scattering from a barrier with the application of Dirac equation.
He showed that if the potential is of some order of the electron mass, then the

electron will always tunnels through the barrier [5].

This quantum behaviour can occur in graphene and electron exhibits a
perfect transmission through the potential barrier [29] [54]. However, the
perfect tunnelling occurs only under several conditions. The shape of the
potential barrier is essential factor in the behaviour of the tunnelling, also the
energy of the tunnelling electron in respect to the potential height [55].
Moreover, the angle of the incident electron also contributed to the smoothness

of the tunnelling in graphene [53][51].

2.6 Graphene devices

2.6.1 Graphene sensors

The need of high sensing in small dimensional devices and circuits is never
limited. Graphene-based sensors is a well preforming high precision detectors
due to the high mobility, low scattering and noise of graphene sheets [61].
Consequently, the graphene-based sensors are time resolving due to graphene
properties [29]. The fabrication of such devices is based on simple structuring
knowledge, as a quantum dot with two Nanoribbons on either side will act as a
charge sensor [37]. The high sensitivity in these devices is influenced by the

conductivity of graphene stripes, which is sensitive to defecting and importing

[29].
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The use of graphene ribbons and graphene meshes in these devices can be
regarded to their role in creating a gap band in the energy of graphene [62]. The
difficulty in the application of graphene-based devices in general is the gapless
feature and the Klein tunnelling in graphene, which makes controlling the

transportation of electrons a challenging task [61].

2.6.2 Graphene transistors

Semiconductors devices has reached a limited speed and dimensional
reduction. Thus, emphasising the need to a new material such as graphene, with
new possibilities in terms of scaling and mobility [14]. Implying and controlling
of devices and circuits is based on transistors, which is about to be “reborn” with
the application of graphene transistors [29]. The main challenge in the transit
process is the zero gap structure of graphene. Transistors can be used as a logical
controlling element if it can switch from a state to another (from ON state to
OFF state). Therefore, the task in graphene transistor making is to create and
control a gap band in the energy spectrum. The use of carbon nanotubes and
graphene Nanoribbons is a method of producing the required gap. Furthermore,
other methods can be applied to obtain the same aim with the use of channels of
bilayer graphene (BLG), graphene oxide or graphene with impurity [5]. Hence,

changing the band structure of graphene creates an energy gap.

Several graphene transistors designs have been proposed recently. For
example, graphene oxide transistor provides a simple application and can result
in channel mobility up to 100 cm2 V-1 s [59]. Also, carbon nanotubes transistors
were designed, and it promises to produce high mobility transistors due to the

ballistic transport in carbon nanotubes [34].

2.6.3 Graphene photonic devices

The transparency of the thin graphene sheets makes them ideal for
photonic devices. The monolayer structure allows a small light absorption [60].
Many proposed application is graphene based such as small touching screens,

solar photonic devices and photonic transistors. The principle of photo-
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conduction increases the number of charge carries in graphene, due to the
excitation caused by the photons absorption. Therefore, the conduction is a

subject of increase [29].

2,7 Summary

The demonstration of graphene has led to many possibilities due its unique
structure and properties. Graphene is a single layer of graphite sheet, which is
made of carbon atoms arranged in a hexagonal lattice structure. The hexagonal
structure is usually looked at as two sublattices with two atomic cites A and B.
Such configuration allows the valence electrons in carbon to be arranged into
forming one 7 bond and three ¢ bonds. The 7 states are in lose energy levels
allowing the electron to move freely (massless) from an atom to another. This
bond is responsible of graphene electronic properties such as: high mobility,
heat and electrical conductivity, and light transmission. The properties of
graphene depend on the quality of its fabrication method, where mechanical
exfoliation producing best graphene quality, while vacuum epitaxial growth and
chemical vapor deposition provide less quality. Graphene shows anomalous
quantum behaviors such as fractional Hall effect and perfect Klein tunneling.
Thus, graphene is promising in studying quantum behaviors and for new

quantum applications such as in sensors, transistors and photonic devices.

22



3 Graphene Energy
Band

3.1 Band theory

Wallace introduced the band structure of graphene in 1946 [32]. His aim
at that time was to study the structure of graphite. He considered one layer of
graphite, which is graphene now, to explain some of the physical properties
through the band theory. Wallace showed that the o bonds do not play part in
conductivity, whereas the st bond leaves the conduction band half-filled. That is
why he concluded that Graphite can be treated as having one conduction
electron, and that the electrical conductivity in the 2D crystal of graphite
theoretically exists. Wallace also concluded that at six points of the Brillouin
zones (which is called Dirac points), the electronic spectrum in graphene is
gapless and has the form of a canonical Dirac spectrum. Later on (after 2004),
it was proven by experiments that the charge carriers in graphene were actually

Dirac fermions[5].

When studying the electronic band structure of graphene, one is
considering the energy bands of m electrons. As discussed before in chapter 2,
the 7t electrons are the responsible for the electronic properties in graphene.

Furthermore, the o electrons have energies too low than the Fermi level[23].
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The t energy bands in graphene can be described through Bloch’s theorem,

tight binding model, and Dirac equations.

3.2 Bloch’s theorem

The best way to describe Bloch’s theorem is by saying that it represents the
periodicity of a wavefunction 1 over a periodic crystal structure with a lattice

vector R; [23]:

Y(r) = e*u(r) (3.1)

where, v is the electron’s wavefunction in a crystal (usually refered to as Bloch’s
wavefunction), r is the position, k is the crystal wave vector, and u is a periodic

wavefunction which has the same periodicity as the crystal, hence [23]:
u(r +R;) = u(r) (3.2)

The concept of the electronic band structure is based on representing the
energy eigenstate of an electron as Bloch’s wave 1,, ;. The index n refers to the
discrete bands, which may share the same wave vector k. Because k is periodic,
hence ¥, x = Yy k+r,, then one can describe all the n Bloch’s waves within the

first Brillouin zone.

Although electron transport in graphene is determined by Dirac equation,
the need to solve Schrodinger equation is essential if a periodic potential is

applied. Thus, it is needed to distinguish semiconducting properties.

Finding a solution to Schrodinger equation in 2D crystals could be obtained
using a number of methods. Nevertheless, there are some general characteristics

to the solution no matter how it was gained.

These properties could make the calculation easier, or it could allow some
approximation to obtain a general understanding of the Block wave. Basically, if
a periodic potential is applied to a periodic function (periodic with respect to the
crystal), then all Schrodinger equation solution of the electron wave should be

of the form of a Bloch’s wave with the same periodicity equation (3.1).
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It is rather useful to expand the potential and the electron wave function
into Fourier series and represent the Schrodinger equation to obtain specific

solutions [46][47].

Each atom has four atomic orbitals to be considered in the Bloch wave

function as an 8 terms function [62]:

Y = Z eik'ﬁ{bAsprs + bApx(PApx + bApy(PApy + bApz(PApz

R

+ bps@ps + bex(PBpx + bey(Ppr + bez‘Psz} (3-3)

where @45, Pap,., Pap, & Qap,are the s, p,, p, & p, atomic orbital wavefunctions for

atomic site A, and @gs, @5y, Psp,& Ppp,are the s,p,,py&p, atomic orbital

wavefunctions for atomic site B. Therefore, for each value of wave vector k in the

1tBZ, there are eight bonds and hence eight energy spectrums ¢, (E)

3.3 The tight binding model for electrons in

hexagonal lattice

Tight binding model is a method uses a set of wave functions to calculate
the electronic band structure. The basic assumption made in this approach is
that the ionic potentials (or the crystal potential) are strong. Due to that, when
an electron passes on while moving through the lattice, the electron is captured
by the ion for a period of time, before the electron tunnels to another ion. During
the capturing time, the electron orbits around the ion. As a result, the wave

function of the electron becomes the same as the orbital function of the atom

[23].

In the case of honeycomb lattices, the tight binding model is based on
constructing a wavefunction as a superposition of the atoms’ orbital
wavefunctions. The atoms considered are the atoms in the Bravais lattice

described by the lattice vectors [22]:
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R; = m;a; + nya, (3.4)
where, m; and n;e Z.

The produced wavefunction is called “trail wavefunction”, and it is
symmetrical under the translation of the lattice vector. The simplest case in
approaching the tight binding model is to consider a Bravais lattice with one
atom, and hence one electron, per unit cell. The tight binding Hamiltonian for

an electron ¢ is[23]:

h? >
Hp=—o B+ Z V(r,— R;), (3.5)
]=

2
where, £ is an integer for any arbitrary electron, A,= V5= (:—x + aa—y) is the two

dimensional Laplacian operator, r, = (x,, y,) is the electron’s position, m is the
mass of the electron, R; is the ion’s site, V is the potential energy felt by the electron

because of the ions, and N is the number of the lattice points.

So, the total Hamiltonian of the lattice is[23]:

H= ZH{; (3.6)

£

Electrons’ motion in graphene is controlled by the nearest-neighbor
approximation. The moving electrons are the 7 electrons only, and they motion
with a hopping parameter t [49]. This hopping process only occur within one
sublattice atom to another, such that there is no electron hopping from the

sublattice A site to another A site.

The tight binding Hamiltonian in term of the wave vector k, is a 2 by 2

matrix [22]:

H(E):( 0 tS(E)) (37)
£5°(K) 0

where,t is the first hopping parameter and S(k) is given by:
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S - ik k,av3
S(k) = Z etk = 2 exp (l 2xa> cos( y‘;‘/_> + exp(—ikya) (3.8)

Therefore, the energy can be defined as:

E(R) = +t|s(k)| = +t |3+ f(F) (3.9)

where

f(E) =2 cos(\/gkya) + 4 cos (? kya) cos (; kxa) (3.10)
Because of band crossing, S(K) = S(K")[41]. Therefore, when calculating the
Hamiltonian, only next-nearest-neighbor hopping should be taken into account
and all other hopping parameters can be neglected (hence, we include the two first
hopping parameters t & t' and neglect t"' and higher). The energy can then be
found to be [22]:

E(R) = +t|s(k)| + £f (k) = £t |3+ f(k) + ' F () (3.11)

The second term is responsible of breaking the electron-hole symmetry. It shifts
K points from E = 0 to E = —3t’ without changing the symmetrical nature of the
Hamiltonian near the conical points. The symmetrical behaviour of the electron

and hole Hamiltonian is topologically protected within the BZ.
3.4 Energy spectrum in graphene

3.4.1 Dirac points

The energy spectrum in graphene can be explained by understanding the
crystalline structure in figure (3.1). Looking at the energy spectrum at one corner
of the Brillouin zone, there will be two bands, which we can label as — and + for

now, both having the same number of states. As in graphene there is only one 7t
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electron per atom, then the electron will occupy a state of spin up T, or a state of
spin down !. The band with the lower energy is the — band, which is the valence
band. The electron will occupy a state in this lower band making the valence
band fully occupied. The + band, which is the conduction bad, will be left
completely empty. Therefore, the Fermi level will be at the point where the
valence band and the conduction band touch. This point is what is called Dirac
point, where the conduction band and the valence band form reversed
canonicals. The electrons in graphene have zero effective mass, meaning that
they can be treated as massless fermions using Dirac equations, which is
described in the following section. Thus, the six corners of the 15tBZ in graphene
are called Dirac points in analogy to the zero-mass limit of the relativistic Dirac

equation, where electron and positron bands touch at zero momentum.

The conduction and the valence bands meet exactly and only at the six
corners of the 1tBZ. The upper and the lower cones are referred to as the electron
and hole cones. The six Dirac points are noted as three K points representing
sublattice sites A, and K’ points for sublattice B. The electronic states located
near the cones are described by two set of 2D spinors [48], with zero number of
states at K and K’ points. Although the valence and the conduction bands touch
at six Dirac points, they never overlap. Because of Dirac points, graphene is

considered a zero-bandgap semiconductor or a semimetal.

3.4.2 Dispersion relation

Semiconductors usually form parabolic dispersion relation near Fermi
energy, apart from graphene, which has a linear dispersion of the = band with
the separation distance. Graphene has unique properties because of this linear
dispersion relation. Photons are also characterized by a linear dispersion
relation because of kinetic energy being much larger than its mass energy.
Therefore, the electrons in graphene can be considered ultra-relativistic
particles as they copy the behavior of photons. The Fermi velocity (vy) of
graphene electrons is 300 times smaller than the speed of light, thus v, is energy
independent. Thus, the energy around K points for electron in graphene is

proportional to momentum as:
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E(k) = hvg|p| (3.12)

where £ is Planck’s constant, vy is Fermi velocity and p is the momentum.
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Figure 3.1 The gapless energy spectrum as a function of wave vector kK

(a) showing the valence band (upper spectrum) and conduction band
(lower spectrum). The Fermi level is at the canonical points (Dirac
points), where the valence band osculate the conduction band. (b) The
hexagonal first Brillouin zone showing the only 6 corners conducting the
m and * bands (K and K’ points). The gap between the valence and the

conduction band occur at the M points.

3.4.3 Massless Dirac fermions in graphene
At very low energy, the two sublattices A and B, (hence the two conical

points K and K’), should be taken into account when finding the Hamiltonian
such that[22]:

(A 0
A= ( K ) (3.13)
where:
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ﬁKI = H\IE (315)

L : (0 1y (0 —iy (1 0

having ¢ = (o,, 0, 0,) are the 2D Pauli matrix = (1 O) , (i 0 ) (O _1).
This Hamiltonian in equation 3.10 is a two-dimensional Dirac Hamiltonian

for massless fermions [22]. The low-energy-momentum dispersion relation can

be written as [22]:

1
E(pupy) = +vp(p2 +p2)? (3.16)

where, (p,, p,) are the electron momentum, vy is the Fermi velocity, and E is the
energy spectrum, which equals zero at Dirac points. Although graphene is a
gapless semiconductor, sometimes it is applicable to create a gap in the
graphene’s band structure. Such a goal can be achieved using various techniques
like selective doping, applying a gate voltage, substrate engineering, or
deposition of molecules on graphene layer[49]. Some methods are described

later in this chapter.
3.5 Dirac equation

To describe the electrical properties of materials it is sufficient to use
Schrodinger equation, however, not in the graphene case. The charge carriers in
graphene exhibit relativistic behaviour of quasiparticles with low energies and
can be easily and accurately described by Dirac equation. These quasiparticles
could be considered as massless electrons or charged neutrinos and they called
massless Dirac fermions. Dirac equation basically describes a wave function

with four components by four coupled differential equations [49].

Graphene is a zero-gap semiconductor, with low-energies quasiparticles

that can be describes by the Hamiltonian [49]:
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—~ 0 Dx — ipy
H=hv[ , ]=hvc’7’." 1
Flpy + ipy 0 FO.D (3.17)
where, the Dirac-like Hamiltonian is # , Fermi velocity is v, the quasiparticles
momentumis = (p,, p, ), and Planck constant is considered & = 1. The energy

can be found by simply finding the eigenvalues of the Hamiltonian:

ﬁl/’A,B =EYup (3.18)

The lattice of graphene is a hexagonal lattice (honeycomb lattice) that is
made up of two sublattices referred to as sublattice A and sublattice B. Both
equivalent sublattices are associated with cosine-like energy bands that intersect
at zero near the boundaries of Brillouin zones. Therefore, the energy spectrum

in graphene forms two canonical sections.

If a charged particle in moving in an electromagnetic field (classically),

then the fields are defined by static and vector potentials such that[22]:

(3.19)

E= -VU(x) - %(E)A(t))

at
B = VxAi(x) (3.20)

where, U is static potential, A and A”are vector potentials, and c is the speed of

light which is replaced in graphene by Fermi velocity vy.

Then the system is described by the classical Hamiltonian for a charged

particle [22]:

If charged carriers are in motion in graphene, behaving as zero mass
particles, then their dynamics can be described by 2D Dirac Hamiltonian as the

solution to:

. )
Hyp = la Yap (3.21)

which is expressed as[30]:
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H={G[p-A@t) - A%()]+ UW)) (3.22)

In this equation A(t) is the potential of time dependent electric field, AH (x) =
(/TH (x),/f';’ (x)) is magnetic potential, and U(x) is SE field.

3.6 Symmetry and symmetry breaking

As has been discussed, graphene has a filled valence band that touches an
empty conduction band in six conical points, where Fermi energy lies with no
gap energy. The gapless structure of graphene is not the reason of the unusual
electrical properties but rather the chiral nature of the electron states and the
high symmetry between electrons and holes, thus these quantities need to be

conserved.

Since there are two sublattices per unit cell, at Dirac point two linear energy
dispersions intersect as independent from each other, which result in the
existence of pseudospin. The Dirac spinors are represented by the two
sublattices, so “pseudospin-up” is sublattice A and “pseudospin-down” is
sublattice B. However, it is actually a chiral pseudospin, which is a quantum
number resulted from the lattice structure and is used to distinguish the
electrons in the sublattices of graphene. Chirality connects electrons and holes

in graphene so one can tell that they are originally form the same sublattice [5].

Considering the direction of motion § or k, then the chirality in graphene the

projection of electrons in positive (k state) and for holes is negative (-k state),

except that: (k) # e(—k) but rather e(k + K) = e(~k — K).

There are two more internal degrees of freedom in graphene: 1- isospin,
which is the valley of the conical point K & K’ usually represented by + and -, and
2-real spin, which is just the spin for Dirac fermions. The Hamiltonian of
graphene is therefore represented by an 8 x 8 matrix that produces a dispersion
energy that has threefold symmetry. In the Hamiltonian, ¢ refers to pseudospin

of the quasiparticles rather than the real spin of electrons.
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At the conical points, the zero gap state is symmetrical, thus it is time (T)
symmetric and inversion (I) symmetric [63]. So the following conditions has to

hold for the gapless state to be described as T and I invariant:

T:Hy = Hy, = Hy (3.23)
I: HK = O-xHKIO-x = HK (324)
TI:Hy = o,Hj0, = Hy (3.25)

Then, if a perturbation, invariant for T and I, is applied to graphene it can
cause some deformation to the spectrum such as shifting a conical point, but it
cannot cause a gap opening as the sublattices remains equivalent. Consequently,

to allow gap opening in the graphene, the inversion symmetry has to be broken.

Due to symmetry, different classes of topological semimetals have been described
[64]. One type is the 3D Dirac semimetal is distinguished by its Dirac cone having
a fourfold degeneracy. It emerges from twofold degeneracy of the time symmetry
(T invariance) plus twofold degeneracy of the spatial inversion symmetry (P
invariance). Another topological metal type is Weyl semimetals, which appears in
the breaking of either symmetries (T or P). Thus, this type has a twofold
degeneracy cones forming two Weyl points, which always appears in pairs. The
pair hold two different topological charges +1 and -1, caused by the chirality of the
Weyl fermions. Therefore, Weyl points form some kind of “magnetic” monopoles

in momentum space.

3.7 Gap induction in graphene

Although graphene has properties with the potential to replace silicon in
electronical applications, the zero-band gap structure stands as an obstacle.
Graphene has a low on off ratio because of its energy band structure. Thus, gap
opening problem in graphene is one of the most researched aspect of graphene.
Studies and experiments aim to obtain a gap band without compromising

graphene’s properties. This section discusses some of the gap induction
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techniques.

3.7.1 Deforming the honeycomb structure methods

3.7.1.1 Carbon nanotubes

The accidental discovery of Carbon nanotubes in 1991 has established a
demanding research topic, as it is an essential part of the new generation of
devices [55]. The physical properties of the nanotube, confined in very small
structures remarkably, promises to provide a range of advanced applications.
Perfect and pure nanotubes are more producible now with the achieved

development of the synthesis techniques [56].

S

Carbon Nanotubes

Figure 3.2 One-dimensional carbon nanotube

Carbon nanotubes are basically cylindrical tubes of graphene stripes with a
very small radius (Figure 3.2). They can be produced to a significant length, and
still considered a one-dimensional structure [57]. It can be fabricated with a
monolayer graphene or multilayered, and the chiral index modifies the
electronic band structure in the produces nanotubes. Hence the physical
properties are determined by the structure, size and topology of nanotubes.

Thus, nanotubes allow gap opening in the graphene band structure.

The energy gap in the nanotubes is proportional to the radius, which is
determined by the boundary conditions of the graphene strips used in the
formation. These boundary conditions will illustrate the conduction of the
nanotubes, thus an armchair boundary conditions indicates conducting and
semiconducting, while the zigzag boundary conditions only allow conduction

behavior [56][58]. The energy states of the nanotubes are also specified by the
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boundary conditions. Such simple basics is associated with the fact that the
production volume is still below industrial limit with the amount of cost and
techniques involved, in addition, the manipulation of nanostructure is still a
challenging aspect [56]. Nevertheless, nanotubes are likely candidate for
building graphene-based devices, such as transistors, where nanotubes works as

efficient channels between the source and the drain [29].
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Figure 3.3 The edge of graphene nanoribbons determines the conduction

behavior in the stripes.

3.7.1.2 Graphene nanoribbons

The graphene stripes with a very narrow width are called graphene
nanoribbons. Nanoribbons can be fabricated simply by cutting carbon
nanotubes longitudinally [29]. They are known to be a useful technique in
creating an energy gap in graphene spectrum. Therefore, graphene would gain
metallic properties or semiconducting properties depending on the structure of
nanoribbons (the arm chair edge indicates a metallic and semiconducting

behavior, and the zigzag edge indicates a metallic behavior only) (FIG 2.7) [37].

The size of the band gap in nanoribbons is influences by the width of the
graphene sheet, the structure defects and the edges. Changing the width in
practice requires high precision nanometers and nanofabrication; hence it can

be hardly controlled. Moreover, the fabrication defects in the structure of the
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sheet or in the uniformity of the edges is highly possible, therfore the
manufacturing of nanoribbons devices still requires more developments [37].
Above all, the phonon scattering due to the defects or the edges of the

nanoribbons cause a decrease in the mobility [29].

3.7.2 Structure preserving method

3.7.2.1 Substrate induced band gap opening
The isolation of graphene on an insulating substrate was reported on 2004,
however gap opening in epitaxial graphene on hexagonal Boron Nitride (h-BN)
was experimentally realized in 2002 [65]. This method was the first reported
method in graphene gap opening allowing an energy gap of around 0.5 eV.
Following up, a number of experiments achieved substrate induced band gap in

graphene [66].

Recent theoretical research has been focusing on introducing energy gap to
graphene on substrates such as h-BN, copper and SiO2. The minimum gap
opening achieved was close to 0.1 meV and the maximum was around 0.52 eV.
The studies were conducted to explore the validity of the substrate growth
process or gate voltage application to preserve the semiconducting and semi-
metallic features [67][68].

3.7.2.2 Superlattices gap opening

One of the greatest achievements in semiconductor physics is the work of
Esaki and Tsu of superlattices[69]. Since then superlattices has been studied in
depth and had influenced the field. Many phenomena have been determined by
superlattices, such as “negative differential conductivity, Bloch oscillations, gap
openings at the mini-Brillouin-zone boundary formed by the additional periodic
potential and so on”[70]. The production of superlattices usually is based on
metalorganic vapour phase epitaxy and molecular beam epitaxy [71]. For

graphene, fabricating superlattices can be achieved either by:

1. impurities, which are positioned and aligned using or scanning

tunnelling microscopy[72][73].
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2. by epitaxial growth on top of a structured substrate [58].

3. by applying a local top- gate voltage to graphene [74][75]. The resulting
material consists of two crystals aligned together, as a result the energy band

structure of the materiel changes.

Graphene superlattices have gained a huge interest for theoretical physics,
investigating to generate periodic potential or barrier structure using
electrostatic and magnetic potentials[32][76][70][77]1[78]1[79][80][81][82]. One
of the features of graphene superlattices is that in a 1D periodic potential
superlattices the velocities of charge carriers show a strong anisotropy.
Therefore, the charges mobile in one direction only with a constant velocity[70].
Such anisotropy results from formation of new Dirac points in the energy
spectrum with new zero energy states. It has been shown that the emerged states
can be controlled by altering the parameters of the periodic potentials [83][84].
Graphene superlattices have experimental realization. However, the fabrication
tools and techniques are based on nanofabrication, which are of expensive cost,
long fabrication time, and limited fabrication structures[85]. Therefore,
theoretical periodic potential superlattices provides a promising tool with the

features of superlattices.

In many researches, the investigation of charge carriers in graphene
superlattices is based on calculating the energy dispersions, the group velocities
and the energy-gap openings[70]. The massless charge carriers in graphene are
described by Dirac equation, where the resulting energy dispersion near Dirac
points is linear and isotropic[30][34][53][70][86][87]. Many models
demonstrated that the wavefunction of the quasiparticles in graphene has two
components represented by the two trigonal sublattices. Therefore, within the
effective-Hamiltonian formalism, the two amplitudes can be represented by a
spinor with two components and is called a pseudospin. This spinor results from
the structure of the wavefunction and it is not related to the real spin or chirality.
If an external periodic potential is applied to graphene, the spatial period of the

superlattice potential is usually much larger than the nearest-neighbour
distance between the carbon atoms in graphene =~1.42A - Consequently, there

will not be a state scattering near Dirac points and hence no gap
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opening[86][88][89].

The purpose of this research is to show that applying two different
potentials to a SLG can create gap opening and furthermore, provides
theoretically investigated analogies to graphene superlattices that are affordable

and highly controlled.

3.8 Summary

Graphene band structure is different from other semiconductors. In
graphene the energy is given by a linear dispersion in momentum due to the
massless behavior of electrons at Dirac cones. The electrons travel freely between
graphene atoms in light of Bloch’s theory and the tight binding model. Around
Dirac points represents the singularity of graphene, where electrons are
considered Dirac fermions. Thus, Dirac Hamiltonian is used to describe the
dynamics of electrons in graphene, which holds a number of symmetries.
Therefore, inducing a gap in the energy spectrum of graphene requires symmetry
breaking at Dirac points. Some of the gap inducing methods are based on
deforming the honeycomb structure of graphene such as carbon nanotubes and
carbon nanoribbons. These methods introduce scattering centers which reduces
the electrons mobility in graphene. Other methods preserve the crystal structure

of graphene for example, substrate gap opening and superlattices gap induction.
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4 Theory

4.1 Massless Dirac fermions in graphene

From the previous chapter we can conclude that charge carriers in graphene
can be considered massless Dirac fermions. They are identical particles with half
integer spin, they have a very small mass, they obey Pauli exclusion principle, and
they can be described with Fermi-Dirac statistic (in case of equilibrium).
Therefore, an analogy between electron spectrum of graphene and Dirac fermions’

spectra can be established [30].

There is a gap for research in optical properties of graphene. Respectively,
there is an interest studying the electron behaviour of graphene in strong laser
fields. Moreover, the symmetry in massless Dirac fermions needs to be

investigated more, in different periodic fields (electric and magnetic). In the case

of special periodic potentials, the energy spectrum &(k) splits into a number of
subbands. This happens when the potential has a special period larger than
interatomic distances. The electron waves are then reflected by such potentials
and due to constructive interference, the electron spectrum is split with gaps. This
reflection and interference do not occur in the case of time periodic potential [41].
However, a change in the electron energy spectrum can occur. Floquet theory can
be used to analyse and control such a change in time-periodic potential systems.

In this chapter we describe the basic approach to our study.
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4.2 Floquet theory

Floquet theory is a branch of the theory of ordinary differential equations
relating to the class of solutions to periodic linear differential equations analogues
to Bloch theory. Floquet theory plays an essential role in analysing dynamical

systems. Using the theory, periodic systems can be transformed to linear forms.

Floquet theory can be used to solve the time dependent Schrodinger equation:

i %‘P(x, t) = HOW¥(x, t) (4.1)

Floquet theory illustrates that time periodic potentials transfers the electron’s

energy into a quasi-energy confined within its Brillouin zone
(—% <e< %),where, T is the time period of the spatially homogenous field.

Therefore, Floquet theory gives a solution of the form:
Y(x, t) = et d(x,t) (4.2)
where ®(x,t) = ®(x,t + T), and ¢ is the quasienergy or Floquet energy.

The initial energy spectrum splits into several subbands (Floquet Bloch
bands) [30][90]. These changes enlighten the possibility of “gapping” in
quasiparticles[43].

The analogy between graphene in spatial periodic fields and time periodic
fields can be explained from a mathematical perspective by Floquet theory as it

forms a linear differential equation as [42]:
x = M(t)x (4.3)
where, M(t) is an X n with a period of T piecewise continues function,

x is a column vector of length n, however, no need to be periodic but has to be
of the form: x = e**J(t). Where, J(t) is periodic in T and u is of nth order.
Therefore, the wave functions ®(x, t) should also be a solution to Schrodinger

equation:
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H®) @(x,t) = ¢ @(x,1) (4.4)

where ®(x, t) can be expanded as [10]:

D) = ) pu)emen (45)

n=-—oo

Using resonance approximation [91] this solution can be expanded with
exclusion of high frequencies. The resonance effect results from the rate of change
in the subsystem-reservoir interaction modes. Since it is not possible to
accurately calculate the frequency and the lifetime of the resonance, the associated
eigenfunctions cannot be accurately determined. Thus, an approximation of the

eigenstates is considered [92].

4.3 2D-Dirac Hamiltonian

Graphene is a zero-gap semiconductor, with low-energies quasiparticles that
can be describes by Dirac Hamiltonian in equation (3.22). The lattice of graphene
is a hexagonal lattice (honeycomb lattice) that is made up of two sublattices
referred to as sublattice A and sublattice B. Both equivalent sublattices are
associated with cosine-like energy bands that intersect at zero near the boundaries
of Brillouin zones. Therefore, the energy spectrum in graphene forms two
canonical sections where the charged carriers’ are in motion which is described by

2D Dirac equation [5]:
(3.[p = A@®) = BRG] + UG Wpap = i 0pap/0t (4.6)

We will consider the units e = A = v = 1, where A(¢) is the potential of time
dependent electric field, A" (x) = (A# (x),/f‘;’ (x)) is the magnetic potential, and
U(x) is the static electric field. The special periodic electro-static potential U(x),
or the vector magneto-static potential A" (x), each should have large periods in
respect interatomic distance.

The electron wave function 1 is represented by two components ¢, and ¢,

referring to the electrons in the two triangular sublattices A and B.
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w=(5") (47)

Substituting a solution of the wavefunction using Floquet theory eq. (3.6)
[93] and the potentials, then by rearranging and cancelling high harmonics terms,

we end up with an equation of the form:

W e
E+ E+
Wi~ Wi~
viTl_ wh

" wit|~ |t (4.8)
Y5t Y5t
e e
gzl Lzl

Equation (4.14) can be solved for &(k,, k,) numerically or analytically if

high oscillation terms are neglected. The matrix M can be represented by a general

form as a solution to the 2D equation as the following matrix:

w A .
> k+Cf C,Up iCpAl 0 - (7") e~ib 0 0
Ao\
k*+Cf > —iC,, A C,Up - (7") ei® 0 0 0
A\ .
C, U iC, Al > k+Cf 0 0 0 - (7") eif
w A .
—iC,AH CU, kT Cf - 0 0 — (7") 0t 0
A . —w
0 - (7") e=if 0 0 - k+Cf CUp iC,, AH
Ao\ —w
- (7") i0 0 0 0 k* +Cf - —iC, Al A
A . —w
0 0 0 - (7") e=0  C,U, iC,, AH - k+Cf
A —w
0 0 (7") ei® 0 —iC,, A CUp k*+Cf -

(4.9)
where k = k, —ik,, hence, k* =k, +ik,, C,C,& Cyare constants that can be

determined by the initial conditions, A¥ is the amplitude of the magnetic potential,
Uyis the amplitude of the electric potential, f = u or k, is the frequency of the
applied potential, 4,is the laser amplitude which in the case of circularly polarised
laser will be multiplied in the matrix by (1 + jel® ) , w is the laser frequency, and

0 is the angle between the laser and the applied field.
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4.4 Summary

Charge carriers in graphene are treated as massless Dirac fermions, which are
described by the 2D Dirac equation. Block theory allows the use of Floquet theory
to obtain a linear solution for Schrodinger’s equation. Then the resonance
approximation can be used to obtain the dynamical behaviour and energy

spectrum in graphene from the solution of Dirac Hamiltonian.
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5 Graphene in Laser
Field

5.1 Energy spectrum in periodic potential

The study of electron transport in graphene devices is usually approached
by studying graphene superlattices. In addition, they allow for electron spectra
manipulation. Yet, the nanofabrication of graphene superlattices is of a high cost
and does not provide a perfect tunability in modifying electron spectra. Therefore,
an analogy was found between electron spectra in graphene superlattices and
Dirac-fermions spectra in laser field [30]. The application of laser fields to
semiconducting lattices, such as graphene, creates a band gap structure in
electron spectra. Moreover, such an effect can be easily controlled. The laser fields
create a Strack effect in the energy band structure, causing the gap creation [30].
Applying different laser frequency or amplitude changes the size and location of
the gap in the semiconductor. This is promising in term of obtaining spectra in
graphene, in each time-dependent or spatial-dependent potential. Moreover,

provides an analogy to spectra in graphene superlattices [30].

The next section will show the problem of analytically finding the electron
spectrum in graphene in both linearly and circularly polarised laser fields (LPL &

CPL) based on the work done by Savel’s and Alexandrov [30]. Then we will apply
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the same calculation approach the problem of electron spectrum in graphene in
SE field.

The aim of this chapter is to establish the approach to the problems of finding
the energy spectrum of the electrons in graphene using the 2D Dirac equation

(3.6), which describes the electrons’ motions in 2D graphene lattice.

5.2 Graphene in time periodic laser field

5.2.1 Graphene in linearly polarised laser field LPL

In the application of LPL field, we will only consider the electric potential,

as the magnetic field is negligible. Hence, we will consider U(x) = 0, AH =0, and

the laser time-periodic electric field is E, (t) = — % and E,(t) = — d%. In the
case of LPL, the potential can be of the form [30]:
Ay (t) = Agcos(wt) & A,(t) =0 (5.1)

The frequency of the harmonic field is known to be of the form: w = 2?”, and

the electron wave function can be written as two functions [30]:

Yap = Pap(t) exp(ikxx + iky)’) (5.2)

The function ¢, 3 (t) only depends on time. Subsitiuting the wave function and

the potential into the 2D Dirac equation (4.6), we obtain the differential equation:

d () 0 (ky — A,(D) — i (ky —Ay(t)) "
ldt <¢B) - <(kx _ Ax(t)) +i (ky _ Ay(t)) 0 <¢B) ( 53)

A, (t) can be rewritten as:

Ax(t) — Ao(eiwt + e—i(ut) (5_4)

45



This is an ordinary differential equation, of the form: x = M(t)x. Hence, we

can use Floquet theory to find the solution. The 2 X 2 matrix is: (i) periodic in T

(as A, (t) = Aycos(wt) and w = 2?”), (ii) piecewise continues function (as A(t) =

A
( Ax) ) . On the other hand, ¢, 5 has to be of the form e*!/(t). Therefore, we can
y

consider a general standing wave oscillating in a quantum system travelling

through a harmonic potential (resonance approximation [30]):

(5.5)

iwt —iwt 3iwt -3iwt )

Pap(t) = e (D;{B ez +Djpe 2z +Djpez +Djpe 2 ...

where, DJ,Df,Dyand D; are four variables associated with the waves

iwt —-iw

t
travelling direction (e 2 to the right and e 2 to the left).

To find an analytical solution we ignore all terms with fast oscillations which

+3iwt  t5iwt
are all terms withn > +1(e.g.e 2 ,e 2z ...),therefore,

_ et (e et _ et (5.6)
Pap (t) = e Dipe2 +Djpe 2 5-

Substituting (5.4) and (5.6) that into equation (5.3) we will obtain four

equations such as:

D} (5 - )+ D (~(ke = iky)) + D7 (0) + Dj (%) =0 (5.7)
DF (0) + D} (%) + D (g - g) +Dj (—(kx - iky)) =0 (5.8)

D} (—(kx + iky)) + D} (—% - e) +D; (%) + D5(0)= 0 (5.9)

D} (%) + D} (—% - e) + Dy (—(kx + iky)) + D (% - g) -0 (5.10)
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We can combine these four equations to produce a four by four matrix L:

—w/2 — (ke — ik, ) p 0/2 1‘100/2 D} Df
—(ky + ik —w/2 + +
( x T y) / 0 ) Dli = ¢ Dli (5.11)
0 Ay/2 w/2 —(ky — iky) Dy Dy
Ao/2 0 —(key + ik, w/2 |'Ps Dp

This is simply an eigen value problem that can be solved by setting the

determinant equal to zero:
det[L—¢]=0 (5.12)

Therefore [30],

2 AZ
£= ijw Z 4 k2 + /kzwz + A%k2 (5.13)

where k% = kZ + k? and A, can be defined at t=0.

Taking each sign at a time (+ inside and outside the square root), this equation

will produce four energy spectra (FIG 5.1).

The given spectra (FIG 5.1 & 5.2) show two upper bands representing the hole
states and two lower bands for the electron states. The spectrum shows 2 Dirac
points along the k, axis where the cones change size with different laser

parameters without a gap opening at any case.
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Figure 5.1 2D Electron spectra for SLG &(k,, k) in LPL fields with units of = /T
considering (a) w =1 and A, = 1 (a) showing the gapless spectra at (k, =
0) where the hole states in the upper bands and electron states in the lower
bands have no gap, the figure shows that changing the laser parameter only
affect the size of the cone however does not allow a gap opening (b) w = 0.5 or

Ay =05(c)w=150r4, =1.5.
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Figure 5.2 &(ky, k) in 3D plot for SLG in LPL field

(a) the upper bands are hole states and the lower
bands are electron states touching in 2 Dirac points
with no gap opening (b) showing the two Dirac cones
to be ellipses near with single Dirac points for each

cone (w = 1and Ay = 1 in units of = /T).

5.2.2 Graphene in circularly polarised laser field CPL

Applying a CPL field will result in a duality between the electrical and the
magnetic field hence it cannot be neglected. Therefore, we will consider a laser

field that is arbitrary polarised [62]:
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A0 = (%) cos(wt) and A4, (t) = (%) cos(wt + @) (5.14)

or A, () = (£2) (e + e79t) and 4, (t) = (£L) (eX@r+0) 4 7i@t+9),  (5.15)
A,(®) = B(et + e7@t) and A, (1) = p(ei@t+9) + g-ilwt+e)) (5.16)
where 8 = ZATOZ Then, by using the same ¢, 5 (t) as in equation (5.7) and the

same approach from the previous calculation we will find:

—w/?2 —k, + ik, 0 f —ife' D} D}
—k, — ik, -w/2 B+ iBe® 0 |[pi| _ D}
0 B — iBe~ w/2 ~k, + ik, |[D7 | € |DF (5.17)
B +ipe i 0 —ky—ik, w/?2 Dy Dy
If the determinate is set equal to zero, then we will find:
w? + A? A2
e=t |—, °+k2i\/k2<w2+70>+ S(p) (5.18)

where S(¢) = Ag sin? (%) + Agk,ky cos(@). FIG 4.3 shows the energy spectrum

at a chosen phase shift ¢.

Figure 5.3 2D Electron spectra for SLG
€(ky, k) in CPL fields for a chosen phase shift
¢ = /2 with units of /T, considering (a)
w =1 and A, = 1, showing the gapped band
structure at k,, = 0, where the hole states in the
upper bands and electron states in the lower

bands with no gap.
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(a) (b)
Figure 5.4 (ky, k) in 3D plot for SLG in CPL field for a chosen phase shift

¢ = /2, where the upper bands are hole states and the lower bands are
electron states with a gap opening in between (b) showing the spectrum to

form a single circular structure (w = 1 and A, = 1 in units of 7 /T).

The spectrum forms a gapped structure where the conduction and the
valence bands are in off state. Changing the laser parameters does not allow a
touching point. As the laser in this case is circularly polarised, it combines two
types of potentials: electrostatic and magnetostatic. This combination allows

quasi-isotropic gap in the energy spectrum [5][9].

The solution function ¢, z(t) (eq. 5.7), can be expanded to higher terms like
of the order with n > +3, so:

3iwt iwt —iwt —3iwt

Pap(t) = et (D;{E e 2 +Djpez +D;fe 2 +Djge 2 ) (5.19)

Such consideration will give a bigger matrix. In the LPL application the matrix

is of the following form:
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—iel?)

2z

While in the application of the CPL filed the matrix is given by:

2z U
+iel?)

—3w

ke + ik,

_AO

— (1
i
—iel?)

ke — ik,

—3w

(5.20)

(5.21)



The eigen-energies given by the determinant of (5.20) & (5.21) show a

repeated periodic structure in the energy spectrum (FIG 5.5).

L Ag=1, ky=0rk=1

4
3
2
1

o of
1
2
3
4

4
3
2
1
w 0
1
2
3
4

2 1.5 -1 05 0 0.5 1 15 2

(a) (b)
Figure 5.5 2D Electron spectra for graphene in laser fields with units of /T
considering w = 1 and A, = 1 for a higher approximation for Floquet waves
(a) Electron spectrum for graphene in LPL (k,, = 0). £(ky, k) shows the hole
states in the upper bands and electron states in the lower bands with no gap.
(b) The energy spectrum for graphene in CPL field with phase shift ¢ = /2.

The spectrum has a gap band at all laser parameters.

5.3 Graphene in spatially periodic field

In this part, we will apply a spatially periodic potential to a graphene lattice.

We will consider a static potential of the form:
U(x) = Ugcos(kyx) (5.22)

Considering A(t) = (4,,4,) = 0 and A" (x) = 0, with a wavefunction of the

form:

(-G

We substituted (5.22) and (5.23) into the 2D Dirac equation (4.6), and hence

obtained:

( Uy cos (ko) —i(a/ax)—a/ay)(¢A)_ii(m) (5.24)

—i(0/0x) + 0/dy U, cos(kyx) $s)  dt\¢p
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To obtain a solution, we use Bloch wave function and resonance

approximation to find the electron energy spectrum [64]:

ikox lkox
) (5.25)

bap = elctHikextikyy (I/JI,B e e 3

where, 1} is a component of the electron wave function, resembles the

sublattice 4 and the direction +.

From there, we will have four equations that can be represented by the matrix

equation:
( 0 ) (kx —k, + —) % 0 . lp; lp;
k 4k, 42 0 0 Yo A A
Ry 2 K1
? 0 0 (k-1 -2) lpg - ¢ 1/’2 (5.26)
- 0 L;o (kx +k, — %) 0 | V5 Vg

Solving this as an eigenvalue problem gives an energy spectrum of the form:

g=i\/k2+@ i\/k;kg+kzuo—@ (5.27)

The spectra of the SLG at k,, = 0, shows gapless Dirac cones (Figure 5.6).
Applying the SE filed with different frequency or different amplitude does not

introduce a gap in the band structure.

Figure 5.6 e(k,, k,) for SLG in a SE field shows gapless Dirac cones
consideringw = 1,4y =1,k =1and U, = latk, =0
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In BLG, the method of applying a vertical-external electric field has been
found to be one of the most effective theoretical and experimental methods, which
preserve the graphene’s structure and thus the electrons’ mobility, and results in
a gap opening in the spectrum. The vertical electric field breaks the symmetry
inversion and can introduce a tunable gap up to 0.25 eV in BLG[17]. However,
applying the same method to SLG does not result in an energy gap formation

because the two sublattices in the monolayer structure remain equivalent [17].

5.4 Summary

We investigated the gap opening in SLG in three cases; 1-lineraly polarised
laser LPL, 2- circularly polarised laser CPL, and 3- static electric field SE. A
general conclusion has been drawn from the investigation in the application of the
laser field. The polarization of the laser determines the gap opening in the
graphene spectrum.

In the application of laser field, the polarization of the laser is found to be the
key difference to the gapped band structure. The LPL produces an anisotropic
gapless energy spectrum [81], however permits an alteration to Dirac’s cone shape
and Dirac points positions. In contrast, the CPL field produces a graphene
spectrum with a wide isotropic gap [30].

The obvious limitation of both cases are that each case allows only one option
of gap structure without providing the transfer form gapless to gapped spectrum
(and vice versa). So, it has been demonstrated theoretically that applying a laser
field (an electromagnetic field) to graphene produces a band structure that

depends on the polarization of the applied filed.
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6 Electron States in
Magnetic Field

6.1 The effective Hamiltonian of graphene in

magnetic field

The application of quantized magnetic fields to graphene has allowed the
realisation of massless Dirac fermions and the discovery of anomalous QHE
[31][41]. This section provides a brief introduction to graphene’s electrical
properties in magnetic field. Next it theoretically examines SLG in time periodic
magnetic field, and then SLG in static magnetic field with the application of

linearly polarised laser to draw a conclusion.

In massless Dirac fermions, if a uniform magnetic field B is applied then

the fermions will have eigen energies of [41]:

EXf = thw/n (6.1)

where, w, is the cyclotron frequency = % andn =0,1,2 ...
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This results in a number of levels, which is referred to as Landau levels.
They are known to be the discrete energy of electron moving in two dimensions

under the application of magnetic field [94].

In graphene, if a magnetic field is applied to the crystal, then B usually have

a magnetic length [; much larger than the interatomic distance a, where [z =

/%. Generally only 7 electrons are taken into consideration while looking at

the transition of carriers in graphene, with the assumption that there is no
hopping within each sublattices, hence, no crossing between electrons A and
electrons B. Therefore, the effective Hamiltonian is taken with respect of the

hopping parameter t [41]:
ﬁeff = t(ﬁ') ( 6.2)
The operator 7t can be found in the original Hamiltonian of a magnetic field

applying on Bloch states [41]:

ﬁz

Thus,

f2=p——4A (6.4)

a |l

The operator can be represented as [41]:

i_=fi,—if, and @, = I, +ift, (6.5)
where, [, 7] = = [#,,7,] = =B (6.6)

The effective Hamiltonian then can be found to be of the form [41]:

T_

H=ve(s 5) (6.7)

Ty
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The application of a magnetic field alone does not affect the symmetry of
graphene lattice between electron states and hole states. However, in the case of
high magnetic fields, an energy gap can be formed within Landau levels due to
either: (i) spin splitting; or (ii) sublattice symmetry breaking, where the
introduced gap is either a consequence of magnetic interaction or many-body

entanglement [94] [95]. In general, magnetic field causes a shift to the Landau

levels [94].
6.2 Graphene in a time-periodic magnetic field

The same approach again can be used in the case of time periodic

magnetic potentials in x and y given as:
A (x) = Af cos(0) cos(wt) , AY(x) = Af sin(8) cos(wt) (6.8)

In this case, we can seek a solution of the form:

let+ikyx+i 3iwt _ ot _, Tlet __ Dsiwt
Y, = e t+ikgx+ikyy ( :{;e 2 _|_1/):{'Be 2 +1/)A'Ee 2 +ype 2 ) (6.9)
Applying the potential along two axes in equation (4.6) make finding
an analytical solution for the energy spectrum more complicated, however,
a numerical solution has been found in (Figure 6.1) as the determinant of

the following 8 by 8 matrix:
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3w _kx ASI
E— 0o 9 i 0 0o 0o 0
2 +ik, 2
_kx 3w ASI
- N 0 0 [0} [0} [0}
—ik, 2 2
H —k H
o) A_O 6—19 _2 x 0 A_O 6—19 0 0
2 2 +ik, 2
H —k H
A_O ei9 0 * _2 A_O el.9 0 0 0
2 —ik, 2 2
H —k H
o 0 Y A—O e”i0 2 y [0} A_O e 0
2 2 +ik, 2
H —k H
0 o 4 et o} * — Ao oif o
2 —ik, 2 2
ASI 3w _kx
0] 0] 0] 0] 0] et —
2 2 +ik,
AH —ky 3w
0 0 0 0 0 ,if 0 °°
2 —ik, 2

(6.10)

Figure 6.1 Electron spectrum for graphene in time-periodic magnetic field

In units of k, =2: -2 ,k, =0,w=1,4 =1,6 = g showing gapless structure

Although the application of an external magnetic field causes a deformation
in the energy band structure, it can be found that gap opening is not achieved at
the zero states as they are topologically protected. The change in band structure
in the case of time dependent fields is related to the change in the periodicity of
the Bloch amplitude, which evolves under the application of external fields. A

minor change in the width of the band could accrue because of the speed of the
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time dependence which causes a small change in the probability of inter-band

transition.
6.3 Graphene superlattice in static magnetic field

6.3.1 SLG in linear laser and static magnetic field

In the second case we will consider a static magnetic field applied vertically
on the graphene sheet. The laser will be applied with a chosen angle 8 in respect

to the static field. The graphene’s electron state can be considered as:

—igt+ikyx+ikyy |, ++ Lot lux oo Lot ix _y et iux
Y= x y l/)A,BeZ 2 +¢A,Bez 2 +¢A,Be 2 2

—iwt iux

+yYipe z 2z (6.11)

Then we apply a static magnetic potential A7, in the y direction with 4%

amplitude and uy frequency of the form:

AP (), = 0,4 (x), = Al cos(ux) (6.12)

With the linearly polarised laser:

A(t), = Ay cos(8) cos(wt) and A(t), = Ay sin(8) cos(wt) (6.13)

where w = 1,4, = 1, A¥ = 1 & u = 1 with units of #/T at chosen phase shifts.
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I'g

Figure 6.2 Schematic representation of the orientation set up
for graphene in linearly polarized laser field applied in addition
to an external spatially periodically modulated magnetic field

which is applied perpendicular to the graphene sheet. The
polarisation of the laser field is applied at a chosen incidence

angle 6 with respect to the orientation of the static field

Solving Dirac equation in the same proposed steps in model section
equation (4.6), gives the an 8 x 8 matrix (equation 6.14), which determent can
be found numerically to find the gapless energy spectrum k,, = 0 (Figure 6.3).
The structure shows 3 Dirac points when the laser is perpendicular but then it
shows a different structure if we change 6. Therefore, the spectrum needs to be

investigated as the laser’s parameters change.
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Figure 6.3 £(k,, ky) of SLG in the application of LPL field with a SPM field
in the units of 7/T, considering for a chosen orientation 8 = 0. (a) At, w =
1, uy = 1, A§ =1 and ky, = 0 the spectrum shows no gap across k, axis (b)
different low-band structure across k, axis with no Dirac cones or points

forAf =1.1,Ap =13, 0 =22&u=223.
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6.3.2 Graphene spectrum in laser rotation

To investigate the effect of the laser orientation we applied the laser in
different angles holding the other parameters the same. Consequently, the
orientation of Dirac points changed with similar angle to that of the laser’s
(Figure 6.4). It shows the contour plot of the low-energy spectrum e(kx,ky)
taken in the vicinity of each K and K’ points of the Brillouin zone for a single
layered graphene in the perpendicular periodically modulated magnetic field
and a linear polarised laser field tilted at different angles 6 with respect to each
other. The contour plot of the energy spectrum when 6 = 0 show the symmetry
axes of the spectrum to be horizontally oriented parallel to k, axis which
coincides with the polarisation of the electromagnetic laser field. As we rotate
the laser field polarisation on 8 = /4 or /2 angle, the Weyl Dirac points of the

spectrum also rotates (see, panels b-e in Figure 6.4).

06400

0.9050

ke

Figure 6.4 Electron spectrum &(k,, k,) in graphene in linearly polarized
laser field with spatially periodic magnetic field with different orientations
(@6=0 M) =n/6.(c)8 =n/4.(d) 6 =mr/6.(e) 6 =m/2. Showing the
energy spectrum rotating with the magnetic field by the same angle without
any change in the number of Dirac points. (consideringw = 1, u =1, 4y =
1 and A = 1 in units of 7 /T).
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Figure 6.5 A three-dimensional plot and its cross sections of the energy
spectrum &(ky, k, ) of a SLG obtained in LPL field together with SPM field.
The spectrum obtained with the parameters: w = 1, uy = 1 and AY = 1 for
chosen fields orientations. (a) the spectrum shows two Dirac-Weyl points
associated with Dirac cones and one highly anisotropic gapless point at ¢ =
0, corresponding both, k, =0 andk, = 0. These two Dirac-Weyl points

shifted in the k, direction correspond to the creation of the monopole and
the anti- monopole in the energy spectrum and are topologically protected.
(b) we see this cross section while on the plot (c) we present the cross

section of the spectrum taken at k, = 0.

The static magnetic field is always applied perpendicular to the graphene
sheet. Usually we should expect Landau Quantisation here and Landau spectrum
consisting of Landau Levels if the spatial modulation period is very large.
However, in additional linear polarised laser field and in the static field with the
periodic spatial modulation the low energy spectrum from a first glance we see
three Dirac points oriented parallel to k, axes, when the wave vector k,, = 0 (see,

the Figure 6.4). Itis clear that this “tripling” is related to the spatial modulation
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of the magnetic field in x- direction which is creating domain walls parallel to
the y- axes. However, a more precise inspection of this part of energy spectrum
in the vicinity of the zero energy reveals that we have here two Dirac-Weyl points
and one highly anisotropic gapless Dirac-like point at ¢ = 0, corresponding to
both, k, = 0 andk, = 0.

The two Dirac-Weyl points shifted in the k, direction correspond to the
creation of the monopole and the anti- monopole in the energy-momentum space
having the form of Dirac cones in the vicinity of the zero energy. When these
cones are separated in the momentum space they are topologically protected, and
we cannot create a gap in the spectrum. But they can annihilate each other when
you will be located at the same place and there an energy bandgap can be created.
Note that the original Dirac point (in our notation here it is located at K or K’

points of the Brillouin zone but at the values, k, = 0 and k,, = 0) is now strongly

deformed and lost its linear character along k, direction.

The formation of the two Dirac-Weyl singularities in the vicinity of the K
and K’ points is a result of the dynamical topological phase transition created by
an application of the both periodically modulated spatial and dynamical laser
field. The position of these two Dirac-Weyl points can be rotated by the changes
of the angle between the laser field polarisation and the direction of the applied
field of the periodic spatial modulation, see the Figure 6.3, where for an
illustration the calculations have been done with the values of the parameters:
w =1, uy = 1and A¥ = 1. From this Figure 6.4 we see that when the polarisation
direction changes by m/2 the position of these two Weyl-Dirac points is
perpendicular to their original orientation, when the direction of the laser field

polarisation and of the modulated field coincide (see, the Figure 6.5).

Therefore, Dirac points rotates by angle equals to the laser rotation angle
0, as we indicated before. The Figure 6.6 shows that the rotation of Dirac points
does not fit a perfect circle (position wise) but it does in term of angles. The
following plot represents Dirac points coordinates in k, & k,, as the laser rotates
a full circle (data in the table below). It can be argued that the energy solution is

polarised in pseudospin by the direction of the magnetic field[41].
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Table 6-1 The coordinates of the side Dirac points in Figure 6.5-a as a function of 6.

0 ke ky,

0 1 0
30 0.8261 0.4783
45 0.6818 0.6818
60 0.5 0.8636
90 0 1
120 -0.5 0.8636
135 -0.6818 0.6818
150 -0.8261 0.4783
180 -1 0
210 -0.8261 -0.4783
225 -0.6818 -0.6818
240 -0.5 -0.8636
270 0 -1
300 0.5 -0.8636
315 0.6818 -0.6818
330 0.8261 -0.4783
360 1 0

0or \

Z: Vi

Figure 6.6 The rotation of Dirac points positions in Table 6-1 in laser rotation
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6.3.3 Graphene spectrum at different laser frequencies

Similarly, the SPM field is theoretically applied vertically to the graphene
sheet, and the LPL is applied with a chosen angle 6 in respect to the static field.
The spectrum near € = 0, forms three zero energy points when the laser
frequency is w = 1. Applying different frequency causes the spectrum to split in
various ways causing changes in numbers of Dirac points and shapes of Dirac
cones (see Figure 6.7). To determine these changes, the shapes, types and

numbers of the cones have to be analysed as w changes.

-2.332

-2.062

-1.792

-1.522

-1.252

-0.9815

0.7114

kx

Figure 6.7 The energy spectrum of SLG in the
application of SPM and LPL as laser frequency changes
considering w =1, u =1, 4 = 1 and A4 =1 in units
of /T

The side cone in (Figure 6.7) has been found to form an elliptical shape at
all w sittings (Figure 6.8). To examine how the cone change/maintain shape as
it expands we have measured the aspect ratio of a number of ellipses among the
cone. The figure below shows a side ellipse expansion to be having the same

anisotropy with a shared centre point (Figure 6.9).

67



—08

k
x

(a) (b)
Figure 6.8 The linear cross section of the energy spectrum

for low and high laser frequencies (a & b respectively)
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Figure 6.9 The cross area of the side elliptical cone
having a fixed anisotropy of a = 2.1 for 4 ellipses
with a shared origin point (1,0) representing the

spread of a cone

For instance, at w = 1, the side ellipse has a vertical orientation with an

origin point (k,, k,) = (1.0), which is the zero energy point at this case. Vertical

2 2
ellipses have a Cartesian equation of: % + y; = 1. In momentum space we will
. . . . I .
consider the vertical ellipse equation to be % + % = 1. The core ellipse has an

2 2
equation of % + % = 1, with foci F;;and F;,. The foci length c is given by ¢? =
a? — b?, and the aspect ratio a = %. The ellipse in this case has the anisotropy of

a= % = 2.1, which can be written as 2.1: 1 as the aspect ratio of a circle is 1: 1.
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To determine wither this ellipse represents a cone, the ellipses have to
maintain the same aspect ratio as we move away from zero energy. So, as the
cone spreads, the anisotropy of the ellipses was found to be fixed to 2.1: 1 (Table
6.2). This means that this is a cone. As the frequency increases the cones get

sharper (Figure 6.10), hence the aspect ratio increases (Table 6.3).

Table 6-2 The major axis, minor axis, foci length and aspect ratio,

for the side ellipse showing fixed a for different cones

1) a b c a
0.1951 0.0976 0.169 2.1:1
0.439 0.2195 0.3802 2.1:1
1
0.6098 0.3049 0.5281 2.1:1
0.7317 0.3659 0.6337 2.1:1
3.5
3 ////
///
25¢ //
3 ///
21 //
15¢ /
////
104 016 O.‘8 1 1.‘2 114 1.6

w
Figure 6.10 The aspect ratio of the side Dirac cone as a function of laser
frequency in LPL and SPM

Table 6-3 The aspect ratios «a for the side cone at different laser’s frequencies

OO

0.6

0.5

0.7

0.8

0.9 1

1.5

1.1

1.3

1.5

1.7

1.9

2.1

3.1
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On the other hand, the middle cone in Figure 6.7 can be seen to exhibit
some transformations as the laser frequency changes. Starting at w = 1, the
middle cone can be seemed to be forming a quadratic curve than can be
described as a Cassini oval. This single loop has two fixed foci points (4, 0),
and the product of the distance from any point on the spectrum to the foci’s is
fixed by the value B2. The curve has an equation of the form: ((k, — 4)? +
k2)((ky + A)? + k2) = B2. By e(ky, ky) = 0.

The type of these cones have been identified by taking linear cross sections
across the spectrum at different laser frequencies. For w = 1, the side cone
forms a Dirac cone, with a single Dirac point. The middle cone however is
parabolic as the conduction and the valence bands touch in a line as we zoom in
across k, axis (refer to Figure 6.11). The cut along the k, axis in Figure 6.9
confirms that the band is parabolic at (k,, k,) = (0,0) and w = 1. Near the zero-
energy point € = 0 at k, = k,, = 0, the spectrum no longer forms a cone since it shows
parabolic dependence on momentum for the energy cross-section at k,, = 0 and linear

like dependence for the energy cross section at k, = 0. This can be interpreted as
divergence of anisotropy a when k, tends to zero.

The splitting and change of shape in the spectrum in different frequencies
can be associated with Cassini ovals as the following. For small frequencies w <
0.5, the spectrum forms two Cassini ovals, with fixed foci points P and P’ at
(£0.5,0). However, B is different for each w. At w = 0.1, B = 0.45 which is
smaller than A indicating that the shape of the ovals is going to consist of two
loops (Figure 6.12). Then as w is increased B will increase to become B = 0.48 =~
A at w = 0.3 forming the shape of lemniscate of Bernoulli. When w = 0.5, then
B = 0.8 which is larger than A, so the spectrum will be one loop of Cassini oval.
For higher w, the spectrum is split to three ovals, where the middle oval is

Cassini oval, with varying foci points and shape as w changes.
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Figure 6.11 The cut line of the middle oval in the energy
spectrum for graphene in linear laser and static magnetic field.
(a) shows the middle cone in the energy spectrum (b) a
zoomed plot of the middle cone showing the upper and the
lower bands to be parabolic (c) the cut of the oval along the k,,
axis at k, = 0, confirming that the connection between the
bands is a line. Thus in (a) the spectrum has a parabolic-type
dependence in ¢ « k2 and in (b) shows linear-type dependence

& « |k, |. This indicates infinite anisotropy at k, = k,, = 0.
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Figure 6.12 Cassini ovals in the energy spectrum of SLG in the application of

SPM and LPL with different laser frequencies w

As Cassini ovals change in numbers, shapes and positions, the foci points of
the Cassini ovals also change with the frequency as in Figure 6.12. For w < 0.5,
the foci points are the middle points between Dirac points, and for w > 0.5, Dirac
points represents the foci points of Cassini ovals. So, the transition point is at
the frequency where the two loops split into three loops at w > 0.5. For all w #
1, the spectrum has 4 Dirac points and 4 Dirac cones. At w = 1, the spectrum

has three Dirac cones with three Dirac points.
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Figure 6.13 The positions of Cassini ovals foci points and Dirac points for

different frequencies.

6.3.4 Graphene spectrum in different laser amplitude

The energy spectrum of SLG has been investigated in SPM and LPL with a
range of laser amplitudes. Applying a laser with a small amplitude causes a gap
opening in the centre of the spectrum (Figure 6.14-a). As the amplitude increases
the gap becomes narrower until it reaches zero point at A, = 1. Before this point
the spectrum has two Dirac cones/points, and at A, = 1 Dirac points become
three, then for A, > 1 we see four Dirac points. Dirac points move apart from
the centre as the amplitude increases (Figure 6.14-b). The spectrum has been
found to form a parabolic cone at A, = 1, which then become a typical Dirac cone

for A, > 1 (Appendix 1).
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(a) (b)
Figure 6.14 The energy spectrum e(ky, ky,) of SLG in the
application of SPM field and a LPL with different amplitudes
showing (a) a gap reduction as the laser amplitudes increases

(b) a split in the middle oval producing two cones each with a

single Dirac point

The counter plot of the spectrum (Figure 6.15) shows the in-change shape
and position of Dirac cones as A, varies. The side cone can be seen to form an
elliptical cone, with an anisotropy that changes with different laser amplitudes.

As Figure (6.16) illustrates, the aspect ratio of the side cone decreases as the
amplitude increases (Table 6.4).

Ay=1

Ap=1 Ay =1.1 Ay=1.2

Figure 6.15 Counter plot of &(k,, k, ) for monolayer graphene in the
application of SPM field and a LPL with different amplitudes 4,

considering w = 1, u = 1, and A§ = 1 in units of n/T
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Figure 6.16 The aspect ratio of the side cone for a number of laser’s

amplitudes A,

Table 6-4 The axis of the side cone ellipse in Figure 6.15 as the laser

amplitude changes

Amplitude Major axis Minor axis Focal length Aspect ratio
Ag a b c a
0.8 0.58 0.25 0.27 2.33
0.9 0.54 0.25 0.23 2.17
1 0.5 0.25 0.19 2
1.1 0.5 0.29 0.17 1.75
1.2 0.46 0.29 0.13 1.57

The change in the middle cone can be described by the size of the gap
opening, then by the splitting of the cone. From Figure (6.14), it can be seen that
for small laser amplitudes there is a gap opening that can be controlled by
changing the A,. The plot represents the size of the gap as a function of the laser’s

amplitude.
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Figure 6.17 The size of the gap in the energy spectrum a function of

the laser’s amplitude

The spectrum forms different shape of loops that can be assigned to Cassini
ovals (refer to Figure 6.18). As the ovals change in shape, the positions of Dirac
points change according to Figure 6.19, where the number of Dirac points

increased for amplitudes larger than 4, = 1.

A, =08

Ay =09

A, =11

Ay =12

Ay =19

Figure 6.18 Cassini ovals in the energy spectrum of graphene in the

application of SPM field and LPL with a range of amplitudes 4,
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Figure 6.19 The positions of Dirac points in the spectrum of SLG in the
duality of LPL and SPM field as the laser’s amplitude changes

6.4 Dirac cones manipulation

The energy spectrum in SLG can be highly controlled if more than one laser
parameter changes at the same application. Since the spectrum has been found
to maintain its symmetry in laser rotation, this allows the choosing of the
orientation of the Dirac points in an angle equal to the laser angle 6. The
following Figure 6.20 of the spectrum displays the orientation of 6 = 7 /4 for
different laser frequencies. The spectrum shows the exact structure and
numbering at each w as in 6. To confirm the symmetrical rotation of e(k,, k,),
we measured the aspect ratio of the side cone different angles and found «a to be
2.1:1 (Table 6.5 & Figure 6.21).
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Figure 6.20 Counter and 3D plots for the spectrum

in a chosen orientation with different frequencies
in units of /Tconsidering 4 = 1, 4, = 1 and A4 =

1 in units of

Table 6-5 The aspect ratio of the side cone as the energy spectrum rotates by

the angle 6

0 a
0 2.1
iid

3 2.1
iid

7 2.1
iid

3 2.1
iid

5 2.1
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Figure 6.21 The aspect ratio « as a function of laser angle 6

In the following application we chose a desired energy structure for SLG.
The desired orientation of 2 vertical Dirac points with a middle gap of the size is
0.4 (units of /T). Therefore, the laser settings are: § = /2, A, = 0.2 and w =

1. The resulted spectrum will be of the form as in Figure (6.22).

(a) (b)
Figure 6.22 The energy spectrum of SLG controlled by LPL and SPM
Showing (a) 2D display of 2 Dirac points parallel to the k,, axis with a

mini gap in the middle (b) the 3D display of the spectrum

6.5 Space shift symmetry breaking

To be able to understand the motion of electrons’ in the proposed systems,

the symmetry breaking needs to be understood. The system of SLG in SPM and
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LPL can be shown to be symmetric under time inversion, space inversion, and
both. This was approached by solving Schrodinger equation and reproducing the
energy bands (Figure 6.23). With space shift the symmetry of the system is
broken, we chose a shift of half period. Time shifting though does not break the
symmetry (Figure 6.24).

(c) (d)
Figure 6.23 The energy spectra of graphene in linear laser and static magnetic
field
(a) considering w = 1, uy = 1 and A¥ = 1 for a chosen orientation of the laser
a = 0 given in the units of /T, (b) The spectra under time inversion t —» —t.
(c) Space inversion x —» —x. (d) Time and space inversion. The spectra of the

system is symmetric under these inversions.

The reason for the breaking the inversion symmetry is that the two sublattices
are no longer equivalent. This is due to the interactions between the massless
particles in graphene with the high external field. Applying a magnetic field alone
or a LPL field alone does not break the inversion symmetry. The effect of electron-
phonon couplings can be neglected. However, if the two fields are combined, then

their effect break the chiral symmetry. As a consequence, a dynamical band gap
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will be induced in the energy spectrum of graphene due to the nonlinear

dependence of the magnetic field [96].

Figure 6.24 The energy spectra of graphene in linear laser and static magnetic
field
in the units of /T, (a) The spectrum of the energy considering w = 1, uy = 1

and A =1 for a chosen orientation of the laser at 8 = 0, given by the blue

spectrum for comparison (b) The spectra under time shift t - t + g, being
symmetric. (c¢) Space shift x - x + %, showing a break in symmetry. (d) Time

and space shift introduces symmetry breaking

81



6.6 Summary

We investigated the change in the energy spectrum of SLG in the application
of two potential of LPL and SPE fields. This duality aims to control and manipulate
Dirac points by changing the lasers’ parameters.

The spectrum of graphene in this model is found topologically symmetrical as
the laser is rotating, where the spectrum rotates with the same laser angle 6 with
no other changes. The spectrum was found to be time and space symmetric.
However, space shift breaks the spectrum symmetry causing the gap opening in
the energy band. The spectrum was further investigated with different laser
frequencies w. It has been found the spectrum changes the shapes and the number
of cones as the frequency changes. The chiral symmetry is though broken, causing
a gap band induction in the energy spectrum. This implies that the laser in this
proposed model can be applied in any angle desired and the frequency and the
amplitude can be used to control the splitting and the gap creation.

Overall, we shown that static periodically modulated magnetic/electric field
together with linearly polarised laser field induce dynamical topological phase
transitions in a single graphene layer. There in the vicinity of the original K and K’
Dirac points the pairs of Weyl-Dirac cones are created. Then the graphene layer
may be viewed as two-dimensional Weyl metal. The created Weyl metal energy
spectrum is invariant under the laser field rotation when there is only spatial
modulation of magnetic field. However, when the static electric field is periodically
modulated, the system shows additional symmetry breaking phenomenon where
additional pairs of the Weyl-Dirac cones are created. We show that this effect is
controlled by a laser field tilting from the graphene plane where the modulated
electric field is embedded. We expect that the described effect may be used in novel
optoelectronic devices and the predicted phenomena will be observed in the future

experiments.

The change in the energy band shape and Dirac points position is caused by
the broken symmetry due to effect of the two applied fields: LPL and SPM. The
coupling introduced a nonlinear effect, determined here by a parabolic cone,
which causes the gap opening in the spectrum. Consequently, the duality of the

fields allows Dirac points manipulations by changing only the laser’s parameters.
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The spectrum behaves as Cassini ovals in laser’s alteration, where these ovals
change shape and position in general, but change in number around the parabolic
point.  This form of change in anisotropy introduced anisotropic transport that

can be controlled by the laser.
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7 Graphene
Superlattices in Static
Electric Field

7.1 Graphene in linearly polarised laser and static

electric field

For a graphene crystal with electron wave function given by ( 6.11), in the
application of LPL with 4, amplitude and frequency w = 2?”, given by ( 6.13), we

theoretically apply a spatial periodic electric (SPE) field of the form:
U(x) = Uy cos(ux) (7.1

where U, is the magnetic amplitude and u is the magnetic frequency. The electric
field will be in plane with the graphene sheet (Figure 7.1) consideringw = 1, 4, =
1,Up=1&pu=1.
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Electric field
X

Graphene sheet
X

Figure 7.1 Schematic representation of the orientation set up for
graphene in linearly polarized laser field applied in addition to
an external spatially periodically modulated electric field SPE
which is located in the graphene plane while a linear polarised
laser field is tilted by angle 6 with respect to the orientation of
the electrical field

Substituting the wave function and the potentials into the 2D Dirac equation
( 3.22), we will obtain a differential equation with 8 x 8 matrix M given by (7.2).
The energy spectrum is given by the determinant of M matrix in Figure 7.2. An
energy band gap is obtained within the miniband structure. The number of Dirac

points changes as the laser phase changes (See Figure 7.2 a, b, ¢ & d for details).

% ky iky+g % 0 0 —% e 0 0
ket iky+5 (;) o} % _1420 el? 0 0 o

% 0 % ke =ik, o o 0 —% e~

o % ky +iky,—= % 0 o) _% —i6 0

o —% e 0 o} o —% ky = ik +5 % o
_% —i6 [0} o [0} ky+iky+ = —% 0 %

o} o} o} —% e”i0 % o} ) ky—ik,—5

0 0 —% e~i0 0 0 70 ot ik, =5 —%

(7.2)
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Figure 7.2 Electron spectra for graphene in LPL field in the existence of SPE field

with units of 7/T (a) Consideringw = 1, u = 1, U, = 1 and A, = 1 for a chosen orientation
6 = 0. The spectrum shows the hole states in the upper bands and electron states in the
lower bands with k;, = 0. A gap can be seen within the band structure. (b) viewing the band
structure in the y direction shift (k,, = 0.5) (c) The energy spectrum for graphene in linearly
polarised laser field for the chosen orientation 8 = 7/2 showing a change in the number of
Dirac points (reduction) in contrast to the case where 6 = 0 (d) showing the spectrum at
k, = 0.5.

If we apply a static periodically modulated electric field and the linearly
polarized laser field in the plane of the graphene sheet there are arise two pairs of
the Weyl-Dirac points. In this case when 6 = 0 the energy spectrum shows that
Dirac cones of graphene split into several mini bands (see, Figure 7.3-a). The case
is very similar to the model presented in chapter 6, the spectrum has two Dirac-
Weyl point and one central original Dirac point. However, the elongation of this
central point is different, it occurs along k,, axes. All these points are located along
the k, axis and the spectrum seems to be gapless. The 3D plot (see, the Figure 7.3-
b) shows the shape of these Dirac and Weyl cones and that the middle Dirac cone

is elliptically shaped. When the angle 6 changed from 0 to % the number and

positions of Dirac-Weyl points changed to four (see, Figure 7.3-c), indicating a
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dynamical symmetry breaking phenomenon arising in the band structure with

changes of the different laser beam orientations.

-2

(b) (©
Figure 7.3 Electron spectra e(k,, ky) for graphene subjected to linearly

polarised laser fields with a static spatially-modulated periodic electric field.

In the calculations we used the parameters w =1, u =1, Uy =1 and 4, =1
for each of chosen orientations, 6. (a) The spectrum shows gapless multiple
crossing at the plane crossing the k. axes. (b) showing two Weyl-Dirac located
symmetrically with respect to the central Dirac point at K or K’ place in the
Brillouin zone. All these three gapless points are along k, axis at the value,
k, = 0. (c) The spectrum rotated by an angle equal to the laser’s beam
orientation, i.e., 7/2, forming two pairs of Weyl-Dirac cones symmetrically

positioned around K or K’ points of the Brillouin Zone.
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7.2 The duality of static electric field and a rotating

laser

The change of the laser orientation with respect to the electric field will cause

Dirac point to rotate and reposition (Figure 7.4).

1.965

3.025

3290

Figure 7.4 Electron spectrum &(ky, k,) in graphene
in LPL field with SPE field in different orientations.
(@6=0(0m) o6=mn/6,(c) 0=1/4 & (d) 6 =n/3
showing the energy spectra rotating and
repositioning of Dirac points as their number is
increasing as the electric field reaches an angle of
/2 with respect to the laser field (e) 6 = /2. (w =
1,U, =1and A, = 1in units of 7/T).

To investigate the change in the spectrum in details, surface contour plots
were shown at different laser field angles. For 6 = 0 there are three gapless points

where the top and bottom energy bands touch each other. The two side cones in

Figure 7.5-a can be approximated as squeezed Dirac cones, £? = a (k,)? + b(ky)z,
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while near the middle point, the structure shows a curve of energy €? = a(k,)? +

b(ky)4, where a and b some real parameters. As the laser is rotating Figure 7.5-b,
where the laser is applied at 6 = /4, two changes occur: 1- the spectrum is rotating
in a similar manner and 2- the middle point experience a splitting where the energy
cut transforms into two squeezed cones. The result is a spectrum which has 4 Dirac
points. When the laser field orientation changes further, to become perpendicular
with 6 = /2, the spectrum is rotated by /2 forming 4 Dirac-Weyl cones
symmetric about the pole (see, the Figure 7.5-¢), which is associated with K or K’

of the graphene Brillouin zone.

-1.564

-1.355

-1.147

-0.9379

-0.7292

-0.5205

03118

-0.1030

(a) (b) (c)

Figure 7.5 The surface contour plot of the energy-momentum
dispersion, £(k,, k), for a monolayer graphene subjected to in-
plane static periodically modulated electric field and a linear
polarised laser field tilted at the angle 6 to the graphene plane

(a) the case when the polarisation of the electromagnetic laser
field coincides with the direction of the modulated electrical field,
i.e. 8 = 0; Here we see a pair of the Weyl points located far apart
from each other. In a centre there is an elongated valley where a
new pair of Weyl points is going to be nucleated, when the tilting
angle increases, i.e. when 6 # 0; (b) The snapshot of the
spectrum taken when the tilting angle 6 = n/4; We see already
two pairs of the Weyl points here (c) The snapshot spectrum
displaying two symmetrical pairs of the Weyl points taken at

their perpendicular orientation, i.e. at 6 = /2.
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Table 7-1 The change in Dirac cone’s aspect ratio with different Laser incident angle

0 a side cone a middle cone
0 1.667 6
m/6 1.933 1.974
/4 1.829 1.2
/3 1.667 1
m/2 1.447 1.447
2r/3 1.667 1
3n/4 1.829 1.2
5m/6 1.933 1.974
T 1.667 6
7m/6 1.933 1.974
51m/4 1.829 1.2
4m/3 1.667 1
3m/2 1.447 1.447
5m/3 1.667 1
/4 1.829 1.2
11m/6 1.933 1.974
27 1.667 6

For a single layer graphene under the application of linear laser field and static
electric field with 8 = 0, the energy spectrum will form three Dirac cones (Figure
7.5-a). We have shown that laser rotation will cause rotation and splitting in the
spectrum. The middle cone and the side cone both change aspect ratio as the laser
changes angle 6. The change in the aspect ratio for the middle cone shows a great
decline from 6 = 0 as the cone splits into two cones that rotates back to become
one cone when the laser angle & = 7 as seen in following Figure (77.6). The side cone
change aspect ratio as well as rotating. At 6 = /2, the middle cones and the side
cones become identical with the same aspect ratio while the number and positions

of Dirac cones and points change.
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In this research we examine the spectrum to identify the type of the cones
and the connection between the upper and lower bands. This can be achieved by
taking a cut along both axis k, & k,, (Figure 7.8). The middle cone is found to form
a parabolic cone showing a line connection between the upper and the lower bands
(Figure 7.8-a&b). The side cone is found to be a Dirac cone with one Dirac point

and an aspect ratio of 1.8:1.

777777
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(a) (b)
Figure 7.6 The energy spectrum &(k,, ky) of graphene under the application of
linearly polarised laser and static electric filed for a chosen orientation 8 = 0
considering w =1, u =1, Uy =1 and A, = 1 (a) the upper and the lower
bands touch in three areas: two side cones and an ellipse at the centre (b) the

counter plot showing the three ellipses to be oriented parallel to k, at k, = 0
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Figure 7.7 The aspect ratio of the side and middle

cones « as a function of the laser angle 6

91



0.5

w 0 :
051 ) SR
- 1 ‘
k
X
(a)

%107

0.05
w 0 w 0r P — 1

A T A T

-0.05
L L L L L _1 L L L L L
-0.04 -0.02 0 0.02 0.04 -0.04 -0.02 0 0.02 0.04
k k
X y
(b) (c)

Figure 7.8 The e(kx, ky) cut of graphene in 2D along the k, axis
(a) showing the three touching points where £(k,, k, ) = 0 (b) the

middle zero energy cone zoomed to show the connection point
between the upper and the lower bands (c) the same scale for the

zoomed cone showing the cone to be parabolic along the k, axis.

7.3 SLG in static electric field and LPL in different

frequencies and amplitudes

As we change the frequency or amplitude of the laser, the spectrum has been
found to form Dirac cones (Appendix 2). The positions of the Dirac points are the
same for the same pairs for w = A, (Figure 7.9) although the spectrum cone aspect
ratio varies in the change of the frequency from the change in the amplitude
(Figure 7.10). It shows a firmer parabolic curve around the value A, = 1, which

can be the transition point where the dispersion relation changes to nonlinear
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dependency of the external electric field. Such an effect results in breaking the

symmetry of the energy spectrum.

05 0.5

0 ‘ ‘ .
0 05 1 15 2 0 05 ! 18 2
w AO

(a) (b)
Figure 7.9 The positions of Dirac points on the spectrum where
energy =0 in LPL and SPE giving Dirac cones for all w and 4,.

The different colours represent different Dirac points pairs

Figure 7.10 The energy spectrum of SLG in the application
of SPE and LPL for two different laser parameters w & 4,
showing both cases to have the same Dirac point and
different cone aspect ratio. The solid lines present the
upper and lower bands when the laser is set to w = 0.9 &
Ay = 1. The dashed lines give the upper and lower bands
for laser settings w = 1 & 4, = 0.9

93



Plotting the spectrum in 3D as the frequency of the laser changes (Figure 7.11)
shows that at w = 1.5 the upper and lower bands are connected in 6 positions; 4
on the centre loop and two on the side cones. The connection on the centre at the
points (k,, k,) = (£0.19,0) represents Dirac points as well as (k,, k,) = (0,0.56)
(Appendix 3).

The change in the shape of the spectrum forms an evolving 2 pairs of Cassini
ovals for frequencies smaller than the parabolic point, while for higher frequencies
the spectrum forms 1 pair of Cassini ovals and one middle loop. As the frequency
increases the deformation in the middle loop increases as Dirac points (see

Figures 7.11 & 7.12)

-0.07490

Figure 7.11 The change in the shape and the zero points energy points in graphene
spectrum under the application of static electric field and linearly polarised laser

with different frequencies.
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w = 0.25

w =125

Figure 7.12 The deformation in graphene spectrum under the application of

static electric field and linearly polarised laser with different laser’s frequencies

This change can be used to change Dirac points. The shift in the spectrum
applies to the shape and number of the cones as well as the position and numbers
of Dirac points. Since the dispersion relation in the vicinity of K points in directly
and strongly dependent on the symmetry of the graphene spectrum, the gap
opening can be completely obtained through the broken symmetry.

The energy spectrum responds to the change in the laser’s amplitude by shifting
and splitting in the zero energy points. A decrease in the spacing between the
valence and the conduction band results from applying a laser with small intensity.
The increase in the laser’s amplitude increases the distance between the valence and
the conduction bands, however, the number of Dirac points does not change in
amplitude alteration (see Figure 7.13). In addition, the cones represent Dirac cones

at all amplitudes (Appendix 4).
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Figure 7.13 The change in the shape and the cones of graphene spectrum under the

application of static electric field and linearly polarised laser with different amplitudes

Ay = 0.5,1,1.5 in units of % showing different cones and different Dirac points.

The deformation in the spectrum energy as a result of the change in the lasers’
amplitude can be seen in Figure (7.14). Such as the spectrum forms perfect Dirac
cones with small aspect ratio at high laser amplitude. Whereas at low
amplitudes, the cones deform and expand as a one loop. The number of zero

energy points however remains constant.
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A, =125

A, =15

Figure 7.14 The splitting in graphene spectrum under
the application of static electric field and linearly

polarised laser with different laser’s amplitudes

Preparing this module for practical application requires the investigation of a
detectable quantity such as the single particle currents in graphene. j; operator can be

calculated (with components in x and y) at chosen laser orientation and wave vector

k =k, k,, where the current operator is given by:

Ji= Yoy (7.3)

(see examples in Appendixes 5).
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7.4 Time and space shift symmetry breaking

This system can be shown to be symmetric under time inversion or space
inversion or both by solving Schrodinger equation and reproducing the energy
bands (FIG 19). With time and space shift the symmetry of the system is broken,
we chose a shift of half period (FIG 20).

(a) (b)

Figure 7.15 The symmetry of energy spectra of graphene in LPL and SPE

(a) in the units of /T, considering w = 1, U, = 1 and A, = 1 for a chosen
orientation of the laser (6 = 0). (b) The spectra under time inversion t -
—t. (c) Space inversion x - —x. (d) Time and space inversion. The spectra

of the system are symmetric under these inversions

Applying a laser field in the existence of an electric filed parallel to graphene
sheet causes a transformation of the Dirac dispersion relation in the vicinity of K
point. Such transformation can cause a gap opening at K points if the laser applied

is of a high intensity. The dispersion relation becomes more nonlinear as the
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intensity increases. It is suggested that the nonlinearity in the Dirac-type

dispersion relation transforms the massless Dirac to massive fermions [97].

(a) (b)

Figure 7.16 The symmetry of the energy spectra of graphene in LPL and SPE

in the units of 7 /T, (a) considering w = 1, U, = 1 and 4, = 1 for a chosen
orientation of the laser (6 = 0). (b) The spectra under time shift t —» t + %,
being symmetric. (¢) Space inversion x — x + %’ showing a break in

symmetry. (d) Time and space shift introduces symmetry breaking

7.5 Summary

This chapter introduces the module of single layer graphene in the application
of linearly polarised laser field and spatially periodic electric field. Overall, this
investigation highlighted the relativistic properties of graphene by changing the
Dirac-Cone spectrum of charge carriers. The theoretical modification of the

spectrum is approached by applying high-frequency laser fields in the presence of
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static electric/magnetic fields. The number of Dirac points, the shape of Dirac
cones and the gap in spectrum can all be controlled by changing the laser’s
parameters. The energy spectrum in graphene exhibit a topological phase
transition. In the vicinity of the original K and K’ Dirac points, pairs of Weyl-Dirac
cones are formed.

A symmetry breaking is introduced due to the application of the two fields. The
rotation of the laser creates additional symmetry breaking as additional pairs of
the Weyl-Dirac cones are formed in the spectrum. If the modulated electric field
is fixed, tilting the laser alone can control the effect induced in the spectrum.

The change in the frequency and the amplitude of the laser result in a
deformation of the energy spectrum. Different pairs and shapes of Cassini ovals
induce in the spectrum indicating a symmetry breaking. Such effect causes a gap
opening at the K points if the applied laser is of a high intensity. The nonlinearity
in the Dirac dispersion relation increases furthermore with the increase in the
laser amplitude.

In different potentials the spectrum shows different anisotropy, which can be
further changed in specific potentials applications by changing their parameters.
Thus, the modification of the anisotropy of the Dirac cone causes
destruction/creation of Dirac points, hence electron transport can be modified.
We showed that anisotropic transport in monolayer graphene can be controlled
by changing high-frequency lasers’ parameters, which even allow generation of
infinite anisotropy.

Such module can be highly efficient in controlling the splitting and creation of
Dirac points in the single layer graphene. Furthermore, it can create novel

properties for optoelectronic devices.
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8 Summary and
Conclusion

The general aim of this research is to theoretically investigate the manipulation
of Dirac points in the single layer graphene by studying electron spectra in graphene
superlattice in Floquet-Bloch states under the application of different periodic
potential.

An introduction to the topic is provided in Chapter 1, in addition to the aim
and motivation of this research as the demonstration of graphene in 2004 has opened
great research and application opportunities.

Chapter 2 provides an overall background to graphene structure and its
properties. The one layer of carbon atoms in a honeycomb crystal allowed the
applications and testing of quantum theories and behaviours. Graphene has shown so
far extraordinary properties, such as high electrical and thermal conductivity,
transparency and flexibility. Graphene can be produced in small quantities with
almost perfect structure (exfoliation or epitaxial growth), or in huge quantities with
some defect (chemical vapour deposition). This gapless band structure is not the
reason of graphene being unique, but graphene’s quantum behaviour in room
temperature is rather remarkable such as: anomalous Quantum Hall Effect and perfect
Klein tunneling. Therefore, graphene based devices are an attractive subject for
research and application.

Chapter 3 reviewed in details the energy band structure of graphene, which
was described a long before was actually produced in a free state. It has a gapless band
structure at six Dirac points, where electrons transport within two sublattices with

hopping process. The energy spectrum of graphene is well described using Bloch wave
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in the tight binding model using Dirac equation. The development of these devices is
based on the improvement of gap creation and control in the graphene band structure.
Graphene can be widely applied due to its properties to form carbon nanotubes,
nanoribbons, sensors, transistors and many photonic devices. Gap induction is an
essential requirement for using graphene in electronic application. It has to be noted
that the gap induction method could affect the novel properties of graphene, thus
affecting its capability as high mobility material. Within this context, graphene
superlattices are of a great focus for theoretical and experimental investigation. They
are mainly used to understand the gap opening and Dirac points emerging in graphene
near zero energy. The application of external field is an essential element in such
development; therefore, the energy spectrum of graphene in some field is investigated
in this research.

Chapter 4 illustrated the theoretical calculating to obtain the energy spectrum
of graphene superlattices. In graphene the behaviour of charge carries can be
demonstrated by the 2D Dirac equation. The solution of the Dirac Hamiltonian can
become a simple eigen value problem using Floquet theory. The theory assists in
transforming periodic dynamical systems into linear forms by solving Schrodinger
equation. The obtained solution can be approximated to exclude resonance terms. The
final solution can be found analytically or numerically to produce the energy spectrum
of graphene.

Chapter 5 reviewed an investigated the gap opening in single layer graphene
SLG in a single field application using three potentials; 1-lineraly polarised laser LPL,
2- circularly polarised laser CPL, and 3- static electric field SE. We concluded from the
investigation that the gap opening in the graphene spectrum is determined by the
polarization of the laser. For the linearly polarised laser, the spectrum has no gap
opening at any laser parameter, while in the circularly polarised laser, the spectrum
developed a gap energy at all laser parameters. In the application of time periodic
electric filed, energy gap cannot be induced in the spectrum of graphene. In the
application of electric field alone, the sublattices remains equivalent which does not
break the topological symmetry of the energy dispersion.

Chapter 6 examined two different theoretical modules for spectrum
manipulation in single layer graphene. In the first, a spatially periodic magnetic field
is vertically applied to a single layer graphene sheet. The spectrum showed Dirac cones

at zero energy points, with stationary states elsewhere which indicates decaying states.

102



The other module proposes the duality of a linear polarised laser in the application of
a vertical static magnetic field. The static magnetic field hand transforms the electron
spectra into mini bands. Overall, it was found that changing in the laser’s parameters
is enough to produce different Dirac points’ dynamics while the topological symmetry
of the spectrum is preserved. There in the vicinity of the original K and K’ Dirac points
the pairs of Weyl-Dirac cones are created. Then the graphene layer may be viewed as
two-dimensional Weyl metal. The created Weyl metal energy spectrum is invariant
under the laser field rotation when there is only spatial modulation of magnetic field.
In addition, the change in the laser frequency and amplitude provided different
Cassini ovals in the energy spectrum that should further splitting and creation of Dirac
points indicating a further symmetry breaking and a controllable anisotropy.
Chapter 7 presented duality of linear polarised laser and static electric filed
which was applied in plane to the single graphene sheet. We showed that static
periodically modulated electric field together with linearly polarised laser field induce
dynamical topological phase transitions in a single graphene layer. However, when the
static electric field is periodically modulated, the system shows additional symmetry
breaking phenomenon where additional pairs of the Weyl-Dirac cones are created. We
show that this effect is controlled by a laser field tilting from the graphene plane where
the modulated electric field is embedded. The change in the other laser parameters
proposes high deformation in the spectrum cones slowing different anisotropic
transport. Additionally, manipulation of electron current in graphene is allowed by

laser-field-controlled band structures.

We expect that these modules may be used in novel optoelectronic devices and
the predicted phenomena will be observed in the future experiments. In practice,
applying a small DC electric field can induce the pseudo-periodic £(k,(t)) Bloch
oscillations. The predicted spectrum in this study can be experimentally measured,
directly, by applying a weak probe field in additional to static fields. The duality
between the electron spectrum in time-periodic laser fields and spatially periodic
electrostatic fields offers an experimental approach to spatially periodic graphene

superlattices [30].
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Appendices

1. Dirac cones in the energy spectrum of SLG in SPM and LPL with different

frequencies
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2. Dirac cones in the energy spectrum of SLG in SPM and LPL with different

amplitudes
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3. Dirac cones in the energy spectrum of SLG in SPE and LPL with different

frequencies
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4. Dirac cones in the energy spectrum of SLG in SPE and LPL with different

amplitudes
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5. The mean current < j,, > calculated for (a) an applied static electric field (Uy = 1, u = 1)
with the application of linearly polarised laser field at incident angles 6 (w = 1, & 4, = 1)
and the current is shown to be periodic asymmetric with no common peaks between j,
and ji,. (b) The mean current < j, ,, > calculated for an applied static magnetic field (4§ =
1 & py = 1) with the application of linearly polarised laser field at incident angles 6 (w =

1 & Ay = 1). The current is shown to be asymmetric with peaks at a = % ,%” . The current

is looks to be a direct current with peaks at %,g&%”. The red curve represents j, and the

blue is j,,. The single particle currents are asymmetric.
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