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Abstract— With the increasing complexity of engines and
number of control parameters, optimal engine parameter sets
need to be searched in the high dimensionality. Traditional
calibration methods are too complicated, expensive and time-
consuming. The model-based optimisation is of critical im-
portance for engine fuel efficiency improvement and exhaust
emissions reduction. The optimisation highly depends on the
model accuracy. In this paper, a multi-layer modelling method
is proposed, which can be used to generate the engine model
at arbitrary operating points in real time with high accuracy.
An enhanced heuristic-algorithm-based optimiser is combined
with the real-time modelling method to perform a parallel
optimisation. The proposed modelling and optimisation strategy
can achieve the minimal fuel consumption fast and accurately.
This strategy has been successfully verified using experimental
data sets.

I. INTRODUCTION

The automotive industry is encountering huge challenges
in developing the next generation internal combustion en-
gines due to stricter economic and ecological requirements
[1]. To meet such requirements, new engines are equipped
with advanced technologies, for example variable valve lift,
variable value timing and exhaust gas recirculation [2]. With
the increasing number of engine actuators, optimal settings
are searched in a high-dimensional space. Therefore, the
traditional engine calibration method is too complicated,
expensive and time-consuming to solve these problems [3].
As a result, the current calibration methods which focus on
steady-state mapping, is not capable of dealing with increas-
ing demands of accuracy in the future engines development
[4], [5].

In the last decade, many efforts have been put into
model-based optimisation methods [6]. The model can be
physically-based, or can be described by equations and
artificial intelligence models. Model-based optimisation al-
gorithms are developed to calculate the optimal engine
parameter setting at steady-state operating points [7].

A 1-D simulation engine model is designed in the GT-
power by [8]. After that, a Genetic Algorithm (GA) based
optimiser is applied to the optimisation based on the 1-D
model. In [3], a model-based calibration method for a homo-
geneous charge compression ignition engine is demonstrated.
A co-simulation is performed between the engine model built
in Simulink and an evolutionary algorithm written in Java.
Recently, the online optimisation has gained in popularity
where measurement, modelling and optimisation are treated

W. Gu, D. Zhao, and B. Mason are with the Department of Aero-
nautical and Automotive Engineering, Loughborough University, Lough-
borough LE11 3TU, U.K. (e-mail: w.gu@lboro.ac.uk, d.zhao@lboro.ac.uk,
b.mason2@lboro.ac.uk).

as integrated [9], [10]. System identification is critical for
modelling. In [11], the engine operating region is segmented
into several areas. The state-space model is identified at
the centre of each area for the controller development. A
polynomial-based system identification is applied in [4] and
[12]. At each operating point, the polynomial equation is
implemented to represent the engine behaviour. Bilinear
interpolation [4] and barycentric interpolation [12] are used
between operating points to calculate model outputs. How-
ever, the polynomial model cannot address high-dimensional
problems due to the increasing number of control parameters
[13]. In [9], a machine learning algorithm called Gaussian
process is introduced. It shows that the Gaussian model
is suitable for the stationary engine modelling since the
required training data size is small. Further investigations of
the Gaussian model are fulfilled in [13], where the Gaussian
model is combined with a GA-based optimiser. Then an
optimisation is performed at a particular operating point
based on a real data set. Other popular system identification
methods, for example multilayer perceptron neural network
and local linear model trees method, are studied by [6] and
[14] respectively. Although some model-based optimisation
work have been done, a proper modelling method is still
lacking for real-time modelling in a high-dimensional space.
This paper proposes a global-local modelling architecture to
generate models at arbitrary operating points in real time.
Meanwhile, the architecture is suitable for dealing with
multiple input variables. In addition, a heuristic-algorithm-
based optimiser is improved for higher robustness.

The paper is organised as follows. After the introduction
in Section I, the system description and optimisation problem
formulation are given in Section II. The real-time modelling
algorithm is presented in Section III. The parallel optimisa-
tion method is introduced in Section IV. Validation results
of the optimisation are demonstrated in Section V. Finally,
conclusions are summarised in Section VI.

II. SYSTEM DESCRIPTION

A. Engine Description

A control schematic of a gasoline direct injection (GDI)
engine equipped with the variable camshaft timing (VCT)
is shown in Fig. 1, while the parameters are defined in
Table. I. The value of ξref is determined by N and θ0. Then
VCT actuators will adjust ξcam based on N and ξref. In
the block diagram, T is the output of the system, which
is affected by mcyl, N , σspk and A/F. The objective of this
work is to calculate the ξref at arbitrary operating points
based on the nonlinear relationship between cam timing and



TABLE I: Engine parameters

Variable Description

A/F Air fuel ratio.
N Engine speed.
mcyl Mass of air into cylinder.
Pm Manifold pressure.
P ?m Desired manifold pressure.
T Engine torque.
σspk Advanced spark angle.
θ0 Throttle angle due to driver request.
θ? Additive throttle angle due to compensation.
θ Total throttle angle.
ξref Cam timing command.
ξcam Cam timing
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Algorithm 1: The Parallel Optimisation Algorithm

1 Initialization;

2 Set algorithm = {‘GA’,‘PSO’}

3 Generate initial population;

4 Evaluate function by solving global‐local model;

5 For ߙ ൌ 1: ܰ do 

6 For ߚ ൌ 1: do	ܯ

GA PSO

7 Selection of parents; Update parents velocities and positions;

8 Crossover to produce children;  Evaluate function for parents;

9 Mutation of children; Update local, global and neighbour best; 

10 Evaluate function of children;

11 Save global best solution between GA and PSO;

12 End

13 If terminationcriteria is meet then

14 Report global optimum solution;

15 Else

16 Parents of GA and PSO are exchanged randomly;

17 End 

18 End
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Fig. 1: Control schematic of a gasoline engine variable cam
timing

fuel consumption. At a specified operating point, N and
A/F are constants, while σspk is controlled at the maximum
brake torque point which enables optimal ignition. In the
combustion process block, the only variable parameter is
mcyl, which is determined by ξcam, Pm and N . The VCT
creates large disturbance to mcyl which leads to drivability
issues [15]–[18]. To satisfy the torque demand when applying
the optimal cam schedule, a torque controller is implemented
to track the torque demand. An additive throttle angle θ? is
applied to compensate the effect of the scheduled cam timing
on mcyl, while θ? is determined by the desired manifold
pressure P ?m [15].

B. Optimisation Structure and Constrains

The modelling and optimisation method is developed to
calculate the optimal GDI engine parameter setting. The
workflow of this method is described in Fig. 2. First, the
experimental data is collected from an engine test bench.
Then, the neuro-fuzzy algorithm is applied to train the engine
model in a hierarchical global-local structure using the data.
The global-local structure is capable of generating engine
models at arbitrary operating points in real time. Inputs of
the engine model, also known as manipulable variables in the
optimisation phase, are selected as intake valve open timing
(IVO) and exhaust valve close timing (EVC). The fuel rate is
chosen as the model output. Finally, a parallel optimisation
method is applied to calculate optimal manipulable variable
sets. The cost value is updated in the optimisation algorithm
during each evaluation, and the algorithm updates the input
sets to minimise the model cost function.

During the optimisation, linear constraints are applied to

IVO and EVC so that the optimal cam positions do not
exceed their physical limits. However, not all of engine
parameter settings in the working range lead to a stable
engine operation. The engine may achieve the lowest fuel
consumption while working under an unstable condition.
Therefore, discontinuous constraints are applied. The opti-
misation becomes a constrained optimisation problem:

minimise:
IVO,EVC

Fuel rate = fglobal-local(IVO,EVC)

subject to: IVOmin ≤ IVO ≤ IVOmax

EVCmin ≤ EVC ≤ EVCmax

(IVO,EVC) 6∈ Dj

(1)

where fglobal-local is the objective function required to be
minimised, which holds a nonlinear relationship between
inputs and output. Dj is the discontinuous constraints set
to avoid the engine mis-operation. To compensate torque
variations caused by sweeping the cam timing, a torque
controller is implemented to control the throttle angle.

III. GLOBAL-LOCAL ENGINE MODEL

A. Global-Local Model Architecture

An engine model is trained based on the experimental data
collected from a 1.6-litre 4-cylinder GDI engine. To capture
the highly nonlinear behaviour of the engine, the operating
regime is splitted into several operating areas representing
main physical effects. Local nonlinear models are developed
at the centre of each operating area so that the specified
area is covered. The model at an arbitrary operating point
can be obtained by the interpolation among the nearest local
nonlinear models [4], [12].

The global-local model holds a 2-layer model structure.
On the global level, N and T are used for the preliminary
partition as they have a dominating influence on the model
output. The selection of operating points is determined by
characteristics of the engine. In Fig. 3, the partitioning of
a predefined operating region is described. There are 25
operating points, known as calibration points, selected to
cover this area. The distance between calibration points is
defined based on the trade-off between model accuracy and
calibration effect.

The testing data at each calibration point are collected
from the engine test bench for local nonlinear model training.
A design-of-experiments methodology was applied to gener-
ate the training data. Afterwards, a Local Model Networks
(LMN) using the Hierarchical Local Model Tree (HILO-
MOT) algorithm is implemented at each calibration point
to represent the engine behaviour.

The global-local model output at an arbitrary operating
point Ŷ (k) at time step k is expressed as a weighted
aggregation of the local nonlinear model output:

Ŷ (k) =

M∑
i=1

Ψi(N,T )fN,T (u1(k), u2(k)...) (2)



Fig. 2: Workflow of real-time modelling and optimisation

where M denotes the number of local nonlinear models, Ψ
is the validity function value on the global level and fN,T is
the local nonlinear model output at each calibration point.

Fig. 3: Global-local model architecture

B. Local Nonlinear Model

The nonlinear behaviour of the engine at each calibration
point is represented by the LMN. The HILOMOT algorithm
is applied to train the LMN [19]. The HILOMOT performs
axes-oblique partitioning of the input space, which guaran-
tees the modelling accuracy with fewer neurons [20]. The
simple model structure facilitates the online implementation
of modelling and optimisation due to reduced computational
burden. Moreover, because of the increasing number of
engine control parameters, the number of LMN inputs is
growing. Therefore, the HILOMOT algorithm is efficient in
modelling systems of high dimensionality [21].
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Fig. 4: Local model network structure

The structure of a LMN is illustrated in Fig. 4. A LMN
is comprised of n neurons. For each neuron, a local linear
model (LLM) is associated with a validity function Φ which

determines the weight of the neuron output. Φ allows smooth
interpolation between different LLMs when inputs vary
from one point to another. The validity function holds the
following relationship:

n∑
j=1

Φj(u(k)) = 1. (3)

In the HILOMOT algorithm, the validity function is given
by a sigmoidal activation function which enables axes-
oblique partitioning of the input space [20]:

Φ(u(k)) =
1

1 + eτ(v0+v?u(k))
(4)

with

τ =
20

‖v‖ · ‖∆c‖ · σ
. (5)

The transition smoothness between different LLMs is ad-
justed by ∆c and σ which are the distance between centres
of adjacent local models, and user-defined smoothness co-
efficient respectively. v0 determines the split position and
v? = [vi1, vi2, ..., vip]

T determines the direction of the split.
The estimated output ŷj of each LLMj is achieved by:

ŷj(k) = ωj0 + ωj1u1(k) + ωj2u2(k) + ...+ ωjpup(k) (6)

where ωjl(l = 1, 2, . . . , p) denotes coefficients in each
LLM. The output of the LMN is calculated as a weighted
aggregation of ŷj(j = 1, 2, . . . , n):

ŷ(k) =

n∑
j=1

Φj(k)ŷj(k) (7)

where n is also the number of LLMs.
It is worthy to note that in the global-local architecture,

the local nonlinear model represents the engine behaviour on
the local layer. Therefore, IVO and EVC are LMN inputs,
and fuel rate is the LMN output.

C. Global Partition

To obtain the models at arbitrary operating points, weights
are assigned to each local nonlinear model according to (2).
The validity function is chosen in the form of a Gaussian
function. The advantage of the Gaussian function to split
the input space is using the axes-orthogonal partitioning.
This feature facilitates selection of calibration points and to
determine the size of the validity area of each model.



On the global level of the model, N and T are chosen to
perform partitioning. The weight is given by:

Ψi(u(k)) = exp(−1

2

(u(k)− εi)2

η2
) (8)

where ε denotes the coordinate of each calibration point
and centre of Gaussian function, and η is the smoothness
parameter. At the same time, the validity function holds the
following relationship:

M∑
i=1

Ψi(u(k)) = 1. (9)

Fig. 5: Global partition result for a predefined regime

The partitioning result of a selected operating regime
including 9 calibration points is shown in Fig. 5. There
are 9 local nonlinear models in the map, while each of
them dominates an engine operating area, as shown in red.
Following the movement of the operating point, the weight
of each local nonlinear model varies, which changes its
contribution to the global output. The diagram shows a
smooth transition between different validity areas.

D. Model validation

To validate the performance of the global-local model, a
set of data consisting of steady states and transients is used.
The performance of the established model is illustrated in
Fig. 6. The engine operating points are presented in Fig. 6a.
Fig. 6b shows variations of the cam timing. Validation results
are depicted in Fig. 6c. The stationary behaviour is well
captured by the global-local model. Moreover, the transient
behaviour is modelled with high accuracy when N , T , IVO
and EVC vary in a wide range.

IV. PARALLEL OPTIMISATION

The aim of the optimisation is to calculate the optimal
engine parameters setting over arbitrary operating points or
over any given operating point sequence. To further reduce
the computational burden and to improve the robustness
of heuristic optimisation methods, a parallel optimisation
approach has been investigated [22]. This algorithm increases
the probability of finding the global minimum and accelerates
the algorithm in converging.

The parallel optimisation can be described from two
aspects. The first is the optimisation over a given operating
point sequence. The sequence can be divided into several
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Fig. 6: Dynamical validation of the global-local model

TABLE II: Parameters in Algorithm. 1

Variable Description

cα Children of optimiser α.
cβ Children of optimiser β.
c? Child which provides minimum cost value.
f Objective function.
F (0) Initial function value.
Fα Function value of optimiser α.
Fβ Function value of optimiser β.
p(0) Initial population.
pα Population of optimiser α.
pβ Population of optimiser β.
S Solution.
V Moving velocity of children.

discrete operating points, while optimisations are performed
at all operating points simultaneously. The second is im-
plementing the parallel optimisation algorithm itself. The
parallel optimisation algorithm is outlined in Algorithm. 1,
while the parameters are defined in Table. II. The optimi-



Algorithm 1: The Parallel Optimisation Algorithm

1 Initialization;
2 Set optimiser α and β;
3 Generate p(0);
4 F (0) = f(p(0));
5 for t = 1 : g do
6 for s = 1:h do
7 Selection of ptα(s);
8 Crossover;
9 Mutation of ctα(s);

10 F tα(s) = f(ctα(s);
11 end
12 for s = 1:M do
13 ctβ(s) = ptβ(s) = ptβ(s− 1) + V t(s− 1);
14 F tβ(s) = f(ctβ(s));
15 Update V t(s);
16 end
17 Fglobal = min(F tα(s), F tβ(s)), Sglobal = ct?(s),∀s;
18 if termination criteria = true then
19 Algorithm output = [Sglobal, Fglobal];
20 else
21 Interchange between p(α)t and p(β)t randomly;
22 end
23 end

sation algorithm uses multiple optimisers at the same time
which increases the chance of finding the global optimum.
In the case study, GA and Particle Swarm Optimisation
(PSO) are implemented. After defining optimiser α and β,
each optimiser will be evaluated iteratively to achieve the
convergence. Due to the high nonlinearity of the engine
model, the optimal solution given by heuristic optimisation
algorithms may be trapped locally. During the optimisation,
GA or PSO algorithm might converge to the local optimal
area while another is heading to the global optimum. To
address this issue, immigrants are introduced to heuristic
algorithms’ populations. After h iterations of both opti-
misers, the interchange operator will exchange populations
among optimisers randomly. By introducing immigrants,
the probability of finding the global optimum is increased.
Moreover, population are diffused, which expands the search
space. In addition, the parallel optimisation algorithm is ef-
fective for multi-objective optimisation problems. When the
algorithm gives the completely non-dominated population,
the interchange operator will replace this population with
a dominated one, which enables the algorithm to continue
searching the Pareto front.

V. SIMULATION RESULTS

To demonstrate the performance of the optimisation al-
gorithm, two cases including randomly distributed operating
points and an operating point sequence are optimised. Results
are compared against the fuel consumption with the fixed
cam settings.

A. Evaluation at Random Operating Points

In Fig. 7, the function surface is presented with the optimal
solution at 142 Nm, 3200 r/min. The pink depicts the area
that the global optimum is unlikely to locate in, while
the blue indicates the area with the highest probability. As
mentioned above, due to the high nonlinearity of the engine
model, optimisation results may trap in the local optimal
field, shown in Fig. 7. Blue dots are solutions from the PSO
which are located in the local optimal area. The green dot is
the global optimal point found by the parallel optimisation
method. It shows that the parallel optimisation method is
capable of moving the solution out of the local optimal
region.

Fig. 7: Optimisation result at 93 Nm, 2800 r/min

The optimisation result at 142 Nm, 3200 r/min is elab-
orated in Fig. 8. It is observed that the global optimum
is found rather than being trapped in the suboptimal field.
The groove on the function surface which could lead to
suboptimal results is ruled out during the optimisation.
Therefore, particles will not move to that area.

Fig. 8: Optimisation result at 142 Nm, 3200 r/min

From the parallel optimisation method, optimal solutions
are generally promising and lead to lower engine fuel con-
sumption under stable operating conditions. In addition, val-
idation results indicate that the parallel optimisation method
improves the robustness of heuristic optimisation algorithms.
It is important to note that the optimisation result relies on the
model accuracy. Engine model errors, such as extrapolation,
can mislead the optimisation algorithm to search the wrong
area on the function surface.
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B. Evaluation for an Operating Point Sequence

In practice, the engine will work continuously with chang-
ing operating points. Therefore, an optimisation over a given
operating point sequence is also desired, shown in Fig.
9. For a given route, it can be treated as a number of
discrete operating points. At each operating point, a model
is generated by the global-local modelling method. Then, the
optimisation of each model is performed simultaneously and
a set of control signals for the given operating point sequence
can be obtained. The control signal set is smoothed and sent
to the engine control unit. The fuel rate with the optimal cam
timing is measured and compared against the fuel rate with
the fixed cam timing, as shown in Fig. 9. It indicates that
the fuel consumption is reduced by around 5.5% at most of
operating points.

VI. CONCLUSION

A global-local model-based optimisation method is devel-
oped for the engine optimisation. In generating engine mod-
els for an operating point sequence, both computing speed
and accuracy are considered. The enhanced optimisation
algorithm shows strong capability in moving the solution out
of the local optimal area and leading to the global optimum.
Simulation results of both real time modelling and parallel
optimisation are presented. In the future, the optimisation
task will be extended to a multi-objective optimisation prob-
lem including fuel efficiency and emissions. Additionally,
the proposed global-local modelling architecture and optimi-
sation algorithm will be implemented on dSAPCE processors
for online application.
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