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Game Theoretic Data Association for Multi-target Tracking
with Varying Number of Targets
Abdullahi Daniyan∗, Yu Gong, and Sangarapillai Lambotharan

Abstract—We investigate a game theoretic data association technique
for multi-target tracking (MTT) with varying number of targets. The
problem of target state-estimate-to-track data association has been
considered. We use the SMC-PHD filter to handle the MTT aspect and
obtain target state estimates. We model the interaction between target
tracks as a game by considering them as players and the set of target
state estimates as strategies. Utility functions for the players are defined
and a regret-based learning algorithm with a forgetting factor is used
to find the equilibrium of the game. Simulation results are presented to
demonstrate the performance of the proposed technique.

Index Terms—Multi-target tracking (MTT), data association, game
theory, correlated-equilibrium, forgetting factor, regret matching, particle
filter, sequential Monte Carlo (SMC), probability hypothesis density
(PHD) filter.

I. INTRODUCTION

In multi-target tracking (MTT) problems, the objective is to jointly
estimate target states and number from a set of corrupted observations
[1]. Furthermore, not all observations/measurements received by sen-
sors at each time instance are from existing targets. The sensor may
pick up spurious detections due to clutter or may miss detections. As a
result, the measurements received at each time step are corrupted and
consist of indistinguishable measurements that may be either target-
originated or due to clutter. It is therefore crucial in MTT to ascertain
which measurement is due to which target. Data association deals
with the problem of assigning measurements obtained to individual
targets [2].

In solving the MTT problem, the most common methods are:
i) those that apply explicit data association techniques to assign
measurements to each track [3], and ii) those that try to avoid
explicit association techniques [1]. In the first case, data association
techniques are used to assign measurements to each track and a
single target tracker [4]–[6] (for example the Kalman filter (KF)
or the particle filter (PF)) is used for that track. In this setting, the
number of targets needs to be known and fixed. Several techniques are
used to achieve data association. The most common data association
techniques include the nearest neighbour (NN) [4], the multiple hy-
pothesis tracker (MHT) [4], and the joint probabilistic data association
(JPDA) filter [4], [7]. In NN, at each time step, the predicted target
state is associated with the closest measurement. MHT however keeps
track of, and carries forward, all the association hypotheses to the
next time step and aggregates them over time. The JPDA finds the
association probabilities during each time update by considering all
the targets and the measurements simultaneously and merging many
hypotheses to form a single track hypothesis following a validation
process. However, NN, MHT and JPDA algorithms are more suited to
linear update/linear measurement and Gaussian uncertainty scenarios
[8]. Recently, [8] and [9] proposed a measurement-to-track data
association for MTT using game theory. In their approach, a known
and fixed number of targets was considered and the aim was to
use game theory to assign measurements to individual single target
trackers. Based on the number of players, the individual trackers were
set and the interaction between the trackers was formulated as a game.
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A regret based algorithm was used to find the equilibrium of the
game. This approach is however constrained because the number of
targets needs to be known and fixed, and the regret of all players is
accumulated and kept.

Those data association techniques that avoid explicit associations
between measurements and tracks include the sparse-grid quadrature
non-linear filter [10], multi-target particle filters [11] and the random
finite set (RFS) method [5], [6], [12]. The modelling of target states
and observations as an RFS allows the use of the Bayesian filtering
approach [13] to estimate the multi-target states in the presence of
clutter, missed detections and association uncertainty [14]. The RFS
based probability hypothesis density (PHD) filter [5], [6] and the
multi-target multi-Bernoulli (MeMBer) filter are two most tractable
alternatives to the optimal multi-target filter. [5], [6], [15] and [16].
The PHD filter is a recursion that propagates the first order moment
of the RFS of targets in time [6]. The PHD filter is able to track
time varying multi-targets without the need to explicitly associate
measurements to tracks. The PHD filter has been implemented in two
distinct fashions; i.e. as the Gaussian mixture PHD (GM-PHD) filter
[13] and the sequential Monte Carlo PHD (SMC-PHD) filter [17]. In
the SMC-PHD filter implementation, the PHD is approximated by a
set of weighted particles and therefore more suitable for tracking in
non-linear and non-Gaussian environments.

In this paper, we propose a game theoretic approach to solve the
data association problem for varying number of targets in MTT. This
approach involves firstly, using the SMC-PHD filter to track targets
utilizing all available measurements to obtain target state estimates.
Then our proposed game theoretic method is used to perform target
state estimate-to-track data association. The key differences between
our approach and [8], [9] are: i) we consider a varying number of
targets by using the SMC-PHD filter, ii) we use a forgetting factor
to avoid accumulating and keeping the regrets of each player. The
use of a game theoretic approach allows for data association, for
non-linear, non-Gaussian scenarios. Also, using game theory, data
association is simultaneous rather than sequential as opposed to other
data association algorithms [8], [9].

To find target state-estimate-to-track associations, we formulate the
problem of data association as a game between multiple and varying
number of tracks. The strategies and utility function of each track
are specified. A regret-based learning algorithm with a forgetting
factor or memory is then used to find the equilibrium of this game.
Correlated equilibrium is used as a stable operating point. Also, the
set of correlated equilibria is a generalization of Nash equilibria and
correlated equilibria are more preferable than Nash equilibria since
they directly consider the ability of agents to coordinate their actions
and this coordination leads to better performance [18].

II. PROBLEM FORMULATION

This section presents the MTT problem for varying number of
targets. We first describe the multi-target state and measurement
models and then describe how target state estimates are obtained using
the SMC-PHD filter.
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A. State Model

Let the non-linear state evolution model of a target be:

xk = f(xk−1, vk) (1)

where xk denotes target state at discrete time k, vk is an independent
and identically distributed (i.i.d.) process noise vector and f(·) is the
non-linear system transition function. Then the multi-target state at
time k can be written as Xk = {x1,k, ..., xM,k} ∈ Es where M is the
number of targets present at time k, and Es denotes the state space.

B. Measurement Model

The target-originated non-linear measurement model is given as:

zk = hk(xk, nk) (2)

where hk(·) is a non-linear function, and nk is an i.i.d. process noise
vector. Measurements consist of both target-originated measurements
and false alarms. The multi-target measurement set at time k in the
observation space is: Zk = {z1,k, ..., za,k}

⋃
{c1,k, ...cb,k} ∈ Eo

where a denotes the number of target-originated measurements, b
denotes the number of false measurements and Eo denotes the
observation space. Then the multi-target cumulative measurement set
at time K is Z1:K = {Z1,Z2, ...,ZK} ∈ Eo.

C. MTT using SMC-PHD filter

1) Initialization: In the SMC-PHD filter proposed in [19], [20], at
time k = 1 the PHD Dk|k is represented by a number of particles with
associated weights

{
xik, wik

}Lk

i=1
. Lk is the number of all surviving

particles at time k. A particle approximation of the intensity function
at time step, k > 1, can be obtained from a particle distribution at
the previous time step using prediction and update stages.

2) Prediction: Apply importance sampling to generate Lk−1 and
Jk particles from two proposal densities (qk(·|·) and pk(·|·)) to
represent persistent and new born targets with associated weights
respectively, with Lk = Lk−1 + Jk i.e.

x̃ik|k−1 ≈

{
qk(·|x̃ik−1,Zk), i = 1, ..., Lk−1

pk(·|Zk), i = Lk−1 + 1, ...,Lk

w̃ik|k−1 =


φk|k−1(x̃ik,x̃

i
k−1)

qk(x̃k|k−1|x̃ik−1
,Zk)

wik−1, i = 1, ..., Lk−1

γk(x̃ik)
Jkpk(x̃k|k−1|Zk)

, i = Lk−1 + 1, ...,Lk

where
φk|k−1(x̃k, x̃k−1) = pS(x̃k−1)fk|k−1(x̃k, x̃k−1) + bk|k−1(x̃k, x̃k−1),
γk(·) is the PHD of the spontaneous birth, pS(·) is the probability
of the target survival, fk|k−1(x̃k, x̃k−1) is the single target motion
model, and bk|k−1(x̃k, x̃k−1) is the PHD of spawned targets.

3) Update: For each z ∈ Zk, compute:

Ck(z) =

Lk∑
i=1

ψik,z(x̃ik)w̃ik|k−1, (3)

where ψk,z(x̃k) = pD(x̃k)g(z|x̃k), pD(x̃k) is the probability of
detection, and g(z|x̃k) is the measurement likelihood function for
the single target.

Then, for i = 1, ...,Lk, update the weights using:

w̃ik =

ν(x̃ik) +
∑
z∈Zk

ψik,z(x̃ik)

κk(z) + Ck(z)

 w̃ik|k−1 (4)

where ν(x̃k) = 1−pD(x̃k) is the probability of target non-detection,
and κk(z) = λkck(z) is the clutter intensity, λk is the average number
of Poisson clutter points per scan, and ck(z) is the probability density
over the state-space of the clutter point.

4) Resample and Clustering: The number of targets at time k

is computed as Tk = round
(∑Lk

i=1 w̃
i
k

)
. Lk = ρTk particles are

resampled to avoid degeneracy. Clustering is performed on resampled
particles to obtain the target state estimates, x̃k.

Therefore at time k, the output of the SMC-PHD filter is a set of
target state estimates given as: x̃k = {x̃1,k, x̃2,k, · · · , x̃Tk,k} , where
x̃t,k = [xt,k, ẋt,k, yt,k, ẏt,k]′, xt,k and yt,k are the x and y positions
at time k and ẋt,k and ẏt,k are the velocity in x and y directions for
the tth target respectively. It is the assumption that, each target, when
present generates at most one measurement. Also, most false alarms
have been filtered out during the SMC-PHD filtering. This implies
that the output of the SMC-PHD filter are target state estimates only
with no false alarm. In the case where a false alarm was not filtered,
it will be recorded as a new target. Figure 1 shows the different stages

Figure 1: Block diagram showing various stages of the data association
process.

in our proposed approach. Both target-originated measurements and
clutter are obtained from a sensor. The SMC-PHD filter tracks the
targets using these measurements while filtering out clutter to obtain
target state estimates. The proposed game theoretic approach is then
used to associate these target state estimates to various target tracks.

III. DATA ASSOCIATION FOR VARYING NUMBER OF TARGETS

USING GAME THEORY

In this section, we describe how the game between the different
tracks is played at each iteration of the SMC-PHD filter output.

A. The Game

Consider a game at time k with a set, Ωk of Pk players. The
players, Pk are the tracks for different targets and can vary depending
on the estimated number of targets by the SMC-PHD filter, Tk. Each
player wants to assign a new target state estimate to its existing track.
We say that a new player has joined the game at time k when Tk >
Tk−1 and a player has left when Tk < Tk−1. The strategy set Sp,k =
{0, 1, 2, · · · , Tk} of each player corresponds to the set of target state
estimates from the SMC-PHD filter and they are known to all of the
players at time k. The strategy sp,k ∈ Sp,k allows the player to choose
one target state estimate from the set of all target state estimates or 0
in the case that the corresponding target does not produce any tracks
or disappears from the tracking scene. Pk is the number of players
at time k and corresponds to Tk. For each player, a utility function
is defined as up,k(sp,k, s−p,k) : S −→ R, with S = S1×· · ·×SP,k
where −pk refers to all players except player pk. Uk denotes the set
of utility functions of all the players, i.e., Uk = {upk}

Pk
pk=1. The

game Γk(Ωk,Sk,Uk) defined by the set of players Ωk, the strategy
set Sk, and the utility functions Uk is a one shot game played at the
end of each iteration of the MTT tracker and is called the MTT data
association game for varying number of targets.
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B. Utility Functions

For the pth player at time k, the utility function similar to [8] is
defined as follows:

up,k(sp,k, s−p,k) =

{
dp,k(sp,k) + µ1gp,k(sp,k, s−p,k), sp,k 6= 0

µ2, sp,k = 0
(5)

where

dp,k(sp,k) = −
[
(xsp,k − x̃p,k)TΣ−1(xsp,k − x̃p,k)− dmax

]
(6)

is the scaled Mahalonobis distance between the track of the pth target
at previous time step, xsp,k := Fxsp,k−1 and the output of the SMC-
PHD filter, x̃p,k; dmax is a constant and it specifies the boundary for
the Mahalanobis distance and −dmax ≤ dp,k ≤ dmax, µ1 > 0 and
µ2 > 0 are constants and

F =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


. The function gp,k(sp,k, s−p,k) is defined as

gp,k(sp,k, s−p,k) =


1

Pk−1

∑Pk
l=1
l 6=p
‖ sp,k − sl ‖l0 , Tk > 1

1, Tk = 1
(7)

C. Equilibrium Points: Correlated Equilibria

In order to find the equilibrium of the MTT data association
game for varying number of targets, correlated equilibrium (CE) [21]
as considered in [9] is used. CE is a generalization of the Nash
Equilibrium, (NE). A probability distribution ϕ is called a CE if for
all players p ∈ Ω and all strategies i, j ∈ Sp, we have [22]∑

s∈S:sp=i

ϕ(s)[up(j, s−p)− up(s)] ≤ 0. (8)

A CE, ϕ can be considered as a recommendation each player receives
’privately’ from a trusted source. If this source draws a strategy
profile s from ϕ and announces to each player p its own component
separately and privately, then the player p will have no incentive to
choose another strategy, assuming that the other players also conform
to the recommendation provided by the source [22]. The CE for the
MTT data association game for varying number of targets can be
reached using a learning mechanism called regret matching.

D. Regret Matching with Forgetting Factor

Regret matching (RM) is a type of learning algorithm used in fully
distributed learning [18]. Let sp,k denote the strategy of the pth player
in the kth iteration. Note that sp,k ∈ {0, 1, 2, · · · , Tk}, where Tk is
the number of strategies at time k. Each player computes the average
regret for choosing the nth strategy for n ∈ {0, 1, 2, · · · , Tk} in the
kth iteration

rp,n(k) = max {0, Rp,n(k)} (9)

Rp,n(k) =
1

k − 1

k−1∑
l=1

[up,k(n, s−p,k(l))− up,k(s(l))] (10)

Each player pk can recursively compute the nth component of Rp,k
using the recursion:

Rp,n(k) =

(
k − 2

k − 1

)
Rp,n(k − 1)

+
1

k − 1
[(n, s−p,k(k − 1))− up,k(s(k − 1))] (11)

Since the number of players changes with time, the regret in the
distant past becomes irrelevant. As a result, we introduce an expo-
nential forgetting factor, λf in (10) to obtain the regret matching with
forgetting factor (RMFF) equation:

R̃p,n(k) =
1

k − 1

k−1∑
l=1

λ
(k−1)−l
f [up,k(n, s−p,k(l))− up,k(s(l))]

(12)

and (9) becomes:

r̃p,n(k) = max
{

0, R̃p,n(k)
}

(13)

where 0 < λf ≤ 1 is the forgetting factor. The memory of the RMFF
equation is given as Λ = 1

1−λf
. The expression r̃p,n(k) in (13) has an

interpretation as the measure of the average regret at kth iteration for
not having played the strategy n up to time k. Let βp,n(k) denote
the probability that the pkth player chooses nth strategy. In regret
matching, each player chooses a strategy according to the distribution
βp(k) which is proportional to the regret vector of the player. When
a new player joins the game, i.e. Tk > Tk−1, its own distribution,
βp(k) is started at that instance. Let sp(k−1) = (l, s−p(k−1)), l ∈
{1, 2, · · · , Tk}. Then

βp,n(k) =


1

α
r̃p,n(k), if l 6= n

1−
∑
n∈{0,1,··· ,Tk}

n6=l
βp,n(k), l = n

(14)

The constant α > 0 is a large enough number fixed throughout the
procedure [18], [23]. This choice of α guarantees that there is always
a positive probability of playing the same strategy as in the previous
step. It can be seen that in regret matching, the correlation in the plays
of different players arises from the commonly observed history. Thus,
the history serves as a signal in giving the private recommendation
to each player [18].

IV. NUMERICAL RESULTS

In this section, the performance of the proposed technique is
demonstrated. We consider tracking and associating the target state
estimates of four targets. These targets enter and exit the tracking
scene at various times. Fig. 2 shows the x and y components of
each track against time. A triangular and circular dot denote the start
and the end of a track respectively. To evaluate performance, we

Figure 2: Ground truth showing the plot of the true x and y components
against time for the four tracks over 100 time steps

use the root mean squared error (RMSE), track continuity [24] and
computational time (CT). The RMSE is computed individually for
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each target as

RMSEt =

√√√√ 1

K

K∑
i=1

(xit − x̃it)2 (15)

where t denotes the tth target, K is the number of SMC-PHD filter
iterations which is same as the time upto now;

{
xit
}K
i=1

denotes the
set of ground truth of the tth target and

{
x̃it
}K
i=1

denotes the set of
the tth target state estimates after game theoretic data association.

Table I: The performance of the proposed algorithm in terms of RMSE,
track continuity and computation time (CT).

Algorithm Track continuity (%) / RMSE CT (s)Target 1 Target 2 Target 3 Target 4
PDA 94.3 / 3.2 93.9 / 2.9 96.1 / 2.2 96.5 / 2.7 25.0
JPDA 95.3 / 1.1 94.4 / 1.1 96.7 / 0.9 96.0 / 1.0 22.4
GTDA 97.1 / 0.7 98.0 / 0.9 98.2 / 1.0 98.8 / 0.8 19.6

Table I show results averaged over 50 Monte Carlo simulations for
different data association algorithms with 1000 number of particles
used for the SMC-PHD filter. PDA is the probabilistic data association
technique [25], JPDA denote joint-PDA [7] and GTDA is our pro-
posed method. Comparing the three algorithms, the GTDA gave the
best performance both in terms of accuracy and CT. The JPDA gave
a similar level of performance in accuracy when compared with the
GTDA but has higher computational time. This is because in JPDA
many hypothesis are considered and the hypotheses are merged to
form a single one after considering all targets and measurements. The
GTDA gave a lower CT and only half of the regrets of the players
were kept (λf = 0.5).

V. CONCLUSION

A data association technique for MTT with varying number of
targets using game theory has been proposed. The strategies and the
utility functions of the players are defined, and a regret matching
with forgetting factor is used to find the equilibrium of the game. The
performance of our technique is compared to other data association
algorithms such as the PDA and JPDA. The proposed method shows
better performance in terms of accuracy and complexity when com-
pared to PDA. However, our approach showed similar performance
in terms of accuracy when compared with JPDA but takes less
computational time.
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