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Abstract—Resampling is an essential step in particle filtering
(PF) methods in order to avoid degeneracy. Systematic resam-
pling is one of a number of resampling techniques commonly
used due to some of its desirable properties such as ease of imple-
mentation and low computational complexity. However, it has a
tendency of resampling very low weight particles especially when
a large number of resampled particles are required which may
affect state estimation. In this paper, we propose an improved
version of the systematic resampling technique which addresses
this problem and demonstrate performance improvement.

Index Terms—Resampling, particle filters, sequential Monte
Carlo (SMC) methods, systematic resampling.

I. INTRODUCTION

Sequential Monte Carlo (SMC) or particle filtering (PF)
methods have proven useful within the past couple of decades
in handling target tracking, especially when the observations
are represented by nonlinear state-space models with non-
Gaussian noise models. The PF method have been applied
in a diverse range of disciplines including control, wireless
communications, surveillance, defence, space applications,
oceanography, finance, autonomous vehicles, robotics, remote
sensing, computer vision and biomedical research, see for
example [1]–[13].

When PF methods are used, for example in tracking applica-
tions, the goal is to track and estimate various distributions that
emerge in the dynamic state-space models [14]. To this end,
randomly generated samples (particles) are used to explore the
states of the space. The generated samples along with associ-
ated weights are then used to approximate the distributions of
interest [14].

Most PF methods generally involve a process for generating
and propagating particles, weight assignment and computation
and resampling of particles [15]. The resampling process re-
places certain set of particles with another (usually depending
on the particle weights) [15]. The resampling process is crucial
in PF methods in order to avoid a situation where a few set of
particles dominate other particles with their weights; a process
known as degeneracy [3], [15], [16]. Having a degenerate set
of particles is undesired as this will cause large variances in
the obtained state estimates.

Several methods of resampling in PF methods have been
proposed in the literature. These include residual resampling
[17], [18], multinomial resampling [19], stratified resampling
[20], systematic resampling (SR) [15], [20], [21], branching

corrections [22], resampling with rejection control [23]. For
more details on surveys and review of resampling methods,
the reader is refered to [14], [15], [24]–[26]. The resampling
methods listed are sequential algorithms and the most com-
mon are the multinomial, residual, systematic and startified
resampling techniques [14]. In these algorithms, resampling
is performed from the approximating distributions utilizing
the latest weights [14]. Among the most common algorithms
listed, the SR method is often more desired due to its ease
of implementation, less computational complexity and less
random number generation [14]. The stratified resampling has
the same order of complexity as the SR (in the order of number
of resampled particles required N ) but requires N number of
random number generation during implementation while the
SR requires only one random number generation.

In PF methods, very low weight particles are less likely to
contribute to the estimates of an approximating distribution.
Therefore, allowing very low weights to contribute-during
resampling-to the approximating distribution estimates could
add to estimation variance leading to poor state estimates
especially when the required number of resampled particles
is large. The SR method, despite its desirable properties, has
a tendency to resample very low weight particles especially
when the required number of resampled particles is large. This
phenomenon was hinted in [27].

In this paper, we describe the reason for the occurrence of
this phenomenon in the SR algorithm and propose a way to
address the problem. We named this as improved systematic
resampling (ISR) method. In subsequent sections, we present
how ISR addresses the phenomenon affecting the SR and
demonstrate the improvement offered by our method.

The rest of the paper is organized as follows. Section II gives
a brief background on initial stages preceding the resampling
stage. In Section III we present the systematic resampling
algorithm. In section IV, the proposed improvement of the sys-
tematic resampling technique is presented. Simulation results
and discussion are presented in Section V. Finally, conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION

We mentioned earlier that PF methods usually involve parti-
cle propagation, weight computation followed by resampling.
In this section, we give a brief overview of the PF stages
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preceding the resampling stage in order to set a scene for
presenting our algorithm.

Consider a tracking context (either single or multiple target
tracking) where at time k we have a single target state and
measurement model respectively given by:

xk = f(xk−1, nk), (1)
zk = g(xk, vk), (2)

where f(·) and g(·) are nonlinear functions; xk ∈ X is the
state of the model and zk ∈ Z is the observation with state
and observation space X and Z respectively; nk and vk are
independent and identically distributed white noises. Assume
that an alternate representation of the state, (1) is the proba-
bility distribution, p(xk|xk−1) and that of the observation, (2)
is the distribution, p(zk|xk). We aim to sequentially estimate
the filtering distribution p(xk|z1:k) in a recursive manner by
computing

p(xk|z1:k) ∝
∫
p(zk|xk)p(xk|xk−1)p(xk−1|z1:k−1)dxk−1.

(3)
Generally, the above cannot be solved analytically therefore
approximations (such as PF methods) are required.

In PF, the distribution p(xk−1|z1:k−1) is approximated by a
set of particles with assigned weights {xik−1, w

i
k−1}Mi=1 where

M is the number of particles, such that:

p(xk−1|z1:k−1) ≈
∑M

i=1
wik−1δ(xk−1 − xik−1), (4)

where δ(·) is the Dirac delta operator. The weights are nor-
malized such that they all sum up to one. This approximation
makes it possible to solve (3), so that

p(xk|z1:k) ∝ p(zk|xk)

M∑
i=1

wik−1p(xk|xik−1). (5)

The expression of (5) shows how the approximating distribu-
tion of {xik−1, w

i
k−1}Mi=1 can be obtained. This is the particle

propagation stage as the particle xik−1 is propagated in time
to give xik through importance sampling (see e.g. [3] for more
details).

As for weight computation, we draw equally weighted
particles from p(xk|z1:k). However, since this is not possible in
most cases, we resort to sampling from an alternate distribution
called the proposal/importance distribution, q(xk) [3], [16],
[28]. An example of such distribution is p(xk|xk−1) [16], [28].
Since q(xk) is different from p(xk|z1:k), the particles drawn
from q(xk) need to be weighted in order to have a correct
inference [16], [28]. This can be acheived by recursively
computing

wik ∝
p(zk|xik)p(xik|xik−1)

q(xik)
wik−1. (6)

Eq. (6) is usually followed by a normalization to ensure all
weights sum to one. A recursive progression of this expression
can lead to degeneracy. This is an undesired situation where
one or few particles have large weights and others have

negligible weights. This in turn causes an increase in weight
variances as observations are processed. This will lead to a
very poor approximation of the filtering distribution p(xk|z1:k)
[14]. This is why the resampling stage is needed in PF meth-
ods. Following particle propagation and weight computation
for the filtering distribution, we now have the approximating
distribution at time k given by {xik, wik}Mi=1.

III. SYSTEMATIC RESAMPLING

In this section, the SR algorithm is described. We also
explain why the phenomenon described earlier exists.

SR and sequential resampling methods in general require
particles from an approximating distribution with associated
weights. These particles are resampled (usually depending on
the weights) to give an estimate of the approximate distribu-
tion.

Assume we have an approximating distribution represented
by a set of particles and associated weights {xik, wik}Mi=1. We
aim to resample N particles from these set of particles such
that the outcome is the set {xjk, w

j
k}Nj=1. N can be greater

than the number of propagated particles M but for most
applications, it is kept constant, i.e., N = M [14]. The SR
method achieves this in what is described next.

The SR method [15], [20], [21] first computes the cumula-
tive sum of the weights

Q1 = w1
k,

Qi = Qi−1 + wik, i = 2, · · · ,M. (7)

The whole particle set is divided into subpartitions called
strata. The first strata is a random number, U1 generated
from the uniform distribution U [0, 1

N ]. The rest are updated
by Un = Un−1 + 1

N for n = 1, · · · , N . SR compares the
cumulative sum Qi with the updated uniform number Un. A
possible implementation of the SR method is shown in Algo-
rithm 1. The number of times the i-th particle is replicated

Data:
(
{xik, wik}Mi=1, N

)
Result: {xjk, w

j
k}Nj=1

Normalize weight;
Generate random number U ∼ U [0, 1

N ];
Compute cumulative sum of weights Q;
for i = 1 : M do

t = 0;
while Qi > U do

t = t+ 1;
U = U + 1

N ;
end
N(i) = t

end
Algorithm 1: A sample SR algorithm

(resampled) depends on how many times the updated uniform
number Un falls within the range of (Qi−1, Qi]. For a very low
weight, its contribution to the cumulative sum Q will be small
and if the required number of resampled particles N is small,
the increment to the uniform number update 1

N will be large.



Hence the probability of the i-th particle being resampled is
very low if the i-th particle is very small. Similarly, if the
weight of the i-th particle is very small but N is large, the
increment term 1

N will be very small. Hence the probability
of the uniform number Un falling within the range (Qi−1, Qi]
increases. This presents a high tendency of the very low i-th
particle being resampled. Allowing very low weight particles
to contribute to the approximating distribution estimates could
add to estimation variance and this could lead to poor state
estimates.

IV. THE IMPROVED SYSTEMATIC RESAMPLING

In the previous section, we introduced the SR method. We
also described a phenomenon that causes it to yield poor state
estimates of the approximating distribution particularly when
large number of resampled particles is required. In this section,
we present the proposed improvement to the SR algorithm.

Given that in PF methods, a particle having very low weight
is less likely to contribute (improvement wise) to the estimate
of an approximating distribution; we then propose that, for
a very low weight wik, we want to be able to reduce the
possibility of the updated uniform number Un falling within
the range (Qi−1, Qi] given the increment term 1

N for a large
N .

To this end, we perform a sort of weight-relowering tech-
nique where we identify very low weights w̃k ⊂ wk and
reassign them a much lower value, ρ such that 0 < ρ � 1.
This is so that for a very low weight w̃ik, its contribution to
the cumulative sum of weights Q of (7) will be very small. A
weight is classed as being very low if the condition

wik < τ, ∀i (8)

is satisfied, where i = 1, · · · ,M . The threshold τ is chosen
such that Pr(wik > τ) = 99%. A possible implementation of
the ISR method is shown in Algorithm 2.

Data:
(
{xik, wik}Mi=1, N, ρ, τ

)
Result: {xjk, w

j
k}Nj=1

Check that (8) is satisfied in order to identify w̃k;
Apply weight-relowering to w̃k by assigning then the
value ρ;
Normalize weight;
Generate random number U ∼ U [0, 1

N ];
Compute cumulative sum of weights Q;
for i = 1 : M do

t = 0;
while Qi > U do

t = t+ 1;
U = U + 1

N ;
end
N(i) = t

end
Algorithm 2: A sample ISR algorithm

We further illustrate our proposed method and contrast it
with the SR method as shown in Fig. 1 for the same set of
weights as input. The SR and ISR method are depicted in Fig.

1a and Fig. 1b respectively. From Fig. 1a, the weight marked
with ‘∗’ is the very low weight. So depending on number of
resampled particles required, N , the increment term, 1

N can
cause the updated uniform number Un to fall in the range
(Q1, Q2]. This become even more likely especially when N
is large. In Fig. 1b, after the weight-relowering technique is
applied, we see that the height of the very low weight indicated
by ‘∗’ has reduced, hence the updated uniform number Un,
given the increment term, 1

N is much less likely to fall in the
range (Q1, Q2] even for large N .

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the
proposed ISR method against the SR resampling method. We
consider a 2-D multiple target tracking (MTT) scenario where
a total of four targets are tracked using a nonlinear observation
model. The targets were observed for 100 discrete time steps
i.e., k = 1, · · · , 100. The true trajectories of the targets are
shown in Fig. 3. The start and end positions are indicated by
a triangle and a square respectively. The dynamics of the of
the targets is described using a nonlinear model with nearly
constant turn rate given by:

xk =


1 0 sinωk∆t

ωk
− 1−cosωk∆t

ωk

0 1 1−cosωk∆t
ωk

sinωk∆t
ωk

0 0 cosωk∆t −sinωk∆t
0 0 sinωk∆t cosωk∆t

 xk−1 +


∆t2

2 0

0 ∆t2

2
∆t 0
0 ∆t

nk

(9)

where ωk = ωk−1 + ∆tuk−1, ∆t denotes the sample period
which is assumed to be 1s. The target state vector xk =
[xk, ωk]T̄ comprises of planar positions and velocities are
given as the last two elements of xk = [xk, yk, ẋx, ẏk]T̄ along
with turn rate ωk. The variables (xk, yk) represent the position
of the target; nk = N (·, 0, σ2

nI) and uk−1 = N (·, 0, σ2
uI) with

σn = 10 m/s2 and σu = π/180 rad/s.
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Figure 3: Ground truth for target trajectories of four tracks superim-
posed on the xy plane over 100 time steps

We assume a sensor [xs, ys]
T̄ located at the origin of the x-

y Cartesian coordinate which generates noisy range-bearing
measurements of the targets with false alarms. The target-
originated measurements are given by the nonlinear model

zk =

[
rk
θk

]
+ vk (10)



(a) SR (b) ISR

Figure 1: An illustration of the SR and ISR method. There are four particles with respective weights w. The very low weight is indicated
as w∗(2).
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Figure 2: (a) Performance in terms of OSPA distance against observation time for N = M . (b) Performance in terms of OSPA measure
against increasing number of particles for a constant M = 1000 and varying N from 50 to 10,000.

with
rk =

∥∥∥∥[1 0 0 0
0 1 0 0

]
xk −

[
xs
ys

]∥∥∥∥ , (11)

and

θk = arctan

(
[0 1 0 0]xk + ys
[1 0 0 0]xk + xs

)
(12)

where the measurement noise, vk is a zero-mean Gaussian
white noise vector with covariance matrix R =diag([σ2

r , σ
2
θ ])

with σr = 9m and σθ = 0.45 rad.
We use the particle probability hypothesis density filter [29],

[30] to perform the multi-target tracking. So that at each time k
we can obtain the multiple target approximating distributions
and we apply both the SR and ISR to perform resampling.
After resampling, we perform state estimation and compute
the estimation error then move to the next time k + 1.

We use the optimal subpattern assignment (OSPA) [31]
to evaluate the error in the estimation of the approximating
distribution for using the ISR and the SR methods. A high
OSPA measure translates to high estimation error while a
lower OSPA measure means lower estimation error, hence
higher accuracy. We also observe the OSPA for each of the
methods for various number of resampled particles required
N .

Fig. 2a shows OSPA measures versus observation time. The
results were averaged over 100 Monte Carlo (MC) runs of the

tracking filter. The number of particles used for the tracking
filter is 10,000 particles per existing target. Both ISR and
SR methods were implemented concurrently during each MC
run. This means that the same approximating distributions
were fed into to both resampling methods at each time k
before state estimates were extracted and OSPA computed.
From Fig. 2a, it is seen that the ISR method outperforms
the SR method by giving a lower OSPA measure compared
to the SR throughout the observation time. We attribute the
poor state estimation for when the SR method is used to
very low weights being resampled. Furthermore, with the
weight-relowering technique, the state estimation accuracy is
improved for when the ISR resampling method was used.

Fig. 2b shows OSPA measures versus number of resampled
particles required. The results were averaged over 100 MC
runs of the tracking filter. The result shows that both tech-
niques give similar level of performance for when the number
of resampled particles required, N is around 1000 or less.
But for larger values of N , the proposed method performs
better than the SR method by having a lower OSPA measure
when compared to the SR method. The result further confirms
our hypothesis that when the SR method is used, the state
estimation error is likely to increase especially for large values
of N .



VI. CONCLUSION

In this paper, we described a phenomenon in the systematic
resampling method which causes a high tendency of very low
weights to be replicated during the resampling stage of a
PF method. We proposed an improvement of the systematic
resampling method in order to solve this problem. Results
demonstrate that the proposed resampling method outper-
formes the standard systematic resampling method particularly
when large number of resampled particles are required.
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[25] R. Douc and O. Cappé, “Comparison of Resampling Schemes for
Particle Filtering,” in Proceedings of the 4th International Symposium
on Image and Signal Processing and Analysis, ISPA. IEEE, 2005, pp.
64–69.

[26] J. D. Hol, T. B. Schon, and F. Gustafsson, “On Resampling Algorithms
for Particle Filters,” in Nonlinear Statistical Signal Processing Work-
shop, 2006 IEEE. IEEE, 2006, pp. 79–82.

[27] A. Daniyan, Y. Gong, P. Feng, J. Chambers, and S. Lambotharan,
“Kalman-Gain Aided Particle PHD Filter for Multi-target Tracking,”
IEEE Transactions on Aerospace and Electronic Systems, vol. PP, no. 99,
pp. 1–1, 2017.

[28] D. B. Rubin, “The Calculation of Posterior Distributions by Data
Augmentation: Comment: A noniterative sampling/importance resam-
pling alternative to the data augmentation algorithm for creating a few
imputations when fractions of missing information are modest: The SIR
Algorithm,” Journal of the American Statistical Association, vol. 82, no.
398, pp. 543–546, 1987.

[29] B.-N. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo implemen-
tation of the PHD filter for multi-target tracking,” in Information Fusion,
2003. Proceedings of the Sixth International Conference of, vol. 2, July
2003, pp. 792–799.

[30] ——, “Sequential Monte Carlo Methods for Multitarget Filtering with
Random Finite Sets,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 41, no. 4, pp. 1224–1245, Oct 2005.

[31] D. Schuhmacher, B. T. Vo, and B. N. Vo, “A Consistent Metric for
Performance Evaluation of Multi-Object Filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, Aug 2008.


