
Migrating Ariadne from Drupal to a Static Site 
Jason Cooper describes how the Ariadne journal has recently been moved from a Drupal based site, 
to a static site managed by Hugo and git. 

Introduction 
At the start of 2019 Ariadne[1] moved from being a Drupal[2] site to being a static site. This move 
realised a number of benefits for the journal including an improvement in the site performance and 
a reduction in the ongoing effort required for site maintenance. 

Why move away from Drupal? 
When the technical running of Ariadne moved from the University of Bath to Loughborough 
University in 2015 it was decided to upgrade Drupal to the latest version[3]. This turned out to be far 
more intensive task than was originally envisaged. This trend continued with each security update 
for Drupal requiring significant effort to apply to the site. 

Within a few weeks of going live, it became obvious that Drupal also required far more resources 
than expected. A number of unfriendly bots had to be blocked from accessing the site due to their 
aggressive harvesting practice, which would quickly bring the server load up to unacceptable levels. 

Another mitigation implemented to reduce the tendency for the Drupal setup to have high server 
loads was to place it behind a Varnish cache[4]. As published journal articles don’t change after 
being published the pages can be cached for a long period. This caching did resulted in a significant 
reduction in the number of requests that needed to be served by the Drupal setup itself. 

The downside to the addition of the Varnish cache in front of Drupal was that it was an additional 
application that needed to be maintained by the technical team - and the learning curve for new 
members of the technical team to pick up the system was already very steep with just the intricacies 
of Drupal and its configuration. 

As well as the technical effort required, Drupal was also impacting on the editorial process. The 
process of laying out an article was at times more of a black art than a science. 

In summary the decision to move away from Drupal to an alternative process for publishing Ariadne 
can be summed up with the following sentence: It took up too many resources, both server-wise and 
person-wise when it should have been a lot easier and quicker for everyone. 

Requirements for the new solution 
Given the issues with the Drupal setup, the technical team drew up the following list of 
requirements for a new solution: 

1. Low maintenance effort - Any updates or security patching process should be kept to a 
minimum. 

2. Low resource impact on servers - The solution should be able to serve a large number of 
pages quickly without significantly impacting on the host server. 

3. Simple editorial process - The process to add a new article and issue should be simple and 
easy to document. 

4. Reduced learning curve - Where possible the solution should use technologies in common 
use by the technical team. 

WordPress 
The technical team has quite a bit of experience of configuring and using WordPress and so spent 
some time experimenting with trying to get a WordPress instance that would meet the identified 
requirements. 



The technical team found that it was certainly lower maintenance effort for them and they had a lot 
of trust in WordPress’s automated updates. The impact on the server was also less than Drupal’s. 
However, the editorial process was still more complex than required, especially adding new author 
profiles. 

After a while it became obvious that despite being closer to meeting the requirements when 
compared to the existing Drupal setup, it still wasn’t as good a solution as the technical team would 
like. 

The ideal solution 
While experimenting with using WordPress the technical team commented on a number of 
occasions that the ideal solution from a server resource perspective would be to simply produce a 
static site, served by a standard web server. Their main reasoning being that once published the 
content of an article should never change. In fact the only time that parts of the site should change 
are: 

 when a new article is published 
 when a new issue is published 
 when a journal policy is updated 
 when the site’s theme is updated 

A suitable solution presented itself when one of the technical team was learning about Hugo[5] and 
realised that it would be ideally suited for generating a static site for Ariadne. 

How Hugo works? 
Hugo lets you separate a site’s content from its style. When you generate the site, Hugo goes 
through each piece of content and applies the suitable templates for the content type. Each piece of 
content may have multiple templates applied to it, for example an issue will have the table of 
contents template applied to produce the HTML table of contents, but it could also have an RSS feed 
template applied to it as well to generate the RSS feed for that issue. 

Structure of the Hugo project 
Ariadne’s Hugo project uses the following directories: 

 archetypes 
 content 
 public 
 static 
 themes 

archetypes 
Archetypes are empty content types. When you create a new piece of content with Hugo it will use 
an archetype as the base for the new content file, if one is available. This avoids people having to 
remember what each piece of front matter is required for each content type. 

Ariadne has four archetypes defined: 

 article - the archetype for all new Ariadne articles 
 issue - the archetype for all new Ariadne issues 
 author - the archetype for all new Ariadne author profiles 
 page - the archetype used for any pages that aren’t articles, issues or author profiles 



content 
Hugo content consists of two sections, the first section is the front matter which is structured 
metadata about the content. The second section is the content itself. 

The front matter can be structured using either YAML[6], TOML[7] or JSON[8] and the content itself 
can be either Markdown[9] or HTML. 

Unless explicitly overridden the directory structure under the content directory maps directly 
through to the final static site’s directory structure. 

public 
Hugo renders the final static site in the public directory. 

static 
Any static files required by the site’s content are stored in the static directory. The underlying 
directory structure and content is copied into the public directory when building the final site. 

themes 
The themes directory stores the themes that can be used when rendering the final site. Ariadne’s 
theme directory contains the one ariadne theme. 

Each Hugo theme directory contains all the resources specific to that theme, e.g. layout templates, 
CSS style sheets, theme images. 

Developing the core Ariadne theme 
To get a starting point to develop the Ariadne theme from, a couple of issues along with their 
articles and related author profiles, were manually migrated into site content files and then the 
static site was generated using Hugo’s default templates. 

One by one new templates for each content type were added to the theme. New front matter fields 
were added to the articles and issues as the need arose. Once the core theme templates were 
complete (articles, issues, author profiles, generic pages and homepage - see figure 1) and the 
required front matter fields were known, the archetypes for each content type was created. 

 

figure 1: Ariadne Homepage 



Extracting existing content from Drupal 
With the core archetypes, content directory structure and theme started, the next step was to 
extract the existing content from Drupal and populate content files for each one in the appropriate 
location in the Hugo project’s content directory. 

A few of the top level pages were migrated manually (Homepage, Guidelines, Privacy Statement and 
Access Terms and Copyright), but for Issues, Articles and Author Profiles it was decided that it would 
be easier to write a Perl script to extract the data directly from Drupal’s database and create the 
related content files for the Hugo project. 

Developing the export script took about 3 days of effort overall, which was not only significantly 
faster than a manual migration would have been, but also resulted in a consistent migration. 

Luckily the images for each article were a lot easier to migrate, as they were stored under a single 
images directory in the Drupal setup - which could simply be copied over to the static project 
directory. In addition this also removed any requirement to update the image URLs in migrated 
content as the actual URL of the image would stay the same. 

Revisiting the theme 
Once all the content files from Drupal were ready the theme could be revisited. This time 
concentrating on the larger browsing lists (Archives, Authors and Articles) and taxonomies (e.g. 
Authors, Domains, Buzz - a.k.a article keywords), all of which couldn’t be easily developed without 
having a large number of articles migrated. 

Once the theme was complete we could generate a static site version of Ariadne using Hugo and, 
while we could manually generate the site and upload it when publishing a new article, it was 
decided to investigate automating the publishing process. 

Designing the continuous deployment pipeline 
The manual process to publish new content (article, issue, author profile, etc.) was: 

1. Create the new content with a draft status 
2. Edit the new content 
3. Generate the site and push it to the staging environment 
4. Proof reading by the authors (if anything needs correcting then return to step 2) 
5. Remove the draft status from the new content 
6. Generate the site and push it to the staging environment 
7. Final proof read by the Editor 
8. Push the site to the production environment 

As the Hugo project is under git[10] version control and using GitLab[11] as the master repository, a 
GitLab Continuous Integration (CI) / Continuous Deployment (CD) pipeline was created. The CI / CD 
pipeline was very simple with just one deploy stage consisting of two tasks. The first task runs on 
each push into the GitLab repository and generates the static site, including draft content, which it 
then pushes out to the staging environment via scp. 

The second task needs to be manually triggered via the GitLab web interface (see figure 2) and 
generates the static site, excluding draft content, and then pushes it out to the production 
environment, also via scp. 



 

Figure 2: GitLab CI/CD pipeline interface 

Citations 
In the Drupal version of Ariadne there was a section that listed a citation for each article. As part of 
the migration it was decided not to recreate this section, as how a citation should be formatted is 
entirely dependent on where the citation is being published. Instead it was decided to provide a 
BibTeX[12] and RIS[13] file for each article to enable people to easily add the article to their citation 
manager software. 

To get Hugo to generate the BibTeX and RIS files required the definition of two new media types to 
be added to the project’s configuration (application/x-bibtex and application/x-research-info-
systems) then define two new output formats (BIBTEX and RIS) and, finally, set the output types for 
pages to include these new output formats. At this point Hugo would try to render the BibTeX and 
RIS versions of the pages, but fail as it didn’t yet have a template for them. 

Adding the appropriate templates involved creating two new page layouts in the Ariadne theme, one 
for BibTeX and one for RIS. Hugo would then use these to generate the .bibtex and .ris files to 
accompany the HTML version of the file. 

Once the BibTeX and RIS files were being generated the articles template in the theme was updated 
to include links to them in the article’s aside box. 



Going live 
The process for going live with the new static site version of Ariadne consisted of removing the 
Varnish cache and Drupal from the server and pointing the Apache[14] virtual host for 
www.ariadne.ac.uk at the static site files on the web server. 

The most noticeable difference for the new site was the responsiveness. Previously the response 
time between pages had widely varied depending on whether the page was present in the Varnish 
cache or not. With the new static site the performance was not only fast, but also consistent 
between pages. 

Conclusion 
Moving to a static site generated via Hugo involved quite a bit of effort, but the benefits realised for 
both the editorial and technical aspects has significantly reduce the ongoing effort required, both by 
the technical team and the editorial team. Of course the biggest benefit is that readers of Ariadne 
now have a smoother online experience than previously. 

References 
1. (2019). Ariadne [online] Available at http://www.ariadne.ac.uk [7th March 2019] 
2. (2019). Drupal - Open Source CMS [online] Available at https://www.drupal.org [7th March 

2019] 
3. KNIGHT, J. 2015, Editorial: Ariadne: the neverending story. 

http://www.ariadne.ac.uk/issue/74/editorial/ 
4. (2019). Varnish HTTP Cache [online] Available at https://varnish-cache.org [7th March 2019] 
5. (2019). Hugo - The world’s fastest framework for building websites [online] Available at 

https://gohugo.io [7th March 2019] 
6. (2019). The Official YAML Web Site [online] Available at https://yaml.org [7th March 2019] 
7. (2019). GitHub - toml-lang/toml: Tom’s Obvious, Minimal Language [online] Available at 

https://github.com/toml-lang/toml [7th March 2019] 
8. (2019). JSON [online] Available at https://www.json.org [7th March 2019] 
9. (2019). Markdown - Wikipedia [online] Available at https://en.wikipedia.org/wiki/Markdown 

[7th March 2019] 
10. (2019). Git [online] Available at https://git-scm.com [7th March 2019] 
11. (2019). GitLab [online] Available at https://about.gitlab.com [7th March 2019] 
12. (2019). BibTeX [online] Available at http://www.bibtex.org [7th March 2019] 
13. (2019). RIS (file format) - Wikipedia Available at 

https://en.wikipedia.org/wiki/RIS_(file_format) 
14. (2019). Welcome! - The Apache HTTP Server Project [online] Available at 

http://httpd.apache.org [7th March 2019] 


