
ELECTRICALLY CONDUCTIVE 

BACTERIAL CELLULOSE FOR TISSUE-

ENGINEERED NEURAL INTERFACES 

By 

 

 

Ana Margarida Rodrigues Rebelo 

MSc 

A Doctoral Thesis 

 

Submitted in partial fulfilment of the requirements  

for the award of 

 

Doctor of Philosophy (PhD) of Loughborough University 

 

December 2018 

 

 

© by Ana R. Rebelo, 2018



 

Electrically Conductive Bacterial Cellulose for Tissue-Engineered Neural Interfaces I

Keywords 

Bacterial cellulose, functionalisation, poly(4-vilylaniline)/polyaniline bilayer, carbon 

nanotubes, bioelectronic neural interfaces, tissue engineering. 

 

 

 

 

 

 

 

 

 

 



 

Electrically Conductive Bacterial Cellulose for Tissue-Engineered Neural Interfaces II

Abstract 

Bacterial cellulose (BC) with its high crystallinity, tensile strength, degree of 

polymerisation, and water holding capacity (98%) becomes increasingly attractive as 

3D nanofibrillar material for biomedical applications. Such multi-scale fibrillary BC 

networks can be potentially functionalised with electrically conductive moieties to 

facilitate the conductive properties required for various smart biomedical devices, in 

particular, in the construction of bioelectronic neural interfaces.  

In this thesis, BC fibres are chemically modified with poly(4-vinylaniline) (PVAN) 

interlayer for further enhancement of electrical conductivity and cell viability of 

subsequent polyaniline (PANI) coatings as a bilayer grafted BC nanocomposite. This 

functional poly(4-vinylaniline)/polyaniline (PVAN/PANI) bilayer can be efficiently 

anchored onto BC fibrils through successive surface-initiated atom transfer radical 

polymerisation and in situ chemical oxidative polymerisation. PVAN is found to have 

promoted the formation of a uniform PANI layer with 1D nanofiber- and nanorod-like 

supramolecular structures, with an overall augmentation of PANI yield, hence further 

improved electrical performance. Compositional and microstructural analysis reveals 

such a PVAN/PANI bilayer with a thickness up to ~2 µm on BC formed through a 

significant growth of PANI with rough surface morphology due to the insertion of 

PVAN, which has improved the functional properties of the BC nanocomposites. 

Successful impregnation of both layers onto BC fibrils was corroborated with 

systematic microstructural and chemical analysis. The solid-state electrical 

conductivity of such synthesised BC nanocomposites with PVAN interlayer reaches 

as high as (4.5±2.8)×10-2 S.cm-1 subject to the amounts of PVAN chemically 

embraced. Electrochemical examination evinces the switching in the electrochemical 

behaviour of BC/PVAN/PANI nanocomposites at -0.70/0.74 V (at 100 mV.s-1 scan 

rate) due to the existence of PANI, where the maximal electrical performance can be 

achieved at charge transfer resistance of as low as 21 Ω and capacitance of as high as 

39 μF. Both electrochemical and mechanical properties can be tailored onto an 

incomplete BC dehydration, where a mathematical model is herein developed to 

predict BC water loss accordingly. BC/PVAN/PANI nanocomposites are thermally 

stable up to 200 ºC.  
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Furthermore, further improvement of the electrical conductivity has been achieved 

through grafting Carbon Nano Tubes (CNTs) into the BC/PVAN/PANI 

nanocomposites, where the interactions between PANI and CNTs present new 

electrochemical characteristics with enhanced capacity. PANI/CNTs coatings with a 

nanorod-like morphology can promote the efficient ions diffusion and charge transfer, 

resulting in the increased electrical conductivity up to (1.0±0.3)×10-1 S.cm-1. An 

escalating amplification of the double charge capacity to ~54 mF of the CNTs grafted 

BC nanocomposites was also detected through electrochemical analysis. In addition, 

the thermal stability of CNTs grafted BC/PVAN/PANI nanocomposites are improved, 

and they become stable up to 234 ºC. 

Cytocompatibility tests conducted using two neuronal cell linages show non-

cytotoxic effects for PC-12 Adh cells and SVZ neural stem cells, confirming cell 

viability that can be over 80 % and neuronal differentiation capability of the 

electrically functionalised BC-based nanocomposite membranes, which can induce 

neurites outgrowth up to 115±24 μm long. These voltage-sensible nanocomposites can 

hence interact with neural cells, thereby significantly stimulate specialised response. 

These findings pave the path to the new tissue engineered neural interfaces which 

embraces electronic functions into the tissue regeneration, to enable full functional 

neural tissue recovery. 
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 Research Context and 

Introduction 

This chapter intends to contextualise the scope of this research study with 

relevant background information described accordingly in sections 1.1 to 1.4. Section 

1.5 summarises the research context, highlighting the issues to be addressed with this 

project. Specific aims and objectives are then discriminated in section 1.6. Finally, 

section 1.7 includes an outline of the remaining chapters of the thesis. 

 

 NERVOUS SYSTEM: PERIPHERAL NERVOUS SYSTEM 

The nervous system (NS, Figure 1.1) is one of the most complex and specialised 

systems of the human being. Simplistically subdivided into brain and spinal cord 

(central nervous system, CNS) and nerves (peripheral nervous system, PNS), CNS 

controls all the functions of the organism that can be reached through the nerves via 

deliverable electrochemical signals through synapses towards limbs and organs. It is 

consensually accepted that the number of synapses in brain is around 1014, that results 

from 15 thousand connections per neuron for a total of 100 billion neurons – equivalent 

to a computer with 38 thousand trillion per second processor and 10-1000 terabytes 

storage capacity (memory). This represents only 0.002% of some of the world’s most 

powerful supercomputers.  

The accurate transmission of these electrochemical signals requires efficient 

pathways – the peripheral nerves of the PNS. The PNS receive external information 

(e.g. touching hot surfaces) and transmit it to the CNS, which in turn sends back 

appropriate actions to nerves towards the target organ via synapses to perform 

voluntary movements, feel sensations and keep the normal functions of vital organs. 

[1–3]. One of the major differences the CNS and the PNS is that PNS can undergo 

some self-repair, which is almost absent in the CNS.[4]. 
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Figure 1.1. Organisation of the NS consisting of CNS and PNS [5]. 

 

 Functional Organisation  

The PNS is divided into somatic and autonomic nervous system, which controls 

the voluntary and involuntary bodily functions, respectively. The PNS has afferent 

(sensory) and efferent (motor) nerve fibres responsible for retrieving information from 

sensory organs and transmitting impulses from the CNS to limbs and organs (Figure 

1.2).[6]. 

The somatic NS is subdivided into sensory and motor components, associated 

with the voluntary control of body movements, and with sensory reception of external 

stimuli (general somatic afferent fibres, GSA). There are distinct ways of gathering 

information from the body which includes the somatic senses, mechanoreception, 

thermoreception, and pain. Other special sensory routes involve senses such 

as vision, hearing, taste, smell, and equilibrium. The efferent nerve fibres (general 

somatic efferent fibres, GSE) of the somatic NS are responsible for stimulating muscle 

contraction, including all the neurons connected with skeletal muscles, skin, and sense 

organs.[7]. 
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Figure 1.2. Functional organisation of the NS. CNS controls all bodily functions through close 

interaction with the PNS, to receive and transmit information. CNS can deliver impulses via efferent 

nerves of the PNS, which in turn induces responses to autonomic and somatic NSs. The autonomic NS 

transmits then the nerve impulses through the sympathetic and parasympathetic paths, while retrieving 

information to be transmitted to the CNS via afferent nerves.[8].  

 

The autonomic NS integrates three anatomic structures that are sympathetic, 

parasympathetic, and enteric NSs, and it has an afferent limb, efferent limb and a 

central integrating system. This central integrating system regulates simple reflexes 

within the visceral organs, with both afferent and efferent limbs consisting of general 

visceral and special visceral, afferent and efferent fibres. The sympathetic and 

parasympathetic NSs constitute the motor pathways that usually have contrasting 

effects. Whereas the sympathetic NS is responsible for increasing the heart rate, blood 

pressure, breathing rate, and pupil size, the parasympathetic controls the bodily 

functions at rest by inducing opposite responses to those of sympathetic NS, with the 

enteric NS operating in the functions of the gastrointestinal system. Parasympathetic 

NS also stimulates digestion, activates various metabolic processes and contributes to 

relaxation.[9, 10]. 
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 Anatomy 

In the PNS, motor and sensory axons are bundled together by connective tissue 

into an anatomically defined trunk (Figure 1.3). These bundles of axons are designated 

nerves (either spinal or cranial nerves), which also have blood vessels and capillaries 

within the nerves to supply nourishment to tissues. Three layers of fibrous connective 

tissue can be identified in a peripheral nerve structure. The inner layer, that loosely 

involves individual axons, is called endoneurium. Endoneurium consists 

predominantly of oriented collagen fibres supplied by Schwann cell sheaths. The 

intermediate layer, the perineurium, surrounds multiple axons to form the fascicles, 

which is composed of many layers of flattened cells (i.e. fibroblasts) and collagen. The 

outer layer, the epineurium binds individual nerve fascicles, involving them together 

with fibrocollagenous tissue to form a nerve trunk.[4]. 

 

 

 

Figure 1.3. a) Schematic diagram of the anatomic structure of a peripheral nerve and b) a microscopic 

image of a sectional nerve. The external layer, epineurium, involves nerve fascicles, which in turn are 

surrounded by a perineurium layer. Each nerve fascicle has multiple nerve fibres (axons) [11]. 

 

 Cellular Components and Structure 

There are two types of cells present in the NS, neurons and neuroglia, which 

have different functions. Neurons are responsible for the basic structure and function 

of the NS and consist of a cell body (soma) and its extensions (axons and dendrites) 
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(Figure 1.4a). Neurons are electrically excitable cells that process and transmit 

information through electrical and chemical synapses. Their somas aggregate together 

to form the anatomic structure called ganglia. Glial cells, that are Schwann cells in the 

PNS, and astrocytes and oligodendrocytes in the CNS, exist in higher number than 

neurons and are responsible for supporting and assisting the functions of neurons. 

These cells have also the ability to undergo cell division.[4]. 

 

 

Figure 1.4. a) Schematic structure of a neuron composed of a cell body, axon and dendrites. Neuronal 

axon is surrounded by myelin sheath which are multiple glial cells (Schwann cells in the PNS) regularly 

interspaced, forming the nodes of Ranvier. b) Axons can be surrounded by single (unmyelinated) or 

multiple folds (myelinated) of Schwann cells’ membrane.(adapted from [12]).  

 

In the PNS, sheaths of living Schwann cells surround all axons with single or 

multiple folds of their membranes (Figure 1.4b). When the membrane involving axons 

have one single fold, they are called unmyelinated fibres, otherwise they are called 

myelinated fibres. Both types of fibres can be found in CNS and PNS. However, a 

basement membrane, the neurilemma, formed by the outer surface of the Schwann cell 

layer in the PNS, is not observed in the CNS. In contrast, axons in the CNS are 

involved by an insulating myelin sheath. This sheath is formed by dense layers of 

Schwann cell 

Single fold 
Multiple folds 

a) 

b) 
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successive wrappings of the cell membrane of Schwann cells (in the PNS) or 

oligodendrocytes (in the CNS). The sites along axons at which myelin sheath is 

interrupt by different cells are called Nodes of Ranvier (Figure 1.4a). The myelin 

sheaths and their regular gaps enable rapid and efficient saltatory propagation of action 

potentials, with a high level of spatial and temporal organisation. This is particularly 

important for those axons that are extended for long distances (up to 1 m).[4, 13].  

 

Extracellular Matrix 

The anatomic structures of the PNS are mainly composed of extracellular matrix 

(ECM), which provides essential physical scaffolding for the cellular constituents and 

also triggers crucial biochemical and biomechanical cues for tissue morphogenesis, 

differentiation and homeostasis. The ECM consists of proteoglycans (PGs), that are 

basically glycosaminoglycan (GAG) chains covalently linked to a specific protein core 

(with the exception of hyaluronic acid), and fibrous proteins, which are collagens, 

elastins, fibronectins and laminins. PGs occupies most of extracellular interstitial 

space in the form of a hydrated gel, which surrounds the fibrous proteins mainly 

constituted by collagens. While collagens yield tensile strength, regulate cell adhesion, 

support chemotaxis and migration, and direct tissue development, PGs furnish 

buffering, hydration, binding and force-resistance properties to ECM.[14]. 

 

 Nerve Impulse 

Neurons are electrically excitable cells and as such, they can propagate electrical 

signals through depolarisation and repolarisation of axon membrane, to transmit 

signals to motor cells, glands or another neuron via synapses occurring between the 

dendrites of the generator (neuron) and the axonal terminal of the receptor (neuron). 

The signal propagation along the axon is called action potential or nerve impulse, 

which occurs at the expenses of a polarity switch of the membrane (Figure 1.5).[15].  
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Figure 1.5. Schematic diagram of the propagation of an action potential along the axon of a neuron with 

the depolarisation and repolarisation of the cell membrane (Reproduced by permission from Science 25 

Oct 2002:Vol. 298, Issue 5594, [16] copyright 2012). 

 

The polarity of nerve cells is stablished with an ionic gradient of sodium (Na+) 

and potassium (K+), which maintains a certain potential difference (resting membrane 

potential), as illustrated in Figure 1.6. The membrane potential at rest is negatively 

charged (approximately –70 mV) due to the presence of a higher concentration of 

positive ions outside than inside, that is kept constant thanks to the multiple ion 

channels imbedded in the cell membrane. The ionic channels distributed across the 

membrane are voltage sensible. At basal conditions, these channels purge more Na+ 

ions to outside of the membrane than inside, while impelling more K+ ions to inside. 

Upon an action potential, the stimulus causes the membrane potential to rise 

(depolarise) and fall (repolarise) rapidly through a difference in the ionic concentration 

across the membrane, that becomes positively charged (depolarised) where the action 

potential is passing by while maintaining negatively charged (polarised) in the adjacent 

areas (Figure 1.5). This happens as the ionic channels start to open to allow an inward 

flow of Na+ ions, which changes the electrochemical gradient. As the membrane 

potential further rises, more channels open, and thus, generating an electrical current 

(Figure 1.6). The impulse travels along the axon membrane with similar amplitude and 

a. In response to signal, the initial portion of the 

axon depolarises while the other portions 

remain in the resting stage. 

 

b. The initial portion of the axon repolarises and 

depolarisation spreads down the axon. With 

Na+ channels inactivated and additional K+ 

channels opened, the membrane can’t 

depolarise again. 

 

c. The action potential continues to travel down 

the axon. 

Depolarised 

Depolarised 

Depolarised Repolarising 

Repolarising Resting 

Resting 

Resting 
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time course towards the axon terminals with successive depolarisation of the adjacent 

membrane region – propagation.[17]. 

 

 

Figure 1.6. a) Membrane potential of a neuron over time after triggered an action potential and b) 

respective events occurring in the cell membrane. (1) Membrane potential, initially at –70 mV (resting 

potential), increases up to –55 mV (depolarisation of the membrane), (2) an action potential is induced, 

which further rises the membrane potential which lasts about 1 ms. (3) After reaching the maximum 

amplitude, the membrane is repolarised to return to its basal conditions, (5) which becomes 

hyperpolarised during a refractory period just before (4) reestablishing its resting potential.[18]. 

 

One single neuron can receive synapses from multiple neurons which can cause 

depolarisation or hyperpolarisation of the cell membrane. On average, each neuron can 

continuously emit 10 up to 100 action potentials per second. When the resting 

membrane potential is raised up to a certain level, an action potential is triggered. The 

minimum potential needed to cause depolarisation of the membrane and trigger an 

action potential is called threshold potential and is around –55 mV (Figure 1.6). 

There are basically two ways that neurons transmit signals via synapses, 

chemical or electrically. The chemical synapses can be stablished with neurons or non-

neuron cells, such as those of muscle tissue (neuromuscular junctions) and glands 

(Figure 1.7). In general, electrical synapses provide very fast transmission of the 

signals (nearly instantaneous) and are excitatory only, while in chemical synapses the 

transmission is much slower, but they can cause either excitatory and inhibitory 

responses. Additionally, there is some loss in the electrical transmission as it travels 

 

a) 

b) 

b) 
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towards the next cell, which diminishes the signal strength, while in the chemical 

synapses the message is transmitted without any loss in signal strength.[19]. 

 

     

Figure 1.7. Schematic diagram of A chemical and B electrical synapses established between a 

presynaptic and a postsynaptic neuron, and C neuromuscular junction between a neuron and muscle 

fibres [20]. 

 

Chemical Synapses 

In a chemical synapse (Figure 1.7A), the generated nerve impulse in the 

presynaptic neuron is converted to a chemical signal with the release of small 

molecules called neurotransmitters, at the synapse’s junction. These neurotransmitters 

bind to receptors located in the plasma membrane of the dendrites of the postsynaptic 

cell. The process is initiated when an action potential passes by the terminal of the 

presynaptic neuron. The change in membrane potential causes a rapid influx of Ca2+ 

into the presynaptic terminal as the voltage-gated calcium channels open which results 

in a higher Ca2+ concentration in the cytoplasm. As consequence, synaptic vesicles 

containing neurotransmitters fuse with the plasma membrane of the presynaptic neuron 

to release the neurotransmitters into the synaptic cleft. There are many 

neurotransmitters studied, although acetylcholine released in the neuromuscular 

junctions is the most studied.[19, 21]. 
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Electrical Synapses 

In an electrical synapse (Figure 1.7B), the electrical current results from the 

action potential passes from the presynaptic to the postsynaptic neuron through the gap 

junctions, that are special channels connecting both neurons. These gap junctions 

originate a potential change of the presynaptic neuron which in turn causes a potential 

change in the postsynaptic cell. Compared to the chemical synapses, in the electrical 

ones the transference of signals from one cell to the next is much faster.[21]. 

 

Neuromuscular Junctions 

Neuromuscular junctions (Figure 1.7C) are chemical synapses established 

between motor neurons and muscle fibres, which can cause muscle contraction or 

relaxation. The neurotransmitters (acetylcholine) bind to receptors located in the 

plasma membrane of the muscle fibre (nicotinic acetylcholine receptors), which can 

depolarise the muscle fibre, causing a cascade of events that result in muscle 

contraction.[19]. 

 

 The Electrical Model of a Neuron 

The way an action potential travels through a neuron in the form of a longitudinal 

ionic current has been compared with the way electrical current flows in wires of an 

electrical circuit. However, in neurons the current flow is a pure propagation 

phenomenon, in contrast to the conduction observed in wires. In living cells this 

current is carried by ions, which is different from those in the electrical circuits that is 

carried by electrons. The cell depolarisation can be achieved either by injection of 

positive ions into the cell with intraneural electrodes or under the cathode with 

extraneural electrodes.[22]. 

The cell membrane has an electrical capacitive behaviour that can be 

simplistically described with the equivalent circuit shown in Figure 1.8c. This 

membrane is composed of a molecular lipid bilayer of phospholipids that has 

hydrophobic tails hidden with the hydrophilic regions exposed to both intra- and 

extracellular media, along which are inserted proteins responsible for transposing 

materials across the cell membrane. This bilayer acts as an insulator separating the 

conducting internal and external media where ions are dispersed in, which constitute 
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an electrical capacitor where the two conducting plates are the ionic media and the 

membrane is the dielectric component.[23]. 

 

 
 

Figure 1.8. Electrical model of a cell membrane of a neuron. a) Neuron with ion channels 

(transmembrane proteins) imbedded within the cell membrane, allowing the passage of sodium (Na+) 

and potassium (K+) ions to inside or outside the cell.  b) Representation of an electrical equivalent circuit 

model for the cell membrane at a resting potential. The natural impermeability of the phospholipid 

bilayer of the cell membrane allows the accumulation of ions inside, represented by an electrical 

capacitor (Cm). Ions can transpose this bilayer through the ion channels that have their corresponding 

electrical resistance, RNa
+ and RK

+. The resting potential of -70 mV is achieved with ionic imbalance 

intra- and extracellularly with more Na+ ions inside and more K+ ions outside. This can be represented 

by sodium and potassium batteries, VNa
+ and VK

+, respectively. The resistance of the intracellular fluid 

can be described by an internal longitudinal resistance, Ri. c) The equivalent circuit of the whole 

membrane can be generically represented by the membrane capacitance, Cm, in parallel with a 

membrane battery, Em, in series with the membrane resistance, Rm.(adapted from [24]). 

 

The lipid bilayer on its own is naturally impermeable to almost all ions. 

However, the selective permeability granted by the presence of the transmembrane 
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proteins accounts for the electrical conductance (reciprocal of resistance) of the 

membrane (Rm), as schematically illustrated in Figure 1.8a. The resting membrane 

potential that exists in the absence of stimulus or external electric field, can be 

represented by an electromotive force, Em, calculated by the differential potential 

between the intra- and extracellular media (inside and outside the cell membrane, 

respectively – Figure 1.8c). This simplified electrical equivalent circuit describes the 

individual contributions of each sodium and potassium channels along the membrane 

Figure 1.8b).[25]. 

 

 PERIPHERAL NERVE INJURIES 

If a certain degree of damage reaches the peripheral nerves, serious problems can 

arise which may need immediate actions to prevent further complications. Owing to 

the unique complexity of the NS, the restoration and replacement of the original 

functions in case of nerve injury either by trauma or disease – peripheral neuropathy – 

still faces uncountable challenges. Peripheral neuropathy can be caused by numerous 

conditions, such as alcoholism, autoimmune diseases, diabetes, exposure to poisons, 

medications, infections, inherited disorders, trauma or pressure on the nerve, tumours, 

vitamin deficiencies, bone marrow disorders and other disorders.[26]. According to 

the National Health Service (NHS, UK), diabetes is the most common cause of 

neuropathy in the UK, which affects around 50% of the diabetic patients [27]. 

Regardless the cause, nerve injuries can range from mild to severe and may end up 

with complete functionality loss if not properly and promptly treated. The 

consequences will be determined by the affected nerve and the extension of the 

damage, which can be reflected in actions involving voluntary motion and sensory 

feelings (somatic nervous system), or those controlling involuntary bodily functions, 

such as breath, heartbeat or digestion (automatic nervous system), that can seriously 

compromise the individual’s health.[28]. Other possible complications associated with 

neuropathy are the formation of sores or ulcers stemmed from loss of sensation, which 

can become infected and progress into bone, resulting in amputation.[29]. It is thus 

critical to understand the physiology of the PNS before and after an injury to fully re-

establish the damaged nerve and its functionality.  
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 Physiological Events Post-Injury 

In an unfortunate injury event, PNS can still self-regenerate under certain 

conditions, in contrast to what is witnessed in the CNS that has an inhibitory and 

abortive regenerative process [30]. However, in more severe nerve damage in PNS, 

axonal degeneration occurs in the distal portion of the injury to the proximal portion – 

Wallerian degeneration –, due to the protease activity and lack of metabolic resources, 

which can result in a complete or incomplete nerve repair (Figure 1.9).  

 

 

Figure 1.9. Representation of Wallerian degeneration process of a neuron after an acute nerve injury. 

Phase I, increased cell population at the injury site; Phase II, axonal degeneration as result of the 

inflammatory and immune response – Wallerian degeneration. Phase III, beginning of axonal 

regeneration with subsequent remyelination. The result of the injury process can lead to a successful 

nerve regeneration or an incomplete reinnervation with disorganised axonal sprouts.[31]. 

 

After an acute injury, the axonal skeleton disintegrates, and its membrane 

collapses (Figure 1.9, Phase I). With the degradation of the cytoskeleton and 

membrane, macrophages and monocytes are impelled to migrate into the nerve stumps 

to degrade the myelin sheaths and remove axon debris (Figure 1.9, Phase II), while 

Schwann cells proliferate to form bands of Büngner (Figure 1.9, Phase III). During 

this process, neurotrophic factors are released, and ECM molecules are secreted to 
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stimulate axonal regeneration (Figure 1.9, Phase III). This happens from the proximal 

stump and continues toward the distal stump. New axonal sprouts are emanated from 

the Nodes of Ranvier, with simultaneous axon remyelination performed by Schwann 

cells. When nerve fibres are successfully repaired, the regenerating axons grow until 

they reach their synaptic target and restore functional reinnervation (Figure 1.9, Phase 

IIIa), which occurs in a rate of about 2-5 mm per day in humans. Otherwise, 

disorganised axonal sprouts are formed, and the synaptic target is never reached 

(Figure 1.9, Phase IIIb).[32]. 

 

 CURRENT THERAPIES 

Despite the low neuroregeneration rate, PNS still shows certain degree of self-

repair which leaves an open window for improvements in the regenerative mechanisms 

of the nerves. Depending on the nerve damage, injured axons may spontaneously grow 

to re-establish synaptic contacts with denervated targets. Treatments for peripheral 

neuropathy seeks the overall rehabilitation of the affected nerve, which is determined 

by degree of the damage, symptoms and location. The current therapies for nerve 

injuries can be divided into two stages, post-injury and long-term recovery, following 

mainly two different approaches according to the symptoms perceived: surgical 

procedures and functional rehabilitation. Those can be also complemented with 

administration of medicines and physiotherapy. Generally, according to NHS, nerve 

starts to heal three or four weeks after the initial treatments, and it grows on average 

one inch per month.[33, 34].  

 

 Surgical Procedures 

Immediately after diagnosed nerve injury, palliative care is provided to prevent 

swelling and to reduce the risk of secondary injuries, which are followed by surgical 

procedures to reconnect the nerve ends, with/without aids of a nerve graft, typically an 

autograft – healthy nerve portion from the own patient [35]. Sutured nerves can remedy 

major damage, but the reconnection is often mismatched, causing the loss of the 

original nerve function. Furthermore, this approach is not suitable for long nerve gaps 

due to undesirable tension created in the nerve cable that inhibits nerve regeneration. 

To address this problem, clinicians have used a tissue graft to fill the nerve gap, which 
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can be provided from the own patient (autologous tissue grafts) or from other sources 

(non-autologous tissue grafts).[36]. 

 

Autologous Tissue Grafts 

Autologous tissue grafts consist of portion of tissue isolated from another site of 

the body to fill in the impaired nerve, which can be nerve tissue or not. Common 

autografts are derived from cutaneous nerves, such as the sural or saphenous nerve. 

Muscle and vein have also been used in clinical practice but to a lesser extent. Current 

research has looked into other autologous grafts, such as epineurial sheaths, tendon 

grafts, muscle-vein grafts, inside-out vein grafts with incorporation of autologous 

Schwan cells.[37].  

The use of this type of grafts covers the major drawbacks of the suturing 

approach and is 100% compatible (no rejection), but it is achieved at the expenses of 

the common loss of the nerve function at the donor site, to add the inconvenience of 

the multiple surgeries required [4]. Further, there is an eminent increased risk of 

infection at the donor site and failed reconnection with possible necrosis of the grafted 

tissue. Additionally, they are difficult to isolate, control the scale-up due to limited 

availability, there are limited number of locations that serve as a donor site and the 

regeneration is always incomplete.[4]. 

 

Non-Autologous Tissue Grafts 

To prevent further damage to patient’s nerves, non-autologous grafts, i.e. grafts 

from foreigner donors, have been considered. Donor tissues can be obtained from 

cadavers (allografts or homografts) or from animals (xenografts or heterografts). In 

contrast to autografts, there are no restrictions in terms of availability and dimensions, 

and do not inflict more damage to patients. However, there is the risk of transmission 

of pathogens and the possible immune response with consequent rejection. Attempts 

to cope with these issues include the administration of immunosuppressive drugs and 

the removal of cell-mediated immune components from the graft – acellular grafts. 

However, these purification processes still need to be improves to preserve the 

structure of the tissue, and have led most physicians to discard this practice and elect 

autografts as gold standard for nerve repair in gaps over 3 cm.[4].  
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 Functional Rehabilitation 

After the recovery from the surgical procedures, individuals may undertake long-

term physiotherapeutic sessions and exercises to strengthen muscle, vital functions, 

and to reduce neuropathic pain, that can be supplemented with medication. Muscle 

function can also be assisted and improved with uses of braces or splints that hold the 

affected limb, fingers, hand or foot in the proper position [38]. In more acute symptoms 

of injured autonomic nerves, such as shorten breath or irregular heartbeat rate, pacing 

systems or other medical devices may have to be implanted immediately to reinstate 

the normal involuntary functions through electrical impulses sent at a specific pace 

determined by the body’s needs [39]. These devices have also been explored to 

complement the rehabilitation process of mild nerve injuries. This includes nerve 

stimulation devices, with similar operation of pacing systems, that are used for pain 

relief and/or for restoring the motor and sensory functions through a deliverable small 

electrical current applied internally or externally near the impaired nerves. Examples 

of such devices are transcutaneous electrical nerve stimulation (TENS), vagus nerve 

stimulation devices, epineural and intraneural electrodes and cochlear implants. 

Although this clinical practice was initially used for regulating nerve functions and 

treating symptomatic chronic neuropathic pain, studies over the years have revealed 

evidence of improved regeneration of damage nerve tissues.[40]. However, despite the 

advances in the nerve repair, full recovery from the diverse array of neuropathic 

conditions has not been properly accomplished yet with the current therapies [41]. 

 

Traditional Peripheral Nerve Interfaces 

Different types of peripheral nerve interfaces (PNIs) have been developed either 

to record or electrically stimulate individual fibres or the whole nerve (Figure 1.10). 

These devices can detect and covert ionic currents from nerves into a readable 

electrical signal of an electronic equipment, acting as a bridge between an external 

device and nerves – interface.  This depends on the affected nerve, type of damage and 

symptoms. In general, PNIs consist of electrodes embodied into a non-metallic wafer, 

which can vary in geometry, complexity and invasiveness to meet the desired 

selectivity and spatial resolution. It can be a simple cuff electrode or a more robust 

Utah slant electrode array (USEA). When targeting individual nerve fibres or motor 

units, more invasive PNIs are used to reach specific nerve fibres. Good spatial 
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resolution and enhanced functionality can be simply achieved with increased number 

of electrodes.[42, 43].   

The electrical principles behind stimulation and recording are fairly similar. 

However, when recording, the currents used are some orders of magnitude smaller and 

flow in opposite direction, in contrast to those in stimulation mode. During 

electrostimulation with a traditional PNI, an electrical current is purged towards the 

electrode, which creates a gradient of extracellular electrical potentials that may induce 

a nerve impulse; whereas, when recording, the variations occurring in the membrane 

potential generate a current that flows towards the electrode.[42, 43].  

 

 

Figure 1.10. Examples of typical neural electrodes available commercially for interfacing with the PNS. 

Cuff electrode [44], flat nerve interface electrode (FINE, from MachineDesign), slowly penetrating 

interface nerve electrode (SPINE [45]), epineural electrode (from Finetech Implantable Drop Foot), 

helicoidal electrode (from Huntington Medical Research Institute), book electrode (from Finetech-

brindley), transverse intrafascicular multichannel electrode  (TIME, [46]), macro-sieve electrode (MSE, 

[44]), Utah slanted electrode array (Reproduced by permission from Annals of Biomedical Engineering, 

Spring Nature, Vol. 34, Issue 2 [47] Copyrights 2006, inset image [48]). 
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PNIs with stimulation and recording modality have been developed to treat 

numerous neuropathic disorders (Table 1.1) and can be classified, according to their 

invasiveness, into extraneural and intraneural electrodes. 

 

Table 1.1. Types of PNI electrodes, and general applications and status [43, 49–52]. 

 Peripheral Nerve Interfaces 

 Type Mode Application Status 

E
x
tr

a
n

eu
ra

l 
el

ec
tr

o
d

es
 

Cuff Recording/ 

Stimulation 

Functional electrical 

stimulation control, chronic 

pain, loss of hearing. 

Research/ 

Clinical practice 

Flat-interfaces Recording/ 

Stimulation 

Localized application of 

medication, chemical removal, 

limb motion measurements. 

Research 

Interfascicular  Research on the function of the 

nervous system, treatment of 

neurological disorders, and 

motor control and sensory 

feedback signals. 

Research/ 

Clinical practice 

Epineurial Stimulation Breathing, drop foot. Clinical practice 

Helicoidal Stimulation Seizure suppression, sleep 

apnea. 

Clinical practice 

Book Stimulation Bladder management. Retinal 

implant. 

Research/ 

Clinical practice 

In
tr

a
n

eu
ra

l 

el
ec

tr
o

d
es

 

Intrafascicular Recording/ 

Stimulation 

Artificial limb control. Research 

Penetrating 

microelectrodes 

Recording/ 

Stimulation 

Measurement of multiunit 

peripheral nerve activity. 

Research/ 

Clinical practice 

Regenerative Recording/ 

Stimulation 

Artificial limb control. Research/ 

Clinical practice 

 

The electrode contacts in extraneural electrodes are placed externally around the 

nerve surface, while in intraneural electrodes, these are pierced inside the nerve 

towards individual targeted fibres. Nowadays, there exist a sort range of PNIs, 

including cuff, flat-interfaces, interfascicular, epineural, helicoical, book, 
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intrafascicular, penetrating microelectrodes, and regenerative electrodes (see Figure 

1.10 and Table 1.1).[53, 54]. 

Cuff and flat interface nerve (FINE) electrodes (see top row of Figure 1.10) 

represent some of the simplest and most affordable type of implantable PNI, which 

consists of a silicon tube with two or more electrode contacts on the inner surface 

which are positioned around the nerve. This allows a fair signal recording/stimulation 

with minimal invasiveness and hence, minor damage to the nerve tissue.  

Other similar electrodes are the epineural and helicoidal (see middle row of 

Figure 1.10), that holds longitudinal strips of insulating material with two or more 

contact sites, and are sutured to the epineurium (epineurium electrode) or placed 

circumjacent the nerve in a helicoidal manner (helicoidal electrode). In book 

electrodes, a silicone rubber flap wraps the nerve in contact with platinum foil 

electrodes, which are connected through copper wires to an implantable control unit. 

In contrast, intraneural electrodes, like longitudinally implanted (LIFE, 

intrafascicular electrode), transverse intrafascicular multichannel electrode (TIME) 

and USEA (microelectrode arrays – penetrating electrodes), and macro-sieve (MSE, 

regenerative electrode) show an excellent selectivity since the electrode probes are 

penetrated inside the nerve in direct contact with nerve fascicles or fibres. One of the 

major drawbacks of these PNIs is the high invasiveness, that can damage the nerve 

fibres and it raises questions for long-term implantation.  

Other nerve interface electrodes, like slowly penetrating electrode (SPINE), 

have been also developed and can be categorised between cuff and intraneural 

electrodes, either in terms of performance, or invasiveness. They consist of a silicone 

tube with blunt elements extending radially into the lumen of the tube. SPINE belongs 

to the class of interfascicular electrodes, which brings together the simplicity of the 

extraneural electrodes with the axonal proximity contact and the selective stimulation 

of intrafascicular electrodes.[43, 49–52]. 

Overall, the current PNIs available offer an exceptional performance for a 

diverse range of neuronal disfunctions. However, the very harsh configuration and the 

composing materials of these electronic devices raise questions of biocompatibility 

and long-term use [55]. 
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 NEW STRATEGIES  

The escalated advances in nanotechnology have enabled robust PNIs with 

outstanding functional performance being developed. The inappropriate connection 

with the biological tissues has, however, led to a mismatch in the performance from 

both engineering and biological sides, which ultimately limits its life span. With the 

emergence of Tissue Engineering (TE) as a research field, the biological interactions 

established with implantable medical products and devices, enlightened researchers in 

the field for the importance of building proper bioelectronic interfaces that can be 

accepted by the host environment, with usage of non-cytotoxic and 3D micro- and 

nanostructured materials, with suitable biochemical and physical cell guidance.[4, 54]. 

 

 Nerve Tissue Engineering 

TE strategies are attempting to create novel products that can enhance axonal 

regeneration, through physical or mechanical guidance cues, cellular components and 

biomolecular signals. The current strategies for nerve tissue engineering (NTE) focus 

on bridging the nerve gap and physically guiding axonal regeneration – nerve guides 

– with nerve conduits (nerve guidance conduit or nerve guidance channel, NGC) 

equipped with an internal microstructure to resemble the native anatomy and structure 

of the nerve truck and fascicles. With this approach, the dispersion of regenerating 

axons within the NGC lumen and the polyinnervation of different targets can be 

significantly reduced. An ‘Ideal Neural Tissue Engineering Graft’ (Figure 1.11) 

requires proper materials’ selection, configuration and fabrication method, combined 

with appropriate physicochemical and biological cues.[36, 41]. 
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Figure 1.11. Schematic diagram of an ideal tissue engineering nerve graft (TENG) with a sort range of 

physical, cellular and biomolecular cues. This TENG consists of a nerve conduit with different internal 

microstructures (internal channels or matrix) and porosity, with possible incorporation of cells and 

growth factors (Reproduced by permission from Biomaterials, Elsevier, Vol. 35, Issue 24, [36] 

copyright 2014). 

 

Different internal microarchitectures can be obtained with introduction of one or 

more intraluminal channels (multichannel NGCs), use of fillers, or the combination of 

both. While multichannel NGCs haven’t shown visible benefits compared to single 

NGC, the incorporation of nanobiomaterial-based fillers in the form of gels, sponges, 

fibres or filaments, have been demonstrated to favour axonal regeneration, especially 

for longitudinally aligned along the NGC. This has been attributed to the similarities 

with ECM that enables guidance of Schwan cells, successful ingrowth of blood 

vessels, an adequate diffusion of nutrients and other molecules.[36, 37].  

A wide range of materials, typically polymers, either natural or synthetic, have 

been used for the fabrication of these nerve guides. Natural-derived polymers obtained 

from ECM molecules, have been often used and already commercialised as nerve graft 

products, since those are naturally occurring in the nerve tissue. These include 

collagen, laminin, fibrin, fibronectin, and hyaluronan, and other polysaccharides, 
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including glycosaminoglycans, chitosan, alginate, agarose and proteins, like silk 

fibroin and keratin.[56]. 

Synthetic polymers have been increasingly investigated owing to their 

availability and non-immunogeneicity, compared to majority of the natural polymers. 

Examples are silicone, poly(glycolic acid), poly(lactic acid)-based, poly(ε-

caprolactone), polystyrene and poly(2-hydroxyethyl methacrylateco-methyl 

methacrylate), which have shown satisfactory results to construct artificial ECM. 

Other materials, such as ceramic, carbon, metallic-based materials and electrically 

conducting polymers (e.g. polyaniline [PANI], polypyrrole [PPy]), have also been 

considered to reinforce the mechanical and electrical features of the established NGC. 

In particular, electrical stimulus relayed through electrical conductive composites have 

shown experimental evidences of inducing cellular differentiation, remyelination and 

neuritis extension upon electrical charges.[57]. However, the incorporation of these 

materials for NTE applications still needs to be extensively studied and as far as it is 

known, there is no commercialised nerve graft imparting electrical features up to now. 

 

 Tissue-Engineered Neural Interfaces 

When interfacing with the PNS, it is critical to understand how the electrical 

activity of the nerves can be measured and accordingly stimulated. The proximity of 

muscles, tissue movement, and tissue compression have to be carefully considered 

when recording from nerves, as these elements can interfere with the nerve signals, 

lowering the signal-to-noise ratio. As seen in the previous section, nerves are formed 

by several fascicles with each fascicle consisting of multiple nerve fibres. These fibres 

have nodes of Ranvier, from which the largest electrical nerve activity is originated 

and detected. Those are regularly interspaced by 0.2 to 2 mm along the individual 

fibres, which create a 3D spatial distribution of nodes of Ranvier throughout each 

nerve. Depending on the size and location, an ideal neural interface demands also 

similar 3D nature, which is not exclusively limited to the geometric and structural 

aspects. For building an ideal PNI, physical and electrical symbiosis between the 

nerves and the interface should be encouraged, while allowing axonal growth near and 

along the electrode site. Bioelectronic interfaces to peripheral nerves must contend 

with the heterogeneity in nerve geometry, fascicular arrangement, and fibre 

composition.[54].  
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The future generation of PNIs seeks the usage of nanomaterials and 

nanotechnological tools available to engineer such devices with predetermined designs 

and soft materials inspired by the anatomic, structural and physiological aspects of the 

nerve tissue. These hybrid devices will have dual functionality: replace the nerve 

function via electrostimulation, while promoting axonal regeneration. The current 

state-of-the-art of NTE will allow a deeper understanding of the regenerative needs of 

the nerve tissue to attain a synergistic integration between the PNS and the developed 

PNI, at structural, physicochemical, biomolecular and cellular levels. 

 

 SUMMARY 

Peripheral neuropathy represents a great fraction of the problems affecting the 

NS, which may cause failure of motor, sensory and vital functions. To date, the 

surgical procedures do not provide full functional recovery and the PNIs, used to 

restate some of these, show very harsh designs with non-biologically friendly 

components which compromise the biocompatibility, performance and long-term 

stability in a cascade of events. A comprehensive knowledge of the anatomy, structure 

and physiology of the PNS is underlying brand-new medical products, which is the 

blueprint of the more advanced alternatives offered by the current research field of TE. 

At the same time, NTE grafts commercially available lacks suitable electrically 

conductive properties that is overall accepted to benefit axonal regeneration and 

consequent reinnervation. The new generation of PNIs aims to bring together the 

nanotechnological advances of bioelectronics with the conceptual tools of TE to fully 

address the functional, morphological and regenerative issues of impaired nerves.  

 

 AIMS AND OBJECTIVES 

Based on the present exposition, this thesis aims to develop a novel material 

formulation as a pathway towards a next generation of PNIs with enhanced functional 

and biocompatible capabilities, to eventually treat a wide span of neuropathic 

conditions – Tissue-Engineered Neural Interface (TENI). This novel product will 

result from cooperative efforts to break new ground of the traditional PNIs and 

combine them with the understandings provided by TE. A 3D electrically conductive 

composite material with nanoscale features may benefit a synergistic interaction with 
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the cellular and biomolecular components naturally occurring in the PNS, and thus 

providing a more biologically friendly environment when compared to the present-day 

neural electrodes.  

An adequate choice of materials is of the highest importance. That being said, 

the main objectives of this thesis can be identified: 

1. Produce electrically conductive bacterial cellulose (BC) nanocomposite 

membranes with nanoscale electroactive moieties; 

2. Optimise the electrical properties and the overall synthesis process; 

3. Evaluate the potentials of the developed nanocomposites for biomedical 

applications, and in particular for TENIs. 

 

 STRUCTURE OF THE THESIS 

This thesis is structured into 9 chapters, schematically illustrated in the flow 

charts of  Figure 1.12 and 1.13, which contains (1) Introduction, (2) Literature Review, 

(3) Research Methodology, (4 to 8) main Results and Discussion, and (9) final 

Conclusions and Future Recommendations.  

In the following chapter, Chapter 2 – Literature Review –, a systematic technical 

literature review of the current uses of BC in the medical field and possible routes to 

electrically modify BC with polyvinylaniline (PVAN), polyaniline (PANI) and carbon 

nanotubes (CNTs) to match the requirements of a TENI are discussed.  

All materials and methods used to develop and characterise this BC-based TENI 

are descripted in Chapter 3 – Research Methodology. Essential information on the 

procedures adopted are carefully discriminated, with some methodological 

fundamentals to allow well-founded discussions in the following chapters.  
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Figure 1.12. Flow chart of the structure of the thesis. 

 

Chapters 4 to 8 embody the main results of this research, with chapter 4 related 

with BC synthesis, chapters 5 to 7 with the development of the electrically conductive 

BC-based nanocomposites (Figure 1.13) and chapter 8 with the biological 

characterisation of the materials produced in chapters 4 to 7.  

 

 

Figure 1.13. Chapters involved on the synthesis and characterisation of BC-based nanocomposites. 
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Finally, Chapter 9 – Conclusions and Future Recommendations – summarises 

the main findings and conclusions of this research, with recommended potential 

biomedical applications. Further work is also suggested for improved biofunctional 

performance for possible introduction into clinical practice as a medical 

device/product.  
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 Literature Review 

This chapter intends to give an overview of the current status and methods to 

produce electrically conductive BC nanocomposites and reviews literature on the 

following topics: cellulose and its relevant properties for biomedical applications, with 

particular focus on BC (section 2.1); present strategies to chemically modified BC in 

order to acquire additional functional properties for targeting specific applications 

(section 2.2) and in particular with PANI, which is an intrinsically conducting polymer 

(section 2.3); section 2.4 reviews possible synthetic routes to obtain different PANI 

products, especially as regards steric stabilisation using PVAN; section 2.5 briefs the 

most important features of CNTs, with their electrochemical interactions with PANI 

in composite materials (section 2.6). Finally, section 2.7 highlights the implications 

from the literature and develops the conceptual framework for the study. 

 

 CELLULOSE 

The urgent development of scalable devices from biosources has led researchers 

to embrace cellulose with extensive investigations on its properties and 

physicochemical modifications to tailor relevant applications, in particular in the 

biomedical field.  

Cellulose is the most abundant available biomass on Earth and as such, it has 

gained immense interest as an industrial material for numerous applications. It can be 

found in plant cell walls, such as in wood, plant leaves and stalks, some fungi like 

algae, cotton fibres and it can be also synthesised by certain bacteria strains (Figure 

2.1). In general, this polysaccharide has a microfibrillar structure endowed by high 

tensile strength, high water absorption associated with outrageous hydrophilic nature, 

superior thermal stability and crystallinity.  

Cellulose has been recognised for many industrial applications, such as paper 

products (paper, paperboard, cardboard, packages), textile fibres, inactive fillers in 

drug tablets, additives in manufactured foods and laboratory consumables. With the 

emergence of TE, cellulose has been also exploited for a wide range of tissue grafts, 
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wound dressings and other medical devices. For most of the applications, cellulose is 

extracted from wood-pulp or cotton, which often requires extensive processing to 

remove undesirable components which are present naturally in plant-derived cellulose, 

in particular hemicellulose, lignin and pectin. Therefore, the research focus is on 

cellulose-based materials has moved towards microbial cellulose that, not only 

presents a much higher purity and yield, but it has also shown overall superior 

properties, such as higher mechanical strength, crystallinity, thermal stability and more 

interesting structural characteristics.[58].    

 

 

Figure 2.1. Different sources from where cellulose can be extracted, including plants, cotton and 

bacteria. Microscopic morphology of cellulose fibres, microfibrils and nanofibrils, with their schematic 

representation at molecular level (from alvenotes.com and [59]).  

 

 Bacterial Cellulose 

Microbial cellulose or bacterial cellulose (BC) was first described by Anselme 

Payen in 1838 with Acetobacterium Xylium and later recognised by A.J. Brown in 

1886. But it was only from the 20th century that sufficient attention started driving 

scientists into deeper investigations on this type of cellulose. BC is synthesised by 

growing certain species of bacteria in a proper culture medium containing a high-

carbon source, such as glucose and fructose. Despite the similar molecular structure, 

BC possesses quite distinct properties, which is different from those of cellulose plant-

based.[60].  
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The as-obtained BC is a film with a 3D nanofibrillar network, in which all 

nanofibres are surrounded by large amounts of water which constitutes nearly 99% of 

its total weight. The absence of impurities along with the demonstrated biological 

affinity attributted to the peculiar microstructure, has rendered its approval by the US 

Food and Drug Administration (US FDA) as a material for various biomedical 

applications, including wound dressings, artificial skin, hemostatic materials, artificial 

vessels and electronic platforms (see Table 2.1 and section 2.2).[61] 

 

Chemical Structure 

Chemically, BC as other kinds of cellulose, is formed by a long-chain of D-

glucose repeating units that are linked together through β-D (or β-1,4)-glucosidic 

bonds between the carbon C1 of one glucose unit and the C4 of the adjacent unit 

(Figure 2.2a). Owing to the hydrogen bonds established between the multiple hydroxyl 

groups (OH) and the oxygens (O) within the same and with neighbouring chains, BC 

adopts a supramolecular structure with a stiff rod-like conformation (Figure 2.2b). This 

relatively compact and OH-rich molecular structure is responsible for some of its most 

remarkable properties.[62] 

 

  

 

Figure 2.2. Chemical structure of (bacterial) cellulose. a) Molecular structure of cellulose repeating 

unit, cellobiose, showing the β-1,4 linkage between the two D-glucose units. b) Supramolecular 

structure with intra- and intermolecular hydrogen bonds stablished between adjacent cellobiose units 

and other cellulose chains, as well as within the repeating unit (Reproduced by permission from 

Carbohydr Polym, Elsevier, Vol. 133, [63] Copyrights 2015) 
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Crystal Structure 

Both plant-cellulose and BC have their crystalline and amorphous domains 

alternately disposed. However, in BC, the number of crystalline regions are 

significantly superior when compared to those found in plant-cellulose (Figure 2.3), 

and hence, it is observed a higher crystalline degree with consequent enhancement of 

the tensile strength.[64]. The high crystallinity along with the high purity, are also 

responsible for the elevated thermal stability and biocompatibility, which can act as a 

thermal stabiliser and it is attractive for building thermally stable medical devices. This 

upraised thermal stability presents also advantages in the sterilisation process that can 

be performed easily and inexpensively using temperatures over 100 oC (e.g. 

autoclaving) while preserving their physicochemical properties [65]. 

 

 

Figure 2.3. Illustration of the amorphous and crystalline domains of cellulose [66].   

 

BC possesses a crystallographic structure type I (Cellulose I) that is further 

subdivided into Iα and Iβ, showing prevalence of the Iα type. Both dimorphisms Iα and 

Iβ share similar chain conformation, except their longitudinal stacking, in which Iα 

adopts a triclinic crystallographic symmetry with a square-like shape, whereas Iβ 

shows a monoclinic symmetry with a parallelogram-like shape. Iα unit cell includes 

one cellulose chain in a P1 (crystallographic) space group and Iβ unit cell is composed 

of two cellulose chains that belongs to the P21 space group. The crystallographic 

structures and the respective unit cell parameters are present in Figure 2.4.[63].  
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Figure 2.4. Crystal form of cellulose type I found in BC, with a schematic representation of the 

coexisting allomorphisms, Iα and Iβ crystal units, within the same microfibril. Disorganisation of the 

microfibrils can occur (amorphous area), as marked in the squared area (adapted from [67]). 

 

Biosynthesis 

BC is synthesised extracellularly as a fibrous material by gram-negative bacteria, 

such as Gluconacetobacter, Acetobacter, Agrobacterium, Achromobacter, 

Aerobacter, Sarcina, Azobacter, Rhizobium, Pseudomonas, Salmonella and 

Alcaligenes. A thin pellicle is initially formed, that acts a protective barrier preventing 

the invasion of foreigner organisms, drying and radiation. Over the culture period, this 

pellicle increases in thickness as bacteria expel cellulose downwards deeper in the 

culture medium. Under static conditions, the obtained membranes have uneven fibres 

density across the thickness, different from agitating culture which produces 

membranes with more uniform fibres distribution.[62]. 

From a mechanistic point of view, BC synthesis starts with the production of 

uridine diphosphoglucose (UDPGIc) with subsequent formation of linear-chains of β-

1,4-glycosidic via glucose polymerisation. This process occurs inside bacteria and then 

the polymeric chains are extruded as secondary metabolite through the small pores 

located in the envelope of the cell membrane (Figure 2.5).  
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Figure 2.5. Scanning electron microscopic (SEM) images of bacteria colony synthesising cellulose as 

a metabolic product. Glucan chains are expelled in the form of fibres through tiny pores located in the 

cellular membrane (Reproduced by permission from Food Hydrocoll, Elsevier, Vol. 35 [68], copyright 

2014).  

 

The as-expelled glucose chains bundle together to form branched-chains of 

nanofibres 3–8 nm width and ribbons with diameters of 40-60 nm, that are arranged in 

a three-dimensional (3D) web-like network with large open space. Despite BC 

synthesis is a microbial process, the resulting membranes can have their thickness, 

shape and microstructure controlled with reasonable consistency.[69]. 

 

Commercial Uses 

Since its first reported synthesis, BC has been the focus of a large number of 

biomedical applications with ongoing research in the field. The peculiar features found 

in the as-synthesised BC, in particular the large surface area of the interspaced 

nanofibrils with high water content, have inspired scientists to test it for skin-related 

applications. With US FDA certification, several medical products have been 

developed and commercialised as tissue grafts and skin replacements, such as biofill®, 

bionext® and gengiflex® (Table 2.1). Other applications include supporting proteins, 

cell culture and microorganisms.[62, 70]. 
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Table 2.1. Commercial products based on BC and their applications (adapted from [62] and [70]). 

Brand Product type Application 

Biofill® Temporary skin substitute Ulcers, burns 

Bioprocess® Wound dressing Ulcers, burns, lacerations 

Dermafill® Wound dressing Ulcers, burns, lacerations, 

grafts 

Gengiflex® Dental implants, grafting 

material 

Recovery of periodontal 

tissues 

Bionext® Wound dressing Ulcers, burns, lacerations 

Membracell® Temporary skin substitute Ulcers, burns, lacerations 

Xcell® Wound dressing Venous ulcer wounds 

 

 CHEMICAL MODIFICATION OF BACTERIAL CELLULOSE 

Despite the multiple uses of BC-based materials, chemical, physical or 

physicochemical modifications are often recommended in order to fully exploit the 

potential functionalities of BC targeting specific applications. Electrical 

functionalisation is required for a wide range of biomedical applications, such as 

electrostimulated drug delivery systems [71], biosensors [72], bioelectronics [73] and 

tissue regeneration [74]. The development of BC-based composites containing 

electrically conductive materials can be a possible route to address the above-

mentioned applications.  

By definition, a composite is a material that is constituted of a matrix, often 

polymeric, that supplies a homogeneous and monolithic physical phase, in which a 

reinforcing agent is imbedded to boost the likelihood of a specific response or 

behaviour, such as mechanical, thermal, chemical and electrical.[75]. BC can be 

chemically modified following in situ or ex situ strategies, i.e. via incorporation of 

exogenous molecules during or after BC synthesis, respectively. Both approaches can 

successfully introduce new functionalities to BC, however showing significant 

different characteristics. In the in situ polymerisation, the introduced molecules affect 

the intrinsic properties of BC upon chemical interactions, creating new interconnected 
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hydrogen bridges. On the other hand, in the ex situ approach, the as-synthesised and 

purified pristine BC is subjected to chemical functionalisation, that usually consists of 

direct immersion of BC matrix into a solution containing the modifier-substance.[65]. 

In contrast to the in situ methodology, with ex situ polymerisation the original BC 

structure remains practically intact and only nanosized materials would be able to 

impregnate the nanostructure through diffusional mechanisms. Moreover, the ex situ 

polymerisation can assume a variety of forms on the account of the large surface area 

of network membranes with a hydroxyl-rich backbone. Thus, monomeric, reactive and 

potentially polymerisable chemical species can be accommodated into BC matrix 

interstices, essentially by occupying its void volume and/or interacting with chain 

segments or pendant moieties of the host hydrogel to produce blends or grafted 

composites. These characteristics make BC hydrogel an excellent candidate for 

materials functionalisation.[73]. 

A vast number of electroactive compounds, such as intrinsically 

electroconductive polymers (ICPs), CNTs, graphene and metal nanoparticles (e.g. 

gold, silver) have been successfully impregnated within BC network.[73]. Among 

these, ICPs and in particular PANI, and carbon nanostructures, have been extensively 

studied for many electronic related applications. While PANI can permit a fine control 

over electrical and optical properties [76], CNTs can upgrade the electrical and 

mechanical properties with their outstanding electrical conduction up to 105 S.cm-1, 

excellent specific capacitance  and high tensile strength.[77, 78]. However, both neat 

PANI and CNTs are usually obtained as intractable and brittle powders with poor 

processability (see sections 2.4 and 2.5) and therefore, their incorporation into fibrous 

and absorbent substrates like BC, can potentially overcome these issues through 

grafting, surface coating technologies or with simple preparation of blends, with no 

meaningful changes needed to the manufacturing procedures.[79].  

PANI has been successfully synthesised by oxidative polymerisation of aniline 

directly onto BC membranes, via either chemical or electrochemical methods and 

CNTs have also been efficiently incorporated within BC network with a simple 

immersion procedure [72, 74]. The dual combination of PANI with CNTs has shown 

new and superior electrical functionalities that are being investigated in the current 

literature, presenting unprecedent features for some applications, including 

bioelectronics. Published work have revealed increased electrical conductivity of 
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pristine BC from 10−4 S.cm-1 to a wide range conductivity values of 10-3-100 S.cm-1 

after modification with PANI and/or CNTs, which falls into the category of 

semiconductive materials (10-4-100 S.cm-1).[72, 73, 80]. In addition, PANI and CNTs 

can be strongly tethered to BC nanofibrillar structure, different from PANI and CNTs 

coatings typically employed in electronic devices that show the eminent disadvantage 

of poor adhesive properties to most of the substrates, typically on metals or other 

semiconductive materials such as silicon, leading ultimately to the failure of the 

devices.[81].  

Despite the scarce number of studies, the formulation of these composites and 

especially for BC/PANI/CNTs, would be promising for a broad range of biomedical 

applications that demand suitable electroactive characteristics and mechanical 

flexibility (bendable and stretchable). This can be particularly valuable for 

bioelectronic interface devices that, in addition to the electrical properties, also 

requires soft materials for perfect match with the soft tissues, question that is being 

neglected in the current implantable medical devices.[82].  

 

 INTRINSICALLY CONDUCTING POLYMERS 

ICPs are polymers which possess inherent electrically conductive characteristics 

in the semiconductive range that arises from a conjugated electron system in their 

structure, with high electron affinity and low ionisation potential (Figure 2.6) [76]. 

Several ICPs have been studied, such as polyacetylene, PANI, PPy, poly(3,4-

ethylenedioxythiophene) (PEDOT), polythiophene (PDMBT), poly(p-

phenylenevinylene) [PPV] and poly(p-phenylene) [PPP].  

 

 

Figure 2.6. Electrical conductivity range of insulators, semiconductor and metals, represented in log-

scale [83]. 
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With their semiconducting nature, ICPs have been largely used in a wide range 

of applications, such as actuators, sensors, artificial receptors, pH-responsive films, 

electrochromic display devices, energy storage devices and organic electrode coatings. 

ICPs have also expanded their potential applications into the biomedical field aiming 

to overcome some of the major drawbacks of metallic biomaterials, especially the poor 

biointegration, inflammation, mechanical instability with poor flexibility, tissue 

infections and eventual necrosis, and associated prolonged patient care, pain and loss 

of tissue function.[84]. 

Comparable to inorganic semiconductors, ICPs can vary some of its intrinsic 

characteristics when externally stimulated, including the conductivity, colour, density, 

magnetic properties, hydrophilicity/hydrophobicity, and permeability to gases and 

liquids [85]. For instances, the electrical conductivity can be easily controlled by 

switching the redox states, doping/dedoping process and the supramolecular structures 

under certain conditions [86]. This versatility explains such broad spectrum of possible 

applications of ICPs, which may replace the ‘gold-standard’ of metal-based materials 

used in electrical devices.  

 

 Polyaniline 

PANI is one of the most studied and used ICPs due to facile synthesis and 

chemistry, good ion-exchange properties, low-cost production, high capacitance, 

specific surface area, and environmental and thermal stability, compared to its 

counterparts.[87]. Other interesting properties of PANI include electro- and 

solvatochromism, non-linear optical properties and paramagnetism.[85]. Considering 

these unique properties, PANI has been found to be effective when being used  as 

electrical conductors, batteries, sensors, actuators, electromagnetic shielding, antistatic 

coatings, corrosion protection, and electro-optic and electrochromic devices.[74].  

PANI has a highly organised nanostructure system at molecular and 

supramolecular levels, responsible for its properties and in particular the conductivity, 

which can be controlled during the process of synthesis. There is a diverse array of 

coexisting supramolecular structures of PANI. These can be one-dimensional, 1D, 

(nanofibres, nanorods and nanotubes), planar two-dimensional, 2D, (e.g. ribbons, 

nanobelts and nanoplates) and three-dimensional, 3D, particles (microspheres, 
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nanospheres and granules), that can be further combined into more complex 

architectures. For applications in nanotechnology that requires reasonably good 

conductivity with high surface to aspect ratio, one-dimensional (1D) structures are 

more attractive as high homogeneity, unique surface properties and high charge carrier 

mobility can be achieved. Comprehending the molecular mechanisms underlying 

PANI synthesis and their nanostructures is thus, of the highest importance.[88]. 

 

Chemical Structure 

PANI comprises two types of repeating units, the reduced and the oxidised, each 

one consisting of two para-substituted aniline units linked together in a ‘head-to-tail’ 

manner. This regular arrangement of the monomeric units builds a polyconjugated 

system with a zig-zag configuration lay on a single plane. The number of reduced and 

oxidised units determines its oxidation level, described with the variable x (between 0 

and 1), as shown in Figure 2.7.                           

 

Figure 2.7. Different oxidation forms of PANI. The highest conductive form, emeraldine salt, can be 

reduced to leucoemeraldine salt that is non-conductive, or can be fully oxidised to pernigraniline that is 

less conductive than emeraldine. These three oxidation states can be further deprotonated into their 

respective base forms in a reversible manner (adapted from [85]). 
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Accordingly, PANI coexists mainly in three different forms: the fully reduced 

leucoemeraldine (x=1), the half oxidised emeraldine (x=0.5) and completely oxidised 

pernigraniline (x=0), and each one can be protonated or deprotonated. Virtually, PANI 

can assume continuum oxidation states ranging from a completely reduced to a 

completely oxidised form. However, the most chemically stable state is emeraldine, 

which is also the most conductive.[88]. 

 

Electrical Properties 

The outstanding electrically conductive properties of PANI arises from the 

peculiar organisation of the monomeric units, which embodies a mix of electronic and 

protonic conductivity produced during the protonation of the imine nitrogen atoms 

resulting in positive charges which are compensated by negatively charged counterions 

(charge carrier mobility).[89]. The alternating double and single bonds between the 

monomeric units of the polymer chain forms the polyconjugated system, in which pi 

(π) orbitals in the series of π-bonds overlap each other, causing the delocalisation of 

the electrons that can readily circulate (Figure 2.8).[90].   

 

 

Figure 2.8. PANI in the emeraldine base structure. a) Polyconjugated system showing the alternating 

single and double bonds in the polymer backbone, formed by sigma (σ) and pi (π) bonds. b) Schematic 

representation of σ and π orbitals overlapping each other to form a double bond between two carbon 

atoms (adapted from [91]). σ-bonds gives the strength to the strain, while π-bonds ensure delocalisation 

of the electrons. 

 

This polyconjugated system can be further elongated upon protonation of the 

chains with doping agents, as such the p-orbital system is extended through which 

electrons can more freely circulate. The doping process (or protonation) stabilise and 
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neutralise the backbone, while introducing charge carriers either by removing or 

adding electrons from/to the polymer chain.[87]. This results in the relocalisation of 

the charges in the polymer chain into polaron and bipolaron structures (Figure 2.9), 

i.e. a localised state with the present loosely held but confined electron surrounded by 

a crystal lattice distortion.  

Some studies have suggested that the formation of (bi)polarons during 

protonation results from the interaction between protons (H+) in aqueous acidic 

solution and the nitrogen of the imine segment (C=N) of EM base chain, followed by 

the diffusion of protons (H+) and counterions (e.g. Cl− from HCl) into PANI. With an 

applied electrical potential, the heretofore stable backbone is disrupted as dopants start 

moving across the chain, generating a current in the form of the above-mentioned 

polarons and bipolarons.[92, 93].  

 

 

Figure 2.9. Doped and dedoped forms of emeraldine oxidation state of PANI, showing the polaron and 

bipolaron structures after protonation with HCl. The counterions from the dopant (Cl− in the present 

example) compensate the charge carriers introduced after doping.[94]. 

 

Strong acids are usually used for PANI synthesis and as doping agent, as they 

can stabilise the polaron formation during oxidation and further supply PANI with 

protonic conductivity. Protonation of the chains occurs in the oxidative centres, i.e. 

imine group, but also amine nitrogen atoms. The nitrogen atoms can capture protons 

from acid to generate radical cations (NH+ or NH2
+).[95]. The degree of protonation 
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of PANI is determined by its oxidation state, as well as the pH of the solution in which 

it is immersed.  

In total, PANI can be found in six different forms according to the oxidation 

state and the doping level, as seen previously with Figure 2.7. This results in PANI 

products with very distinct properties that can only be controlled during the 

polymerisation process. Defects introduced to this regular structure can be detrimental 

to the electrical conductivity, as charge carriers are generated during polymer growth. 

Incorrect addition of monomeric units at different positions (ortho- or meta-), and 

chemical modifications, such as copolymerisation with other monomers, are examples 

of some possible defects that can take place. Good electrical, optical and magnetic 

properties imply thus the development of polymeric chains with proper charge carrier 

paths. This can be accomplished providing that there is a perfect understanding of the 

synthesis mechanisms to successfully guide the self-assembling of regular polymer 

chains at molecular and supramolecular levels.[96]. 

PANI can reversibly switch between its different oxidation and protonation 

states. Both emeraldine and pernigraniline are conducting forms of PANI, whereas the 

fully reduced leucoemeraldine is non-conductive (Figure 2.7). Under typical 

conditions, protonated emeraldine shows conductivity in the range of 100-101 S.cm-1. 

Continuous oxidation over a certain level with an oxidising agent (e.g. ammonium 

persulfate, APS, or electrical potential) causes emeraldine to be transformed into 

pernigraniline with concomitant decrease of the conductivity below 10-2 S.cm-1. The 

conducting forms can be reversibly converted into leucoemeraldine either by adding 

an electron to reduce the nitrogen atom (through an applied electrical potential) or by 

removing the polaron-stabilising acid using a reducing agent (e.g. ascorbic acid, 

ASCA). This causes the disappearance of polyconjugation and consequent decrease in 

the electrical conductivity of about eight orders of magnitude to 10-8-10-10 S.cm-1.  

Protonated forms of PANI have the acid linked to the main chain via ionic 

interactions. Deprotonation of the different oxidation states of PANI is achieved by 

neutralisation of acid with a base, which may lower the conductivity up to 10 orders 

of magnitude. Owing to the reversibility of the redox reactions, 

reprotonation/deprotonation cycles can be infinitely performed without losses of PANI 

properties.[85]. 
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PANI Synthesis 

PANI synthesis results from the oxidation of aniline monomer in a chain-

reaction with the nitrogen atoms acting as oxidation centres. As a chain-reaction, the 

polymerisation occurs basically in three steps: the initialisation characterised by an 

induction stage, propagation when polymer chains grow and termination, when at least 

one of the reactants is fully consumed. During the polymerisation, the nitrogen atoms 

from both aniline monomer and the growing chain (oligomer) undergo oxidation. The 

polymer chains grow with monomer addition to the oligomer in a chain-reaction via 

electrophilic substitution – the attacking species are oxidised and act as electrophilic 

agents, transforming π bonds into σ bonds. However, the oxidation of aniline not 

always result in PANI with a polyconjugated system. Other oxidation products with 

disordered molecular structure can be obtained in a process called oligomerisation. 

Whether the oxidation of aniline lead to polymerisation or oligomerisation, strongly 

depends on the initial reaction conditions as such a polyconjugated system can be 

efficiently formed.  

In general, successful aniline polymerisation occurs in low pH medium and 

under action of an oxidising agent, that can be a chemical compound (oxidant) or an 

applied electrical potential. In both cases, a certain oxidation potential has to be 

exceeded to ensure the oxidation of both aniline monomer and oligomer, that is 

dependent on the different dissociation constants of aniline monomer (pK=3.5) and 

the imine groups of the propagating chains (pK=2.5), as shown in Figure 2.10.  

Low pH medium ensures adequate protonation of aniline monomer and its 

oxidation products and thus, well-organised polymer chains with a conjugated system 

can be formed. In contrast, alkaline and weakly acidic medium can’t protonate all the 

existing species, resulting in different molecular mechanisms and consequently, 

products with different molecular structures, morphologies and properties. 

With strong acids, a minimum oxidation potential of +1.05 V is required to be 

overcome. Several oxidants, ranged from weak (~1 V) to strong (~2 V), have been 

tested for PANI synthesis and they are crucial for the polymer structure obtained. 

Those can be APS, silver nitrate, hydrogen peroxide and iron(III) chloride, although 

APS is often used due to its high oxidising potential of 2.5 V that is able to oxidise all 

monomer and oligomer species.[85]. 
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Figure 2.10. Oxidation of aniline and its products in function of the oxidation potential and the pH of 

the reaction medium during aniline polymerisation. pH over 3.5 and low oxidation potential result in 

the deprotonation of both aniline and polymer chain, which results in nonconducting oligomers being 

produced. pH under 2.5, produce protonated products, and thus conducting PANI. If 2.5<pH<3.5, 

phenazine structures can result either in oligomerisation or polymerisation, depending on the initial 

conditions. This is determined by protonation constant of monomer pKAn and growing chain 

pKPANI.[85]. 

 

 STERIC STABILISATION OF POLYANILINE  

PANI can assume a wide range of different nanostructures, the as-called 

supramolecular structures, which strongly depends on the synthetic route adopted. The 

resultant product in a typical chemical oxidative polymerisation (COP) of aniline is a 

precipitate that has an infusible and insoluble character, with brittle nature (intractable 

powders).  
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Figure 2.11. Examples of 3D and 1D supramolecular structures of PANI that can be obtained: a) 

Nanofibres, b) granular spheres (granules), c) plates, d) micro-sized granular agglomerates – 

commercial PANI – (adapted from [97]). 

 

With increased knowledge of the self-assembling molecular mechanism of 

PANI, several approaches have been followed aiming to obtain more processable 

products with more organised 1D nanostructures and an elongated polyconjugated 

system. Slight adjustments in the procedure, such as using two immiscible solvents 

(interfacial polymerisation), surfactants, templates, have been tested. Depending on 

the reaction conditions, the type of self-organisation of PANI structures can take the 

shape of 1D, 2D and 3D nanostructures.  

In general, oxidation of aniline at pH 2.5-3.5 results in aniline oligomers having 

cyclic phenazine structure, which are aromatic rings with π-electron density. 

Phenazines tend to stack together via π-π interactions between the aromatic rings. 

Regular self-assembling of these stacked phenazines may result in well-defined PANI 

nanostructures. However, chaotic spherical agglomeration occurs more often with the 

common precipitation method, leading to the formation of big PANI aggregates 

(Figure 2.12).  

 

 

 

a) b) 

c) d) 
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Figure 2.12. Schematic diagram of the self-assembling mechanism of PANI into 3D granular structures 

[98]. 

 

The aniline monomer has an amphiphilic nature owing to its hydrophobic 

benzene and the hydrophilic amine group, which is anticipated to form micelle-like 

structures of aniline monomers – phenazine clusters – just before the polymerisation 

is started. Upon addition of the oxidant, the reaction initiates and PANI chains grow 

at the micelle/liquid interface according to the principles of aniline polymerisation and 

elongation.[99]. Under typical reaction conditions, phenazine clusters will keep 

growing following the diffusion-limited aggregation to form particle resembling 

blackberry that occurs during the propagation step. This is thought to be caused by 

changes in surface properties of the initial cluster and, hence, its interactions with 

medium, that forms insoluble microgranular particles.[100]. 

The introduction of templates and surfactants can stabilise the interactions 

between phenazine clusters, and control the crystal nucleation and growth during 

PANI synthesis with consequent change of the morphology [101]. Molecular 

components in solution, such as phenazines, may also well-perform as templates for 

the formation of 1D PANI structures. It is assumed that during the propagation step 

those structures grow at the expenses of new nucleates generated directly on the 

surface of the template, which leads to lengthen the fibres, tubes or rods. The well-

organised polymer chains may also interact to each other with adjacent chains via 

hydrogen bonds, and then thickening the fibres.[88]. 
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Surfactants introduced in the reaction are often recommended to obtain well-

dispersed colloids, but they can also serve as soft-templates to develop coatings with 

1D PANI structures endowed with additional strong, stable electrical and chemical 

functionalisation. Polymeric surfactants impart excellent particle stability via steric 

stabilisation, by reducing the interfacial tension. In contrast to monomeric surfactants, 

polymer chains can better prevent coalescence and agglomeration owing to the larger 

repulsive barriers. Moreover, the multiple anchoring points of polymeric surfactants 

provide superior interaction between surfactant and substrate.[102]. As such, steric 

polymeric stabilisers are expected to benefit the formation of highly regular structures 

at both molecular and supramolecular levels.[86]. 

Water-soluble polymers or polymers with water-loving groups, such as 

poly(vinyl alcohol), polyvinylpyrrolidone , cellulose, and chitosan, have been used as 

steric stabilisers for aniline polymerisation in dispersed media [103]. As a rule, the best 

steric stabilisers are those containing amphiphilic 2-block or graft copolymers, in 

which a polymer A acts as bridge between the substrate surface and the (co)polymer 

B. In such instances, A has to have demonstrated affinity to the substrate surface while 

providing anchoring sites to bound (co)polymer B (Figure 2.13).[104]. 

 

 

Figure 2.13. Examples of polymeric steric stabilisers in the form of a) block copolymers and b) graft 

copolymers, where A is the polymer with the anchor group and B is the polymer that provides the steric 

barrier [104]. 

 

Polymeric surfactants with a free amine group, like PVAN, can serve as steric 

stabilisers, while participating actively in the oxidative polymerisation of aniline from 

which PANI chains can grow. Therefore, amine-containing surfactants, not only are 

 

substrate 
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able to stabilise phenazine interactions, but also can act as a soft-template for aniline 

polymerisation, as schematically illustrated in Figure 2.14.[99].  

 

 

Figure 2.14. Schematic illustration of PANI brushes self-assembled onto a a) non-treated and b) pre-

treated surface with a steric polymeric stabiliser, such as PVAN, and corresponding SEM images, 

showing PANI a) granules [85] and b) nanofibres/nanorods [105]. The presence of the polymeric 

stabiliser, in this case, PVAN, can stabilise phenazine interactions during aniline polymerisation, 

allowing the dispersion of PANI brushes, as shown in b), in contrast to what is observed when a) no 

polymeric stabiliser is used. 

 

 Poly(4-vinylaniline)  

PVAN is a primary amine surfactant and steric stabiliser with versatile synthesis, 

and chemical and environmental stability, that can be used to lower the interfacial 

tension of a diverse range of materials [106]. For that reason, it has been found 

applications in paints as stabilisers, but also as ionic conductive materials, photo 

induced electron transfer materials, organic semiconductors and fluorescent dyes 

[107].  

A variety of substrates have been successfully treated with PVAN to allow PANI 

functionalisation. Yuan et al [108] produced anti-corrosive coatings for stainless steel 

based on PVAN/PANI dual coating. Poly(tetrafluoroethylene) (PTFE) have been 

efficiently grafted with PANI by means of a PVAN primer coating layer before aniline 

polymerisation [109]. Fu et al [110] were able to produce electrically conductive 

 

 

                    

 

Poly(4-vinylaniline) – PVAN 

Polyaniline – PANI 

100nm 

a) b) 

a) 

b) 
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hallow spheres through grafting PVAN/PANI polymers on silica particles, which are 

later removed with UV light. In all these studies, it was demonstrated PANI was 

strongly tethered to the substrates attributed to the presence of PVAN interlayer. 

Furthermore, it was also revealed that higher yields of grafted PVAN improved the 

efficiency of PANI grafting, and increased conductivity. 

 

Chemical Structure 

PVAN, also called poly(4-aminostyrene), shares similar molecular structure 

with polystyrene but it possesses an extra secondary amine as pending moiety, as 

shown in Figure 2.15. It is formed by a long hydrocarbon chain to which phenylamine 

groups are alternately attached. PVAN has an amphiphilic nature, with hydrophobic 

and hydrophilic segments. The pending amine moiety is responsible for the 

hydrophilic character of PVAN and at the same time can serve as anchoring sites for 

PANI growth. Despite similar monomer structure, PVAN and PANI repeating units 

are significantly different.[86].  

 

 

Figure 2.15. Chemical structure of the repeating unit of PVAN that is the 4-vinylaniline (4-VAN) 

monomer. 

 

Synthesis 

PVAN is originated from a vinyl-type monomer and synthesised by monomer 

addition in a chain-growth polymerisation. The unsaturated C=C double bond of each 

monomer is broken to form a linear carbon chain (single C–C bonds). Monomers with 

unsaturated carbon bonds can be easily polymerisable with radical polymerisation, 

following chain initiation, propagation and termination.  
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Radicals are generated from the broken π-bonds of the vinyl group, which are 

transferred from the initiator molecules to the monomer units – initiation. The radical 

initiator containing the monomer unit attacks the π-bond of another monomer and 

converts it into a σ-bond in between. This releases an electron of the second carbon of 

the monomer and transforms the whole molecule into a radical ready to attack the next 

monomeric unit – chain propagation. Chain will continue to propagate with 

consecutive monomer addition until complete consumption of monomer or until 

termination occurs, which can be either by combination of two chain ends or radical 

deprotonation.[111]. 

 

Atom Transfer Radical Polymerisation (ATRP) 

The recent advances in controlled/living radical polymerisation and in particular 

ATRP, has prompted great progresses in the synthesis of polymeric surfactants in 

terms of flexibility, diversity and functionality. ATRP, and living polymerisations in 

general, is a chain-growth polymerisation mediated by a metal catalyst system that 

proceeds without chain transfer events and chain termination. It can be operated with 

a diverse array of monomers, typically vinyl monomers, such as styrene, vinyl alcohol, 

methyl methacrylate and inclusively, 4-vinyaniline.[112, 113]. ATRP reaction 

proceeds with radically (co)polymerisable monomers at the expenses of a dynamic 

equilibrium stablished between dormant (Pn-X) and activating species (Pn*), that are 

continuously activated and deactivated at constant rates kact and kdeact, respectively, 

according to the equation 2.1. During this process, a radical atom or group (X) is 

transferred from the ‘initiator’ to the transition metal complex of the lower oxidation 

state (Mtn/L) to form an active propagating polymer chain (Pn*) that can accept one or 

more monomers. Pn* species are then deactivated via reverse transfer of the atom or 

group to reform the dormant species (Pn-X) or to form new initiator species. But the 

concentration of the growing radicals Pn*, which propagate at a propagation constant 

rate kp, can be increased such that radical-radical termination may occur at a 

termination constant rate kt. However, the amount of radicals is normally sufficiently 

low to prevent this and hence, well-defined polymers with low polydispersities can be 

successfully obtained.[114]. 
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In ideal conditions, i.e. complete initiation with rapid activation and deactivation 

of the intervenient species, the average molecular weight of the final polymer can be 

easily adjusted by simply varying the feeding monomer-to-initiator ratio, while 

maintain narrow polydispersity (1.0 < Mw/Mn < 1.5). The control over the chemistry 

and the specificity of the reaction allow the synthesis of multiple end-functionalised, 

as well as block (co)polymers. Owing to these unique characteristics, ATRP can 

produce polymers with a vast range of different topologies (i.e., comb, star, dendritic, 

etc.), composition (i.e., random, periodic, graft, etc.), or and functional groups at 

various sites (i.e., end, centre, side, etc.) [see Figure 2.16].[115].  

 

 

Figure 2.16. Examples of possible molecular structures that can be synthesised with ATRP 

(Reproduced by permission from Mater Today, Elsevier,  Vol. 8, Issue 3, [114] Copyrights 2005). 

 

Grafted copolymers are produced to tailor the surface properties of a material 

while retaining its original shape. They are particular useful to change the 

hydrophobicity/hydrophilicity, the solubility in a specific solvent, to add 

(2.1) 
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bactericidal/fungicidal, anti-corrosive, biocompatibility, adhesion and adsorption 

properties, as well as to change the melting point. There are currently two different 

approaches to attach polymers onto solid surfaces by ATRP: ‘grafting-from’ and 

‘grafting-to’ (Figure 2.17). The ‘grafting from’ method consists of a macromolecule 

substrate onto its surface initiating sites are added to allow the subsequent growth of 

polymer chains. While in the ‘grafting-to’, a polymer chain with a reactive end-group 

is attached to the backbone of other polymer and thus, polymer chains have to diffuse 

to the surface.[113, 116]. The choice for one of the routes not only depends on the 

polymer that is intended to graft or be grafted, but also on the type of architecture 

desired. ‘Grafting to’ can be employed for the preparation of star molecules and 

loosely grafted copolymers, whereas for densely grafted surfaces and end-

functionalisation, ‘grafting from’ via surface-initiated ATRP (SI-ARTP) is often 

preferred since it is more efficient.[117]. 

 

 

Figure 2.17. Schematic illustration of the synthesis of grafted surfaces with ATRP following the 

‘grafting-from’ (left) and ‘grafting-to’ (right) approaches. In the ‘grafting-from’, an initiator is attached 

to the substrate from which polymer chains can grow. In the ‘grafting-to’, a pre-synthesised 

macromolecule containing a reactive end group is attached to the substrate that had its surface 

previously activated.[117]. 

 

The versatility of ATRP for producing graft copolymers can be extended to 

cellulose substrates. An appropriate initiator has to be immobilised onto the solid 

surface that can be accomplished either by chemical, radiation, photochemical, 

plasma-induced or enzymatic grafting techniques [118]. On cellulose substrates, the 

richness of hydroxyl groups makes the chemical means the easiest route for ‘grafting 

from’ by simply attaching R-bromoesters, which are exceptional initiators for ATRP. 

Some examples include 2-bromopropanitrile (BPN), α-bromoisotutyryl bromide 

(BiBB), ethyl 2-bromoisobutyrate (EBriB), ethyl 2-bromopropionate (EBriP) and 
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methyl 2-bromopropionate (MBriP). The structure of the initiator dictates the rate of 

activation, which ideally should be at least as fast as the propagation rate, so that low 

polydispersities and high initiation efficiency are obtained.[119]. 

 

 CARBON NANOTUBES 

CNTs have emerged rapidly as new nanostructured materials for uncountable 

industrial applications, especially for microelectronics/nanoelectronics, such as energy 

storage, conversion and optical devices, as well as transistors, owing to their 

outstanding electrical conductivity, optical properties, excellent chemical, 

electrochemical and thermal stability, high surface to area ratio within their small 

dimensions at nanoscale. Such characteristics have found particular usefulness in 

miniaturised devices in the biomedical field, as for example bioelectronic (neural) 

interfaces that requires nanosized materials for adequate signal transduction with 

elevated sensitivity, while possibly favouring tissue integration thanks to its softer 

texture when compared to metals.[120].  

 

 

Figure 2.18. SEM [121] and optical [122] images of CNTs powders. 

 

 Chemical Structure 

The carbon atom possesses 6 electrons – two core electrons with four valence 

electrons – that are distributed within three orbitals (1s, 2s and p) with electronic 
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configuration 1s2 2s2 2p2 in the ground state, as shown in Figure 2.19. Electronic 

orbitals 1s and 2s are spherical, whereas 2p orbitals show lobular shape perpendicular 

to each other according to the axis planes. When two or more carbon atoms are close 

to each other, one of the electrons in the 2s orbital can be pulled into the p orbital of 

higher energy and hybridisation occurs, resulting in sp2 orbitals belonging to the 

trigonal plane, i.e. the three orbitals lie on the same plane rotated by 120°.[123]. 

 

 

Figure 2.19. Electronic configuration of carbon atom at the ground state and the possible hybridisations, 

with the schematic illustration of their respective orbitals’ shape [124–126]. 

 

The carbon atom then bonds to other three carbons located in its vicinity to form 

a hexagonal lattice – graphene sheet –, via sp2 hybridisation with sigma (σ) and pi (π) 

bonds. The electron located in the pz orbital further forms a delocalised π-band 

structure with all other pz orbitals, and this is responsible for the electronic conduction 

in CNTs (Figure 2.20). 
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Figure 2.20. Schematic representation of sp2 hybridisation of the orbitals in carbon atom [127].  

 

Graphene sheets of sp2 bonded carbon atoms roll up to assemble CNTs with 

cylindrical shape, consisting of either a single sheet (single-walled carbon nanotubes, 

SWCNTs) of 0.4-2 nm diameter or multiple sheets (multi-walled carbon nanotubes, 

MWCNTs) of larger diameters, ranging between 2-100 nm and interspaced by 0.34 

nm. CNTs can have lengths from hundreds of nanometres up to several hundreds of 

millimetres.[128, 129].  

 

 

Figure 2.21. Molecular structure of a) a graphene sheet, b) SWCNTs and c) MWCNTs [130], and 

corresponding transmission electron microscopic (TEM) images on the top, showing the single (in 

SWCNTs) and the multiple walls (in MWCNTs) composing CNTs [131–133]. 

 

 Electrical Properties 

CNTs demonstrate different electrical properties according to their chirality, 

morphology, size and nanotube diameter. The atomic arrangement of the carbon atoms 

of a nanotube can be used to describe the electronic band structure of CNTs. The angle 
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at which the graphene sheets roll up, i.e. the alignment of the p orbitals, determines the 

chirality of CNTs and are described in terms of the chiral vector (n,m), where n and m 

are the (integer) numbers of hexagons traversed in the two unit-vector directions, a1 

and a2 of the graphene lattice, as shown in Figure 2.22a. 

In general, there are three possible atomic structural arrangements of CNTs 

based on the chirality, that are armchair, zigzag and chiral (Figure 2.22 b, c and d, 

respectively). SWCNTs can adopt metallic (n-m=3q, with q an integer or zero) or 

semiconducting properties (n-m≠3q), depending on its chirality. Interestingly, 

MWCNTs that are composed of several coaxial SWCNTs, show predominantly 

metallic electronic properties similar to the metallic conduction in SWCNTs.[134–

136]. Also, in MWCNTs, the current flows through the outer most nanotube, that most 

likely arises from multiple contributions of individual interactions between adjacent 

coaxial tubes (inter-tube coupling). The overall electronic characteristics of MWCNTs 

will depend on the metallic or semiconductive properties of the constituent carbon 

tubes, which can raise very complex situations in terms of electronic conduction. These 

peculiarities make MWCNTs with a much richer and versatile electronic band 

structure when compared to SWCNT. 

 

 

Figure 2.22. Molecular representation of the possible atomic configurations of CNTs. a) representation 

of the vectors corresponding to b) airmchair, c) zigzag, and d) chiral-based conformations [137]. 

 

MWCNTs can further exist in miscellaneous morphologies, such as hollow tube, 

herringbone and bamboo, as illustrated in Figure 2.23 [134]. The morphology of the 

 

 

a) b) c) d) 
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MWCNTs can be controlled by the preparation method, although ‘hollow tube’ is the 

most common and well-known, in which the axis of the graphene plane is parallel to 

the tube axis (Figure 2.21c and Figure 2.23a). In ‘herringbone’, graphene sheets form 

also a hollow tube but their planes are at angle with the tube axis, resulting in a cone 

shaped of graphene sheets; whereas in the ‘bamboo’ type morphology, multiple cones 

along the nanotube are stacked together periodically, forming compartments 

inside.[138].  

 

 

Figure 2.23. Examples of coexisting morphologies of MWCNTs: hallow tube, herringbone and bamboo 

(adapted from [138–140]). 

 

Despite the structural differences, both own 1D electrical characteristics 

responsible for the ballistic electronic conduction [130]. This allows CNTs to transport 

currents with very low electrical resistivity of about 10-8-10-7 Ω.m, i.e. conductivity up 

to 106-107 S.m-1, with negligible heating and scattering over long lengths. Also, the 

ballistic conduction of CNTs combined with a high surface aspect ratio of about 120-

500 m2.g-1, renders excellent specific capacitance that can range from 2 F.g-1 to 200 F. 

g-1.[77, 141]. 

 

 Synthesis 

There are currently several routes for preparing CNTs, but the most common are 

arc discharge, laser ablation and chemical vapor deposition (CVD) techniques (Figure 
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2.24). The product is obtained as a stable solid that can be either in the form of powders 

or films, showing relatively high yield rate of over 75% in all techniques.[142]. Table 

2.2 summarises the key characteristics of each technique, and the respective 

advantages and drawbacks. 

 

Figure 2.24. Common methods used for CNTs synthesis.  

 

Arc discharge and laser ablation employ high temperature and were used to 

synthesise CNTs in the early stages of its discovery, but currently, these techniques 

have been replaced by techniques that use lower temperature which comprise chemical 

vapor deposition (CVD) methods. The latter have gained considerable attention as both 

SWCNTs and MWCNTs can be obtained with high quality and quantity in a relatively 

simple process. CVD allow the preparation of CNTs with an accurate control over the 

nanotube length, diameter, alignment, purity, density, and orientation. 

Regardless the method used, purification of the obtained product is required and 

involves essentially the removal of large graphite particles and aggregations with 

filtration, dissolution of catalyst particles and fullerenes in appropriate solvents, as 

well as size separation and removal of amorphous carbon clusters through 

microfiltrations and chromatography. Depending on the desired requirements, 

additional processability can be performed with the dispersion of CNTs in colloidal 

suspensions with aids of ultrasounds and materials that can prevent aggregation, such 

as surfactants, polymers, or other colloidal particles.[142]. 
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Table 2.2. Principal technical characteristics of the typical methods used to produce CNTs, and 

respective advantages and disadvantages (adapted from [142–144]). 

 Characteristics Advantages Disadvantages 

Arc discharge 
✓ >1700 °C; 

✓ Helium 

atmosphere; 

✓ Low pressure; 

✓ DC arc 

discharge between 

two graphite 

electrodes.   

Simple, low 

cost, high-

quality 

nanotubes with 

low structural 

defects. 

High 

temperature, 

exhaustive 

purification, 

tangled 

nanotubes. 

Laser 

ablation 

✓ >1200 oC; 

✓ Argon 

atmosphere; 

✓ Low pressure;   

✓ Laser hits a 

graphite pellet 

reinforced with 

catalysts, such as 

Ni or Co, to 

vaporise carbon. 

Relatively high 

purity. 

High 

temperature, 

labscale limited, 

crude product 

obtained. 

Chemical 

vapour 

deposition 

✓ <800 °C; 

✓ Vacuum 

✓ Sub- to 

atmospheric 

pressure; 

✓ Dissociation 

and/or chemical 

reactions of 

gaseous reactants in 

an activated (heat, 

light, plasma) 

environment. 

Simple, low 

temperature, 

high purity, 

large-scale 

production, 

aligned 

structures 

possible. 

Synthesised 

CNTs are 

usually MWNTs, 

some defects. 
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 CARBON NANOTUBES-BASED COMPOSITES 

The chemical inert nature and product form of CNTs limit their use to most of 

the applications. For this reason, CNTs are often combined with other materials in 

order to improve their processability, practicability, or to include additional 

functionality, which will ultimately be determined by the necessary requisites. This 

can be done in different ways, either by coupling sidewall functional groups; doping 

and filling with atoms, molecules, nanoparticles and nanowires into the carbon 

structure, and blending with various nanoparticles and organic compounds.[138].   

CNTs can be efficiently blended with CPs for producing composite organic films 

aiming to enhance the electronic performance of several electronic devices. This has 

shown to be particularly relevant to modify some bioelectronic electrode devices as 

such a larger and softer contact interface can be provided and hence, the common 

limitations of the state-of-the-art electrodes can be addressed, amongst which can be 

highlighted low charge injection limits, mechanical mismatch and foreign body 

response.[145]. 

 

 Carbon Nanotubes/Polyaniline 

Despite the electrical excellency of CNTs, these can be further enhanced and/or 

complemented with other conductive materials. As-developed PANI/CNTs 

composites typically show transitional electrical, thermal and mechanical properties 

between those of pure PANI and CNTs, which can be controlled with the content ratio. 

However, it has been demonstrated that the individual electrochemical properties are 

exceeded upon their dual combination, raising new and unique pseudocapacitance 

behaviour with superior electrochemical stability. This is conjectured of resulting from 

the decreased electrochemical impedance and optimal intra- and interstructure porosity 

that promotes ion diffusion in the active sites of PANI.[146]. The unique interactions 

stablished between CNTs and aromatic amines of the planar PANI chain, can form a 

strong π-π conjugated system [147]. The possible bidirectional flow of charges 

between CNTs and the imine group of aniline, which is a good electron donor, forms 

a charge-transfer complex that culminates in π-stacking interactions. Moreover, prior 

modification of CNTs with carboxyl acids may have a dopant effect in PANI and thus, 
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an increase in the electrical conductivity of PANI/CNTs system may be 

expected.[147].  

 

 SUMMARY AND IMPLICATIONS 

Electrically functionalised BC-based nanocomposite membranes have 

successfully been synthesised with varied electrically conductive moieties. In 

particular, PANI and CNTs have shown to considerably enhance the electrical 

properties of pristine BC, with BC providing a substrate for the intractable powders of 

neat PANI and CNTs. The large PANI aggregates typically formed has prevented the 

optimisation of electrical properties, which are intrinsically related with the 

nanostructures formed during synthesis. Optimisation of the synthetic routes with the 

inclusion of surfactants during aniline polymerisation, such as PVAN, may promote 

highly organised 1D supramolecular PANI structures, that are expected to increase the 

electrical conductivity of PANI grafted onto BC. This PANI coating can be strongly 

tethered, in contrast to those found in bioelectronic devices. Further augmentation of 

the electrical properties can be achieved with CNTs-reinforcement, which has 

outstanding electrical properties with superior thermal stability and mechanical 

strength.  
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 Research Methodology 

This chapter describes the design and methodology adopted in this research to 

achieve the aims and objectives stated in section 1.6. It lists all materials (Section 3.1) 

and the methods (section 3.2) used to conduct this research project, with an outline of 

the procedure implemented for the development of the BC nanocomposites and their 

comprehensive characterisation (section 3.3). Sufficient details on the methods used 

were carefully discriminated to allow an understanding of the overall processes 

followed, so that this work can be reproducible by interested researchers in the field.  

 

 

Figure 3.1. Schematic diagram of the processes involved in the production and characterisation of 

pristine BC and BC nanocomposites accordingly described in Chapter 3. a) Synthetic procedure of BC 

membranes followed by their functionalisation, and b-d) corresponding characterisation methods used. 

  

The characterisation techniques and methods employed to assess the several 

features at various levels of the as-developed BC nanocomposites are also described, 
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including those to examine the surface and internal microstructures, chemical 

composition, dehydration modelling, viscoelastic properties, electrical conductivity 

and electrochemistry, thermogravimetry and ultimately, cytocompatibility (Figure 

3.1). Fundamental concepts on the synthetic methods, such as ATRP and COP, as well 

as those of some characterisation methods, are briefly reviewed for a reliable and 

accurate interpretation of the results accordingly presented and discussed in the 

following chapters (4 to 8). 

 

 MATERIALS 

 BC Nanocomposites Production 

Disodium hydrogen phosphate dodecahydrate, tryptone (OxoidTM – 

Thermofisher Scientific), yeast extract (OxoidTM – Thermofisher Scientific), citric 

acid, glucose, sodium hydroxide (sigma Aldrich), dimethylformamide (DMF, Sigma 

Aldrich), dry-dimethylformamide (dry-DMF, Fisher Scientific), triethylamine (TEA, 

Sigma Aldrich), 4-dimethylaminopyridine (DMAP, Sigma Aldrich), 2-

bromoisobutyryl bromide (BiBB, Sigma Aldrich), 4-vinylaniline (97%, 4-VAN, 

Sigma Aldrich), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMEDTA, Fisher 

Scientific), copper(II) chloride (CuCl2, Sigma Aldrich), ascorbic acid (ASCA, Fisher 

Scientific), aniline (ANI, Sigma Aldrich), hydrochloric acid (HCl), ammonium 

persulfate ((NH4)2S2O8, APS, Sigma Aldrich), 100 % ethanol (ETA, Sigma Aldrich), 

SWCNTs, sodium dodecylbenzenesulfonate (SDBS). All chemicals were used 

straightaway with no further purification. 

 

 Cell Viability 

Dulbecco's Modified Eagle's Medium  (DMEM, high glucose, no phenol red, 

GibcoTM, Life Technologies – Thermofisher Scientific), DMEM/Nutrient Mixture F-

12, supplemented with GlutaMAXTM (DMEM/F-12, GlutaMAX™ supplement, 

GibcoTM, Life Technologies – Thermofisher Scientific), fetal bovine serum (FBS, 

qualified, EU-approved, South America origin, GibcoTM, Life Technologies – 

Thermofisher Scientific), horse serum (HS, heat inactivated, New Zealand origin, 

GibcoTM, Life Technologies – Thermofisher Scientific), phosphate buffered solution 

(X1 PBS, Lonza), PBST (phosphate buffered saline tween-20), penicillin/streptomycin 
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(pen/strep 10,000 U.mL-1, Life Technologies – Thermofisher Scientific), Presto Blue® 

cell viability reagent (Life Technologies – Thermofisher Scientific), nerve growth 

factor 2.5S native mouse protein (NGF 2.5S, Invitrogen – Thermofisher Scientific), 

bovine serum albumin (BSA, Sigma Aldrich), neural cell culture supplement β-27 with 

and without retinoic acid (β-27 w/ and w/o RA, GibcoTM, Life Technologies – 

Thermofisher Scientific), β-mercaptoethanol (50 mM β-ME, GibcoTM, Invitrogen – 

Thermofisher Scientific), recombinant human fibroblast growth factor (rhßFGF 10 

μg.mL-1, ), recombinant human epidermal growth factor (rhEGF, Invitrogen, Life 

Technologies – Thermofisher Scientific), extracellular matrix gel (ECM Laminin 

Mouse Protein, Natural, GibcoTM – Thermofisher Scientific) paraformaldehyde (PF, 

Sigma Aldrich), gluteraldehyde (GA, Sigma Aldrich), 0.1% and 0.5 % Triton X-100 

(Invitrogen –  Thermofisher Scientific), normal donkey serum (NDS, Sigma Aldrich), 

4',6-diamidino-2-phenylindole (DAPI, Life Technologies– Thermofisher Scientific), 

Alexa Fluor™ 488 Phalloidin (Molecular Probes, Life Technologies – Thermofisher 

Scientific), calcein acetoxymethyl ester (calcein AM, (Invitrogen –  Thermofisher 

Scientific), propidium iodine (PI, Invitrogen – Molecular Probes, Life Technologies – 

Thermofisher Scientific), CellTrace™ CFSE Cell Proliferation Kit (Invitrogen – 

Thermofisher Scientific), anti-rabbit β-tubulin III (Invitrogen – Thermofisher 

Scientific), anti-mouse α-glial fibrillary acidic protein (α-GFAP, Thermofisher 

Scientific), donkey anti-mouse IgG (H+L) highly cross-absorbed secondary antibody, 

Alexa Fluor® 488 (DAM-488, Invitrogen – Thermofisher Scientific), donkey anti-

rabbit IgG (H+L) highly cross-absorbed secondary antibody, Alexa Fluor® 594 

(DAR-594, Invitrogen – Thermofisher Scientific). 

 

 PRODUCTION METHODS 

 Synthesis of BC Membranes 

BC membranes were produced from fermentation of Gluconacetobacter 

hansenii (ATCC® 53582TM) inoculated at 10% V/V, harvested in 6-well plates (3.5 

cm) and kept in a sterile environment under static conditions for 4 days at 30 ºC. The 

culture medium was prepared in pure water containing 6.8 g.L-1 disodium hydrogen 

phosphate dodecahydrate, 5 g.L-1 peptone, 5 g.L-1 yeast extract, 1.5 g.L-1 citric acid, 

20 g.L-1 glucose. The obtained BC membranes were soaked with pure water for 2-3 
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days, prior to boiling with 4 g.L-1 sodium hydroxide solution for 40 min to remove 

medium and any adsorbed bacteria. The full protocol on BC synthesis can be seen in 

the Appendix A. The as-prepared BC hydrogels 3.2±0.5 mm thick were dried in an 

oven under the ambient conditions for overnight at 60 oC. 

 

 

Figure 3.2. BC membranes produced from Gluconacetobacter hansenii cultured in 6-well plates. 

  

 Synthesis of BC/PVAN/PANI Nanocomposites  

BC coated with PANI was prepared with two consecutive polymerisation 

processes. First, BC membranes were covalently grafted with PVAN (BC-g-PVAN) 

by activators regenerated by electron transfer surface initiated-atom transfer radical 

polymerisation (ARGET SI-ATRP) following a ‘grafting-from’ approach. Then, BC-

g-PVAN membranes were further functionalised with conductive PANI through in situ 

chemical oxidative polymerisation (COP). 

 

Fundamentals of Activators Regenerated by Electron Transfer Surface-

Initiated Atom Transfer Radical Polymerisation 

Solid surfaces, like BC, can be modified with polymers with ATRP through a 

‘grafting-from’ approach, which consists on the pre-incorporation of an initiator to 

enable the growing of polymeric chains from the solid surface – surface initiated. BC 

substrate can be easily initiated with R-bromoesters (e.g. BiBB) from its hydroxyl 

groups in an esterification reaction. This preformed macromolecule with distributed 

initiating functionality (BC-BiBB), can then be subjected to ATRP of VAN for proper 

surface modification.[113]. 
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Figure 3.3. Schematic mechanism of the ‘grafting-from’ approach on BC substrate initiated with BiBB. 

 

As exemplified in Figure 3.4, ATRP is processed by establishing an equilibrium 

between propagating radicals and dormant chains, that is strongly shifted towards the 

dormant species. The transition metal complex (Mt
n/L) reacts with an alkyl halide 

(Pn−X) to generate active species or radicals (Pn
•) that propagate at a propagation rate 

kp. The Mt
n/L undergoes one-electron oxidation to n+1, with simultaneous transference 

of a (pseudo)halogen atom, X, from dormant species, Pn−X. These are reversibly 

formed at activation and deactivation constant rates (kact and kdeact, respectively). Thus, 

Pn
• can propagate with a vinyl monomer, M (VAN), be deactivated in the equilibrium 

by Mt
nX/L, or terminate by either coupling or disproportionation with another Pn

•.  

Reducing agents, like ascorbic acid (ASCA), can rapidly reduce deactivated species 

by electron transfer (ARGET). In the present study, the catalytic system used was Cu-

based, complexing ligand with PMDETA, which was continuously regenerated by 

ASCA.[148]. 

 

 

Figure 3.4. Mechanism of metal complex-mediated ARGET ATRP. 

 

 

 

 

BiBB 
BC BC-BiBB 

Solid surface 

Solid surface 

with initiating 

functionality 

Surface initiated 

 

 

Pn−X + [Mt
n/L]               Pn

• + [Mt
n+1/L]  

 

 

 

kp 

Monomer 

kt Biomolecular 
termination 

kact 

kdeact 

KATRP= kact/kdeact 

½ Pn−Pn  + X−Mt
n+1/L 

X−+Mt
n
 

Reducing agent (ascorbic acid) 

X 

Pn: polymer chain, PVAN 

X: pseudohalogen, Cl from CuCl2 

Mtn: transition metal, CuI 



  

Chapter 3: Research Methodology 66 

The polymerisation rate, Rp, equation 3.1 often follows a first-order kinetics, and 

thus, monomer conversion increases linearly with time in a semilogarithmic scale 

[115].  

 

Rp = kp[M][Pn
•] = kp[M]kATRP[Pn − X]

[CuI/PMDETA]

[CuIIX/PMDETA]
  

 

Rp = kp[VAN][PVAN•] = kp[VAN]kATRP[PVAN − Cl]
[CuI/PMDETA]

[CuIICl/PMDETA]
  

 

Fundamentals of Chemical Oxidative Polymerisation 

In COP of ANI, the reaction starts with the oxidation of ANI with aids of an 

oxidising agent (initiator) in acidic medium to form cation and cation radical sites with 

subsequent loss of two protons, leading to the formation of covalent bonds between 

monomer units (chain reaction) [85]. In this study, APS was used as oxidant for having 

a high oxidation potential (+2.1V) that is able to overcome the activation energy of 

chain propagation (+1.05 V in acidic medium), while HCl provides a reaction medium 

with very low pH to ensure sufficient protonation of ANI oxidation products. During 

the polymerisation, the hydrogen atoms abstracted from ANI monomer upon its 

oxidation are released as protons, and thus, the pH always lowers in the course of the 

reaction, in the form of sulphuric acid as a by-product (Figure 3.5).[149]. 

 

 

Figure 3.5. Oxidation of aniline monomer with APS [100]. 

 

From a mechanistic point of view (Figure 3.6), polymer chains grow by addition 

of ANI monomer (Anm) to the activated dormant polymer chain (Anm
*) with increased 

size and molecular mass (Anm+1) [100]. ANI is first oxidised to nitrenium cation (cation 

radical) with subsequent formation of the dimer p-aminodiphenylamine (PADPA), 

 

 

     + 5 𝑛(𝑁𝐻4)2𝑆2𝑂8 
 

                           + 3 𝑛 𝐻2𝑆𝑂4 + 5 𝑛(𝑁𝐻4)2𝑆𝑂4 

(3.1) 
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and/or benzidine and N,N-diphenylhydrazine, depending on the pH conditions – 

induction period. PADPA (growing chain) is then reduced with the concomitant 

oxidation of ANI in a redox process, which culminates with addition of a monomer to 

the chain end. The chain propagates via electrophilic substitution in a chain-reaction 

polymerisation (addition). Polymer chains will continue to grow in the protonated 

pernigraniline (PG) form, while the oxidation potentials of both growing chain and 

monomer have not been equilibrated. Termination takes place when either the 

monomer or the oxidant is fully consumed, or if the degrees of oxidation and/or the 

protonation of the chains are not high enough to ensure chain propagation, which 

happens when the emeraldine (EM) is formed.[85, 149].  

 

 

Figure 3.6. Mechanism of aniline polymerisation. I induction, II chain propagation and III chain 

termination [100]. 

 

The degree of oxidation of the final polymer is determined by the strength of the 

oxidant and by the oxidant-to-monomer ratio. The ANI polymerisation follows a first-

order kinetics with respect to monomer, according to the equation: 

 

−
d[ANI]

dt
= k1[ANI][OX] + k2σ[ANI][P] = k1[ANI][OX] + k2′[ANI][P],         (3.2) 

 

where [ANI] is the molar concentration of ANI, [OX] is the molar concentration of the 

oxidant that in this case is APS, P is the equivalent concentration of polymer, σ is the 
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surface factor (total available surfaces/[P]), k1 is the rate constant for the initial step 

and k2 is the rate constant for the chain propagation.[85]. 

 

Procedure 

BC-g-PVAN (or BC/PVAN) synthesis was completed in two steps with the 

‘grafting-from’ approach, starting with the creation sites on BC membranes to generate 

BC-initiator, which was followed subsequently of 4-VAN on BC-initiator membranes 

by ARGET ATRP. Thereafter, BC/PVAN were subjected to COP of aniline. Full 

details of the experimental procedure can be checked in Appendix B. 

 

2-Bromoisobutyryl Bromide Immobilisation onto BC 

Oven-dried BC membranes were subjected to solvent exchange from water to 

dry DMF by immersion into an excess amount of DMF (30-50 mL) for 2 days, which 

was replaced up to 3 times per day. Then, BC membranes were mixed with DMAP, 

dry-DMF (about 30 mL) and TEA under stirring, to which BiBB was added dropwise 

in an ice-bath. The feeding molar ratio used was BiBB:TEA:DMAP=1:2:2. The 

reaction was kept under inert atmosphere with protective argon gas and left at room 

temperature for 24 hours . The resultant BC-initiator (BCi) membranes were then 

soaked in DMF for 2 days as purification step, prior to PVAN grafting.  

 

 

Figure 3.7. Initialisation reaction of BC surface performed with BiBB kept under argon atmosphere. 
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Activators Regenerated by Electron Transfer Surface-Initiated Atom Transfer 

Radical Polymerisation of 4-Vinylaniline 

ATRP was carried out with dissolution of VAN monomer in DMF (about 30 

mL), together with CuCl2 and PMEDTA under argon atmosphere, before injecting 

ASCA dropwise. BCi membranes were later inserted to the reaction (Figure 3.8). 

ATRP was left running for 24 hours at room temperature, after which the grafted BC 

(referred to as BC-g-PVAN or BC/PVAN) was thoroughly washed with DMF and left 

in an excess amount of DMF overnight to ensure the removal of any physically 

adsorbed PVAN homopolymer. The molar ratio used for the reaction were 

CuCl2:PMDETA:ASCA:VAN=1:2:5:500 and two different VAN monomer ratios 

(BC:VAN=1:3 and 1:5) were used in this study.  

 

 

Figure 3.8. ATRP reaction of VAN after inserting ASCA conducted under argon atmosphere. 1, VAN, 

CuCl2, PMEDTA and ASCA dissolved in DMF. 2, BCi membranes in DMF. Solution 1 is being 

transferred to solution 2 through the double-tipped needle connecting both flasks. 

 

Chemical Oxidative Polymerisation of Aniline 

Conductive PANI layer was grafted on BC/PVAN composites (referred to as 

BC-g-PVAN-g-PANI or BC/PVAN/PANI) via COP of ANI on BC-g-PVAN. 

BC/PVAN was first dipped into a 10 mL aqueous solution of 1 M HCl containing 0.25 

M of APS. Then, 0.20 M of ANI was added dropwise to the reaction that was left for 

6 hours in an ice-bath (at 0-5 oC). These were designated as standard conditions. 

Purification of the ready-grafted BC/PVAN/PANI membranes was done with 

thorough washes with ETA and distilled water, and oven-dried overnight at 60 oC. The 

 

1 

2 
double-tipped needle 
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thickness of dried samples measured between 0.03-0.05 cm. Adjustments to ANI 

polymerisation parameters, including acid concentration (0.5 M, 1 M), molar ratio of 

oxidant to monomer (1:1, 1:1.25, 1:1.5), monomer concentration (0.2 M, 0.5 M, 0.7 

M) and polymerisation time (3 hours, 6 hours, 18 hours), were performed to investigate 

the effects of each individual parameter. BC/PANI membranes were also prepared 

from pre-oven dried BC membranes under standard COP conditions for comparison 

in terms of morphological and electrical characteristics of the nanocomposites. 

 

 

Figure 3.9. COP of aniline performed on BC/PVAN membranes conducted in an ice-bath (~0-5 oC). 

 

 Carbon Nanotubes-Reinforcement of BC/PVAN/PANI Nanocomposites 

Procedure 

CNTs were blended thereafter with BC/PVAN/PANI, achieved following a 

procedure described elsewhere [150] by repeatedly dipping the nanocomposites in a 

CNT suspension composed of 1.6 mg.mL-1 SWCNTs ink dispersed in 10 mg.mL-1 

SDBS surfactant with an ultrasonic bath. The samples were subsequently oven-dried 

at 120 °C for 10 min and immersed again in the suspension. This process was repeated 

for 4 times. The thickness of dried samples measured between 0.03-0.05 cm. 

 

 CHARACTERISATION METHODS 

 Surface Morphology  

The surface morphology of the un-modified and grafted BC membranes was 

analysed via scanning electron microscopy (SEM) and transmission electron 
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microscopy (TEM), for overall perception of the surface modification of BC 

nanofibres and closer inspection of PANI and CNTs coating at micro- and nanoscale. 

 

Scanning Electron Microscopy  

SEM uses a focused beam of high-energy electrons to build a high-resolution 

image of the material’s surface after appropriate signal processing methods 

(magnification ranging from 20X to approximately 30,000X, spatial resolution of 50 

to 100 nm). These electro-sample interactions enable the analysis of surface 

topographies, including external morphology (texture) and orientation of materials. 

Punctual analysis on the specimen’s surface of the semi-quantitative chemical 

compositions can be also performed with SEM coupled with energy dispersive X-ray 

spectroscopy (EDX).[151]. 

The samples were assembled on carbon tape and sputtered with 0.1 nm thick 

gold/palladium for 60 seconds with a rotatory-pumped coating system (Q150R S, 

Quorum Technologies, UK) prior to SEM and TEM observation (GeminiSEM, Zeiss). 

SEM-EDX elemental maps were recorded on the surface of BC nanocomposite 

membranes. The diameter of the fibres was calculated based on the average of 50 

fibres’ diameters using ImageJ software. 

 

High-Resolution Transmission Electron Microscopy 

In contrast to SEM that focuses on the sample’s surface from scattered electrons, 

TEM provides the details about internal composition from transmitted electrons and 

has a much higher resolution. Physical behaviour of many nanostructured materials 

can be perceived with HRTEM, as the atomic structure of interfaces and defects can 

be determined reliably and with very high positional accuracy. As such, it can provide 

very useful information of the surface coatings of BC, in particular PANI and CNTs. 

EDX analysis can be also coupled with TEM for insights on the chemical compositions 

of such nanostructured materials.[152]. 

To acquire spatially resolved microstructural and compositional information of 

the membranes, conventional and high-resolution TEM (C-/HR-TEM) were 

performed using a FEI (Field Electron) Tecnai F20 operating at 200 kV. The EDX 

elemental maps were acquired in the scanning TEM (STEM) mode, using long dwell 
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time to minimise beam drift during data collection. The TEM samples were attached 

to copper grids using a standard lift-out method on a FEI Nova SEM/FIB dual-beam 

microscope (FIB – Focused Ion Beam), fitted with a liquid Ga ion source and operating 

at 30 kV accelerating voltage (Figure 3.10). Ion-beam Pt was applied on site to 

minimise any ion milling artefact.  

 

 

 

Figure 3.10 . FIB/SEM images from different perspectives and magnifications illustrating the FIB lift-

out process used to extract a thin film TEM sample from the bulk membrane sample. 

 

 Chemical Composition 

The chemical composition of BC, BC/PVAN and BC/PVAN/PANI membranes, 

and PVAN and PANI powders was assessed by attenuated total reflectance Fourier 

transform infrared spectroscopy (ATR-FTIR), X-Ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS).  

 

10 µm 5 µm 

5 µm 5 µm 
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Fourier Transform Infrared Spectroscopy  

ATR-FTIR identifies chemical bounds established between atoms that compose 

a certain material detectable on the surface. It is a suitable tool for confirming the 

components of a chemical system by detecting its characteristic vibrations. ATR-FTIR 

was performed on dried BC, BC-BiBB, BC/PVAN and BC/PVAN/PANI membranes 

dried at 60 oC. The spectra were acquired in the 4000-600 cm-1 wavenumber range, 

using a Shimadzu FTIR-8400S spectrophotometer (USA) equipped or not with an 

Attenuated Reflectance attachment.  

 

X-Ray Diffraction 

A crystalline material causes a beam of X-rays to diffract into different and 

specified directions (Figure 3.11). With XRD technique, the angles and corresponding 

intensities of these diffracted beams produces an X-ray diffractogram that has 

information of electrons distribution within the structure. With this, the crystal unit 

cell of a crystalline compound can be determined, as well as their chemical bonds and 

their crystallographic disorder. In a crystalline compound intense and narrow peaks 

are produced.  According to Bragg’s law, wavelength (λ), crystal plane separation (d) 

and diffraction angle (θ, also called Bragg’s angle) are correlated as follows [153]: 

 

𝑛𝜆 = 2𝑑 sin 𝜃                                                     (3.3) 

 

with n the number of crystallographic planes. 

 

 

Figure 3.11. Schematic representation of the XRD in a crystalline structure, according Bragg’s law. 

Incident X-rays (S1 and S2) reach the parallel planes of ions d-spaced, that are reflected at an angle θ, 

the same as the incident angle. 
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The degree of crystallinity can be estimated from the relationship between the total 

area of crystalline peaks and the total area of all peaks in the XRD spectrum, as follows 

[154]:  

 

% 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 =  
𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 𝑝𝑒𝑎𝑘

𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑎𝑘𝑠
× 100%.                  (3.4) 

  

The crystallite size can be calculated with the information extracted from the 

diffractogram and Bragg angle (θ), using Scherrer equation [155]: 

 

𝜏 = −
𝐾𝜆

𝛽 cos 𝜃
                                                    (3.5) 

 

where τ is the mean size of the ordered (crystalline) domains (i.e. crystallite size), K is 

a dimensionless shape factor (close to unit), λ is the X-ray wavelength, β is the line 

broadening at half the maximum intensity (FWHM) (in radians) and θ is the Bragg 

angle. 

XRD was performed on BC and BC nanocomposites to ascertain about the 

crystallographic arrangement, as well as their chemical bonds. The diffractograms 

were acquired with a bench-top X-ray diffractometer (D2 PHASER, Bruker) using Cu 

radiation (30 kV, 10 mA, Kα radiation (λ = 1.542 Å) measured between 2θ of 0° and 

40° in steps of 0.02°. 

 

X-Ray Photoelectron Spectroscopy 

XPS is a spectroscopic technique that consists of irradiating a material with a 

beam of X-rays while measuring the kinetic energy and number of electrons that 

escape from the material under study up to 10 nm deep from the surface. XPS can 

measure the elemental composition empirical formula, chemical state and electronic 

state of the elements of a material.[156]. 

XPS was performed to assess the chemical compositions of BC, BC/PVAN, 

BC/PVAN/PANI and BC/PVAN/PANI/CNTs membrane samples using a 
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spectrometer from Thermo ScientificTM equipped with an Al K-AlphaTM source. 

Survey and selective high-resolution spectra were collected using 1 and 0.1 eV pass 

energy. Samples were mounted on double sided adhesive tape and the analyser 

chamber was degasified, keeping the pressure as low as 108 Torr. The data was 

collected on three different sites randomly chosen from a total covered area of 6 mm 

per 4.5 mm. Spectral analysis was carried out using the Thermo Scientific™ Avantage 

Data System for quantification and peak fitting. Quantification was based on peak 

areas calculated from the high-resolution spectra. All spectra shown were charge-

balanced with dual beam source (source gun A: X-Ray004 150 µm - FG ON (150 µm) 

and source gun B: shutdown (0 µm)).  

 

Degree of Substitution of 2-Bromoisobutyryl Bromide 

The degree of substitution (DS) of BiBB onto BC can be inferred from the 

content of the C1s associated to the ester bond (O-C=O) from the following equation 

[157]: 

 

DS =
−%C(O−C=O)×MAGU

%C(O−C=O)×Mgrafts−Mc
 ,                                      (3.6) 

 

where %C(O-C=O) is the atomic percentage of C1s of the ester group, MAGU is the 

mass of the anhydro-glucose unit (162 g.mol-1), Mgrafts is the mass of the graft moiety 

and MC is the mass of carbon.  

 

 Grafting Yield 

The grafting yield (GY) of PVAN and PANI on BC surface, defined as the 

relative amount of PVAN and PANI attached to the initialised BC (BC-BiBB), was 

estimated using the following equation [158], 

 

𝐺𝑌 =
𝑚𝑎𝑓𝑡𝑒𝑟−𝑚𝑏𝑒𝑓𝑜𝑟𝑒

𝑚𝑏𝑒𝑓𝑜𝑟𝑒
× 100%                                    (3.7) 
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where mafter is the mass of the composite and mbefore is the mass before the grafting. 

 

 Dehydration and Modelling of BC Membranes 

Five ready-made BC membranes per thickness (8±0.5 mm and 2±0.2 mm) and 

per size (8 and 5 mm diameter obtained using standard biopsy punches) were placed 

into plastic petri dishes (without lid) and kept in an incubator until complete 

dehydration (Sanyo MCO-18AIC CO2) at 37 oC and 5 % CO2. At different time points, 

the samples were weighted using a high precision scale electronic balance 

(Adventurer® Pro).  Before weighting for the first time, the excess of water on the 

surface of the ready-made samples was carefully removed by tapping onto paper 

towels. For weights in the following time points, the petri dishes were cover with lid 

to prevent further water evaporation. The term TxDy is used to designate the geometry 

of samples, i.e. membranes with thickness Tx (x=2 or 8 mm) and diameter Dy (y=5 or 

8 mm).  

In order to model the BC water loss via water evaporation, a simple model is 

proposed based on the hypothesis that the water in the system assumes one of the three 

following states: bound (B), free (F), or evaporated (E). Rate equations were used to 

describe the transitions between the three different states, as shown hereunder: 

 

𝐵 ⇄ 𝐹 → 𝐸                                                    (3.8)                                                  

 

where k1 is the rate coefficient for bound water becoming free, k2 the rate coefficient 

for free water becoming bound, and k3 the rate coefficient for free water evaporating. 

Considering that, from experimental observation, the process involved in the 

conversion of bound water to free water is reversible and that the conversion of free 

water to evaporated is irreversible (i.e. we assume there is no condensation of water 

from the atmosphere into the BC), differential equations may be written for calculating 

the amount of bound water and free water as a function of time (B(t) and F(t), 

respectively), following the thermodynamic laws.  

 

k1                  

k2 

k3 



  

Chapter 3: Research Methodology 77 

𝑑

𝑑𝑡
𝐵(𝑡) = 𝑘2𝐹(𝑡) − 𝑘1𝐵(𝑡)  and 

𝑑

𝑑𝑡
𝐹(𝑡) = −𝑘1𝐵(𝑡) + 𝑘2𝐹(𝑡) − 𝑘3𝐹(𝑡).         (3.9) 

 

It is then straightforward to solve these coupled linear differential equations; 

herein the Maple computer algebra package was used. The total mass of the system 

equals the sum of the individual masses of both bound and free water, along with that 

of the net mass of cellulose membrane. Considering that only 2 % of the total mass of 

BC is that of the cellulose, the total mass fraction is given by the sum: 

 

𝑀 = 𝐵 + 𝐹 + 0.02.                                                          (3.10) 

 

Origin®2015 software was used to determine the parameters k1, k2 and k3 

recurring to the damped least-squares. The difference between the observed and 

estimated value (Residuals or R) and the respective coefficient of determination (R-

squared or R2) of the best fitting obtained were calculated and discussed accordingly. 

 

 Viscoelastic Properties 

Oscillatory rheology was used to study the dynamic mechanical properties of 

hydrogels under shear, including the viscoelasticity of solid hydrogels. It characterises 

the amount of shear energy that is stored in entropic distortion of the network or lost 

due to relaxations during a specific timescale.  

The deformation energy that is stored in entropic distortions of the network is 

quantified by the storage modulus (G'), while the loss modulus (G'') quantifies the 

deformation energy that is dissipated due to relaxations that occur in the solicitation 

timescale (τexp), which can be expressed with the following equation: 

 

𝐺
∗ 

=  𝐺′
 
+  𝑖𝐺′′                                                 (3.11) 

Oscillatory strain sweeps (amplitude sweep mode) can detect variations in the 

storage and loss moduli with the magnitude of the oscillation (strain) at a constant 

frequency, whereas oscillatory frequency sweeps (frequency sweep mode) can detect 
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those variations with frequency of the oscillation at a constant magnitude strain located 

in the plateau region.[159].  

 

Procedure 

The viscoelastic properties of BC membranes with 100, 80 and 50% of initial 

water content, which corresponds to 98, 78.4 and 49 % of BC total weight respectively, 

were assessed with a parallel plate rheometer (Physica MCR, Anton Paar). Three BC 

membrane samples per each water content levels were cut into squares of 2.5x2.5 cm2 

and placed on the rheometer plate at 37 oC, to simulate the human body temperature. 

Based on the weight loss curves, the samples with 80 and 50% water content were 

obtained by placing fully swollen BC membranes in the incubator at 37 oC for the 

different time periods required to allow loss of 20% and 50% of their initial weight, 

respectively. Never-dried fully swollen membranes measured 2.3±0.4 mm of 

thickness. The tests were performed in amplitude and frequency sweep modes and G’ 

and G’’ moduli as function of strain (ε) and angular frequency (ω) were obtained. 

 

 Electrical Conductivity 

The sheet resistance (R) of 5 samples was measured on both sides of the 

membranes at three different sites with a Jandel four-point probe (Model HM20) at 

room temperature in dry state (Figure 3.12). As the thickness (t) of the samples was 

much smaller than the probe spacing (S) (t/S<<5), the electrical conductivity (S.cm-1) 

was derived from the reciprocal of the bulk resistivity (ρ) according to the following 

equation [160]:  

 

𝜎 =
1

𝜌
=

𝑙𝑛2

𝜋

1

𝑡𝑅
 .                                                      (3.12) 
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Figure 3.12. Jandel four-point probe set-up used to measure the sheet resistance of BC/PVAN/PANI 

membrane samples. 

 

 Electrochemical Analysis 

Electrochemistry is a powerful tool to study the electron transfer triggered by 

chemical reactions, which is often the result of simultaneous oxidation and reduction 

(redox) of two different elements. Owing to the redox properties of PANI that can 

easily switch between its three oxidation states, it is reasonable to have an insight on 

the electrochemical properties of the as-prepared BC/PVAN/PANI nanocomposites 

and to understand the contributions of BC substrate and PVAN coating layer. As such, 

cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were 

performed on pristine and nanocomposite BC membranes. 

 

Fundamentals of Cyclic Voltammetry 

CV allows a qualitative study of the reduction and oxidation processes of 

molecular species, which can give useful information about the reversibility of the 

reaction, possible formation of redox intermediates, electron stoichiometry of a 

system, the diffusion coefficient of a sample and the concentration of an unknown 

solution (through Nernstian system) [161].  

In a typical CV set-up, the potential of the material under study (working 

electrode) is measured against a reference electrode (e.g. Ag/AgCl) which has a known 

electrode potential and is kept constant upon an applied excitation signal (cyclic 

 

BC/PVAN/PANI 

membrane 
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voltage). The current is then measured at the working electrode, which is converted to 

voltage – voltammogram. The applied voltage induces an excitation signal that goes 

from a lower potential V1 to a greater potential V2, which is swept back to V1 at a fixed 

rate (cyclic) [Figure 3.13a]. 

 

 

Figure 3.13. Schematic representation of a cyclic voltammogram from a single charge-transfer process. 

a) Applied cyclic excitation signal and b) corresponding response (cyclic voltammogram), showing one 

oxidation/reduction paired-peak when the potential is swept between V1 and V2.  ip
a  and ip

c  are the anodic 

and cathodic peak currents, respectively, and Ep
a and Ep

c  are the corresponding peak potentials. 

 

At V2 potential, the surface of the analyte becomes sufficiently charged, either 

positively or negatively, and undergoes oxidation or reduction, respectively. The 

resulting response is exemplified in Figure 3.13b.  An electrolyte solution is commonly 

used to facilitate ions diffusion between the two electrodes. [162].  

 

Procedure 

CV was performed in solid-state on oven-dried BC membranes (pristine and 

nanocomposites) using a Galvanostat/Potentiostat (Eco Chemie microAutolab type 

III). The membranes (either BC/PVAN/PANI or BC/PVAN/PANI/CNTs) were 

previously dipped into a sulphuric acid solution (1 M H2SO4) prior to any 

measurement and placed between two pieces of fluorine doped tin oxide (FTO) glasses 

(1x2 cm2), acting as working and counter electrodes (two electrode mode), as shown 

in Figure 3.14. CV was recorded for different scan rates (50 and 100 mV). 
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Figure 3.14. Illustrative set-up used for electrochemical measurements with a potentiostat. A 

BC/PVAN/PANI membrane clamped between two pieces of FTO glasses (1 cm per 2 cm). 

 

Fundamentals of Electrochemical Impedance Spectroscopy 

The analysis of complex electrical systems is often performed with EIS, which 

can easily detect diverse surface phenomena, changes in bulk properties, corrosion 

mechanisms, charge transport across membranes and membrane/solution interfaces 

.[163]. The electrical resistance, as defined by means of Ohm’s law (R=V/I), states a 

linear relationship between an applied potential (V) and the measured current (I), 

considering an ideal resistor. However, most of the real systems do not follow Ohm’s 

law, showing much more complex behaviours. As such, the impedance, Z, is often 

used to describe the ability of a circuit to resist the flow of the electrical current, which 

is not limited to the simplified assumptions of Ohm’s law.[164].  

Z can be efficiently measured with EIS by applying an AC voltage to an 

electrochemical cell with the measure of the resulting AC current. A small sinusoidal 

perturbation ensures a pseudo-linear response (similar to Ohm’s law). The data is often 

represented in the complex space in Nyquist plots, which enables the characterisation 

of surfaces, layers or membranes, as well as exchange and diffusion processes. In 

Nyquist plots, low Zreal-values have information acquired at high frequencies, while 

high Zreal-values have information at low frequencies.  

Equivalent circuits are used to describe the experimental data and to understand 

the contributions of the individual components of the material under study.[165]. 

These electrical circuits consist of ohmic resistances, capacitances/constant phase 

elements, inductances, and Warburg elements, that can be arranged in parallel or in 

series.  

BC/PVAN/PANI 
membrane 

FTO glass 

Counter 
electrode 

Working 
electrode 
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The Randles circuit is used when an electrode is in contact with an electrolyte, 

which often serves as basis for building more complex circuits. This is consisted of a 

solution resistance, Rs, charge transfer resistance Rct, double layer capacitance Cdl, 

which can include or not a Warburg impedance, W (Figure 3.15b). The impedance 

representation of a Randles circuit is a semicircle in the complex space, due to limited 

range of frequencies during data acquisition (Figure 3.15a). Two or more of these 

circuits in series result in two or more semicircles, respectively. Warburg impedance 

accounts for a diffusional process, which can be seen as straight 45° line raising from 

the interception of the semicircle with the real axis at higher values (Figure 3.15a). 

However, its contribution is often omitted when the interfacial or bulk impedance is 

dominant.[164]. 

 

 

Figure 3.15. a) Example of Nyquist plot with a diffusion line obtained from the equivalent Randles 

circuit shown in b). Rs, Rct, Cdl an W stands for solution resistance, charge transfer resistance, double 

layer capacitance and Warburg impedance. 

 

Procedure 

Electrochemical properties of pristine BC and BC nanocomposite membranes 

were assessed through EIS in solid-state. The spectra were acquired using a 

Galvanostat/Potentiostat (Eco Chemie microAutolab type III). The data were recorded 

for 0 V of DC potential and on superimposition of a sinusoidal AC potential of 10 mV, 

over the frequency range of 9997 Hz to 0.1 Hz. All samples were placed between two 

pieces of fluorine doped tin oxide (FTO) glasses with size 1 cm per 2 cm, which acted 

as working and counter electrodes (two electrode mode) [Figure 3.14].   

Initial testing was performed on never-dried (100% water content) and partially 

dried (80% and 50% water content) BC membranes.  The samples used were roughly 

8±0.5 mm thick in their never-dried state with 8 mm of diameter (obtained using a 

 

Z’ (Ω) 

φ=45o 

Rs+Rct Rs 

Cdl 

ω→0 

ω→∞ 

a) b) 
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standard biopsy punch). For the oven-dried membranes, the spectra were recorded for 

pristine BC, BC/PVAN and BC/PVAN/PANI, that were previously soaked in 1 M 

sulphuric acid (H2SO4) solution used as electrolyte. EIS of BC/PVAN/PANI was 

further obtained with different applied DC bias of 0, 0.5, 1, 1.5, –0.5, –1 and –1.5 V. 

 

 Thermogravimetric Analysis 

Thermogravimetry (TG) is the study of the variations in the mass of a material 

when heated within a specific temperature range. TG is particularly useful for 

analysing the thermal stability of a material and can also draw conclusions on the 

reaction mechanisms of thermal (catalytic or non-catalytic) decomposition involved in 

the pyrolysis and combustion processes of different materials. It provides information 

on different matters, such as phase transitions, absorption and desorption, 

chemisorptions, thermal decomposition, and solid-gas reactions (e.g. oxidation or 

reduction).[166]. 

Thermogravimetric analysis (TGA) of the samples was evaluated within the 

temperature range 30-800 oC, using a thermogravimetric analyser (TGA, SDT Q600 

V20.9 Build 20, TA Instruments). TGA testing was performed under an inert 

atmosphere of nitrogen and in open alumina pans heated at 10 oC.min-1. From the TGA 

curve and its first derivative, the following parameters can be extrapolated: the onset 

(Tonset) and the offset (Toffset) temperatures, ascribed to the start and the end 

temperatures of a process, respectively. The peak temperature (Tpeak) can be also 

extrapolated and marks the point of greatest rate of change in the weight loss, 

commonly associated to the melting point of a material. Figure 3.16 shows a 

representative TGA curve and its first derivative, illustrating how the aforementioned 

parameters can be obtained from the graphic.[167]. 
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Figure 3.16. Illustrative TGA and 1st derivative TGA curves, showing the onset (Tonset), offset (Toffdset) 

and peak temperatures (Tpeak) extrapolated from the first derivative curve (adapted from [168]). 

 

 Cytocompatibility Assays 

To verify the cytocompatibility of the newly developed functionalised BC-based 

nanocomposites, PC-12 Adh cells and neural stem cells isolated from the 

subventricular zone (SVZ) of postnatal mice were incubated with the grafted BC 

membranes for 7 days, as such their responses were evaluated and compared with that 

of pristine BC and tissue culture treated plastic (TCTP), which was used as a control. 

Cell viability and differentiation tests were performed for both cell types, as 

schematically illustrated in Figure 3.17. 

 

 

 

Tpeak 
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1st TGA derivative 
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Figure 3.17. Schematic diagram of the cytocompatibility assays performed through cell cultures on 

pristine BC and BC-based nanocomposites with two neural cell models, PC-12 Adh and SVZ cells. 

 

Cytocompatibility with PC-12 Adh Cells 

Cell Culture 

PC-12 Adh cells (Rattus norvegicus adrenal gland, ATCC® CRL-1721.1™) were 

cultured for 7 days in proliferation medium consisted of DMEM medium 

supplemented with 15% HS, 10% FBS and 1% pen/strep, which was kept in a sterile 

environment at 37 oC and 5% CO2 atmosphere with medium replenished every 2 days. 

Cells were then passaged with a scrapper before being used for further analysis. See 

Appendix C for more details. 

 

Cell Viability with Presto Blue Assay 

PC-12 Adh cells were seeded on BC-based membranes and tissue culture treated 

plastic (TCTP) in 24-well plates at a density of 1×10-4 cells.cm-2 and kept in culture 

for 7 days in proliferation medium. To assess the viability of the cells, metabolic 

testing was performed using Presto Blue® reagent added at 10% V/V and incubated 

for 2 hours, before measuring the optical absorbance with a microplate reader 

(FLUOstar Omega, BMG LABTECH) at 570 nm and 600 nm, as described in the 

supplier’s protocol (see more details in Appendix C). The absorbance was measured 
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24 hours after seeding and every 2 days until the end of the culture period. The 

absorbance measured at 570 nm was normalised to that at 600 nm, and the 

contributions from the medium and Presto Blue (blank) were subtracted. The results 

were compared with that of TCTP, which served as cell control. Cells were fixed with 

2.5% GA for morphological observation with SEM. Pristine BC and BC 

nanocomposite membranes were soaked in proliferation medium 2 hours before 

seeding for improved cell adhesion.  

 

Cell Differentiation 

PC-12 Adh cells were induced to differentiate in the presence of NGF-

supplemented medium for 7 days. In summary, cells were harvested at 1×10-4 cells.cm-

2 in proliferation medium, which was exchanged in the following day (24 hours) by 

differentiation medium containing DMEM, 1% HS, 1% pen/strep and 100 ng.mL-1 of 

NGF. Differentiation medium was replenished every 2 days up to 7 days. In the end of 

the culture period, PC-12 Adh cells were fixed with 4% PFA solution (1 mL) and 

stained with DAPI and Alexa Fluor® 488 Phalloidin, as described in the supplier’s 

protocol (just the enough to cover the surface). Briefly, samples were first 

permeabilised with 0.1% Triton X-100 in PBS for 15 min and washed for at least two 

times with PBS. Then, fixed cells on the samples were incubated with 1% BSA in PBS 

solution for 30 min to prevent non-specific staining. Diluted Alexa Fluor® 488 

Phalloidin stock solution (5 µl per 200 µl of PBS) was added to each well, just enough 

to cover the surface. Cells were incubated at room temperature for 30 min and washed 

thoroughly with PBS for at least 3 times. As phalloidin conjugates stains F-actin, a 

protein present in cell processes, any cell projections, including those from neurons or 

glia, will be interchangeably stained as green. After that, 300 nM of diluted DAPI stock 

solution was added to each well (just enough to cover the surface) for 30 min at room 

temperature and then, washed with PBS for at least 3 times. Stained cells were 

protected from the light during the whole staining procedure. The samples were 

mounted in glass slides using mounting media before visualisation of the induced cells 

with fluorescence microscopy (Nikon, Eclipse Ti).  

 

Statistical and Data Analysis 
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Cell viability results performed with Presto Blue assay was represented in terms 

of average values (AV) of 3 samples and corresponding standard deviation (SD) of the 

normalised optical absorbance measured on all substrates (TCTP, BC, BC/PVAN, 

BC/PVAN/PANI and BC/PVAN/PANI/CNTs), for different set time points. 

According to supplier’s specifications, the metabolic activity as detected by resazurin 

conversion is nearly directly proportional to the number of the existing cells. It is then 

defined ‘cell adhesion’ as the number of cells that were present after 24 hours of 

harvesting, and ‘cell proliferation’ as the evolution in the cell number throughout the 

culture period.  

The differentiation degree of the induced PC-12 Adh cells was calculated based 

on the total number of cells that underwent differentiation on BC and BC 

nanocomposites seen in the fluorescence images, in relation to those on TCTP. It is 

understood by ‘differentiated cells’ as those cells that showed any signs of projections 

arising from the soma which were extended to further away. The average number of 

20 neurites (with corresponding SD) of the induced cells were measured with ImageJ 

software from each fluorescence image (for a total of 3 per sample) to determine the 

neurite length in the end of the culture period. The length of each neurite was 

considered to be the maximum distance of any cell body projection or to the end of the 

longest branch, in the case of branched neurites. 

Statistical significance (p<0.05) between the several substrates for each set time 

point and/or over the culture period on both assays was determined with two-sample 

t-test or one-way ANOVA, accordingly, using Origin®2015 software. 

 

 Cytocompatibility with SVZ Cells 

Cell Isolation and Culture 

Primary SVZ cells were isolated from subventricular zones of 1–5 days old 

postnatal BALB/c mice (P1-P5), following German local regulations for animal 

welfare. After appropriate cell purification and digestion procedures, cells were grown 

in proliferation medium consisting of DMEM/F12 GlutaMAX supplemented with 1% 

pen/strep, 1% BSA, 2% β-27 w/o RA, 2% β-ME, 0.2% rhßFGF and 0.1% rhEGF. The 

culture was kept in the incubator for 5 days at 37 oC and 5% CO2 atmosphere with 
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medium replenished every 2 days, followed by dissociation. See Appendix C for more 

details. 

 

Cell Viability with LIVE/DEAD Assay 

SVZ cells were further incubated with BC scaffolds at 1×104 cells per cm-2 and 

kept for 7 days in proliferation medium under the atmospheric conditions described 

above. Cell suspensions were collected at day 7 and live and dead assay was performed 

to verify cell cytotoxicity. The staining solution was prepared in PBS containing 1% 

calcein AM and 1% PI. 200 μl of dual fluorescence calcein AM/PI solution were added 

into each well and incubated for 20 min at 37 oC. Four images per well were taken 

using a fluorescence microscope (Olympus, IX71, Japan), which were used to 

calculate the average number of live and dead cells on each well. Live cells were 

stained green and dead cells were stained red. See Appendix C for more details. 

 

Cell Differentiation 

Neural differentiation of SVZ cells was assessed in vitro with BC 

nanocomposites and compared with those seeded on glass coverslip, used as cell 

differentiation control. 5×104 cells.cm-2 were harvested on substrates, that were 

previously steam sterilized at 120 oC for 30 min and coated with extracellular matrix 

gel (ECM, 1:200 in DMEM-F-12 medium) to facilitate cell adhesion. Differentiation 

was induced for 7 days in differentiation medium (DM), containing DMEM-F-12 

GlutaMAX medium supplemented with 1% pen/strep, 1% BSA, 2% β-27 with RA and 

2% β-ME. CellTrace™ CFSE staining was used for labelling SVZ cells, conform is 

described in the supplier’s protocol for cell tracking, and observed with fluorescence 

microscopy in green fluorescence mode throughout the culture period and at specific 

check point times (2 hours, 24 hours and 7 days). The induced cells were fixed at 4% 

PF and stained with DAPI, green and red fluorescence proteins (GFP and RFP, 

respectively) for observation of cell nuclei (blue), neurons (green) and glia (red), 

correspondently. Briefly, cell membranes were initially permeabilised with 0.5 % 

Triton X-100 for 10 min, followed by 1 hour of incubation with 1% NDS for blocking 

unspecific binding. The excess of NDS solution was removed with washes in PBST 

(once) and PBS (three times). Primary (1:200 anti-rabbit β-tubulin III for neurons + 

1:500 anti-mouse α-GFAP for glial cells) and secondary (1:1000 DAM-488 for β-
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tubulin III + 1:1000 DAR-594 for α-GFAP) antibody solutions were consecutively 

added thereafter and incubated for 1 hour each, followed by triple washes in PBS. 

Lastly, DAPI was added for 10 min and the residual amount removed with triple 

washes in pure water. All solutions were added with an amount just the enough to 

cover the surface. 

 

Statistical and Data Analysis 

Cell viability was calculated for each condition based on the average of 3 

replicates using the following equation:  

 

Cell viability (%) =
live cells

total number of cells
× 100%,                                (3.13) 

where the total number of cells correspond to the sum of live and dead cells.  

The differentiation degree of SVZ cells on BC nanocomposites and glass 

coverslip substrates was estimated with the ratio of the number of cells showing 

processes to the total number of cells displayed in immunostained images on the 7th 

day, using the average of three pictures. Neurite length over time (2 hours, 24 hours 

and 7 days) was quantified by measuring the length of 10 neurites from the average 

number of three CFSE labelled-cell images per replica and per condition, using ImageJ 

software. All results were expressed in terms of AV±SD and statistical significance 

between the different groups of substrates was hypothesised for p<0.05 using two-

sample t-test or one-way ANOVA, accordingly, using Origin®2015 software. 
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 Synthesis and Characterisation 

of BC Membranes 

The content of this chapter is included in the published scientific article “R. 

Rebelo A, Archer AJ, Chen X, Liu C, Yang G, Liu Y. Dehydration of bacterial 

cellulose and the water content effects on its viscoelastic and electrochemical 

properties. Sci Technol Adv Mater. Taylor & Francis; 2018 Dec 31; 19(1):203–11”. 

 

This chapter is dedicated to the preparation and characterisation of BC 

membranes that were used as a substrate for further modification and functionalisation 

(Chapters 5 to 7). Although extensively studied in the last few years, the properties of 

BC are far from being completely understood, in particular how the content of bounded 

and unbounded water would be reduced during the dehydration process and its 

corresponding effects on its viscoelastic and electrochemical properties. This chapter 

intends to elucidate some of these aspects to potentially optimise the electrochemical 

and viscoelastic properties of BC-based materials relying on the water content.  

Morphological, chemical and mechanical analysis was performed to assist this study, 

and a mathematical model was also proposed for analysis and eventual predication of 

the water loss of BC membranes at 37 oC, with a determined thickness and surface 

area (Figure 4.1). This analysis will be important for targeting specific applications, 

inclusively those out of the scope of this research. 
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Figure 4.1. Schematic diagram illustrating BC membranes subjected to dehydration at 37 oC, with water 

loss modelling aiming the prediction of the viscoelastic and electrochemical properties of BC 

membranes. 

 

 RESULTS 

 Morphological Characterisation 

Figure 4.2 shows a scheme of BC production with representative SEM images 

of a freeze-dried membrane with sides interfacing air or liquid, as well as the internal 

structure exemplified in a vertical cross section. A stratified structure could be 

observed with multiple nanofibrous layers. At the air interface, high conglomerate of 

nanofibres formed a dense and compact layer, while at the liquid interface, large pores 

were observed.  
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Figure 4.2. Diagram of BC production displaying SEM images of both surfaces of a freeze-dried 

membrane, interfacing air and liquid respectively, and a cross section [169].  

 

 Chemical characterisation 

Fourier infrared spectroscopy 

ATR-FTIR spectrum of BC is represented in Figure 4.3. The strong absorption 

band at 3600-3100 cm-1 was assigned to the stretching of -OH groups in BC. O-H 

bending was also observed at 1641 cm-1. CH stretching and symmetric bending of CH2 

was identified at 2887 cm-1 and 1425 cm-1, respectively. The peak at 1359 cm-1 could 

be attributed to CC and CO cellulose skeletal vibrations, while that at 1313 cm-1 

corresponded to stretching and bending modes of hydrocarbons. The absorption peaks 

at 1161 cm-1 and 893 cm-1 were ascribed to COC stretching of β-(1-4) linkages. 

Pronounced peaks at around 1105 cm-1 and 1026 cm-1 were attributed to vibrational 

modes of CO stretching groups.[170, 171]. 
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Figure 4.3. Representative ATR-FTIR spectrum of BC with indication of the corresponding vibrational 

modes of the functional groups [169].  

 

X-Ray Diffraction 

BC has a highly crystalline structure, as displayed in XRD spectrum of Figure 

4.4. Two diffraction peaks at 14.5o and 22.7o were identified and ascribed to various 

crystal plane of unit cell structure of Iα and Iβ crystal cellulose. The first diffraction 

peak is associated to 100Iα, 110Iβ and 010Iβ plans and the second, to 110Iα and 200Iβ 

[172]. According to the data obtained and using the Scherrer equation 3.4 and 3.5, BC 

crystallinity is as high as 90.5 % and with a crystallite size of approximately 50.4 nm, 

similar to what has been found in literature for microbial cellulose [173]. 
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Figure 4.4. Representative XRD pattern of BC.  

 

 Thermogravimetric Analysis 

The thermal stability of BC was inferred from TGA curve measured in the range 

of 25-800 oC, from which the first derivative curve could be obtained to estimate the 

onset (Tonset), offset (Toffset) and peak (Tpeak) temperatures (Figure 4.5). There are three 

weight loss stages which were marked by two main thermic transitions. The initial and 

tiny mass loss (of about 5 %) observed below 200 oC could be attributed to the 

evaporation of the remaining water confined within BC (see stage I in Figure 4.5). 

From about 325 oC to 375 oC (stage II in Figure 4.5), most of the BC was lost occurred, 

showing the highest degradation rate at 362 oC (Tpeak), corresponding to the 

temperature at which BC lost half of its weight (50%). This stage was associated to 

the main chain decomposition of crystalline and amorphous regions of BC into D-

glucopyranose monomer and free radicals (pyrolysis). The final degradation stage, 

from about 375 oC onwards (stage III), was attributed to the residual main chain 

decomposition with a final residual weight of 20 %.[174]. 
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Figure 4.5. Representative thermogravimetric curve of 5 BC samples (black) and corresponding first 

derivative (red) from which the onset (Tonset), offset (Toffset) and peak (Tpeak) temperatures were 

measured. Three main weight loss stages are identified: Stages I, II and III. 

 

 Viscoelastic Properties  

Figure 4.6 displays representative data of the viscoelastic properties of BC 

membranes (2.3±0.4) mm thick and with different water contents. The viscoelastic 

properties followed the same pattern for the varied water contents, with higher storage 

modulus magnitude than that of loss modulus over angular frequency and nearly all 

the strain range measured. It is also clear that all moduli became higher with lower 

water contents in BC membranes. 
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Figure 4.6. Representative curves of storage (G’) and loss (G”) moduli of BC membranes holding 100, 

80 and 50 % water, measured as a function of strain (left) and frequency (right). The red dots indicate 

the interceptions between G’ and G”.[169]. 

 

Over the applied strain, the storage and loss moduli remained reasonably 

constant up to 0.1 % and 1 % strain, respectively - Linear Viscoelastic Region -, and 

then they started decreasing gradually until the loss modulus G” intersected the storage 

modulus G’. With reduction of water content in BC membranes, both moduli were 

increased and the intersection between G’ and G” occurred at lower strain values. 

Establishing a steady-strain at the limit of the plateau region (1 %) led to a slight but 

almost insignificant increase in the moduli (storage and loss) could be measured in the 

frequency range of 1-100 rad.s-1. 

 

 Electrochemical Properties  

Figure 4.7 illustrates the Nyquist plots of BC membranes holding 100, 80 and 

50 % water content, evincing a semicircle shape that could be fitted into a Randles 

circuit as shown in Figure 4.7a. This circuit comprises a resistance, Rs (solution 

resistance), in series with other resistance, Rp (polarisation or charge-transfer 

resistance), which in turn is in parallel with a constant phase element (CPE). These 
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three parameters can be easily deduced from the Nyquist plots. Rs is obtained from the 

first intercept of the semicircle with the real axis at higher frequencies and is a measure 

of the electrolyte resistance. Rp is deduced by the second intercept of the semicircle 

with the X axis (Z’) at low frequencies that refers to Rs+Rp, which counts for the 

resistance of charge transfer between the electrode and the electrolyte. Finally, the CPE 

quantifies the ability of the material (BC) to store electrical charges (capacitance) and 

can be inferred from the maximum point of the semicircle. The closer the N factor is 

to the unit (N=1), the closer the element’s behaviour is from that of an ideal capacitor, 

which is the case under study. Table 4.1 summarises the corresponding information of 

the equivalent circuit elements Rs, Rp and CPE. 

 

 

 

Figure 4.7. a) Randles circuit used for fitting the experimental data. b) Representative Nyquist plots of 

BC membranes with 100% (never-dried membrane), 80 % and 50 % water content. The solid lines (−) 

represent the respective fittings.[169]. 
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Table 4.1. Average values of solution resistance Rs, polarisation resistance Rp, constant phase element 

CPE, and N values of Randles circuit used to fit the experimental data of 6 never-dried BC membranes 

per BC water content (100, 80 and 50 %) [169].  

BC water 

content 
Rs (kΩ) Rp (kΩ) CPE (µF) N 

100 % 3.34±0.64 15.9±0.8 6.24±0.49 ~1 

80 % 5.80±2.96 371±81 1.60±0.57 ~1 

50 % 3.86±1.30 1400±910 1.09±0.76 ~1 

 

 

By visual inspection of Rs, Rp and CPE values, obvious changes induced by the 

water content of BC could be observed. The capacitance, CPE, decreased almost 6 

times when BC membranes lost half of the water content, whereas Rp increased about 

one order of magnitude per 20-30 % of water loss from 15.9±0.8 kΩ up to 1.40±9.10 

MΩ. In the case of the solution resistance, Rs, the highest value was measured for 80 

% of water content (almost 6 kΩ), while for 100 % and 50 %, lower resistances were 

observed (below 4 kΩ). Overall, Rp seemed to be the most affected parameter by 

changes in membrane water content, having risen to around 1000 times when BC lost 

half of its water content, whereas Rs was the least affected and CPE revealed just a 

slight tendency to change.  

 

 Dehydration and Numerical Modelling of Wet BC Membranes  

Water evaporation of BC membranes with varied thickness and diameter were 

analysed after drying in the incubator. The water loss profiles over time and their 

respective predictions by the model equation system 2 are shown in Figure 4.8 in terms 

of weight percentage. For all samples, the final weight of the remaining materials after 

complete water loss was on average 2 % of BC initial weight, corresponding to dry 

cellulose fibres. All profiles displayed the same trend, decreasing over time with 

distinguishable three phases of water loss in each profile, namely, a slow but short 

beginning, followed by a fast and sustained water loss, and a very slow evaporation 

rate in the final step. This distribution was mostly observed in the 8 mm thick-samples, 

which generally required longer time for complete water loss comparing with the 2 

mm thick-samples, as expected. Likewise, increasing the diameter from 5 to 8 mm 
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caused slower water evaporation. For instances, the thickest membranes with 8 mm of 

diameter required roughly 11 hours for complete water evaporation, while those with 

2 mm of diameter required 9 hours. 

  

 

Figure 4.8. Experimental water loss (■) and respective modelling (⸺) of BC membranes 8 mm thick 

and 8 mm of diameter (T8D8), 8 mm thick and 5 mm of diameter (T8D5), 2 mm thick and 8 mm of 

diameter (T2D8) and 2 mm thick and 5 mm of diameter (T2D5). The water loss curves of each 

size/thickness correspond to an average of 5 samples and the error bars correspond to the respective 

standard deviations.[169]. 

 

The curve-fitted water loss was obtained by using Levenberg–Marquardt 

algorithm that determined the three parameters values of the system (k1, k2 and k3) that 

minimized the difference between the predicted and the experimentally observed total 

mass M(t) over time (Table 4.2). The initial proportions for bound and free water were 

considered based on that only 0.3 % of the 98 % of water in BC corresponds to free 

water and the remaining 97.7 % is bound water [175]. Thus, at t=0, B(0)=0.977 and 

F(0)=0.003. In general, the model allows for a very good fitting, with R-squared up to 

~1 (Table 4.2). The best fitting was observed for the largest membranes, with increased 

deviation from the model as samples were reduced in size (R2>0.93). Calculation of 
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the statistical residuals (Figure D.1 in Appendix) corroborated that, for T8D8 

membranes, the theoretical adjustment could be mathematically accepted, and for 

other samples dimensions, the model needed to be finely tuned. Nevertheless, notable 

conclusions can still be drawn. Table 4.2 gives the sets of parameter values and 

respective ratios, calculated by OriginLab software that best fits the experimental data, 

for each size of membranes.  

 

Table 4.2. Results obtained for the model expressed in equation 3.9 that gives the best agreement with 

the experimental data. Information related to surface area to volume ratio for each sample’s dimension. 

[169].   

 k1 (hours-1) k2 (hours-1) k3 (hours-1) R2 Surface 

area/Volume 

(SA/V) (mm-1) 

T8D8 0.56 11.8×10-8 0.55 1.00 0.6 

T8D5 0.68 1.0×10-8 0.68 0.99 0.9 

T2D8 0.70 65.6×10-8 0.70 0.95 1.0 

T2D5 1.02 20.5×10-8 1.02 0.93 1.3 

 

From Table 4.2, it is clear that k1 and k3 is much higher than k2. On average, the 

un-binding (k1) and evaporated constant rates (k3) are about the same regardless the 

size of the samples, that are meaningfully higher than the binding constant rate (k2). 

According to the model, a reduction in the diameter led to an increase of k1 and 

k3 of the thicker membranes in 22 % (T8D8→T8D5), and in 47 % (T2D8→T2D5) of 

the thinner ones. In contrast, k2 decreased in 1000 % and 221 %, respectively1. 

Decreasing the thickness of the membranes from 8 to 2 mm led to an increase of the 

constant rates. In particular, k1 and k3 increased by 25 % (T8D8→T2D8) and 50 % 

(T8D5→T2D5), while k2 increased in 82 % and 95 %, respectively2.  

                                                 

 
1 Percentages calculated based on the expression 

𝑘𝐷=5𝑚𝑚−𝑘𝐷=8𝑚𝑚

𝑘𝐷=5𝑚𝑚
× 100 % 

2 Percentages calculated based on the expression 
𝑘𝑇=2𝑚𝑚−𝑘𝑇=8𝑚𝑚

𝑘𝑇=8𝑚𝑚
× 100 % 
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Because k2 is very small and it is insignificant as compared to the rate constants 

k1 and k3, variations in k2 caused by changes in diameter and thickness of the samples, 

were not considered to be relevant. Overall, the parameters tended to decrease 

identically with both diameter and thickness, although thickness was apparently the 

factor that reflected bigger changes. In addition, k1 and k3 are proportional to the 

surface area to volume ratio (SA/V), which means higher SA/V ratios lead to higher 

un-binding and evaporation rates. 

Non-dimensionalising the model (equation 3.9) showed that the behaviour 

depends on the rate constant ratios (Table 4.2). It is worth to notice that setting other 

k1, k2 and k3 values can give similar fittings to the experiments herein presented, by 

keeping equal ratios to those shown.  

To study the effect of the parameters on the shape of the water loss curves, 

different k1, k2 and k3 from the optimal solution were tested and the water loss curves 

inspected using the Maple software. Increasing k2 resulted in a gradual slope, whilst 

higher k1 or k3 resulted in a steeper slope, and vice-versa (Figure 4.8).  

Decreasing k2 to zero did not change the overall trend in the graph preventing 

that k2/k1 and k3/k1 are below 1. However, when k2 increased by more than one order 

of magnitude the curve no longer fitted the experimental data for any other 

combination of k1 and k3. Moreover, only small fractional changes in k1 and k3 could 

lead to significant modifications in the fitting. 

 

 DISCUSSION 

BC has a very complex molecular structure that is bounded to water through 

hydrogen bonding. BC fibrils are formed by linear chains of successive glucan units 

linked through β-1,4 glycosidic bonds (Figure 4.9). Inter- and intra-molecular 

hydrogen bonds are established between glucan chains, which gives BC a rigid 

molecular structure but it is still mechanically flexible [176]. The understanding of the 

dynamic of the water loss process would allow further engineering of the BC hydration 

level to tailor various requirements on mechanical and electrochemical properties of 

BC membrane. Mathematically modelling the water loss can assist the process for 

reaching such requirements and can guide to a closer perception of the strong 

correlation between BC network and water. Accordingly, this information may be 
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useful for future manufacturing and optimisation of some biomedical applications 

including electrically conductive hydrogels and papers with different conductive range 

[73].  

 

 

Figure 4.9. Schematic of the molecular structure of BC and their bound and free water [169]. 

 

  Water Loss Effects on BC Morphology  

Under static conditions, BC membranes result in a complex stratified structure 

that is controlled by the air supply from the medium surface, while the yield is 

regulated by the carbon source [58]. It starts with the formation of a thin layer called 

pellicle. During the process, cellulose is synthesised downwards into the medium 

interface and multiple pellicles are linked through interfibrillar hydrogen bonds, 

forming opened-spaces in between [177]. However, SEM images of both top and 

bottom surfaces demonstrated structural differences according to the side of the 

membrane that interface air or medium (Figure 4.2). Similar results have been reported 

already and it was attributed to a lesser availability of oxygen as bacteria travel deeper 
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into the medium upon bacteria proliferation and cellulose secretion. Therefore, larger 

number of microorganisms are present at the air interface, creating a denser layer that 

forms an additional nutrient barrier.[177–179]. These structural differences contribute 

to the mechanical and electrochemical properties of BC, that will be discussed in the 

next sections. From the TGA analysis, the temperature at which the chemical 

decomposition of BC starts is as high as 323 oC (Tonset) and thus, the drying process at 

37 oC is not expected to affect its chemical and crystalline structure. However, 

morphological changes occur in BC membranes as the multiple layers pack together 

during the dehydration (Figure 4.10).  

 

 

Figure 4.10. Schematic representation of the effects of the water content on the morphological structure 

of BC membranes composed of multi-stacked layers with free and bound water in between (see also 

Figure 4.9). 

 

  Effect of Water Content in the Viscoelastic Properties 

Storage (G’) and loss (G”) moduli indicate the elastic and viscous responses of 

BC membranes under compression and shear, allowing for prediction of its mechanical 

behaviours when used as biomaterials. Experimentally, G’ modulus quantifies the 

material’s ability to store energy elastically in entropic distortions of the fibril network 

of BC membranes; whilst G” modulus quantifies the energy that is dissipated.  

Depending on the strain and frequency, response of components of BC network, 

including free and bounded water and BC fibril interaction to shear stress at the 

interface [180], can be detected via oscillatory rheology. The water content in BC does 

not dramatically alter the shape of the profiles of both amplitude and frequency sweeps 

representative of G’ and G”. The elastic component dominates in the lower strain 

range, depending on the water content, which leads to the conclusion that BC behaves 

more like an elastic solid than a viscous liquid at lower strain level. Ideally, a plateau 
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region or Linear Viscoelastic region (LVR) should be observed below 1 % strain, 

where the amount of energy (G’) stored and damped (G”) would be nearly steady and 

independent on the applied strain.  

The LVR of BC could be considered up to 1 % strain at which the structure is 

barely affected and can be fully recovered elastically from the deformation imposed. 

Thus, 1 % strain would be the maximum deformation for reversible structure damage 

of the fibril network. Stored and lost energies decreased gradually after the plateau 

region, which could be due to junction disruptions, that partially and irreversibly 

damaged to the network. However, BC still responded mechanically more like an 

elastic material (G’>G”). Moreover, the storage and loss moduli got closer with 

increased strain, which also evinced some loss of the mechanical stability over strain 

and increased viscous behaviour.  

Much of the inherent network properties can be scrutinised during frequency 

sweep at a given small oscillatory strain close to the plateau region observed in the 

Amplitude Sweep mode (1 % strain) because at this level, membranes store energy 

elastically between two network points as entropic springs (polymeric segments or 

strands). This allows a better understanding of the mechanical behaviour of BC with 

shear deformation. As expected in the LVR, BC fibril in the network structure showed 

a solid-like response (G’>G”) practically independent on the frequency, as evidenced 

by that storage and loss moduli reasonably constant throughout the frequency range 

measured and below the critical strain [181]. The tiny frequency hardening observed 

could be ascribed to some water loss during testing, although the possibility of 

frequency dependency could not be totally excluded, in particularly considering the 

power law dependence of storage modulus 𝐺′(𝑤)~𝑤0.068 reported by Clasen C 

et.al.[182]. 

When BC was partially dehydrated, fibres aggregated together as result of the 

evaporation process, leading to some loss of elasticity (or increased rigidity) of more 

compact and cohesive membranes [182]. This slight mechanical property shift could 

be witnessed at a first glance in an increase in storage and loss moduli in both sweep 

modes; but also in a decrease in ‘gel breaking strain’ and in G’/G” ratio in the LVR of 

the frequency sweep (G’100%/G”100%≈2.69; G’80%/G”80%≈2.51; G’50%/G”50%≈2.00). 

Though BC membranes behaved always more like a viscoelastic solid (G’/G”>1), the 

lesser the water content the closer the properties are to those of a pure solid, and vice-
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versa, which is consistent with the increased stiffness. The storage modulus can be 

expressed in terms of the density of the polymeric segments:  

 

𝐺𝑝
0 =

𝑛

𝑉
𝐾𝐵𝑇,                                                             (4.1) 

where n is the absolute number of segments in the total volume V, 𝐾𝐵 is the Boltzman 

constant and 𝑇 is the temperature [182]. In the LVR, with either water loss or swelling, 

it is anticipated no structural change in the network occurs and the number of segments 

n should not be affected, but the volume V would be altered. Consequently, according 

to equation 4.1, BC network with less water content and lower total volume would 

have an increase of the storage modulus. Lowering the water content below 50 %, it 

would lead to a dramatic loss of the rheological behaviour with a boost of the storage 

modulus.  

 

 Effect of Water Content in the Electrochemical Properties 

EIS is a very useful tool that allows the characterisation of the electrical 

properties driven by chemical reactions in non-linear systems, i.e. in systems that do 

not follow the Ohm’s law (R=V/I). In EIS, the impedance, Z, is used to describe the 

‘resistance’ of the material instead. Studying the electrochemical properties of BC via 

EIS might be useful for understanding its contribution to the overall electrical 

properties of electrically conductive BC composites and the water content effects. The 

observed conductive properties extracted from EIS were probably originated from 

multiple current paths, including cellulose itself, although the protonic conductivity on 

hydrated surface of BC was most likely the major contributing source, due to the 

formation of protonic carrier by hydration of the surface of BC nanofibril [183]. 

Further, it is known that hydrogen bonding, as that present in BC, is a common feature 

of the majority proton conductors, as such interaction provides a proton transfer path, 

while also acting as a limiting step of the overall protonic conductivity [184]. 

The Randles equivalent circuit used to fit the experimental data showed a 

reasonable fitting. According to its definition (see Figure 4.7a), Rs is related to the bulk 

resistance of the system, which accounts for the resistance of the solution or electrolyte 

inside the material, the material between the electrodes and between the counter- and 

working-electrodes [185]. In this study, Rs is the part contributed from the water 
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resistance and the BC network, and remains the same regardless the water content as 

we observed here. The slight fluctuations observed in the average Rs values could be 

ascribed to the change of the conformation of the BC network with the dehydration. 

To a lesser extent, the resistance resulted from the contacts of the working-electrode 

and counter-electrode may also account for Rs.[73]. In this study, it was also observed 

that increased Rp with reduced water content in BC, which might be related with the 

correspondent lower amount of proton carriers in BC molecular structure, as well as 

decreased porosity and pore size of BC network after the dehydration (𝑅 ∝

1 𝑆𝐴𝐵𝐶 𝑓𝑖𝑏𝑟𝑖𝑙𝑠⁄  [186]). Hence, the increased resistivity would be expected with Rp 

representing an indirect measurement of the network resistance. Considering that CPE 

was reduced after the dehydration process, it can be concluded that water contributed 

to the higher capacitance of BC. BC is formed by multiple stratified layers in which 

each set of two can be seen as a double layer capacitor with water within it as 

electrolyte. Eventually, a decrease of the protonic carrier and the distance between 

those stratified layers followed partial water loss might also contributed to lowering 

its capacitance (𝐶 ∝ 𝐴𝑟𝑒𝑎 [187]). 

 

  Understanding the Water Loss Process  

The mathematical model for analysing the water loss profile within BC carried 

out at 37 oC matched reasonably well whole experimental data. The interdependency 

of k1, k2 and k3 suggests that it is the balance of the different processes that determines 

the water loss in the same time frame. The drying process can be considered as a two-

step reaction, in which a series of chemical and physical processes take place 

concurrently. Water evaporation from surfaces, like in an open tank, is a physical 

process that depends on the temperature, humidity, and velocity of the air above the 

water surface. In our model, this process is easily described by the evaporated constant 

rate, k3, which accounts for water that is lost from BC membranes per unit of time. But 

the un-binding constant rate, k1, accounts also for the fact that there is a certain amount 

of water per unit of time that becomes free within the structure, due to the breaking of 

hydrogen bonds between cellulose and water; while the binding constant rate k2, 

accounts for water per unit of time that re-establishes those hydrogen bonds. Therefore, 

k1 and k3 are the constant rates that contribute to speed up water evaporation, whereas 

k2 is responsible for slowing it down.  
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Hence, based on the model herein proposed, the following mechanism 

underlining water evaporation from BC can be adopted, which involves both the water 

that is bound to the cellulose molecule via hydrogen bounds, and the water freely 

circulating within the network (Figure 4.9). When the temperature is raised up to 37 

oC, the constant rates of the system change according to Arrhenius equation (k = Ae-
Ea
RT 

), causing changes in the chemical equilibrium. ‘The first’ water molecules which 

evaporate are the free ones located on the surface of the membrane. At the same time, 

as consequence of heat transfer, hydrogen bonds between water and BC start breaking, 

freeing water molecules. As free water travels within BC towards its surface, the 

amount of water that evaporates increases. The binding constant rate is very low but 

may not be zero due to possible air saturation which may lead to re-conversion of yet 

to be evaporated free water (remaining in the BC) into bound water. Furthermore, 

SA/V ratio of thicker membranes (0.6 and 0.9 mm-1) is inferior compared to that of 

thinner ones (1.0 and 1.3 mm-1). Hence, higher evaporation rates (K) are for samples 

with higher SA/V ratios and lower, for lower SA/V ratios. Although a simple model 

was presented, it is believed this model could be further improved to include other 

factors influencing the evaporation-drying process of BC membranes, such as the 

morphological heterogeneity of BC fibril network and its swelling capacity, 

considering for instances the evaporation through multiple layers.  

 

 CONCLUSION 

Water comprises about 98 % of the BC structure, and slight changes to its content 

can lead to significant modifications in the overall properties. Along with the structural 

changes, the water content was shown not only to be responsible for BC’s viscoelastic 

characteristics, but also for the electrochemical behaviour found, while retaining the 

molecular and crystalline structure. Lower water contents like 80 and 50 % caused 

increased stiffness, while BC resistance to electron transfer became higher and with 

lower electron capacity. Therefore, BC mechanical and electrochemical properties 

could be tailored to different biomedical applications by simply varying the water 

content that may be controlled with the proposed model for the drying process of BC.  
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 Development and 

Characterisation of 

BC/PVAN/PANI 

Nanocomposites 

The content of this chapter is partially included in the published scientific article 

“Rebelo A, Liu Y, Liu C, Schäfer K-H, Saumer M, Yang G. Poly(4-

vinylaniline)/polyaniline bilayer functionalized bacterial cellulose membranes as 

bioelectronics interfaces. Carbohydr Polym. Elsevier; 2019 Jan 15; 204:190–201”. 

 

This chapter is concerned with the production and overall characterisation of BC 

nanocomposite. On this wise, BC/PVAN/PANI nanocomposites membranes were 

produced in a three-step reaction. Oven-dried BC membranes were first modified with 

PVAN via ATRP for subsequent COP of aniline (Figure 5.1). This PVAN/PANI 

bilayer is electrically conductive and strongly tethered to BC. The presence of PVAN 

adds extra initiating sites within the BC/PANI interface, which is expected to increase 

the grafting PANI yield and to promote better PANI distribution on BC fibres with 

easier doping access. This can lead to an enhancement of the overall electrical 

properties, that will be discussed later in Chapter 6. The morphological, chemical and 

thermogravimetric analysis were performed and disclosed here to assess carefully the 

changes caused to the BC nanocomposites in the presence of PVAN. The results found 

in this study suggests prospective developments in cellulosic-based bioelectronic 

devices.  
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Figure 5.1. Schematic synthesis of BC/PVAN/PANI nanocomposite membranes at a) macroscopic, b) 

microscopic and c) molecular levels. Step 1: Initiator (BiBB) immobilisation onto BC. Step 2: SI-ATRP 

of 4-VAN onto BC. Step 3: COP of aniline on BC/PVAN in the presence of HCl as doping agent, to 

form BC/PVAN/PANI. (Reproduced by permission from Carbohydr Polym, Elsevier, [188] copyright 

2019). 

 

 RESULTS 

 Morphological Characterisation and Surface Composition 

As schematically shown in Figure 5.1, synthesis of BC/PVAN/PANI 

nanocomposite membranes has been achieved through the BC grafting chemical 

processes. The SEM and HRTEM morphology of these as-prepared nanocomposites 

(Figure 5.2) indicates that PANI functional coatings can cause immediate changes of 

texture and roughness to the original BC substrate as it has been observed elsewhere. 

Accordingly, the type of PANI supramolecular structures (Figure 5.2d-f) is closely 

correlated with the polymerisation conditions and the adopted synthetic procedure. 

Under highly acidic media with strong oxidants, PANI usually exhibits a granular 

morphology as observed in both BC/PANI and BC/PVAN/PANI membranes with 

BiBB:VAN=1:3 monomer content (Figure 5.2d,e), which has been reported for 

BC/PANI grafted membranes, as also present in Figure 5.2d.[189]. This is regarded as 

the result of random aggregation of high concentrations of aniline nucleates, which 

were produced during the short induction period [88]. These hydrophobic nucleates 
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are continuously formed and agglomerate together while PANI chains grow. Under 

magnetic stirring, heterogeneous nucleation takes place and new initiating sites appear 

on the surface of preformed particles, leading to a granular morphology [190]. 

However, it has been found in the present study that a lower ratio BiBB to VAN can 

cause the formation of both granules and nanofibers, providing also a more uniform 

PANI coverage on the BC nanofibres (Figure 5.2f).  

 

 

Figure 5.2. Representative SEM images and respective magnifications of a) un-modified BC 

nanofibrous membrane, showing nanofibres with smooth surface, b-c) chemically modified BC 

membrane with its nanofibrils grafted with PVAN (BC/PVAN). BC nanofibres membrane treated with 

d) PANI (BC/PANI) and e-f) with PVAN/PANI coating bilayer in two consecutive grafting procedures 

with PVAN and PANI (BC/PVAN/PANI), illustrating an increase in the roughness of the BC nanofibrils 

surface in contrast to pristine BC and BC/PVAN nanocomposite membranes. b,e) and c,f) BC 

nanocomposite membranes were produced from molar BiBB:VAN ratios of 1:3 and 1:5, respectively. 

g-h) FIB/SEM images of the FIB lift-out process used to extract a thin film TEM sample from the bulk 

BC/PVAN/PANI (BiBB:VAN=1:5) membrane, showing the thickness of the upper PVAN/PANI layer 

of ~2 µm. Corresponding HRTEM images of the selected area in g,h) of i) BC matrix and j) of the 

PVAN/PANI bilayer. The red arrows in j) indicate pores of BC substrate (Reproduced by permission 

from Carbohydr Polym, Elsevier, [188] copyright 2019). 
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PVAN on BC in such instance acts as a soft template that can induce preferential 

PANI growth, while stabilising interactions between phenazine-containing structures 

probably owing to its surfactant properties (i.e. primary amine surfactant) [191]. Under 

such conditions, homogeneous nucleation may take place with the suppression of 

secondary nucleates, which has been observed as a  key factor for synthesis of this type 

of supramolecular structure [192]. Denser PVAN brushes implies more initiating sites 

for nucleation that may induce the continuous growth of PANI nanofibers in their 

vicinity [193]. Thus, different supramolecular PANI structures can be obtained subject 

to different PVAN grafting degrees.  

The diameter of the fibres of BC before and after modification was also 

measured for BiBB:VAN=1:5 feeding ratio, accordingly displayed in Figure 5.3, with 

the respective histograms and cumulative frequencies (─). BC provides a nanofibrillar 

base structure suitable for subsequent chemical modification [194], with 

approximately 90 % of the fibres measuring below 40 nm in diameter (Figure 5.3a).  

 

 

Figure 5.3. Histogram of the diameter (relative frequency) of the fibres of a) BC, b) BC/PVAN, and c) 

BC/PVAN/PANI membranes, showing the respective cumulative frequencies (solid line –). 
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After surface functionalisation with PVAN, the diameters of almost 90 % of the 

fibres increased up to 80 nm (Figure 5.3b). The heterogeneity of frequency of 

diameters measuring 50-60, 60-70 and 70-80 nm, might be related with fusion of some 

fibres. It has been found both pristine BC and BC/PVAN consist of smooth nanofibres, 

which entails a uniform PVAN coating successfully deposited, as shown in Figure 

5.2b,c. After aniline polymerisation, however, an uneven surface is adopted, as just 

concluded, with diameters up to 600 nm and a nanorod-like arrangement spread all 

over the BC networks.  

The microstructural analysis cross micro- to nanoscale of PVAN/PANI 

functionalised BC was further examined in detail with FIB/SEM (Figure 5.2g,h), 

which has yield the high resolution TEM (HRTEM) images in the regions of 

PVAN/PANI coating and BC matrix (Figure 5.2i,j). As clearly shown, the porous BC 

substrate (Figure 5.2h,j) was covered with a uniform and homogenous PVAN/PANI 

coating of ca. 2 µm thick (Figure 5.2h,j). Further examination of microstructural 

characteristics of the PVAN/PANI bilayer (Figure 5.2i), confirms the formation of an 

intact coating well-adhered to BC substrate with no signs of visible defects. However, 

as expected the pores still remained in the substrate of BC network, with variable pore 

size of up to few hundred of nanometres, as seen in Figure 5.2j.[195]. This can 

potentially result in some remarkable properties, for instance, high mechanical 

strength, and biocompatibility, as well as high water holding capacity that can 

accommodate ionic solutions for improved conductivity [196]. The slightly higher 

density of interconnected pores compared to never-dried pristine BC is likely 

attributed to the deposition of PVAN/PANI inside of the oven-dried BC structure, thus 

densified the BC matrix. 

The TEM X-ray elemental mapping at the interface between PVAN/PANI and 

BC substrate (Figure 5.4a) showed a N-enriched coating on the nanocomposite surface 

(Figure 5.4e). The general elevation of N concentration in the surface region implies 

the presence of the PVAN/PANI coating bilayer, that are nitrogen-containing 

compounds, as schematically shown in Figure 5.1c. It is however difficult to 

distinguish the PVAN/PANI interfaces because PANI is cross-linked with PVAN 

through -NH- bonds, resulting in a homogenous and gradual N change at the interface. 

Carbon (C) and oxygen (O) are also uniformly distributed across the section in the 

selected area. Br is also present which indicated the successful impregnation of the 
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initiator associated to PVAN synthesis. Residual amounts of Cl─ from HCl were 

detected mainly on the surface, which confirmed the existence of PANI in that region.  

 

 

Figure 5.4. a) STEM image showing the microstructure of PVAN/PANI-grafted BC at a cross sectional 

view, as illustrated in Figure 5.2g-h. b-f) corresponding EDX maps of the selected area in a) 

(Reproduced by permission from Carbohydr Polym, Elsevier, [188] copyright 2019). 

 

Different at. %N composition is present in the different regions of 

BC/PVAN/PANI membranes (Figure 5.5). Larger amounts were detected (6.6±0.2 %) 

on the very surface (high Y-values) of the selected area (spectrum of Figure 5.5b) with 

decreased content (to 3.5±0.2 %, Figure 5.5c, and to nil, Figure 5.5d) as we go deeper 

in the layer (low Y-values) to 3.5±0.2 %. The spectrum of Figure 5.5d confirms that 

region corresponds to BC, as no N was measured. On the other hand, Br was mostly 

detected deeper in the membrane (lower Y-values) rather than on the surface (higher 

Y-values), which is coherent with the initial BC modification (BC-BiBB). 
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Figure 5.5. TEM-EDX map sum spectra of BC/PVAN/PANI in three different regions/levels of the 

membrane indicated in a), which correspond to the area shown in Figure 5.2h. b-c) surface coatings of 

PVAN/PANI as represented in Figure 5.2hi and d) BC substrate as represented in Figure 5.2hj. 

 

 Chemical Characterisation 

Fourier Transform Infrared Spectroscopy 

Figure 5.6 illustrates the ATR-FTIR spectra of BC, BC-BiBB, BC-g-PVAN and 

BC-g-PVAN-g-PANI membranes. In BC-BiBB spectrum, a new peak at 1721 cm-1 

can be seen, which could be attributed to the O–C O group of the initiator BiBB [197]. 

This was accompanied by a slight decrease in the relative intensity of the vibrations 

ascribed to the bending O-H at 1641 cm-1 observed in unmodified BC [198]. A 

progressive decrease in the relative intensity of the peaks at 3343, 2893 and 1641 cm-

1 was also witnessed after successive grating with PVAN and PANI. The peak at 1518 

cm-1 in BC/PVAN spectrum can be assigned to the C=C stretching mode characteristic 

of aromatic rings [199]. In BC/PVAN/PANI, C-N stretching vibrations of the quinoid 

(Q) and benzenoid (B) rings from PANI can be observed at 1557 (N=Q=N) and 1483 

cm-1 (N–B–N) [200], while the CN stretching vibrations of the benzenoid ring were 

found at 1290 (C-N of secondary amine), 1249 (N-B-N) and 1133 cm-1 (N=Q=N).[79]. 
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Polaron formation of the quinonoid structure (Q=N+H–B or B–N+H–B) due to doping 

were identified at 1118 cm−1 [201]. Peaks at 1033 and 785 cm-1 were ascribed to 

aromatic C-H in plane and out-of-plane bending vibration of p-disubstituted benzene 

ring, respectively [79]. 

 

 

Figure 5.6. ATR-FTIR spectra of BC, BC-initiator (BC-BiBB), BC/PVAN and BC/PVAN/PANI. 

 

X-Ray Diffraction 

XRD, as shown in Figure 5.7, was performed to assess the changes in the 

crystalline structure of BC upon grafting with PVAN/PANI bilayer. Two main 

diffraction peaks at 14.5o and 22.7o were ascribed to the multiple crystal planes of unit 

cell structure Iα and Iβ of the crystalline forms of BC (Chapter 4) [173], which revealed 

a progressive decrease as well as broadening with PVAN and PVAN/PANI bilayer 

coatings. This effect was particularly obvious in BC/PVAN/PANI membranes with 
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higher VAN content. The broadened spectrum observed is likely correlated to the 

amorphous structure of PANI that has largely hindered the crystalline structure of the 

backbone BC, confirming the presence of a thick PANI layer as observed in SEM 

images (Figure 5.7) [202]. In addition, the premise that higher GYPVAN promoted a 

higher GYPANI could be herein demonstrated. The slight shift in the main diffraction 

peaks can also endorse the enrichment in PVAN and PANI content of the 

functionalised BC nanocomposites [203].  

 

 

Figure 5.7. XRD spectra of pristine BC, and BC/PVAN and BC/PVAN/PANI grafted with molar 

BiBB:VAN ratios of 1:3 and 1:5. 

 

X-Ray Photoelectron Spectroscopy 

The chemical composition of pristine BC and the as-prepared BC composites 

was also investigated by XPS. Table 5.1 summarises the associated binding energies 

(BE) obtained for the different membranes. The wide scan of pristine BC shows BE of 

carbon 1s (C1s) and oxygen 1s (O1s) derived from BC backbone. The core-level 

spectrum of C1s in BC can be deconvoluted into BE at 285.0 eV (C-C/C-H), 286.6 eV 

(C-O) and 288.1 eV (O-C-O) typical from pristine BC (Figure 5.11a.2) [37]. SI-ATRP 

is strongly dependent on the efficient esterification of BC OH groups with BiBB [36]. 

  

Iα 

 

Iβ 

14.5 o 

22.7 o 

14.5o 

22.7o 



  

Chapter 5: Development and Characterisation of BC/PVAN/PANI Nanocomposites 118 

The successful immobilisation of the initiator could be testified from the new peak 

emerged at 71 eV (Figure 5.11b.1) assigned to bromide 3d (Br3d) core shell level and 

from the new deconvoluted C1s peak (Figure 5.11b.2) attributed to the O-C=O bond 

(at 289.4 eV) proceeded from BC esterification [38]. C-Br bond may have also 

contributed to the intensity read at 285.0 eV [39]. 

 

Table 5.1. Binding energies (eV) of C1s, O1s, Br3d, N1s and Cl2p detected by XPS on BC, BC-BiBB, 

BC/PVAN and BC/PVAN/PANI (Reproduced by permission from Carbohydr Polym, Elsevier, [188] 

copyright 2019). 

 C1s/eV O1s/eV Br3d/eV N1s/eV Cl2p/eV 

BC 286.9 533.1 - - - 

BC-BiBB 287.0 533.2 71.0 - - 

BC/PVAN 285.9 533.1 71.0 400.1 - 

BC/PVAN/PANI 284.8 531.5 67.8 399.4 197.8 

 

The degree of substitution (DS) of BC-BiBB as determined from equation 3.6 

was 77 %, which means about 77 % of BC growing sites were readily available for 

PVAN grafting which shows a good agreement with the reported literature [204]. 

Moreover, it would be very unlikely that every hydroxyl group was equally accessible 

for modification as consequence, among others, of BC drying process prior to BiBB 

immobilisation. 

The resultant spectra in Figure 5.8c,d confirmed PVAN and PANI successfully 

grafted onto BC membranes evidenced by the presence of BE corresponding to 

nitrogen 1s (N1s) and higher relative peak intensities of C1s, reflecting the enrichment 

in carbon content from the aromatic rings that composes both PVAN and PANI (Figure 

5.1c). The N1s core-level of BC/PVAN could be curved-fitted into two individual 

peaks at 399.8 eV and 401.7 eV, ascribed to the neutral (-NH-) and positively charged 

(-NH2
+) amine group, respectively. Further functionalisation with PANI led to an 

expected increase in N1s content, that can be de-convoluted into four peaks 

representing four components with BE corresponding to the quinoid imine (=N-) at 
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398.0 eV, benzenoid amine (=N=) at 399.3 eV, and positively charged nitrogen atoms 

at 400.1 eV and 401.9 eV (=NH+= and -NH2
+, respectively).[205]. 

 

 

Figure 5.8. Typical wide scans of a.1) BC, b.1) BC-BiBB, c.1) BC/PVAN (BiBB:VAN=1:5) and d.1) 

BC/PVAN/PANI (BiBB:VAN=1:5). High resolution C1s scans of a.2) BC and b.2) BC-BiBB, and high 

resolution N1s scans of c.1) BC/PVAN (BiBB:VAN=1:5) and d.1) BC/PVAN/PANI (BiBB:VAN=1:5). 

Peaks were curve-fitted using Thermo ScientificTM Avantage Data System. (Reproduced by permission 

from Carbohydr Polym, Elsevier, [188] copyright 2019). 
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The doping level of PANI can be estimated from the fractional areas of 

protonated nitrogen atoms. The fractional areas of these four peaks were estimated to 

be 0.02, 0.30, 0.54 and 0.14, which indicates the doping level can reach as high as 68 

% [206].  

The relative amount of both PVAN and PANI on BC surface could be inferred 

from the N1s/C1s ratio (Table 5.2). As anticipated, higher N1s/C1s intensity was 

perceivable with higher VAN feeding ratio. After aniline polymerisation, N1s/C1s 

ratio doubled from 0.07 to 0.15 for BiBB:VAN=1:5 membranes. Interestingly, when 

lower VAN monomer contents were used, N1s/C1s ratio decreased, which implies that 

higher VAN amounts promote higher PANI yields. 

 

Table 5.2. Elemental composition (atomic percentage, at%) of BC, BC-BiBB, BC/PVAN and 

BC/PVAN/PANI composites extracted from XPS analysis, corresponding N/C atomic ratios. 

  
%C1s %O1s %Br3d %N1s N1s/C1s 

BC - 58.3 38.0 - - - 

BC-BiBB - 59.8 39.3 0.4 - - 

BC/PVAN BiBB:VAN=1:3 69.4 25.6 - 4.3 0.06 

BiBB:VAN=1:5 68.8 23.1 2.3 4.8 0.07 

BC/PVAN/PANI BiBB:VAN=1:3 79.5 15.4 - 3.6 0.04 

BiBB:VAN=1:5 73.7 12.0 0.5 11.1 0.15 

 

 Different relative amounts of N were obtained after adjusting ANI 

polymerisation parameters, indicating the yield is also influenced by reaction 

conditions (Table 5.4). N/C ratio seemed to have reached the maximum ratio of 0.157 

when prolonging the reaction up to 18 hours, suggesting that there was still ANI 

monomer to be consumed. It was also found that for higher APS:ANI feeding ratios 

(N/C=0.138), N/C increased, which indicates a possible higher PANI grafting yield, 

as APS:ANI>1.25 ensures efficient oxidation of all ANI monomer. Other variations 

from the standard conditions like, monomer concentration, lower oxidant:monomer 

ratio, lower reaction time and acid concentrations, caused a decrease in the following 

order: T=18h > standard > APS:ANI=1.5 > Time=3h > APS:ANI=1 > [HCl]=0.5 M > 
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[ANI]=0.5 M > [ANI]=0.7 M. For instances, the lowest N/C was achieved for higher 

[ANI] may be due to the large amounts of ANI that could not be properly oxidised by 

APS. On the other hand, lower [HCl] was not sufficient to properly protonate ANI 

monomers and products and hence, lowering slightly the amount of PANI grafted. 

 

Table 5.3. Elemental composition (atomic percentage, at%) of BC/PVAN/PANI 1:5 composites 

prepared using different aniline polymerisation conditions extracted from XPS analysis, with 

corresponding N/C ratios. 

Atomic weight %C1s %N1s N1s/C1s 

[ANI]=0.5 M 73.1 8.1 0.111 

[ANI]=0.7 M 73.6 8.2 0.111 

[HCl]=0.5 M 77.8 8.8 0.113 

18 hours 72.2 11.3 0.157 

3 hours 79.0 9.9 0.125 

APS:ANI=1 76.6 8.9 0.116 

APS:ANI=1.5 75.5 10.4 0.138 

 

 Grafting Yield 

The GY on the initialised BC surface membrane was determined through weight 

gain after functionalisation with PVAN and PANI (equation 3.7). The results, 

discriminated in  

Table 5.4, corroborate the previous findings obtained from XPS with N/C ratios 

(Table 5.2). The molar BiBB:VAN ratio seemed to have affected the GY of both 

PVAN and PANI. After 24 hours of reaction, around 29% of PVAN was grafted on 

BC when BiBB:VAN=1:3 was used, whereas about 43% was grafted after increasing 

VAN feeding ratio. Furthermore, the GY of PANI also tended to improve with greater 

amounts of VAN from 46% to 53%. Comparable results have been reported for 

BC/PANI, which is in agreement with PANI synthesis kinetics [170, 207]. This 

confirms PVAN may act as catalyst for PANI growth. As previously mentioned, the 

chain propagation rate of PANI is also controlled by the surface area available for 
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synthesis (k2’ of equation 3.2).  As such, with increased initiating sites for chain 

propagation, i.e larger surface area, exponential PANI growth may occur within the 

same time scale and thus, leading to an increase of the GY.  

 

Table 5.4. Grafting yield (%) of PVAN and PANI on BC/PANI and BC/PVAN/PANI membranes. 

Grafting Yield 

BC/PVAN/PANI 

GYPVAN 
BiBB:VAN=1:3 29 % 

BiBB:VAN=1:5 43 % 

GYPANI 
BiBB:VAN=1:3 46 % 

BiBB:VAN=1:5 53 % 

BC/PANI GYPANI  39 % 

 

 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was performed from room temperature up 

to 800 oC on pure BC and the PVAN/PANI functionalised composite BC membranes 

to assess their thermal stability (Figure 5.9). As measured through weight loss, the 

thermal decomposition of these membranes after thermal loading follows a similar 

trend with the temperature increase, consisting of three main stages, as observed earlier 

for pristine BC in Chapter 4. In the first stage, the initial weight loss of BC and 

BC/PVAN membranes took place from room temperature to ~150 oC, but the 

degradation occurred from room temperature to 100 oC for BC/PVAN/PANI 

membranes. This is concerned with some moisture remaining inside the membranes, 

in the form of either water and/or dopant HCl as has been reported elsewhere [208]. In 

the second stage, a drastic weight reduction in the pure BC membranes was found 

between 250 and 375 oC, whereas in BC/PVAN and BC/PVAN/PANI membranes the 

temperature range for the abrupt weight loss has started earlier, i.e. 200-350 oC and 

175-250 oC, respectively. This can be associated with the main chain decomposition 

of crystalline and amorphous regions of BC into D-glucopyranose monomer and 

further into free radicals, as seen in Chapter 4 [79]. On functionalised BC 

nanocomposites, this degradation stage could be further subdivided into two, as seen 

with the two peaks of the respective first derivative curves – mass-loss peaks –, which 

may indicate components of BC composites with different thermal stability [209]. This 
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might be due to the presence of smaller chain oligomers [210]. In the third and final 

degradation stage as can be identified from about 390, 350 and 250 oC in BC, 

BC/PVAN and BC/PVAN/PANI membranes respectively, the weight loss was 

insignificant and gradually reaching a relative steady level owing to the residual main 

chain decomposition [174].  

 

 

 

Figure 5.9. a) Thermogravimetric curves of BC, BC/PVAN and BC/PVAN/PANI nanocomposites with 

BiBB:VAN molar ratios of 1:3 and 1:5, measured from room temperature to 800 oC. Three main stages 
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of weight loss identified: Stages I, II and III. b) Corresponding first derivative curves and magnification 

of the selected squared area. Different colours were used to better distinction of the curves. 

Table 5.5 lists the onset, offset and peak temperatures extracted from first 

derivative of TGA curves of BC and BC-based composites, shown in Figure 5.9, at the 

varied degradation stages. As seen, the onset temperature 1 of stage II (Tonset1) varied 

more from 323 oC in BC to 175-223 oC in BC/PVAN and 159-171 oC in 

BC/PVAN/PANI membranes, showing the highest degradation rate at 362 oC, 203-

242 oC and 202-213 oC, respectively. The secondary weight loss within stage II of 

coated BC membranes, as observed in Figure 5.9, started in the temperature range of 

202-234 oC (Tonset2). Despite the narrower degradation temperature interval after 

coating BC with PVAN and PANI, it seems higher PVAN loading amounts tend to 

increase the thermal stability of the composites. Noticeably, the remaining mass of 

both BC/PVAN and BC/PVAN/PANI composite membranes was approximately 30%, 

which is greater than that of 20% found in pure BC membranes. 

 

Table 5.5. Onset, peak and offset temperatures extrapolated from the first derivative curves of TGA 

shown in Figure 5.9b. 

 Tonset1/oC Tpeak1/oC Toffset1/oC Tonset2/oC Tpeak2/oC T offset2/oC 

BC 323 362 390 - - - 

BC/PVAN 1:3 175 203 245 220 247 270 

BC/PVAN 1:5 223 242 251 202 324 377 

BC/PVAN/PANI 1:3 159 213 289 234 267 328 

BC/PVAN/PANI 1:5 171 202 296 213 241 267 

 

 

In general, different BiBB:VAN molar ratio (Figure 5.9) and aniline 

polymerisation conditions (Figure 5.10) seemed not to have significant effects on the 

TGA profiles, although a more pronounced weight loss occurred at lower temperatures 

could be observed in the composites containing lower VAN:BiBB feeding ratios. In 

particular, BC/PVAN 1:3 membranes showed a residual weight of about 25 %, most 

probably due to a lower grafting degree that was redeemed after PANI coating. The 

residual weight of grafted membranes in the remaining cases, increased from 20 % in 

BC to about 35 %, which indicates that both PVAN and PANI conferred a protective 
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layer against BC substrate degradation. Different aniline polymerisation parameters 

did not considerably change the weight loss profile of BC/PVAN/PANI composites, 

although slightly slower degradation rate and higher residual weight could be noticed 

after 18 hours of reaction time (Figure 5.10c), attributed to higher PANI grafting 

yields. 

 

 

Figure 5.10. Thermogravimetric curves of BC/PVAN/PANI 1:5 for different aniline polymerisation 

parameters. a) aniline concentration, b) oxidant to aniline molar ration, c) reaction time and d) acid 

concentration. Three main stages of weight loss identified: Stages I, II and III. 
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PVAN via ARGET SI-ATRP, furnishing BC with a primary stabiliser coating layer 

rich in amine groups that acted as anchors for subsequent aniline polymerisation. This 

process allowed the predominant synthesis of 1D nanostructured PANI, the as-called 

supramolecular structures, known to provide superior electrical conductive and 

mechanical properties [88, 100]. PANI grows as a thick dark green layer corresponding 
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to the EM oxidation state that is overall accepted as the highest conductive form of 

PANI, and thus of interest for applications requiring electrically conductive properties. 

The chemical characterisation confirmed the successful grafting of PVAN and 

PANI, with HRTEM further showing a good interfacial integrity between BC, PVAN 

and PANI layers, that is important to preserve the cohesion of the coatings and general 

materials stability, and thus, ensuring durability of the material’s performance [211]. 

The inclusion of higher yields of grafted-PVAN, accomplished with lower BiBB:VAN 

feeding (molar) ratios, could be detected mainly by XPS and weight gain, which was 

responsible for an increased PANI grafting yield. Furthermore, PVAN/PANI bilayer 

does not considerably affect the outstanding thermal stability profile of pristine BC, as 

seen with TGA analysis, and further reckon this bilayer may provide a protective 

coating for preventing early thermal decomposition of BC substrate, that is critical for 

numerous applications, especially for bioelectronic devices [212]. The thermal 

degradation of BC composites occurred at slightly lower temperatures may be related 

with the decreased crystallinity when compared to unmodified BC. This is most likely 

because PVAN and PANI coatings are not as crystalline as BC, and thus they are not 

so thermally stable as BC is. However, higher PVAN grafting yield seemed to have 

led to an increase of the thermal stability of PANI-coated BC composites with a 

detectable higher residual weight when compared to pristine BC. In contrast, variations 

to aniline polymerisation did not influence visibly, probably because such variations 

did not cause significant changes to PANI yield that could cause deviations to the 

thermal stability profiles. This suggests also that the different PANI nanostructures do 

not play a pivotal role in the thermal stability of PANI-coated composites.  

Understanding the functionalisation process of BC with this bilayer is thus 

crucial to enable a deeper comprehension of the chemical and molecular processes 

behind, especially as regards PANI synthesis, so that BC coating properties can be 

efficiently tailored to the targeted applications with an optimised synthetic process. 

 

 Understanding the PVAN/PANI Bilayer Functionalised BC System 

Immobilisation of the Initiator 

The functionalisation of BC membranes was initiated with the creation of 

suitable propagating sites on the OH-rich surface. This step is of special importance to 
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ensure PVAN germination and propagation, which is achieved through the 

immobilisation of an ‘initiator’ onto BC, commonly alkyl halides. Alkyl bromides, 

like BiBB, are versatile initiators in a variety of substrates, including BC, on which 

these are particularly effective. BiBB can covalently bound to cellulose backbone 

through ester linkages, while providing a fast initiating process which is decisive for 

PVAN chain propagation.[213]. Low initiator concentrations can compromise the 

control over the radical polymerisation, which may result in low density of polymer 

brushes grafted [214]. Thus, the amount used was overestimated to 100 % coverage of 

the three OH groups (Figure 5.1) of each repeating cellulosic unit, as this is a very 

unlike event. Nevertheless, the %DSS showed that sufficient BiBB was successfully 

immobilised onto BC backbone for ensuing ARGET ATRP. 

 

Activators Regenerator by Electron Transfer Atom Transfer Radical 

Polymerisation of 4-VAN  

BC/PVAN was synthesised via ARGET SI-ATRP, performed with 

CuCl2/PMDETA as the catalytic system that was continuously regenerated between 

its two oxidation states (Cu(I) and Cu(II)), using ASCA as the regenerator agent. VAN 

monomer carries a vinyl functional group that is able to stabilise the propagating 

radicals originated from the catalytic system. PVAN grows by successive monomer 

addition via C-C single bonds.[215]. Molar ratios of catalyst to monomer, ligand and 

regenerator, were kept constant and their quantities adjusted with different BiBB:VAN 

molar ratios to allow different grafting degrees. Molar ratios below 1 implies an 

increase in the number of anchoring sites (aniline moieties of VAN, see Figure 5.1c) 

for PANI germination, which might have caused an enlargement of the surface area 

available for COP reaction.[100].  

The chemical characterisation performed confirmed the successful grafting of 

PVAN. The molar ratios of BiBB:VAN herein used, 1:3 and 1:5, were expected to 

append ideally 3 and 5 times more initiating sites respectively, in contrast to the 

nongrafted BC. Although the theoretically GY can be hardly achieved, higher amounts 

of VAN monomer undeniably resulted in higher GYPVAN, as expected. With prolonged 

reaction times, raised temperature [216] and previous washes of BC membranes with 

NaOH, it is anticipated an improvement in the GYPVAN [217]. 
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Chemical Oxidative Polymerisation of ANI  

COP of aniline was performed on BC/PVAN nanocomposites using different 

polymerisation parameters that are known to influence directly or indirectly the 

kinetics of aniline polymerisation. Besides the ‘aniline pending moiety’ of VAN not 

actively participating in aniline polymerisation, it may serve as a germinator and 

stabiliser of the reaction. Standard conditions (0.2 M aniline, 0.25 M APS and 1 M 

HCl for 6 hours of reaction time) were stablished based on stoichiometric amounts of 

the reaction (Figure 3.7, Chapter 3) that would theoretically maximise the GYPANI 

assuming a complete reaction.[100]. Larger GYPVAN was also shown to increase 

GYPANI, that might have resulted from a faster COP rate provided by the 

aforementioned increased surface area when compared to the common in situ COP 

performed strictly on BC sites [88].  

Different PANI supramolecular structures were formed on BC/PVAN according 

to PVAN content used, which confirmed PVAN had an important role in PANI self-

organisation. Favourable aggregation and film irregularity were reached for lower 

PVAN grafting yields, where only PANI clusters sprouted on BC/PVAN surface. 

However, higher GYPVAN guided PANI to a more uniform distribution on the BC 

fibres’ surface, with clusters being progressively replaced by PANI nanorods. This 

anticipates that PVAN acted as a soft-template for the growth of more well-defined 

and organised structures in nanorods-like shape and with all individual objects of 

similar dimensions, i.e. every single nanorod that cover BC/PVAN nanofibres have 

identical sizes. Such PANI nanostructures are very attractive to boost the electrical, 

mechanical and thermal stability properties for numerous applications.[218]. 

 

 CONCLUSION 

Functionalised BC nanocomposite membranes with PVAN/PANI were 

successfully synthesised through consecutive ARGET SI-ATRP and COP reactions. 

The grafted PVAN/PANI bilayer on BC was confirmed with their chemical 

compositions by FTIR, XRD and XPS analysis. When an intermediate functional 

PVAN layer was inserted between PANI and BC, a higher PANI integrating yield was 

acquired together with a homogeneous distribution of its structural units as observed 

in SEM and TEM images in the form of nanorods-like shape. Denser PVAN brushes 
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promoted further this effect, which opens a window for future studies on PVAN usage 

for BC functionalisation. BC nanocomposites are proven to be thermally stable up to 

approximately 200 oC. Despite no significant changes have been revealed in the 

nanocomposite’s properties using different aniline polymerisation parameters, higher 

PVAN grafting yield tended to improve the thermal stability of the BC 

nanocomposites. Furthermore, these polymerisation conditions are anticipated to have 

a major role in the final electrical and electrochemical properties of the as-developed 

BC nanocomposites that are closely related with the supramolecular PANI structures 

produced during the chemical reaction (Chapter 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Chapter 5: Development and Characterisation of BC/PVAN/PANI Nanocomposites 130 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Chapter 6: Electrical Properties of BC/PVAN/PANI Nanocomposites 131 

 Electrical Properties of 

BC/PVAN/PANI 

Nanocomposites 

The content of this chapter is partially included in the published scientific article 

entitled “Rebelo A, Liu Y, Liu C, Schäfer K-H, Saumer M, Yang G. Poly(4-

vinylaniline)/polyaniline bilayer functionalized bacterial cellulose membranes as 

bioelectronics interfaces. Carbohydr Polym. Elsevier; 2019 Jan 15; 204:190–201”. 

 

PANI endows BC/PVAN/PANI nanocomposites with electrical and 

electrochemical characteristics that can be exploited for different applications, 

including bioelectronic devices which demands both electrical conductivity and 

biocompatibility. Synthetic parameters are strongly associated to the final electrically 

conductive properties of PANI [100]. It is well-stablished that its conductive form is 

dependent on the oxidation state and protonation degree (doping level) that can be 

easily obtained under low pH conditions along with uses of strong oxidants [219]. The 

present chapter will be devoted to the systematic study of the conductivity and 

electrochemistry of the as-developed BC/PVAN/PANI nanocomposites (Chapter 5), 

showing the effects of the reaction conditions for attainable optimisation. In particular, 

it is demonstrated the role of the PVAN intermediate layer. As such, the conductive 

features will be carefully examined and discussed with a 4-point probe method, CV 

and EIS, as schematically represented in Figure 6.1. 
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Figure 6.1. Schematic representation of the electrical and electrochemical conduction in PVAN/PANI 

coated BC nanofibrous membranes. 

 

 RESULTS 

 Electrical Conductivity 

As an estimation of the intrinsic electrical properties of the nanocomposites, the 

conductivity was calculated from sheet resistance measured from a common 4-point 

probe set-up, considering the probes spacing and the composite’s thickness, which is 

accordingly represented in Figure 6.2 and 6.3.  The conductivity of PANI-based 

membranes showed a trend to increase with nanofibers density (dense side), PVAN 

grafting yield, as well as with some COP parameters, achieving values as high as σ = 

(4.5±2.8)×10-2 S.cm-1. 

The kinetic of PANI synthesis determines the overall conducting properties, 

which depend on several parameters according to equation 3.2 (k1[ANI][OX] +

k2′[ANI][P]) in which k1 accounts for the induction period, while k2 reflects the 

contribution of both acid concentration and surface area. It is worthwhile to mention 

that an increased polymerisation rate, and hence PANI yield, does not always lead to 

the formation of highly conductive structures, although it may indirectly have 
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contribution under certain conditions, providing that suitable electronic band 

structures are created [88]. 

 

Effect of BC Porosity and Grafting Yield of PVAN  

The intrinsic PANI conductivity can be attributed to the long-range of 

delocalized charge carriers system arising from the oxidation of nitrogen atoms that 

serve as oxidation centres [220]. Variations of parameters in the polymerisation had a 

definitive effect on the PANI size and shape, which induced some changes in this 

delocalized system [100]. In spite of the widely recognised electrically insulating 

properties, BC not merely provides a substrate for allocating PVAN/PANI bilayer as 

a cohesive and uniform coating, but also acts as a catalyst of aniline polymerisation 

once it increases its growth rate. In addition, it furnishes an appropriate 3D porous 

system as a path for efficient charge carrier flow. In Figure 6.2, PVAN treated 

membranes showed a comprehensive higher value of conductivity up to one order of 

magnitude than those non-treated BC/PANI. The measurements from all samples 

revealed a trend of a comparable difference in the conductivity on both sides of the 

membrane that is correlated with the asymmetry seen in BC network, as seen in 

Chapter 4, that is related with BC synthesis procedure. Assuming a uniform PANI 

coating was formed, the side of BC membranes with a compact packing of BC fibres 

would reflect in a larger area covered by PANI as a continuous film and thus, resulting 

in a higher conductivity in comparison with the side with a more porous structure of 

BC fibres (Figure 6.2). Different surface areas with simultaneous changes on COP 

parameters are expected to reflect additional modifications in PANI properties, as such 

this leads to a multiplicity of PANI synthetic rates [100]. Similar to BC, PVAN is not 

inherently conductive as PANI [87]. However, the incorporation of PVAN and 

subsequent increase of its content led to an augmented conductivity up to one order of 

magnitude. For instances, on the compact side of the membrane it increased from 

(3.7 ± 0.5)×10−3 (BC/PANI) to (5.2 ± 0.9)×10−3 (BiBB:VAN = 1:3) and then to 

(2.2 ± 0.6)×10−2 S cm−1 (BiBB:VAN = 1:5), respectively. This increased conductivity 

might have been resulted from the formation of more organised PANI structures that, 

among others, elongated the polyconjugated system by enhancing the charge carrier 

mobility as that of the doping agent (HCl) [86]. 
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Figure 6.2. Electrical conductivity of BC/PANI, and BC/PVAN/PANI membranes with different BC 

to VAN molar ratios, the embedded images show the morphology of the selected area.(Reproduced by 

permission from Carbohydr Polym, Elsevier, [188] copyright 2019). 

 

Effect of Aniline Polymerisation Parameters 

The effect of COP parameters on the electrical conductivity of the PVAN/PANI 

functionalised BC composites is summarised and presented in Figure 6.3. Studies 

reported in the literature up to now on PANI synthesis have suggested that the strong 

acidic media (pH below 2.5) promotes highly conductive PANI structures, i.e. in the 

emeraldine oxidation form [149]. Herein, higher conductivity was also observed with 

the samples prepared in the solutions containing 1 M HCl in comparison with those 

prepared in 0.5 M HCl (Figure 6.3a). This was likely to be related to a higher degree 

of protonation products of aniline oxidation and may also be correlated with an 

increase of the crystallite size together with a decrease in d-spacing and interchain 

separation of PANI [100]. Slightly higher conductivity at 0.5 M on the porous side can 

be observed, probably related with a balanced effect of the surface area. The 

conductivity under both conditions fell, however, into the same range due to the 

slightly increase of pH value of the media from 0 to 0.3 when decreasing the 
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concentration of acid from 1 M to 0.5 M. The variation of molar ratio of APS (oxidant) 

to aniline (monomer) also influenced the final conductivity of the synthesised 

membranes. APS is characterised as a strong oxidising agent, which is able to oxidise 

both aniline monomer and the growing chain during polymerisation. According to 

aniline oxidation reaction with APS (see Figure 3.5, Chapter 3) [APS]:[ANI]=1.25 is 

the stoichiometric ratio that reflects the minimum oxidant amount to be used for 

complete monomer oxidation, which is expected to yield more conductive structures . 

However, the highest conductivity was obtained when using the lowest molar 

APS:ANI feeding ratio (APS:ANI=1) (Figure 6.3b), this is likely associated with the 

over-oxidation of aniline that enabled the formation of fully oxidised pernigraniline 

with low conductivity, instead of the partially oxidised emeraldine with high 

conductivity [221]. This effect has been reported in the literature for oxidant to 

monomer ratios over 1.15, which is comparable with the results herein obtained [222]. 

Extending the polymerisation time, e.g. from 3 hours to 6 hours, the conductivity of 

the PVAN/PANI functionalised BC membranes increased from (1.0±0.6)×10-2  S.cm-

1 up to (2.2±0.6)×10-2  S.cm-1 accordingly (Figure 6.3c). However, further prolonged 

polymerisation time hardly showed any significant improvements in their conductivity 

because higher PANI molecular weight induced the formation of certain defects that 

caused modification of the delocalised system which ultimately reduced the 

conductivity [223]. In contrast, on the porous side there is an apparent trend to increase, 

ascribed to a slower PANI loading process with appropriate band structure that may 

be able to increase for longer reaction times. 
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Figure 6.3. Differences on the electrical conductivity of BC/PVAN/PANI composites with variation of 

aniline polymerisation parameters: a) molar ratio APS:ANI, b) acid concentration, c) reaction time and 

d) aniline concentration (Reproduced by permission from Carbohydr Polym, Elsevier, [188] copyright 

2019). 

 

Greater conductive values were also found to be associated with larger monomer 

concentration (Figure 6.3d). From [ANI]=0.2 M to 0.7 M, the conductivity of the BC 

composites increased significantly, at which the highest value of (4.5±2.8)×10-2  S.cm-

1 was achieved. Increasing monomer concentration led to an increased yield, and thus 

ultimately increased BC/PVAN nucleation sites for continuous PANI growth  of 

proper band structure [224].  
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changes due to the oxidation were detected via current peaks upon doping or dedoping 

of protons and anions [225]. Pure BC and BC/PVAN are inherently insulators, thus, 

their respective cyclic voltammograms appear to be linear (grey line in Figure 6.4) 

when plotted with the PANI treated BC [226]. However, the enlarged view of the 

selected area reveals a trend for a capacitive-like response of BC and BC/PVAN [227]. 

Upon incorporation of PANI coating, BC/PVAN membranes acquire redox activity as 

shown in Figure 6.4. PANI is usually oxidised in two step-reaction according to its 

three different oxidation states: leucoemeraldine (LE), emeraldine (EM) and 

pernigraniline (PG) [228]. A single pair of redox peaks is observed at two selected 

scan rates, as indicated with arrows in Figure 6.4. The oxidation potential at 100 

m.Vs−1 scan rate appeared approximately at +0.74 V and –0.70 V in the forward and 

reversible scans, respectively, corresponding to the conversion of LE into EM form 

[73]. During this process, benzoid and quinoid rings (EM) give place mostly to quinoid 

structures (PG). At lower scan rate (50 m.Vs−1), the redox peak couple slightly shifted 

in the potential axis to 0.57 V and –0.56 V, in the positive and reverse scans, 

respectively. This is likely due to the lower flux of charge-carriers towards the 

electrode at slow scan rates (that is proportional to current) [229]. Other redox peaks 

associated with the fully oxidised and reduced form of PANI (PG and LE, respectively) 

were not herein detected, probably related to the type of acid used, the scan rate that 

was not sufficiently low to enable complete oxidation/reduction of PANI intermediates 

or because those transitions were not thermodynamically stable under these conditions 

[230]. Nevertheless, the oxidation of EM into PG occurred between +0.7 V and +1.5 

V with the further reduction of EM into LE between –1.5 V and –0.7 V [229], that is 

associated to the release of radical cations compensated by imine ions from the 

electrolyte and to the formation of quinoid moieties, respectively [73].  
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Figure 6.4. Cyclic voltammogram curves of BC, BC/PVAN and BC/PVAN/PANI recorded at 50 and 

100 mV.s-1 of scan rates, with the respective magnification of BC and BC/PVAN curves, showing the 

oxidation and reduction processes of PANI. Red and blue arrows point out to the peak currents 

corresponding to emeraldine (EM) measured at 50 and 100 mV.s-1, respectively. 

 

Electrochemical Impedance Spectroscopy 

The electrochemical impedance response of BC/PVAN/PANI was analysed at 

different applied voltages that fall into the oxidation/reduction potentials of those 

corresponding to the oxidation states of PANI described in CV analysis of the previous 

section. Figure 6.5 shows representative EIS data recorded for BC/PVAN/PANI 

nanocomposites at different voltage bias which were subsequently curve-fitted into 

two semi-circles using an equivalent circuit shown in Figure 6.5a. The corresponding 

fitted values of the parameters are accordingly listed in Table 6.1. The solution 

resistance (Rs) marks the beginning of the first semicircle at higher frequencies that 

comprises a parallel combination of a charge transfer resistance (Rct) with the 

respective double layer capacitance described as constant phase element (CPE1) [231]. 

Rs accounts for the uncompensated resistance of the electrolyte H2SO4 [232] and the 

resistance between the contact electrodes to some extent [73]. Rct can be ascribed to 

the electrode/electrolyte resistance concerning the charge transfer between the 

electrode and the electrolyte and ionic diffusion, whereas CPE1 can be assigned to a 
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faradic capacitance (or pseudocapacitance) due to accumulation of charges from PANI 

redox processes [233]. At lower frequencies, the data could be extrapolated into a 

second semicircle formed by a polarisation resistance (Rp) in parallel with a static 

double layer capacitance (CPE2) attributed to the separation and accumulation of 

charges at the respective electrodes [234]. The partial absence of the low frequency 

semicircle has been pointed out as resulting from high ionic conductivity at the 

electrode/electrolyte interface [235]. CPE accounts for the non-ideal capacitor 

behaviour (depressed semicircle) of the nanocomposites and the deviation of the 

diffusion line from the 45o slope (Warburg element) at low frequencies [236]. 

 

Table 6.1. Data extracted and calculated from the Nyquist plots shown in Figure 6.5. 

Vbias (V) Rs (Ω) Rct (Ω) CPE1 (F) Rp (Ω) CPE2 (F) 

0 51.3±5.3 21.2±5.1 (26.7±5.8)

×10-6 

(1.1±0.05) 

×1012 

(1.5±0.2) 

×10-6 

0.5 51.3±2.8 20.7±1.48 (39.0±7.3)

×10-6 

(1.1±0.03) 

×1012 

(6.4±0.1) 

×10-7 

1 53.3±6.7 291±40 (43.3±8.2)

×10-6 

(1.1±0.02) 

×1012 

(1.5±3.4) 

×10-6 

1.5 55.7±12 500±101 (18.0±2.4)

×10-6 

(1.1±0.05) 

×1012 

(1.6±0.8) 

×10-6 

-0.5 47.3±3.2 35±7 (24.1±4.7)

×10-6 

(1.1±0.04) 

×1012 

(2.1±0.4) 

×10-7 

-1 49±4.1 532±67 (26.2±4.2)

×10-6 

(1.1±0.06) 

×1012 

(9.6±0.8) 

×10-7 

-1.5 49.8±4.9 2350±89 (19.5±3.9)

×10-6 

(1.1±0.03) 

×1012 

(1.3±0.2) 

×10-7 

 

Rs, arising mainly from electrolyte resistance, is largely independent on the 

applied DC bias (VDC) as it can be expected. The parameters herein used to describe 
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the semicircle at low frequencies (Rp, CPE2) also showed not to be significantly 

affected by the potential, indicating that the diffusion limited electron transport and 

the charge accumulation was purely of a double layer charging on BC/PVAN/PANI 

surface  [237], suggesting also the low frequency electrochemical semicircle may be 

related with the electrical behaviour of hydrated BC, as discussed in Chapter 4. In such 

instances, proton conductivity may be the most contributor source for the higher 

resistance and lower capacitance observed, regardless the applied voltage owing to the 

reduced proton mobility within the network.  

However, notorious variations on Rct can be observed, which reflects the redox 

properties of the composite. According to the cyclic voltammogram (Figure 6.4), +0.7 

V sets the potential at which LE is transformed into EM, which is the highest 

conductive form of PANI. At +0.5 V, EM oxidation state is nearly entirely reached 

and thus, Rct is lower than at +0.7 V. From +0.5 to +1.5 V, Rct continuously increased 

up to 500 Ω owing to the conversion of EM into PG. This confirms that PG oxidation 

potential should take place above +0.7 V as stated before in the CV analysis. When –

0.5 V potential is applied, PANI is converted back to EM salt form as Rct goes down 

again. However, decreasing the potential down to –1.5 V, the resistance increased to 

2350 Ω, which corresponds to the conversion of EM to the fully reduced and also the 

least conductive form (LE). Contrarily, the capacitance CPE1 increased up to 43.3 μF 

at +1 V and reached the lowest value of 18 μF at +1.5 V related with the accumulation 

of charges from the charge-transfer in faradaic processes. These results corroborate 

those obtained from CV and also show that EM is the most conductive form of PANI 

with higher capacitive properties. Accordingly, it can be stated that the optimised 

PVAN/PANI is responsible for the electrical switching responses at different 

potentials, whereas BC grants a protonic conduction path on its hydrated surface 

(Chapter 4) through the nanofibrillar network that embodies the PVAN/PANI bilayer. 

Deviations measured in Rct and CPE1 for symmetrical potential couple (e.g. –0.5 V 

versus +0.5 V) might be related with the heterogeneities of the membranes and with 

the slight displacement of the oxidation/reduction peak pair potential of PANI into its 

half-oxidised form (EM salt).  
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Figure 6.5. a) Randles equivalent circuit used to fit the impedance spectra shown in b-h.b-h) Nyquist 

plots of representative impedance data of BC/PVAN/PANI nanocomposites collected from different 

applied DC potentials upon superimposition of a sinusoidal AC potential of 10 mV. The solid lines (─) 

represent the fitting by the circuit in a). 
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PANI is the main responsible for the electrical variations of BC/PVAN/PANI 
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outstanding electrical conductivity, particularly owing to the ease and ‘smart’ switch 

of its electrical properties [238]. PANI chains possess both electronic and protonic 

conductivity that are raised from the charge carriers formed in the course of aniline 

oxidation during synthesis. PANI can be found in six different oxidation states in 

which EM salt is the most capable of electrical conduction, showing also the greatest 

stability.[100]. The grafted PVAN/PANI bilayer imparted the peculiar electrical and 

electrochemical behaviour of BC/PVAN/PANI nanocomposites shown, with BC 

conferring good support for selective ions transport. The electrical conductive 

properties of the as-synthesised PANI film on BC/PVAN/PANI membranes were 
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determined by regular polymer chains grown, driven by numerous reaction parameters 

that could modify the polyconjugated system, doping agent accessibility, as well as the 

protonation degree [86].  

 

 Factors Affecting the Electrical Conductivity of BC/PVAN/PANI 

Favourable environment for successful synthesis of electrically conductive 

PANI (EM) is often obtained under extremely acidic medium with strong oxidising 

agents, that is able to stabilise polaron formation during oxidation [239] and easily 

oxidise all PANI intermediates over the synthesis process [100], respectively. 

Straightforward optimisation of the electrical properties of BC/PVAN/PANI 

nanocomposites can be achieved provided that suitable adjustments are made to the 

reaction conditions [240]. It is well-stablished that monomer and acid concentrations, 

polymerisation time, monomer:oxidant ratio, as well as the surface area available for 

the reaction, are key important factors that can greatly affect and guide the self-

organisation of this complex polyconjugated system [241]. In this study, optimal 

parameters for maximised electrical conductivity were achieved with higher VAN 

monomer contents (BC:VAN=1:5), 1 M HCl concentration, stoichiometric amounts of 

oxidant to aniline, and 0.7 M aniline concentration for over 6 hours of reaction time. 

Additional optimisation may be achieved using other synthetic methods and additive 

manufacturing. 

The presence of an elongated polyconjugate system with high conductivity can 

be accomplished with specific supramolecular PANI structures [86, 88]. 

Nanostructured PANI encounters high homogeneity with unique surface properties 

and high charge carrier mobility at nanoscale [242]. Regular one-dimensional (1D) 

nanostructures, including nanowires, nanotubes, nanorods and nanofibers, are 

preferred for electronic applications for several reasons, but specially for the superior 

electrical and optical properties at nanoscale [100].  

 

 Influence of BC and PVAN Interlayer on the Electrical Conductivity of 

BC/PVAN/PANI  

The enhanced conductivity of the nanocomposites with grafted-PVAN could be 

explained by changes induced on PANI at molecular level. The growth of 1D PANI 
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nanostructures were developed at higher PVAN amounts, in contrast to the typical 

random aggregation of 3D PANI spherical particles obtained for lower GYPVAN, as 

seen in SEM and TEM images of the previous chapter (Chapter 5). The formation of 

such supramolecular structures was attributed to the surfactant properties of PVAN 

[243] and the higher surface area [88], which might be capable of decreasing carrier 

scattering [244], while facilitating the doping process through a high charge carrier 

mobility. The increase from 3 to 5 times more VAN moles, double the GYPVAN and 

further improved PANI grafting. The nanorod-like PANI coating uniformly distributed 

on BC/PVAN/PANI nanocomposites observed for higher amounts of PVAN, might 

have led to the development of a more elongated polyconjugated system with 

improved electrical conduction.[100]. In addition, it was found that a higher 

conglomerate of BC nanofibres (densest side of the membrane) contributed in part for 

the elevated conductivity measured, ascribed to the larger surface area for COP 

reaction. 

The electrochemical analysis revealed the capacitive-like behaviour of PVAN 

that may have contributed to the overall electrochemistry of BC/PVAN/PANI, besides 

the apparent non-electroactivity of PVAN. The electrochemical activity of 

PVAN/PANI layer resulted mainly from a mix of protonic and electronic conduction 

upon redox reactions induced by the electrolyte and/or the applied potential [245], 

while proton conductivity was most likely the major contributor in BC conduction, in 

a synergetic network/electrolyte interaction [169]. Such results show prospective 

developments in PVAN functionalised substrates for enhanced electrically conductive 

and electroactive responses, which may be useful for several applications, inclusively 

to build highly advanced medical devices that can interface with nervous system by 

detecting and/or stimulating electrical signals. 

 

 CONCLUSION 

The electroactivity of BC/PVAN/PANI nanocomposites was successfully 

analysed via four-point probe and electrochemical methods. Overall, BC/PVAN/PANI 

nanocomposites revealed reasonably good conductivity up to (4.5±2.8)×10-2 S.cm-1, 

improved by means of PVAN incorporation and appropriate adjustments of COP 

parameters. The boosted formation of nanorod-like PANI supramolecular structures 



  

Chapter 6: Electrical Properties of BC/PVAN/PANI Nanocomposites 144 

caused by PVAN intermediate layer (Chapter 5) were responsible for the enhancement 

of the electrical performance detected, as hypothesised. The different density of BC 

nanofibres seen (Chapter 4) was responsible for the contrasting conductivity values 

measured on both sides of the membrane due to disparate PANI grafting yields. This 

nanocomposite responded to the applied voltage via charge-transfer redox reactions 

taken place on PVAN/PANI surface, with charge carriers able to travel through BC 

network. The electrochemical switch of PANI occurred with oxidation or reduction to 

EM salt that, in CV, was observed as a redox peak couple at about –0.70/0.74 V (at 

100 mV.s-1 scan rate in sulphuric acid). Close to this oxidation state (+0.5 V), PANI 

showed the minimum charge-transfer resistance of 21 Ω with the corresponding 

capacitance as high as 39 μF. This unique electrochemical activity can render 

BC/PVAN/PANI nanocomposites as an amplification mechanism for analysis and 

detection of electrochemical signals or molecules in numerous bioelectronic 

applications.  
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 CNTs-Reinforcement of 

BC/PVAN/PANI 

Nanocomposites 

The content of this chapter is partially included in the accepted manuscript for 

publication “Rebelo A, Liu Y, Liu C, Schäfer K-H, Saumer M, Yang G. Carbon 

nanotubes-reinforced poly(4-vinylaniline)/polyaniline bi-layer grafted bacterial 

cellulose for bioelectronic applications. Biomaterials Science & Engineering of 

American Chemical Society, February 2019”. 

 

Microbial cellulose treated with PANI/CNTs can be attractive as potential neural 

interfaces in terms of further improvements of the electrical conductivity, capacity and 

thermal resistance. The interactions between PANI and CNTs exhibited new 

electrochemical features with efficient ionic diffusion and charge-transfer, and thereby 

increasing the electrical conductivity and capacity. In this chapter, the formerly 

developed PVAN/PANI-grafted BC (BC/PVAN/PANI) nanocomposite substrate 

(Chapters 5 and 6, Figure 7.1a,b) was further reinforced with SWCNTs (referred to as 

CNT or CNTs from this point) with a dipping/drying process, as schematically 

exemplified in Figure 7.1cd. It is a primary concern to have a representative 

perspective of the changes raised from CNTs impregnation, especially as regards the 

electrical properties. As such, the as-prepared BC/PVAN/PANI/CNTs 

nanocomposites were morphologically analysed with SEM-EDX and HR-TEM, the 

electrical conductivity was measured with a four-probe method and the 

electrochemical properties were investigated with EIS, and the thermal stability was 

assessed via TGA.  
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Figure 7.1. Schematic diagram of step-by-step reaction of BC modification for synthesis of 

BC/PVAN/PANI/CNTs nanocomposites. a) SI-ATRP of 4-VAN onto BC, starting with the creation of 

initiating sites on OH-rich BC surface (BCi) with BiBB. b) COP of ANI performed in an ice-bath in 

1M HCl solution and APS as oxidant, to obtain BC/PVAN/PANI. c) Five-time dipping and drying 

process in SWCNTs dispersion for CNTs-reinforcement forming BC/PVAN/PANI composites. 

 

 RESULTS 

 Morphological Characterisation 

BC/PVAN/PANI/CNTs nanocomposites were successfully synthesized 

following a multiple-step reaction, as schematically exemplified in Figure 7.1. The 

colour changes of BC membranes visible in Figure 7.2 gives a preliminary indication 

of the successful BC chemical modification. In Chapter 5, it was seen that upon SI-

ATRP, BC membrane changed from white to light yellow colouring with no 

significant morphological effects on pristine BC, which became dark green with an 

uneven surface after COP, typical of PANI in the highest conductive form (emeraldine 

salt), as it is also shown in SEM images of Figure 7.3 [246]. PANI nanorod-like 

structures raised to fully coverage PVAN-treated BC nanofibres in the course of COP 

 

a) 

b) 

c) 

d) 

SEM 
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(Chapter 5), may act as a suitable substrate for accommodation of CNTs through π–π 

interactions [247].  

 

 

Figure 7.2. Optical images of BC/PVAN/PANI membranes after dipping/drying process in CNTs 

solution continuously performed 5 times. The numeral index (1…5) indicates the dip times in CNTs.  

 

The interconnected porosity of BC network with large specific surface area is 

extensively reported in literature and is responsible for the exceptional absorption of 

CNTs, besides the additional presence of PVAN/PANI bilayer [248]. The successful 

impregnation of CNTs can be testified at a first glance by a slight shifting from dark 

green to dark grey colour (Figure 7.3). CNTs is prompted with a thin nanofibrillar-like 

network [249] coating on BC/PVAN/PANI surface, as it is seen in the SEM image of 

Figure 7.3, covering the as-recognised  PANI morphology. A closer look to the 

functionalised-CNTs composite membranes, as representatively illustrated in HRTEM 

image of Figure 7.3b, demonstrates the nanotubular features of CNTs in a nanofibrillar 

arrangement, self-assembled into an interpenetrated and nanoporous structure [250] 

(Figure 7.3a,b), that is reasonably well distributed throughout the selected area.  
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Figure 7.3. SEM images of a) pristine BC, b) BC/PVAN, c) BC/PVAN/PANI and d) 

BC/PVAN/PANI/CNTs, membranes with e) and f) STEM images of a CNTs coating portion of 

BC/PVAN/PANI/CNTs accordingly identified. The pictures placed on the right corner in SEM images 

correspond to the respective nanocomposites. The circle area indicates PANI-nanorods. 

 

SEM-EDX mapping sustains the former results, demonstrating an abundant 

carbon content of the CNTs-reinforced nanocomposites of over 90% atomic weight in 

the selected area (Figure 7.4e). Carbon 1Kα distribution represented with a highly 

dense red dots area visible in EDX layered image of Figure 7.4a, corroborates the 

uniform impregnation of CNTs layer. Certain amounts of sulphur are also seen (Figure 

7.4c,e) which can be attributed to residual APS from COP reaction. 
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Figure 7.4. SEM-EDX of BC/PVAN/PANI/CNTs membranes. a-d) X-ray maps of the selected area f) 

and e) respective sum map spectrum. 

 

 Chemical Characterisation 

X-Ray Diffraction 

Representative XRD spectrum in Figure 7.5 was acquired for CNTs-reinforced 

membranes, which was directly compared with that of BC/PVAN/PANI (Figure 7.5b). 

The two main diffraction peaks observed at 14.5o and 22.7o in all spectra were ascribed 

to BC. As previously concluded in Chapter 5, the progressive decrease, broadening 

and slight shifting of the diffraction peaks after BC modification were attributed to the 

successful incorporation of PVAN and PANI, despite the non-detection of new peaks. 

After immersion of BC/PVAN/PANI membranes in CNTs, no significant changes 

could be seen, as shown in Figure 7.5a. However, with the high magnification of both 

spectra (Figure 7.5b), it is possible to be recognised a new diffraction peak measured 

at 26.6o that can be assigned to the plane 002 of CNTs (002C) due to the reflection of 

graphite, which is the strongest and sharpest peak indexed to pristine CNTs [251]. The 

crystallite size of the CNTs as-calculated with the Scherrer equation (equation 3.5) is 

39.4 nm, which is within the range found in the literature [252]. Therefore, it can be 

concluded CNTs were effectively coated on BC/PVAN/PANI nanocomposites, 

endorsing the previous gathered results on the optical and morphological analysis. 
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Figure 7.5. a) XRD spectra of BC, BC/PVAN, BC/PVAN/PANI and BC/PVAN/PANI/CNTs, b) with 

the corresponding magnification of the selected squared area. The curves were smoothened with FFT 

using Origin®2015 software. 

 

X-Ray Photoelectron Spectroscopy 

XPS conducted on BC nanocomposites corroborates the systematic reaction 

successfully achieved. The comparative wide scans displayed in Figure 7.6, acquired 

at a sampling area of 400 µm × 400 µm, showed that all nanocomposites have binding 

energies (BE) consistent with carbon 1s (C1s) and oxygen 1s (O1s) core shells, with a 

significant increased content in carbon after CNTs loading along with an expected 

escalating difference of C1s/O1s, as duly marked in the spectra [253]. The existence 

of nitrogen 1s core shell (N1s) in BC/PVAN (Figure 7.6b) and BC/PVAN/PANI 

(Figure 7.6c) composites reflected the efficient grafting of PVAN/PANI bilayer on 

pristine BC, as previously concluded in Chapter 5. In CNTs-reinforced 

nanocomposites, however, there are not apparent signs of the presence of nitrogen, 

indicative of full and uniform coverage of a CNTs on  PVAN/PANI bilayer [254].  
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Figure 7.6. Comparative XPS spectra of wide scans acquired for un-modified BC, and BC/PVAN, 

BC/PVAN/PANI and BC/PVAN/PANI/CNTs nanocomposite membranes. The double sized arrows 

point out to the contrasting peak intensities of C1s and O1s after the inclusion of the successive coatings 

onto BC, and the circular areas in BC/PVAN and BC/PVAN/PANI spectra identify the peaks ascribed 

to N1s. 

 

Distinct carbon bonds associated to individual contributions can also be 

distinguished in high-resolution C1s spectra over the sequential BC functionalisation 

steps. The core-level spectrum of C1s in BC manifests (Figure 7.7) the typical BE 

relative to pristine BC at 285.0 eV (C-C/C-H), 286.6 eV (C-O) and 288.1 eV (O-C-O) 

[74]. Upon SI-ATRP, a small deconvoluted peak emerged at 284.2 eV, that can be 

ascribed to C-C from PVAN aromatic ring, coupled with another peak at 289.4 eV, 

related to O-C=O bonding between BC and BiBB in ATRP initiation step [255]. The 

carbon-rich PVAN is witnessed with the intensification of C-C and C-H bonds 

compared to that of unmodified BC, to which C-Br from BiBB may have also 

accounted for. The subsequent functionalisation with PANI resulted in a 

rearrangement of the peak intensities, in particular at 285.0 eV for possible additional 

contributions of C-N and C=N bonds, and at 285.7 eV for C-N+ and C=N+ bonds [256]. 

However, the presence of CNTs into BC/PVAN/PANI nanocomposites led to an 

increased peak intensity of BE of the carbon bonding in contrast to what was observed 

in BC and other BC nanocomposites, indicating the possible presence of structural 

defects. A higher contribution of the peak at 284.2 eV can be assigned to C=C sp2 
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hybridisation of CNTs; while different relative intensities of the peaks at 284.2 eV and 

285.0 eV compared to non-CNTs-treated membranes suggests that sp3 hybridisation 

of C-C and C-N at 285.0 eV may be also present due to some possible interactions of 

CNTs with the aromatic rings and nitrogen atoms of protonated PANI [80, 257].  This 

supports that CNTs inclusion into BC/PVAN/PANI nanocomposites was efficiently 

accomplished.  

 

 

Figure 7.7. High-resolution core-level spectra of C1s of BC, BC/PVAN, BC/PVAN/PANI and 

BC/PVAN/PANI/CNTs nanocomposites, extracted from XPS wide scans of Figure 7.6. Highlighted are the 

contributions of CNTs to BC/PVAN/PANI/CNTs nanocomposites. 

 

 Electrical Conductivity 

CNTs-reinforcement of BC/PVAN/PANI was completed through the 

dipping/drying process repeatedly performed five times to add an extra conductive 

layer. The frequency of this process was determined based on the highest electrical 

conductivity that could be achieved, which was monitored every step with the four-
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point probe until a stable value was read (Figure 7.8). Similar to what was observed in 

Chapter 6, different electrical conductivities were obtained according to the membrane 

side, which was attributed to contrasting nanofibres density of BC, as such different 

grafting yields of PVAN/PANI bilayer are obtained upon ATRP and COP reactions.   

No significant increase in the electrical conductivity of the nanocomposites can 

be noticed after soaking in CNTs twice. However, from the third time, the conductivity 

on the dense side raised considerably from (3.5±0.8)×10-2 up to (1.3±0.4)×10-1 S.cm-1 

on the last dip, and the average conductivity of both sides increased from (2.8±0.6)x10-

2 up to (1.0±0.3)x10-1 S.cm-1. This may be related to the better permeabilisation of 

CNTs solution inside BC membrane. 

 

Figure 7.8. Electrical conductivity of BC/PVAN/PANI nanocomposites before and after immersion in 

CNTs dispersion for one up to five times. 

 

 Electrochemical Properties 

Electrochemical Impedance Spectroscopy 

CNTs-reinforced nanocomposites were subject to EIS analysis as displayed in 

Figure 7.9a, to further assess the electrical properties. The data was curve-fitted using 

the equivalent Randles circuit shown in Figure 7.9b. The results as-fitted by the circuit 

are discriminated in Table 7.1. Changes in the electrochemical behaviour of the 
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nanocomposites are mainly bestowed by the presence of both PANI and CNTs, 

whereas BC confers appropriate support for the accommodation of those electroactive 

moieties, while building a protonic conduction path (Chapter 4).  

 

Table 7.1. Average values (3 samples) of the elements of the equivalent Randle circuit used to fit the 

data of Figure 7.9. 

Element BC/PVAN/PANI BC/PVAN/PANI/CNTs 

Rs (Ω) 51.3±5.3 31.0±6.8 

Rct (Ω) 21.2±5.1 23.4±4.4 

CPE1 (F) (26.7±0.2)×10-6 (21.2±0.6)×10-6 

Rp (Ω) (1.1±0.005)×1012 308.1±24 

CPE2 (F) (1.5±0.2)×10-6 (5.4±0.3)×10-2 

 

As earlier discussed in Chapter 6, the solution resistance (Rs), marks the 

beginning of the first semicircle seen in the Nyquist plots and can be attributed to the 

electrolyte resistivity and the uncompensated resistance [232], as well as the resistance 

derived from the contact electrodes [73]. The parallel combination of the 

electrode/electrolyte charge transfer resistance (Rct) with the corresponding faradaic 

capacitance (CPE1) describes the first semicircle formed at high frequencies [231], that 

is followed by a second semicircle drawn at low frequencies which can be curve-fitted 

with a polarisation resistance (Rp) in parallel with a double layer capacitance (CPE2) 

[234]. CPE1 and CPE2 are expressed in terms of constant phase elements as this 

accounts for the non-ideal capacitor behaviour resulted from heterogeneous porosity 

and PANI/CNTs distribution of the nanocomposite membranes [236], causing charge 

scattering at the electrode/electrolyte interface (depressed semicircles) and the 

deviation of the diffusion line from the 45o slope at low frequencies [258].  

 



  

Chapter 7: CNTs-Reinforcement of BC/PVAN/PANI Nanocomposites 155 

Figure 7.9. a) Representative Nyquist plots of BC/PVAN/PANI and BC/PVAN/PANI/CNTs nanocomposite 

membranes BC/PVAN/PANI, with the respective b) equivalent Randles circuit used to fit the data. Rs stands for 

solution resistance, Rct for charge transfer resistance, Rp for polarisation resistance, and CPE1 and CPE2 for constant 

phase element of the corresponding Rct and Rp parameters. Square dots (■) represents the acquired experimental 

data and solid lines (─) for the fitting. 

 

Rs lowers after CNTs-reinforcement, which suggests ionic diffusion was 

facilitated [259]. Concurrently, Rct and CPE1 did not change significantly, which 

implies PANI may be the main responsible for the electrochemical behaviour over the 

high frequency range (first semicircle), while CNTs dominated in the low frequency 

region (second semicircle) with possible additional contribution of PANI/CNTs 

interface resistance [236]. In fact, it can be seen Rp decreases substantially from 1.1 

TΩ to 308 Ω with a pronounced increase of the corresponding double layer capacitance 

(CPE2) in 4 orders of magnitude from 1.5 μF to 54 mF. This corroborates the enhanced 

electrical conductivity and the new electrochemical properties upon BC/PVAN/PANI 

functionalisation with CNTs. The remarkable charge storage capacity shown is 

imparted by the large aspect ratio and surface area of CNTs, which may act as a 

conducting bridge between PANI domains [80]. The extended π structure of CNTs not 

only furnishes the nanocomposites with a more efficient electron transference, as it 

facilitates the ionic transport from the electrolyte that can traverse the nanotube length 
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through the bore upon an applied potential. This leads to an increased in the protonic 

conductivity [260].  It is also anticipated that the porosity of CNTs coating may have 

contributed further for the enhancement of the protonic conductivity, as it is 

established the interconnected porosity is favourable [261]. In addition, it is known 

and also revealed in high resolution XPS spectra, CNTs can strongly interact with the 

aromatic rings of PANI structures, stablishing π-stacking and CH-π interactions [80], 

that contributes to boost the overall electrical properties of the nanocomposite. 

 

 Thermogravimetric Analysis 

The thermal stability of BC/PVAN/PANI/CNTs nanocomposites was assessed 

via TGA recorded from room temperature to 800 oC. CNTs are characterised for its 

high thermal stability, with monotonical decomposition for temperatures over 500 oC 

[262]. The weight loss of the nanocomposites, however, demonstrate multiphase 

thermogravimetric profiles, which can be categorised into three main stages, 

accordingly indicated in Figure 7.10. Table 7.2 summarises the information related to 

the onset, offset and peak temperatures of the several degradation stages of the BC 

composites (Tonset, Toffset and Tpeak), extracted from the graphic of Figure 7.10. Initially, 

there is a minimal decomposition below 5 %, followed by a sharp weight loss, from 

which a plateau is reached with an insignificant degradation. The first stage (I) can be 

attributed to some remaining moisture inside the samples [208], while the second stage 

(II) can be associated to the main chain decomposition of BC [79], PVAN [263] and 

PANI with deprotonation of EM salt and acid release [264] and the last stage can be 

assigned to the residual and irreversible polymer chain decomposition, along with 

some CO2 emission resulting from the initial reaction between carbon from CNTs and 

oxygen from about 500 oC [174]. Despite the weight loss pursued the same trend for 

all BC nanocomposites, the extent of the stages varied slightly after BC modification. 

This observation is particularly evident in the first two degradation stages which 

differed from those of pristine BC by approximately 200 oC. The lower temperatures 

at which the decomposition of BC/PVAN/PANI/CNTs started are in the range of the 

temperatures corresponding to the degradation phases of the individual components of 

the nanocomposites abovementioned, which means the functionalised layers may 

serve as protective coating against thermal degradation of the underneath layers [72].  
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Figure 7.10. Thermogravimetric curves of BC nanocomposites characterized by three weight loss 

stages accordingly marked as I, II and III. The differential thermal curve of BC/PVAN/PANI/CNTs 

(DTA) is also shown. 

 

After CNTs-reinforcement, the BC/PVAN/PANI nanocomposites become more 

thermally resistance by over 100 oC (see Figure 7.10), from 200 oC to 350 oC. In 

addition, CNTs-coated membranes seemed to be the most thermally stable 

nanocomposite, displaying a final vestigial weight of 37%, exceeding nearly 20% of 

that of pure BC (see Figure 7.10) [265]. Because CNTs possess elevated thermal 

stability, such event can be attributed to an eventual synergetic π-stacking interaction 

stablished between the quinoid rings of PANI and the CNTs π-bonding, as seen with 

XPS analysis. Moreover, stage II in BC/PVAN/PANI/CNTs can be further portioned 

into two phases (1st derivative plot of Figure 7.10) from 206 oC (Tonset1) and 232 oC 

(Tonset2), respectively, with the highest weight change (peak temperatures) at 234 oC 

(Tpeak1) and 273 oC (Tpeak2) previously assigned to polymer chain decomposition (Table 

7.2). The last degradation stage visible from 420 oC (Tonset3) marks the beginning of 

CNTs burning that reaches its peak at 477 oC (Table 7.2) [262]. This assumes CNTs 

furnishes a supplemental thermally stable and also heatproof coating at high 

temperatures in addition to the enhanced conductivity rendered to the nanocomposites.    
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Table 7.2. Onset, peak and offset temperatures extrapolated from the first derivative curves of TGA 

shown in Figure 5.9b. 

 BC BC/PVAN BC/PVAN/PANI BC/PVAN/PANI/CNTs 

Tonset1/
oC 323 223 171 206 

Tpeak1/
oC 362 242 202 234 

T offset1/
oC 390 251 296 290 

Tonset2/
oC - 202 213 232 

Tpeak2/
oC - 324 241 273 

T offset2/
oC - 377 267 310 

Tonset3/
oC - - - 420 

Tpeak3/
oC - - - 477 

T offset3/
oC - - - 509 

 

 DISCUSSION 

CNTs was successfully incorporated within BC/PVAN/PANI nanocomposites 

primarily for augmented electrical properties. CNTs-reinforced membranes were 

easily accomplished through a simple dipping and drying process herein described, 

forming a uniform coating that possesses nanofeatures and electrostatic interactions 

that were responsible for the outstanding electrical conductivity and capacity verified. 

The electrical conduction mechanisms of PANI and CNTs differ significantly. As 

discussed in Chapter 6, the conductivity of PANI is concerned with charge carries 

raised from redox processes, whereas in CNTs, it results from the π-stacking along 

with its nanostructure and high surface area to volume ratio which towers the charge 

carrier mobility. In spite of the contrasting conducting mechanisms, both are affected 

by changes in the respective morphologies [266]. In theory, smaller diameters of CNTs 

vertically aligned are known to provide higher conductivity, as seen in Chapter 2.  

CNTs-functionalisation of BC/PVAN/PANI caused a significant increase of the 

electrical conductivity to values reported in literature for similar blends [72]. The high 

conductivity achieved was also determined by the extraordinary absorption capacity 

of BC substrate that can accommodate large amounts of CNTs within its network, 

while contributing for a protonic conduction pathway on the hydrated surface. The 

lowering values compared to that of pristine CNTs is, among others, related to the 
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randomly orientated CNTs nanofibres, the blending process and the substrate used, as 

different physicochemical interactions can be established. Although, mainly 

electrostatically adhered to BC/PVAN/PANI through Van der Waals forces, there is 

reported evidence that CNTs can strongly bind to the existing PANI, as testified from 

XPS analysis [267]. As this may provide a more stable coating, the inherent 

characteristics of CNTs, such as the electrical properties, may also be affected. It has 

been suggested that CNTs may act as dopant of PANI owing to the charge transfer 

from quinoid unit to CNTs, forming a charge-transfer complex which enhance the 

overall conductivity of BC/PVAN/PANI nanocomposite  (Figure 7.11) [80].  

 

 

Figure 7.11. Schematic illustration of the possible interactions stablished between PANI and CNTs. 1 

shows the pi-stacking interaction between the aromatic rings of both PANI and CNT and in 2, CNTs 

competes with chloride (Cl−) to dope PANI and form a covalent C-N bond (adapted from [80]). 

 

The electrochemical analysis extended the understanding of the electrical 

conduction mechanisms of this complex nanocomposite system, which is a mixed of 

electronic and protonic conductivities, brought in part by the long and continuous 

range of π-stacking chain across CNTs with its hollow nanostructure, as well as those 

created with PANI. Accordingly, the lowering resistivity and enlarged capacitance 

measured is a result of CNTs embodied within BC/PVAN/PANI membranes. 

Moreover, the electrochemical behaviour previously attributed to PANI was preserved 

after CNTs blending.  

The increased thermal stability of the nanocomposites in wide temperature 

range, ensures the overall properties will be thermally preserved up to 234 oC with 
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very slow weight loss up to 270 oC, as such it is an essential requisite for bioelectronic 

devices (human body temperature 37 oC). This increased thermal stability of the 

nanocomposites seen is endowed by CNTs coating and the bonding with PANI [268]. 

Along with the interconnected porosity yet cohesive CNTs coating, it is also 

anticipated positive synergy with cells through a suitable flow of oxygen and nutrients, 

for encouraging suitable cell-cell interaction, cell adhesion, migration, proliferation 

and differentiation [269], aspects that are further inspected in Chapter 8. To conclude, 

these newly developed nanocomposites reinforced with CNTs reveals improved 

capabilities that may be employed as potential neural interfaces. 

 

 CONCLUSION 

Electrical reinforcement of CNTs layer nanocomposites was efficiently 

accomplished with a dip-coating process. CNTs impregnation was confirmed with 

SEM-EDX, HRTEM, XRD and XPS analysis. PANI/CNTs interaction embodies BC 

substrate with special electrical properties, which can house large amounts of these 

moieties, while providing a path for protonic conductivity. CNTs considerably boosted 

the electrical conductivity from ~10-2 to ~10-1 S.cm-1 and charge storage capacity up 

to 54 mF with an impressive decrease of the polarisation resistance in nine orders of 

magnitude to some hundreds of ohms. This is attributed to π-π interactions stablished 

with PANI with a possible dopant effect, as well as the large surface area provided by 

the nanorod-like arrangement. PANI/CNTs imparted a protective bilayer against 

thermal degradation of BC substrate, with no substantial weight loss measured under 

234 oC. CNTs improved the electrical properties of the formerly produced 

BC/PVAN/PANI and the thermal stability. 
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 Biocompatibility of the 

Functionalised BC-based 

Nanocomposites 

The content of this chapter is partially included in the published scientific article 

“Rebelo A, Liu Y, Liu C, Schäfer K-H, Saumer M, Yang G. Poly(4-

vinylaniline)/polyaniline bilayer functionalized bacterial cellulose membranes as 

bioelectronics interfaces. Carbohydr Polym. Elsevier; 2019 Jan 15; 204:190–201” and 

the accepted manuscript for publication “Rebelo A, Liu Y, Liu C, Schäfer K-H, 

Saumer M, Yang G. Carbon nanotubes-reinforced poly(4-vinylaniline)/polyaniline bi-

layer grafted bacterial cellulose for bioelectronic applications. Biomaterials Science & 

Engineering of American Chemical Society, February 2019”. 

 

The biocompatibility of a material involves several aspects in a certain context 

to induce appropriate host response in a specific situation. In general, a biomaterial 

must comply with some basic cellular responses, such as non-cytotoxicity and non-

immunogenicity, while maintaining the cell integrity and supporting the ordinary 

cellular functions [270]. This chapter is devoted to a careful analysis on the 

biocompatibility aspects for evaluation of the safe usage of the as-developed 

nanocomposites for biomedical purpose, in particular in the nervous system. 

Accordingly, in vitro neural cell cultures were conducted in the presence of pristine 

BC and BC-based nanocomposites, with special attention given primarily to cell 

viability and differentiation, in order to evaluate any possible toxic and functional 

effects on cells (Figure 8.1).  

Two different neural cell models – PC-12 Adh and SVZ cells – were selected for 

this aim (Figure 8.1). In the first set of experiments, adherent cells derived from the 

pheochromocytoma of embryonic rat adrenal medulla (PC-12 Adh cells) were used to 

evaluate both cell proliferation and neuronal differentiation [271]. PC-12 Adh cells 

were incubated for 7 days with BC-based nanocomposites and the cell viability was 

assessed using PrestoBlue® reagent, with the cell morphology examined at the end of 

the culture period. Neural differentiation was induced with nerve growth factor (NGF) 
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in the presence of the different materials and observed with fluorescence staining. 

Thereafter, primary neural stem cells (NSCs) isolated from the subventricular zone of 

the brain of postnatal mice (SVZ cells) were cultured with BC nanocomposites for a 

closer perception of the cells behaviour. The viability of SVZ cells was assessed with 

LIVE/DEAD assay after 7 days of incubation with BC and its composites. 

Neurogenesis was induced with NGF on the different substrates and was tracked at 

different time points using a green fluorescence staining (CFSE). On the last day of 

culture, the induced cells were immunostained for visualisation of neurons and glial 

cells using specific cell markers. 

 

 

 

Figure 8.1. Schematic diagram of the possible cellular responses of PC-12 Adh and SVZ cells studied 

in this chapter after contact with the electrically conductive BC nanocomposites in vitro to conclude on 

their cytocompatibility: Cell proliferation and cell differentiation. 

 

 RESULTS 

 Cytocompatibility with PC-12 Adh Cells 

Cell Viability 

When being incubated with the as-synthesised BC/PVAN, BC/PVAN/PANI and 

BC/PVAN/PANI/CNTs loaded with different PVAN grafting yields, cell viability was 

determined through the assessment of cell adhesion and proliferation of PC-12 Adh 
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cells using PrestoBlue assay, which was compared with that on TCTP and BC. Cells 

were seeded on BC nanocomposites at a density of 2×104 cells per cm2, kept in culture 

at 37 oC for 7 days. Cell adhesion was ensured within 24 hours after seeding and the 

proliferation was evaluated thereafter every 2 days until the end of the culture period. 

The absorbance read at 570 nm were normalised to 600 nm, and TCTP and BC were 

used as controls.  

In the first set of experiments, cell viability was tested for BC/PVAN and 

BC/PVAN/PANI nanocomposites synthesised with different BiBB:VAN molar ratios, 

which were accordingly compared to that of TCTP and BC, as shown in Figure 8.2.  
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Figure 8.2. Cell activity of PC-12 Adh cells cultured on pristine BC, BC/PVAN (at 1:3 and 1:5) and 

BC/PVAN/PANI (at 1:3 and 1:5). The results are shown in terms of means±standard deviations of 

optical absorbance measured. * and # indicates statistical significance (p<0.05) compared to TCTP and 

BC, respectively, according to one-way ANOVA testing. 

 

After 24 hours of incubation, considerably higher optical absorbance (OA) was 

detected on BC/PVAN (p<0.05). It can be also observed a trend for an increase OA on 
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BC/PVAN/PANI nanocomposites over time (Figure 8.2) to which cells seemed to be 

strongly anchored (Figure 8.3). Followed the initial 24 hours, the OA gradually 

increased on all substrates at a steady rate till the end of the culture period, in spite of 

being visibly higher on BC/PVAN in particular for higher VAN molar contents 

(p<0.05). On the last day, statistically equivalent OA can be observed on all substrates, 

which approximately doubled in relation to the first day, although this was apparently 

slightly lower on BC/PVAN/PANI compared to that on TCTP.  

Despite this observation, the adhered neural cells on BC-based substrates on the 

7th day (Figure 8.3) show what seems to be a flat and fully spread shape over the 

surface. 

 

 

Figure 8.3. SEM images showing the morphology of PC-12 Adh cells cultured on BC, BC/PVAN 

(BiBB:VAN=1:3 and 1:5) and BC/PVAN/PANI (BiBB:VAN=1:3 and 1:5) after 7 days of culture. 
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Upon CNTs-reinforcement of BC/PVAN/PANI nanocomposites prepared from 

BiBB:VAN=1:5 molar ratio (BC/PVAN/PANI/CNTs), higher OA was identified 24 

hours after seeding in comparison with BC (p<0.05) (Figure 8.4). However, in the 

following days, no statistical differences were detected on the average values despite 

significant dispersibility (long standard deviation bars). Notwithstanding, a trend to be 

slightly higher on BC/PVAN/PANI/CNTs can be observed. This shows that the 

inclusion of CNTs did not dramatically affect the OAs measured for the BC-based 

nanocomposites and it seems there was a trend to further increase. This also shows 

identical results to those obtained on BC/PVAN/PANI, and similar to what has been 

observed for pristine BC. 
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Figure 8.4. Cell activity of PC-12 Adh cells cultured on pristine BC, BC/PVAN (at 1:3 and 1:5) and 

BC/PVAN/PANI (at 1:3 and 1:5). The results are shown in terms of means±standard deviations of 

optical absorbances measured. * indicates statistical significance (p<0.05) compared to TCTP and BC 

according to one-way ANOVA testing. 

 

Cell Differentiation 

Differentiation of PC-12 Adh cells were induced on the diverse BC substrates 

and their responses were accordingly evaluated and compared with that on TCTP. Cell 

adhesion was ensured with incubation within the initial 24 hours after harvesting, when 
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culture media was replaced by NGF-enriched medium and replenished every 2 days 

for 7 days. In the end of the culture period, the DNA of the cell nucleus and the actin 

present in the neurites were stained with DAPI (blue) and Alexa Fluor® 488 (green), 

respectively, for visualisation with fluorescence microscope (Figure 8.5) and later 

quantitative analysis (Figure 8.6).  

 

 

Figure 8.5. Fluorescence images of induced PC-12 Adh cells after 7 days incubated with NGF on TCTP, 

BC, and BC/PVAN and BC/PVAN/PANI prepared with different BiBB:VAN molar ratios. The nuclei 

are represented in blue (DAPI) and the cell projections are shown in green (Alexa Fluor® 488). The 

indexes 1:3 and 1:5 refer to BiBB:VAN molar ratios. Red arrows identify glial-type cell. 
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As shown in Figure 8.5, appreciable cell number showed high neurite outgrowth 

with long projections on both BC/PVAN and BC/PVAN/PANI substrates. In contrast, 

cells on BC adopted mostly rounded shape with multiple but very short projections, 

morphology that is typical of early differentiated glial-type cells or completely 

undifferentiated cells. With BC functionalisation, the differentiation degree practically 

doubled (Figure 8.6a) and a dramatic increase in neurite length occurred from 17±5 

µm on BC up to 77±29 µm on BC/PVAN/PANI (Figure 8.6b). As such, the 

functionalised BC, in particular BC/PVAN/PANI, may have triggered neuronal 

differentiation unlike pristine BC, that apparently acted as a neuritogenesis inhibitor 

despite the good support provided for cell adhesion and proliferation when non-NGF 

treated.  

 

 

Figure 8.6. a) Percentage of differentiated cells on pristine BC and BC nanocomposites relative to 

TCTP and b) Neurite length of cell projections on the different substrates. * and # indicate statistical 

significance (p<0.05) compared to TCTP and BC, respectively, according to one-way ANOVA testing.   
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 Cytocompatibility with SVZ Cells 

 Cell Viability 

To substantiate the former results on the neural cell viability of the newly 

developed functionalised BC composites prepared under the standard conditions 

(BiBB:PVAN=1:5), SVZ cells were isolated from postnatal mice and cultured with 

the grafted BC membranes for 7 days, as such their responses were evaluated and 

compared with that of pristine BC and TCTP, which were used as control. 

Representative images of the SVZ cells on the functionalised BC are depicted in Figure 

8.7, in which live cells were stained green with calcein-AM and dead cells were stained 

red with propidium iodine.  

 

Figure 8.7. Live (green) and dead (red) stained SVZ cells, and corresponding merge images, using 

calcein-AM and propidium iodine, respectively, after 7 days of incubation with TCTP, BC, BC/PVAN, 

BC/PVAN/PANI and BC/PVAN/PANI/CNTs substrates. 
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The cell viability and cell number relative to the TCTP are shown in Figure 

8.8a,b. 1×104 cells per cm2 were seeded equally to all BC composites and TCTP. After 

7 days of culture, over 80% of cells were viable in all conditions, reaching up to 

approximately 90% of viability on PANI- and CNT-reinforced BC, which suggests the 

substrates are not cytotoxic. However, there was an apparent lower cell number 

(p<0.05) on BC/PVAN/PANI nanocomposites compared to that of control TCTP 

(Figure 8.7 and Figure 8.8b). However, after CNT reinforcement, this effect was not 

perceptible (p<0.05) 

 

 

Figure 8.8. Viability of SVZ cells, as determined with LIVE/DEAD assay, after 7 days of culture with 

pristine BC and BC composites. a) Percentage of viable (live) cells and b) percentage of total number 

of cells relative to TCTP, with standard deviation error bars. Statistical significance between the 

different substrates (groups) tested is denoted as *p<0.05, according to one-way ANOVA testing. 
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Despite these observations, it is very promising to see that almost 90% of cells 

were viable on BC/PVAN/PANI and BC/PVAN/PANI/CNTs nanocomposites. 

Further, a considerably higher cell number on BC/PVAN composites indicates PVAN 

provided good support for cell proliferation, that could be attributed to the enhanced 

surface hydrophilic properties, that may have also led to an improvement of the cell 

viability of the BC membranes containing PANI and CNTs  [108]. This suggests that 

the electrically conductive BC nanocomposites with enhanced conductivity did not 

cause any cytotoxicity to SVZ cells.  

 

Cell Differentiation 

Neural differentiation was accomplished in the presence of the BC 

nanocomposites, which were incubated with SVZ cells for 7 days with NGF-enriched 

differentiation medium. ECM coating (laminin-based protein) was added to all 

substrates (coverslip and BC-based membranes) 1 hour before harvesting to facilitate 

cell adhesion and subsequent differentiation. Early cell differentiation stage was 

checked at two set time points (2 hours and 24 hours) using CFSE dye, and later 

differentiation stage was analysed on the last day of culture through immunostaining 

with β-tubulin III and α-GFAP for specific detection of neurons and glial cells, 

respectively. Induced cells on BC and BC nanocomposites were accordingly compared 

with those on coverslip (Figure 8.10).  

Initial cell extensions sprouting from soma can be seen in Figure 8.9 shortly after 

seeding (2 hours), evincing well-adhered neural cells at early differentiation stage. 

Following 24 hours, cell processes became progressively longer and particularly 

pronounced on PANI- and CNT-treated BC membranes, which suggests the 

occurrence of neuronal maturation. Despite a lower cell density observed on 

conductive BC nanocomposites as expected from the previous results, the number of 

differentiated cells was significantly higher on BC/PVAN/PANI and 

BC/PVAN/PANI/CNTs (p<0.05), in which approximately 70% and 80% of cells 

respectively, successfully developed neurites, in contrast with a modest 50% on 

coverslip and BC. This indicates the differentiation degree was particularly expressive 

on the electrically conductive substrates, on which the neural phenotype was preserved 

till the end of the culture period. In fact, neurite length on PANI- and CNTs-reinforced 

membranes is significantly higher (p<0.05) from that measured on pristine coverslip 



  

Chapter 8: Biocompatibility of the Functionalised BC-based Nanocomposites 171 

and BC (<53 μm) for all selected set time points, showing the most impressive neurite 

outgrowth on BC/PVAN/PANI from 56±15 μm after 2 hours up to 115±24 μm after 7 

days (Figure 8.9).  

 

 

Figure 8.9. Neural differentiation of SVZ cells on different substrates over time. a) Induced cells 

labelled with CFSE after 2 hours and 24 hours of harvesting on coverslip, BC, BC/PVAN, 

BC/PVAN/PANI and BC/PVAN/PANI/CNTs substrates. b) Differentiation degree (%) on the 7th day 

of culture as determined differentiation on the different substrates. c) Neurite length evolution measured 

at different cultured periods (2 hours, 24 hours and 7 days). *p<0.05 denotes statistical significance 

compared to coverslip, according to one-way ANOVA testing. 
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findings, showing positive expression of mature neural markers, β-tubulin III and α-

GFAP (Figure 8.10). Compared to the induced cells on coverslip and BC, stronger 

expression of β-tubulin III can be seen on BC/PVAN/PANI and 

BC/PVAN/PANI/CNTs nanocomposites, which implies superior neuronal 

47±5 49±5 48±7 

71±12 
80±8 



  

Chapter 8: Biocompatibility of the Functionalised BC-based Nanocomposites 172 

differentiation. Despite the higher cell number seen on coverslip and BC/PVAN, it is 

evident that conductive BC-based composites promoted statistically higher 

differentiation degree with very well-developed neurons and extended neurites 

compared to other conditions, as concluded before. Furthermore, from Figure 8.10 it 

seems that more cells were preferentially differentiated into neurons (GFP) on 

conducting membranes, whereas in other conditions astrocytes (RFP) were the 

predominant neural lineage. This neuronal prevalence on BC/PVAN/PANI and 

BC/PVAN/PANI/CNTs was already suggested with PC-12 Adh cells. These new 

functional properties of BC nanocomposites may act as exogenous factors to trigger 

neuronal differentiation and stimulate the growth of well-developed axons (Figure 

8.8). On BC/PVAN/PANI/CNTs, neurite outgrowth was slightly lower in comparison 

with BC/PVAN/PANI, measuring up to 76±25 µm at the end of the culture period.  

 

 

Figure 8.10. Immunofluorescent images of differentiated SVZ cells into neurons (GFP) and glia-like 

cells (RFP) cultured on BC, BC/PVAN, BC/PVAN/PANI, BC/PVAN/PANI/CNTs and coverslip for 7 

days. Cell nuclei are stained in blue (DAPI) with merged pictures on the right. 
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 DISCUSSION 

BC has a long track record of accepted biocompatibility for a wide range of 

biological systems. Results from multiple studies performed both in vitro and in vivo, 

has led to be approved by US FDA for uses in biomedical applications. Some of the 

factors contributing to the outstanding biocompatible properties of BC are the non-

cytotoxicity, high hydrophilicity and surface area, interconnected porosity with 

appropriate pore size for cell migration and flow of nutrients and oxygen, which makes 

BC an exceptional candidate for developing hybrid biocompatible electronic devices 

upon appropriate functionalisation. Therefore, for biological authentication of the as-

prepared electrically conductive BC nanocomposites, the biocompatibility was 

initially tested in terms of cell viability and differentiation ability in vitro using 

secondary (PC-12 Adh) and primary (SVZ) cell models, with later demonstration of 

the mechanistic of the functionalised BC as neural interfaces. 

 

 Different Cell Models for Cytocompatibility of BC-based Nanocomposites: 

PC-12 Adh versus SVZ 

Neural cells isolated from pheochromocytoma have been widely used as a 

standard secondary cell line for biocompatible trials, as regards neurotoxicological and 

neuronal differentiation studies. These cells are immortalised and as such, they can 

continuously grow, being able to acquire some of the intrinsic properties of 

sympathetic neurons when exposed to NGF, and hence, it serves as a useful 

comparison model [272]. An adherent variant, PC-12 Adh, was used to favour the 

adhesion and growth on the substrates. However, primary cells are often preferred 

owing to the non-immortalised characteristics and thus, a closer reproducible 

behaviour to that in vivo [273]. Therefore, neural stem cells isolated from the 

subventricular zone of the brain were also used for a more reliable comparison. SVZ 

cells are present in both embryonic and adult brains, showing ability to undergo 

differentiation into nerve cells (neurons) and several types of neuroglia (supporting 

elements), such as astrocytes, oligodendrocytes and ependymal cells, which makes 

them a powerful model of study [274]. 

Cell adhesion, proliferation and differentiation are strongly dependent on the 

surface properties of the material, that must comprise characteristics like 

hydrophilicity, certain degree of topographical features (roughness) yet sufficiently 



  

Chapter 8: Biocompatibility of the Functionalised BC-based Nanocomposites 174 

smooth, and with functional and biomolecules cues, such as ECM, and other proteins 

and molecules.  

In the first series of experiments, cell viability of PC-12 Adh cells was assessed 

with PrestoBlue® assay. PrestoBlue® reagent can estimate the number of live cells by 

measuring their mitochondrial metabolism activity, from which resazurin is reduced 

to resofurin, that can be detected via changes in the OA [275]. High metabolic cell 

activity implies higher resazurin conversion rate, and hence, elevated absorbance 

intensities. Therefore, higher OAs can be in principle ascribed to higher cell number, 

whereas lower OA indicates lower cell number. Based on these assumptions, cell 

activity on BC-based nanocomposite substrates seemed to be comparable to that on 

BC and TCTP, with demonstrated propensity to support cell adhesion, growth and 

differentiation. Particularly higher cell number was observed on PVAN-functionalised 

BC, which was corroborated with the data from SVZ cells. This may be related with 

the surfactant properties of PVAN that can lead to an improvement of the 

hydrophilicity of the overall material, and decreased number of PANI aggregates with 

homogeneous distribution (discussed in Chapter 5), which is especially important for 

the cell attachment of adherent cells like PC-12 Adh [276]. Hydrophilic surfaces, 

differences in electrical charge and wettability represent crucial factors for cell 

adhesion and subsequent growth [277]. However, it seems the intrinsically 

hydrophobic nature of PANI [278] did not impede greatly cell attachment, but low 

proliferation rate was detected for both cell types. The possible existence of some 

remaining chemicals left upon PANI synthesis may be underlying the low cell density 

witnessed, despite the several purification steps performed, which were relied on 

neutralisation and mass diffusion. In particular, Cl− ions, as seen in XPS and 

SEM/TEM-EDX mapping (Chapter 5, sections 5.3 and 5.4), may be related to the 

possible existence of HCl that may not have been completely neutralised, creating an 

acidic environment which is cytotoxic [279]. Some unreacted aniline monomer and 

other oligomers may have also been retained within BC network, contributing to 

reduce further the cell growth rate. However, additional tests need to be performed to 

confirm this, as the results showed not to be statistically significant. Upon CNTs-

reinforcement of BC/PVAN/PANI nanocomposites (BC/PVAN/PANI/CNTs), a trend 

for a slightly higher proliferation rate of both cell types could be observed. This fact 

may be due to the surface nanofeatures of CNTs, that provided a smoother but still 
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rough surface with a larger area for cell attachment than that of BC/PVAN/PANI 

[280]. Although SVZ cells were maintained under nonadherent conditions unlike PC-

12 Adh cells, it has been demonstrated that the surface features of the substrate play a 

crucial role on cell growth, including SVZ cells that can grow as adherent monolayers 

subject to surface coating treatments [281]. Nevertheless, the results showed that the 

inclusion of CNTs did not affect negatively the cell viability of the BC-based 

nanocomposites but apparently facilitated cell-cell interactions and cell-substrate 

[282]. 

Despite a certain degree of inhibition seen of the seeded cells on PANI-based 

nanocomposites, both cell types attached in close contact with the substrate under 

induced differentiation conditions without neurogenesis being compromised. Similar 

to what was concluded for the cell viability tests, the relative low cell density observed 

during the culture period on BC/PVAN/PANI and BC/PVAN/PANI/CNTs was 

attributed to the reported poor hydrophilic properties of PANI and excessive surface 

roughness (Chapter 5), which may have prevented a portion of the cells to fully stablish 

contact points with the substrate [283]. Comparable effect has been already reported 

when high PANI concentrations were used, which is anticipated to be related with the 

formation of big aggregates that increased the roughness heterogeneity and that could 

further enclose unreacted chemicals difficult to be completely removed [284]. At the 

same time, there are also evidences that a suitable surface roughness, at nano- and 

microscopic scale can create a heterogeneous surface energy distribution that, along 

with its electrical properties, may have favoured the neurogenesis of the attached cells 

witnessed on these substrates [271]. In fact, neuronal differentiation with well-

developed neurites was superior on BC/PVAN/PANI and BC/PVAN/PANI/CNTs 

than on pristine BC; whereas unmodified BC and BC/PVAN membranes facilitated 

cell adhesion and stimulated cell proliferation of most of the cell population, which 

was particularly evident on BC/PVAN. BC/PVAN was also able to support cell 

differentiation, with higher differentiation degree and neuritogenesis than on BC, yet 

lower than on the electrically conductive substrates. These observations were 

frequently noticed for both PC-12 Adh and SVZ cells. The existence of charge carriers 

arising from both PANI and CNTs may have interacted with the ionic exchanges taken 

place at the cell membrane. This can generate electrical currents with a spatial 
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distribution of surface potentials which can act as an exogenous factor to trigger cell 

differentiation and thus, as a differentiation regulator [284].  

 

 CONCLUSION 

The cytocompatibility of the BC nanocomposites was successfully assessed 

using two different neural cell models. Overall, the cellular responses of both PC-12 

Adh and SVZ cells to unmodified and functionalised BC membranes were similar, 

which strengthened the results obtained and further confirms the suitability of PC-12 

Adh cells as a model for cell viability and differentiation studies. The cellular friendly 

characteristics of neat BC benefited cell viability of BC-based nanocomposites, which 

was apparently improved with the presence of the PVAN grafted layer. Although 

lower cell density was seen on PANI-based membranes, no statistical differences could 

indicate generated cytotoxic effects. Moreover, neuronal differentiation was further 

encouraged on electrically functionalised BC-based composites than on non-

functionalised ones, ascribed to the topographical electrical features, particularly 

demonstrated with SVZ cells. The results presented suggest the electrically conductive 

BC nanocomposites are not cytotoxic and can support and regulate neuronal 

differentiation.  
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 Conclusions and Future 

Recommendations 

 CONCLUSIONS 

Electrically functionalised BC-based nanocomposite membranes with enhanced 

electrical conductivity and biocompatibility were successfully developed to eventually 

act as TENIs to detect and record electrical signals from the nervous system and/or 

artificially stimulate it.  The fabrication of such devices requires the uses of 

biocompatible materials, in addition to the acceptable good electrical conductivity, 

long-term mechanical support and efficient bidirectional transducing paths between an 

electrical equipment and a biological structure.  

BC has very interesting characteristics featuring a 3D network with high-water 

holding capacity, that is certified by US FDA for several biomedical applications. 

Owing to its 3D nanofibrillar nature with high surface area, the BC matrix can 

efficiently accommodate a diverse range of electroactive moieties, such as PANI and 

CNTs, to furnish BC with electrically conducting properties while affording physical 

support and taking advantage of its mechanical flexibility. With water comprising 

about 98% of the BC structure, slight changes to its content can be used to tailor 

specific behaviours according to the desired requirements, including the mechanical 

and electrochemical properties. In addition, and contrary to what has been overall 

accepted, never-dried pristine BC has also a measurable conductivity attributed to a 

proton source. This was imparted by the existing liquid (water), imbedded in the 3D 

network with large surface area, that increases the conductivity and the charge 

capacitance. Variations in the water content, and possibly in other 

electrolytes/solutions, may be controlled with the proposed model for the dehydration 

process of BC.  

The electrically conductive properties were introduced to BC with a grafted 

PVAN/PANI bilayer achieved through SI-ATRP and COP in a three-step reaction. The 

chemical analysis confirmed the actual composition of PVAN/PANI which had been 

grafted onto BC nanofibres. The electrical properties of the newly developed BC 

membranes are closely related to the supramolecular PANI structures produced during 
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the chemical reaction. The PVAN interlayer inserted between PANI and BC enabled 

an increase of PANI yield with a more homogeneous distribution of its structural units 

in the form of nanorods-like shape, which could also be strengthened through denser 

PVAN brushes. This could be potentially applied onto other relevant substrates.  

The polymerisation process employed to incorporate PVAN/PANI bilayer could 

be chemically controlled and optimised to achieve the desirable properties. It was 

found that the PVAN interlayer increased the conductivity of PANI-coated BC 

membranes in one order of magnitude, yielding BC/PVAN/PANI nanocomposites 

with a maximum electrical conductivity of (4.5±2.8)×10-2 S.cm-1 when  higher VAN 

monomer contents, HCl and aniline concentrations were used for extended reaction 

times. The grafting of CNTs in the modified BC matrix, accomplished with a simple 

dipping/drying process, further improved the electrical conductivity of the 

nanocomposites to a highest value up to (1.3±0.4)×10-1 S.cm-1, showing also the 

largest charge storage capacity measure at 0 V of 54±3 mF at low frequencies in 

contrast to 1.5±0.2 µF measured on BC/PVAN/PANI due to the strong π-π interactions 

between PANI and CNTs and the high aspect ratio of CNTs structure. Furthermore, 

the PVAN/PANI coated BC nanocomposites were proven to be thermally stable up to 

nearly 200 oC, which could be extended to 234 oC after CNTs-reinforcement, 

confirming the suitability of the materials for both electronics and human body 

environments. Also, the weight loss was significantly reduced for a wider temperature 

spectrum. The different electrochemical responses to voltage changes arising from 

charge-transfer redox reactions indicated these nanocomposites can offer the quality 

and performance of smart materials. With this unprecedent electrochemical behaviour, 

electrically functionalised BC composites may act as an amplification mechanism for 

analysis and detection of electrical biosignals used in a wide range of biosensors, drug-

delivery systems and TE scaffolds. The neurotoxicological and differentiation studies 

conducted with PC-12 Adh and SVZ cells ensured these BC-based nanocomposites 

may be safely utilised in biological environment, providing suitable cellular growth 

(over 80 % for SVZ cells) and functions (neurites as long as 115±24 μm). Though, 

additional tests may be needed in order to verify potential strategies to improve the 

biocompatibility. Further, the optimal functional performance can be achievable to 

fulfil the specific biological requirements. This will be crucial to ultimately move 

forward with future prototypes and initial clinical trials. 
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 FUTURE RECOMMENDATIONS 

 Potential Applications 

On the basis of a multi-layered structure, the BC/PVAN/PANI/(CNTs) 

nanocomposites, developed by enclosing BC membrane within two electrically 

conductive coatings of PANI and CNTs enhanced with a PVAN interlayer, can be 

considered for constructing a bioelectronic device capable of stimulating and 

monitoring neural activity from BC/PVAN/PANI/(CNTs)-neuron interface. The 

possible switch of the electrochemical performance of PANI caused by redox 

reactions, as demonstrated in this study in Chapter 6 can act as pathway for appropriate 

signal amplification. PVAN interlayer can provide not only the desirable 

morphological and electrical properties of PANI coated on BC but it may also 

significantly improve the biocompatibility and tissue regeneration (Chapter 8). The 

extra CNTs layer strengthens the electrical properties, which has morphological 

nanofeatures demonstrated to enhance also cell adhesion, growth, while promoting 

neuronal differentiation. Also, with the excellent thermal stability as shown in Chapter 

7, such CNTs-reinforcement can retard the overall thermal degradation of the BC 

nanocomposites. This ensures thermal feasibility from electronic and biological point 

of views.  

Such electrically conductive system furnishes support for cell adhesion and 

growth by means of a substrate with suitable interconnected porosity and pore size 

provided at the first instances by the porous BC matrix (Chapter 4), enabling cell 

migration, and proper flow of nutrients and oxygen. Despite the non-conducting 

properties of BC, this peculiar matrix was shown to allow the passage and 

accumulation of charge carriers arising from PANI and CNTs. Also, the richness of 

BC in hydroxyl groups bounded to water/electrolyte and 3D arrangement may have 

contributed with protonic conductivity (Chapter 4), that is considered to actively 

interact with the surrounding environment and raise new electrochemical features, as 

discussed in Chapters 6 and 7.  

It is therefore believed this may well perform and act as biosystem for building 

neural interfaces, by effectively detecting, recording and amplifying electrical signals 

from neurons. Ionic currents are stablished across the cell membrane of a neuron 

during an action potential (nerve impulse), which cause changes to ion concentrations 
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at both intra- and extracellular media. This generates a differential potential and hence, 

an electrochemical current at the surface membrane–electrolyte interface. Thus, the 

conductive PANI/CNTs surface layers can detect nerve impulses caused by ionic 

depolarisation of a neuron during an action potential. This generated ionic current may 

subsequently be converted into an electrical signal (transduction) and transmitted with 

aids of the excellent mass diffusion capacity of BC network, to be readable with a 

externally connected electrical device, as schematically represented in Figure 9.1. 

 

 

Figure 9.1. Schematic representation of flexible electrically conductive BC/PVAN/PANI/CNTs 

nanocomposite membranes, biologically interfacing with neurons for efficient nerve impulse 

conduction (Reproduced by permission from Carbohydr Polym, Elsevier, [188] copyright 2019). 

 

Other possible biomedical applications can also be considered owing to the smart 

electrical behaviour of these flexible nanocomposite membranes, including drug-

delivery systems, biosensors, wound dressings, TE and pacemaker devices (Figure 

9.2). The micro- and nanoscopic dimensions of the biological components demand 

electrically conductive nanostructured materials to enable high sensitivity and 

performance for different biomedical devices. 
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Figure 9.2. Examples of other potential biomedical applications of the as-developed electrically 

conductive BC nanocomposites as drug-delivery systems, biosensors, wound dressings, tissue 

engineering scaffolds and pacemakers. 

 

For instances, BC/PVAN/PANI/(CNTs) nanocomposites can be used as drug-

delivery systems owing to a nanofibrillar BC network that can efficiently encapsulate 

drugs, cells or other analytes within its porous 3D nanostructure and controllably be 

released upon a deliverable electrical stimulus, that induces the switching of the 

electrical behaviour of the PANI coating. As biosensors, these nanocomposites may 

efficiently detect an analyte or a physicochemical compound with aids of biological 

component integrated in the material to produce a measurable signal via biochemical 
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changes of the biomolecules that may induce redox reactions to PANI, to be later 

transduced into either amperometric or impedimetric responses. With similar 

mechanistic to neural interfaces, pacemakers may be built to control abnormal heart 

rhythms. The depolarisation and repolarisation of myocardiocytes caused by different 

permeabilities to sodium, potassium and calcium generates an electrical current that 

can be detected by changes to the oxidation states of PANI layer and trigger an 

appropriate response through a pulse generator [285]. In TE applications, porous and 

electrically conductive nanofibrous membrane can act as tissue scaffolds to promote 

the regeneration of damaged tissue to fully recover its original functions. Such porous 

structure allows the revascularisation of the injured site, providing adequate flow of 

nutrients and migration of ‘first-aid’ cells, which accelerates tissue reconstruction. 

Scaffolds empowered with electrically conductive properties are demonstrated to offer 

advantages to regenerative processes of electrically-sensible tissues, including nerves, 

skeletal and cardiac muscle, and also bones [286]. Other possible applications involve 

wound dressings that combines the high-water holding capacity of BC with anti-

bactericidal properties of PVAN/PANI/(CNTs) coating either by simply controlling 

PANI doping level or with controlled drug release [287]. Further combination of TE 

scaffolds with the other aforementioned applications can produce hybrid systems, 

which aims to overcome the major drawbacks of many bioelectronic devices currently 

available. 

 

 Improving the Biofunctional Performance 

Despite the positive biological responses (Chapter 8), additional strategies must 

be followed to address the biocompatibility and functional requisites of these 

electrically conductive BC-based nanocomposites in order to fully exploit their 

advantages in the biomedical field, especially as regards neural interfaces. Based on 

this work and the published literature, this can be accomplished through continuous 

optimisation of the synthetic procedures to reach the desirable characteristics with later 

incorporation of biomolecular cues and cells. It will be critical to corroborate such 

results and complement them with other characterisation techniques. 

According to William D. et al [288], ‘biocompatibility’ can be defined as “the 

ability of a material to perform well with an appropriate host response in a specific 

application”. Although a sustainable cell growth was noticed on the as-developed 
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PANI-containing BC nanocomposites, relatively low cell density was recurrently 

observed to both cell types. This effect could be attributed to the poor wettability 

properties of PANI, incomplete purification process and the highly heterogeneous 

surfaces, impeding proper cell attachment and hence, limiting the cell growth and 

differentiation. Some approaches were followed to prevent these limitations 

particularly raised from the surface properties of PANI agglomerates, that are 

commonly described in the literature. A PVAN interlayer was added on BC to 

ameliorate the conductivity of the post-grafted PANI, and may have contributed to 

increase the hydrophilicity of nanocomposite membrane with the dispersion of PANI 

particles into a more uniform coating. Also, washes were performed with appropriate 

solvents in the end of every reaction step, the acid used was neutralised after COP and 

dialysis was performed for one week.  

Other steps may be followed in future research to lead to improvements in the 

cytocompatibility of the BC-based nanocomposites. One is the refinement of the 

purification steps for efficient removal of all chemicals and contaminants. PANI-based 

BC membranes were thoroughly washed with ethanol to dissolve any adsorbed PANI 

salt (emeraldine) and unreacted aniline monomer. However, other possible oligomers 

raised upon COP reaction may not be completely soluble in ethanol, as the solubility 

of these oligomers differs from that of emeraldine. Therefore, other solutions, such as 

N-methylpyrrolidinone (NMP) and n-dimethylsulfoxide [289] can be used to eliminate 

by-products of PANI synthesis. Other strategy relies on tuning the wettability surface 

properties of PANI emeraldine salt to acquire hydrophilic characteristics so that 

additional contact points between cells and the substrate can be established. It has been 

identified that the hydrophilicity of PANI is different according to its oxidation forms 

and it can be improved with the doping/dedoping process, i.e. by repeatedly converting 

emeraldine to leucoemeradine, and vice-versa, without electrical conductive properties 

losses [278]. Furthermore, the reprotonation of PANI with other acids rather than HCl, 

such as DBSA [290] and phosphoric acid [291], has shown to increase the 

hydrophilicity of PANI. However, such properties need to be confirmed via contact 

angle measurements and complemented with other surface analysis, so that they can 

be adjusted accordingly to cellular requirements. The morphology of PANI-grafted 

BC membranes is another aspect that must be considered, since it can dramatically 

change the cell behaviour, but also the overall PANI properties of the composite. This 
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is particularly important, since the optimisation of the surface properties of PANI is 

anticipated to benefit both biological and electrical responses. The highly 

heterogeneous surface of PANI-based membranes compared to pristine BC, was seen 

in Chapter 5. Providing a more regular surface at nanoscale is expected to favour the 

focal contacts of cells with the substrate (better adhesion), as well as a more efficient 

circulation of the charge carriers (boosted conductivity). Although the grafted PVAN 

interlayer has led to a significant dispersion of PANI on the BC nanofibrils, the 

synthesis process, especially as regards that of PANI, still needs to be finely tuned. 

Continuous optimisation of the COP parameters must be carefully studied and 

developed further. In particular, as shown from this study, enabling longer reaction 

times and increasing aniline concentration may promote well-defined and more regular 

nanofibres structures with reduced dimensions, hence high-aspect-ratio. Different 

synthetic processes like interfacial polymerisation and template-assisted methods can 

be explored, and complemented with usage of other acids and oxidants that are known 

to favour the formation of more homogeneous PANI grafts. Yielding higher PVAN 

grafts and optimising its synthetic route on BC can also be reviewed. Owing to the 

high oxygen-reactivity of the SI-ATRP process, BC membranes must be subjected to 

solvent-exchange from water to oxygen-free solvents, that in the case of membranes, 

was only achievable by complete pre-dehydration. Customisation of this process as 

such that it can allow certain amounts of water, would be advantageous to fully exploit 

the potentials of BC-graft-PVAN, since the drying process inevitably affects the 

original structure of BC. In fact, certain amounts of water may be acceptable in ATRP; 

however, the problem relies mostly on the first step with the immobilisation of the 

initiator (BiBB) onto BC. Proper identification of non-water reactive initiators or other 

initiating paths that can efficiently act on never-dried BC membranes, can provide 

huge advances not only in the materials’ properties, but also in chemistry. Investigation 

of solvent-exchange methods on never-dried BC membranes combined with the 

dehydration model of BC applied to other solvents/electrolytes, will possibly lead to 

improvements of the electrochemical properties of BC-based nanocomposites. 

Despite no explicit cytotoxic signs were attributed to CNTs in this work, 

contrasting biological responses have been associated to its use. While its nanosized 

dimensions with large aspect-ratio may favour the cytocompatibility, this can also 

boost the adverse effects, as such nanosubstances can be more effectively absorbed by 
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cells if released in the host environment. Therefore, long-term acute effects must not 

be neglected when using CNTs, and nanomaterials in general. Dose-dependent toxicity 

is one important aspect that can be addressed by limiting the amount of loaded CNTs 

to that strictly necessary. For instances, through other routes to more efficiently 

incorporate CNTs into BC substrate, such as in situ synthesis of BC with CNTs added 

directly in the culture medium. More refined purification processes and pre-

modification of CNTs, e.g. with biomolecules, may be needed, as most of the 

toxicological effects ascribed to CNTs are in fact arisen from the existing impurities, 

such as the catalyst and dispersant/surfactant.  

The micro- and nanotopographical features of the BC composites and its 

electrical surface distribution must be carefully assessed, so that more reliable 

conclusions can be drawn for following steps. Such analysis must be supplemented 

with the evaluation of the mechanical properties (tensile and bend strengths) and 

electrical stability of the whole composite over time. For instances, the designed model 

for BC dehydration can be implemented to optimise further the mechanical and 

electrochemical properties. As an implantable medical device, these developed 

membranes have to withstand the forces and fluids naturally occurring in the human 

body. The electrochemical behaviour of the material and other possible interactions 

may occur while implanted in contact with the body fluids, which can be easily 

assessed in PBS solution loaded with some proteins to simulate the biological 

environment and adapt if needed. Electrostimulation tests in vitro may allow to draw 

some important conclusions about the electrical performance and potential beneficial 

effects for cells, especially neuronal differentiation and cell guidance, which in vivo 

would be shown in new well-oriented nervous tissue. The degradation of the materials 

must be assessed over time in PBS, to predict the stability of BC composites in the 

body and possible release of substances that may be toxic for cells.  

A final remark is concerned with the incorporation of cells and modification of 

the surface with biomolecules naturally present in nervous tissue, that are mostly 

components of the ECM matrix. This will be valuable for improving the 

biocompatibility in terms of bimolecular recognition and cell proliferation, since cells 

respond primarily to the adsorbed proteins, rather to the surface itself.[292]. Thus, an 

efficient cell adhesion with multiple anchoring sites and cell differentiation can be 

promoted with the presence of ECM coating. Particularly on BC/PVAN/PANI/CNTs 
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nanocomposites, with the smooth and large surface area of CNTs, a better interaction 

between ECM and CNTs can be obtained.  Putting these strategies into practise can 

lead to dramatic advances in the biocompatibility and functional performance of the 

materials to be safely employed in several biomedical devices. 
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Appendices  

Appendix A 

Protocol of BC synthesis 

Protocol for BC production: 

 

1. Weight 6.8 g of disodium hydrogen phosphate dodecahydrate, 5 g peptone, 5 

g yeast extract, 1.5 g citric acid and 20 g glucose; 

 

2. Put everything together into a jar of over 1 L of capacity and add 1 L of pure 

water, following by continuous agitation with a glass rod; 

 

3. After complete dissolution, distribute the prepared solution into 4 Erlenmeyer 

flasks of 500 mL capacity, with 250 mL each; 

 

4. Cover the flasks with filter paper and tight around with a piece of rope/line, 

as illustrated in the Figure A.1; 

 

 

Figure A.1. BC membrane in an Erlenmeyer flask covered with filter paper. 

 

 

5. Place the covered flasks into the autoclave at 121 ºC for 20 min for medium 

sterilisation; 

 

6. After completed the sterilisation cycle, remove carefully the sterilised 

medium and transfer them into a biosafety cabinet with a sterile environment. 

Ensure the medium is cooled down to about 30 ºC to prevent bacteria death; 
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7. Remove, with a strippete,10 % V/V from an ongoing BC culture into the 

flasks containing medium, i.e. 25 mL of bacteria culture into each flask; 

 

8. Transfer the medium containing the inoculated bacteria into TCTP plates 

with a 5 mL pippete: 3.5 mL in 6-well or 1 mL in 24-well, accordingly; 

 

9. Place the well plates into the incubator at 30 ºC and 5 % CO2, keeping a 

sterile environment and static conditions for 4 days; 

 

10. Followed the 4 days of culture, remove the synthesised BC membranes with 

tweezers into a large container;  

 

11. Thoroughly wash the membranes with pure water and leave them soaked (in 

pure water) for 2-3 days, exchanging the water 2 up to 3 times per day; 

 

12. After the step 11., prepare 4 g.L-1 sodium hydroxide solution by weighting 4 

g of sodium hydroxide followed by addition of 1 L of pure water; 

 

13. When sodium hydroxide is completely dissolved, insert the pre-washed BC 

membranes and place it on a hot plate at 100 ºC. under magnetic stirring; 

 

14. When the sodium hydroxide solution is boiling, count 40 min; 

 

 

 

Figure A.2. BC membranes in a boiled NaOH solution. 

 

15. After the 40 min, remove BC membranes and thoroughly wash with pure 

water several times (at least 3 times); 

 

16. Leave membranes in pure water for several days until the pH goes down to 7. 

This normally occur in one week providing that the pure water is replaced 3 

times per day; 

 

17. The purified BC membranes can then be used for further 

treatment/modification. 
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Appendix B 

Protocol of BC/PVAN/PANI synthesis 

BC-initiator (prepare the mixture and wash the BC membrane initiator in a sealed 

container – flask with a rubber tap – and in a fume cupboard): 

1.  Put the needed amount of BC, roughly 1 g of dry mass of membranes (about 

10 dried BC membranes), into a round bottom flask, mix with 30 mL of dried 

DMF, 5 mL TEA and 1 g DMAP; 

2.  Add 2 mL of BiBB drop-by-drop into the previous solution under magnetic 

stirring, ice-bath, and keep the reaction for 24 hours under argon atmosphere 

at room temperature; 

3. The prepared BC membrane initiator is washed with DMF for three days. 

Atom Transfer Radical Polymerisation of 4-vinylaniline onto BC-initiator surface 

(prepare the solution and wash the grafted BC in a sealed container – flask with a 

rubber tap – and in a fume cupboard): 

4. Add 4-VAn (97 %, 2.6 mL, 20 mmol), PMEDTA:Van=1:250, CuCl2 (0.1 

mmol) and ascorbic acid (0.1 mmol) to 10 mL of DMF (or THF) and 1 mL of 

water in a round-bottom flask; 

5. After degassing with argon for 30 min, the BC-initiator substrate is introduced 

into the reaction mixture under argon atmosphere (use a double-ended canula 

to transfer the solution into the flask containing the BC-initiator membrane). 

The reaction flask is sealed and kept at room temperature for 24 hours; 

6. After the reaction, the PVAN-grafted BC (BC/PVAN) surface is washed 

thoroughly with an excess amount of THF and deionised water (do this step in 

the fume cupboard);  

7. Finally, the BC/PVAN substrate is immersed in 20 mL of DMF for 24 hours 

to remove physically adsorbed PVAN homopolymer, if any (do this step in the 

fume cupboard). 

In situ chemical oxidative polymerisation of aniline (prepare the solution and wash the 

grafted BC in a sealed container – flask with a rubber tap – and in a fume cupboard): 

8. The chemical oxidative polymerisation of aniline on the free amine groups 

(−NH2) of the covalently bonded PVAN molecules is carried out in a 30 mL 

of 1 M HCl aqueous solution, containing the BC/PVAn, 1 mL of aniline, and 

2.45 g of APS; 

9. The reaction is allowed to proceed at 0 °C in an ice bath for 6 hours; 

10.  Followed the 6 hours reaction, wash BC/PVAN/PANI membranes with 

deionised water and ethanol to ensure complete removal of the physically 
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adsorbed aniline homopolymer and reactants and until the pH raises up to 7. 

 

Figure B.1. Scheme of ATRP process setup. 
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Appendix C 

Protocol of cell culture with PC12-Adh and SVZ cells 

General Procedure of PC-12 Adh Cell Culture and Harvesting: 

1. Remove one million of PC-12 Adh cells in 1 mL of freezing medium 

(DMEM+1% DMSO) from the cryostore bank and defrost in pre-warmed 

water bath; 

2. Place the cells (1 mL) in a 15 mL centrifuge tube and add 4 mL of proliferation 

medium; 

3. Centrifuge at 120 g for 7 min for removing DMSO; 

4.  Discharge the medium and resuspend the cells (pellet) in 5 mL of pre-warmed 

proliferation medium; 

5. Transfer the content (one million cells in 5 mL of proliferation medium 

described in page 85) into a T25 flask and keep it in the incubator at 37 ºC and 

5% CO2 for 7 days to reach confluency, with medium replenished every 2 days 

(remove od medium and add fresh medium); 

6. Following the 7 days of culture, passage the cells with aids of scraper: 

detaching gently the cells from the T25 flask; 

7. Transfer the cells from the T25 flask into a 15 mL centrifuge tube (take a 

certain amount for cell counting) and centrifuge at 120 g for 7 min; 

8. According to the obtained number of cells, either using haemocytometer or cell 

counter, resuspend the cells with the needed proliferation medium in order to 

have 1×10-4 cells.cm-2: 200 µl x number of wells.  

9. With the pre-sterilised BC nanocomposite membranes placed in the bottom of 

24-well TCTP plates, add 200 µl of cell suspension on the membranes, just the 

enough to cover it; 

10. Incubate for 2 hours to allow cell adhesion, before adding 800 mL of 

proliferation medium to make the total of 1 mL per well. 

 

 



  

Appendices 222 

General Procedure of Presto Blue Assay: 

1. 24 hours after seeding cells, add Presto Blue® reagent at 10% V/V in fresh and 

pre-warmed proliferation medium (described in page 85), previously prepared 

in 15 mL centrifuge tube; 

2. Remove old culture medium from each well of the 24-well TCTP plate with 1 

mL pipette, exchanging the tips for every single well; 

3. Add the medium containing Presto Blue® reagent and incubate for 2 hours at 

37 ºC and 5 % CO2, before measuring the optical absorbance with a microplate 

reader) at 570 nm and 600 nm; 

4. Wash the cells on membranes with 1 mL of PBS in each well for three times 

before adding fresh and pre-warmed medium; 

5.  Repeat the procedure every two days for 7 days. 

 

General Procedure of Cell Differentiation of PC-12 Adh Cells: 

1. 24 hours after seeding cells as described above in “General Procedure of PC-

12 Adh Cell Culture and Harvesting”, replace the proliferation medium by 

differentiation medium (described in page 86), adding 1m mL of this in each 

well; 

2. Replace the differentiation medium every 2 days afterwards until the end of 

the culture period. 

 

General Procedure of SVZ Cell Isolation, Culture and Harvesting: 

1. Place the removed the tissues from the dissection procedure in 1 mL of 

dissection medium (DMEM/F12 GlutaMAX+1% pen/strep) in a centrifuge 

tube of 2 mL capacity with 1 % Trypsin;  

2. Aspirate and dispense gently three times with 1 mL tip pipette and place into 

the incubator for 30 min laid down at 37 ºC and 5 % CO2; 

3. Elapsed the time, proceed to the dissociation steps: 

• Aspirate and dispense gently with 1 mL tip pipette for 5 times; 
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• Aspirate and dispense gently with 200 µL tip pipette for 5 times; 

• Aspirate and dispense gently with syringe and cannula of 23 G for 

3 times; 

• Aspirate and dispense gently with syringe and cannula of 27 G for 

2 times; 

4. If after the dissociation steps, there is still some tissue, aspirate and dispense 

gently again with 1 mL tip pipette for 3 times maximum; 

5. Centrifuge the dissociated tissues for 5 min at 100 g and discharge the medium 

with trypsin; 

6. Resuspend gently the cells in 1 mL of pre-warmed proliferation medium 

(described in page 87); 

7. Count the cells with a haemocytometer by mixing 2 µl of cell suspension and 

2 µl of Trypan Blue, and place the total 4 µl into a chamber of the 

haemocytometer; 

8. Add the cell suspension (1 mL) into a T25 flask and complete with 4 mL of 

pre-warmed proliferation medium; 

9. Incubate the cells for 6 days or until enough neurospheres have been created. 
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Appendix D 

Residuals R2 Mathematical Model of Dehydration of BC Membranes: 

Figure D.1 shows the graphic of the residuals calculated for the weight loss of 

the samples with different dimensions. The random distribution of the points around 

zero in T8D8 samples indicates that this is a good model for BC weight loss. However, 

when the sample size is reduced, the model does not provide so good adjustment since 

it seems to be a certain degree of autocorrelation. 

 

 

Figure D.1. Graphics of the residuals of the fitted weight loss (“Y”) for each size of membrane. 
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