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Abstract

Occupancy count, i.e., the number of people in a space or building, is becoming an increasingly important
measurement to model, predict, and minimize operational energy consumption. Explicit, hardware-based,
occupancy counters have been proposed but wide scale adoption is limited due to the cost and invasive-
ness of system implementation. As an alternative approach, researchers propose using data from existing
information and communication technology (ICT) systems to infer occupancy counts.

In the reported work, three different data streams, security access data, wireless connectivity data, and
computer activity data, from ICT systems in a medium sized office building were collected and compared
to the counts of a commercially available occupancy counter over 59 working days. The occupancy counts
from the ICT systems are compared to the commercial counter with and without calibration to determine
the ability of the data sets to measure occupancy. Various transformations were explored as calibration
techniques for the ICT data sets. Training sets of 24, 48, and 120 hours were employed to determine how
long an external calibration system would need to be installed.

The analysis found that calibration is required to provide accurate counts. While each ICT data set
provides similar magnitudes and time series behavior, incorporating all three data streams in a two layer
neural network with 1 week of training data provides the most accurate estimates against 5 performance
metrics. Whilst 1 week of data provides the best results, 24 hours is sufficient to develop similar levels of
performance.

1. Introduction

The following subsections introduce the motivation and need for collecting occupancy count data, the
various methods used to measure occupancy, and the aims and significance of this work.

1.1. Motivation

Countries across the world have made pledges to reduce greenhouse gas emissions to reduce the impact
of climate change. The IPCCs fifth assessment report identifies energy demand reduction, through increased
energy efficiency and behavioral change, as key to achieving mitigation targets [1]. For the buildings sector,
this translates into policies to encourage the uptake of energy efficient devices, systems, and operational
strategies for the provision of space heating, water heating, space cooling, lighting, appliances, and cooking
demands. With the advancement of digital technologies, energy efficient operation and behavior change can
be implemented through intelligent automation of systems, especially for the provision of heating cooling
and ventilation (HVAC) systems in commercial buildings.
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Intelligent building systems attempt to dynamically adjust the buildings operation to minimize energy
consumption considering variable conditions without sacrificing occupant comfort. Traditional control sys-
tems have minimal ability to alter their operation in response to changing occupancy patterns and weather
conditions. At most, these systems change operational conditions based on fixed times of the day, e.g. time
clocks, or through simple relationships between outdoor and desired indoor temperatures, i.e. set backs
[2]. The new generation of automated building control systems will be able to sense the current occupancy
and other drivers of energy demand, forecast their likely future values, and operate the system to maintain
thermal comfort with minimal energy consumption. Key to the operation of intelligent building systems is
the ability to sense when a building or space is being used.

In current buildings, some measures of occupancy sensing have been incorporated, specifically for lighting
and ventilation systems. Many lighting systems sense occupant presence through passive infrared (PIR)
sensors. These sensors have been extensively researched and implemented in buildings [3]. PIR sensors
detect a change in the amount of thermal radiation that falls on its surface through occupant movement.
The lighting system will turn on the lights in the space if movement is detected and shut off the systems
if no movement is detected for a specific time period. These systems can achieve up to 86% reduction in
building lighting energy, where the magnitude of the savings depend on the current lighting operations and
building use patterns [4].

Sensors detecting occupant activity use have also been deployed to operate commercial ventilation sys-
tems. As people exhale carbon dioxide into a space, the carbon dioxide (CO2) concentration can act as a
measure of the number of people in the space but also a proxy for air quality. Therefore many demand-
controlled ventilation systems set targets for CO2 concentrations. The current CO2 concentration is mea-
sured in the building and the ventilation system responds to ensure the CO2 concentration remains below
this value. Demand-controlled ventilation has achieved savings of up to 50% of fan energy consumption
and 30% of total HVAC energy consumption as compared against strategies that do not consider occupancy
levels [5].

However more energy savings can be achieved if occupancy driven control is incorporated in the operation
of heating and cooling systems as well. Model predictive control (MPC) strategies have the potential to
enable more energy savings based on developing optimal strategies of building operation [6]. MPC strategies
for heating and cooling systems use information about the building thermal dynamics, current weather, and
internal conditions to determine the optimal set of control actions to achieve an objective function, typically
to reduce energy or energy costs. These systems have shown to use information about upcoming occupancy
presence to drastically reduce energy consumption during unoccupied periods, similar to optimal start/stop
routines, and take advantage of free heating from internal gains for occupants [7]. As reviewed in [6], several
researchers conducting experimental research have incorporated information about occupancy within their
algorithms to achieve better operating HVAC systems.

Bengea et al. [8] evaluated the ability of a model predictive control strategy to reduce energy consump-
tion in a commercial building. In their experimental set up they measured occupancy using a combination
of motion, CO2, and bidirectional people counters [9]. These data were used to calculate the internal gains
and occupied periods for multiple zones in a commercial building. Through the MPC framework, they ob-
tained 30% energy savings. Aswami et al. [10] have developed an online learning mpc to reduce electricity
consumption of an air conditioner serving a computer lab. Instead of measuring occupancy directly, the
internal loads were identified and forecast from a model of building thermal dynamics and measured tem-
peratures. Occupancy periods were identified by the time of day. Through this MPC framework, savings of
30-70% in electricity consumed for cooling were realized. Dong et al. [11] developed a non-linear MPC to
control a home heating system, with solar thermal heating and radiant floors, and a cooling system with fan
coil units. The nonlinear MPC considered estimates of building occupancy count and occupancy duration
using a combination of CO2, acoustic, motion and lighting change sensors. They found a 30% reduction
in energy consumption during the heating season and 17% reduction in the cooling season. In each of the
previous examples, an understanding of building occupancy, or internal loads from building occupancy, was
needed. However the researcher, who can be seen as early adopters, used many methods to estimate building
occupancy as a single method for sensing building occupancy count has not yet been developed.
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1.2. Techniques for Measuring Occupancy

The lack of standard procedures and methods for measuring building occupancy has received a separate
treatment in the literature. There have been several researchers that have reviewed the current state of
measuring occupancy in buildings. Recent reviews include [12, 13, 14]. As many reviews in the literature
exist, the following sections provide a brief overview of techniques and is not meant to be comprehensive.
The following paragraphs describe the use of explicit sensing techniques, implicit sensing techniques, the
scale of current occupancy sensing studies in the literature, and the calls made for future research in the
area.

Explicit sensing systems are those that introduce new hardware to sense the presence of building oc-
cupants. In the literature, a variety of mechanisms have been used to detect occupancy counts. Pressure
sensitive floor systems have been proposed for capturing the presence of individuals by measuring the pres-
sure throughout an instrumented floor space. When placed together in a network these systems can also
provide occupancy count and localization. Various versions have been proposed from dense pressure sen-
sitive tiles to smart carpets [15]. The main technical challenge with this technology is to determine the
density of the sensing network and appropriate algorithm to accurately differentiate the pressure profiles
of various individuals. The main criticisms of this approach are the intrusiveness of implementation, the
high-density network required for accuracy and the difficulty in counting with large numbers of people [16].
Electric field sensors, where capacitors are placed throughout the space to detect the changes in electric
field caused by people, ultrasonic and vibration sensors while using different sensing modalities suffer from
similar drawbacks as the pressure sensitive floor systems.

Other, slightly less infrastructure heavy techniques, include camera-based systems and wearable devices.
In camera-based systems, images are taken and occupants are identified from the frames through object
tracking software [17, 18, 19]. The hardware for this approach is widely available although there are technical
challenges in developing algorithms that can accurately detect and count people in varied settings. Even
in the face of these challenges, these systems have been shown to provide detection rates of up to 97%.
However with camera based systems, one must take care to address privacy concerns as occupants are being
visually monitored.

With systems employing wearable devices, occupants are asked to attach a beacon or receiver to their
person that actively or passively interacts with the environment. Typically this is in the form of mobile
devices, such as smart phones and watches, or specially developed RFID tags [20, 21]. As identification
and location of a device is core to the development of wireless information and communication devices,
these systems can report high accuracies. Overall the major criticism of this approach for general sensing
applications is that each occupant must wear the device at all times and if the device requires power it must
be kept charged [22].

In contrast to explicit sensing techniques, implicit techniques attempt to infer occupancy using data cur-
rently collected by the building for other purposes. These sensing methods assume that building occupants
alter the environment that they occupy, and these disturbances can be captured through the various sensing
mediums. Implicit occupancy techniques have been classified as Tier I, II and III by Melfi et al [23]. Tier I
requires no additional infrastructure, just collection and processing. Tier II requires additional software to
access the data available in existing infrastructure. Tier III requires the additional software and hardware to
estimate occupancy. Tier I and II sensing systems are highly desirable as they do not require any additional
infrastructure, reducing the overall cost of the sensing apparatus and potentially increasing the scalability
of the sensing methods. Shen et al. in a recent review of 50 implicit sensing systems reported systems using
data streams collected from internet traffic, outbound phone calls, access badges, Wi-Fi systems, online
messaging services, keyboard movements, and webcam usage to detect occupancy [12].

The studies explicitly considering occupancy count reported high accuracies with a variety of sensing data
streams and data fusion techniques. The same CO2 sensors used for demand controlled ventilation can also
be used to estimate occupancy counts. These systems estimate the number of people in a space with carbon
dioxide sensors with inverse modeling through a dynamic mass balance equation. The inverse modelling
technique requires assumptions about the amount of carbon dioxide that is released by the individuals,
carbon dioxide levels in the local outdoor climate and infiltration rates. Studies have shown that this system
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can provide counts with accuracy between 81% [24] and 94% [25]. For large scale occupancy detection, an
array of carbon dioxide sensors would need to be implemented and the potentially time varying constants
for each sensor estimated. Ekwevugbe et al. evaluated the ability of environmental data, using added
sensors measuring sound, VOC, lighting, temperature, relative humidity, and CO2 measurements, to reflect
occupancy count for an office of 6 people [26]. The data were combined and transformed using a neural
network to reflect occupancy counts. Considering various feature combinations, they reported accuracies up
to 74% and root mean squared error (RMSE) values as low as 1 person. Whereas Christensen et al. [22]
reviewed the ability internet traffic, outbound phone calls, access badges and computer activity to indicate
occupancy in academic labs. They reported DHCP leases could reflect building occupancy with accuracy of
89%.

Implicit techniques have the ability to reflect occupancy however developing a consistent methodology
is difficult as different buildings have different availability of sensors and the techniques for combining data
streams is quite bespoke. Further while many studies have been performed to assess the ability of a variety
of sensing mechanisms in buildings, the majority of studies have only reflected small scale experiments which
is reflected in the their methodological approach.

A review by Shen et al.[12] identified 27 studies that have validated the ability of their occupancy count
sensing technology against a ground truth. Twelve studies used direct manual counting of the occupants
in the scene and remainder used camera systems. Even within the studies that used cameras to establish
a ground truth, the majority manually counted the number of occupants in the scene. As the majority of
studies consider small numbers of occupants (<15), manual counting was feasible. As implicit occupancy
is in its early stages, developing ground truth techniques that apply at scale are needed to allow for the
evaluation of sensing mechanisms in typical buildings.

The vast amount of sensing approaches and experiments performed in this area led to the formation
of an International Energy Agency (IEA) Energy in Buildings and Communities (EBC) Annex to develop
a standardized definition and approach to understanding occupants and their influence on building energy
consumption. The final report of the IEA EBC Annex 66 [14] entitled the “Definition and Simulation
of Occupant Behavoir in Buildings” has reviewed the current techniques and challenges to understanding
occupancy behavoir in buildings. One of the conclusions the expert group made upon reviewing 14 state
of the art occupancy sensing techniques was that there is no one technology that can detect both presence
and occupancy count in a cost-effective way with high accuracy. Further as most studies are on a small
scale, one of the highlighted areas of future research is the need to determine reliable and affordable ways
to collect large-scale occupant behavoir data.

1.3. Aims and Significance

In summary, incorporating occupancy data in building heating ventilation and air conditioning systems
can lead to significant energy reductions as compared to standard approaches. However there is a need to
determine a scalable and cost effective technique to measure occupancy count and presence to deliver those
savings. Previous literature indicates two approaches for sensing occupancy, explicit and implicit sensing
techniques. Of the two, implicit sensing is a potential way forward as previous studies indicate that implicit
occupancy sensing can provide accurate and cost-effective occupancy counts with potentially no need for
additional monitoring infrastructure as the building increases in size. However, before definitive statements
can be made, there is a need to test the effectiveness of implicit techniques at scale.

The aim of this work is to address this gap by assessing the ability of implicit occupancy sensing techniques
to detect occupancy count for a large office building. Data reflecting desktop computer activity, security
access and mobile Wi-Fi connectivity for a 350-person office building was collected over 59 weekdays and
compared the occupancy counts to those reported by a commercially available stereo-vision based occupancy
counter. Further, various relationships were evaluated to calibrate each individual data set as well as
combinations of the ICT data sets. Various training and testing data sets lengths were evaluated to determine
the trade-off between calibration period and accuracy. The ICT data sets considered for this work are
considered Tier I, as all software needed to collect the data was already installed in the current ICT network.

This paper reports the first building scale comparison of explicit and Tier I implicit occupancy sensors,
contributing to the building occupancy measurement field by structuring a measurement methodology, ex-
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ploring various calibration procedures, and demonstrating the ability of implicit sensing to reflect occupancy
count at scale.

1.4. Organisation

The remainder of this paper is organized as follows: section 2 describes the case study building and
location of sensing devices, the data collection methods, model structures used to calibrate the data sets as
well as the performance metrics used; section 3 reports the results comparing the ICT datasets, calibrated
and uncalibrated, to the counts from a commercial occupancy counter; Section 4 provides a discussion of
the results; Section 5 discusses the limitations of the work and areas for future research and Section 6 ends
the paper with a statement of the main conclusions.

2. Methodology

The following sections describe the case study building, the technology behind the commercial occupancy
counter, how occupancy estimates were derived from each of the ICT data sets, and the metrics used to
evaluate the implicit sensing performance.

2.1. Case Study Building

The case study building is the administrative hub of a University. There are 350 people assigned working
space in both open plan and closed offices. The building also contains three meeting rooms capable of
accommodating 60 people in aggregate. As it is the administrative hub, many employees enter and exit the
building throughout the day to go to other meetings throughout the campus. On the mezzanine level, the
building also houses secure space to store bicycles for those commuting to work.

Access is gained to the building through two entry/exit points: the main entrance and the rear bike rack
entrance. The main entrance is equipped with entry gates that release upon the presence an ID card with
appropriate permissions. For the rear bike rack entrance, presenting an ID card to the reader unlocks a set
of doors. The building’s wireless network is equipped with eight wireless access points, two on each floor
of the building. Within the building, there are 321 desktop computers equipped with a power management
software to track their power consuming activities. Specifically the software reports how many minutes a
computer was active, the computer was on, and the monitor was on. The computers are located through
out the building in the open plan office space as well as closed offices.

The commercial occupancy counters were placed above each entry/exit point to the building. They
were installed to ensure each person entering the building at various angles would be captured in the field
of vision. Figure 1 shows the building layout and the positions of the occupancy counters, security access
points, and wireless access points.

2.2. Data Collection and Repair

The following sections describe the data collection approaches for the commercial counter and the ICT
data sets.

2.2.1. Commercial Occupancy Counter

Many organizations have an interest in understanding occupancy within their spaces, especially in the
retail sector. Therefore several companies have developed sensors to count and track visitors based on various
technologies such as thermal imaging, infrared beams, and 3D stereo video. The commercial counters used
in this work are 3D stereo video cameras equipped with proprietary image processing software to detect the
height, direction, mass and velocity of people. As the cameras have a limited field of vision, to measure
building occupancy they must be placed at each entry and exit point to ensure all traffic in and out of the
building is recorded. Occupancy is then determined by a cumulative sum of the net flows of traffic.

Overall building occupancy is determined by
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Figure 1: Case Study Building Layout and Location of Monitoring Points

Oc
t =

2∑
s=1

t∑
k=1

f ck,s −
2∑

s=1

t∑
k=1

rck,s (1)

where Oc
t is the occupancy count measured by the commercial counter at the end of time period t, f ck,s

is the number of people measured entering the building within time period k from entry s, and rck,s is the
number of people measured exiting within time period k from entry s. The software accompanying the
commercial counter allows for reporting of occupancy at the end of 15 minute intervals [k]. To allow for
comparison with the ICT data sets, the occupancy was reported at hourly intervals [t].

Occupancy counters based on counting the number of occupants crossing thresholds have shown to be
prone to accumulation of errors [27, 28, 29]. If a person is not detected leaving a building once having
entered, it results in an ongoing increase in the count of occupants. Two approaches have been proposed to
adjust for this error [28]: assuming the building is empty at end of the day and incorporating an algorithm
to adjust the counts. Both approaches were applied for the occupancy counter deployed in this work.

The assumption that the building is empty at the end of the day is reasonable as the case study building is
closed at 11pm. Security guards check the building after closing time to ensure the building is empty. Second
the algorithm used to remove the bias does this by assuming fewer people left the building during the day,
and that this occurred during high flow periods. However, the full details of the approach are commercial
intellectual property. To achieve the occupancy counts, counters were placed at the main entrance and the
rear bike rack entrance by the commercial installers. Over the course of a week the counter was physically
adjusted and the algorithm modified based on the commercial installers viewing the raw video footage. After
this adjustment period, the installers verified the reported accuracy of 95%.

2.2.2. Computer Activity Data

For each desktop computer in the case study building, for power management purposes, the computer
activity data is tracked. Specifically the system logs three different states: the minutes in each hour the
computer was active“computer active”, the computer was on “computer on”, and the monitor was on
“monitor on”. Occupancy from this data set was defined with the “computer active” state as,
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Oa
t =

∑N
n=1mn,t

60
(2)

where Oa
t is the occupancy count derived from the computer activity data at time t, mn,t is the number

of activity minutes for desktop n in time t and N is the total number of desktop computers (321). This
expression provides a fractional value of occupancy as it is assumed that each minute in an hour represents
a fraction of a single individuals presence. This approach for counting occupants would only capture the
employees actively engaged with computer based work. Those not working on a computer or visitors to the
building would fundamentally not be captured through this approach.

2.2.3. Wi-Fi Connected Mobile Devices

The case study building has 8 wireless access points, 2 on each level, that allow occupants to connect to
the wireless network. For a device to send data through the network, it must first undergo two steps: an
authentication and an association. The authentication ensures that the mobile device and wireless network
are compatible while the association allocates a wireless access point to a device.

Counts of the number of devices authenticated and associated with the network were sampled hourly.
Preliminary data analysis found that there is minimal difference between the number of devices connected at
the two steps, although there are consistently more devices associated with the network than authenticated.
In the current analysis, the hourly counts of associated devices were used as a measure of occupancy,
assuming that the devices associated with the network are still physically present within the building.

This approach assumes that each occupant in the building is carrying a mobile device currently commu-
nicating with the wireless system. This would not capture people not carrying a device or those where their
device is powered down. Further this approach would over estimate occupancy if devices were left in the
building.

2.2.4. Security Access Data

Access to the building is provided by presenting an ID card with appropriate permissions. The access
control system records each entry and exit in a data log which contains the direction of entry (IN or OUT),
a unique ID for each person, the campus building to which they are assigned, and the location of their office
with in that building. As with the commercial counter, the access data provided the flows of people in and
out of the building. Therefore the building occupancy can be derived from the following equation

Os
t =

2∑
p=1

t∑
k=1

fsk,p −
2∑

p=1

t∑
k=1

rsk,p (3)

where Os
t is the occupancy count as measured from the security access data at time t, fsk,p is the number

of people entering during time period k from access point p, and rsk,p is the number of people exiting during
time k from access point p.

Upon initial data exploration, it was clear that there were missing data points, in that there were times
when people would be registered entering the building but not exiting or vice versa. After observation of
each entrance and exit, these missing data points can be attributed to the tailgating phenomena, where a
single person may present an ID but several people may follow behind, resulting in their entry or exit not
being logged. To account for the missing data, a repair methodology was used where missing values were
imputed using historical empirical distributions of arrival and departure times of each individual. In the
analysis this repair was performed at the end of the day. As implemented, this would prevent the real time
use of the access control data. However these estimates could be used to estimate occupancy in real-time
updating for incoming data. This would most likely lead to less accurate occupancy estimates in addition
to the current imputation strategy which is a limitation of the work. Full details of the imputation strategy
can be found in previous works [30].
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2.3. Calibration and Adjustment Methodology

In many sensors calibration and adjustment may be needed to enable the ICT data sets to reflect accuracy
estimates of occupancy count. In this case the aim is to determine a function that will map the implicitly
measured occupancy counts to the explicitly measured counts. To determine the nature of the relationship,
many model structures were considered and compared. For each model structure, parameters are identified
on a training data set and evaluated on a testing data set. In this case, the length of the training set is
of specific interest. It represents the amount of time required for calibration, or alternatively, how long an
external system would need to be installed to estimate the model parameters. Ultimately, it is favorable to
have a short calibration period, or training data set. Therefore, relatively small training sets are evaluated,
when compared against traditional data mining approaches. With 59 days of hourly data collected, the
ability of training sets of 24, 48, and 120 hours were evaluated, representing between 1.7% and 8.5% of the
entire data set. Several sets of the data are considered for training and testing. The training data sets are
defined as a k-fold cross validation, where the value of k is chosen such that each training set contains the
desired number of samples for validation.

2.3.1. Linear Regression

The simplest adjustment that can be made is to multiply the occupancy count by a single factor and
add a bias, in other words a linear relationship. Ordinary least squares regression can be used to estimate
the values of the factors. Specifically

yt = β0 + β1xt + ε (4)

where yt is the occupancy counter as measured by the commercial counter in time step t, xt is the
occupancy count as measured by the ICT data set in time step t, β1 is a constant coefficient that change
the amplitude of the measurement, β0 is a constant coefficient representing an offset, and ε represents the
noise in the data assumed to be normally distributed with mean 0 and variance σ2. The coefficients of the
model are estimated using the maximum likelihood estimator.

Each ICT data set, computer activity, security access, and WiFi connectivity data, are individually
calibrated with univariate linear regressions. The models are identified in the remainder of the paper as
the “linact”, “linacc”, and the “linwif” representing the linear regressions with the computer activity data,
security access data and Wifi connectivity data, respectively.

However it is also possible for each data stream to be combined to provide an aggregate estimate. This
is done in two ways: a multiple linear regression and data fusion. In the multiple linear regression, denoted
“linmul”, each data set is considered in a single model specifically,

yt = β0 +

3∑
i=1

βixi + ε (5)

where xi represents one of the three ICT data streams.

2.3.2. Data Fusion

For the data fusion approach denoted “fusion”, the forecasts from each individual model were combined
to develop a single measurement. It has been shown [31, 32] in the presence of uncorrelated errors that the
optimal weights for combining separate forecasts are a function of the variance of each model.

Specifically the forecast combination estimate is defined as

µf = σ2
f

3∑
i=1

µi

σ2
i

(6)

where
1

σ2
f

=

3∑
i=1

1

σ2
i

(7)

8



where µf is the data fusion based occupancy count , µi is the occupancy count as predicted with ICT
data set i, and σ2

i is the variance of the residuals as predicted with ICT data set i. An assumption for this
approach is that the errors are Gaussian which by observation is not strictly the case for the data. Therefore
these weights may not be optimal for the current forecasts and is a limitation of this implementation of the
approach. The approach was still considered for its simplicity.

2.3.3. Artificial Neural Network

To develop models capable of considering nonlinear and time lag relationships, neural networks were
used. These models were chosen as sufficiently complex neural networks have the ability to replicate any
function. The approach taken in this work was to use neural network models as indicators of nonlinear or
time lag behavoir. If increased performance was shown, then future work would be needed determine the
exact form of this relationship. For the analysis, three different types of neural networks were considered: a
standard neural network, a recurrent neural network, and a long short term memory neural network.

A neural network consists of a composition of neurons that transform inputs to outputs. The general
form of a single neuron is

y = f
(∑

i∈I
wixi + b

)
(8)

where y is the neuron output, xi is the neuron input, wi are the weights applied to each input, b is the
constant bias, f

()
is a function representing the activation function and I is the set of all inputs. Neural

networks can have multiple neurons in many configurations. The most common configuration is a series of
layers, where the output of one layer of the neural network composed of an arbitrary number of neurons is
used as the input to a second layer of neurons. The current work considered a neural network with a single
layer network with single neuron (NN1) and a two layer network with three neurons in the first layer and
one neuron in the second layer (NN3).

The NN1 model has the same formulation as equation 8 where the inputs, xi, are the three ICT data
streams and the output is the estimated occupancy count. The NN3 model has the following formulation

y = fo
(∑

d∈H

wdhd + bo

)
(9)

hd = fd
(∑

i∈I
wixi + bd

)
(10)

where fo is the activation function for the second layer (single node), fd is the activation function for
the first layer d (3 nodes), wd is the weight of output d from layer 1, wi is the weight for input i, xi is input
i, bo is the constant bias for the output node, bd is the constant bias for node d in the first layer and O is
the set of the outputs from the first layer (3).

2.3.4. Recurrent Neural Network

A recurrent neural network allows for consideration of a time series, acknowledging that information in
the recent past can be used to predict the future value. The model structure allows information from an
estimate for a previous time step to be available for estimating the next time step. A node of a recurrent
neural network has the form

yo,t+1 = f
(∑

i∈I
wixi,t +

∑
o∈O

royo,t + b
)

(11)

where yo,t+1 is the output of node o at time t, yo,t is the output of node o at time t, ro is the weight
assigned to the recurrent input yt. In this form, the prediction from the previous time step is used to inform
the prediction from the next time step. The current work considered a recurrent neural network with a
single layer network with a single neuron (RNN1) and a two layer network with three neurons in the first
layer and one neuron in the second layer (RNN3).
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2.3.5. Long Short Term Memory Network

As time steps forward, less information from the beginning of the time series is used to inform that latter
part of the time series. This means that a recurrent neural network can only remember information from
the immediate past. To incorporate longer times series behavior, long short term memory (LSTM) networks
have been developed and are considered as a calibration strategy.

LSTM neural networks incorporate a model structure that allows the model to decide how much infor-
mation to keep and how much to forget over time. A neuron in a LSTM neural network has the form

yo,t+1 = f4
(
i4t

)
∗ tanh

(
ct+1

)
(12)

ct+1 = ctf
1
(
i1t

)
+ f2

(
i2t

)
∗ f3

(
i3t

)
(13)

igt =
∑
i∈I

βg
i xi,t +

∑
o∈O

agoyo,t + bg (14)

where yo,t+1 is the output of node o at time t+1, xi,t is the input i at time t, yo,t is the output of node
o at time t, βg

i is the weight for input i of function g, agi is the recurrent weight for output o of function
g, bg is the bias factor of function g, and fg() is the activation function g. The current work considered
a LSTM network with a single layer network with a single neuron (LSTM1) and a two layer network with
three neurons in the first layer and one neuron in the second layer (LSTM3).

Each of the neural networks was solved using backpropagation with stochastic gradient descent imple-
mented with the Keras python API. The loss function was the root mean squared error. The weights were
estimated considering 10,000 epochs with an additional minimal change stopping criterion equal to 1e-6.

For all of the neural networks considered, linear activation functions were used. In preliminary analy-
sis, the linear activation functions yielded the best performance against hyberbolic tangents, sigmoid, and
rectificed linear units. This means that the NN1 model has a linear model structure whilst the remaining
neural networks have a nonlinear structure.

2.4. Performance Metrics

The performance metrics are used to determine how well the implicitly sensed occupancy count reflects
the explicitly sensed occupancy count from the commercial counter in the calibrated and uncalibrated
settings. The metrics used attempt to provide a sense of the overall fit, ability to measure arrival and
departure times,as well as peak occupancy and the time at which it occurs. All comparisons were made for
weekdays only. Weekends were not included as the occupancy was close to zero throughout the period.

Two metrics were used: the mean absolute error (MAE) and the accuracy. MAE is used to determine
the difference between measures of occupancy count and accuracy is used to denote the ability of implicit
sensors to determine the timing of events. MAE was chosen as a metric as it allows for easy interpretation
of results. In this scenario there is no need to penalise larger errors as is done with the root mean square
error (RMSE), a commonly used metric.

The mean absolute error (MAE) is used as a metric to evaluate the implicit occupancy sensor to reflect
occupancy count overall and to reflect the peak occupancy in a 24 hour period. The MAE is defined as

MAE =
1

n

N∑
n=1

| yn − ŷn | (15)

were yn is the occupancy as measured by the implicit occupancy sensor at point n, ŷn is the occupancy
count measured by the explicit occupancy sensor at point n, and N is the total number of samples in the
set. MAEo is used to denote when N includes all 59 days of hourly data in the uncalibrated set (and the
full testing data set in the calibrated case), and n is equivalent to the hour of measurement. MAEp is
used to denote when yn and ŷn represents the peak occupancy occurring over a single day (24 hours) for
the implicit and explicit occupancy sensor, respectively. N represents the number of days in the data set
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Figure 2: Occupancy Count as measured from Commercial counter and ICT datasets for the week of January 30th 2017. access:
Security access data; wifi: WiFi connectivity data; activity: computer activity data; counter: commercial occupancy counter
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and n denotes the specific day. For the MAEp metric, the timing of the events in the implicit and explicit
occupancy counts may not be the same, as this metric only considers the magnitude of the peak occupancy,
not when it occurs.

The accuracy metrics are determined by dividing the total number of correct timings by the total number
of events. Three different accuracy metrics are reported: the arrival time accuracy (ATA), the departure
time accuracy (DTA) and the peak occupancy time accuracy (POTA). Given the large building occupancy,
the time of arrival is defined as the time when the occupancy first surpasses 5% of the maximum occupancy
and the time of departure is defined as the time when the occupancy, after first surpassing 5% occupancy,
subsequently drops below 5% occupancy. The peak occupancy time compares the daily peak occupancy
time from the implicit sensor to that by the explicit sensor.

The commercial occupancy counter has a reported accuracy of 95%. To provide a consistent metric for
evaluation, the MAEo, MAEp, POTA, ATA, ans DTA were calculated for the upper and lower bounds of
the accuracy for reported occupancy counter. Therefore the metric values that fall within the error of the
commercial counter are MAEo = 4.2, MAEp = 12.4, POTA = 1, ATA = 1, and DTA = 0.90-0.92. The
departure time accuracy is reported as a range as the upper and lower bounds lead to different accuracy
figures.

3. Results & Discussion

3.1. Uncalibrated Occupancy Count

Table 1 depicts the performance metrics for the uncalibrated data sets. In comparison to the commercial
occupancy counter, each ICT data set has a large error in both the overall MAE and the peak MAE, with
the WiFi connectivity and security access data streams providing closer estimates of occupancy count. This
can also be seen in time series data depicted in Figure 2 where the activity data results in a consistently
lower occupancy count. This difference is highlighted in the peak mean absolute error metric, where the
activity data underestimates the peak by 85 people on average in comparison for 31 and 35 people for the
security access and WiFi connectivity data streams, respectively.

However with respect to the timing of events, the activity data out performs the other data streams. The
activity data estimates the arrival time with 97% accuracy and departure time with an accuracy of 68%.
The security access data whilst providing the lowest MAE does not perform well in describing the timing
of activities with an arrival and departure time accuracy of 3% and 12% respectively. This could perhaps
be due to the imputation strategy used to repair the data set where timings of arrivals and departures are
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Table 1: Performance Metrics for Each Uncalibrated ICT Data Set and each calibrated model. For the calibrated models,
the metrics are the median values considering 59 calibration periods. MAEo: Overall Median Absolute Error; MAEp: Peak
Median Absolute Error; POTA: Peak occupancy time accuracy; ATA: Arrival Time Accuracy; DTA: Departure TIme Accuracy

ICT Data
Set or
Model

MAEo MAEp POTA ATA DTA

Commercial
Counter
Error

4.2 12.4 100% 100% 90%

Uncalibrated

Access 17.3 30.6 31% 3% 12%

WiFi 19.8 35.4 34% 59% 36%

Activity 29.3 85.4 39% 97% 68%

Calibrated

fusion 7.2 15.2 41% 76% 69%

linmul 7.3 14.4 37% 69% 66%

linact 8.4 17.9 40% 97% 69%

NN3 10.1 17.3 42% 95% 67%

NN1 12.6 14.6 39% 12% 28%

RNN 14.7 13.8 26% 12% 47%

linacc 15.4 13.7 31% 10% 25%

LSTM 15.7 14.3 36% 79% 5%

linwif 16.0 20.0 34% 76% 42%

LSTM3 17.5 15.9 36% 39% 3%

RNN3 21.4 21.2 26% 53% 34%
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estimated. All data sets have around a 33% accuracy of determining when the peak occurs. The occupancy
count for this office building displays a dip in occupancy over the lunch time hours, leading to two potential
peaks, a pre-lunch peak or a post-lunch peak. Estimating the peak occupancy time accurately requires
the data stream to accurately measure the count at both times or else one would identify the peak time
at the wrong time. An example of this behavior can be seen in Figure 2. On the 31st of January, the
security access control data estimates the highest daily occupancy count occurring post lunch where as the
commercial counter registers the maximum daily occupancy at the pre-lunch peak.

Viewing the time series data in Figure 2, one can also view some qualitative differences in the shape
of each data stream. The activity data has a consistent profile with a distinct dip at lunch time. The
WiFi connectivity data stream sometimes reflects the shape of the occupancy as reported by the commercial
counter but appears to lose the signal, apparent in Figure 2 on the 31st of January and 3rd of February.
On January 31st, the wireless data fails to capture the afternoon peak and on February 3rd fails to capture
the afternoon dip. The WiFi connectivity data also appears to possibly have a slight delay as indicated
by the consistently higher occupancy counts during the day’s evening hours. The security access data also
shows a distinct lunch time dip with magnitudes similar to the commercial counter. It does however exhibit
higher occupancy counts during the late evening hours and early morning hours leading to the low arrival
and departure time accuracy.

3.2. Calibrated Occupancy Counts

Several model structures were evaluated for their ability to calibrate each of the data streams. Training
sets of 24 hours, 48 hours, and 120 hours were evaluated to determine how the accuracy would change with
longer training sets, enabling one to understand how long an external calibration system would need to be
placed. The “Performance of Model Structures” section below reports the performance metrics considering
training data sets of 24 hours. The “Effect of Training Set Length” section describes the changes in the
calibration metrics for the longer training data sets.

3.2.1. Performance of Model Structures

Considering the overall median MAE, all model structures once calibrated, with the exception of RNN3
and LSTM3, led to a lower MAE than with the best uncalibrated data set as shown in Table 1. The median
peak MAE for all calibrated models was lower than the best uncalibrated models. However none of the
model structures led to MAEo or MAEp that were less than those of the commercial counter or POTA,
ATA, DTA that were as high as those of the commercial counter. This indicates that even with calibration
the ICT data sets were not able to estimate occupancy as accurate as the commercial occupancy counter.

Of all of the model structure considered, the “fusion” model led to the lowest MAEo and the univariate
regression with the security access data, “linacc” led to the lowest MAEp. The univariate regression with
the computer activity data, “linact”, resulted in the highest arrival and departure time accuracy. The 2
layer neural network (NN3) resulted the highest peak occupancy time accuracy. There was not one model
structure that performed best across all metrics considered. More detailed results for each of the main model
structure types are discussed below.

3.2.1.1 Univariate Linear Regressions

The univariate linear regressions for each data set had varied reductions in the MAE. The security access
data, which had the lowest uncalibrated MAE of 17.3 people, through calibration the MAE was reduced
to 15.4 people. The WiFi connectivity data reduced from an overall MAE of 19.8 to a median MAE of 16
people. However the activity data which had the worst uncalibrated MAE, through the linear regression,
resulted in a MAE of 8.4 people. The MAE for the peak occupancy is reduced for all data sets, with the
activity data having the most significant change from a mean absolute error of 85 people to a median MAE
17.9 people. Overall, the linear regression with the security access data [“linact”] was, out of all of the model
structures evaluated, best able to estimate the peak occupancy count with a median MAE of 13.7.

Figure 3 depicts the results of each of the linear regressions for the week staring Monday January
30th, 2017. As compared to Figure 2, each of the data streams better aligns with the values reported by
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the commercial occupancy counter. The calibration for the activity data however leads to a large over
estimation of the occupancy on Friday. In viewing the results for the remainder of the year, this phenomena
occurs frequently indicating there may be a different relationship between occupancy and computer activity
on Fridays. As the model structure is simply a linear transformation, the long tails of the security access
data and the delayed count of the WiFi connectivity data previous discussed are still present. The metrics
for arrival time, departure time, and peak occupancy time only slightly improve for the calibrated data sets.

3.2.1.2 Multiple Linear Regression and Data Fusion

The fusion and the multiple linear regression had the lowest median MAE’s of 7.2 and 7.3, respectively.
Each model represents a linear combination of each data stream with different weights. Both calibration
models lead to very similar results, with the combination of each data set allowing for a better estimate
than either data stream alone. This can been seen in Figure 3 where the estimate for Friday February 3rd
from the combined estimates leads to better results than any individual data stream. However through the
combination of the data streams, there is a loss in the accuracy in the timing of events. The linear regression
with the activity data results in a median arrival time accuracy of 97% however this is diminished through
the multiple linear regression to 69% accuracy as shown in Table 1. The departure and peak occupancy
times are diminished from 69% to 66% and from 40% to 37%, respectively.

3.2.1.3 Neural Networks

Overall none of the neural network structures, neural networks, recurrent neural networks, LSTM neural
networks, consistently outperformed the linear regression models considering a 24 hour training period. The
neural networks without memory performed the best yielding overall median MAE’s of 12.6 and 10.1 for
NN1 and NN3, respectively. The RNN1 recurrent neural network best estimated peak occupancy amongst
the neural networks with a median MAE 13.8. The RNN3 model performed the worst of all models with
overall and peak MAE’s of 21.4, and 21.2 respectively. With respect to timing of events, the NN3 model
performed as well as the occupancy estimates based on the univariate regression with the activity data, the
only model to do so. The remainder of the models resulted in a degradation in arrival, departure, and peak
occupancy accuracies similar to the multiple linear regression and data fusion model structures.

Each of the neural network structure depicts different behavior as shown by the plots of the estimates
for a week in Figure 3. The neural networks show similar performance to the linear regressions, keeping
the shape of the time series showing behaviors of both the security access data with the long tails and the
activity data overestimation on Fridays. The recurrent neural networks have a staggered appearance with
the slope of the occupancy estimates often changing from positive to negative from one time step to the
next. The LSTM networks result in consistent overestimation and underestimation in the evening hours
leading to the worst departure time accuracy of the uncalibrated and calibrated data sets.

3.2.1.4 Variation in Estimates by Day

For the models discussed above, 24 hours of training data were used to estimate occupancy for the remaining
58 days. The analysis showed that the MAE from each training set varied by day. The biggest distinction
is between the individual linear regressions and fusion model. To visualise the differences, Figure 4 depicts
the MAE resulting from each training data set day for each of the univariate regressions and the data fusion
model. The linear regression for the activity data shows some distinct patterns. Higher MAE’s were observed
for the estimates training with data from December 22, 2017 and December 23rd 2017, the two days before
the Christmas holiday. Further higher MAE’s are observed for February 3rd 2017, February 10th 2017,
February 17th 2017, and March 24th 2017 each of which are Fridays. This indicates that the relationship
between computer activity and building occupancy varies by the intensity of activities performed in the
building as one would assume less computer activity on these days. The Wifi connectivity and security
access univariate regressions indicate days with higher MAE but an overall trend is not clear. The data
fusion estimate is a weighted average of each of the estimates, with the largest weight given to the activity
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Figure 3: Calibrated Occupancy Counts for each model structure for the week of January 30th 2017. Training Data: Wednesday
January 25th 2017
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Figure 4: MAE by Training Set Date for each univariate regression and the data fusion model structures
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data. Whilst achieving lower MAE’s overall, the trend in higher error in the days before Christmas and
Fridays persists.

3.2.2. Effect of Training Set Length

Performance metrics for each model structure were evaluated for training data sets of 24, 48, and 120
hours. Figure 5 depicts the median values of the performance metrics found for each model structure and
training set length. For all model structures, there is a decrease in the median overall and peak occupancy
MAE, indicating better performance with longer training sets. In the majority of cases, this reduction is
small amounting to a lower MAE of 1 person when increasing the training set length from a day to a week.
The cases with larger reductions are those for the neural network structures. The biggest change is for the
RNN3 model structure for which the overall MAE reduced from 21.4 to 15.1 from 24 hours to 120 hours,
respectively.

The accuracy metrics for the majority of model structures have a small changes as well, however perfor-
mance increased and decreased for different model structures across the increasing training period. For the
arrival time accuracy, with the exception of NN1, the increasing training period reduced the accuracy. The
largest change was for the data fusion model whose accuracy reduced from 76% to 69%. For the departure
time accuracy, the majority model structures increased accuracy, with the exception of the data fusion model
structure, whose departure time accuracy reduced from 69% to 65%. The largest increases in accuracy were
found for the NN1, NN3, RNN1, RNN3, and LSTM3 model structures. The median peak occupancy time
accuracy for each model structure at 120 hours remained within 2% of the accuracy reported at 24 hour
(e.g. 39% at 24 hours and 41% at 120 hours).

4. Discussion

The computer activity data, security access data, and the WiFi connectivity data each contained valuable
information on occupancy count. Qualitatively, each data stream is visually similar to the occupancy count
from the commercial counter but with a lower magnitude. Without calibration, each data set underestimated

16



Figure 5: Effect of Time Length of Training Data Set on Performance Metrics
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the overall occupancy by 15 to 30 people and during peak times this increased to 30 to 80 people. The
activity data , however, was able to estimate the arrival time, i.e. the first time at which more than 17.5
people were in the building, with 97%accuracy. Overall calibration is required to provide more accurate
estimates of occupancy count.

With calibration, despite which model, the data sets contained enough information to provide more
accurate estimates of occupancy count with respect to the MAE performance indicators, considering 24
hours of training data.

While relatively high arrival time accuracy was achieved, the departure time accuracy for all models was
fairly low considering the 1 hour time scale. This is caused by the difference in the morning and evening
behavior of the occupants. In the morning, there is a rapid increase in occupancy. The occupancy goes
from 10-15 people in 1 hour to 60-70 people in the next. In the evening, the reduction in occupancy is more
gradual with occupancy reducing by 10-15 people per hour from 5pm to 7pm. This means that an error of a
few people during this time can lead to an inaccurate estimation of departure time. For the peak occupancy
timing, a similar explanation can be made. With the bimodal shape of occupancy in office buildings, two
peaks arise and, depending on the day, the peak occupancy can be in the afternoon or evening. The MAE
for most calibrated model structures was around 15 people which is similar to the difference in magnitude
between the two peaks i.e. the morning and afternoon peaks are often times within 15 people of each other.
Therefore estimating the time of peak occupancy requires higher accuracy than provided by the ICT data
sets.

Increasing the length of the calibration period from 24 hours to 120 hours had only a slight affect on the
performance metrics with the exception of the neural network model structures. With a week of training
data, the NN3 model was able to increase its performance to be closer to or better than the linear regression
with activity data, the data fusion of the linear estimates, and the multiple linear regression. As the neural
network models have more coefficients than the linear regressions, it is possible that more data was needed
to provide more accurate estimates. This indicates that perhaps with many more data streams available for
estimating occupancy, neural networks could yield better performance metrics.

Determining which approach performed best is difficult, as different models performed well in different
indicators. Considering 24 hours of training, the two competing models are the data fusion approach and the
linear regression with activity data. The data fusion approach performed relatively well across all metrics
with the lowest MAEo. However in comparison to the linear regression with activity data, the arrival time
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accuracy was diminished. The linear regression with activity performed the best in arrival time accuracy
and performed relatively well in the other indicators with the exception of the MAEp.

Therefore there is a trade off in the approach used. The data fusion requires all three data streams,
provides better overall occupancy counts but leads to lower arrival time accuracy. The linear regression with
activity data only requires the single data stream, performs well with timing of events but performs worse
in estimating peak occupancy count. However, the linear regression with the activity data indicated a large
fluctuation in MAE depending on the day used for training, indicating the relationship between computer
activity and occupancy could change depending on the intensity of work performed in the building. Using
this data stream in isolation could lead to a degradation in accuracy as the work load, work tools or end-use
of the organization change.

Overall with these data sets even considering calibration, the ICT data sets were not able to estimate
occupancy as well as the commercial counter. TheMAEo andMAEp for the data fusion and linear regression
with activity data are approximately equivalent to an occupancy counter with an overall accuracy of 90%.
This opens the question of “how accurate does the occupancy count need to be for improved operation in
building heating ventilation and air conditioning systems?”.

For occupant driven scheduling of heating ventilation and air conditioning systems, i.e., determining
the operating hours from occupancy, error in the estimates could be adjusted for by adding a time to the
estimated arrival and departure times. An overestimation of the occupied period would lead to reduced
energy savings from the approach and if large enough could increase energy consumption due to extended
operating hours. For demand controlled ventilation, a similar adjustment could be made also leading to
diminished energy savings from the demand controlled approach. Given systems without demand controlled
ventilation are often operated for the maximum occupancy, increasing the energy consumption is unlikely.
For model predictive control approaches where occupancy is used to estimate internal loads, inaccurate
estimates could lead to decreased thermal comfort as it is possible that the system would not be able to
properly compensate for the internal gains. More research is needed to understand the magnitude of the
affect of occupancy count inaccuracies on the operation of these systems. Overall the accuracy need from
the occupancy counts will be determined by how the data is incorporated into the building operation.

5. Limitations and Areas for Future Work

A key limitation of this work is the context of the case study building. In the analysis, linear regressions,
where the data were multiplied by a single factor plus a bias, yielded consistent results. This could be due
to the case study setting of an office building with very regular activity patterns. For a building with more
variable use, the relationship between ICT system use and occupancy could change over time.

With respect to data collection, very limited analysis was performed on the Wi-Fi data, in that the
devices associated with the network were directly taken as occupancy count. It could be that a different
indicator of Wi-Fi network activity could yield better performance.

Further data was collected at the 1 hour time scale for the entire building. For maximum savings in
building HVAC operations, a smaller time step and higher spatial resolution would be desired. Increasing
the spatial resolution of the estimates in the case of Wi-Fi data would require additional analysis and
potentially additional wireless access points to determine the position of each device. This would change the
classification of the data set from Tier I to potentially Tier III. However the cost to add additional wireless
access points may not be viewed as prohibitive.

To draw more general conclusions, future work in the area should attempt to understand the relationship
between ICT data sets and occupancy count in buildings with a variety of use cases, with shorter time scales,
considering higher spatial resolutions.

6. Conclusions

The aim of this work was to determine if Tier I occupancy sensors could be used to measure occupancy
count at scale. Three ICT data sets were evaluated for their performance as compared to a commercial
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occupancy counter. With calibration, the ICT data sets were able to closely reflect occupancy count. A 24
hour calibration period is sufficient to achieve accurate measurements, although longer calibration periods
allow for more complex models to be used, yielding slightly increased performance. When considering
multiple metrics, there are trade offs between the mean absolute error and the timing of events, such as the
arrival and departure times. Ultimately, it will be up to the designer of intelligent building control systems
to determine which metric is most important and what level of accuracy is needed for system operation.

For the case study building, from the authors perspective, a two layer neural network (NN3) combining
the computer activity, WiFi, and security access data sets, using 1 week of training data, resulted in the
best performance: MAE overall of 7.7 people, a MAE peak of 15.4 people, arrival time accuracy of 94%,
departure time accuracy of 72%, and a peak occupancy time accuracy of 45%. However a linear regression
with activity data for only 24 hours yielded similar performance with data fusion and linear regression
approaches.

The work described in this paper shows that Tier I implicit occupancy sensors can provide reasonable
estimates of occupancy count, although not as accurate as the commercial occupancy counter. This work
also highlighted, the potential trade off in accuracy between overall fit and the timing of events. Therefore
future work should focus on incorporating and combining several Tier I ICT data sets to enable more
accurate spatial and temporal occupancy count estimates in a variety of use cases, whilst considering the
performance amongst multiple objectives.
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