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Abstract 

A relation between induction time and metastable zone width in cooling crystallization has been 

developed based on the correlation between temperature and supersaturation with induction time 

in Classical Nucleation Theory. By this relation the nucleation times in linear cooling experiments 

and the induction times at constant temperature can be estimated from each other, i.e. estimating 

metastable zone widths from experimental induction times or interfacial energy and the pre-

exponential factor from metastable zone widths. 120 induction times and 192 metastable zone 

widths of ascorbic acid in water have been determined, together with several systems reported in 

the literature, have been investigated to compare the estimated values of metastable zone width / 

induction time with experimental values, respectively. The estimated metastable zone widths are 

fairly consistent with the experimental values. The differences between experimental literature 

values of metastable zone widths with the estimated values using the literature induction times 

range from 0.1 K to 10 K with an average of 2.5 K. For two systems (paracetamol in ethanol and 

salicylic acid in ethyl acetate) estimated and experimental results are of very good consistency 

with the average uncertainty only about 5%. More accurate extrapolations of the induction times 

from metastable zone widths have been investigated. The potential utilities of this approach in 

crystallization research and process understanding are discussed.  
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Introduction 

Nucleation is an ubiquitous phenomenon and process in nature by which a new phase is formed, 

and it is of direct relevance to many industrial processes 1. Crystallization is the key step in the 

manufacture of most active pharmaceutical ingredients and small organic compounds and has a 

governing influence on the crystal product attributes 2. Despite its importance however crystal 

nucleation remains poorly understood 3.  

The nucleation behaviours are usually characterized by measurements of induction time4, tind, or 

metastable zone width, MSZW2, 5. MSZW is the temperature difference between the saturation 

temperature and the nucleation temperature observed at a constant cooling rate. The MSZW is a 

measure of nucleation under polythermal conditions and has practical applications for design of 

crystallization processes, helping to select an ideal seeding point for a crystallization process 2. 

Nucleation time, tmszw, in a MSZW experiment can be defined as the time between the solution 

reaching saturation and nucleation being observed/detected during cooling, when the 

supersaturation increases with decreasing temperature. In polythermal experiments with linear 

cooling rates, several approaches have been developed for example by Nyvlt6, Kubota7 and 

Sangwal8 based on an emperial nucleation rate equation:  𝐽𝐽 = 𝑏𝑏1(∆𝑇𝑇)𝑏𝑏2.  MSZW data have been 

reported for many systems including acylanilides in aqueous ethanol 9, paracetamol in water 10 or 

in ethanol11, benzoic acid in ethanol-water mixtures 12 and co-crystals of benzoic acid / 

isonicotinamide in 95 % ethanol 13. Recently the relation between MSZW and induction times was 

investigated by using probability theory to estimate nucleation rates 8, 14-20.  
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Induction time, tind, is measured under isothermal conditions and is defined as the time period from 

the solution reaching a constant temperature (supersaturation) until observing/detecting the 

nucleation. In isothermal experiments, interfacial energy and pre-exponential factor can be 

determined using the classical nucleation theory equation21-24: 𝐽𝐽 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �− ∆𝐺𝐺𝑐𝑐
𝑘𝑘𝑘𝑘
�. This approach 

has been used to provide further understanding of the solute-solvent interactions 25, as well as 

transition state 26, solvation shell 4 and desolvation process 27. The relation between induction time 

and MSZW in supersaturated solutions has been compared 28, however the relation between 

MSZW, interfacial energy and pre-exponential factor has not been established 29-30. The motivation 

for this study is therefore to address this gap and further understand nucleation thermodynamics 

and kinetics during MSZW experiments.  

The relation between the induction time, measured in isothermal experiments, and the nucleation 

time, measured in polythermal experiments, was derived from classical nucleation theory equation 

by using the pre-exponential factor and the critical nucleation potential 31. The critical nucleation 

potential, N, is a constant parameter describing the propensity for the system to nucleate and is 

independent of cooling rate and supersaturation. Recently, Shiau proposed an alternate 

interpretation to nucleation potential, defining a critical nucleation density that enables observation 

of nucleation 32-35. Using the nucleation potential, MSZWs at different cooling rates estimated 

from published experimental induction time values show good correspondences to experimental 

MSZW values. This indicates that polythermal MSZW measurements can provide details on the 

role of solute-solvent interactions and kinetics during cooling crystallization. This relation can 

provide understanding of the influence of different process conditions including cooling rate 36, 

saturation temperature 37-40, stirring rate 41 and solution volume 14-15 on the nucleation. In addition, 

this relation could provide the basis to identify the suitable temperature range for a seeded 
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crystallization in order to help control size distribution and avoid uncontrolled primary nucleation 

during cooling crystallization. Specifically, the ability to estimate MSZWs at different cooling 

rates based on a limited number of induction time experiments could minimise the time and 

material requirements during the design of cooling crystallization processes.  

In this work, the induction time and MSZW of L-ascorbic acid in water have been experimentally 

determined. A method is proposed to estimate median induction times from the measured median 

MSZWs. The estimated values of induction time and MSZWs in the aqueous L-ascorbic acid 

system, as well as in other systems reported in the literature, in which both induction time and 

MSZW data are reported, are compared with the experimental values, respectively. The interfacial 

energy and pre-exponential factor are extrapolated from the MSZW with this relation. 

 

 

Figure 1 Molecular structure L-ascorbic acid  

L-ascorbic acid is a form of vitamin C and is an antioxidant 42. Its molecular structure is shown in 

Figure 1, and it has only one reported polymorph 43. It is soluble in water with reported solubility 

of 0.29 g / g water at 20 °C44. In industry it is usually purified by multistage batch crystallization 

from water 45. 

Theory 

Critical nucleation potential 31, describes the potential for the nucleation of a system whereas the 

accumulated nucleation potential describes the potential for nucleation given the history of the 
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supersaturated state. For example, in cooling crystallization, nucleation potential accumulates 

when supersaturation is generated. Higher levels of supersaturation and longer time period lead to 

larger accumulated nucleation potential. The closer gap between the total accumulated nucleation 

potential with the critical nucleation potential is, the larger chance of occurring nucleation is. 

Nucleation potentials in cooling crystallization with two kinds of simple temperature profiles are 

presented in this part, first is the induction time experiments (with constant temperature), and 

second is MSZW experiments (with linear cooling rate).   

In classical nucleation theory, the induction time, 𝑡𝑡ind, consists of three parts 5: a relaxation time 

or transient period, 𝑡𝑡r, the time required to nucleate, 𝑡𝑡𝑛𝑛, and the growth time for a nucleated crystal 

to be detected, 𝑡𝑡g. If the relaxation time and the growth time are assumed to be negligible 21-24, the 

induction time, 𝑡𝑡ind = 𝑡𝑡r + 𝑡𝑡𝑛𝑛 + 𝑡𝑡𝑔𝑔 ≈ 𝑡𝑡𝑛𝑛, is inversely proportional to the nucleation rate 2, 𝐽𝐽, in a 

solution with volume 𝑉𝑉 . Combining the Arrhenius equation of nucleation rate in Classical 

Nucleation Theory, the induction time is dependent on supersaturation and temperature 5: 

ln𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖 = −ln𝐽𝐽𝑉𝑉 = −ln𝐴𝐴𝑉𝑉 + 16𝜋𝜋𝜎𝜎3𝑣𝑣2

3𝑅𝑅3𝑘𝑘3(ln𝑆𝑆)2                                        (1) 

where 𝜎𝜎 is the solid-liquid interfacial energy, 𝑣𝑣 is the molecular volume of the crystalline phase 

and R is the gas constant. 𝑇𝑇 and 𝑆𝑆 are the temperature and the supersaturation ratio of the solution, 

respectively. If the pre-exponential factor, 𝐴𝐴 , is assumed to be constant in certain range of 

temperature and supersaturation 2, 5, by plotting ln𝑡𝑡ind versus 𝑇𝑇−3(ln𝑆𝑆)−2, the interfacial energy 𝜎𝜎 

is determined from the slope, 𝐵𝐵 = 16𝜋𝜋𝜎𝜎3𝑣𝑣2

3𝑅𝑅3
. Accordingly, the nucleation work and nucleus size can 

be extrapolated (supporting information).  

By regrouping Eqn. 1 to a supersaturation dependent function 𝑓𝑓(𝑆𝑆) = 𝑅𝑅3 ∙ 𝑇𝑇3(ln𝑆𝑆)2 and a time 

dependent function 𝑓𝑓(𝑡𝑡) = ln(𝐴𝐴𝑉𝑉𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖)  in the left side of Eqn. 2, the right side of equation, 
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16πσ3v2, is equal to 𝑁𝑁, which is the critical nucleation potential. N is a constant parameter for 

one system 31 with unit of (kJ/mol)3. 

𝑓𝑓(𝑆𝑆) ∙ 𝑓𝑓(𝑡𝑡) = 3𝑅𝑅3𝑇𝑇3(ln𝑆𝑆)2 ∙ ln(𝐴𝐴𝑉𝑉𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖) = 16πσ3𝑣𝑣2 = 𝑁𝑁                      (2) 

It is noted that 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖, in the experiment in Eqn. 1 represent the experimental results, usually used to 

determine the interfacial energy and nucleation work. In Eqn. 2, the induction time, 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖, is an 

dependent parameter of 𝑓𝑓(𝑡𝑡), which can be estimated from different levels of supersaturation in 

one system with same N, if the term AV is known, i.e 𝑓𝑓(𝑡𝑡) is determined by 𝑓𝑓(𝑆𝑆) by Eqn. 2. 

The curve in Figure 2 (a) shows the equal value of critical nucleation potential N for a system 

under each different supersaturation level, i.e. 𝑓𝑓(𝑆𝑆). The area of big green rectangle 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 is equal 

to 𝑓𝑓(𝑆𝑆) ∙ 𝑓𝑓(𝑡𝑡). Therefore, during each time interval ∆𝑡𝑡 the area of each small green rectangle, for 

example ∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖[𝑎𝑎], ∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖[𝑏𝑏] or ∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖[𝑐𝑐], is constant, i.e. the accumulated nucleation potential, 

∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛], during each short period is constant: 

∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  = ∆𝑡𝑡
𝑡𝑡𝑛𝑛
𝑁𝑁 = 𝐴𝐴𝑉𝑉𝐴𝐴𝑡𝑡 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 (− 𝑁𝑁

3𝑅𝑅3𝑘𝑘3(𝑙𝑙𝑛𝑛𝑆𝑆)2
)𝑁𝑁                                            (3) 

where exp �− 𝑁𝑁
𝑅𝑅3𝑘𝑘3(𝑙𝑙𝑛𝑛𝑆𝑆)2� is constant, due to the constant temperature and supersaturation in the 

isothermal experiment. 
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(a)                                                                               (b) 

Figure 2: (a) Interpretation of the isothermal experiment (green) and the polythermal experiment 

(blue) by classical nucleation theory with Eqn. 2 and Eqn. 3. (b) Accumulation of nucleation 

potential in the isothermal experiments (green linear line) and the polythermal experiments (blue 

curve), corresponding to Eqn. 4 and Eqn. 5, respectively. 

In order for a system to build up nucleation potential, it needs time and supersaturation. The area 

of the big green rectangle, 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖, in Figure 2 (a) (accumulated by small green rectangle, ∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖[𝑛𝑛], 

from top to bottom) represents the integration of nucleation potential ∆𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖  in an isothermal 

experiment at a constant temperature and a constant supersaturation level. The integral over time 

t from the time constant supersaturation is generated (t=0) to time 𝑡𝑡𝑚𝑚 becomes: 

∫ 𝐴𝐴𝑁𝑁𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑡𝑡
0 𝑑𝑑𝑡𝑡 = ∑ 𝐴𝐴𝑁𝑁𝑚𝑚

𝑛𝑛=1 = 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝐴𝐴𝑉𝑉𝐴𝐴𝑡𝑡 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 (− 𝑁𝑁
3𝑅𝑅3𝑇𝑇3(𝑙𝑙𝑛𝑛𝑆𝑆)2)𝑁𝑁                          (4) 

Therefore, the accumulation of nucleation potential, ∫ 𝐴𝐴𝑁𝑁𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝛥𝛥𝑡𝑡
0 𝑑𝑑𝑡𝑡, is a linear line in Figure 2 (b). 

The blue trapezium, 𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝, in Figure 2 (a) presents the critical nucleation potential in a polythermal 

experiment at decreasing temperature and increasing supersaturation level. In this polythermal 

experiment, cumulative nucleation potential, 𝐴𝐴𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝[𝑛𝑛] , during each 𝑓𝑓(𝐴𝐴𝑡𝑡)  increases, i.e.  

∆𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝[𝑎𝑎] < ∆𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝[𝑏𝑏] < ∆𝑁𝑁𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝[𝑐𝑐],which can be also calculated by Eqn. 3, where 𝑡𝑡𝑛𝑛 decreases 

with increase in supersaturation.  

In this work solubility equation with form of 𝑙𝑙𝑛𝑛𝐴𝐴 = 𝐴𝐴𝑖𝑖𝑇𝑇−1 + 𝐵𝐵𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑇𝑇 is used as in previous 

investigation31, 46, and other solubility equations are also applicable to this method. In a 

polythermal experiment linear cooling rate of zc is employed, and when the solution cools down 
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to temperature 𝑇𝑇0  (𝑇𝑇0  is saturated temperature), time is recorded as 𝑡𝑡 = 0 . The accumulated 

nucleation potential till time 𝑡𝑡𝑚𝑚 (equal to 𝑚𝑚𝐴𝐴t), becomes:  

∫ 𝐴𝐴𝑁𝑁𝑚𝑚𝐴𝐴𝑖𝑖𝑙𝑙𝑝𝑝𝛥𝛥𝑡𝑡
0 𝑑𝑑𝑡𝑡 ≈ ∑ 𝐴𝐴𝑁𝑁𝑚𝑚

𝑛𝑛=1 = ∑ 𝐴𝐴𝑉𝑉𝐴𝐴𝑡𝑡 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴 (− 𝑁𝑁
3𝑅𝑅3𝑇𝑇𝐴𝐴𝑖𝑖𝑙𝑙𝑝𝑝

3(𝑙𝑙𝑛𝑛𝑆𝑆𝐴𝐴𝑖𝑖𝑙𝑙𝑝𝑝)2)𝑁𝑁𝑚𝑚
𝑛𝑛=1                          (5) 

where 𝑇𝑇𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝 = 𝑇𝑇0 − 𝑧𝑧𝑐𝑐𝑛𝑛𝐴𝐴𝑡𝑡 , and 𝑙𝑙𝑛𝑛𝑆𝑆𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝 = 𝐴𝐴𝑖𝑖𝑇𝑇0−1 − 𝐴𝐴𝑖𝑖(𝑇𝑇0 − 𝑧𝑧𝑐𝑐𝑛𝑛𝐴𝐴𝑡𝑡)−1 + 𝐶𝐶𝑖𝑖𝑇𝑇0 − 𝐶𝐶𝑖𝑖(𝑇𝑇0 −

𝑧𝑧𝑐𝑐𝑛𝑛𝐴𝐴𝑡𝑡). Therefore, the accumulation of nucleation potential is an up-bended curve in Figure 2 (b), 

showing with longer time in a polythermal experiment, the speed of accumulating nucleation 

potential becomes faster. 

Nucleation happens at the time of m𝐴𝐴t when the accumulated nucleation potential is equal to or 

just bigger than the value of the critical nucleation potential, N, in both isothermal and polythermal 

method. It is noticed that the Eqn. 5 is simplified to the Eqn. 4, if zcn∆t is a constant. As shown in 

Figure 2 (b), no matter which methods applied, when the accumulation nucleation potential reaches 

critical value, nucleation occurs. 

 

Experimental work 

Materials 

L-Ascorbic acid (CAS reg. no. 50-81-7, mass purity >99.0%), was purchased from Sigma-Aldrich, 

and used without further purification. Double distilled water was used. 

Nucleation experiments 

100 ml solution of L-ascorbic acid in pure water was prepared in a sealed 300 ml glass bottle with 

concentration of 0.4468 g / g water. The bottle was then submerged in a water bath kept at a 
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constant temperature of 323.15 K which was about 15 K above the saturation temperature of 

307.98 K. The solution was stirred for several hours using a magnetic stir bar during dissolution 

to make sure all solid material had been dissolved. The solution was transferred into glass vials 

(11.5 mm diameter and 1.8 mL volume) by syringe attached with a 0.2 µm PTFE membrane filter. 

A PTFE-coated magnetic stir bar of size 7⤬2 mm was placed in each of the glass vial, and then 

the vials were sealed by Parafilm outside the cover to prevent evaporation. The vials with solutions 

were set in Crystal 16 (Avantium Amsterdam). Agitation of 1000 rpm was provided and the 

turbidity meter was used to determine the transparency of the solution. The solutions were initially 

clear and the nucleation was observed at the first decrease in the transparency.  

Table 1 Experimental conditions with isothermal and polythermal methods.  

 Cooing rate No. of MSZW 
measurements 

 Constant 
temperature 

No. of induction 
time measurements  

Exp 1-1 18.0 K/hour 32 Exp 2-1 273.15 K 24 
Exp 1-2 18.0 K/hour 32 Exp 2-2 273.65 K 24 
Exp 1-3 18.0 K/hour 32 Exp 2-3 275.05 K 24 
Exp 1-4 9.0 K/hour 32 Exp 2-4 275.35 K 24 
Exp 1-5 6.0 K/hour 32 Exp 2-5 277.45 K 24 
Exp 1-6 3.0 K/hour 32    

Saturated temperature of the solution is 307.98 K. 

Totally 192 MSZWs and 120 induction times were determined (Table 1). In MSZW experiment, 

the linear temperature profile was controlled by the program from 323.15K until all the solution 

nucleated, and then the vials was heated up to 323.15 K and kept for 30 min. The experiments 

were repeated with different temperature profiles random chosen, and in sum at 3.0 K/hour, 6.0 

K/hour and 9.0 K/hour the experiments were repeated 4 times (8 vials one group and 32 MSZWs 

for each cooling rate), respectively, and repeated 12 times at 18.0 K/hour (96 MSZWs). In 

induction time experiment, the temperature of the solution was quickly cooled down to 5 constant 
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temperatures from 273.15 to 277.45 K (8 vials one group and 24 induction times for each constant 

temperature), and the 120 induction times were determined from the solution reached constant 

temperature until the nucleation occurred. The median values are used to analyse the MSZWs and 

induction times to minimize the influence of a few very big and small results25.  

Results and discussions 

Experimental metastable zone widths  

The wide distributions of MSZWs in Figure 3 and Figure 4 all show the stochastic nature of the 

nucleation. The MSZWs distributions in parallel experiments (Exp. 1-1, 1-2 and 1-3) are in good 

consistence with each other shown in Figure 3, indicating the reliable nucleation behaviours in this 

work. This consistence suggests that the median nucleation time determined from 20-30 nucleation 

times is as reliable as that determined from much more nucleation times.  

 

Figure 3 Cumulative distributions of the MSZWs of ascorbic acid in water at 18.0 K/hour. Three 

colour dots: Exp. 1-1 (pink), Exp. 1-2 (cyan) and Exp. 1-3 (grey).  
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Figure 4: MSZW measurement results of ascorbic acid in water.  Left figure: Cumulative 

distributions of the nucleation times at 18.0 K/hour (Exp. 1-1,2,3: 96 blue circle), 9.0 K/hour 

(Exp. 1-4: 32 green triangle), 6.0 K/ hour (Exp. 1-5: 32 red diamond), 3.0 K/hour (Exp. 1-6: 32 

black square). Right figure: Cumulative distributions of the MSZWs of the same experiments. 

The labels correspond to both figures.  

Figure 4 shows 192 nucleation times and MSZWs at four cooling rates from 3.0 K/hour to 18.0 

K/hour. At the cooling rate 3.0 K/hour, the nucleation times vary from 6612 to 33372 s, 

corresponding to a variation in MSZW from 5.51 to 27.81 °C. The variations in the nucleation 

times and MSZWs are thus substantial. The median nucleation time, nucleation time at P(t)=0.5, 

increases with decreasing cooling rate that 18.0 < 9.0 < 6.0 < 3.0 K/hour. In the order from 3.0 to 

18.0 K/hour, the average, lowest and largest MSZW increase, respectively. Correspondingly, the 

maximum driving force during the cooling process (driving force at nucleation) increases with 

increase of the cooling rates (Table 2).  
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Table 2: Results of the experimental and extrapolated MSZWs with respective nucleation 
parameters of ascorbic acid in water  

𝑧𝑧𝑐𝑐 
(K/hour) 

𝑇𝑇0 
(K) 

𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑝𝑝 
(K) 

𝑡𝑡𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀 
(s) 

𝑅𝑅𝑇𝑇ln𝑆𝑆max 
(kJ/mol) 

𝑁𝑁
1
3 

(kJ/mol) 
𝐴𝐴𝑉𝑉 
(/s) 

𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖 
(K) 

18.0 307.98 30.51 (3.96) 6102 1.96 4.47 0.029 31.53 
9.0  24.61 (6.07) 9844 1.61   28.95 
6.0  21.51 (4.80) 12906 1.43   27.67 
3.0  17.11 (6.29) 20652 1.15   25.76 

𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑝𝑝: median experimental MSZWs with standard deviation in bracket, 𝑡𝑡𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀: median 
nucleation times in MSZW experiment, 𝑅𝑅𝑇𝑇𝑙𝑙𝑛𝑛𝑆𝑆𝑚𝑚𝑚𝑚𝑒𝑒: driving force at nucleation,  𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖: 
MSZW extrapolated from induction time results by Eqn. 5.  

The ratios between the longest nucleation time and the onset of the nucleation time are 1.9, 2.5, 

2.7 and 5.0 at the cooling rate of 18.0, 9.0, 6.0 and 3.0 K/hour, respectively. The distribution of 

nucleation time widens with decreasing cooling rate. The width of the MSZW distribution is less 

significantly affected by the cooling rate. The median MSZWs is less than two times difference 

among experiments with these cooling rates, however, the difference among the median nucleation 

time in these experiments is more than three times, shown in Table 2. 

Experimental induction times and nucleation parameters  

Figure 5 shows the distributions of the induction time, at driving forces from 2.0 to 2.2 kJ/mol, the 

distributions of induction time at four higher driving forces are nearly parallel to each, and the 

longest induction time is about 3 times longer than the shortest induction time in each case. 

However, at the lowest driving force, the distribution of induction time is much broader than other 

four distributions, and the longest induction time is about 4 times longer than the shortest induction 

time. 
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Figure 5 Accumulated distributions of induction time of ascorbic acid in water for Exp. 2-1 to 

Exp 2-5 from left to right (24 data for each condition) at five constant temperatures from 273.15 

to 277.45 K  

Table 3 Induction time experimental results and nucleation parameters determined of ascorbic 
acid in water  
𝐶𝐶∗ 𝐶𝐶 𝑅𝑅𝑇𝑇lnS 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖 𝜎𝜎 𝐴𝐴𝑉𝑉 ∆𝐺𝐺𝑐𝑐 𝑟𝑟𝑐𝑐 𝑛𝑛𝑐𝑐 

(g/g solvent) (kJ/mol) (s) (mJ/m2) (/s) (kJ/mol) (nm)  
0.165 0.447 2.200 519 (161) 6.482 0.029 4.756 0.614 6.0 
0.167  2.173 569 (147)   4.878 0.621 6.2 
0.174  2.095 612 (162)   5.247 0.645 6.9 
0.176  2.089 681(152)   5.275 0.650 7.1 
0.186  1.959 1018 (404)   5.998 0.689 8.4 
𝑡𝑡ind: median induction time with standard deviation in bracket. 𝐶𝐶∗: solubility of solution at each 
constant temperature, 𝐶𝐶 is concentration of the solution. 𝐴𝐴: pre-exponential factor in solution 
with volume 𝑉𝑉. 𝑟𝑟𝑐𝑐: critical radium of nucleus. 𝑛𝑛𝑐𝑐: critical number of molecules in nucleus. 𝐶𝐶, 𝜎𝜎 
and 𝐴𝐴𝑉𝑉 are same for all five conditions. 

According to the Eqn. 1, from the slope and the intercept of the linear line (supporting information), 

the interfacial energy and the pre-exponential factor can be determined and results are given in 

Table 3. The Gibbs energy barriers to nucleation are about 5 to 6 kJ/mol, the sizes of the critical 

nucleus are about 0.6 – 0.7 nm and the critical numbers of nucleus are about 6 to 8. The interfacial 
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energy of ascorbic acid in water is 6.482 mJ/m2, which is in the same order as values of several 

other organic compounds 47-49.  

Extrapolated metastable zone widths from induction time experiments 

The critical nucleation potential of ascorbic acid in water is 89.55 (kJ/mol)3, and AV is 0.029 s-1  

(shown in Table 2), calculated by the Eqn. 2. At constant cooling rate 18.0 K/hour (0.005 K/sec), 

the temperature is equal to 307.98 − 0.005𝑛𝑛𝐴𝐴𝑡𝑡 K at time 𝑛𝑛∆t with unit of second. If the time step, 

𝐴𝐴𝑡𝑡, is 1 second, combining the solubility equation, 𝑙𝑙𝑛𝑛𝐴𝐴 = 21.123𝑇𝑇−1 − 11.845 + 0.028𝑇𝑇, with 

Eqn. 5, the accumulated nucleation potential of every time step (one second) during the cooling 

process can be calculated (shown in supporting information). 

The nucleation occurs at ∑ 𝐴𝐴𝑁𝑁𝑚𝑚
𝑛𝑛=1 ≥ 89.55 (𝑘𝑘𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙)3 with the minimum value of 𝑚𝑚 = 6306, 

and then the MSZW can be calculated as 31.53 K. The same method is used to extrapolate MSZWs 

at cooling rates at 3.0, 6.0 and 9.0 K/hour, and the minimum value of 𝑚𝑚 is 30912, 16602 and 11580, 

respectively. The extrapolated MSZW results are shown in the last column of Table 2. By similar 

format equations starting from Eqn. 5, the MSZW of same results would also be estimated by the 

integral equation (infinite small step) suggested by Shiau 30, 33-34.  
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Figure 6 Experimental results of L-ascorbic acid MSZW (black open dots) in water with median 

values (brown round solid dots), average values (green round solid dots), and MSZWs 

extrapolated by Eqn. 5 from induction time experiments (blue diamond solid dots) at cooling rate 

3.0, 6.0, 9.0 and 18.0 K/hour (from left to right), respectively. Dashed lines are guiding lines of 

respective data. 

In this work, the median values of induction times, nucleation times and MSZWs are very close to 

the respective average values. Figure 6 shows the extrapolated MSZW at 18.0 K/hour are in good 

consistence with the experimental value, about only 1 K higher. All the extrapolated values are 

higher than the respective experimental values, and at lower cooling rates, the deviations between 

extrapolated values with experimental values increase from 4 to 8 K.  

Few induction times and MSZWs are both reported in the same systems. In isonicotinamide -

ethanol 16 solution at cooling rates 6.0 to 60.0 K /hour, the extrapolated MSZWs31 from induction 

time results are 11.3 to 17.3K (shown in supporting information), which are in good agreement 

with the experimental results from 7.7 to 17.1 K. In paracetamol - ethanol 50 at cooling rate 12.0 
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to 60.0 K /hour, the extrapolated MSZWs with Equ. 5 from experimental induction times are 12.6 

to 19.6 K, which are in good consistence with the experimental MSZWs from 11.1 to 21.0 K.  

 

Figure 7: Experimental MSZWs51 and extrapolated values by Eqn. 5 of salicylic acid in acetonitrile, 

acetone, ethyl acetate and methanol from experimental induction time results.  

Recently, the induction times and MSZWs of salicylic acid in acetonitrile, acetone, ethyl acetate 

and methanol have been reported 51, shown in Figure 7. In acetonitrile, acetone and ethyl acetate, 

MSZWs of salicylic acid extrapolated from induction times are of very good consistence with the 

experimental results. In acetonitrile, experimental MSZWs are 5.6 - 9.7 K at 5– 15 K/hour which 

are consistent with the estimated values 7.4 - 9.3 K from induction time results. In acetone, the 

experimental MSZWs are 13.2 - 17.5 K which are in consistence with the estimated MSZW values 

15.8 - 17.4 K. In ethyl acetate, the experimental MSZWs are 11.1 - 13.7 K which are also close to 

the estimated values 10.5 - 13.5 K. In methanol, estimated MSZWs of salicylic acid have bigger 

variations with the experimental values of 12.3 - 19.7 K, and the extrapolated values are overall 

about 9 K higher. 
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Estimated induction times from metastable zone width experiments 

An optimization method is applied to find the best fitting MSZW at each cooling rate to the 

experimental MSZW, and respective interfacial energy, pre-exponential factor and induction time 

at each driving force can be estimated from the optimized MSZW. By calculation of the objective 

function, Eqn. 6, (the difference between experimental values and extrapolated values with one or 

more cooling rates) for every possible combination values of 𝑁𝑁 and 𝐴𝐴𝑉𝑉,  

𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖 = ∑ �𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑝𝑝 − 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚�(𝑁𝑁,𝐴𝐴𝑉𝑉)�
2

𝑖𝑖=𝑧𝑧𝑐𝑐                                 (6) 

where 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚 is estimated from Eqn. 5. Ten thousands values of 𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚 with respective 

ten thousands combinations of N and AV have been calculated and compared with experimental 

values by a program in Matlab 2014b.  The combination values of N and AV, leading to the 

minimum 𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖, are used to estimate induction times.  

 

                                         (a)                                                                      (b) 

Figure 8 Experimental MSZWs (a) / induction times (b) and MSZWs (a) / induction times (b) 

estimated from optimization of MSZWs of butyl paraben in ethanol.  
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As an example of butyl paraben in ethanol, the experimental MSZWs at 4.0, 6.0, 12.0, 15.0 and 

20.0 K/hour are shown in Figure 8 (a). By testing the values of N and AV determined by induction 

time experiments, 𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖 is about 8.5 𝐾𝐾2, shown as green dots in Figure 8  (b). With different values 

of N and AV, the estimated MSZWs calculated by Eqn. 5 move along each vertical line (for each 

cooling rate), accordingly leading to different values of 𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖. The blue dots on dashed line in 

Figure 8 (a) are almost overlapping to the experimental values, which has the minimum value of 

𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖, 0.02 𝐾𝐾2, among all the combinations of N and AV tested. In this case, the optimized N and 

AV are 1.09 𝑘𝑘𝐽𝐽3𝑚𝑚𝑖𝑖𝑙𝑙−3 and 0.050 𝑖𝑖−1, respsctively. From N and AV, we can estimate induction 

time at the experimental supersaturation levels, shown as the blue dots on blue dashed line in 

Figure 8 (b). The interfacial energy determined from the optimized MSZWs are 1.073 

𝑚𝑚𝐽𝐽/𝑚𝑚2which is in good agreement with the value 1.134 𝑚𝑚𝐽𝐽/𝑚𝑚2 determined from the experimental 

induction time results.  

Table 4 Estimated interfacial energies and pre-exponential factors from optimization Eqn. 6 of 
butyl paraben in ethanol, salicylic acid in ethyl acetate and paracetamol in ethanol. 

Optimization of N 
and AV 

 𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖 
(𝐾𝐾2) 

𝑁𝑁 
(𝑘𝑘𝐽𝐽3 𝑚𝑚𝑖𝑖𝑙𝑙−3) 

AV 
(𝑖𝑖−1) 

𝜎𝜎 
(𝑚𝑚𝐽𝐽 𝑚𝑚𝑖𝑖𝑙𝑙−1) 

Butyl paraben  Experimental 8.47 1.09 0.014 1.134 
in ethanol Estimated 0.02 0.93 0.050 1.073 
Salicylic acid Experimental 1.85 1.67 0.0030 1.836 
in ethyl acetate  Estimated 0.44 2.50 0.0050 2.099 
Paracetamol Experimental 4.62 3.96 0.0042 2.090 
in ethanol Estimated 0.80 2.41 0.0025 1.772 

 

With Eqn. 6, estimated and experimental MSZWs of butyl paraben in ethanol at only one cooling 

rate are also compared, the 𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖 is very close to 0, i.e. optimized MSZW can be almost same as 

the experimental values at this cooling rate. From each optimized MSZW (five optimized MSZWs 

at five single cooling rate), the interfacial energy is estimated in the range of 1.0 - 1.1 𝑚𝑚𝐽𝐽/𝑚𝑚2 (in 
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supporting information), which are of good consistence with the experimental value. Accordingly, 

the estimated induction times at different supersaturation levels are consistent with the 

experimental values. 

  

                                                (a)                                                                                        (b) 

Figure 9 Estimated induction times of (a) salicylic acid in ethyl acetate and (b) paracetamol in 
ethanol from optimized MSZWs. 

From the best fitting MSZWs of salicylic acid in ethyl acetate at cooling rates at 5 - 15 K/hour and 

MSZWs of paracetamol in ethanol at cooling rates 12 – 60 K/hour, N and AV are estimated to be 

2.50 𝑘𝑘𝐽𝐽3/ 𝑚𝑚𝑖𝑖𝑙𝑙3 and 2.41 𝑘𝑘𝐽𝐽3/ 𝑚𝑚𝑖𝑖𝑙𝑙3 with AV as 0.050 𝑖𝑖−1 and 0.0025 𝑖𝑖−1, respectively. Very low 

𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖  values indicate the optimized MSZWs are very close to the experimental values. The 

estimated induction times are shown as blue dots on blue dashed line in Figure 9. In systems of 

salicylic acid in ethyl acetate and paracetamol in ethanol, the interfacial energies estimated from 

best fitting MSZWs, 2.099 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙  and 1.772 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙 , are consistent with the experimental 

values 1.836 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙 and 2.090 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙, respectivly. In addition, if MSZW at each cooling rate 

is fitted by Eqn. 6, the estimated interfacial energy and pre-exponential factor at each cooling rate 

are also consistent with the experimental values, respectively. 
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However, in the system of L-ascorbic acid in water, probably due to wide MSZWs, there are big 

variations (about 30 %) between estimated MSZWs with experimental MSZWs at lower cooling 

rates (in Figure 6), and, correspondingly, there are big variations (about 50 %) between 

experimental induction times with estimated values by fitting MSZWs at all cooling rates.  

 

Figure 10 Experimental induction times and estimated induction times from MSZW at 18.0 
K/hour and estimated induction times with different A values by fitting MSZW at each 
corresponding cooling rate. 

If we estimate the induction time from MSZW at single cooling rate, applying the Eqn. 6 with each 

cooling rate, the interfacial energy estimated from cooling rate at 18.0 K/hour are closest to the 

experimental values (Table 5) than those at other cooling rates. The estimated interfacial energy is 

7.055 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙, which is close to experimental value 6.482 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙 with only about 3 % variation. 

Correspondingly, estimated induction time from fitting MSZW only at 18.0 K/hour is the closest 

to the experimental induction time value, shown in Figure 10, than estimated induction time from 

fitting MSZW at other individual cooling rate. This may be because the wide MSZWs or big gap 
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between nucleation temperature in polythermal and in isothermal experiments invalidate the 

assumption that pre-exponential factor, A, is constant, i.e. independent on temperature. If we fit 

each MSZW with constant N (determined from induction time experiments) at each cooling rate, 

the values of A systematically decrease with increase in cooling rates, i.e. decrease in the 

nucleation temperature, shown in Table 5, which show a strong influence of the temperature on 

the pre-exponential factors.  

Table 5 Estimated interfacial energies or pre-exponential factors by optimizing MSZWs of 
ascorbic acid in water with Eqn. 6 at each cooling rate 

Ascorbic acid in water Optimization 
conditions 

𝐹𝐹𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖 
(𝐾𝐾2) 

𝑁𝑁 
(𝑘𝑘𝐽𝐽3 𝑚𝑚𝑖𝑖𝑙𝑙−3) 

AV 
(𝑖𝑖−1) 

𝜎𝜎 
(𝑚𝑚𝐽𝐽 𝑚𝑚𝑖𝑖𝑙𝑙−1) 

Experimental  132.51 89.57 0.029 6.482 
Optimization of N and AV at 18.0K/hour 0.00 115.51 0.122 7.055 
Optimizations of each AV 
value at corresponding 
cooling rate with constant N 
value 

at 3.0K/hour 0.00 89.57 5.366  
at 6.0K/hour 0.00  0.878  
at 9.0K/hour 0.00  0.150  
at18.0K/hour 0.00  0.041  

 

Discussion  

The smaller critical nucleation potential is, the narrower MSZW becomes. The critical nucleation 

potentials, calculated from induction time results of different systems in this work and in literatures, 

are in the range 1.1 to 89.6 (𝑘𝑘𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙)3, and MSZWs reported in these systems are in the range 

from 3.4 to 30.5 K at the cooling rates in the range of 3 to 60 K/hour. The critical nucleation 

potentials of the systems are in the order: ascorbic acid in water > salicylic acid in methanol > 

salicylic acid in acetone > isonicotinamide in ethanol > paracetamol in ethanol ~ salicylic acid in 

ethanol > salicylic acid in ethyl acetate > butyl paraben in ethanol, and with the similar trend the 

MSZWs follow at comparable cooling rates, shown in Figure 11. The ascorbic acid in water have 

much higher critical nucleation potential than other systems, and accordingly, the MSZWs are 
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much wider than other systems, while the butyl paraben in ethanol has very small critical 

nucleation potential, and the MSZWs (very narrow) are in the bottom of Figure 11. Figure 11 

shows MSZWs increase with increase in the critical potentials and with increase in the cooling 

rates, which indicate that the critical nucleation potentials determine the widths of metastable zone 

and the cooling rates (shown as dashed lines) determine the accumulative rates of nucleation 

potential to reach critical nucleation potential at each system. 

 

 Figure 11 Relation of experimental MSZWs with critical nucleation potentials, determined from 

experimental induction times, at comparable range of cooling rates (0 – 20 K /hour) in eight 

solution systems. 

From the relation developed in this work, the MSZW and induction time can be estimated from 

each other. However, it is much more complicated to estimate the nucleation parameters from 

MSZWs than to estimate MSZWs from induction times, mainly because of the increasing 
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accumulated nucleation potentials and other uncertainties with decreasing temperature in 

experiments. As assumed, the stationary nucleation (having the stationary distribution of clusters) 

occurs in the isothermal experiment, however, in polythermal experiment the situation of the 

distribution of the clusters might be continuously transforming, i.e. not stationary at each time 

moment. It is a reliable method that we can estimate the interfacial energies and pre-exponential 

factors from MSZWs in most of the systems reported. In some cases, we can estimate the 

interfacial energy and pre-exponential factor from only one MSZW, which values are consistent 

with experimental values determined from induction time experiment. Correspondingly, it shows 

the possibility that prediction of nucleation temperature in MSZWs or induction time from only 

one MSZW measurement. It is to be noticed that some of the optimizations (large number of 

calculation needed) takes long time to find the best fitting MSZWs by completing global 

optimizations and the optimization function is very sensitive to the nucleation parameters. 

The influences of interfacial energies and pre-exponential factors in the MSZW experiment are 

very complicated to be simply clarified. Solvent shell / dissolvation 1, 4, 52 paly important role in 

nucleation, and the water molecule is a very polar molecule usually forming strong solvent shells 

and the dissolvation is relatively difficult 53. Because of the limited understanding of the 

dissolvation process and dissolvation energy, it is hard to fully predict the influences of 

dissolvation process on the relation, which is also the challenge of the classical nucleation theory.  

In all the experiment reported in this work, there is no transition from homogeneous nucleation to 

heterogeneous nucleation in induction times analyzed by Eqn. 1. It is challenge to distinguish the 

heterogeneous nucleation and homogeneous nucleation in MSZW experiments. From the theory, 

the heterogeneous nucleation happens at lower supersaturation, for example S*. If the nucleation 

happens at supersaturation level lower than S*, the homogeneous nucleation transforms to 
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heterogeneous nucleation 5, when we keep solution at a constant supersaturation level. In this work, 

the max supersaturation in MSZW experiment is always higher than S*, we ignore the 

heterogeneous nucleation in the estimations. We cannot deny in a certain MSZW experiment with 

very low cooling rate, the max supersaturation at nucleation may be lower than S*. Should we 

accept that the heterogeneous nucleation happens in this case? In our work, if we can estimate the 

critical nucleation potential in heterogeneous nucleation, which should be smaller than that in the 

homogeneous nucleation for one system, i.e. interfacial energy is smaller in heterogeneous 

nucleation. Correspondingly, the estimated MSZW from the critical nucleation potential in 

heterogeneous nucleation should be smaller than what we estimated in this work.  

Because of the limitation of technology, we can observe the nucleation only after secondary 

nucleation induced by one or several big enough crystals, which grow during the growth time, 𝑡𝑡𝑔𝑔, 

after the initial nucleation 54. However, uncertainty of the growth time is not investigated here to 

simplify the equation of the relation between MSZWs and induction times. In the MSZW 

experiments if solutions cool down to an equal temperature, at a lower cooling rate longer growth 

time spends and bigger mother crystal obtains. Accordingly, at a lower cooling rate less growth 

time needed to form a big enough nucleus, i.e. less temperature difference is needed to induce 

secondary nucleation, which may attribute a relatively narrower MSZW than expected.  

In the equation of the relation, the pre-exponential factor is simplified to be constant. However, 

the influence of pre-exponential factor is unneglectable where the metastable zone width is wide, 

i.e. critical nucleation potential is high and nucleation is very difficult. The pre-exponential factors 

we estimated from optimization by fitting MSZWs decrease with decreasing temperature (Table 

5) as expected. Since with the increase in cooling rate, the MSZW increases, the influence of 
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temperature on AV magnifies, leading to a bigger variation of the prediction from this equation of 

the relation. However, it is noticed that at a faster cooling rate of ascorbic acid aqueous solution, 

the estimated MSZW has smaller variation with experimental values and the estimated value of 

AV from MSZW is closer to that determined from induction time experiments. The reason should 

be that the nucleation temperature in MSZW experiment at a faster cooling rate is nearer to the 

constant temperature (range) in the induction time experiments, which indicate weaker influence 

of AV on the prediction than the MSZW determined at a slow cooling rate. Shiau 34 has 

investigated the influence of temperature on pre-exponential factor with similar principle equations. 

The dependency of pre-exponential factor on temperature is much more complicated. The 

dependency of kinetics on temperatures and the optimized cooling rates for estimating between 

MSZW and induction time will be further investigated. 

From the equation of the relation, it is possible to predict the influence of the volume and saturation 

temperature, and stirring rate, which are all consistent with the literatures reported tendency of the 

effect of cooling rate 36  , volume 14-15, saturation temperature 38 40 and stirring rate 41 as discussed 

in last work. In this work, we show the relation between isothermal and polythermal methods. 

With this relation, it is potential to predict the MSZW / nucleation temperature under more 

complicated temperature profiles, like cooling profiles of polynomial equations, step cooling in 

multistage parallel crystallizers, continuous oscillatory baffled crystallizer, as well as to potentially 

estimate the nucleation temperature with scaling up and between these continuous crystallizers. In 

addition, it is potential to estimate critical nucleation potential / interfacial energy and pre-

exponential factor by single or several MSZWs.  

 

Conclusions 
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In total 312 nucleation experiments of L-ascorbic acid aqueous solutions (saturated at 208 K) were 

performed with isothermal or polythermal methods. For each experimental condition, dozens of 

experiments were repeated and accumulative distributions of induction times or nucleation times 

show the stochastic nature of the nucleation. 192 of these nucleated at 277 – 291 K (median) at 

respective cooling rate of 3.0 – 18.0 K/hour in polythermal experiments. 120 of these nucleated at 

constant temperature 273 - 277 K, with respective median induction time from 500 -1000 s in 

isothermal experiments. The relations between MSZWs and induction times, developed by the 

Classical Nucleation Theory, reveal nucleation happens when nucleation potential, during each 

short time interval, accumulates up to the critical nucleation potential, which is constant for a 

system. With the equation of the relation, the induction time and MSZW were estimated from each 

other. In most systems reported in literature, the MSZWs estimated from experimental induction 

times have an average 2.5 K difference with the experimental MSZWs, and the interfacial energies 

estimated from experimental MSZWs have an average 0.2 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙  difference with those 

determined from experimental induction times. In ascorbic acid – water system, MSZW estimated 

at 18.0 K/hour is 1 K (3%) higher than the experimental value, and the interfacial energy estimated 

from MSZW at 18.0 K/hour is 0.6 𝑚𝑚𝐽𝐽/𝑚𝑚𝑖𝑖𝑙𝑙 (10%) higher than that determined by induction time 

results. The variations in estimations indicate the influences of the temperature on the pre-

exponential factors, which is consistent with the optimization results of pre-exponential factor at 

each cooling rate in ascorbic acid aqueous system. With this equation of the relation, it is possible 

to predict MSZWs with complicated temperature profiles, which is useful for designs of 

continuous and batch crystallization processes, and it is possible to determine the interfacial energy 

from single or several MSZWs, helping to advance understanding of the solute-solvent interactions 

in nucleation processes. 
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Notations 

𝐴𝐴  Pre-exponential factor ［m-3•s-1］ 
𝐴𝐴𝑖𝑖,𝐵𝐵𝑖𝑖,𝐶𝐶𝑖𝑖  Constant in solubility equation   
B Slope in determination of interfacial energy ［K3］ 
𝑏𝑏1   Constant in empirical nucleation rate equation ［m-3•s-1］ 
𝑏𝑏2  Constant in empirical nucleation rate equation  
𝑓𝑓(𝑆𝑆), 𝑓𝑓(𝑆𝑆𝑛𝑛)   Function of supersaturation ［kJ3•mol-3］ 
𝑓𝑓(𝑡𝑡), 𝑓𝑓(𝑡𝑡𝑛𝑛)  Function of time, function of estimated induction time  
𝐽𝐽  Nucleation rate ［m-3•s-1］ 
𝑚𝑚  Integer number parameter in accumulation equation    
𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑝𝑝  Experimental metastable zone width in  ［K］ 
𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖   Extrapolated metastable zone width from combination 

values of N and AV 
［K］ 

𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑚𝑚  Extrapolated metastable zone width from induction time 
experiments 

［K］ 

𝑛𝑛  Integer number variable from 1 to ∞  
𝑁𝑁  Critical nucleation potential ［kJ3•mol-3］ 
𝑟𝑟𝑐𝑐   Critical nuclei radius ［nm］ 
𝑅𝑅  Gas constant, 8.314 ［J•mol-1•K-1］ 
𝑆𝑆, 𝑆𝑆𝑛𝑛, 𝑆𝑆𝑝𝑝𝑖𝑖𝑙𝑙𝑝𝑝  Supersaturation  
𝑆𝑆𝑚𝑚𝑚𝑚𝑒𝑒   Supersaturation at nucleation in MSZW experiment  
𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖  Induction time of nucleation ［s］ 
𝑡𝑡𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀  Nucleation time in MSZW experiment ［s］ 
𝑡𝑡𝑛𝑛  Induction time, estimated induction  time ［s］ 
T Temperature  ［K］ 
𝑇𝑇0  Saturated temperature  ［K］ 
𝑣𝑣  Molecular volume of solute ［m3］ 
𝑉𝑉  Solution volume ［m3］ 
𝐴𝐴  Actual solute molar fraction solubility ［mol•mol-1 total］ 
𝐴𝐴∗  Equilibrium solute molar fraction solubility ［mol•mol-1 total］ 
𝑧𝑧𝑐𝑐  Linear cooling rate ［K•s-1］ 
𝜎𝜎  Interfacial energy in primary nucleation ［mJ•m-2］ 
∆𝐺𝐺𝑐𝑐  Critical free energy of nucleus ［kJ•mol-1］ 
𝐴𝐴𝑁𝑁,𝐴𝐴𝑁𝑁𝑛𝑛[𝑛𝑛]  Nucleation potential accumulated during ∆t ［kJ3•mol-3］ 
∆𝑡𝑡  Time step, short time period ［s］ 
∆𝑇𝑇   Supercooling temperature ［K］ 
∆𝜇𝜇                                                     Driving force of nucleation, RTlnS ［kJ•mol-1］ 
Uncertainty Difference between the estimated and experimental value / 

average of the estimated and experimental value 
- 
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