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Abstract: In this review, we show the life cycle of parabens, commonly used preservatives that exist in nature 

and commercial products. Typical synthetic methods to produce parabens, and a set of complimentary 

characterization techniques to monitor the composition of parabens are also highlighted. These includes solid state analysis 

using Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD), in-situ 

monitoring of crystallization process using Focused Beam Reflectance Measurement (FBRM), Particle Vision Measurement 

(PVM), quantitative detection via High Performance Liquid Chromatography (HPLC), and Gas Chromatography (GC). An 

improved understanding of the overall physical, biophysical and chemical properties of parabens and their life cycle, 

summarized in this article, are vital for the safety control and extensive applications of relevant products in food, cosmetic 

and pharmaceutical industries. 
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1. INTRODUCTION 

 Parabens are a homologous series of alkyl esters of para-
hydroxybenzoic acid including Ethyl Paraben (EP, E214), 
Methyl Paraben (MP, E218), Propyl Paraben (PP, E216), 
Butylparaben (BP, E209) [1].  The molecular structures of 
some well-known parabens are shown in Figure 1. Different 
types of parabens are different in their functions and 
applications. Longer alkyl chain parabens have stronger 
effect on plant pathogenic fungi [2], and mixtures of the 
parabens show more effective of preservative than each 
individual paraben [3].  These parabens exist in some fruits 
and vegetables in nature, but most of them are synthesized 
from hydroxyl benzoic acid during industrial-scale process, 
and then modified for various types of our daily products. 
These synthetic methods have been developed over years 
with the reaction and procedure of simple principles. The 
key step is to improve the efficiency of manufacturing 
process, which is discussed in section 2.  

     Parabens have been “safely” used in our daily life and are 
known as common preservatives in nature and commercial 
products. Parabens have little effect on bacterial spores, 
viruses, mycobacteria or prions [4] despite of its efficiency 
in preservation. Nature is smart and discovered these 
functions of parabens thousands of years ago. Parabens 
occur naturally in carrots, blueberries, olives, strawberries 
and mangoes, containing similar preservation properties as  
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synthetic parabens; helping them to defend themselves 
against various micro-organisms [5-7]. Human started to 
discover these functions of parabens about 100 years ago, 
which means that parabens are among the most well-
documented ingredients [8] in the market. The first use in 
pharmaceutical product reported can be found as early as 
1920, where parabens were used as antimicrobial 
preservatives [9]. They were explored further in foodstuff, 
sorbitol solutions [10], vaccine [11] and cosmetics [12] in 
1960s, followed by a steady increase of the use in various 
food categories including vegetables, baked goods, fat and 
oils seasoning, sugar and coffee extracts, soft drinks and 
frozen dairy product at ppm level of concentrations [13]. By 
2013, parabens were found to exist in all kinds of food 
products, such as bottled water, beers, formula milk, yogurts, 
wheat flour, bread, cakes, ham, sausages, apples, pears, 
cabbages [14]. 

 

Figure 1 Molecular structures of PHB, MP, EP, PP, BP, and 

BzP [5] 
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Figure 2 Life cycle of parabens

2. LIFE CYCLE OF PARABENS  

     Parabens are widely available in various forms, and their 
usages have been inevitably increased over several decades. 
In 1987, over 7000 kg of parabens were used in cosmetics 
and toiletries [15-16, 13], the usage continued to grow every 
year [14] due to their well preservative efficiency. Such 
massive usage has raised the worldwide concerns about their 
safety on human health. In order to understand the effect of 
parabens on human health, it is important to track the life 
cycle of parabens and understand how the parabens are 
produced, transformed, delivered, detected, and more 
importantly the various forms they exist. Furthermore, it is 
crucial to understand their structure-related properties such 
as chemical property, physical property, biochemical 
properties, and the difference in solid and liquid forms. All 
these should lead us to a better understanding of the safety 
concern and safety control of their usage in relevant 
industries and normal lives.  

 The life cycle of parabens is illustrated in Figure 2: 

1). Parabens are firstly synthesized from preservative 
industry plant, purified by crystallization from solution. This 
step requires key knowledge on their solubility, phase 
diagrams, solvent-solute interactions and solid-state 
properties. 

2). They are added into day care products, pharmaceuticals, 
packed food and cosmetics which are directly taken by 
human orally or via skin contact.  

3). Some cosmetics will even release parabens to the 
atmosphere in the form of dust or air, leading to higher 
exposure via human activities.  

4). The cosmetics and day care products taken by human 
may be released to rivers, lakes, underground water [17], 
swimming pool  [18] and other surface water sources. Some 
may go inside the skin with water media, e.g. during 
swimming. Most of parabens, existing in surface water, 
household water and the waste water, can be decomposed 
during water treatments in reservoirs [19].  

5). Some water containing parabens are irrigated, which 
means that the soils retain some parabens [20]. These 
parabens are absorbed by vegetables, food and fruit plants, 

before they were disgusted by cows, fish, chickens and other 
animals. Consequently, providing an indirect route for 
human intake as the food will be finally consumed by human.  

6). Tap water may contain low levels of butyl paraben, 
providing another potential source for human intake.  

7). The parabens taken by human, animals and in solid will 
eventually be decomposed or metabolized [21-22]. 

     In summary, there are two cycles: i) parabens are ‘born’ 
(synthesized) from hydroxyl benzoic acid, and ‘die’ (be 
decomposed/be metabolized), forming hydroxyl benzoic acid 
compound again. ii) Human use/eat parabens, release 
parabens, and eventually some parabens can be taken back to 
human body in different ways. As a result, the increasing 
intakes of paraben in our daily life via complex pathways are 
hard to control [23].  

2.1 Synthesis of parabens 

 parabens are widely ‘synthesized’ and ‘utilised’ as 
preservatives in nature, e.g. some plants can produce 
parabens to keep their fruit fresh; a microbulbifer bacterium 
produces parabens in its calcareous sponge [24]; a marine 
bacterium biosynthesizes parabens in preventing the growth 
of yeasts, molds, and gram-positive bacteria [1].  

Figure 3 synthesis of parabens from p-hydroxyl benzoic acid. 
R represents CH3, C2H5, C3H7, C4H9. 
     The process to synthesize parabens in lab or industrial 
scale has been known for hundreds of years. It is a simple 
‘acid-base’ reaction in the presence of a suitable catalyst [25] 
such as montmorillonite K10 clay [26], thionyl chloride [27], 
and dodeca tungstophosphoric acid [28]. Successful 
synthesis requires p-hydroxyl benzoic acid as the starting 
material, mixed with an appropriate amount of alcohol, and 
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produce parabens as the main product and water as a by-
product, shown in Figure 3.  

     The traditional method is considered as a simple and 
robust process; while new technologies have been explored 
to improve the synthesis efficiency and cost-effectiveness by 
introducing microwave radiation and inorganic salt ZnCl2 as 
catalysts [25].  There is also a trend to develop more green 
methods as alternatives to save power and energy 
consumption during the manufacturing process [29]. 

2.2 Decomposition pathways of parabens 

     Another important aspect to look at the lifecycle of 
parabens is their decomposition pathways. Natural 
decomposition route via microorganisms is known where 
phenol and p-hydroxyl benzoic acid are formed [30-31]. 
Parabens consumed by human turn to p-hydroxyl benzoic 
acid too, and the conjugates are rapidly excreted in urine [15]. 
The purification process  in wastewater treatment plant can 
effectively remove 90% of parabens, following biological 
treatments [32-33].  

Table 1 Methods to degrade parabens 

UV light With H2O2 under UV  [34] 

With 0.1 M phosphate buffer 

solutions under UV/ultrasound 

[35] 

Semiconductor photocatalysis 

under UV light  

[35] 

Solar 

radiation 

TiO2 suspensions under 

simulated solar radiation 

[36] 

With TiO2 films deposited under 

natural sunlight 

[37-38] 

ZnO photo catalyst under 

simulated solar radiation 

[39] 

Other Galvanostatic electrochemical 

oxidation  

[40] 

Biological treatment [32-33] 

     Effective conversion methods can prevent contamination 
from environment by removing unwanted parabens residues. 
As shown in Table 1, various methods have been established 

over the years to eliminate parabens’ residue including: i) by 
simulated solar radiation over ZnO photo catalyst [39]; ii) by 
UV/H2O2 [34] iii) by UV/ultrasound in 0.1 M phosphate 
buffer solutions [35]; iv) by TiO2 suspensions under 
simulated solar radiation [36]; V) by galvanostatic 
electrochemical oxidation on a boron-doped diamond anode 

follows a first-order law [40]. One effective attempt is to 
remove parabens from aqueous solution with an hour, using 
TiO2 films deposited onto FTO/glass plates under natural 
sunlight [36-38]. A recent approach to reduce parabens by an 
optimised photosonolysis (US/UV) process showed higher 

removal rate was achieved compared to the conventional 
ultrasonication (US) and photochemical (UV) processes [35]. 
Apparently, there are always trace amount of parabens 
remaining in the environment or human body, despite of the 

discovery of these emerging techniques with the attempts to 

eliminate parabens completely from nature and commercial 
products. For example, parabens still exist in the surface 
water after purification treatment [41]. The existence of 
parabens residue in one source is arguably negligible, but the 
accumulation of the residues from various sources is 

enormous and must be taken care of carefully.   

3. CHARACTERIZATION OF PARABENS 

 Effective detection and control of paraben usage can help 
us to better understand the life cycle of paraben, as explained 
in Figure 2. However, eliminating the intake of parabens is 
almost impossible due to their widespread sources, and 
accumulation from the environmental exposure [42]. 
Concerns have been raised on their safety and the potential 
impact on human health, which have been debated [43] for 
decades and controversies [44] still exist. For these reasons, 
an increasing number of researches have been carried out to 
characterise parabens via different methods since the 1950s, 
shown in Figure 4. Many researches reached the same 
conclusion that traces parabens are detectable in all kind of 
commercial products, while the attempt to quantify different 
types of parabens and their influences on human life/health 
are still challenging [43]. 

 

Figure 4 Publication statistics on research papers relating to 
parabens 

     Accurate assessments of the impact of parabens on the 
environment and human health require advanced analytical 
methods to monitor parabens residue inside the human 
tissues. Research articles on characterizing parabens are not 
rare; in fact, relevant studies have grown explosively and 

continuously in the past decades. This chapter prevents how 
parabens are analysed, characterised and quantified. The 
physical properties, such as solubility, melting point, 
polymorphism and morphologies were determined by DSC, 
TGA, FBRM, and PVM, and biophysical properties of 
parabens were studied in vivo and in vitro [45-46].  

3.1 Thermodynamic stability 

The thermodynamic stabilities of different parabens are 
demonstrated by their melting points, which can be directly 
determined by Differential Scanning Calorimetry 
measurement (DSC). The melting temperatures of parabens 
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increase by decreasing molecular weights, which is affected 
by the size of the alkyl chain [47-49]:  

BP (67.34 ˚C) < PP (96.38 ˚C) < EP (115.49 ˚C) < MP 
(126.0 ˚C) 

However, the enthalpy of fusion doesn’t follow the same 
order [48, 50] and the differences are relatively small,  

MP (25.333 kJ/mol) < BP (25.535 kJ/mol) < EP (25.761 
kJ/mol) <PP (26.507 kJ/mol) 

The melting point of BzP is about 110 ˚C [51] between 
melting points of PP and EP. Co-crystallization of MP with 
other molecules has been investigated by various groups: i) 
successful synthesis pharmaceutical co-crystal using MP and 
quinidine; ii) EP acts as “molecular hook” to separate 
quinidine from its stereoisomer quinine based hydrogen-
bond-mediated molecular recognition [52]; iii) nicotinamide 
increases the solubility of parabens [53] and co-crystal of 1:1 
EP-nicotinamide [54] and BP-isonicotinamide [55], iv) 
single crystal X-ray analysis of parabens co-crystals revealed 
the formation of corrugated layers from conformers 
molecules, and associated hydrogen bonding network in the 
structures [54-55]. 

3.2 Solubility analysis  

 

Figure 5 Solubility of BP in various solvents from 1.0˚C to 
50.0˚C [56] 

 Parabens are soluble in organic solvents [50, 57] (ethyl 
acetate, propanol, acetone, methanol, acetonitrile and ethanol) 
but insoluble in water [58-59]. Solubility of parabens in 
these solvents increases with increasing temperature, shown 
in Figure . At low temperature, e.g. at 10 ˚C, solubility of BP 
is higher than PP and EP [50, 60-62] in pure ethanol, and in 
aqueous solution with high proportions of ethanol. Solubility 
of BP is lower than PP and EP in water, and in 10% ethanol-
water mixture [50, 60-62]. PEG solid was reported to act as 
an enhancer for the dissolution [63] parabens, in the order of 
BP > PP ~ EP > MP in aqueous solution [64]. The 
dissolution rate was affected by the diffusion mechanism, a 
dominating factor for the dissolution of MP and EP, 
followed by PP and BP [64].  

Solubility of butyl paraben in 6 different organic solvents 
was compared in Figures 6, where a-ΔHf (activity and 
enthalpy of fusion) curves and x-ΔHVH (solubility and van 

der Hoff enthalpy) curves are both available in the same 
figure. The activity and activity coefficients (γeq) in different 
solvents can be estimated from such analysis. It is clear that 
the activity coefficients in different solvents are hugely 
affected by the temperature: although the changes are 
anisotropic, the equilibrium value, γeq of BP tends to 
approach to γeq = 1 while the temperature is close to the 
melting point, 340.49 K [47].  

Figure 6 lna of butyl paraben and corresponding γeq of butyl 
paraben in organic solvents [47] 

3.3 Solid-liquid interfacial properties  

Induction times of BP in ethanol were determined in 
crystallization platforms of multiply stirring vessels [65], 
stirring tank [66], moving fluid oscillatory baffled 
crystallizer [67] and Taylor− Couette flow system [65]. By 
classical nucleation theory [68-69], induction times at 
different levels of supersaturation are used to determine the 
solid liquid interfacial energy which is proportional to the 
slopes of the correlation lines [70-71]. Therefore, the higher 
of the slope in Figure  is, the higher activation energy the 
nucleation requires and at equal driving force the longer 
induction time becomes.  

The solid-liquid interfacial energies of parabens in these 
solvents are in the range of 0.3 to 2.4 mJ·m-2 [61, 72-73], and 
the low interface energies of parabens indicate an easy 
nucleation and narrow metastable stable zone widths [56, 74-
75]. It was excepted that with longer alkyl chain, the 
arrangement and assembly of molecules before nucleation 
become more difficult, however the difficulty of nucleation 
increase with decrease of alkyl chain length. The interfacial 
energies increase with increase in melting points of parabens 
in same solvent, and increase with increase in boiling points 
of solvents for each paraben shown in Figure 7. This is due 
to the nucleation is highly correlated to the intermolecular 
and intramolecular force between solute, solvent and each 
other [73]. For a simple explanation, if one system is 
composed with higher melting point solute and higher 
boiling point solvent, the molecules are more averse to form 
new interfaces between nuclei with liquid phase. The 
kinetics also plays an important role in nucleation behaviours, 
higher shear rates lead to a decrease in induction times. 
However, the induction times have a minimum value and 
then increases above this ‘critical value’ with further 
increase in the shear rates [73, 65]. 
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Figure 7 Top: lnt of BP, PP, EP in 70% ethanol, 90% ethanol, 
propanol, methanol versus T-3(lnS)-2 with first order 
correlation lines [72-73]. Bars indicate the 95% confidence 
interval of lnt. Bottom: Relation of solid liquid interfacial 
energy with melting points of parabens and boiling points of 
solvents [73]. 

3.4 Ternary phase diagrams and crystallization methods 

     There are five regions in ternary diagrams of parabens 
water and ethanol in Figure 8 [61]. Region 1 and 2 are 
undersaturated (with respect to paraben) homogeneous liquid 
and liquid–liquid phases, respectively. Region 3, 4 and 5 are 
saturated solid-liquid phase (low concentration BP), liquid-
liquid solid phase and another solid-liquid phase (high 
concentration BP), respectively [60-62]. Formation of liquid-
liquid phase separation (LLPS) mainly is because 
hydrophobic alkyl chain of paraben associated with ethanol 
resists water associated with ethanol. LLPS region expands 
gradually into the ethanol lean part of the diagram at higher 

temperature or with longer alkyl chains for these parabens, 
respectively [62]. 

Figure 8 Ternary phase diagrams of butyl paraben, water and 
ethanol [56] and composing points of solution in three 
cooling experiments, Exp. 1, Exp.2 and Exp. 3 [61-62, 76].  

     Exp. 1 was an ordinary cooling crystallization in a 
homogenous solvent from region 1 to region 5 in Figure 8, 
and the normal single crystals formed (offline images in 
Figure 9). Focused Beam Reflectance Measurement (FBRM) 
curves show no particles or droplets before nucleation. The 
solutions of Exp. 2 and 3 started more or less in LLPS region 
2, at cooling the solution remained milk-white, the formation 
of droplets was observed by the Particle Vision and 
Measurement (PVM) and FBRM (not equal to zero). Jump 
of FBRM curves indicates nucleation across the phase 
boundary between region 4 and region 2, however, FBRM 
curves in Exp. 3 decrease due to a higher re-dissolution rate 
of the droplets (Figure 9) then forming rate of crystals. The 
process of both Exp.2 and Exp.3 ended in region 3 where 
solid BP crystals grew in homogeneous solution. However, 
crystals were heavily agglomerated in Exp.3 and crystals 
with a novel sandwich structure were obtained in Exp. 2 [56, 
77]. The crystallization processes in LLPS solution of 
parabens are dependent on the compositions in ternary 
diagram, i.e. how the solutions go across phase boundary 
lines. In these cooling crystallization experiments, the 
composition points remain, but the phases’ boundaries shifts, 
and in evaporation crystallization experiments at the same 
temperature, the composition points move toward to top BP 
point in the same ternary phase diagram.    

3.5 Crystal structures and polymorphism  

   Polymorphism [78] is common phenomena and exists in 

wide range of organic compounds, especially those used in 

pharmaceutical industry. New polymorphs with different 

crystal structures are often discovered by changing the 

temperature or other environmental conditions. A new 

polymorph of MP was captured at 118 K in 2006 [79], while 

later examination of the two polymorphs proved that their 

structures were identical. The conformational differences 

seen at 118 K appeared to be within reasonable lattice 

changes due to the thermal expansion [80]. Polymorph II 

was finally reported and confirmed in 2011 [81], followed by 

the discovery more MP polymorphs. Four polymorphs of 

MP were characterized and compared in 2013, showing 

distinct crystal structures and lattice energy [82]. Other 

parabens are less polymorphic, till now only one polymorph 

was reported for EP, PP and BP [49, 73, 83]. 

     The crystal structure and molecule structure of EP, MP 

and BP are very similar, as shown in Figure 10 [84]. 

Parabens crystals grown from the same organic solvent 

(ethanol, ethyl acetate, or acetone) had similar morphology
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Figure 9 FBRM curves of Exp .1 to Exp. 3 with in-situ PVM photos in cooling crystallization process and off-line microscope 

images of product crystals [61-62, 76] 

which were consistent with computational simulation using 

BFDH method [85]. The solvent effect on the crystal 

interfacial energy was strong, while the crystal morphology 

change caused by solvent is not so obvious. 

Figure 10 Left: Predicted morphologies of a) EP, b) PP and 

c) BP and SEM images of grown by slow evaporation in 

ethanol, ethyl acetate and acetone [72-73]. 

 A unique crystal structure was obtained in Exp. 2 [77]. 

The crystals had a characteristic layer in the middle of each 

crystal, parallel to the basal planes (Figure 11). The top and 

bottom layers are transparent and compact. The middle layer 

was porous (not transparent), with the pore size ranging from 

several μms to dozens of nm, and with thickness >50% the 

whole crystals. The IR and confocal Raman spectroscopic 

studies indicated that the ‘polymorphs’ from three layers of 

the sandwich crystal are actually the same [77],  which was 

in a good agreement with data obtained from X-ray Powder 

Diffraction analysis (XRPD) [73, 86], Differential Scanning 

Calorimetry (DSC) and hot stage microscope. The methods 

to identify crystal structure or polymorph were not limited to 

the above examples. Other reported technologies includes 

thermal gravimetric analysis (TGA) [87], nuclear magnetic 

resonance (NMR) [86], ultraviolet Spectrophotometer (US) 

[88], and Atomic-force microscopy (AFM) [89-95], together 

with other technologies listed in Table 2.  

Figure 11 Microscope and SEM images of BP sandwich 

crystals and the pores inside crystals [56, 77] 

Table 2 Solid-state characterization techniques 

Shape and 
surface 

Optical Microscope, SEM, AFM，PVM, 

hot stage microscope 

Structure and 
polymorphism 

Single crystal XRD, XRPD, NMR, Mass 
Spectrometry (MS), near infrared , FTIR 

Thermodynamic 
stability 

TGA, DSC, Dynamic Vapor Sorption (DVS) 

Particles 
size/number 

Focused Beam Reflectance Measurement 

(FBRM)，Dynamic Light Scattering (DLS), 

Concentration Ultraviolet Spectrophotometer (US), 
Raman, FTIR, HPLC 
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4. DETECTION AND MONITORING OF PARABENS  

Parabens are around human’s normal life, appearing in urine 
samples [14] of more than 90% of the U.S. general 
population of children [96], male and female [97], where 
parabens are detected with concentrations with order of 
several tens ng/mL [97]. Widely and huge amount use of 
parabens has many foot prints in the nature world shown in 
Table 3. Parabens were detected in fish tissue [98], the 
methyl paraben existed in roots [99] of herbaceous plant 
[100]. Parabens were present in some mushroom species 
[101] and unifloral honeys [102]. Parabens existed 0.45-6.4 
ng/g in forestry and agricultural soils and sediments from 
different areas [103] and 1.22 - 2.92 g/ml in sewage [104] of 
Spain, up to 1.47 -2.47 g/mL in all sewage in Canada [105], 
6.87 to 1029 ng/L in urban surface water [106] and about 8 
mg/L in swimming pools in Beijing, China [18], 0.2-400 
ng/L in surface water in South wales [107], in 1.2-17.3ng/L 
in surface water in Galicia Spain [108], 0.2-17 ng/L in 
Switzerland [41], 2.4-147 ng/L in South India [109], 2.1-25 
ng/L in Central pacific region of Japan [110], 2.2-17.3 ng/L 
in Greater Pittsburgh area [111], 0.2-64 ng/L in Ria de 
Aveiro are Portugal [112]. Over all, the surface water in the 
worldwide was very low in the scale of ng scale, and the 
water in swimming pool and in sewage is usually hundreds 
of times higher than the concentration in the surface water. 

Table 3 Paraben concentration in Surface water worldwide 

Surface water Location Ref. 

0.2-400 ng/L, South wales [96] 

6.87 to 1029 ng/L   Beijing [97] 

0.2-64 ng/L Ria de Aveiro, Portugal [98] 

1.2-17.3ng/L   Galicia Spain, [99] 

0.2-17 ng/L  Switzerland [41] 

2.1-25 ng/L  Central pacific region of Japan [100] 

2.4-147 ng/L  South India [101] 

2.2-17.3 ng/L  Greater Pittsburgh area, USA [102] 

To detect the concentration, various techniques for parabens 
detection can be applied, such as high performance liquid 
chromatography [103], an improved thin layer 
chromatography HPTLC [104], gas chromatography [105] 
and flow injection system combined with 
chemiluminescence [106]. These techniques have high 
accuracy with low detection limits, but they are relatively 
expensive [107] and time-consuming [108]. Several 
techniques on nanostructured electrodes [109] and 
electrochemical sensors [110] based on a thin film electrode 
consisting of synthesized Ln2O3 nanobricks coated on 
glassy carbon electrode (GCE) for the detection of trace 
amounts of BP have been developed [107]. Alternative new 
detective methods includes galvanostatic electrochemical 
oxidation on a boron-doped diamond anode [111], and 
capillary electro chromatography [112] to achieve 0.3 nM 
measurement limits of detection by using differential pulse 
voltammetry for propyl paraben [113]. For more accurate 
detection and evaluate the influence of parabens around 
human normal lives, effective extraction techniques [114] 
were developed, like solid-phase microextraction (SPME) 
[115], liquid-phase microextraction (LPME) [116], 
microwave-assisted extraction (MAE) [117], ultrasound-
assisted extraction (UAE) [118] and supercritical fluid 
extraction (SFE) [119]. Some novel solid phase extraction 

technologies like multi-walled carbon nanotube [120] and 
molecularly imprinted polymer [121] as the sorbents 
becomes more and more popular [122]. Combination of 
extraction method with detection method need to be 
developed for efficiency, for example electro-membrane 
extraction [123] method can be coupled to flow injection 
analysis – chemiluminescence [124].  

5. SAFE OR NOT SAFE TO USE PARABENS? 

There is a growing concern with parabens, as they have been 
shown to disrupt hormone function and destructive to human 
health [125]. Parabens can penetrate into the human 
circulatory system from a single topical cosmetic application 
to a human subject [126], therefore a higher risk of the 
oestrogen equivalents a paraben-containing lotion [127]. 
Parabens are shown in fetal blood, easily crossing the utero-
placental barrier. Parabens are found in in urine, serum, 
seminal plasma [22] and transplacental [128]. Exposure to 
parabens shortens menstrual cycle length [129]. Parabens are 
classified as endocrine disruptors, which are associated with 
breast tumors [130] and male reproductive system [125] 
[130]. Parabens caused decrease of some thyroid  level [126, 
131, 17, 132], and weaken genetic stability [133], which 
instability of the genome in human cells is an important 
contributor to genetic changes that drive tumorigenic 
processes [134]. Parabens influence DNA and 
transactivation of gene expression [135-136]. Parabens 
decrease the expressions of some proteins and accumulated 
on the skin [137]. Parabens show ability to induce oestrogen-
regulated gene expression, MP and EP showed generally 
lower oestrogenic activity than did PP, BP and BzP [138-
139], and then progress to the question of whether 
physiological responses can be induced in cells in culture 
[140-141]. Not only parabens, but their metabolic hydrolysis 
and common metabolite, p-hydroxybenzoic acid acts to 
eradicate oestrogenic body burdens[138].  

Table 4 Safe or risk for using parabens 

No influence on Evidence for a risk, influence on 

Dental alveolitis 
[142] 

Hormone 
function 
[125] 

Menstrual cycle 
length [129] 

Reactions on skin 
sensitization [13] 

Oestrogen 
balance 
[127] 

Genetic stability 
[133] [134] 

Development and 
microbial 
composition of 
periphyton biofilm 
[143] 

Endocrine 
disruptors 
[130] 

DNA and 
transactivation of 
gene expression 
[135-136]. 

Short- and long-term 
toxicological 
consequences in 
animals [15] 

Thyroid level 
[126, 131, 
17, 132] 

Expressions of 
some proteins on 
the skin [137] 

However, many researches reported no significant influence 
or no influence of exposure to parabens [144]. Most of the 
parabens inside body were hydrolyzed to p-hydroxybenzoic 
acid, conjugated, and the conjugates were rapidly excreted in 
the urine, without evidence of accumulation [15]. Skin 
sensitization did not show reactions with 0.1–0.3 % in 
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topical medicaments test in 3455 human subjects [13]. No 
correlations were found between paraben concentrations and 
age of patient (37–91 years old), length of breast feeding (0 – 
23 months), tumour location or tumour oestrogen receptor 
content [145]. Parabens prevented dental alveolitis compare 
placebo by experiment [125]. There were no short-term 
toxicological consequences in rat, rabbit, cat, dog or man and 
no long-term toxicological consequences in rats, following 
consumption of the parabens in amounts greatly exceeding 
those currently consumed in the normal diet of US 
population [15]. No effect of inject large did intrathecally or 
perineurally on long-last neural blockade or histologic 
evidence of damage [146]. The development and microbial 
composition of periphyton biofilm were not affected by 
parabens at environmental relevant concentrations under a 32 
days’ continuous exposure scenario [131]. No potential 
health effects [147] were reported about exposure to 
occupational parabens. Evidence of significant influences of 
parabens might be insufficient [13, 145], parabens are still 
safe to remain on the market, and may not need a significant 
environmental concern [146]. But with such widespread 
presence of parabens in urines across the population,  there is 
a need to equally understand distribution in all body tissues 
[138]. It is important to efficiently control the human intake 
from multiply resources and accurately assess the effects of 
widespread presence of parabens in the environment and 
organisms. 

CONCLUSION  

Parabens, commercial preservatives in pharmaceuticals, food, 
day care products and cosmetics have been on the market for 
nearly 100 years. Parabens are usually synthesized from 
hydroxyl benzoic acid and new synthesis methods are being 
developed for cost-effective manufacturing to meet the 
growing demand. There has been a growing concern over the 
safe usage/disposal of parabens due to the increasing 
production and the accumulations of parabens from solid, 
water, air, fruit and animals. For the concerns, advanced 
characterization methods have been developed and applied to 
accurately detect and monitor parabens accumulations from 
the environments and human activities. The physical, 
biophysical and chemical properties of parabens were tested 
and characterized by a set of complimentary techniques. The 
evidences of their potential damages to human health were 
investigated and correlated to their influence on oestrogen 
balance and genetic stability. However, the safety of 
parabens is still debatable, and control of the parabens’ 
intake becomes essential. It’s undoubtedly important to 
measure and trace the usages of parabens accurately, for the 
effective evaluation of the safety level and safety control of 
parabens. Therefore, it is very important to understand the 
life cycle of parabens. Undoubtedly the investigations, 
disputations and arguments around parabens will continue, 
but parabens continue to exist in our world for long time.  
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