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Abstract
This paper analyses a recently created continuous 305-year (1711–2016) monthly rainfall series for the island of Ireland. The
findings are as follows. The excess skewness in the monthly series may be eradicated by using a Box-Cox transformation with
parameter equal to 0.6: a value very similar to that found for the U.K. and its regions. There is no evidence of either an overall
stochastic trend or of evolving monthly seasonal patterns, but positive linear trends are found for January, March, and December
and a negative linear trend is found for July. Analysis of the seasonal and annual series (which require no transformation)
confirms the implication from the monthly data that winters have become progressively wetter and summers progressively drier,
with the positive linear trend for winter being twice the size of the negative summer trend. Since there is no trend in either spring
or autumn rainfall, annual rainfall shows a positive linear trend. Given that the rainfall series exists for over three centuries, breaks
and structural shifts in the model were investigated. Five breaks were identified, three of which occurred in the early portion of the
series during the eighteenth century. However, trends were found to be much more stable from the middle of the nineteenth
century. For the seasonal series, only a single break, at 1790 for the winter series, was found: it was only after this break that
winters became wetter; before then, winter rainfall had a negative trend. In terms of predictability, predictions from the model
were found to be more volatile during the second half of the eighteenth century and again from 1976 onwards.

1 Introduction

Murphy et al. (2018) have recently created a continuous 305-
year (1711–2016) monthly rainfall series for the island of
Ireland, known as IoI_1711. They have also provided detailed
descriptive statistical analysis of the series but have not
attempted any stochastic time series modelling of the type
undertaken by Mills (2005, 2015, 2017) for the U.K. and its
regions. The purpose of this paper is to undertake, such an
analysis on IoI_1711 to enable a wider perspective on the
evolution of the series to be obtained.

To this end, Sect. 2 outlines the model used for the analysis
of the monthly IoI_1711 series and discusses how determin-
istic and stochastic trends and seasonal patterns may be iden-
tified, along with model estimation and testing. Section 3 pro-
vides a complementary analysis of the seasonal and annual
series obtained from the monthly data. Given the long span
of the data, Sect. 4 investigates the possibility of breaks and

shifts in the model and in its predictability. Section 5 com-
pletes the paper by providing a summary, conclusions, and a
comparison with the findings of Murphy et al. (2018).

2 A model for monthly rainfall

2.1 The basic model

Following Mills (2005, 2015, 2017), a basic model for a
monthly rainfall series observed from time t = 1 to time t = T
has been found to be

x λð Þ
t ¼ ∑12

i¼1 αisi;t þ βisi;t t
� �þ ut t ¼ 1; 2;⋯; T ð1Þ

In Eq. (1), rainfall xt is transformed by the Box and Cox
(1964) power transformation defined as

x λð Þ
t ¼ xλt −1

λ
x 0ð Þ
t ¼ log xt

This has been applied to ameliorate the skewness
found in the raw data, a consequence of xt being
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bounded below at zero and possibly having a long right
(positive) tail. Through its scaling property, the transfor-
mation helps to induce normality, linearity, and constan-
cy of variance into the model. It is used here in its
simplest form, as it may be generalised in a variety of
directions to deal, for example, with negative values and
heteroskedasticity, neither of which are needed here.
The si, tt = 1, 2, ⋯, T, are Bdummy^ variables defined
to take the value 1 in month i and 0 elsewhere (where
i = 1 signifies January, etc.). Their inclusion allows a
deterministic monthly pattern to be modelled. The pres-
ence of the si, tt Binteraction^ variables allows for the
possibility of different monthly linear time trends. The
αi and βi parameters measure the intercept and slope of
these trends, so that if βi ≠ 0 then the seasonal pattern
for month i evolves linearly over time.

The error ut can, in general, follow a seasonal
autoregressive-moving average (ARMA) process: see
for example, Mills (2019), chapter 8) for technical
details and Mills (2014) for a discussion of such
models in a meteorological context:

ϕ Bð ÞΦ B12
� �

ut ¼ θ Bð ÞΘ B12
� �

at ð2Þ

where

ϕ Bð Þ ¼ 1−ϕ1B−⋯−ϕpB
p

θ Bð Þ ¼ 1þ θ1Bþ⋯þ θqBq

are Bnon-seasonal^ polynomials of orders p and q in the lag
operator B, defined such that Bjat ≡ at − j, at being zero mean
white noise (E(at) = 0, E(atat − j) = 0 for all j ≠ 0) with variance
E a2t
� � ¼ σ2

a . The Bseasonal^ polynomials

Φ B12
� � ¼ 1−Φ1B12−⋯−ΦPB12�P

Θ B12
� � ¼ 1þΘ1B12 þ⋯þΘQB12�Q

are of orders P and Q, their presence allowing the error to
be autocorrelated at seasonal lags, such as 12, 24, ⋯, as well
as being autocorrelated at non-seasonal lags.

2.2 Deterministic and stochastic trends
and seasonality

More general models result if unit roots are allowed in
the ϕ(B) and Φ(B12) polynomials. If the non-seasonal

autoregressive polynomial contains a unit root, i.e., the
characteristic equation associated with ϕ(B) contains a
root of unity, then ϕ(B) can be factorised as

ϕ Bð Þ ¼ 1−Bð Þ 1−ϕ*
1B−−ϕ

*
p−1B

p−1
� �

¼ 1−Bð Þϕ* Bð Þ

where ϕ∗(B) is a polynomial of order p − 1. Equation (1)
then becomes, with ∇ = 1 − B signifying the first-difference
operator and u*t ¼ ∇ut,

∇x λð Þ
t ¼ ∑12

i¼1 αi∇si;t þ βi∇si;t t
� �þ u*t ϕ* Bð ÞΦ B12

� �
u*t ¼ θ Bð ÞΦ B12

� �
at

ð3Þ

Noting that∇si, t = si, t − si + 1, t and ∇si, tt = (12 + i)(si, t − si +
1, t), where it is taken that ∇s12, t = s12, t − s1, t + 1, Eq. (3) in turn
becomes

∇x λð Þ
t ¼ ∑

12

i¼1
αi þ 12þ ið Þβið Þ si;t−siþ1;t

� �þ u*t ð4Þ

Since ∇x λð Þ
t ¼ αþ u*t would depict a random walk with

drift α, Eq. (4) may be interpreted as implying that x λð Þ
t con-

tains a stochastic, random walk, trend with differing seasonal
drifts, i.e. each month evolves as a random walk with its own
drift.

Alternatively, suppose that the seasonal autoregressive
polynomial contains a (seasonal) unit root:

Φ B12
� � ¼ 1−B12

� �
1−Φ*

1B
12−−Φ*

P−1B
12 P−1ð Þ

� �

¼ 1−B12
� �

Φ* B12
� �

:

Equation (1) then becomes, with ∇12 = (1 − B12) and

u†t ¼ ∇12ut

∇12x
λð Þ
t ¼ ∑12

i¼1 αi∇12si;t þ βi∇12si;t t
� �

þu†t ϕ Bð ÞΦ* B12
� �

u†t ¼ θ Bð ÞΦ B12
� �

at
ð5Þ

Since ∇12si, t = 0 and ∇12si, tt = 12si, t, Eq. (5) becomes

∇12x
λð Þ
t ¼ 12∑12

i¼1βi;t þ u†t ð6Þ

and x λð Þ
t now contains a stochastic seasonal random walk

with differing seasonal drifts.
If Φ(B12) =Θ(B12), then there is only deterministic season-

ality (see Pierce 1978, and Mills and Mills 1992, for similar
set-ups and additional analysis).
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2.3 Estimating and testing the model

The data provided by Murphy et al. (2018) are T = 3672
monthly observations on rainfall for the island of Ireland for
the 305 years from 1711 to 2016, known as the IoI_1711
series. Figure 1 displays the histogram and empirical kernel
density of the series, superimposed on which is a normal dis-
tribution with the same mean and standard deviation as
IoI_1711. Although the distribution is not excessively kurtotic
(the kurtosis measure is only 3.12), it is highly skewed to the
right (the skewness measure is 0.52), as might be expected.
Figure 2 shows the plot of the log-likelihood function for the
Box-Cox transformation parameter λ in Eq. (1). The maxi-

mum likelihood (ML) estimate is λ̂ ¼ 0:58 with a 95% con-
fidence interval running from 0.53 to 0.63. (ML estimation of
and the construction of a confidence interval for the Box-Cox
transformation parameter in models, such as (1) is convenient-
ly discussed inMills 2019, chapter 2). For convenience, λwas
thus set at the value of 0.6, and the histogram and empirical
kernel density of the transformed series are shown in Fig. 3.
Skewness has been eradicated (it is now just 0.03), and the
distribution is close to the superimposed normal distribution.

To determine the most appropriate form of the combined
model given by Eqs. (1) and (2), initial analysis using the
information from the sample autocorrelation and partial auto-
correlation functions, along with residual diagnostic checks
from fitted models, established that the polynomial orders
could be set at p = 3, q = 0, and P =Q = 1 (at most), leading
to the model

x 0:6ð Þ
t ¼ ∑

12

i¼1
αisi;t þ βisi;tt
� �þ ut ð7Þ

1−ϕ1B−ϕ2B
2−ϕ3B

3
� �

1−ΦB12
� �

ut ¼ 1þΘB12
� �

at

The estimates of this model are reported in the first column
of Table 1. For there to be a random walk trend in rainfall,
ϕ1 + ϕ2 + ϕ3 would have to be unity (the unit root condition).
The estimates show clearly the absence of such a (stochastic)

trend since ϕ̂1 þ ϕ̂2 þ ϕ̂3 ¼ −0:195, with a standard error of
0.0285. There is, though, evidence of non-seasonal autocorre-

lation as both ϕ̂1 and ϕ̂3 are significantly different from zero.
The estimates of both Φ and Θ are insignificantly different
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Fig. 1 Histogram and empirical
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Table 1 Estimates of Eq. (7)

Eq. (7) Restricted Eq. (7)

α̂1 21.539 (0.640) 21.560 (0.622)

α̂2 20.397 (0.773) 21.123 (0.337)

α̂3 18.477 (0.824) 18.522 (0.805)

α̂4 18.812 (0.778) 18.853 (0.389)

α̂5 19.761 (0.697) 19.532 (0.358)

α̂6 19.992 (0.699) 19.674 (0.350)

α̂7 24.734 (0.687) 24.651 (0.668)

α̂8 24.919 (0.748) 24.034 (0.346)

α̂9 23.896 (0.684) 23.048 (0.327)

α̂10 25.332 (0.699) 25.838 (0.339)

α̂11 25.068 (0.740) 25.552 (0.350)

α̂12 23.260 (0.672) 23.323 (0.654)

β̂1 0.00163 (0.00032) 0.00162 (0.00031)

β̂2 0.00040 (0.00033) –

β̂3 0.00085 (0.00038) 0.00083 (0.00037)

β̂4 0.00002 (0.00038) –

β̂5 − 0.00012 (0.00033) –

β̂6 − 0.00017 (0.00034) –

β̂7 − 0.00119 (0.00034) − 0.00114 (0.00034)

β̂8 − 0.00048 (0.00034) –

β̂9 − 0.00046 (0.00031) –

β̂10 0.00027 (0.00032) –

β̂11 0.00026 (0.00034) –

β̂12 0.00131 (0.00031) 0.00128 (0.00031)

ϕ̂1 0.0477 (0.0168) 0.0481 (0.0167)

ϕ̂2 − 0.0212 (0.0169) –

ϕ̂3 − 0.0459 (0.0169) − 0.0464 (0.0168)

Φ̂ 0.0914 (0.7056) –

Θ̂ − 0.0676 (0.7071) –

σ̂a 6.076 6.076
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Fig. 3 Histogram and empirical
kernel density of Box-Cox trans-
formed IoI_1711 with a normal
distribution with same mean and
standard deviation superimposed
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from zero, so that there is, in fact, no evidence of stochastic
seasonality, so that the seasonal pattern does not evolve over
time. However, the hypothesis of no deterministic monthly
trends (β1 = β2 =⋯ = β12 = 0) may be conclusively rejected,
although only four of the months have trends that are individ-
ually significant.

The residuals from this model exhibit no autocorrelation.
The question of whether the deterministic seasonal model
might contain a non-linear component was addressed by in-
cluding additional quadratic and cubic trends, taking the form
si, tt

2 and si, tt
3, but these were found to be insignificant (an F

test for their inclusion has a marginal significance level of just
0.65 when just quadratic trends are included and 0.60 when
both quadratic and cubic trends are included).

The second column of Table 1 provides estimates of a
restricted version of Eq. (7) in which all individually insignif-
icant coefficients have been set to 0. These restrictions are
clearly acceptable as the fit of the equation remains the same.
The monthly trends from this restricted model, calculated by
Binverting^ the Box-Cox transformation, are shown in Fig. 4:
i.e., if the predicted transformed rainfall for month i in year y,
where y = 1 corresponds to 1711, etc., is given by

x̂̂ 0:6ð Þ
i;y ¼ α̂̂i þ β̂̂i y−1þ ið Þ

then the predicted rainfall itself is given by the inverted
value

x̂̂i;y ¼ x̂̂ 0:6ð Þ
i;y

� �−1
¼ 1þ 0:6x̂̂ 0:6ð Þ

i;y

� �5=3

January, March, and December exhibit positive trends, so
that rainfall in these months has increased over the three cen-
turies, while the trend for July is negative, indicating that this
month has become progressively drier. The slopes of these
(non-linear) trends are rather small; however, January rainfall
is predicted to have increased from 81 to 118 mm between
1711 and 2016, March rainfall from 64 to 81 mm, and
December rainfall from 91 to 121 mm. July rainfall is predict-
ed to have declined from 99 to 74mm over the three centuries.
The remaining 8 months show constant seasonal factors.

3 Modelling the seasonal and annual rainfall
data

Following Murphy et al. (2018), the IoI_1711 monthly series
may be aggregated to the four seasons: winter (the sum of
December of year y − 1, January of year y, and February of
year y, i.e. winy = x12, y − 1 + x1, y + x2, y), spring (spry = x3, y +
x4, y + x5, y), summer (sumy = x6, y + x7, y + x8, y) and autumn
(auty = x9, y + x10, y + x11, y). An annual series may then be

defined as anny = x1, y + x2, y +⋯ + x12, y. These series are
displayed in Fig. 5, and obviously, such annual series display
no seasonality. Interestingly, these series do not require trans-
formation, since at this level of aggregation, no significant
departures from normality are found in any of them, presum-
ably because aggregation Baverages out^ many of the more
extreme rainfall fluctuations observed at monthly frequen-
cies.1 Fitted trend lines are also shown in Fig. 5, obtained from
the following models

winy ¼ 254:88
8:33ð Þ þ 0:2514

0:0422ð Þ yþ a1;y σ̂̂1 ¼ 72:38

spry ¼ 215:30
3:04ð Þ þ a2;y â̂2 ¼ 53:24

sumy ¼ 281:55
8:16ð Þ −

0:1322
0:0476ð Þ yþ a3;y þ 0:133

0:054ð Þ a3;y−1 σ̂̂3 ¼ 65:77

auty ¼ 310:96
3:86ð Þ þ a4;y σ̂̂4 ¼ 67:57

anny ¼ 1052:61
13:69ð Þ þ 0:1840

0:0777ð Þ yþ a5;y â̂5 ¼ 120:06

These models are consistent with the findings from the
monthly IoI_1711 series. Only the summer series exhibits
any autocorrelation, and this is of just 1-year duration.
Winter exhibits a positive trend in rainfall, which is approxi-
mately twice the size of the negative trend for summer. Both
spring and autumn have no trends in rainfall, the positive
March trend being dissipated in significance by the lack of
trends in April andMay rainfall. Consequently, annual rainfall
has a positive trend, being approximately the average of the
(absolute) winter and summer trends.

4 Breaks and changing predictability

Over such a long sample period, somewhat in excess of three
centuries, it is quite conceivable that the model may have
undergone one or more shifts over time. To investigate this
possibility, a model closely related to Eq. (7),

x 0:6ð Þ
t ¼ ∑ 12

i¼1 αisi;t þ βisi;tt
� �þ δ1x

0:6ð Þ
t−1 þ δ3x

0:6ð Þ
t−3 þ at ð8Þ

was investigated for structural shifts using the Bai (1997)
and Bai and Perron (1998, 2003a, b) Bsequentially

1 An alternative approach to aggregation would be to average the monthly
fitted trends either across seasons or annually. This would, however, lose
any information gained from the estimated seasonal models.
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determined^ break test.2 The statistics from this test, shown in
Table 2, identify five breaks, at July 1739, December 1765,
December 1786, February 1843, and August 1976.
Interestingly, three of these breaks occur during the
eighteenth century, a period for which Murphy et al. (2018)
have Blow confidence^ in the reliability of the data. The sea-
sonal trends estimated from this five-break model are shown
in Fig. 6. The trends are quite volatile across the three breaks
during the eighteenth century, but from the mid-1800s, the
seasonal trends are rather stable within subsamples, with only
one significantly negative linear trend (for September) during
the fifth subsample from 1843 to 1976 and one significantly
positive linear trend (for July) during the last subsample from
1976.

Break tests were also performed on the seasonal and annual
series. The only break that could be identified was for the
winter series with a break at 1790:

winy ¼ 304:81
15:83ð Þ−

1:1043
0:0348ð Þ yþ a1;y y≤79 1789ð Þ

winy ¼ 254:05
14:74ð Þ þ 0:2622

0:0727ð Þ yþ a1;y y≥80 1790ð Þ

There is thus a trend towards drier winters in the years up to
1790, with the trend then being reversed towards wetter win-
ters after this break point.

The potential for changes in predictability was also inves-
tigated.3 To assess whether the pattern of rainfall has altered in
predictability over time relative to the fitted models, moving
residual standard deviations were computed for both the mod-
el fitted assuming no breaks and for the model with five
breaks. The n period moving residual standard deviation at
time t, σ̂a;t;n is defined from

σ̂̂2a;t;n ¼ n−1ð Þ−1∑n−1
j¼0â̂

2
t−i t ¼ n; nþ 1;⋯; T

so that the conventional residual standard deviation σ̂a report-
ed in Table 1 implicitly sets the moving window size n equal
to the sample size T.

Figure 7 plots these moving residual standard deviations
for n = 120, i.e. for a 10-year (decadal) moving window.
Variation is much more pronounced during the eighteenth
century, the first half of which exhibits less unpredictability
than the second half, during which unpredictability was at its
greatest. The period since 1976 has also exhibited a tendency
towards greater unpredictability.

5 Summary and concluding comments

Using a stochastic model that has already been successfully
employed to model monthly rainfall series for the U.K. and its
regions, this paper has demonstrated that this model can also

2 The testing procedure involves the following steps: (i) begin with the full
sample and perform a test of parameter constancy with unknown break using a
standard Chow (1960) F test; (ii) if the test rejects the null hypothesis of
constancy, determine the break date using an Andrews (1993) modified F test
given by the largest F statistic over all possible break dates; (iii) the sample is
then divided at this break date into two subsamples, and single unknown
breakpoint tests in each subsample are performed. Each of the tests may be
viewed as a test of the alternative of l + 1 = 2 breaks versus the null of l = 1
break. A breakpoint is then added whenever a subsample null is rejected; (iv)
the procedure is then repeated up to a maximum of five breaks until all sub-
samples do not reject the null hypothesis or until the maximum number of
breakpoints is reached; and (v) the break dates are then refined by re-
estimation if they are obtained from a subsample containing more than one
break. A Btrimming percentage^ is required to ensure that individual subsam-
ples are not too small. Given the length of the series, a trim of 5%was chosen,
with the tests using 5% critical values. The procedure is based on least squares
estimation, which precludes ARMA errors: hence, the use of lagged dependent
variables in Eq. (8) to model potential autocorrelation.

3 The term Bchanges in predictability^ refers to whether the goodness of fit of
the estimated models alters, for better or worse, over the sample period.
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be successfully fitted to the IoI_1711 series for the island of
Ireland. The excess skewness in the monthly IoI_1711 data
may be eradicated by using a Box-Cox transformation with
parameter equal to 0.6, a value very similar to that found for
the U.K. and its regions. There is no evidence of either an
overall stochastic trend or of evolving monthly seasonal pat-
terns, but positive linear trends are found for January, March,
and December and a negative linear trend found for July.
Analysis of the seasonal and annual series (which require no
transformation) confirms the implication from the monthly
data that winters have become progressively wetter and

summers progressively drier, with the positive linear trend
for winter being approximately twice the size of the negative
summer trend. Since there is no trend in either spring or au-
tumn rainfall, annual rainfall shows an overall positive linear
trend.

Given that the IoI_1711 series exists for over three centu-
ries, breaks in trend and structural shifts in the model were
investigated. Five breaks were identified, three of which oc-
curred in the early portion of the series during the eighteenth
century. However, trends were found to be much more stable
from the middle of the nineteenth century. For the seasonal
series, only a single break, at 1790 for winter, was found, so
that it was only after this break that winters became wetter; as
before then winter rainfall had a negative trend. In terms of
predictability, predictions from the model were found to be
more volatile during the second half of the eighteenth century
and again from 1976 onwards.

The formal modelling results presented in this paper may
also be compared with the essentially descriptive findings of
Murphy et al. (2018). The overall finding of increasingly wet-
ter winters and dryer summers complements their conclusions,
as does the finding that most of the eighteenth century was
characterised by dryer winters, which Murphy et al. suggest
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Table 2 Break test statistics

Break test F statistic 5% critical value

0 vs. 1 71.24 28.49

1 vs. 2 52.38 30.65

2 vs. 3 52.07 31.90

3 vs. 4 37.51 32.83

4 vs. 5 37.16 33.57

Critical values from Bai and Perron (2003b). 5% trimming; heteroge-
neous error distribution across breaks
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may be a consequence of the under-catch of snowfall. They
also point out that before 1790, confidence in the data is low
and this may have led to the finding of multiple breaks and
more volatile predictions in the models during the eighteenth
century. The break analysis also complements their conclu-
sions that trends were less significant from 1850 onwards
and that trends computed from recent data are not necessarily
representative of long-term trends. Of course, a perennial
problem with all trend fitting techniques is their projection
into the future. Given the results of the break analysis one
should be wary of projecting current trends too far!

Comparisons with the findings for the U.K. regions given
in Mills (2017) are necessarily limited by the much shorter
sample periods available for the U.K. and the rather different
focus of that paper. Perhaps, the most noticeable difference is
that the annual IoI_1711 series, which contains a positive
trend, stands in contrast to all the U.K. regions, for which
trends in rainfall are conspicuously absent.

The above findings, which complement and enhance the
descriptive analysis ofMurphy et al. (2018), thus conclusively
demonstrate the importance and usefulness of the formal
modelling of rainfall series undertaken in this paper.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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