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Abstract

The widening gap between organ availability and need is resulting in a worldwide crisis, particularly concerning
kidney transplantation. Regenerative medicine options are becoming increasingly advanced and are taking
advantage of progress in novel manufacturing techniques, including 3D bioprinting, to deliver potentially viable
alternatives. Cell-integrated and wearable artificial kidneys aim to create convenient and efficient systems of
filtration and restore elements of immunoregulatory function. Whilst preliminary clinical trials demonstrated
promise, manufacturing and trial design issues and identification of suitable and sustainable cell sources have
shown that more development is required for market progression. Tissue engineering and advances in
biomanufacturing techniques offer potential solutions for organ shortages; however, due to the complex kidney
structure, previous attempts have fallen short. With the recent development and progression of 3D bioprinting, cell
positioning and resolution of material deposition in organ manufacture have never seen greater control. Cell
sources for constructing kidney building blocks and populating both biologic and artificial scaffolds and matrices
have been identified, but in vitro culturing and/or differentiation, in addition to maintaining phenotype and viability
during and after lengthy and immature manufacturing processes, presents additional problems. For all techniques,
significant process barriers, clinical pathway identification for translation of models to humans, scaffold material
availability, and long-term biocompatibility need to be addressed prior to clinical realisation.

Key points

� Worldwide kidney shortages are driving the
requirement for alternative approaches.

� The complex kidney microarchitecture and multiple
cell types present engineering challenges which may
be solved by 3D bioprinting.

� Despite advances in 3D bioprinting, the production
of a functioning kidney remains elusive.

� It is imperative that developers consider the reliable,
upscalable, and timely manufacturing processes.

Introduction
The need for modern, accessible, and feasible regenera-
tive therapy solutions for the manufacture of human

organs has never been more significant, as the gap be-
tween organ need and availability continues to widen
globally. This is despite significant efforts to educate the
population in the importance of organ donation [1]. In
2014, a report into organ transplantation in the USA re-
vealed kidneys as the most frequently transplanted organ
with 15,978 operations, which is approximately 5000
more than all other organ transplants combined [2]. In
the UK, kidneys are also the most in-demand organ,
with more than 6500 people on a waiting list and 1 per-
son dying almost daily whilst waiting [3]. The average
waiting time for a kidney in the UK is 944 days [4], com-
pared to 877 days in the USA [2]. During this time, if the
kidneys enter renal failure, dialysis is required, either
haemodialysis or peritoneal dialysis, whereby blood is
diverted elsewhere to cleanse waste products before
returning to the body. Dialysis is maintained until a suit-
able donor is found or, as is commonly the case, the pa-
tient passes away [5].
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Whilst whole organ transplantation has been consid-
ered a success in general, in lesser economically devel-
oped countries (LEDCs) such as Pakistan, India, and
China, there are serious bioethical issues emerging. The
limited supply of organs has resulted in trafficking and
compensated donations, giving rise to criminal behav-
iour, growth of the ‘black market’, and medical tourism
[6]. Despite the introduction of rigorous policing in
LEDCs, and a drive for more donors in more economic-
ally developed countries (MEDCs) with a default
‘deemed consent’ or ‘opt-out’ laws on consent being im-
plemented in many countries [7–10], these issues remain
prevalent.
Therefore, for kidney failure, there currently exists

very limited options: haemodialysis, peritoneal dialysis,
kidney transplantation, or death. The aim of this review
is to critically evaluate current research and explore
treatment avenues required to fulfil patient duty of care,
with a focus on 3D bioprinted and biomanufactured tis-
sues and organs. Current barriers and limitations of
bioengineered strategies will be discussed, and strategies
to overcome these are suggested.

Donor kidney characteristics
The ideal kidney donor is described as a younger person
who died from a traumatic brain injury leaving the thor-
acic and abdominal organ function free from injury/ab-
normalities [11]. Despite this, due to the number of
recipients on the waiting list, older and ‘less ideal’ do-
nors are utilised in ever increasing frequency [12]. Cur-
rently, the list of criteria of which a replacement must
meet is extensive and based upon the social and medical
history of the donor in addition to the blood type, cross-
match antibody test, and human leukocyte antigen
(HLA) typing. These characteristics include age, history
of hypertension or diabetes, potential of infectious disease
transmission, cause of death, mechanism of death, anat-
omy of the allograft, morphology on biopsy, and func-
tional profile prior to transplantation [11, 13]. Of course,
kidneys can also be obtained from living candidates and
they offer better graft function than deceased donor trans-
plants [14]; however, at present, there exists no specific
metric to which the quality of the kidney is measured, al-
though risk indexes have been proposed and estimations
of glomerular filtration rate (GFR), the flow rate of filtered
fluid through the kidney, exist [15, 16].

Risks and limitations of kidney transplantation
Mounting research aimed at evaluating the risks of
transplantation, for both living donor [17–19] and re-
cipient [20–23], is giving cause for concern regarding
current clinical interventions. Cancer is the third most
common cause of death following kidney transplantation
[20, 24, 25], after organ rejection [26] and cardiovascular

complications [27, 28], with higher cancer-related mor-
tality rates for recipients compared to the general popu-
lation [29]. An abundance of research has identified
immunosuppression as the key factor increasing trans-
plant mortality rates due to cancer [30], namely from
interference in normal DNA repair mechanisms, whilst
increased age, history of malignancy, and deceased
donor transplantation further increase these rates [31–
33]. Immunosuppressant drugs are used immediately
post-transplant to prevent the body rejecting or attack-
ing the foreign organ, for example, mycophenolate mofe-
til (MMF) blocks, the proliferation of T and B cells
which inhibit antibody formation and prevent the gener-
ation of cytotoxic T cells [31]. Despite increasing mortal-
ity, MMF is considered vital to transplant success and
patient survival, with regimens lasting more than a year.
However, risks are not exclusive to recipients; the major
disadvantages to a living donor transplant are periopera-
tive morbidity and mortality, and the long-term risk of
living with one kidney, sometimes resulting in the donor
becoming a transplant candidate following the develop-
ment of renal failure at a later date [32]. Dialysis is not a
viable alternative to enable long-term quality of life
(QoL). Cardiovascular disease, including coronary artery
disease, congestive heart failure, and pulmonary edema,
along with erythropoietic and erythropoiesis deficiency,
altered tissue oxygen delivery, increased and acute
haemolysis, and associated bleeding and leukocyte ab-
normalities plus many more associated conditions occur
directly as a result of dialysis and the wider influences of
progressive renal failure [34–36]. This highlights the re-
quirement for exploring alternative methods to reduce
mortality, whilst aiding the global organ requirement.

Regenerative therapy options for organ replacement
Regenerative medicine replaces or regenerates human
cells, tissues, and/or organs to restore or establish nor-
mal function [37]. In kidneys, this includes perfusion, fil-
tration, secretion, and maintenance of homeostasis, with
the ultimate aim of improving long-term patient QoL.
Kidney research initially aimed to achieve this by target-
ing and improving dialysis.

Cell-integrated and wearable artificial kidney devices
Despite haemodialysis and peritoneal dialysis’ ability to fil-
ter the blood, they fail to mimic the kidney’s ability to se-
crete endocrine and immunologic factors, reabsorb, or
metabolise [38]. A renal tubule assist device (RAD) con-
taining human cells, developed by Humes et al., aimed to
restore an element of immunoregulatory function [38–40]
(Fig. 1a). In this, a synthetic hemofilter connects in-series
with a bioreactor cartridge containing human proximal
tubule cells grown to confluency within an extracorporeal
circuit using standard hemofiltration pump systems.
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Human renal proximal tubule cells are immunologically
active, which when adapted with non-biodegradable fibres,
allows membranes to act as scaffolds for the cells and as
an immunoprotective barrier which previous filtration
methods lacked. Phase I/II clinical trials demonstrated
that the RAD was able to filter urine at a rudimentary
level, improve metabolism, reduce pro-inflammatory cyto-
kines, and improve cardiovascular stability [40], whilst im-
proving long-term survival [41].

Although RAD demonstrated that human proximal tu-
bule cells could retain partial active transport properties
and endocrine process activity, regeneration or restor-
ation of previous functionality failed to improve for
more than 24 h [38–40]. Furthermore, RADs generated
from discarded kidneys were limited to 4–5 units; with
only 5–10 kidneys discarded per month, clinical demand
could not be met [42]. Coupled with the expensive
manufacturing process, in particular, the requirement to

Fig. 1 Schematic representation of cell-integrated and wearable artificial kidney devices. a Renal assist device (RAD), an extra corporeal circuit
with in series connections. b Bioartificial Renal Epithelial Cell System (BRECS), an extracorporeal filtration unit with renal epithelial cells seeded
onto porous discs. c Wearable artificial kidney (WAK), concept designed to be a wearable, portable device. d Wearable ultrafiltration (WUF),
concept designed to be discrete and wearable under garments
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maintain the device at 37 °C, the fragile nature of the
hollow structural fibres making it unsuitable for cryo-
preservation and the complexity of the system that re-
quired trained staff to maintain and operate it halted the
progression of the RAD [42]. From these barriers and a
suboptimal clinical protocol design, clinical trials were
discontinued until these issues could be resolved [42].
The limitations of RADs led to a change of focus in

the development of bioartificial kidneys (BAKs).
Bioartificial renal epithelial cell systems (BRECS, Fig.
1b), an extracorporeal hemofiltration unit, aimed to
overcome many of the manufacturing hurdles identi-
fied during the development of RADs. Specifically, to
address issues of cell shortage, renal epithelial cell
(REC) culture was optimised to generate suitable cell
yields in order to meet clinical demand [43]. In
addition, allogenic progenitor cells could also be har-
vested from suboptimal donors, including the elderly
(> 70 years) and those with hypertension. RECs seeded
onto porous niobium-coated carbon discs contained
in a polycarbonate structure were shown to maintain
both sterility and structural integrity following cryo-
preservation for up to 6 months creating a more eco-
nomically viable process [42]. Although biologically
successful, the specialised chamber manufacturing
process for the initial BRECS unit was unsuitable for
mass production [44]. Thus, injection moulding of
medical grade polycarbonate was implemented as a
technique to overcome this [45]. Although yet to ad-
vance from preclinical testing, BRECS is aimed at tar-
geting both acute and chronic conditions, with ovine
and porcine models demonstrating an improved
therapeutic efficacy and prolonged survival in com-
parison to controls [46].
Continued research looks to develop a wearable

battery-operated BRECS device, also referred to as a
wearable artificial kidney (WAK, Fig. 1c) or wearable
ultrafiltration (WUF, Fig. 1d) devices. With the rapid ad-
vances in microelectrical systems and nanotechnology,
attaining mass manufacture may be achievable; however,
consideration must be given to the life span and ability
to replace or renew failed components with minimal
intervention. The concept of a WAK is a small, portable
device, worn as a utility belt that continually performs
prolonged haemodialysis and removes urea [47]. They
are usually connected to the bloodstream via a catheter
or fistula needle, and unlike traditional dialysis treat-
ments, WAKs can be worn continuously. Using a 2D
transition metals (titanium), interweaved with carbides
or nitrides, nanomaterials referred to as MXene sorbents
can be used to remove urea [48]. Meng et al. demon-
strated the efficient removal of urea, 94% at 30 mg/dL,
room temperature, with no reported cytotoxicity or bio-
compatibility issues [47].

The prevalent limitations of WAK and WUKs are the
lack of vascular access whilst also retaining mobile and
flexible properties [49]. Subcutaneous port devices [50–
54] have been proposed; these allow wearers to go about
their daily activities, although future developments re-
quire miniaturisation and improved compatibility. Hu-
man clinical trials from 2016 demonstrated no
cardiovascular disruption following 24 h continued use
of WAK [55]. Castro et al. summarised future require-
ments for the development of WAK and WUFs. These
include miniaturisation and improved portability of the
pumping systems and dialysis membranes, improved
replaceability of pumps and sorbent cartridges, remote
patient monitoring systems, and increased battery life
and removal of needles to improve the safety of connec-
tion/disconnection systems [49].

Innate kidney repair and the influence of stem cells
The kidney involves the complex interplay between 26
different cell types derived from the ureteric bud and
metanephrogenic mesenchyme [56]. In view of this,
many of these native cells have been suggested for use in
repair/regeneration of kidneys [57, 58]. Intrinsically, kid-
neys can self-repair after injury to the tubules after in-
jury by the proliferation and re-integration of tubular
cells [59, 60]. In 2003, Poulsom et al. described the influ-
ences of exogenous cell sources, specifically progenitor
or ‘Stem’ cells (SCs) from sources such as bone marrow
[59], in the repair of acute or extensive damage to the
kidney’s nephron. A review in 2009 by Hopkins et al.
took this further and discussed the application of SCs in
therapy to assist in the regeneration of kidneys [61]. It
has since been posited that SCs interact to assist regen-
eration as mesenchymal stem cells or renal progenitor
stem cells via secretion paracrine factors including extra-
cellular vesicles (EVs) and growth factors [62–64]. Utilis-
ing the secretome in therapies, EVs in particular, has a
distinct advantage over using cells. Extraction of the
secretome from conditioned medium is more econom-
ical and practical than large-scale production and ad-
ministration of stem cells [65]. Application of the
secretome removes issues of immune compatibility,
tumorigenicity, and infection transmission; it can be
assessed similarly to current pharmaceutical agents;
long-term storage without diminishing the potency can
be achieved without common toxic cryopreservation
agents, such as dimethyl sulfoxide (DMSO) [66–68]; and
manufacturing schedules are significantly reduced in
comparison to cell therapies. However, due to a cell’s re-
sponse to signalling affecting the composition of the
secretome, producing an efficacious output is challen-
ging [64, 69].
To recapitulate complex kidney function, epithelial,

endothelial, and mesangial cells in sufficient numbers
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are required [41]. However, application of cell type is
dependent upon the renal disease in question, therefore
making it difficult to choose between tubular cells or
glomerular epithelial cells, and research failed to identify
whether it would be better to introduce progenitor cells
for integration into existing structures or support cells
which encourage existing renal parenchyma to prolifer-
ate and repair. Methods of injecting renal parenchyma
were inconclusive as this only delivered cells into re-
stricted regions of the kidney, making global integration
unlikely; the diverse pathology of chronic kidney disease
(CKD) made it likely that no one cellular therapy will be
applicable to all conditions. For instance, the uremic
state in CKD is toxic to somatic stem/progenitor cells
and detrimentally impacts their differentiation and an-
giogenic potential [70]. Hopkins et al. hypothesised that
renal cell differentiation from SCs would only be applic-
able if cells were seeded into a biodevice or used to cre-
ate a replacement organ, such as in 3D organ printing
[61].
As an alternative cell type, embryonic stem cells would

also enable the formation of kidneys; however, amongst
ethical, legal, and technical issues, injections of embry-
onic cells (ESCs) have been found to give rise to terato-
mas and are therefore less viable [71]. However, the use
of induced pluripotent stem cells (iPSCs) can circumvent
ethical issues presented by ESCs since they can be ob-
tained from somatic cells. The high proliferative and dif-
ferentiation capacity of pluripotent stem cells has meant
that there has been a significant research focussed on
the potential therapeutic benefit of iPSCs. However, cau-
tion should still be employed due to the presence of epi-
genetic memory [72, 73], and also, abnormal
programming and the accumulation of somatic muta-
tions may promote tumorigenesis and immunogenicity
[74, 75].

Tissue engineering and 3D organ printing
Since the development of 3D printing in 1986 [76], the
potential for healthcare applications has long been pro-
moted and advances have seen the advent of bioprinting,
in which solvent-free, aqueous-based systems enable dir-
ect printing of biological materials, including cells, into
scaffolds, and thus, 3D bioengineering of organs has be-
come a possibility [77]. Organ bioprinting has previously
been defined as a layer-by-layer robotic biofabrication of
3D functional living macro-tissues and organ constructs
using tissue spheroids as building blocks [78]. Mironov et
al. identified three main steps to organ printing: develop-
ing blueprints to obtain a digital reconstruction of the nat-
ural form [78]; processing/printing using layer-by-layer
placement of cells into a 3D environment either by drop-
let, dispensing, or stereolithography; and finally, perfusion
and maturation of the printed organ post-processing.

The central challenge of organ printing is to reproduce
the complex extracellular matrix (ECM) components with
multiple cell types to recapitulate in vivo biological func-
tion [78]. In 2014, Murphy and Atala built upon Mironov
et al.’s basic steps and proposed that successful organ
printing may be achieved by consideration of the following
approaches [79]: biomimicry, autonomous self-assembly,
and mini-tissue building blocks. Successful biomimicry re-
quires detailed replication of biological tissues, which re-
lies upon the manufacture of physiologically accurate
biomaterials, to achieve the functionality of natural pro-
cesses. Autonomous self-assembly aims to replicate bio-
logical tissues based on the embryonic organ development
process, whereby the early cellular components of a tissue
produce their own ECM components, cell signalling, and
organisation to achieve organ functionality [80]. This ap-
proach uses the cell to drive histogenesis, thus controlling
the composition and functionality of the tissue [79, 81].
The mini-tissues approach treats organs and tissues as a
series of biological building blocks, viewed functionally as
the smallest part of a tissue (e.g. a kidney nephron).
Mini-tissues can be self-assembled, constructed as per a
design, or both. For example, cell spheres can
self-assemble into macro-tissues using biological design,
or highly detailed reproductions of a tissue unit are de-
signed and then allowed to self-assemble into a function-
ing macro-tissue [78, 82]. These three approaches further
expand to include six main steps of the 3D organ printing
process: imaging, design, material selection, cell selection,
printing, and application [79].
It should be recognised that bioprinting is still very

much in its infancy [83]; despite this, such strategies
have shown considerable progress and demonstrated
great potential [84, 85]. In the last 5 years, there has
been a significant increase in the development and appli-
cations utilising this technology [86], including biosen-
sors [87], proteins, and DNA arrays of stem cells [88].

Current bioprinting methodologies and processes
Murphy and Atala and Derakhshanfar et al. are compre-
hensive in their description of the current state of 3D
organ printing, but the area remains largely conflicted,
particularly regarding the hypothesised success of vari-
ous printing methods [79, 89] (Fig. 2). For example,
stereolithography has been depicted as a trailblazing
technique due to its capability for printing intricate
shapes and is reported to have 100 μm resolution, with
printing times of less than 1 h [90, 91]. Unfortunately,
the fabrication process is cytotoxic and thus potentially
detrimental to bioprinting [92] although the mainten-
ance of high cell viability when seeded with cells has
been reported [90, 91]. On the other hand, two-photon
laser-based photo-crosslinking creates encapsulated 3D
tissues rather than intricacies, but these can only be
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printed to several millimetres and are therefore clinically
inappropriate [93].
Inkjet printers (or drop-on-demand printers) are the

most commonly used biological printer, due to their low
cost, wide availability, and high print speed [79]. How-
ever, they often suffer from mechanical stress, low drop-
let directionality, non-uniform droplet size, and nozzle
clogging, thus making them unreliable for large-scale
bioprinting applications [94]. Another limitation is that
materials must be in liquid form to enable droplet for-
mation before forming a 3D structure, which restricts
the materials that can be applied using this technique.
Khalil and Sun and Murphy et al. attempted to over-
come this by crosslinking materials following deposition
using chemical, pH, or ultraviolet mechanisms, but this
slowed the bioprinting process and altered ECM proper-
ties [95, 96]. Analysing the success of the most common
type of printer therefore emphasises two of the most dif-
ficult challenges which 3D bioprinting must overcome
to become a success: obtaining a fast but reliable organ/
tissue manufacture speed, whilst developing highly spe-
cific biomaterials.
With life expectancy previously shown to be limited

following a kidney transplant [29, 32, 33, 97], it is im-
perative that a method which can create a functioning
kidney with a reliable, upscalable, and timely manufac-
turing process is developed so that patients can be given
the greatest chance of recovery. However, the
layer-by-layer approach to reproducing the intrinsic tis-
sue microarchitecture requires more time as the com-
plexity and number of components required increases.
In addition, cell distribution throughout the organ and
fabrication of the complex ECM microenvironment is of
vital importance and can be addressed using bottom-up
micro- and nanotechnologies [98] including
self-assembly techniques and soft lithography [99–101],
but further work is required.
Although a fully functional human kidney is yet to be

developed, it is theorised that production will be highly
time-consuming due to the complex and vital nature
demanded of an organ. Whilst this impacts directly on
patient waiting time, prolonged printing can also result
in adverse effects on cell viability and the functionality
of printed building blocks [14]. Hybrid tissue fabrication
methods have shown great promise in developing intrin-
sically complex, cell encapsulated structures [102, 103]
such as bespoke aortic valve conduits. The goal of creat-
ing a fully functioning organ currently remains elusive,
and so a potential solution to elongated manufacturing
times would be to simultaneous printing of different
components of an organ by multiple printers or to com-
bine techniques on a single printer; Shanjani et al. devel-
oped a hybrid printing system able to run dispensing
and stereolithography simultaneously, but as in the

Fig. 2 Schematics of current bioprinting methods. Microextrusion
can be used to produce a continuous flow of biomaterial (bio-ink)
through a nozzle. Air pressure (pneumatic driven), pistons, and
screws can be used to provide a driving force for dispersion. Inkjet
printers are driven using thermal or piezoelectric actuators to create
bubbles or a shape change to create droplets. Stereolithography
utilises and focuses light to photopolymerised materials to a desired
pattern. Laser-assisted bioprinting deposits microdroplets of bio-ink
onto a substrate by application of a pulsed laser source to an
absorbing layer above a bio-ink layer

Wragg et al. Renal Replacement Therapy            (2019) 5:18 Page 6 of 16



aforementioned studies, the resulting constructs were
small and clinically inadequate [104]. More recently, for
vascularised heart engineering, Mauullari et al. devel-
oped a multi-cell dispensing process with an alginate
and a polyethylene glycol monoacrylate-fibrinogen
bio-ink extruding both induced pluripotent stem cell
(iPSC)-derived cardiomyocytes and human umbilical
vein endothelial cells (HUVECs) with a CaCl2 solution.
However, this extrusion was through a single aperture
and so precision from independent extrusion control of
multiple extrusions was lacking. Multi-extrusion printers
are available (e.g. 3Dynamic Systems’ 3DS Omega Bio-
printer [105]) although the resolution of printed material
is generally not appropriate. Therefore, further research
into combining techniques and increasing the scale of
manufacture is required to explore this avenue further
[106]. A review by Ozbolat et al. offers a more in-depth
review of bioprinter technologies [107].
Alternative processes, such as laser-assisted printing,

are expensive and complex; the slow processing and as-
sembly time of current strategies, lasting from days to
weeks, lend itself to reduced cell viability and tissue ne-
crosis [79]. The protocols often require extensive multi-
step processes [108] with manual intervention; this in
itself leads to the increased risk of errors whilst reducing
reproducibility and scalability for manufacturing pur-
poses. Bioprinting deposition does not in itself encom-
pass the complete manufacturing process [109],
requiring further maturation steps [84]. Moreover, there
is a need to preserve and/or store organs if they are to
be available off-the-shelf clinically. Currently, there are
limited storage solutions for materials and bioprinted
constructs [86]. Cryopreservation is the most promising
avenue, but the literature of long-term storage of
tissue-engineered constructs is considerably lacking.

Bioprinting materials and structures
When deciding upon the printing material, there are
several considerations to be made, including printability,
cytocompatibility, mechanics, degradation, bioactivity,
functionalization capacity, biocompatibility, and bio-
activity [110]. Bioprinted organs face the same issues re-
garding host rejection that both living and deceased
donor transplants face, whereby there is a risk that the
host’s immune system will attack the foreign tissue [111,
112]. This highlights the importance of scaffold material
biocompatibility to avoid host complications and/or
rejection.
Many biomaterial ink formulations are currently un-

suitable for cell printing [113, 114], since they require ei-
ther elevated temperatures and dissolving solvents or a
mixture of both. In incorporating a cellular structure
within the printed construct, there is a need for the ma-
terials used to be more viscous and tuneable [115–118],

whether this be via thermal or UV crosslinking [96, 119].
Whilst natural polymers including collagen and hyalur-
onic acid have good biocompatibility, they usually have
poor mechanical properties; conversely, synthetic mate-
rials including polylactic acid and polyglycolic acid have
good mechanical properties, but poor biocompatibility.
To overcome this, a combination-material approach
could be incorporated to meet the biomechanical re-
quirements of the tissue/organ.
Novel bio-ink formulations are therefore required for

each printing technology and strategy [120], since it is
unlikely that no one ink will be compatible with all
printing technologies and strategies.
In order to overcome microstructural difficulties, a

modular approach can be adopted [121, 122], whereby
smaller functional building blocks are assembled into
biomimetic structures in a controlled manner. Nearly all
organs and tissues require some form of vasculature for
delivery of oxygen and nutrients and removal of waste.
This microvasculature is currently lacking in bioprinted
organs [123] and remains a major challenge to overcome
[83] although progress is being made in some engi-
neered tissues [124]. The use of in situ printing has been
considered to overcome the problem of organ
vascularization, although studies are currently limited
[125]. This strategy encourages vessel sprouting from
the endogenous tissue, which may be a solution if the
organ to be replaced has retained functionality but may
not be applicable for patients with acute kidney failure.
A more appropriate approach may be to bioprint onto
viable explants, although akin to in situ printing, studies
presented in literature are currently limited [126]. The
construction of channels into the interior of printed or-
gans has also been investigated. The perfusion of nutri-
ents into these channels may simulate vasculature, as
can the addition of cells, although these structures are
crude [123, 127–129] and further optimization of this
process is required.
The layer-by-layer bioprinting process is not well

suited to hollow structures; the resulting scaffold or con-
struct often collapses, although the embedding of
printed structures within a supporting to act as struc-
tural supports which can later be washed away has seen
some success [130]; moreover, the mechanical properties
in bioprinted kidneys are inferior in comparison to the
native structures, leading to inaccurate structures when
setting [86]. Sacrificial support materials can be
employed to strengthen hollow scaffolds [127–132].
Researchers have had success in creating small organ

models of a human kidney [133, 134] and heart [135]
which are significant to disease modelling [136] and
drugs and toxicity screening [137]. Unfortunately, the
current limitations including the size of the structures
mean that their lifespan is limited to days rather than
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years, which makes any estimation of appropriate scale
model success speculative [1].

Barriers to bioprinted kidney manufacture
The process from identification of patient need to the
printing of a new kidney can pose many barriers. With
the addition of cells, these challenges further increase
(Fig. 3). Furthermore, there are several technological
challenges that are currently limiting the progress of
bioprinted kidneys from proof-of-concept models to
clinical realisation (Table 1). The largest hurdle is that
there are currently no techniques capable of mimicking
the multiscale, hierarchical architecture and complexity
of the native tissue/organ [108, 122, 138] which is vital
to function. The minimum criteria for any kidney scaf-
fold are that it is biocompatible, able to mimic the basic
organ structure (including vasculature), be able to with-
stand forces caused by fluid flow whilst having filtration
properties, is safe to use, and durable enough to be sur-
gically handled whilst maintaining in vitro and in vivo
integrity. Perfusion, filtration, secretion, absorption, and
drainage of urine whilst maintaining homeostasis and
control of hemodynamic, immunologic, and endocrine
functions are also important factors [41]. Other obstacles
include the lack of high-resolution cell deposition [139],
controlled cell distribution, vascularization [110], and in-
nervation. Cell viability of printed organs is highly vari-
able, with the side effects on the cells when using the
various techniques unknown. The in vivo functionality
and biocompatibility of printed organs and tissues re-
main largely unknown, with large variations in published
animal studies [108]. Once printed control of cell pheno-
type and fate can be regulated via biological and physical
factors including the use of growth factors [140], shear

stress [141, 142], electrical stimulation [123, 143, 144],
and mechanical cues, but these will need to be investi-
gated in a systematic series of experiments.

Cell sources for kidney bioprinting
The model cell source for kidney regeneration has yet to
be determined. Ideally, cells should be readily available,
easy to expand in culture, remain viable and functional,
be non-immunogenic, and able to reproduce all func-
tions of the kidney in order to be viable for bioprinting
[79]. Since there are over 20 distinct cells in the kidney,
it is unsurprising that regeneration of all types has yet to
be achieved.
To begin to achieve this, autologous cells are usually

obtained from biopsies or from the generation and dif-
ferentiation of autologous SCs. Limitations of this ap-
proach, however, occur if the host is ill or suffering from
genetic or metabolic disorders or renal failure [145], as it
may not be viable to perform invasive surgical proce-
dures. Human primary cells are difficult to expand and
maintain, possessing a finite lifespan, making long-term
functionality unlikely for bioprinted organs in the
current state of the field [146]. Furthermore, isolated cell
types from adult kidneys undergoing in vitro expansion
and manipulation may not function as normal, losing
their differentiated phenotype [147]. It is speculated as
to whether this is due to the terminally differentiated
cells being forced into a proliferative state, due to a lack
of inherent cues, or a combination of both.
In vivo cells are reliant upon fluid mechanical cues in-

cluding shear stress, tension, compression [138, 148],
and biomolecular gradients for normal functionality. By
gaining an understanding of embryonic development,
this allows for the mechanisms that regulate the

Fig. 3 Therapy timeline for kidney donation
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induction of collecting ducts versus kidney mesenchyme
to be unpicked. In vivo, the metanephric mesenchyme
generates the majority of kidney components including
the vascularised glomeruli with podocytes, proximal and
distal tubules, and lumina [149]. The majority of the epi-
thelial cells are located in the nephron derived from multi-
potent progenitor cells in the metanephric cap [150–153]
with the exception of those in the collecting ducts. To re-
capitulate this dynamic environment in vitro is extremely
demanding [154]. 3D cell cultures, including suspension
cultures [155], have shown more promise in comparison
to monolayer cultures, although often inadequate cell
sources have limited whole organ bioengineering [147].
Cellular cultures with a mechanistic approach allow for
the generation of nephron-containing organoids, sur-
rounded by renal interstitium and endothelial cells that
are comparable to human foetal tissues [156]. Although
such structures may currently be more applicable to dis-
ease and nephrotoxicity modelling, they may also serve as
a source for cellular therapy and tissue engineering
applications.
SCs are a promising alternative for fulfilling the short-

comings of human primary cells due to their ability to
proliferate in an undifferentiated but multipotent state,
as well as being able to generate multiple tissue-specific
cell phenotypes. It is theorised that combinations of ma-
ture cell sources can be applied to reproduce the

phenotypes required in a stable construct. Adult SCs de-
rived from functional tissue components could be used
to generate the building blocks of the organ construct,
while MSCs derived from bone marrow or gestational
tissue could generate the connective tissue required for
the structural components of the organ [79]. Other types
of stem cell, such as perinatal SCs from amniotic fluid
or placenta, and iPSCs are thought to have a lesser mul-
tipotent differentiation potential but are considered safer
and more ethically acceptable, therefore perhaps provid-
ing a temporary solution, allowing research to progress
at a limited capacity [157, 158].
Induced PSCs have successfully been generated from

cells of renal origin including mesangial, tubular epithe-
lial cells and renal epithelial cells [159–163]. Tajiri et al.
also demonstrated that it is possible to generate iPSCs
from peripheral blood mononuclear cells (PBMCs) from
patients undergoing dialysis due to diabetic nephropathy
and glomerulonephritis [70]. The study presented that
protein and marker expression and nephron progenitor
cell (NPC) derivation were similar to healthy controls.
This may present a promising tool for personalised kid-
ney regeneration, although the study was limited to
three patients (with two control patients) and the effi-
cacy was variable [70]. Also, further characterisation of
these generated nephrons is required to determine
long-term efficacy.
The differential induction of NPCs and ureteric buds

has also been recently reported using multistep culture
conditions on both mouse ESCs and human-induced
pluripotent stem cells (iPSC) [149, 154, 164]. Protocols
have been developed to mimic the physiological condi-
tions during the development of metanephric progeni-
tors to produce cells capable of establishing 3D nephric
tubules and glomeruli. Published protocols are chem-
ically defined, utilise low doses of fibroblast growth
factor-8 (FGF8, 10 ng/mL) and CHIR to define
anterior-posterior patterning, and suppress bone mor-
phogenic protein 4 (BMP4) using Noggin in 3D suspen-
sion cultures to direct differentiation of iPSCs and ESCs
[155]. In 2015, Takasato et al. published methods to
modulate the introduction of two intermediate
mesoderm-derived progenitor populations [156]. They
utilised phasic Wnt stimulation and growth factors to
promote metanephric mesenchyme development from
iPSCs. However, full functionality may be lacking, since
in vitro recapitulation of inter-nephron connections by
the collecting ducts was lacking. A selective induction
method was used by Taguchi et al. to improve the em-
bryonic branching morphogenesis of epithelial tissue, a
prerequisite of renal drainage systems [154]. This was an
attempt to reconstitute higher-order organ structure and
to support a model for kidney lineage specification.
Although Morizane et al. generated NPCs from iPSCs

Table 1 Critical Criteria for 3D printing

Criteria Specific parameters

Cell source ● Inclusion of multiple cell types

Scaffold ● Biocompatible

● Mechanically biomimetic

○ Able to withstand fluid flow forces

● Safe

● Durable

○ Able to be handled and maintained in vitro and
in vivo

Structure ● Multiscale

● Hierarchical

Functional ● Perfusion, filtration, secretion, absorption, and
drainage of urine

● Maintenance of homeostasis

● Control of functions:

○ Hemodynamic

○ Immunological

○ Endocrine

Manufacturing
process

● High-resolution cell deposition

● Controlled cell distribution

● Inclusion of:
○ Vascularisation
○ Innervation
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more efficiently compared to Taguchi et al., the NPCs in
Taguchi’s protocol were capable of interacting with both
the uretic buds and glomeruli to attract blood vessels in
vivo [154]. Mae et al. investigated the selective differenti-
ation of uretic buds (renal progenitors) using iPSCs and
hESCs; however, the differentiation process mechanisms
have yet to be ascertained [164]. Despite robust proto-
cols being devised, none yet are at the stage of generat-
ing fully functioning tissues or reliable, upscalable
processes for the generation of renal cells for bioengin-
eering. In order to realise this potential, there is still a
requirement to devise expansion culture methods and
the capability to achieve high throughput, efficient,
rapid, reliable, and robust means of detecting cell differ-
entiation [165]. The generation of functional kidney tis-
sue from PSCs and iPSCs may allow for the
development of cellular therapy treatments in the future.
It should be considered that current bioprinting tech-

niques including extrusion, inkjet, and stereolithographic
methods either reduce cell viability or have unknown
consequences on cell fate [79, 108, 166]. Furthermore,
reliable cell sourcing and printing of primary cells in-
crease the complexity of the processes [86]. Porous scaf-
folds, similar to hollow scaffolds, often suffer from
uncontrollable geometry and the risk of damage to the
encapsulated cells [86]; similarly, inkjet printers, particu-
larly when used with highly viscous polymer solutions,
may clog [110, 167–170].
Currently, there are no regulatory approved cellular

treatments for kidney disease despite numerous clinical
trials being undertaken. Stem cells isolated for the bone
marrow of the kidney donor have been investigated in
conjunction with alemtuzumab (Campath, Lemtrada) as
a preventative treatment for organ rejection. However,
the addition of bone marrow stem cells (BMSC) failed to
induce tolerance, with graft failure occurring in two of
the four patients treated and graft loss in the third pa-
tient [171]; thus, the trial was terminated.

Bioprinting alternatives: self-assembling organoid formation
Although complete kidney regeneration using SCs re-
mains elusive, small yet complex kidney structures with
renal-specific functions, referred to as organoids, have
been developed as a way of potentially replacing renal
function [75]. Organoids are capable of spontaneous or-
ganisation into structures resembling nephron segments,
glomeruli, interstitium, and collecting ducts [149, 154,
156, 172–174] akin to the embryonic kidney. However,
the nephrons within current organoids are not fully dif-
ferentiated and lack vital vasculature [165].
Since kidney organoids are predominantly comprised

of a single cell type in a 3D matrix, they are currently
limited to the study of kidney disease and injury
[175–177], drug nephrotoxicity [178, 179], and kidney

development [156, 172], since they are incapable of rep-
licating the varied functionality of a kidney. Thus, the
ability to restore renal structures and engineer new kid-
ney tissues remains extremely ambitious [75], not least
since the kidney is inherently unable to regenerate new
nephrons in vivo. Despite this, iPSC-derived organoids
may potentially be utilised in alternative bioengineering
approaches; distinct renal cells isolated from iPSC kid-
ney organoids may be useful for generating sufficient
numbers of cells for populating biologic or artificial tis-
sue scaffolds and matrices [165].

Tissue decellularization
Harvested kidneys do not always meet the quality con-
trol criteria for transplantation [147]; thus, the use of
decellularized kidneys are a promising alternative ap-
proach [110], since these strategies have the potential to
achieve a matrix that more closely resembles the native
tissue. Decellularization as a process aims to remove re-
sidual cellular material whilst preserving the native
structure, protein ratio, and location of inherent bio-
logical cues including glycosaminoglycans (GAGs), pro-
teins including collagen I and IV, laminin, and
fibronectin [180] to retain in vivo-like function and pro-
liferation following reseeding [181, 182]. These factors
may help promote and support multiple cell types and
thus provide efficient and effective kidney regeneration
[56]. Cellular material and immunogens must be elimi-
nated since they may initiate inflammatory response
[183], ultimately leading to immune rejection following
transplantation. Chemical and physical cues are vital for
cellular growth and expansion. GAGs bind growth fac-
tors and thus are important for prolonged growth and
differentiation; they also retain water in the ECM and so
are important for maintaining the gel-like properties of
the ECM [184]. It is not only the inclusion of factors,
but also the distribution that are important for cell hom-
ing and differentiation [183]. Potent growth factors in-
cluding fibroblast growth factor (FGF), hepatocyte
growth factor (HGF), vascular endothelial growth factor
(VEGF), and interleukin-8 (IL-8) are all important for
cellular fate and growth [57, 185]. Insulin-like growth
factor (IGF), HGF, and FGF-9 are all crucial for
kidney-specific gene expression [25, 172, 186].
Kidney decellularization success is often reliant upon

the organ harvest, which must have occurred prior to
proteolysis (4–6 h post-mortem) [41], and the age of the
kidney has also been shown to have an effect on cellular
repopulation [187]. Xeno matrices, including the use of
porcine tissues, have also been investigated to reduce
some of these barriers [183, 188, 189], since the organ
size is comparable to humans [190–193] and porcine
matrices are able to promote the adhesion, survival, and
maintenance of human cells [180, 194–196]. However,
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for decellularization to be a viable starting point, there is
a need to standardise decellularization processes and
consider the manufacturing challenges including scal-
ability, sterilisation, and preservation. Once processed
and dependent upon the application, decellularized
matrices may be utilised in one of two ways: acellular
constructs to be cellularized by the recipient or
reseeding of the construct. In the case of kidney, the
goal is to provide a cellularized construct viable for
transplantation.
Preservation of critical microstructure and intact vas-

culature are essential for successful recellularization
[183]. The glomeruli and renal structures in particular
are prone to damage due to high perfusion pressure ap-
plied during some decellularization processes [183].
Reseeding protocols have often proven to be problem-
atic. Cannulation can be employed to recellularize the
kidney vasculature, although recellularization of the col-
lecting ducts poses a significant challenge [147]. Cellular
delivery via the renal artery and ureter has been investi-
gated in rat studies [197]. This permits delivery via the
existing vasculature and collecting system, respectively,
with viable cells detected in the vascular and glomerular
networks [198], although seeding of the tubules poses
more of a challenge. Song et al. were one of the first
groups to transplant reseeded kidney transplants into
nephrectomised rats [58]. However, a lack of glomeruli
maturity meant that the constructs were unable to re-
store kidney-specific parameters. Similarly, Guan et al.
demonstrated that despite the initial acceptance of
reseeded kidney scaffolds, insufficient blood supply due
to thrombosis in the renal artery and rein resulted in
transplant failure [199]. This was thought to be due to
incorrect cell differentiation of cells populating the
vasculature.
Detergents sodium dodecyl sulphate (SDS) and

Triton-X100 are commonly utilised for kidney decellu-
larization via renal artery perfusion methods. Despite re-
ports of success in the removal of cellular material and
maintenance of the kidney structure and biological cues,
many protocols fail to look at the ECM regions in any
detail [180]. The process itself inevitably causes alter-
ations to the ECM topography and biochemistry. O’Neill
et al. performed a porcine study and determined that
sulphated GAG composition was variable in kidney sec-
tions and was often lower in the cortex [200]. Micro-
structural architectural disturbances can have a direct
impact on cell morphology, phenotype, and organisation
in addition to detrimentally affecting the organ biomech-
anical properties, which often go untested.
Residual decellularizing agents such as the detergents

SDS and Triton-X100 are notoriously difficult to eradi-
cate and can cause the failure of subsequent cell applica-
tion. This is due to their cytotoxic properties and

capacity to denature proteins, causing a loss of function-
ality if exposure is too long [195]. Despite this, often any
detail regarding testing of residual decellularizing agents
is not included in published literature. Currently, it is
the inability to effectively differentiate reseeded cells that
is hampering the success of reseeded kidney constructs.
Thus, there is a need to understand the specific signal-
ling pathways and growth factor combinations to guide
differentiation. Furthermore, decellularizing agents may
alter tissue-specific cell adhesion sites, thus impeding
their growth and/or causing changes to genotype and
phenotype [190].

Strategies to address current limitations
In order to realise the potential bioengineering, includ-
ing the use of bioprinting for closing the organ donor
gap, there is a need for innovative thinking, which en-
compasses scalability of current technologies and novel
printing methodologies, whilst also accounting for
cost-effectiveness. Currently, the biggest hurdle to over-
come is the requirement of faster printers capable of
higher resolution, than is currently available. Rather than
attempting to optimise a single manufacturing process
for the creation of a fully functioning kidney, the best
approach may be to combine techniques to recreate the
structural heterogeneity, tissue hierarchical structure,
and functionality.
There is also a need for post-printing maturation of

printed tissues under physiological conditions [109]
which could be met via the use of bioreactors, or in vivo
maturation, although this would require the native tissue
to be non-vital and not completely dysfunctional [109].
Researchers should be working alongside regulators
from the outset when developing any bioprinted organ
to facilitate clinical realisation and translation.
The most likely application for bioprinted organs in

the near future is the use of mini-tissues [201] for use in
prostheses, predicting therapeutic and/or toxic responses
[86, 202], whilst potentially decreasing the costs of novel
drug discovery and increasing the understanding of dis-
ease mechanisms [99, 115, 203], whilst decreasing the
reliance upon animal models [201]. It is likely that cellu-
lar therapies that promote natural repair pathways will
reach clinical realisation prior to cell replacement ther-
apies although supramolecular hydrogels with reversible
crosslinking [204] and stimulus-responsive materials for
biomimetic 4D printing [205] are beginning to show
promise in the potential for augmented grafting which
could offer a bridge towards whole organ engineering.

Conclusion
A review of current regenerative research demonstrates
that work to advance 3D organ printing is abundant, but
thus far falling short of providing a solution to current

Wragg et al. Renal Replacement Therapy            (2019) 5:18 Page 11 of 16



organ crises especially in the case of kidney transplant-
ation. The main issues preventing functional human kid-
ney constructs being developed are slow manufacture
time, clinically inadequate printing methods, and bioma-
terial availability and ethicality. Innovative new printing
methods are being designed, which incorporate some
hybrid techniques, but do not yet combine multiple pro-
cesses to manufacture whole kidney structures. This is
limited by the relative infancy of the field and is still at a
fundamental stage rather than translational. Current re-
search has, however, advanced in understanding which
cell types are viable for specific organ components (e.g.
functional tissue-derived SCs for tissue construction and
bone marrow-derived mesenchymal stem cells (MSCs)
for component connection. The central challenge of 3D
organ printing is to reproduce the complex microarchi-
tecture of ECM components and multiple cell types in
sufficient resolution for normal biological function, and
the current research indicates we are unable to do this
adequately enough for clinical trials to go ahead at this
stage, meaning that the kidney crisis faces further uncer-
tainty in the near future.
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