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Abstract:  

The cost and effort for modelling existing bridges from point clouds currently outweighs the perceived benefits of 

the resulting model. Automating the point cloud-to-Bridge Information Models process can drastically reduce the 

manual effort and cost involved. Previous research has achieved the automatic generation of surfaces primitives 

combined with rule-based classification to create labelled construction models from point clouds. These methods 

work very well in synthetic dataset or idealized cases. However, real bridge point clouds are often incomplete, and 

contain unevenly distributed points. Also, bridge geometries are complex. They are defined with horizontal 

alignments, vertical elevations and cross-sections. These characteristics are the reasons behind the performance 

issues existing methods have in real datasets. We propose to tackle this challenge via a novel top-down method 

for major bridge component detection in this paper. Our method bypasses the surface generation process altogether. 

Firstly, this method uses a slicing algorithm to separate deck assembly from pier assemblies. It then detects pier 

caps using their surface normal, and uses oriented bounding boxes and density histograms to segment the girders. 

Finally, the method terminates by merging over-segments into individual labelled point clusters. Experimental 

results indicate an average detection precision of 99.2%, recall of 98.3%, and F1-score of 98.7%. This is the first 

method to achieve reliable detection performance in real bridge datasets. This sets a solid foundation for 

researchers attempting to derive rich IFC (Industry Foundation Classes) models from individual point clusters.  
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1. INTRODUCTION 

The global infrastructure market is poised for an explosive adoption of BrIM (Bridge Information Models). 

However, there is only 20% BIM (Building Information Models) usage in the US on infrastructure projects 

(McGraw Hill Construction, 2014). Based on this demographic, the usage of BrIM is very limited despite the 

implementation of laser-scanning-based data collection. This is because that the automatic generation of BrIM 

from point cloud data (PCD) remains an unsolved problem. The time required to manually detect objects in a PCD 

and convert them to as-is 3D solid models using cutting edge modelling software tends to be ten times greater than 

that required to obtain the point cloud (Lu & Brilakis, 2017).  

There are more than 600,000 highway bridges in the United States (US) (FHWA, 2013). According to an in-house 

report, Highways England manages more than 30,000 road bridges on its motorways and major A-roads. Based 

on a two-year inspection cycle, there is a need for at least 315,000 bridge inspections per annum across the US and 

England alone. This explains why there is a huge market demand for a less labour-intensive bridge documentation 

technique, which can efficiently boost bridge management productivity. 

In general, the from-PCD-to-BrIM modelling process consists of two steps: 1) detecting bridge components in 

point clouds in the form of labelled point clusters; and 2) generating a geometric BrIM through fitting IFC (Industry 

Foundation Classes) entities and spatial relationships in labelled point clusters. This study intends to automate Step 

1, i.e. bridge component detection in the PCD, which is currently largely achieved manually using modelling 

software. 

Major vendors such as Autodesk, Bentley and ClearEdge3D provide the most advanced software solutions for 

BIM modelling. These tools can automatically recognize standardized geometric shapes for building and industrial 

elements embedded in point clusters. However, this is largely assisted by manually segmenting the point cloud in 

advance. Modelers need to repeatedly rotate the PCD to various views and try to select regions of interest using 

clipping polygons.  

Existing methods usually segment a PCD into parametric surface primitives. They then classify the surfaces or the 

shapes converted from the surfaces using rule sets. These surface-based segmentation methods and rule-based 

classification methods perform quite well in case studies under strict constraints. However, given that a real bridge 

PCD is not as perfect as synthetic data and the topology of real bridges is far more complex than idealized cases, 

these methods exhibit poor performance when they are subject to real data.  
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In this paper, we address the challenges above using a novel top-down segmentation method. We use a slicing 

algorithm to tackle the complexity of bridge topology. Experiment results suggest that our method can push 

forward the progress of the automation in bridge modelling, as it can effectively segment bridge components from 

a PCD and directly label them without converting points into surfaces. 

 

2. BACKGROUND 

Much effort has been devoted to automating the process of object detection. We define ‘detection’ in this context 

as the combination of clustering (point cloud-to-point clusters) and classification (labelling the clusters). Current 

methods of PCD clustering generally follow a “bottom-up” approach, which goes from points to surfaces or 

patches followed by semantic labelling to derive objects. Most PCD classification methods follow a “top-down” 

approach, which employs human knowledge (e.g. relationships, context) to detect specific instances embedded in 

a PCD or infer the semantics of components in a geometric model.    

 

2.1 Bottom-up detection 

The bottom-up approach pieces together primitive features like points to generate higher-level features 

successively, such as surface normals, meshes, patches and non-uniform B-Spline surfaces (Dimitrov et al., 2016).   

Zhang et al. (2015) present a sparsity-inducing optimization-based method to detect parametric planar patches in 

noisy bridge PCD. However, this method can work only with planar-surface objects and cannot detect piers when 

point densities of these regions are low. Walsh et al. (2013) present a Region Growing (RG) algorithm to detect 

objects in a PCD. However, this method cannot detect the edge between a pier cap and a pier. The segmentation 

was finally achieved after manually choosing key points. Likewise, Dimitrov and Golparvar-fard (2015) suggest 

an upgraded RG method. This method can deal with curved surfaces and it excels when the input PCD does not 

suffer from substantive occlusions.  However, the method over-segments objects when occlusions are present 

and the data is incomplete. – These persistent problems in real point clouds were addressed by Xiong et al. (2013) 

through a learning-paradigm that detects occluded planar surfaces in a building PCD. However, their method 

cannot be applied in bridge settings, because occluded surfaces in a bridge PCD do not follow a specific pattern 

like in a building PCD. Schnabel et al. (2007) detect basic shapes using RANdom SAmple Consensus (RANSAC). 

However, given the computational-expensive nature of RANSAC, it is unrealistic to use it to detect complex 

geometries. Hence, these methods tend to perform well in relatively simplified scenarios and synthetic data, but 

are not ready to tackle the complexity of real bridges whose as-constructed and as-weathered shapes further 

increase the as-designed complexity. 

 

2.2 Top-down detection 

In general, the bottom-up detection is not suitable for PCD classification task. Classification through surfaces are 

insufficient, because it is difficult to determine whether they belong to the same instance. The intervention of 

object-level information is required to overcome such challenges. The top-down approach usually combines a set 

of engineering criteria and classifies objects in a PCD that meet the criteria. Prior studies show that knowledge-

based classification methods are robust, as domain-specific information such as topological relationships (Koppula 

et al., 2011) and known parameters (e.g. diameter, direction) (Ahmed et al., 2014) are invariant to pose and 

appearance. Belsky et al., (2014) encapsulate domain expert knowledge in the form of rule sets in order to enrich 

semantics for a building model. However, these aforementioned methods are tailored for buildings and industrial 

objects and cannot be applied in bridge settings as the geometric properties of bridge components are quite different 

to those objects. Recent studies start to employ top-down strategy to detect bridge components in point clouds. For 

example, Riveiro et al. (2016) use specific constraints to segment masonry bridge PCD into surfaces. However, 

their algorithm is based on histograms, which largely depend on data quality. It is difficult to generalize this 

algorithm to large highway bridges, as the real point clouds are often incomplete and suffer from non-uniformly 

distributed points. Ma et al. (2017) leverage relationship knowledge and shape features to classify bridge 3D solid 

objects. First, the input of this method should be a solid bridge model but not a bridge PCD. Second, the method 

assumes the pairwise relationship between two 3D solid objects are very well-defined. These assumptions are too 

tight to make the method feasible to real cases, as bridges usually possess various curved horizontal and vertical 

alignments and cross-sections. 

 

2.3 Other detection methods 

Data-driven, learning-based methods have been widely applied to predict unknown instance labels based on 

training feature sets and manually added labels that facilitate supervised learning. For example, Xiong et al. (2013) 

propose a probabilistic graphical model to label the extracted planar surfaces for buildings. Zhang et al. (2014) use 

surface features to train a multi-class classifier, which assigns bridge component labels to surface primitives. 

However, this classifier is trained with generic Computer-Aided Design (CAD) shapes and tested on a synthetic 



simplified bridge PCD. This method may not work with real data, because real bridge components contain skews 

and irregularities. Numerous volumetric Convolutional Neural Network and Deep Learning frameworks are 

proposed by transforming points into voxel grids (Qi et al., 2017) to detect objects in point clouds. The major 

restrictions to apply these machine learning schemes to bridge component detection task include: (1) the lack of 

sufficient amount of labelled large-scale real bridge PCD to train a good classifier, and (2) the high computing 

burdens (e.g. a typical sliding window method is computational expensive (Armeni et al. 2016)). 

 

2.4 Gaps in knowledge, Objectives and Research questions 

Most relevant works focus on clustering point clouds through generating surfaces, which are not robust with regard 

to occlusions and sparseness. Furthermore, it is difficult to transfer these methods to object detection in a real 

bridge PCD because bridges are neither straight nor flat. The only few bridge-related classification studies work 

well under tight constraints or on synthetic dataset. We therefore contend that the problem of generating bridge 

objects from real bridge point clouds has yet to be solved. The objective of this work is to develop a robust top-

down object detection method to tackle with the challenges encountered in real bridge PCDs by answering: how 

to reliably segment a real bridge PCD with complex geometries and classify the major bridge components.  

 

3. PROPOSED SOLUTION 

 

This research focuses on slab and beam-slab highway bridges in the UK and we deal with the key components 

detection which are slab, pier, pier cap and girder. We illustrate the workflow of the proposed method in Fig. 1. 

Dashed frames refer to ambiguous components that may or may not exist in a bridge PCD.  

 

 
 

Fig. 1. Workflow of the proposed method 

 

Step 1 – Pier assembly and deck assembly detection 

We use Principal Component Analysis (PCA) to align a bridge such that the horizontal alignment of the bridge is 

positioned roughly parallel to the global X-axis. In this step, we aim to classify the whole bridge points into two 

groups: pier assembly group 𝛼𝑀 = {𝛼1, 𝛼2 … , 𝛼𝑚}, where m is the number of pier assembly and deck assembly 

group 𝛼𝑀
𝐶 . We chop 𝐷𝑁 into multiple slices along the X-axis (Fig. 2) and let  𝐽 be the number of slices which 

is initialized proportionally to the length of the bridge. We obtain slices 𝑆𝑋 = {𝑆𝑗〈𝑥〉: 𝑗 = 1,2, … , 𝐽}, where 〈x〉 

refers to the axis of slicing. When the “virtual scalpel” encounters an empty or a single-point slice, it will infer the 

geometric feature from the nearest sound slice. Then, a 2D skeleton 𝑠𝑘𝑗〈𝑥〉 is drawn for each slice 𝑆𝑗〈𝑥〉 using the 

mid-plane of its 3D axis-aligned bounding box (Fig. 2). We extract 𝑟𝑎𝑛𝑔𝑒𝑗〈𝑧〉 which is the height of 𝑆𝑗〈𝑥〉. We 

classify 𝑆𝑗〈𝑥〉 as a pier assembly slice if the Eq. (1) is satisfied; otherwise, it is a deck assembly slice: 

 

𝑟𝑎𝑛𝑔𝑒𝑗⟨𝑧⟩ >  𝜌1|max{𝑧𝑖|𝐷𝑁} − min{𝑧𝑖|𝐷𝑁}| (1) 

 



where 𝜌1 is a discrimination parameter that refers to the thickness ratio of the deck assembly relative to the 

height of the bridge. The adjacent slices with the same assembly property are merged into a cluster. Finally, we 

acquire pier assembly 𝛼𝑀 and deck assembly 𝛼𝑀
𝐶 . 

 

 
 

        Fig. 2. Slicing along X-axis      

 

Step 2 – Pier area detection in pier assembly  

Each pier assembly 𝛼𝑚 can be considered as a smaller scale of a bridge PCD so that Step 2 follows the same 

procedure as Step 1, except that the slicing is performed along the Y-axis of 𝛼𝑚. We classify 𝑆𝑗〈𝑦〉 as a pier area 

slice if the Eq. (2) is satisfied; otherwise, it is considered as a deck assembly slice: 

 

𝑟𝑎𝑛𝑔𝑒𝑗⟨𝑧⟩ >  𝜌2|max{𝑧𝑖|𝛼𝑚} − min{𝑧𝑖|𝛼𝑚}| (2) 

 

where 𝜌2 is another discrimination parameter that is used to separate the pier area 𝛽𝑚𝑝 from the rest in 𝛼𝑚. 

 

Step 3 – Pier cap detection  

We aim to detect pier caps using the surface normal in the upper part of the pier area.  

 

Step 3.1 – Remove upper deck slab   

We first remove the upper slab surface points from the pier area(s) {𝛽𝑚𝑝} output from Step 2. The general 

transverse maximum gradient is defined to be 5% so that the lower bound of upper slab points is 𝜆𝑚𝑖𝑛=5%𝑊𝛽𝑚𝑝
, 

where 𝑊𝛽𝑚𝑝
 is the width of 𝛽𝑚𝑝 and the upper bound is 𝜆𝑚𝑎𝑥 = 𝜌1𝐻𝛽𝑚𝑝

, where 𝐻𝛽𝑚𝑝
 is the height of 𝛽𝑚𝑝. 

Define ∆𝜆  to be the range where upper slab surface points are located. We should have 5%𝑊𝛽𝑚𝑝
< ∆𝜆 <

𝜌3𝑎𝐻𝛽𝑚𝑝
< 𝜌1𝐻𝛽𝑚𝑝

, where 𝜌3𝑎 is the slab thickness ratio estimation. The points in ∆𝜆 are then removed and the 

remaining points in pier area(s) are denoted as {𝑃𝑑𝑚𝑝}. 

 

Step 3.2 – Pier cap detection at top of piers 

For each pier assembly 𝛼𝑚: 

Scenario 1: a single pier area is detected in the pier assembly (i.e. ‖𝛽𝑀‖ = 1) and the pier area extends almost the 

full width of the pier assembly (i.e. 𝑊𝛽𝑚𝑝
≅  𝑊𝛼𝑚

). Then, it is a wall-type-pier pier assembly. A pier cap does not 

exist. 

Scenario 2: for a pier assembly with capped pile pier or cap and column pier (i.e. ‖𝛽𝑀‖ > 1) or, for a single 

detected pier area 𝛽𝑚𝑝, but 𝑊𝛽𝑚𝑝
≪  𝑊𝛼𝑚

, in these two cases, further pier cap detection is required. 

We use the upper part of 𝑃𝑑𝑚𝑝 (i.e. denoted as 𝑢𝑝𝑝𝑒𝑟𝑃𝑑𝑚𝑝
) to detect pier cap. We generate mesh for 𝑢𝑝𝑝𝑒𝑟𝑃𝑑𝑚𝑝

 

and compute the normal of each triangular surface. If a cluster of downward- or upward-oriented surface normals 

are revealed, and if these normals are found around the level 𝜌1(max{𝑧𝑖|𝛽𝑚𝑝} − min{𝑧𝑖|𝛽𝑚𝑝}) (Fig. 3 red), then, 

we classify the feature points constituting these surfaces together with the points in 𝑢𝑝𝑝𝑒𝑟𝑃𝑑𝑚𝑝
 that above the 

feature points as deck assembly. Otherwise, the pier cap feature points are detected if a cluster of downward- or 

upward-oriented normals are found around the level 𝜌2(max{𝑧𝑖|𝛽𝑚𝑝} − min{𝑧𝑖|𝛽𝑚𝑝}) (Fig. 3 green).  



                                       

 

    Fig. 3. Pier cap detection                       Fig. 4. Extract pier cap from 𝐷𝑃𝐶𝑀
  

 

Step 3.3 – Pier cap extraction from deck assembly 

We extract the pier cap parts from 𝐷𝑃𝐶𝑀
 if the pier caps are detected in Step 3.2. First, the points of 𝐷𝑃𝐶𝑚

 are 

projected onto the YZ-plane followed by generating a density histogram along Y-axis. Then, the bins are clustered 

using the gaps between them (Fig. 4 (a)). We denote the segments as {𝛾𝑚(𝑝+1)}. Then, we perform slicing along 

the X-axis of {𝛾𝑚(𝑝+1)}. For 𝛾𝑚(𝑝+1) , the pier cap area is detected if 𝑟𝑎𝑛𝑔𝑒𝑗⟨𝑧⟩ >  𝜌3𝑏|max{𝑧𝑖|𝛾𝑚(𝑝+1)} −

min{𝑧𝑖|𝛾𝑚(𝑝+1)}| (Fig. 4 (b)), where 𝜌3𝑏 =
𝜌1

𝜌2
. Next, the procedure is similar to Step 3.1 and Step 3.2. The pier 

cap parts {𝑃𝑐|𝐷𝑃𝐶𝑀
} are finally acquired (Fig. 4 (c)). In the end, we merge both pier cap parts output from Step 

3.2 and Step 3.3. 

 

Step 4 – Girder detection   

 

Step 4.1 – Segment the whole deck assembly into several segments 

To begin with, we conduct a merging process to build up a whole deck assembly cluster. This involves piecing up 

all point clusters classified as deck assembly in the previous steps.   

For a beam-slab bridge, the length of the girder depends on the span. We need to split the whole merged deck 

assembly into several segments in order to find the appropriate length of span. The best cutting planes depend on 

the orientation of the expansion joints. This is because two adjacent deck assembly segments must be 

interconnected by the expansion joints. Pier clusters and pier caps are then oriented based on the joints. We employ 

3D oriented bounding box of a pier cluster to capture the orientation, through which, the entire deck assembly is 

segmented into multiple segments {𝑑𝑒𝑐𝑘𝜔} (Fig. 5).  

 

 
 

Fig 5. Deck segments {𝑑𝑒𝑐𝑘𝜔} 

 

Step 4.2 – Girder detection in the deck assembly segment 

We detect girders in each deck assembly segment. We start by rotating 𝑑𝑒𝑐𝑘𝜔 around its Y-axis until 𝑑𝑒𝑐𝑘𝜔 

reaches the best projection view. Rotation is conducted through a grid search in a range of angles {𝜉}= [-3°, 3°]. 

A density histogram ℋ𝑍  along the Z-axis is employed for evaluating if a best rotation is reached. Specifically, 

the best rotation angle is acquired when the maximum standard deviation of ℋ𝑍 for 𝑑𝑒𝑐𝑘𝜔 returns.  

Next, we used the bottom 𝜌4 (%) points of 𝑑𝑒𝑐𝑘𝜔(�̃�) (denoted as 𝑏𝑑𝑒𝑐𝑘
𝜔(�̆�)

) for girder detection, where 𝜌4 =
𝜌1−𝜌3𝑎

𝜌1
. A density histogram ℋ𝑌  is drawn along Y-axis of 𝑏𝑑𝑒𝑐𝑘

𝜔(�̆�)
. The density probability is uniformly 

distributed with significantly lower variance when there is no girder (i.e. slab bridge) while significant peaks can 

be observed in the distribution with non-trivial variance when girders exist (i.e. beam-slab bridge). We segment 

the girders if they exist and the girder section type (e.g. Y, U or SY beams) can be inferred from the bottom flange 

width and the girder depth along the best project view. The 4-step top-down recursive detection method terminates. 

All the over-segments from Step 1 to Step 4 are merged as per their class labels. 

 

 



4. RESEARCH METHODOLOGY 
 

4.1 Data & Methods 

We used a FARO Focus 3D X330 laser scanner to collect point cloud data of 10 highway bridges around 

Cambridgeshire, UK. Our analyses consist of two parts. The first part is to experimentally define the optimal values 

of the two hyper-parameters (𝜌1 and 𝜌2) at the level of individual point clusters in Steps 1 and 2 respectively. 

Then, we derived the optimal values of the other three hyper-parameters (𝜌3a, 𝜌3b and 𝜌4). The second part is to 

assess the optimized proposed method on the level of bridge structural components using both bounding box-wise 

and point-wise performance metrics. 

 

4.2 Estimation of hyper-parameters 

We developed a user-defined bounding box functionality to manually remove the irrelevant points, such as on-site 

traffic, vegetation and trees. After down sampling, we aligned the cropped bridge PCD using PCA. Then, we 

estimated the two hyper-parameters parameters 𝜌1 and 𝜌2. We grid searched various values of 𝜌1 and 𝜌2 over 

the value space (0, 1) and identified the optimal 𝜌1
∗ and 𝜌2

∗ through computing the empirical receiver operating 

characteristic. Denote “S” as a specific point cluster, where  𝑆 ∈ {𝛼𝑀, 𝛼𝑀
𝐶} in Step 1 and 𝑆 ∈ {𝐷𝑃𝐶𝑀

, 𝛽𝑀𝑃} in 

Step 2. We defined the following point-wise performance metrics Precision (Pr), Recall (R) and F1-score (F1) as: 

 

Prs =
TPs

TPs + FPs

=
# of correctly labeled points in cluster s

total # of points in cluster s
 

(4) 

 

Rs =
TPs

TPs + FNs

=
# of correctly labeled points in cluster s

total # of points in ground truth cluster s
 

(5) 

 

F1s = 2 ∗
Prs ∗ Rs

Prs + Rs

 
(6) 

 

Then, 𝜌3𝑏 can be computed based on 𝜌1
∗ and 𝜌2

∗. The value of 𝜌3𝑎 is derived using probability of point density 

for {𝛽𝑚𝑝} so that 𝜌4 is also acquired. 

 

4.3 System Validation and Results 

The detection results were shown in Fig. 7. The method generated a bounding box for each segmented point cluster 

(AutoBBox) and assign a semantic instance label to each point. They are compared with the manually segmented 

point clusters in their bounding boxes (GTBBox) and the cluster points in their instance labels.  

 

 
 

Fig. 7. Detection results and AutoBBoxes for point clusters 

 

For a specific point cluster generated from the solution, let 𝐶𝑎𝑢𝑡𝑜 and 𝐶𝑔𝑡 be the centers of its AutoBBox and its 

GTBBox (if it exists), respectively, and 𝑑(𝐶𝑎𝑢𝑡𝑜, 𝐶𝑔𝑡) be the Euclidean distance between 𝐶𝑎𝑢𝑡𝑜 and 𝐶𝑔𝑡.  

C1. GTBBox of the specific point cluster exists; 



C2. 𝐶𝑎𝑢𝑡𝑜 is inside the corresponding GTBBox; 

C3. 𝜀 =
𝑑(𝐶𝑎𝑢𝑡𝑜,𝐶𝑔𝑡)

𝑚𝑖𝑛 (𝑙𝑔𝑡,𝑤𝑔𝑡,ℎ𝑔𝑡)
<50%, where 𝑙𝑔𝑡 , 𝑤𝑔𝑡 , ℎ𝑔𝑡  are the length, width and height of the GTBBox of the point 

cluster, respectively.  

The point cluster is correctly detected by the AutoBBox and we assigned one to True Positive (TP) if all the above 

three conditions are satisfied; one to False Positive (FP) if C1 is false but an AutoBBox is generated; one to False 

Negative (FN) if C1 is true but at least one of C2 and C3 is not satisfied. The precision, recall and F1-score were 

generated using the values of TP, FN and FP (Eq. (7) – Eq. (9)). Table 1 summarizes the results of bounding-box-

wise performance evaluation.  

 

Prbridge_j =
# of correctly detected point clusters

total # of AutoBBoxes for a bridge PCD 
 

(7) 

 

Rbridge_j =
# of correctly detected point clusters

total # of GTBBoxes for a bridge PCD 
 

(8) 

 

F1bridge_j = 2 ∗
Prbridge_j ∗ Rbridge_j

Prbridge_j + Rbridge_j

 
(9) 

 

Table 1. Bounding-box-wise component detection performance 

Bridge  1 2 3 4 5 6 7 8 9 10 Avg 

FN 0 0 0  0 0 0 0 0 1 0  

FP 0 0 0  0 0 0 0 0 0 0  

TP 13 4 4  13 3 7 20 7 6 7  

Precision 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Recall 100% 100% 100% 100% 100% 100% 100% 100% 85.7% 100% 98.6% 

F1-score 100% 100% 100% 100% 100% 100% 100% 100% 92.3% 100% 99.2% 

 

We reconducted the system evaluation with point-wise metrics, i.e. Eq. (4) – Eq. (6). Herein, the “S” refers to any 

specific final point cluster generated from our proposed solution. For a specific bridge PCD, we computed the 

micro-average and the macro-average scores. In micro-average, we computed the statistics: 

 

Prmicro =
∑ TPs

|S|
s=1

∑ TPs + ∑ FPs
|S|
s=1

|S|
s=1

 
(10) 

 

Rmicro =
∑ TPs

|S|
s=1

∑ TPs + ∑ FNs
|S|
s=1

|S|
s=1

 
(11) 

 

where |s| is the number of generated point clusters in this given bridge PCD. The micro-average F1-score is simply 

the harmonic mean of Prmicro and Rmicro. In macro-average, we took the average of the Precision and Recall of 

all point clusters (Eq. (12) and Eq. (13)). Likewise, the macro-average F1-score is the harmonic mean of Prmacro 

and Rmacro. We summarized the point-wise the micro-average and the macro-average evaluation results in Table 

2.  

  

Prmacro =
∑ Prs

|𝑆|
𝑠=1

|𝑆|
 

(12) 

 

Rmacro =
∑ Rs

|𝑆|
𝑠=1

|𝑆|
 

(13) 

 

5. CONCLUSIONS 

 

Our proposed method achieved remarkable performance: the micro-average of Pr/R/F1 are all 98.8% (for multi-

class case, the micro-average option yields result in a mathematically equivalent definition for Pr and R, thus 

equivalent F1); the macro-average ones are 99.2%, 98.3% and 98.7%, respectively. However, small girder spacing 

decreases the detection performance (i.e. Bridge 7). This performance degradation is mainly due to a limited line 

of sight to the surface points between those girders. The results indicated typical highway bridges can be supported 



using the proposed solution, which can significantly reduce the modeling cost of BrIM. 

 

Table 2. Point-wise performance evaluation results in micro- and macro-average 

Bridge ID  TP# FP# Pr/R/F1micro Prmacro Rmacro F1macro 

1 486010 2443 99.5% 98.5% 99.3% 98.9% 

2 499155 845 99.8% 99.9% 99.4% 99.7% 

3 498713 1287 99.7% 99.9% 98.9% 99.4% 

4 498356 223 100% 99.9% 99.9% 99.9% 

5 498950 1050 99.8% 99.9% 99.2% 99.5% 

6 499435 565 99.9% 100% 99.4% 99.7% 

7 405279 49706 89.1% 94.4% 88.9% 90.8% 

8 499338 662 99.9% 100% 99.6% 99.8% 

9 499470 530 99.9% 100% 99.7% 99.8% 

10 874806 230 100% 100% 99.1% 99.5% 

Avg   98.8% 99.2% 98.3% 98.7% 
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