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Abstract The standard approach when 

simulating photovoltaic output is to employ 
Typical Meteorological Year (TMY) data sets. 
This paper uses statistical analyses to 
investigate several TMYs. The objectives are: 
(1) to ascertain which TMY generation method 
most accurately reproduces solar conditions in 
the UK; (2) to discover the minimum time 
resolution at which TMYs delver reliable 
results; and (3) to determine if there are any 
circumstances in which TMYs can replace 
long-term time series. 

Introduction For solar project planning, 

developers and financiers usually require long-
term solar radiation data of high accuracy. 
This is often considered to be the most 
important site selection criterion. Investors 
also view possible errors in solar resource 
data as one of the likeliest causes of losses 
relative to expected return on investment. The 
solar data upon which project plans are based 
should comprise a time series of at least ten 
years and have known uncertainty in order to 
be judged “bankable” [1]. To secure preferable 
financing, analysis of on-site solar insolation 
needs to go beyond studying the long-term 
average irradiance. Daily, monthly, annual and 
project lifetime variability is required to 
calculate risk. Business banks usually specify 
quarterly operating reports. Production 
agreements might include time-of-day or 
seasonal price differences. Financial viability is 
also influenced by historical extremes, as well 
as mean, minimum and maximum seasonal 
and annual projected generation. Knowledge 
of all these statistics additionally facilitates 
plant design and operational planning.  

TMY data sets are the photovoltaic (PV) 
industry standard for the solar resource. A 
TMY is a set of meteorological parameter(s) 
with representative values for every hour in a 
single year for a given geographical place. The 
one year of data values is selected as 
characteristic of the location from a long-term 
time series of at least 10 years. There are 
several ways of making this selection, 
reviewed by [2], and thus a choice of TMYs 
available for use. 

The advantages of TMYs include reduced data 
storage requirements, speed of data access 
and lower cost than purchasing several years 

of raw measurement data. TMYs created from 
interpolated or satellite data are useful where 
there are no ground measurements available 
at the exact site of interest. They are 
compatible with industry-standard energy 
simulation software such as PVSyst [3] and 
can be used to produce electrical generation 
results quickly. 

Typical Meteorological Year data is normally 
used for initial evaluations only. It is not judged 
adequate for further financial assessment of 
large-scale solar installations. The 
conventional wisdom is that TMY datasets do 
not sufficiently detail year-by-year weather 
variations which may cause a solar plant to fall 
short of long-term yield expectations. However, 
TMY data is much less expensive than 
purchasing long-term time series data from 
meteorological organisations or commercial 
satellite-data suppliers. Taking the UK as an 
example, this research compares global 
horizontal irradiance data from a free simple 
TMY (detailed below), a widely used 
commercial TMY (Meteonorm), UK Met. Office 
weather stations and satellite sources. The aim 
is to discover what influence the choice of 
dataset has and whether the difference in 
accuracy is sufficient to justify the extra cost of 
long-term datasets. 

Statistical Analysis Several different types 

of TMY are compared to long-term global 
horizontal irradiation (GHI) measurements (10 
years 2008-2017) from Sutton Bonington 
weather station, obtained from UK Met. Office 
MIDAS data [4]. This central location exhibits 
normal weather patterns for the UK. The 
yearly, monthly and daily sums of GHI in TMYs 
are compared with respective statistics in the 
long-term GHI data from the ground 
measurements. Hourly means and standard 
deviation are also calculated. Root Mean 
Square Error (RMSE) and normalised RMSE 
(nRMSE% normalised by mean) are used as a 
measure of how close the GHI in individual 
TMY data sets are to the long-term average 
measured data. Frequency distribution 
histograms for each specific data set are drawn 
up. Lastly, irradiation data from the separate 
sources is used to calculate hourly, daily, 
monthly and annual PV system output for a 
sample small commercial rooftop installation. 
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PVSyst is utilised to generate electrical yield 
for a hypothetical barn roof installation in 
Sutton Bonington, area 125 m2, tilt 25° and 
azimuth 20° west, 3 × 4.2 kW inverters, 12 
strings of 11 × 110W modules in series. 

Data The TMYs employed in this analysis 

are as follows: 

a) A data set constituted by taking the average 
of every hour for each of the 10 years 2008-
2017 in the Sutton Bonington GHI weather 
station data. This approach, from now on 
termed “TenYrHrAvg”, is not strictly a TMY as 
such, and is included for purposes of 
comparison only. 

b) A simple TMY, subsequently called 
“SimpleTMY” calculated from the 10-year 
Sutton Bonington GHI measurements thus: 

i. For each month in the year (i.e., January, 
February, March, etc.), the ten-year monthly 
mean of irradiance data is obtained for the 
period 2008-2017. 

ii. The historic month that most closely 
matches the ten-year mean for that month is 
identified i.e. the most “typical” month. 

iii. The hourly data values from the twelve 
typical months are combined to create the 
typical year file. This comprises January 
2011, February 2015, March 2010, April 2014, 
May 2015, June 2014, July 2015, August 
2009, September 2013, October 2010, 
November 2012 and December 2010. 

c) Another simple TMY calculated as 
described in (b) above but taking MIDAS data 
interpolated to a point 50 km from Sutton 
Bonington as input, rather than the weather 
station data itself. This is called “KrigeTMY”.  

d) A Meteonorm [5] file for Sutton Bonington. 
Meteonorm is based on spatial interpolation of 
monthly weather station averages of GHI, 
supplemented by Meteosat (2–3 km 
resolution) images where ground 
measurements are sparse. (34% satellite data 
was used in the case of this site.) Next, hourly 
values are stochastically generated from the 
monthly averages. Although again, not a “true” 
TMY, a single year of data is produced from 
the values of several. 

e) A NASA-SSE [7] TMY for Sutton Bonington. 
NASA-SSE (Surface Meteorology and Solar 
Energy programme) are worldwide monthly 
data, average of 1983-2005 EUMETSAT 
satellite measurements, ≈ 111 km resolution. 
The TMY was generated using Meteonorm. 

f) A PVGIS v.5 [6] TMY for Sutton Bonington. 
This takes as its inputs data from satellite-
based solar radiation data (CM-SAF ≈ 5 km 
resolution) and reanalysis climate data (air 

temperature, relative humidity and wind 
speed). The ISO 15927-4 procedure is used to 
construct the TMY. That is, typical months are 
selected by comparing the distribution of each 
meteorological parameter in each month with 
the long-term distribution of that parameter and 
month (Finkelstein-Schafer statistic, FS). The 
FS method is judged better than the mean 
because it chooses months with less extreme 
daily values which are closer to the long term 
daily mean. The ISO-15927-4 method assigns 
an equal weight to air temperature, solar 
radiation, and relative humidity. 

Results and Interpretation When 

compared to the long-term 2008-2017 GHI 
time series for Sutton Bonington (SB 2008-
2017), the average hourly means, annual 
sums, average daily sums and average 
monthly sums of TenYrHrAvg, SimpleTMY and 
Meteonorm differ by at most 0.1%. This 
suggests that these 3 TMYs are suitable for 
pre-feasibility studies and for estimating overall 
results for the complete 25-year lifetime of a 
solar project. On the other hand, the remaining 
TMYs (KrigeTMY, NASA-SSE-TMY and 
PVGIS-TMY) differ from SB 2008-2017 by 6%, 
3.5% and 3.5% respectively. In the cases of 
KrigeTMY and NASA-SSE-TMY, it is the low 
spatial resolution of the GHI data which is 
causing the inaccuracy, rather than the method 
of TMY generation. The two TMY generation 
methods have previously just given accurate 
results when used in SimpleTMY and 
Meteonorm. But the spatial resolution of both 
KrigeTMY and NASA-SSE-TMY is poor: 
KrigeTMY is based on data interpolated to a 
distance of 50 km and NASA-SSE-TMY GHI 
inputs are grid squares of over 100 × 100 km.  
For PVGIS-TMY, it is unlikely to be the 
underlying satellite-derived GHI data which is 
engendering the differences because this is 
similar to that used in Meteonorm. Therefore, 
the problem must lie in either the choice of 
data additional to GHI used in the TMY 
generation (air temperature, relative humidity 
and wind speed), or in the weighting of the 
meteorological parameters in the TMY 
creation. 

When annual PV system output is calculated 
using PVSyst for the various TMYs, the results 
are analogous to those for annual GHI. 
Meteonorm annual yield for Sutton Bonington 
differs from that calculated for 2013 (an 
average year in terms of standard deviation 
and sum of GHI) by only 0.1%. Annual yields 
obtained from NASA-SSE-TMY and PVGIS-
TMY differ by 1% and 4%.  

In temperate climates such as the UK, weather 
conditions vary considerably from year to year. 



In the ten-year period under investigation 
(2008-2017), the annual sum of GHI ranged 
from 896 MWh/m² in 2012 to 1046 MWh/m² in 
2009 – a difference of 149 MWh/m² or 14%. 
Naturally, TMYs do not capture this variability. 
The annual sum of solar radiation in TMYs 
remains the same. The difference in total 
annual GHI between a TMY and the actual 
measured value at Sutton Bonington may be 
8-18%, depending on which TMY and which 
year. This is similar to the natural year-on-year 
variation of ground-based measurements. 

Turning to analysis on a monthly basis, most 
of the TMYs investigated follow the sinusoidal 
curve of SB 2008-2017, with monthly sums of 
GHI rising from January to June, and then 
falling to December (Fig. 1). The exceptions 
are NASA-SSE-TMY which underestimates in 
June and PVGIS-TMY which overestimates in 
March and April, underestimates in May, and 
overestimates again in June and July.  

 

Figure 1. Monthly sum of GHI for the long-term 
time series and 5 TMYs 

Monthly system outputs obtained from PVSyst 
exhibit a similar pattern. Hourly analysis 
reveals that PVGIS-TMY only demonstrates 
this two-peaked distribution, with monthly GHI 
rises in April and July, between 9 am and 6 pm 
(the most productive hours for PV). From 4 am 
to 8 am, it underestimates, and at 7 pm it 
overestimates. When the hourly sums are 
totalled for the year, PVGIS-TMY 
underestimates before noon and 
overestimates after noon (Fig. 2).  

 

Figure 2: Hourly electrical yield for 3 TMYs 

The emulation of long-term time series by 
TMYs was further studied by RMSE. All the 
TMYs were found to have an annual nRMSE of 
c. 1%, apart from KrigeTMY (2%). Given the 
differences between the TMYs, this statistic is 
not very informative, and further measures 
were investigated. 

In terms of standard deviation, SimpleTMY 
most closely matches SB 2008-2017, differing 
from it by 1.5 kWh/m2 GHI. This is followed by 
Meteonorm (Δ = 4.7 kWh/m2), KrigeTMY (Δ = 
7.4 kWh/m2), PVGIS-TMY (Δ = -7.7 kWh/m2) 
and lastly TenYrHrAvg (Δ = 23.3 kWh/m2). It is 
well known that simple averaging of yearly data 
underestimates the amount of variability, which 
is why this technique is not generally adopted. 
Apart from TenYrHrAvg, none of the TMYs 
have greater differences to the long-term 
standard deviation than any of the ten years in 
the data from which it is constituted. 
Interestingly, the standard deviation of shorter 
term 5-year time series for Sutton Bonington 
for 2008-2012 and 2013-2018, differ from SB 
2008-2017 by 1.8 kWh/m2 GHI and -1.4 
kWh/m2 GHI only. This suggests that shorter 
term time series may be as good as TMYs. 

To assess how well the hourly distribution of 
TMYs matches that of SB 2008-2017, 
irradiation frequency distribution charts were 
constructed (Fig.3).  

 

Figure 3: % of Year in irradiation bins (0-1000 
Wh/m2) for each of 4 TMYs compared to long-
term time series 

It may be seen that SimpleTMY closely follows 
the distribution of SB 2008-2017. TenYrHrAvg 
displays an unrealistic clustered distribution, 
with too few high and low values, and too many 
mid-range values. This is characteristic over-
smoothing resulting from the basic averaging 
employed by this dataset. Meteonorm slightly 
underestimates zeroes and creates too many 
1-100 Wh/m2 values of GHI. (From other 
graphs, not included here, it also 
underestimates over 600 Wh/m2). To a much 
greater extent, PVGIS-TMY overestimates zero 
values and underestimates in the 100 GHI 



Wh/m2 bin. (It also overestimates over 800 
Wh/m2). In the UK, a substantial proportion of 
of solar energy is produced under conditions 
of low irradiation [8], so large inaccuracies in 
simulating these values can impact largely on 
yield estimates. 

In distribution (although not in quantity), the 
GHI values calculated by Meteonorm 
somewhat resemble those of a wet year like 
2012. By contrast, PVGIS-TMY mimics a hot 
year like 2018. For both, the resemblance is 
greater in higher irradiation bins. Thus, these 
so-called typical years are not really typical. 
This problem may also be found in the 
seemingly well performing SimpleTMY. The 
process underlying this dataset has selected 
December 2010 values for the TMY. This was 
the coldest December for 100 years. Probably 
the average irradiation resulted from lack of 
pyranometer readings due to snow cover 
being compensated by snow reflectance, 
rather than being a true average.     

Finally, daily performance of the TMYs was 
examined by looking at daily system output 
from PVSyst. All TMYs were discovered to 
have a unique pattern of daily grid injection. 
None of the patterns coincided with that of any 
actual year. 

 

Figure 4: Daily output for a sample system 
calculated from Meteonorm and PVGIS-TMY 

Discussion Taking an overview of the 

statistical measures used here, SimpleTMY 
delivers results closest to the long-term time 
series, followed by Meteonorm. Both employ 
quality ground measurements. Including extra 
parameters to GHI e.g. temperature can avoid 
the selection of atypical months, but these 
must be weighted specifically for PV. (PVGIS-
TMY functions poorly for solar, due to being 
developed for building energy performance.) 

Some TMYs function much better than others. 
Quality data inputs are as important for 
realistic results as the TMY model and the 
individual effect of each is difficult to separate. 
The more effective TMYs only can deliver 

project lifetime and annual sums of GHI. These 
TMYs may also provide average monthly sum, 
average seasonal sum, average daily sum and 
average hourly sum. These more accurate 
TMYs can also provide specific monthly sums 
e.g. January, June etc (Fig. 1.) and therefore 
seasonal figures. However, no TMY is suitable 
for daily and hourly analyses (Figs 3 and 4), 
nor is variability is covered. 

Conclusion TMYs are actually not that 

typical of the weather phenomena they 
represent. They may produce the “correct” 
annual total of GHI, but not accurately 
distributed over 8760 hours or 365 days. There 
is room for improvement in their development. 
A shorter term time series, e.g. 5 years, or 
even a single non-extreme year (e.g. 2013, in 
this case) of high quality ground 
measurements can produce more practical 
results than a TMY. 
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