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In-Plane and Out-of-Plane
Elastodynamics of Thin
Rings and Seals

Thin curved rings used mostly as seals, including in internal combustion engines undergo
complex elastodynamic behavior when subjected to a combination of normal radial load-
ing and tangential shear with friction. In turn, their complex modal behavior often results
in loss of sealing, increased friction, and power loss. This paper presents a new finite dif-
ference approach to determine the response of thin incomplete circular rings. Two inter-
changeable approaches are presented; one embedding mass and stiffness components in
a unified frequency-dependent matrix, and the other making use of equivalent mass and
stiffness matrices for the ring structure. The versatility of the developed finite difference
Sformulation can also allow for efficient modification to account for multiple dynamically
changing ring support locations around its structure. Very good agreement is observed
between the numerical predictions and experimental measurements, particularly with
new precision noncontact measurements using laser Doppler vibrometry. The influence
of geometric parameters on the frequency response of a high performance motorsport
engine’s piston compression ring demonstrates the degree of importance of various
geometrical parameters on ring dynamic response. [DOI: 10.1115/1.4043526]

Keywords: thin circular ring, seal, elastodynamics, in-plane responses, out-of-plane

responses, piston compression ring

1 Introduction

Elastodynamics of thin rings plays an important role in the
functional performance of many machines, where they are mostly
used for the primary purpose of sealing. For example, thin incom-
plete circular rings are used as compression rings for sealing the
combustion chamber in internal combustion engines. The inten-
tion is to guard against the escape of combustion gasses to the
bottom-end of the engine. However, effective sealing results in
increased friction, while the loss of sealing leads to thermody-
namic power loss and lubricant contamination. The compression
rings are subjected to a plethora of forces such as contact forces
with the cylinder bore surface and with their retaining piston
groove lands. There are also applied forces due to radial ring ten-
sion, the varying gas force pushing the ring onto the cylinder sur-
face, and friction with the cylinder bore surface. Therefore, in
practice the elastodynamic behavior of the compression ring is
quite complex and affects its ideal function.

Studying the ring’s complex in-plane radial and out-of-plane
transversal/axial motions is very important for design analysis
purposes. The ring’s elastodynamics affects friction, thus the
engine’s fuel efficiency as well as sealing, hence the engine emis-
sions. A disproportionate 5% of the total engine losses can be
attributed to the piston compression ring [1], especially when con-
sidering its small size. The thinness of the ring constitutes high
modal density, exciting a plethora of responses during the engine
cycle, resulting in a number of undesired phenomena such as ring
flutter, ring jump, twist, and rotation [2-9], as well as promoting
blow-by [10].

A prerequisite for accurate determination of power losses asso-
ciated with the piston ring system is an understanding of the ring’s
complex dynamic response. A number of parameters are impor-
tant, including ring geometry and topography [11,12], ring tension
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and gas pressure loading [13,14], bore shape and its out-of-
roundness [15], and contact kinematics. The dynamic behavior of
the ring determines important parameters within a tribological
study such as applied loading, contact geometry, and kinematics.
In turn, a tribological study of the conjunction provides important
input for a ring dynamic analysis [4-6,16] such as the generated
contact pressures, load carrying capacity, and friction. Further-
more, the ring’s dynamic behavior determines important parame-
ters within a gas flow analysis through the ring pack in an IC
engine [2,3,7,8]. This is utilized for the prediction of the phenom-
ena underlying gas blow-by, loss of sealing and power loss, as
well as lubricant degradation. Hence, a multiscale, multiphysics
study is required, including combined elastodynamics, gas flow,
and tribological predictions.

Ejakov et al. [2] demonstrated the effect of ring twist on ring
pack performance, noting that the nature of ring twist requires a
three-dimensional analysis of the problem. Tian et al. [17] showed
that static twist had an impact on ring-groove contact characteris-
tics, dynamic stability, and blow-by. Tian [4] considered a
combined ring twist and gas flow model, demonstrating the
importance of ring flutter on gas flow and oil transport. However,
the transient nature of ring dynamics was not taken into account.
Tian [4] noted that the dynamics of the ring significantly affects
two important considerations for lubrication on the top two com-
pression rings; oil availability and gas pressure loading. In a two
part study Liu et al. [8,9] presented a curved beam finite element
method, coupled with a gas dynamic and tribology models to
investigate piston ring-pack performance. The importance of the
effect of higher combustion pressures, typical of emerging tech-
nologies such as cylinder de-activation on friction was demon-
strated by Bewsher et al. [18]. However, the effect of gas flow and
ring dynamics was not considered in the analysis. Baelden and
Tian [19] used the finite element approach for a curved beam to
model the compression ring, noting that ring dynamics is an
important consideration in any ring-bore conformability analysis
such as that undertaken by Mishra et al. [20], who did not consider
the dynamics of the ring in their purely localized quasi-static anal-
ysis. Consequently, the predicted friction in Ref. [20] showed
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some deviation from measurements of friction by Furuhama and
Sasaki [21], which in part may be due to the omission of the tran-
sient nature of ring dynamic response. Through successive
improvements in their formulation of a ring elastodynamic model,
Baker et al. [5-7] were able to show progressive improvements in
their numerical predictions against the experimentally obtained
measurements by Takiguchi et al. [22]. The fundamental applic-
ability of the well-developed differential equations of motion for
thin piston compression rings was demonstrated by Baker et al.
[5-7,10]. However, the limitations in the forced response of
their dynamic model significantly influenced the consideration of
applied forces. For example, in practice, radial forces can
adversely influence the transverse ring twist. Conversely, the twist
of the ring influences the in situ profile in contact with the liner;
thus affecting the radial forces as well as friction, providing a pos-
sible insight into the mechanisms of observed asymmetric wear of
the ring profile. The development of a ring model that would
allow evaluation of localized forces between the ring and the liner
at a number of points around the ring without resorting to numeri-
cally intensive approaches such as finite element analysis (FEA)
is desirable and would be an important extension to the methodol-
ogy demonstrated in Refs. [5-7] and [10]. This is also the case
when considering the applied gas loading and the interaction of
the ring with the upper and lower piston retaining lands.

Other essentially thin rings of circular geometry are used in
internal combustion engines as oil control rings or in the form of
complete circular rings as seals in a host of powertrain or turbo-
machinery subsystems. Due to the completeness of circumferen-
tial geometry the elastodynamic response of these seals deviates
from that of the compression rings, but are often subjected to the
same plethora of applied forces such as contact loads, lubricant
reactions, and friction. Therefore, the study of flexible rings and
seals has been of the same importance as those of the compression
ring for a long time. Due to long computation times, an ideal
closed form analytical solution is preferable, but in practice vari-
ous approaches have been reported throughout the years.

Earlier analyses include that of Lamb [23] who considered
small curved beams, solving an equation for free—free in-plane
flexure of a uniform curved bar. Mayer [24] investigated the elas-
ticity and stability of open and closed arcs. Den Hartog [25]
extended the work of Lamb [23] to obtain values for the first and
second in-plane frequencies of incomplete rings with clamped and
hinged boundary conditions. Brown [26] utilized a modification
of the Rayleigh’s method to determine approximate solutions for
out-of-plane vibrations of curved beams and rings. He noted that
although an acceptable level of conformance with measurements
had been achieved, further investigations were required. Love
[27] used the work of Mayer [24] to derive an equation for the
natural frequencies of an incomplete circular ring of thin cross
section. Archer [28] considered the in-plane forces acting upon an
incomplete ring with small cross section in his study of in-plane,
in-extensible vibrations for the clamped—clamped boundary con-
ditions. Volterra and Morell [29] determined the lowest in-plane
and out-of-plane natural frequencies of elastic arc and elastic
hinged arcs. Lang [30,31] further investigated the in-plane ring
frequency response, neglecting shear deformation, and rotary iner-
tia. He considered a number of different boundary conditions,
extending the investigation of clamped—clamped boundary condi-
tion of Archer [28]. Lang [30] noted the difficulty of implement-
ing a ring with multiple supports around its circumference. In
particular this would require the modal functions for each ring
span between the supports to be defined along with the boundary
conditions. Modification of the formulation in this manner is very
time consuming and mathematically tedious, limiting the analysis
of a combined tribodynamic system. The applicability of Lang’s
[30] ring model for thin rings and seals was demonstrated by
Baker et al. [5-7] to ascertain the influence of ring dynamics on
internal combustion engine performance. During the engine cycle,
the ring’s motion is supported dynamically due to a number of
physical constraints dictated by the liner and the piston’s upper
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and lower ring-retaining lands. The developed current methodol-
ogy is an approach which would allow the implementation of
these dynamically changing boundary conditions into a system
level analysis. Furthermore, with the advances in modern compu-
tational routines for dynamics problems, the mass and stiffness
form of the equations is more convenient for solution of natural
frequencies and mode shapes than the analytical frequency
expressions obtained and solved by Lang [30,31] and Baker et al.
[5-T7].

Ojalvo [32] utilized a similar method to Morley [33] to analyze
the coupled out-of-plane twist and bending vibrations of incom-
plete rings with clamped—clamped boundary conditions. Rao [34]
demonstrated the effect of transverse shear and rotary inertia on
the out-of-plane motions of rings. Endo [35] experimentally vali-
dated the frequency analysis of complete rings with arbitrary cross
section. Hawkings [36] modeled complex complete ring geome-
tries as a series of cross-sectional slices. Yang and Kuo [37]
demonstrated the inconsistencies that can occur when a curved
beam is represented by several straight beam elements. Further-
more, these inconsistencies have been observed for the piston ring
application [38]. Bhimaraddi [39] presented a generalized analysis
for laminated rings and curved beams coupling the in-plane and
out-of-plane motions. Chidamparam and Leissa [40] conducted a
review of the literature into curved beams, rings, and arches deriv-
ing equations, including the general case comprising shear correc-
tion factors based on the Timoshenko beam theory. Kang et al.
[41] utilized the differential quadratic method to investigate the
fundamental frequency of in-plane and out-of-plane vibrations,
observing good agreement with Ojalvo [32]. Kijun [42] expanded
the work of Kang et al. [41] to investigate vibrations of thin-
walled curved beams. Challamel et al. [43] investigated the
out-of-plane motions of circular arches under different loading
conditions. Yang et al. [44] considered curved beams with various
curvature forms, such as parabolic, sinusoidal, and elliptical.
Shahba et al. [45] also investigated a number of varying curvature
rings such as elliptic arches, using an finite element method with
new shape functions. The variable curvature approach has been
expanded to investigate curved rings made of composite materials
[46].

With respect to the specific case of piston compression rings
the above historical approaches were initiated for the ring’s rigid
body dynamic behavior by Tian et al. [17] and the effect of ring
dynamics on tribological performance and gas flow dynamics by
Dowson et al. [47]. The elastodynamic behavior was first modeled
by Ejakov [2] using an FEA model. This was subsequently
expanded by Baker et al. [5-7] through an analytical formulation
as already noted above, culminating in a complex 3D analysis [7].
Most modern solutions make use of simplified analytical solutions
for continuous systems or discretised finite element approaches
for thin incomplete circular rings of equivalent rectangular cross
section.

A finite difference approach, accounting for material damping,
dynamically changing support locations as well as enabling com-
plex application of forces from a combined physics model is
essential for the analysis of most modern compression rings. Fur-
thermore, a validated solution against precisely measured ring
elastodynamic response is long overdue. Turnbull et al. [48]
showed reasonable agreement between numerical predictions of
the dynamic response of coupled straight beam elements with
experimental frequency sweeps for a ring with a trapezoidal cross
section. This work needs to be extended with further comparative
studies, particularly for curved incomplete circular rings with rec-
tangular cross section which are often used as piston rings in auto-
motive engines. Thus, the equations of motion are considered to
be decoupled, because the plane containing the centreline of the
ring axis is the plane of symmetry [40]. These are the main contri-
butions of this paper, providing generic predictions, validated by
the state of the art experimental measurements, including the solu-
tion demonstrated in mass and stiffness form. The advantage of
the developed mass-stiffness formulation here is that it is generic
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in nature and can potentially be applied to both coupled and
uncoupled ring in-plane and out-of-plane dynamics.

2 Problem Formulation

2.1 Ring In-Plane Dynamics. Figure 1 shows a thin ring,
with the definitions of all terms used in the methodology
expounded here, as well as the employed co-ordinate system and
the in-plane applied forces and moments acting on a ring element.

The following assumptions are made in the derivation of the
in-plane motions of a circular ring or a ring segment:

e Rotary inertia and shear deformation are neglected.

e The ring cross section remains constant (unaltered).

e The undeformed ring or ring segment centreline follows
either a full circle or a circular arc.

e There are no boundary conditions applied to the ring
segment.

Therefore, using Fig. 1, the in-plane equations of motion for a
ring segment are obtained as [30]

El [(&w 8414) EA( GW)_ &u
*F<W+w +ﬁ *M‘i’% —pAﬁff (1)

EA ( du 82w) El (32w 8314) " Pw )

R\ a0 a02) TR \oi o) ~ P oe @
where p and E are the density and Young’s modulus of elasticity
of the ring material, /; is the second area moment of inertia of the
ring cross section with respect to the u axis, A is the cross-
sectional area, R is the ring radius, 0 is the circumferential angular
position along the ring, ¢ is time, f is the radially applied in-plane
force, p is the tangentially applied in-plane force, u is the radial
in-plane deflection, and w is the circumferential in-plane
deflection.

As explained in detail by Lang [30], the coupled in-plane
Egs. (1) and (2) can be rewritten in operator notation. Therefore,
either of these equations can be expanded, resulting in a differen-
tial equation in terms of displacements u or w as follows:

\

M,

F+dF

P +dpP
M, + dM,
Fig. 1 Definition of a ring in-plane co-ordinate system and
geometry

Journal of Computational and Nonlinear Dynamics

>y
a0°

LY, Py pAR412(aZ¢

W W £ o2 W*l//)where Y=uorw

3)
Assuming a harmonic solution with a response frequency, , then
W(0,1) = P(0)e™ 4)

Therefore, in modal coordinates the in-plane equation becomes
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The in-plane dynamic equations can be modified using the Timo-
shenko beam theory [49,50].

2.2 Ring Out-of-Plane Dynamics. Figure 2 shows a thin ring
with the definition of all terms used in the methodology
expounded here, as well as the employed co-ordinate system and
the out-of-plane forces and moments acting on a ring element/
segment.

Based on Fig. 2, and following the assumptions outlined for
the in-plane dynamics above, the coupled governing differential
equations for the out-of-plane dynamics of a ring including rotary
inertia becomes [49]

_Ebdv GIv GIPQ ELOQ v o
R 00" Ro® R o R o7 Mar 1
GJ v GIdo*Q ElL El, &%y 0*Q
For "o m TR Moe 7

where p and E are the density and Young’s modulus of elasticity
of the ring material, /; is the second area moment of inertia of the
cross section with respect to the v axis, A is the cross-sectional
area, R is the ring radius, 6 is the circumferential angular position
along the ring, ¢ is the time, ¢ is the transversally applied out-of-
plane force, my is the applied out-of-plane torque, v is the trans-
verse out-of-plane deflection, and Q is the out-of-plane twist
deflection.

Neglecting the effect of rotary inertia, Egs. (6) and (7) become
[49]

EL O GJ&*v GJO*Q EL§*Q v
S S T AT —q (8

R4 804 R4 802 R3 802 R3 002 or2
GJo*v GJO*Q EL . ELOv ©

R3 862 R2 802 R2 R3 062 = Mo

M, + dM,

Fig. 2 Definition of a ring out-of-plane co-ordinate system
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The coupled out-of-plane differential Eqs. (8) and (9) can be writ-
ten in operator notation, resulting in differential equations in terms
of displacement v as [49]

il
a0

i
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PAR* Oty PAR* 0%y B
a0°

EL, 90202 GJ 20 U0

The twist Q is related to the transverse deflection v as [49]
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Assuming a harmonic solution with the response frequency, o,
then

v(0,1) = V()™ (12)

And in modal coordinates, the out-of-plane equation becomes

%
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The out-of-plane dynamics equations can be modified using the
Timoshenko beam theory [34].

3 Method of Solution

The modal Eqgs. (5) and (13) for in-plane and out-of-plane
motions, as well as the coupled Egs. (1) and (2) for in-plane
motions and Eqs. (6) and (7) for out-of-plane motions are discre-
tized using a central finite difference method (FDM). A mesh
independency study was undertaken to ensure the validity of the
results. The mathematical descriptions of the clamped and free
boundary conditions at the incomplete ring-ends, as described in
Refs. [30-32] and [34], are implemented in the modal equations at
the boundary. This allows mesh points which are outside the
boundary to be mathematically represented by the points within
the boundary of the incomplete ring.

Discretizing Eqgs. (5) and (13), using finite difference method,
yields a frequency-dependent matrix containing both mass and
stiffness contributions for the in-plane and out-of-plane vibrations,
respectively. Formulation of the frequency-dependent coefficient
matrix for modal equations is provided in the Appendices A
and B for both the in-plane and out-of-plane dynamics, respec-
tively. The solution for the natural modal frequencies, w, of the
system are found, when the determinant of the eigenmatrix
vanishes.

For in-plane vibrations

det(A) =0 (14)
and for out-of-plane vibrations
det(B) =0 (15)

The modal displacements associated with each individual value of
w, are found by substituting each calculated value of w, back into
the relevant matrix: A or B.

The equations of motion (1) and (2) for the in-plane motions
and (6) and (7) for the out-of-plane motions, discretized using
FDM, can be rearranged and combined in order to obtain the
equivalent mass (M) and the stiffness (K) matrices. Therefore, it
is possible to combine the equations for in-plane and out-of-plane
motions and represent them in a conventional mass matrix form,
where

16)

0
M,,
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and

K, = {K"” 0 } (17

0 K,

The mass and stiffness formulation can then be easily solved for
the natural frequencies of the system, where M and K represent
the corresponding characteristic mass and stiffness matrices of the
structure, thus

K —M/,| =0 (18)

where
I = @ 19)

The resultant mode shapes of the system are found through solu-
tion of

(K —M/,){x,} =0 (20)
where the term w, is the nth natural frequency of vibrations of
the system, and X, is its associated modal displacement vector.
Formulations of the mass and stiffness matrices are given in
Appendices C and D for the in-plane and the out-of-plane dynam-
ics, respectively.

4 Experimental Investigation

Experimentally measured responses of a piston compression
ring of a modern high performance race engine are carried out. A
ring of rectangular cross section is chosen for the current investi-
gation as it allows the in-plane and out-of-plane deformations to
be decoupled as there is no common degree-of-freedom between
the in-plane and out-of-plane motions [7,30,32,49]. The ring spec-
ifications are listed in Table 1 and Fig. 3.

The experimental rig comprises a clamped-free incomplete cir-
cular piston compression ring of rectangular cross section, rigidly
clamped at one extremity of its end-gap to a vibration exciter, and
with the other opposing end-gap remaining unconstrained to
vibrate freely. Previous experiments [30,31] have relied on the
use of miniature accelerometers positioned on the ring. These
physically add mass to the thin low mass vibrating structure, thus
affecting its modal responses. Laser Doppler vibrometers (LDV)
are ideally suited for noncontact measurement of such vibrating

Table 1 Experimental ring specifications

Ring material

Modulus of elasticity 210 GPa
Density 7850 kg/m?
Poisson’s ratio 0.3 -
Ring dimensions
Inner radius, Ry 43 mm
Axial height, A 1.15 mm
Radial width, wg 3.5 mm
Ring free end gap, e 6 mm
Wo
2 —
E—>

T

Fig.3 Schematic of ring cross section
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LDV 2

LDV 1

Exciter
shaker

Fig. 4 The experimental setup

Table 2 Instrumentation
Measurement  Amplifier setup
Apparatus sensitivity sensitivity
Excitation laser (LDV 1) (OFV-400) 14 mm/s/V 14 mm/s/V
Piston ring response laser (LDV 2) 200 mm/s/V 200 mm/s/V
(RLV-5500)
Excitation laser (LDV 3) (OFV-400) 14 mm/s/V 14 mm/s/V

Table 3 Complete ring specifications

Ring material

Modulus of elasticity 210 GPa
Density 7850 kg/m?
Poisson’s ratio 0.3 -
Ring dimensions

Inner radius 43 mm
Axial height 1.15 mm
Radial width 35 mm

structures. They are used in the current experimental setup
(Fig. 4). The LDVs monitor a Doppler shift in the frequency of
light scattered by the moving object [51].

The LDV 1 (model: OFV-400) and LDV 3 (model: OFV-400)
are positioned in order to measure the applied excitation by the
shaker at the rigidly clamped ring’s end-gap interface. The LDV 2
(model: RLV-5500) is positioned to measure the ring response at
its free end-gap. A frequency sweep excitation in the range
10-500 Hz is carried out over a period of 10s. The Nyquist crite-
rion dictates a sampling rate at least twice that of the highest
expected response frequency. Therefore, a conservative sampling
rate of 8000Hz is used. Table 2 details the instrumentation

utilized in the experiment. Further details on the experimental
approach can be found in Ref. [48].

5 Results and Discussion

5.1 Validation of Methodology. To validate the expounded
numerical method, the equations of motion (1) and (2) for in-
plane motions and (6) and (7) for out of plane motions are initially
solved for the simple case of a closed complete circular ring. This
problem has a closed form analytical solution for its frequency
response. Frequency analysis is completed on the mass and stift-
ness equations for a complete ring detailed in Table 3, of similar
structure to the incomplete ring (detailed in Table 1) without the
ring free end gap and compared with the analytical frequency
expressions, reported in Ref. [49].

For in-plane vibrations, the natural frequencies are given by

6 _ 0y 42
ol — ElL n® —2n"+n @1
" pAR* n?+1

In addition, for out-of-plane vibrations the natural frequencies are

, EL n®—2n*+4n?

_ 22
“n = AR 12 1 ELJGJ @2)

where

w, = 27f, (23)
As shown in Table 4, the absolute percentage error between the
current numerical solution and the closed form analytical solution
in Ref. [49] never exceed 0.32% for the first 11 response modes.
This approach imparts a good degree of confidence with regard to
the expounded numerical methodology.

The predicted mode shapes associated with the first three in-
plane and out-of-plane natural frequencies in Table 4 for a com-
plete ring (with specifications given in Table 3) are presented in
Fig. 5.

The next step in the validation process involves comparison of
in-plane modal predictions with experimental measurements
reported by Lang [30,31] for in-plane flexural vibrations of a flexi-
ble ring, point-clamped rigidly to a vibration exciter. The shaker
excitation was measured by attaching a piezoelectric accelerome-
ter to the armature of the shaker and the response of the ring was
recorded by attaching a piezoelectric accelerometer to the circum-
ference of the ring in order to measure its radial acceleration
[30,31]. Here, the clamped boundary condition is applied to both
the incomplete ring’s end-gap extremities. Table 5 lists the speci-
fications for the ring used in Refs. [30] and [31].

Table 6 provides comparisons between the experimental results
of Lang [30,31] and the predictions of the current model. The
maximum percentage difference is recorded at 1%, demonstrating
excellent conformance of the predictions with the measurements

Table 4 Comparison between the current predictions and the closed form solution

Mode Analytical [44] (Hz) Current analysis (Hz) Plane of vibration Error (%)
1 430.0 428.6 Out-of-plane —0.32
2 1166.1 1162.9 Out-of-plane —0.28
3 1207.0 1207.5 In-plane 0.04
4 2199.6 2193.7 Out-of-plane —0.27
5 3413.9 3407.0 In-plane —0.20
6 3529.3 3519.9 Out-of-plane —0.26
7 5154.8 5141.1 Out-of-plane —0.27
8 6545.8 6528.9 In-plane —0.26
9 7076.0 7057.0 Out-of-plane -0.27
10 9292.8 9267.5 Out-of-plane —0.27
11 10586.0 10556.0 In-plane —0.28

Journal of Computational and Nonlinear Dynamics
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(@)

Numerical prediction of Mode 1 = = Original Ring

(b)

Numerical prediction of Mode 1 = = Original Ring

(c)

Numerical prediction of Mode 1 = = Original Ring

Numerical prediction
of mode 2

Original Ring

Numerical prediction
of Mode 4

Original Ring

Numerical prediction
of Mode 6

Original Ring

Fig. 5 Predicted in-plane mode shapes: (a) 1207.5Hz, (b) 3407.0Hz, and (c) 6528.9 Hz and predicted out-of-plane

mode shapes (d) 428.6 Hz, (e) 1162.9 Hz, and (f) 2193.7 Hz

Table 5 Complete ring specification used by Lang [30,31]

Ring material

Modulus of elasticity 210 GPa
Density 7850 kg/m?
Poisson’s ratio 0.3 -
Ring dimensions

Inner radius 254 mm
Height 25.4 mm
Width 6.35 mm

in Refs. [30] and [31]. This imparts further confidence on the
developed methodology for the solution of the modal equations,
including for the clamped boundary conditions applied to both the
ring’s end-gap extremities.

In addition, the corresponding mode shapes, associated with the
modal frequencies outlined in Table 6, are provided in Fig. 6.
Good agreement is achieved between the predicted numerical
mode shapes and the experimental measurements obtained by
Lang [30,31].

5.2 Combined Experimental and Numerical Investigation
of High Performance Piston Compression Ring Elasto-
dynamics. The experimental measurements for an ultra-thin mod-
ern compression ring of a high performance motorsport race
engine (Table 7) are presented, alongside the predicted numerical
frequencies for the first nine natural modes. The clamped boundary

Table 6 Comparison of current predictions with the experimental measurements of Lang [30,31]

Mode number Experimental measurements [28,29] (Hz)

Current predictions (Hz) Percentage error (%)

1 40
2 140
3 296

39.6 1
141.3 —0.93
296.7 —0.24

081006-6 / Vol. 14, AUGUST 2019
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Fig. 6 Comparison of the predicted and
(b) 140 Hz, and (c) 296 Hz

Table 7 Comparison of the in-plane and out-of-plane modes
between predictions and measurements for the thin compres-
sion ring

Experiment (Hz) Numerical (Hz) Plane of motion Error (%)
129.8 125 Out-of-plane -3.70
250.9 262 In-plane 4.42
294.4 289 Out-of-plane —1.83
562.7 588 Out-of-plane 4.50
761.3 738 In-plane —3.06
914.7 944 Out-of-plane 3.20
1361.1 1402 Out-of-plane 3.00
1642.5 1560 In-plane —5.02
2028.2 1915 Out-of-plane —5.58

Journal of Computational and Nonlinear Dynamics

measured mode shapes for: (a) 40Hz,

condition is applied to one of the incomplete ring’s end-gap
extremities with the free boundary condition applied to the other
free end. Table 1 and Fig. 4 (Sec. 4) represent the studied case.

Important geometrical design attributes for the piston compres-

sion ring are its radius (Ry), radial width (wy), axial height (/),
and ring free end gap (eg). These geometric properties can have a
significant impact on the piston compression ring’s frequency
response. Figure 7 demonstrates the importantance of these
geometric properties on the piston compresion ring, where the
original parameters are Ry, wo, ho, and ey given in Table 1. The
nondimensional parameter (d,) represents the ratio of altered ring
parameter to its original value. The nondimensional frequency
ratio (f.) is
- _f

== 24
f % (24)

where fj is the original frequency of the structure.
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Fig. 7 Nondimensional design analysis: the effect of geometric properties on: (a) in-plane and

(b) out-of-plane frequency responses

Figure 7 demonstrates how the structural vibrations of thin
rings and seals can be affected by the geometric properties. Alter-
ations to fundamental frequency response of the structure can be
important in certain applications whereby the ring’s resonance fre-
quency coincides with other operational frequencies, compromis-
ing some ideal function. As it can be seen from Fig. 7, ring radius
is the most significant geometric property in the frequency
response of the piston compression ring, compared with other geo-
metrical parameters in terms of impacting the frequency response.
Any change in the ring width ratio also causes significant changes
in the ring in-plane frequency response. However, this parameter
has less of an effect in the case of out-of-plane frequency
response. In the case of out-of-plane dynamics, the height ratio
appears to be more significant than the width ratio. The ring end-
gap has minimal effect on both the in-plane and out-of-plane fre-
quency responses. Furthermore, with regard to the cross-sectional
parameters, the in-plane frequency response is affected by the ring
width, while the ring height shows no significant effect. However,
the out-of-plane frequency response is fundamentally governed by

081006-8 / Vol. 14, AUGUST 2019

both the ring thickness and the ring height. Therefore, it is impor-
tant to consider both the in-plane and out-of-plane problems
together for a number of engineering applications such as the pis-
ton compression ring. It is also important to note that the theory
demonstrated does not include rotary inertia which can be influen-
tial in the solution of thick ring geometries.

6 Conclusions

Accurate determination of complex elastodynamics of rings
and seals is a prerequisite for the prediction of sealing perform-
ance, comprising leakage, pressure loss, and frictional assessment.
The power losses associated with such seals is best demonstrated
by the piston compression ring of internal combustion engines.
The methodology expounded in this paper has demonstrated
applicability for prediction of complex elastodynamic behavior
which has been subjected to vigorous validation against closed
form solutions of simpler conditions, as well as some measure-
ments reported in the literature. The study is extended to the case
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of a thin light compression ring of a high performance race engine
using noncontact laser vibrometry and the expounded numerical
method. Very good agreement is obtained for the predictions in
all cases. The formulation provides a numerically efficient method
to include the effect of supports at dynamically changing locations
around the ring structure as well as allowing material damping to
be included within the analysis. The mass and stiffness formula-
tion is convenient for implementation within a multiphysics envi-
ronment without investing in numerically intensive approaches
such as FEA. The model developed here allows realistic loads to
be considered that should provide insight into the fundamental
mechanisms of ring flutter, ring jump, twist, and rotation. The
influence of geometric properties on the in-plane and out-of-plane
frequency response of an ultra-thin modern compression ring of a
high performance motorsport race engine is demonstrated. Fur-
thermore, the importance of considering in-plane and out-of-plane
vibrations together is highlighted in order to avoid any undesired
functional performance. The influence of ring dynamics on engine
parasitic losses and emissions is a well-known phenomenon and
the current analysis, when combined with ring tribology and gas
blow-by analysis, would provide a cost-effective tool for paramet-
ric and optimization study of engine component design to achieve
maximum sealing ability, while mitigating frictional parasitic
losses. From a dynamics perspective the design parameters can be
the ring and piston ring-retaining groove geometrical and material
properties.
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Nomenclature

A = cross-sectional area, m>
A, B = matrices of coefficients
d, = geometric ratio
E = Young’s modulus of elasticity, N-m >
f = radially applied force per unit length, N-m ™"
F = shear force, N
f, = frequency of vibration, s~
[« = frequency ratio
shear modulus, N-m™
I, = second area moment of inertia about the u-axis, m*
I, = second area moment of inertia about the v-axis, m*
IP, — IP, = elements of coefficient matrix for in-plane ring
dynamics
J, = polar area moment of inertia, m*
K = stiffness matrix, N-m™!
M = mass matrix, kg
mo = applied torque per unit length, N
M, = torsional moment about the tangential axis, N-m
M, = in-plane bending moment, N-m
M, = bending moment about the radial axis, N-m
OP, — OP, = elements of coefficient matrix for out-of-plane ring
dynamics
p = tangential applied force per unit length, N-m ™"
P = tensile force, N
g = Transversally applied force per unit length, N-m ™"
Q = transverse shear force, N
R = ring radius, m

2

Q
Il
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t = time, s

u = radial in-plane deflection, m

v = transverse out-of-plane deflection, m
v, = Poisson’s ratio

w = circumferential in-plane deflection, m

Greek Symbols
Ax = discretized interval in the circumferential direction,
rad

0 = circumferential angular position along the ring
periphery, rad
¢, &y, & = system frequency parameters
p = material density, kgm >
Y, = Intermediate parameters
o = angular radiancy, rad s~
Q = out-of-plane twist, rad

Subscripts
g = combined
ip = in-plane
op = out-of-plane

Abbreviations

FDM = finite difference method
FEA = finite element analysis

Appendix A: In-Plane Modal Equation for Each Single
Mesh Point
Discretization of Eq. (5) results in a frequency-dependent

matrix of coefficients, embodying both the mass and stiffness
terms. Hence, the in-plane behavior for point i becomes

Y 3
Vi,
lI}i—l
(1P, 1P, IP. IP, IP, IP; IP|| ¥ | =0 (Al
Wi
Yip2
| Wi |
where
IP, =1P, = 1 (A2)
P, = IP; = —6 + 2Ax° (A3)
IP, = IP, = 15 — 8Ax* + (1 — &)Ax* (A4)
IP; = —20 4 12Ax% — 2(1 — &)Ax* + EAX° (A5)
and
PpAR*w?
- A6
& B, (A6)
Hence, matrix A
A=[IP, IP, IP. IP, IP, IP; IP,] (A7)
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Appendix B: Out-of-Plane Modal Equation for Each
Single Mesh Point

Discretisation of Eq. (13) yields a frequency-dependent matrix,
embedding both the mass and stiffness terms. Hence, the out-of-

plane behavior for a point i becomes

PAR*o?
= B7
& T (B7)
Hence, matrix B
B=[OP, OP, OP. OP;, OP, OP; OP,] (B8)

Vis
Vl—2 . . . .
= Appendix C: In-Plane Dynamics Formulation in Mass
[OP, OP, OP, OP, OP, OP; OP,]| V; ~0 and Stiffness Matrix Form
Vi Discretization of Egs. (1) and (2) provides the mass and stiff-
V. ness terms for the in-plane elastodynamic behavior.
i+2 The in-plane inertial forces for point 7, take the form
| Viss |
(B1) M, 0 ][i
0 M, ||w €D
where
OP, =OP, = 1 (B2) Hence, the mass matrix M,
OP;, = OP; = —6 + 2Ax? (B3) M, 0
My =" (€2)
OP, = OP, = 15 — 8Ax* + (1 — &) Ax* (B4)
where, the elements of the mass matrix are
OP; = =20 + 12A¢* — 2(1 — &)A* + EAC (BS)
M, = pAR (C3)
and
M,, = pAR (&)
.,  PAR? (B6)
= El, Thus, the in-plane elastic force for point 7, takes the form
CiaT
Wi-2
Ui—1
Wi-1
Kuu—Z Kuw—2 Kuu—l Kuw—l Kuu Kuw Kuu-H Kuw+1 Kuu+2 Kuw'+2 uj (CS)
KWLhZ KWW*Z Kwufl wafl Kwu wa Kwu+l wa+1 Kwu+2 wa+2 Wi
Uit
Wit1
Ujt2
L Wit2 |
Hence, the stiffness matrix K;, becomes
K. = Kuy-—2 K2 Ky Ko-1 Ky K Kllu+1 Kuw-H Kuu+2 Kuw-%—Z (C6)
. KwufZ wa72 Kwufl wa,] Kwu wa Kwu+1 wa+1 Kwu+2 wa+2
6 EI, EA
i Ky=———F—>—— Cl11
where the stiffness constants are ACR R (C11)
1 EI
KMM,2 - — ER—; (C7) KMW - 0 (Clz)
4 EI
1 EL 1 EA K =—— (C13)
Ky =—s—m——— C8 uu+1 3
"2 TOAG R 2Ax R €8 AR
1 El 1 EA
4 EI Kpi] =——o+—— (C14)
szf = A 4 n3 C9 uw+1 3 pR3
= AA R (€9 AP R 2Ax R
1 El 1 EL
K =% (C10) K2 =~ 3o >
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1 EI Ko =0 (C26)
Kz = =53 503 (C16)
Kys = ——ED C17
wi=2 = T AOAG RS (€17 Appendix D: Out-of-Plane Dynamics Formulation in
Mass and Stiffness Matrix Form
Kiw—2=0 (C18) Discretization of Egs. (6) and (7) provides the mass and stiff-
| EI 1 EA ness terms for out-of-plane dynamic behavior.
Kyu—1 = FR_; + AR (C19) The out-of-plane inertial forces for point 7, takes the form
M, O Vi
1 EI 1 EA v 2 D1
Ko = 3o s " Ra R (€20) 5 wl(a) oY
Ky =0 (C21) Hence, the mass matrix M,
2 EL 2 EA M, O
Ko ="30® "acr 22 Moy = [ 0 MQ} D2)
K1 = — ﬁ% — i% (C23)  where the elements are given by
3 X
1 EI, 1 EA M, = pAR (D3)
Kuwi1 = 5 o+ 5o (C24)
A R A2 R Mo = pJR (D4)
K __L Eh (C25) The out-of-plane elastic force for point 7, takes the form
wu+2 — 2AX3 R3 P P 5
T
Qi
Vi-1
Qi
va72 Kv972 va—l K\’Q—l va K\’Q KW+1 KVQ+1 va+2 KVQ+2 Vi (DS)
Kov2 Kooz Kaov-1 Koo-1 Koy Koo Kavii Koo Koviz Kooto Q;
Vit1
Qi
Vit2
| Q12 |
Hence, the stiffness matrix K
K. — va—2 Kv§272 vafl Kvﬂfl va KVQ va+1 K\V'QJrl va+2 K\7Q+2 (D6)
P |Kav2 Koo2 Koo1 Koot Kov Koo Kovii Kooyt Koviz Kooio
) 4 EI, 1 GJ
where, the stiffness constants are K1 = AR + AR (D13)
1 EIL 1 EI 1 GJ
Kyo=———F— D7 e Tl
2E AR D Ko =35 T Ao o (D14)
Ko o2=0 D8
Q-2 (D8) | EL
4 El, 1GJ Ko =—73a%s (DI3)
2
Ky =777 ++357 (DY)
AR ACR Kiir =0 (D16)
1 EL 1 GJ
Kor=3ok Tacr (P10 Koz =0 (D17)
6 EI, 2 GJ .
K, = —EF—EF (D11) Koo 2 =0 (D18)
1 EL 2 GJ 1 EL 1 GJ
K\’Q = _EF_EF (DIZ) KQV71 :Eﬁ EF (D19)
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1 GJ
Koo-1 = ZR (D20)
2 EIL 2 GJ
Koo="3om aom (D21)
EI 2 GJ
Koo =~ 3o (D22)
1 EIL 1 GJ
Kol =3 Tae R (02
1 GJ
Koo = 2R (D24)
Koy =0 (D25)
Kaa2 =0 (D26)
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