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Abstract

In software engineering, formal methods are mathematical-based techniques that

are used in the specification, development and verification of algorithms and

programs in order to provide reliability and robustness of systems. One of the

most difficult challenges for software engineering is to tackle the complexity of al-

gorithms and software found in concurrent systems. Networked systems have come

to prominence in many aspects of modern life, and therefore software engineering

techniques for treating concurrency in such systems has acquired a particular im-

portance. Algorithms in the software of concurrent systems are used to accomplish

certain tasks which need to comply with the properties required of the system as a

whole. These properties can be broadly subdivided into ‘safety properties’, where

the requirement is ‘nothing bad will happen’, and ‘liveness properties’, where the

requirement is that ‘something good will happen’. As such, specifying network

algorithms and their safety and liveness properties through formal methods is the

aim of the research presented in this thesis. Since temporal logic has proved to be a

successful technique in formal methods, which have various practical applications

due to the availability of powerful model-checking tools such as the NuSMV model

checker, we will investigate the specification and verification of network algorithms

using temporal logic and model checking. In the first part of the thesis, we specify

and verify safety properties for network algorithms. We will use temporal logic to

prove the safety property of data consistency or serializability for a model of the

execution of an unbounded number of concurrent transactions over time, which

could represent software schedulers for an unknown number of transactions being

present in a network. In the second part of the thesis, we will specify and verify

the liveness properties of networked flooding algorithms.

Considering the above in more detail, the first part of this thesis specifies a

model of the execution of an unbounded number of concurrent transactions over

time in propositional Linear Temporal Logic (LTL) in order to prove serializability.

This is made possible by assuming that data items are ordered and that the

transactions accessing these data items respects this order, as then there is a bound

on the number of transactions that need to be considered to prove serializability.

In particular, we make use of recent work which places such bounds on the number
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of transactions needed when data items are accessed in order, but do not have to

be accessed contiguously, i.e., there may be ‘gaps’ in the data items being accessed

by individual transactions. Our aim is to specify the concurrent modification of

data held on routers in a network as a transactional model. The correctness of

the routing protocol and ensuring safety and reliability then corresponds to the

serializability of the transactions. We specify an example of routing in a network

and the corresponding serializability condition in LTL. This is then coded up

in the NuSMV model checker and proofs are performed. The novelty of this

part is that no previous research has used a method for detecting serializablity

and cycles for unlimited number of transactions accessing the data on routers

where the transactions way of accessing the data items on the routers have a gap.

In addition to this, linear temporal logic has not been used in this scenario to

prove correctness of the network system. This part is very helpful in network

administrative protocols where it is critical to maintain correctness of the system.

This safety property can be maintained using the presented work where detection

of cycles in transactions accessing the data items can be detected by only checking

a limited number of cycles rather than checking all possible cycles that can be

caused by the network transactions.

The second part of the thesis offers two contributions. Firstly, we specify the

basic synchronous network flooding algorithm, for any fixed size of network, in

LTL. The specification can be customized to any single network topology or class of

topologies. A specification for the termination problem is formulated and used to

compare different topologies with regards to earlier termination. We give a worked

example of one topology resulting in earlier termination than another, for which we

perform a formal verification using the NuSMV model checker. The novelty of the

second part comes in using linear temporal logic and the NuSMV model checker to

specify and verify the liveness property of the flooding algorithm. The presented

work shows a very difficult scenario where the network nodes are memoryless. This

makes detecting the termination of network flooding very complicated especially

with networks of complex topologies. In the literature, researchers focussed on

using testing and simulations to detect flooding termination. In this work, we used

a robust technique and a rigorous method to specify and verify the synchronous

flooding algorithm and its termination. We also showed that we can use linear

temporal logic and the model checker NuSMV to compare synchronous flooding

termination between topologies.

Adding to the novelty of the second contribution, in addition to the synchron-

ous form of the network flooding algorithm, we further provide a formal model

of bounded asynchronous network flooding by extending the synchronous flood-

ing model to allow a sent message, non-deterministically, to either be received



instantaneously, or enter a transit phase prior to being received. A generalization

of ‘rounds’ from synchronous flooding to the asynchronous case is used as a unit

of time to provide a measure of time to termination, as the number of rounds

taken, for a run of an asynchronous system. The model is encoded into temporal

logic and a proof obligation is given for comparing the termination times of asyn-

chronous and synchronous systems. Worked examples are formally verified using

the NuSMV model checker. This work offers a constraint-based methodology for

the verification of liveness properties of software algorithms distributed across the

nodes in a network.
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Chapter 1

Introduction

This chapter presents a brief background to the research conducted, and an over-

view of the state-of-art (which will be presented in details in the Literature Review

Chapter), statement of the research problem, critical evaluation, aim, objectives,

contributions and then an overview to the thesis chapters.

1.1 Background

Software is used in different devices and systems to accomplish specific tasks ac-

cording to the device and environment. Many of the devices that we see around

us come with a software which controls it. The software that controls the working

of an Information and Communication Device is our interest. examples of such

devices include the automated teller machine (ATM) where the user inputs the

card key and make a selection of the amount of money required and an output

in cash is given to the user. An aeroplane is another example. Inputs can be

as location, weather, ...,etc. which will be given to the programs that control

the aeroplane in deciding its trajectory. Medical instruments such as a pacemaker

which is used to monitor and regulate the heartbeat of a human heart takes inputs

as signals of the heart and give outputs by the program as to control the heart-

beat. Autonomous cars are also another example of such systems and devices.

This type of program which controls these devices is called a controller of the

device. The controller listens to inputs and takes decisions and gives outputs as

shown in Figure 1.1.

1



CHAPTER 1. INTRODUCTION 2

Controller 

Listens to input 

Gives output Action(s) 

Takes Decisions 

Figure 1.1: Safety-Critical Systems Controller Diagram.

Due to the high costs of errors in safety-critical systems, better software engin-

eering methods need to take place to avoid defects in controllers. While designing

controllers for safety-critical systems, it is important to ensure that the controller

is reliable and takes correct decisions which cover all possible scenarios. Usually,

the controllers come with a set of requirements that they need to satisfy. To

check if the controller satisfies its requirements, test cases can be used to find the

outcomes, but when the number of components that interact with the controller

increases, manual verification becomes increasingly difficult where some errors of

the controller can go unnoticed. A verification technology called model checking

can solve this problem. The approach to do the verification is by constructing

a mathematical model of the device controller and writing its requirements in

a formal notation. If the mathematical model of the controller satisfies the re-

quirements written in this formal notation, then this means that the controller

satisfies its requirements. This is done automatically which eliminates human

errors of manual proofs. Temporal logic proved to be a successful technique in

formal methods and can be used to specify the properties of critical systems.

This research focuses on using temporal logic on distributed systems as they

are considered reactive systems and have properties to be met. Reliability and

safety are two of the main concerns in critical computer-based systems. The jobs

running on these systems are not tolerant to errors in output. Concurrency makes

these systems very difficult to build and verify, especially in light of the emergence

of mobile systems. The transactions within concurrent systems require the use of

shared resources. The resources that are accessed and updated by such concurrent

transactions should leave the system in a consistent state, as having more than

one transaction attempting to access and update similar data items could leave
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the system in an inconsistent and unsafe state. If we look at networking systems,

we notice that the software used to make sure a certain packet is delivered from its

source to its destination, on routers in this instance, is built according to certain

routing algorithms. Routing protocols serve to specify the path by which data

packets are delivered to the specified destination. Routing protocols are usually

tested according to different situations and scenarios, but in these situations which

are not tested for there is the possibility that a system could malfunction or become

insecure.

This research considers maintaining the safety property, which means that

nothing bad will happen, in a distributed system where routers in a network have

data items that are shared by unlimited number of transactions. This is considered

a new contribution where unlimited number of transactions access data items in

with a ‘gap’, which will be defined later in Chapter 4. This contribution provides

easier cycle detection after calculating the gap. The contribution here provides

correctness for the network routers. Other research mainly focuses on testing/sim-

ulations. The method presented here explores all possible system states in a brute-

force manner. As concurrency can cause different problems in a system, specifying

the system and verifying it should be accomplished in a way which maintains the

system safety. Accessing the data items on routers can lead to having the data

being modified in an incorrect way which will violate the safety property of the

system. The transactions also need to be managed in by certain rules which leads

to a safe system state. A network protocol is presented in Chapter 4 to help main-

taining the safety property in distributed systems. The research also focuses on the

liveness property, something good will happen, in message passing distributed sys-

tems. The second and third contributions work with memory-less network flooding

where nodes on the network don’t have memory. The well-know synchronous and

asynchronous flooding algorithm is specified and verified. The termination of the

flooding algorithm is specified and verified using linear temporal logic (LTL) and

the NuSMV model checker. In the second contribution, we specify the basic syn-

chronous network flooding, for any fixed size of network, in LTL. The specification

can be customized to any single network topology or class of topologies. A spe-

cification for the termination problem is formulated and used to compare different

topologies with regards to earlier termination. A worked example is given of one

topology resulting in earlier termination than another, for which we perform a

formal verification using the NuSMV model checker. In the third contribution, we

provide a formal model of bounded asynchronous network flooding by extending

the synchronous flooding model to allow a sent message, non-deterministically, to

either be received instantaneously, or enter a transit phase prior to being received.

A generalization of ‘rounds’ from synchronous flooding to the asynchronous case is
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used as a unit of time to provide a measure of time to termination, as the number

of rounds taken, for a run of an asynchronous system. The model is encoded into

temporal logic to compare the termination times of asynchronous and synchronous

systems. Worked examples are formally verified using the NuSMV model checker.

This work offers a constraint-based methodology for the verification of liveness

properties of software algorithms distributed across the nodes in a network.

1.2 Overview of the state-of-art

State-of-the-art, formal methods, are used in system specifications, especially in

critical systems where the cost of failure could notably go beyond the cost of sys-

tem development. Formal methods are mathematical entities that can be used to

model the system in question, and are used to model system properties in a thor-

ough manner. Formal methods are mathematical-based techniques used for both

the specification and verification of software systems. The use of formal methods

in software engineering ensures a certain robustness and reliability to the final

product. Temporal logic has been used in specifying and verifying different prop-

erties of reactive systems. The ability of using temporal logic and model checking

to rigorously reason about the specifications properties in reactive systems is the

advantage which led to use them in Human Computer Interaction (HCI) field in

the computer technology, Air Traffic Control (ATC), autonomous vehicles, trains

signalling systems and many other safety-critical systems.

In distributed systems, testing and simulation is the main technique used.

As this covers only specific scenarios, faults can happen in the systems. In this

research we use formal methods to prove correctness. Mathematical proofs can

be done by an expert person in mathematics which for businesses is not always

considered. On the other hand, manual proof is liable to human error. In this

research we use linear temporal logic and the model checker NuSMV to carry

automatic proof which eliminates errors. Temporal logic is used to specify the

safety and liveness properties in network algorithms. The method used in this

research explores all possible system states in a brute-force manner leading to

building rigorous systems.

1.3 Statement of the research

problem/knowledge gap

Temporal logics have been used in the specification and verification of safety and

liveness properties of concurrent transactions in databases systems. This research
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investigates the application of linear temporal logic to distributed systems which

include shared resources accessed by different transactions. It also investigates the

application of linear temporal logic to other networks with message passing and

no memory. It look to specify and verify the safety and correctness of concurrency

with respect to collections of different transactions accessing data in different ways.

It also looks to specify liveness property of memory-less flooding algorithm. The

research is a combination of theoretical modelling and practical specification and

verification using a temporal logic model checker NuSMV.

1.4 Critical evaluation

Linear temporal logic proved to be a good technique in specifying different network

algorithms properties. It showed that it can check for safety property as for the

first contribution. The livenss property was specified in the second and third con-

tribution using temporal logic. Termination of the synchronous and asynchronous

flooding algorithm is specified in this research in linear temporal logic. This shows

that linear temporal logic is a powerful method and can be used to specify network

algorithms and its properties. In the case that a property was not met, the model

checker gives a counterexample showing the states that cause the error. The states

represent a trace which can be helpful in defining the error. Linear temporal lo-

gic is chosen in this research over other techniques as first-order temporal logic

because there are practical and theoretical obstacles to formal verification in such

logics. LTL is used also due to the nature of the problem of flooding where all

messages that arrive ‘at the same time’ are aggregated into the same round, this

has ruled out standard process calculi approaches such as CSP [1] and CCS [2],

which only allow two processes at a time to synchronize sending and receiving of

messages.

Even with the specifications presented in this research, and the use of one of

the most powerful model checkers available, NuSMV, proofs will only be possible

in practice for fairly small sizes of network. A strong mathematical background

can help in solving and proving some problems where data is accessed in different

ways other than what is presented in this work. Some problems faced during this

research will need more time and effort to tackle in addition to higher mathematical

skills.

1.5 Aim

Applying linear temporal logic to specify and verify safety and livness properties

in distributed systems.
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1.6 Objectives

The objectives of this research are as as follows:

• Investigate the usage of temporal logic and select appropriate one(s) for the

research in addition to selecting a model checker and learning using it.

• Review the literature of the field.

• Find distributed systems problems that can be specified and verified using

temporal logic.

• Investigate how data is accessed on routers and if can be modelled.

• Apply theoretical work to the model when matching.

• Use a model checker to verify the properties over the model.

• Provide conclusions and possible future work.

1.7 Contributions

This work provides three contributions. The first contribution specifies a model

of the execution of an unbounded number of concurrent transactions over time

in propositional Linear Temporal Logic (LTL) in order to prove serializability. It

uses recent work which places bounds on the number of transactions needed when

data items are accessed in order, but do not have to be accessed contiguously, i.e.,

there may be ‘gaps’ in the data items being accessed by individual transactions.

The aim of this contribution is to specify the concurrent modification of data held

on routers in a network as a transactional model. The correctness of the routing

protocol and ensuring safety and reliability then corresponds to the serializability

of the transactions. Verification of the software of administrative routing protocols

is expected to be one of the main applications of this work.

The second contribution works on memory-less flooding. We specify the basic

synchronous network flooding algorithm, for any fixed size of network, in LTL.

The specification can be customized to any single network topology or class of

topologies. A specification for the termination problem is formulated and used

to compare different topologies with regards to earlier termination. A worked

example is given of one topology resulting in earlier termination than another, for

which we perform a formal verification using the NuSMV model checker.

The third contribution provides a formal model of bounded asynchronous net-

work flooding by extending the synchronous flooding model to allow a sent mes-

sage, non-deterministically, to either be received instantaneously, or enter a transit



CHAPTER 1. INTRODUCTION 7

phase prior to being received. A generalization of ‘rounds’ from synchronous flood-

ing to the asynchronous case is used as a unit of time to provide a measure of time

to termination, as the number of rounds taken, for a run of an asynchronous sys-

tem. The model is encoded into temporal logic. It also compares the termination

times of asynchronous and synchronous systems. Worked examples are formally

verified using the NuSMV model checker. This work offers a constraint-based

methodology for the verification of liveness properties of software algorithms dis-

tributed across the nodes in a network.

1.8 Overview of thesis chapters

The second chapter will provide a research background. The third chapter provides

literature review, motivation, and research methodology. The first, second, and

third contributions are presented in Chapter 4, Chapter 5, and Chapter 6 respect-

ively. Chapter 6.5 provides general contributions and future work. Appendices

are provided at the end of the thesis.



Chapter 2

Research Background

Software complexity has increased rapidly in recent years due to the increased

complexity of the systems using the software. To create software that can accom-

plish certain requirements requires that such software first needs to be specified

in the early stages of development as per these requirements, and at a later stage

needs to be verified against those requirements to ensure that they have been prop-

erly met. With the increase in demand to provide reliable software, especially in

critical systems, software engineers must avoid introducing errors into their soft-

ware and attempt to verify that the requirements specified by the client are met.

The software in reactive systems, where the system consists of different parts that

react together and with the environment, requires that certain properties must

be satisfied, amongst which are safety and liveness. Network systems consist of

software which is designed to achieve certain tasks over the network. Different

network algorithms are used in these systems to achieve particular tasks, and en-

suring that these have been specified and verified using a rigorous method avoids

the introduction of errors into these systems. Formal methods, and specifically

Temporal Logics, have been used by different systems to specify and verify soft-

ware so as to achieve the required properties in these systems due to their power

in these regards. In this thesis, temporal logic will be used to specify and verify

network algorithms with respect to safety and liveness. The safety property will

be examined in the first part of the thesis, namely in Chapter 4. The second part

of this thesis will examine the liveness property, as discussed in Chapter 5 and

Chapter 6. In Chapter 4, we will investigate the use of Linear Temporal Logic

LTL to specify and verify the concurrent modification of data on the routers in a

network as a transactional model in order to prove serializability. The correctness

of the routing protocol, and ensuring safety and reliability, can then be said to

correspond to the serializability of the associated transactions. In Chapter 5, we

will specify a basic synchronous network flooding algorithm, for any fixed size of

network, in Linear Temporal Logic. A specification of the termination problem

8
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is formulated and is used to compare different topologies in terms of earlier ter-

mination. Chapter 6 provides a formal model of bounded asynchronous network

flooding by extending the model of synchronous flooding to allow a sent message

to either be received instantaneously, or enter a transit phase prior to being re-

ceived, in a non-deterministic manner. The model is encoded into temporal logic

and a proof obligation is given in terms of comparing the termination times for

asynchronous and synchronous systems. This chapter will give an introduction to

the different concepts and techniques that will be used in the thesis in addition to

a number of examples of system failures.

Different business, and indeed the public sector, have certain, unique standards

for the products they deliver which are ultimately to limit the potential for physical

or economic damage. Smartphones users, for instance, would become upset at

any faults or failures in their devices because of wrong or unexpected results.

However, such system failures clearly do not cause physical harm to the users;

rather, they have the potential to cause economic damage. This kind of failure can

negatively impact the companies using these systems. For instance, in September

2016 Samsung recalled 2.5 million Note 7 phones due to a manufacturing issue

with their batteries that resulted in overheating [3], in some instances resulting in

severe burns being inflicted on a large number of customers. The BBC reported

that this recall was believed to have cost Samsung $5.3 bn, who ultimately recalled

this smartphone to ensure the safety of its customers. Samsung offered either a

replacement or a refund [3].

In stock market trading and e-business, users access data remotely via different

forms of transactions in what can be described as a highly mobile environment. For

instance, If the stocks trader receives inconsistent data, he/she may accordingly

make a poor decision and will be negatively affected in a financial, though not

physical, sense. For example, if a transaction has to read more than one data ele-

ment that is being broadcast by the server to the clients, the client needs to receive

consistent and correct data. One might consider a trader exchanging dollars in

one country whilst another makes the same exchange in another country through

the same exchange company; if the data is not fresh on both sides, they can re-

ceive different amounts of money. This example shows the seriousness of having

a correctly specified and verified scheduling algorithm. In database management,

the system responsible for managing data concurrency and consistency is called

the scheduler [4]. Its responsibility is to schedule different concurrent transactions

containing reads and writes of a set of data items. Choosing an appropriate and

accurate schedule is thus essential to ongoing database integrity.

Critical computer systems are very strict and their failure is not acceptable;

the negative impact that might result from a software or operational defect should
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be prevented at all costs. The famous chip manufacturer, Intel, lost about 475

million US dollars because of a design fault in its Pentium II processor, which was

discovered in 1994 [5]. Patient information can be collected during the normal

life of the patient without requiring that they be hospitalized using mobile tech-

nologies. Every year we see new health technologies intended to improve patient

health and/or lifestyle. Healthcare is becoming increasingly reliant on technology

to perform its various operations. When the issue is one of health, such opera-

tions become even more critical. At least six cancer patients died due to radiation

overexposure caused by the software controlling a Therac-25 radiation therapy

machine in 1985-1987 [6]. This bug was a direct result of concurrent programming

errors. As a result of software malfunctions, passengers have died in aircraft, car,

and train accidents. A fatal Airbus crash in May 2015, where an Airbus A400M

crashed in Spain, was because of engine control software issues [7]. In August 2007,

Skype experienced a critical disruption due to massive restarts of users [8] as a

result of an error in the associated software.This problem was ultimately found to

have occurred due to an unexpected number of users trying to concurrently access

the systems. The software ultimately had to be updated on users’ systems and

then reconnected to the service, and because of restarts of those users, the system

had a huge number of transactions representing connections to the service by their

users [8].

With the increase of the number of the interactive systems, the potential for

defects increases exponentially [5]. Specifying and verifying the correctness of

the software in such environments should be undertaken to ensure proper fault

avoidance. In September 2017, a check-in system failure created chaos at airports

across the world [9]. The biggest airports worldwide, including London Heathrow,

Charles de Gaulle in Paris, Changi in Singapore and Washington DC’s Reagan Air-

port, amongst others, were affected because of this failure. The check-in software

responsible was provided by a company called Amadeus, who specialize in travel

technology, confirmed that this failure was a result of a network issue. Passengers

affected by this problem had their flights either delayed or cancelled. Airport per-

sonnel were unable to provide the details required by these passengers until the

system started working again; in such situations, airline companies are required

to compensate travellers, which will clearly cost them large amounts of money

[9]. The network software in these and other communication systems handle very

large amounts of data transmission and large numbers of transactions, and so net-

work algorithms which have not been formally specified and verified could cause

unexpected issues at some unknown point in the future.

This research focusses on the specification and verification of network al-

gorithms using temporal logic. The problems that occurred as listed above, and
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indeed that have occurred in many other systems, indicate the need to to use

robust methods of software engineering. This thesis focusses on the software part

of communication, in particular on the networking algorithms used in networking

systems. The following section will discuss the different areas of software engin-

eering and the importance of the software requirements and the verification part

of the software. Section 2.2 introduces the formal methods used to address these

purposes and the importance of their use in software engineering. Section 2.3 in-

troduces the definitions used in this thesis with regards to database transactions

in addition to describing some of their more important properties. This section

represents an important prelude to Chapter 4, which discusses data modification

on network routers. Section 2.4 gives an introduction to distributed systems and

distributed algorithms, which are discussed further in Chapter 5 and Chapter

6. In Section 2.5, temporal logic is introduced in addition to temporal proper-

ties and temporal operators; temporal logic is used in this thesis to specify and

verify network problems. After this, Section 2.6 discusses model checking and its

importance.

2.1 Better Software Engineering

Software engineering starts from the early stages of the software specification,

and typically ends with the maintenance of the software. This is of particular

importance when considering financial constraints. Tools, theories and methods

are used in software engineering to successfully create software with the required

standards. The most elementary steps of software engineering consist of software

specification, development, validation and evolution [10]. In a business sense,

companies will attempt to produce reliable and trustworthy software for their

clients while keeping minimizing the revenue required to achieve this goal.

Some of the most important steps in software engineering are the specifica-

tion and verification of the software. Selecting higher standard specification and

verification methods for reactive and concurrent systems implies highers level of

dependability. Software specification represents that start of the software engin-

eering process’s activities. The specification starts when software engineers meet

with their customers and gain a comprehensive description of the software to be

developed and its constraints. Poor or incorrect specifications or misunderstand-

ings will lead to a system that does not meet the customer’s needs, which in the

extreme can lead to financial loss for both the software production company and

the user alike [11]. This demonstrates the serious need to form specifications that

correctly describe the required system. Later in the system development process,

the system will need to be checked to meet the requirements of the customer.
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This process is called verification. Verification is tested against the current spe-

cifications for the software; in critical systems, this is a crucial step in determining

and demonstrating their correctness. Using formal methods and model checking

to both specify and verify software is considered to provide reliable software that

meets the associated requirements.

Figure 2.1 shows a famous cartoon drawing of creating a swing and reflecting

the idea during software development. It shows how incorrect or misunderstood

specifications can lead to unintended results.

Figure 2.1: A graphic representation of problems resulting from errors in specific-
ations

2.2 Formal Methods

State-of-the-art, formal methods, are used in system specifications, especially in

critical systems where the cost of failure could notably go beyond the cost of

system development. Formal methods are mathematical entities that can be used

to model the system in question, and are used to model system properties in a
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thorough manner. Formal methods are mathematical-based techniques used for

both the specification and verification of software systems. The use of formal

methods in software engineering ensures a certain robustness and reliability to the

final product.

The quality of the results that can be obtained by applying formal methods

in verifying critical systems has led to their extensive use by software engineers.

The National Aeronautics and Space Administration (NASA) reported that formal

methods should be part of every software engineer’s and computer scientist’s edu-

cation [5]. To provide an ultra-detailed verification of the system, the appropriate

properties should be defined and specified in a precise manner.

In critical systems, the major approaches used to specify and verify the cor-

rectness of the concurrency control protocol are those of mathematical proofs.

Mathematical proofs need a person with high levels of experience in mathem-

atics, which makes their use difficult in the software development industry [12].

In addition to this need, mathematical proofs could themselves have errors due

to human error. Using automated proofs as available model checkers to model

systems formally according to their specifications and to prove their correctness

saves time and avoids human error. In this manner, the desired properties can be

verified using an exhaustive search of all possible states that the system can enter

during execution. Model checkers can provide different and interesting features

by observing the different states the system goes through. In NuSMV, in case a

certain property is not met, a counterexample is given showing how the system did

not comply with the property. This research will use formal methods, specifically

temporal logic and model checkers, to specify and verify network algorithms and

their properties.

2.3 Basics of Database and Transactions

This section will provide an introduction to the basics of databases and database

transactions; it will also introduce concurrency and the need to control concur-

rency. This section will be helpful as an introduction to Chapter 4 as the topics

discussed here provide an excellent guide to concurrency problems when modifying

data on network routers.

A database is defined as a collection of related data which is organized so

that it can easily be accessed, managed, and updated [4]. This database can

vary according to its type and to different organizations. A transaction is a se-

quence of database operations performed by the execution of a program. Database

transactions entail, for instance, banking functions, reservations, and stock mar-

ket functions, amongst many others. If a person is to book a flight, they will



CHAPTER 2. RESEARCH BACKGROUND 14

very likely access a booking page to check for the availability of flights from their

departure to their destination airports. Different airlines may operate at differ-

ent stages of their journey. The customer will thus be accessing a database that

combines different airlines with the different airports on their journey, whilst the

booking of the flight itself represents the transaction they make on the database.

Once the customer books their ticket, their details will be used to reserve seats on

the flight(s) on this journey. The first step, that of searching for the flight, rep-

resents a read operation from the database; the booking step represents the write

operation. The plane will have certain places available for travellers. Once the

traveller books a ticket, the availability of seats for other travellers will, obviously,

be reduced. A booking system should run without faults and ensure that certain

properties are met, for instance, that no two travellers can book the same seat;

if all seats are reserved, the system should not allow any further bookings to be

made on that flight. Other properties must hold in such systems where different

transactions by different users could potentially attempt to access the database

simultaneously. We can imagine how such issues have grown exponentially with

today’s mobile technologies. A person can nowadays book a ticket for a trip using

his/her smart-phone in a very straightforward manner.

Concurrency is one of the topics that has been considered for decades and

indeed has grown with new mobile technologies. The scheduler is the database

system component that handles concurrency control. The scheduler is an essen-

tial component of transaction processing systems that deals with users running

concurrent transactions. The scheduler produces schedules which represent the

interleaved execution of these transactions. The schedule is also sometimes called

a history. A transaction can perform the following database operations:

• Access operation (read operation): fetches the data value of a data item x.

This is denoted by Read(x).

• Update operation (write operation): updates the value of a data item x.

This is denoted by Write(x).

The database is a representation of part of the real world [12, 13, 14]. This

means that its state is governed and controlled. An example is that a person’s

weight cannot be negative. Another example is that only a definite number of

passengers can be seated in an aircraft according to its number of seats. Such

restrictions are referred to as integrity constraints, which create a framework to

ensure that data consistency is valid when any user performs an operation that

will result in a change to the database. A database is said to be in its consistent

state at a certain time if all data element values are valid according to the integrity
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constraints. If a transaction is to commit, it should maintain the database is in

its consistent state. Four properties of transactions (known as ACID properties)

should be valid when transactions are executing in the database to preserve its

consistency. Furthermore, in an environment where multiple transactions are ex-

ecuting, the database management system (DBMS) must schedule the concurrent

execution of the transactions steps. The schedule of these transactions operations

must have the property of being serializable [4]. To understand more of the re-

quired properties, we should review these properties and what they mean. The

first four properties are the ACID properties:

Atomicity: All operations of a transaction are required to be complete or else the

transaction is aborted. The transaction is treated as a single unit.

Consistency: A transaction is aborted if any part of it violates an integrity con-

straint. It should keep the database in a consistent state to commit.

Isolation: In a concurrency environment, simultaneously running transaction be-

haviours do not affect each other. Access to shared resources must be serialized

by the transactions.

Durability: Once a transaction is committed, the changes its makes cannot be

undone. Effects should also not be lost, even in the instance of a system failure.

Serializability: Results of schedules in an environment where transactions are ex-

ecuted concurrently should maintain a consistent system.

After understanding the different properties, we should consider transaction

concurrency, and why it is important to control it, further. This is considered in

the following section.

2.3.1 Importance of Concurrency Control

In an environment with multiple transactions accessing shared data and that are

executed in parallel, concurrency control is needed to avoid any undesirable situ-

ation that can violate the consistency of the database. In other words, the DBMS

needs to preserve some or all ACID properties in such environments [12, 15].

Without concurrency control, transactions running simultaneously over a shared

database can create data integrity and consistency issues. The following example

explains the first problem:

Suppose that we have two transactions (Transaction1, Transaction2) accessing

a data item x in a database. The item x has an initial value of 5 (x = 5).

Transaction1: Read(x);x = x− 3;Write(x);

Transaction2: Read(x);x = x+ 7;Write(x);

The concurrent execution of the two transactions is represented in Table 2.1.

In Table 2.1, the final value of x is 12. If the transaction were executed in a se-
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Table 2.1: Two transactions executing simultaneously.

Step Transaction 1 Transaction 2

1 Read(x)
2 x = x− 3
3 Read(x)
4 x = x+ 7
5 Write(x)
6 Write(x) ← older value is cancelled

quential order, the final value of x would be x = 9. We can conclude from this that

the value yielded by the concurrent transactions is incorrect. It is clear that the

reason for this incorrect value of x is that the second transaction, (Transaction2),

reads the value of x before the first transaction (Transaction1) changes it in the

database. As a consequence, the change resulting from the first transaction is lost

(overwritten). This problem is known as the lost update problem. To take another

example, let us assume that we have a bus with (x) seats reserved (x = 9). The

total limit number of passengers who can book seats is 16. The first transaction

cancels 6 seats reservation (x = x − 6). The second transaction reserves seven

seats (x = x+ 10). Hence, the final value of reserved seats should be 13 (x = 13).

The concurrent execution of the two transactions is represented in Table 2.2.

Table 2.2: Bus tickets - two transactions executing simultaneously.

Step Transaction 1 Transaction 2

1 Read(x)
2 x = x− 6
3 Read(x)
4 x = x+ 10
5 Write(x)
6 Write(x) ← older value is cancelled

If we look at the interleaving operations of both transactions in Table 2.2, the

final value is 19 (x = 19). We can conclude from this example that this value

yielded by the concurrent transactions is wrong and the reservation limit has been

reached (or exceeded). It is clear that the reason for this incorrect value of x is

that the second transaction, (Transaction2), reads the value of x before the first

transaction (Transaction1) has changed x in the database. As a consequence, the

changes resulting from the first transaction are lost (overwritten).

When a transaction finishes its steps successfully it is said that the transac-

tion has committed successfully. A well-known problem when dealing with the

concurrent execution of transactions on a shared data item is known as a dirty

read (or temporary update), where a transaction reads a data element which has
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been updated by another transaction but where the first transaction has not yet

committed [13, 16]. The problem occurs when the transaction that modified the

data item has not finished and rolls back for a certain failure. To demonstrate

this problem, consider the following example:

Suppose that we have two transactions (Transaction1, Transaction2) accessing

a data item x in a database. The item x has an initial value of 10 (x = 10).

Transaction1: Read(x);x = x− 3;Write(x);

Transaction2: Read(x);x = x+ 7;Write(x);

The concurrent execution of the two transactions is represented in Table 2.3.

Table 2.3: Dirty read problem example

Step Transaction 1 Transaction 2

1 Read(x)
2 x = x− 6
3 Write(x)
4 Read(x) ← Dirty read
5 x = x+ 10
6 Write(x)
7 ABORT (Failure)

We can see from Table 2.3 that Transaction1 encounters a failure before com-

mitting and Transaction1 reads the shared data item x after Transaction1 has

modified it. In this case, Transaction1’s failure will cause it to abort and to be

rolled back (restarted), while Transaction2 does not restart. Transaction2, in this

scenario, will have read a value of x that is now is never considered to have existed,

resulting in an inconsistency in the database. If Transaction1 finishes successfully,

however, then the database will remain in a consistent state.

Other problems could arise in a concurrent environment such as an unrepeat-

able read. The unrepeatable read problem is encountered when the first transac-

tion reads several values and the second transaction updates some of these values

while the first transaction is being executed [13, 16]. Such problems can occur in an

environment where concurrent transactions executions exist, hence violating the

ACID properties. The lost update problem causes a violation in the consistency

and isolation properties. This is because the state of the database is inconsistent

after executing these transactions.

In Chapter 4, we will focus on specifying and verifying the isolation property,

which is the responsibility of the concurrency control system. The isolation prop-

erty guarantees that any transactions that are executed concurrently will result

in a system state similar to the state that would result from transactions being

executed serially (i.e., without any transaction interleaving).
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We have now provided an introduction to the basics of database transactions,

which will be the main topic of Chapter 4 which describes data modification

on network routers via concurrent transactions. After having provided this short

introduction on the need for concurrency control, we will now introduce distributed

systems and some of the concepts of the flooding algorithm which will be the topic

of Chapter 5 and Chapter 6.

2.4 Distributed Systems

Distributed systems are systems of multiple components that interact with each

other. There are two types of distributed systems: shared memory distributed

systems, where components share the same memory, for example a multi-core

processor in a CPU; and message-passing distributed systems, where the individual

components interact with each other through messages sent on links and which

corresponds to computer networks. In this thesis, we concentrate on message-

passing distributed systems.

The components of message-passing systems use the messages passed between

them to communicate and process different tasks. Message-passing systems have

characteristics which include the concurrency of components, independent failure

of components, and the lack of a global clock. The interaction of the different

components and the message passing required between them to accomplish a cer-

tain job is considered difficult in terms of the lack of a global clock. Processing

the job can be achieved in a parallel manner between the different elements of the

distributed system. In a distributed system, the different components all have the

same goal as the outcome of their work.

Distributed network routing algorithms deal with directing and redirecting

messages between different network routers and end points [17]. In this thesis,

routers and endpoints are referred to as nodes. The router’s job is to send the

message to one of its neighbours - to which it has a connection - in order to

deliver the message to its destination. [17]. Distributed network algorithms can be

classified as synchronous distributed algorithms, where a ‘global’ clock is assumed

to exist in the system and messages are sent during the same clock tick. The other

classification is asynchronous distributed algorithms, where messages are not sent

at exactly the same time or during the same clock tick. In this thesis, each of

these types are considered in Chapter 5 and Chapter 6 on a well-known network

algorithm called the flooding algorithm [18]. The phenomenon of flooding forms

the basis of many important distributed processes [19].

The flooding algorithm is an algorithm which utilizes every path in the network

[20]. As the algorithm specifies, one of the nodes will start to send a message to
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all of its neighbours. When any given node receives a message from a neighbour,

it forwards the same message to all of its neighbours except the one(s) it received

the message from [21, 20, 18, 22]. Synchronous distributed algorithms assume

a ‘global clock’ where actions happen during clock ticks or rounds. This means

that the network has bounded link delays and a lockstep synchronization with the

pulses of the global clock. In the message synchronization property, a message

sent from node v to neighbour u at pulse p of v must be delivered to u before

pulse p+ 1 of u [20].

In this thesis, we investigate ‘memoryless’ flooding where a node does not

explicitly remember if it has previously taken part in the process or which nodes

it has previously interacted with. This may happen, for example, if the node

does not have enough memory to store its past history or if there are multiple

flooding operations occurring which it does not want to, or cannot, distinguish. It

does, however, know which node(s) sent it the message in the present round and

forwards copies of the message to all its neighbours with the exception(s) of the

one(s) it received it from. Notice that if in any round a node receives the message

from all its neighbours, the node does not need to do anything. If at some point

no node forwards the message, we say that the flooding has terminated. It is

hard to know if the flooding process will ever terminate, however, especially in

complicated topologies with cycles.

To gain a visual understanding of the synchronous flooding algorithm and how

it works, and indeed the termination problem, we present some examples below.

The first example will show a sequence of nodes connected in a line, as illustrated

in Figure 2.2(a)-(d). A node with a message is shown as double circled.
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(a) Round 0

(b) Round 1

(c) Round 2

(d) Round 3

(e) After flooding finished

Figure 2.2: Flooding - line connection.

The nodes are connected bidirectionally; this means that each individual line

connecting the nodes can carry a message in both directions. In round 0 a message

is at node 0, as shown in Figure 2.2(a). In the first round, a message is sent from

the initial node 0 to its neighbour, node 1, as shown in Figure 2.2(b). In the second

round, each neighbour which received the message will forward this to all of its

own neighbours, except for those from which the message was received. As node 1

has two neighbours (node 1 and node 2), it can send the received the message from

node 0 to node 2 according to the algorithm, as shown in round 2. Eventually, all

the nodes in the network will receive a message in a certain round, and where this

is achieved in round 3, as shown in Figure 2.2(d). After node 3 has received the

message it will not be forwarded to any of 3’s neighbours as its only neighbour is

node 2, but this is the node from which the message was received. At this stage,

the flooding of the message terminates. Flooding on the network of Figure 2.2

shows that the flooding can be terminated. Figure 2.2(e) shows the network after

flooding has stopped. If the initial node were any other than the one considered in

this example, we can see easily that flooding will again terminate. Let us consider

another example of synchronous flooding on a different network, as illustrated in
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Figure 2.3. This example shows a ring network of five nodes.

As we can see in 2.3, in round 0 the message is at node 0, as shown in Figure

2.3(a). Node 0 has two neighbours, nodes 1 and 2. In round 1, the message is sent

to both of these neighbours. In round 2, the message at node 1 will only be sent

to node 3, as it cannot be sent to the other neighbour, node 0, as it received the

message from this node originally. Similarly, for node 2, the message will be sent

to node 4. As shown in Figure 2.3(c), node 3 and node 4 now have a message.

Each of the nodes will send the message in the next round to the neighbour from

which it did not receive the message from in the previous round. Node 3 will send

its message to node 4 and node 4 will forward its message to node 3 in round 3,

as shown in Figure 2.3(d). In the next round (round 4), node 3 will forward the

message to node 1 and node 4 will forward the message to node 2, as shown in

Figure 2.3(e). In round 5, the message at node 1 will be forwarded to node 0 and

the message at node 2 will be forwarded to node 0, as shown in Figure 2.3(f).

Since node 0 has received a message from both node 1 and node 2, the flooding

will terminate as node 0 does not send to the neighbours it has received from.

Figure 2.3(g) shows the network after flooding has terminated.

Another example of synchronous flooding is shown in Figure 2.4.
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(a) Round 0 (b) Round 1 (c) Round 2

(d)Round 3 (e)Round 4 (f)Round 5

(g) After flooding finished.

Figure 2.3: Flooding - ring connection.
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(a) Round 0 (b) Round 1

(c) Round 2 (d) Round 3

(e) After flooding finished

Figure 2.4: Flooding - triangle connection.

We can see, as shown in Figure 2.4(a)-(d), that the message was at node 0 a

the start of flooding and was forwarded in each round until the flooding stopped.

The message at node 0 was forwarded to node 1 and node 2 in round 1. In round

2, the message was forwarded from node 2 to node 1 and from node 1 to node 2, as

shown in 2.4(c). In round 3, the message from node 2 and node 1 was sent to node

0 as shown in Figure 2.4(d). At this stage, the flooding terminates as node 0 will

not forward the message to any of its neighbours as it received a message from each

of them in the previous round. Figure 2.4(e) shows the network after flooding has

terminated. Flooding termination can be more complicated depending on network

topology and number of nodes. If we consider Figure 2.5, for example, then it is

clear that tracing the flood of messages will be more challenging than in the earlier

examples.
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Figure 2.5: Flooding - 2 ring connection

Node 0 is the initial node with the message at round 0. Its neighbours will

receive the forwarded message in round 1. Each neighbour receiving the message

will forward it to its neighbours in the next round. The flooding will continue to

ensure that all nodes in the network receive the message. In this example, flooding

will, in fact, terminate, though as implied earlier this is not necessarily the case.

The situation is also more challenging when flooding is asynchronous.

If we take the flooding example illustrated in Figure 2.4 and assume in this

instance that the flooding is asynchronous, this means that the messages are not

sent and delivered at the same time. If the initial message was at node 0 and

the message is forwarded to neighbour nodes 1 and 2, in asynchronous flooding

delivery to neighbours can occur at different times, which makes predicting flood

termination far more difficult. This means that the message can be delivered to

one node but not delivered to the other as it is still in transit. The one which

receives the message will forward the message to its neighbours according to the

flooding algorithm, with the exception of the one it received it from. This scenario

can cause loops, hence flooding might not terminate.

2.5 Temporal Logic

In mathematics, classical propositional logic formulae are interpreted as truth

values, either “true” or “false” [23], and which is absolute. The truth values of the

formulae are fixed after the propositional variables have been mapped to the truth

values. In reality, we need to consider the changes that happen in our universe.

For statements like ‘I am wearing a jacket’ or ‘it is snowing’, it is clear that their

truth value can, and likely will, change over time. A person can wear a jacket

when it is cold and snowing on one day but will take it off when it is warm or

sunny on another. In other words, the valuation of the statements can change
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with time. This need to represent changes has led to the introduction of temporal

logic.

Temporal logic is used to represent reasoning about a changing world [24] where

the formula’s truth values may vary over time [12]. The importance of temporal

logic is to address time-dependent valuations. Temporal logic is an extension of

classical propositional logic. Facts about the past, present, and future states can

be expressed in the formulae of temporal logic. Temporal logic has been used

extensively in the representation of temporal information because the concept of

time is inherent to the logic. Today’s computer system requirements are rapidly

increasing, especially with the emergence of smart mobile devices including mobile

phones and other smart devices that can be used in different places. The varying

states of the systems over time require that special tools must be used to specify

and verify their states; modelling changes in such time-dependent systems can be

achieved using temporal logic. Temporal logic can be used to specify the different

properties of a system. A system state which changes over time can be represented

using temporal logic formulae. Examples of what temporal logic can represent are

encapsulated in the following statements: ‘the network is always running’ , ‘a sent

message will be delivered in the future’ , ‘if I pay for my order, I will receive it

eventually’ , ‘a car system will use the car brakes whenever a car is closer to the car

in front’. Temporal logic provides the ability to reason about a time-line. Linear

temporal logic (LTL) adopts this type of reasoning. The LTL model of time is like

a line, are a so-called path. Computational tree logic (CTL) is a type of temporal

logic which includes a branching logic, where time is modelled using a tree-like

structure.

Due to the power of temporal logic, specification and verification of concurrent

and reactive systems makes significant use of temporal logic [23]. E-commerce

and traffic control systems are examples of such systems, where at the same time

an error in this type of system is considered fatal. Both software and hardware

engineers dealing with critical systems do not rely purely on testing their systems,

as these need to be further specified and verified in such a way as to match the

desired requirements to minimize the possibility of errors. Demonstrating these

requirements in a rigorous manner requires a highly skilled mathematician. An

important factor to take into consideration is that a mathematician is still human,

and human error is always a possibility. Another problem is that it is not always

easy to accomplish the proof if there is a mathematician with high skills. The

solution to overcoming this problem is to use automatic model checkers, which

will avoid human error. The different properties required of a system can be

encoded within the temporal logic of a model checker.

Model checkers that use different types of temporal logic were developed as
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they have the ability to verify real-world systems in a short time, which is par-

ticularly useful considering these systems have a massive number of states. After

the system-required properties are encoded into the temporal logic in the model

checker, it then checks all different possible states of the system to verify the prop-

erties. In the well-known model checker NuSMV, if a property is not satisfied a

counterexample will be given illustrating the states of the system where the prop-

erty is not satisfied. Temporal logic is helpful for specifying concurrent systems by

describing event ordering over time. With the exponential growth of technologies

and concurrent systems, these systems have become more complicated and their

interactions more critical. This means that the specification and verification of

their properties is essential [25, 26]. The following subsection discusses these dif-

ferent properties, as followed by Subsection 2.5.2 which introduces the operators

used in temporal logic. Subsection 2.5.3 shows how to express system properties

in the form of temporal logic.

2.5.1 Temporal Properties

Reactive and concurrent systems are usually very complex in structure, making

their design and analysis processes very difficult to achieve. A mistake in the

design can easily in occur in such difficult system processes. Any mistake can

lead to unwanted properties, such as deadlock, occurring. Safety, liveness, and

fairness are the major properties of concurrent and reactive systems that require

specification and verification [26, 27, 28].

These properties can be described as follows:

Safety: The safety property requires that the system will not have anything

bad happening while it is running. Mutual exclusion, freedom from deadlock and

partial correctness are examples of this property. The following statements are

examples of safety properties: ‘the reactor temperature will never reach 150oC,’

‘the car will never start as long as the key is not in the ignition position.’ Again,

the property assures that nothing bad will happen.

Liveness: The liveness property assures that something good will eventually

happen. This property is important to ensure that something ‘good’ must hap-

pen in the future. Liveness properties are important where there are any infinite

behaviours of the systems. Examples of the liveness property are total correct-

ness, guaranteed accessibility and responsiveness. The following statements are

examples of liveness properties: ‘the traffic light will turn green,’ ‘the message will

be delivered eventually,’ ‘the program will terminate.’
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Fairness: The fairness property ensures that a request must be granted. This

property helps to serve services via a fair strategy. The advantage of defining

fairness properties is to avoid reaching properties without specifying the fairness

properties. Fairness constraints are imposed to avoid forcing the system to perform

unrealistic computations. These constraints are unconditional fairness, strong fair-

ness and weak fairness. Unconditional fairness imposes the condition that every

process can be executed infinitely often; the strong fairness property states that

every process that is enabled infinitely often gets to be executed infinitely often;

and the weak fairness property ensures that every process that is continuously en-

abled from a certain point in time can be executed infinitely often. It is important

to understand that fairness is a requirement of demonstrating liveness [5, 29]. The

different types of fairness property describe liveness properties.

2.5.2 Temporal Operators

There are two types of operators in temporal logic. The first are the ordinary

logical operators (∧,∨,¬,⇒, ⇐⇒ ) which have their usual meanings, whilst the

second are temporal operators which are used in temporal logic, such as LTL

(Linear-Time Temporal Logic) and CTL (Computational Tree Logic). Temporal

logic takes into consideration the necessity and the possibility concepts. If β is a

formula, then Fβ is a temporal logic formula that asserts that β is possibly true,

and Gβ is a temporal logic formula that asserts that β is necessarily true. Table

2.4 summarizes some of the temporal logic operators’ meanings:

Table 2.4: Temporal logic operators.

Operator Meaning

Fα α will be true at some time in the future.
Gα α will always be true in the future.
αUβ α will always be true until β becomes true.
Xα α will be true next.
Eα Exists: there exists at least one path starting from the

current state where α holds.
Aα All: α has to hold on all paths starting from the current

state.

2.5.3 Properties Expressed in Temporal Logic

This section will express some of the system properties mentioned earlier in sub-

section 2.5.1 using temporal logic [12].
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Safety properties:

1. Mutual exclusion:

No two processes can access the same resource simultaneously. For example,

if two processes α and β are running asynchronously (only one of them take

a step at any given moment) and the order of execution is undetermined.

Mutual exclusion is described in temporal logic as follows:

G¬((α = R) ∧ (β = R))

where α = R means that the process α uses the resource R.

2. Freedom from deadlock:

At least one process is allowed to progress at any time. This can be written

formally as:

G(enabled1 ∨ . . . ∨ enabledk)

where enabled is true if process i has an action that can be executed (for

1 ≤ i ≤ k)

3. Partial correctness:

After the program starts, if α is satisfied, then β will be satisfied if the

program reaches a successful state γ.

α⇒ G(γ ⇒ β)

Liveness Properties:

1. Guaranteed accessibility:

A process that is in a particular state will eventually go to the next state.

For example, the computations that execute both process α and process γ

infinitely often will hold:

G((α = i)⇒ F (α = (i+ 1)) ∧G((β = i)⇒ F (β = (i+ 1))

where the processes α and β can be in state 1 (i.e., α = i ) then move to the

next state, state i+ 1.

2. Responsiveness:

A request will eventually be granted upon request. This property can be

described as:

G(α⇒ Fβ)
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where α is a request and β means granted.

3. Total correctness:

After the start of the program, if α is satisfied, then the program terminates

in a state γ where β is satisfied.

α⇒ F (γ ∧ β)

Fairness properties:

1. Strong fairness:

A process which is enabled infinitely often will be executed infinitely often:∧
1≤i≤k

(GF enabledi ⇒ GFexecutedi)

This is interpreted as an event that becomes enabled infinitely often (but

may become disabled) must be executed infinitely often.

2. Weak fairness:

Any process that is enabled almost everywhere is executed infinitely often,

such that: ∧
1≤i≤k

(FG enabledi ⇒ GFexecutedi)

This is interpreted as a constantly enabled event must occur infinitely often.

3. Unconditional fairness:

Every process is executed infinitely often, such that:∧
1≤i≤k

(FG enabledi)

This is interpreted as being that the process can be executed at any time.

2.6 Model Checking

In critical systems, it is a matter of great importance to ensure correctness of both

software and hardware as errors or failures have the potential to result in large

financial losses and can lead to fatal consequences, especially in safety-critical sys-

tems [30, 31]. Verification techniques’ formal methods have became of considerable

interest when building high assurance systems and in avoiding failures in critical

system. The most successful technique used by both the industry and in research

is model checking.
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Model checking is an automatic verification method for finite state concurrent

systems to check if a system model M or a protocol satisfies its formal specifica-

tions as written in logic as temporal logic [30]. The model represents all possible

behaviours of the system [5, 12]. The properties of the system are written as

formulae. A property formula φ is checked by exploring all possible system execu-

tions in the state space of the model to demonstrate whether the correctness of the

system is satisfied by the model. This is represented as M |= φ [32]. An advant-

age of model checking is that it is fully automatic and does not require particular

expertise in mathematics to run or interpret. The automatic tool which achieves

this job is called the model checker. Another advantage of model checking is that

if a property is not satisfied (i.e., an error is found), a counterexample is given

showing the reason for the problem and the state of the system which led to this

error [31, 12].

In software engineering, the costs of testing software can range from 30% to

50% of the total cost of the software development [5]. Test generation and test

execution can be automated in some areas, but the comparison is usually carried

out by human beings. Correctness is determined by making the software travel

across a set of execution paths, but ensuring the exhaustive testing of all paths is

not possible, which is a big disadvantage in cases where only software testing is

carried out. This means that testing can never be complete. On the other hand,

in model checking, correctness is checked by an exhaustive exploration of the state

space of the model, which makes model checking the rigorous method of choice

for use with concurrent and critical systems. State explosion is considered to be

the main disadvantage of model checking; when the system has a large number of

interacting components or when the system data structure contains a large number

of differing values, state explosion can occur because of the huge number of states

the system can potentially adopt. The size of the system becomes a problem when

it grows exponentially as a result of an increase in the number of state variables.

For example, in a system which is composed of n processes and each process has

k states, the possible number of states by the asynchronous composition of these

processes can be defined by mk.

For the past 30 years, researchers have tried to solve the state explosion prob-

lem so as to be able to provide better model checking approaches. Two main

solutions to avoid the state explosion problem are used: the first is to reduce the

size of the state space to be searched, and this is generally accomplished using

abstraction; the second, which was first introduced in 1987 by Ken McMillan, is

to use Binary Decision Diagrams (BDDs) to represent the state space [33]. The

latter solution made it possible to verify systems that have more than 1020 states

[34]. Researchers concentrated on further refinements to BDD-based techniques
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subsequent to this accomplishment, and in which the number of states can be

more than 10120 [35]. The well-known model checker NuSMV is based on these

ideas.

This allowed model checking to be successfully used in verifying larger systems

than could previously have been attempted, and to successfully detect otherwise

highly obscure errors in communication protocols and hardware controllers [31].

2.6.1 Stages of Model Checking

The phases of model checking are as follows:

• Modelling: In this phase, through the use of the formal description language

of the model checker, the design is converted into an acceptable form by the

tool, where this form is called the model.

• Specification: In this stage, the design properties are written.

• Verification: This step includes verifying the specifications against the design

to determine whether the specifications are valid or otherwise. In this stage,

an exhaustive search of the model state space is carried out using the model

checker, which determines if the specification has satisfied or otherwise. If

the specification is not satisfied, a counterexample is instead given by the

model checker.

2.6.2 Transactions and Temporal Logic

It is clear that temporal logic is particularly powerful when dealing with the reas-

oning adopted in concurrent systems. We can use temporal logic to conduct auto-

matic proofs of this kind of systems to avoid the errors often inherent to manual

mathematics proofs. To this end, there are various powerful model checkers avail-

able such as NuSMV [36] and SPIN [37], but we need to select which temporal

logic is supported by these model checkers. CTL and LTL are supported in these

model checkers and can be used in this case.

Serializability is considered to be a safety property [38]. Temporal logic can

be used to specify other properties of the histories of an unlimited number of

transactions, such as starvation. In starvation, some transactions are not served

for an indefinite period of time while the system is executing [13]. In [39, 40],

starvation is considered a liveness property. The most common problems that face

database transaction schedulers are deadlock and starvation [13]. Using temporal

logic, deadlock-freedom (which is considered as a safety property) can be achieved

if required, especially in transactions that have the potential to iterate an unlimited

number of times.
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2.7 Thesis Structure

In the following chapter, the literature review and research methodology will be

presented. In Chapter 4, LTL is used to specify a model of the execution of an

unbounded number of concurrent transactions over time in order to demonstrate

serializability. This chapter benefits from recent research in specifying the concur-

rent modification of data on routers in a network as a transactional model.

Chapter 5 specifies the basic synchronous network flooding algorithm, for any

fixed size of network, in Linear Temporal Logic. A specification of the termination

problem is formulated and used to compare different topologies in terms of earlier

termination. A worked example is given for one topology which results in an

earlier termination than another, and for which we perform a formal verification

using the NuSMV model checker.

In Chapter 6, a formal model of bounded asynchronous network flooding is

given by extending the ideas expressed in Chapter 5 with regards to synchronous

flooding to allow a sent message to either be received instantaneously, or enter a

transit phase prior to being received, in a non-deterministic manner. A general-

ization of the ‘rounds’ in synchronous flooding is made for the asynchronous case

is used as a unit of time in order to provide a measure of time for the termination

of a run of an asynchronous system in terms of the number of rounds taken. The

model is encoded into temporal logic and a proof obligation is given for comparing

the termination times of asynchronous and synchronous systems. We give further

related work in the related chapters.

Chapter 7 provides a conclusion to the thesis. Figure 2.6 provides a summary

of the remaining chapters in this thesis. The stars next to the chapters indicate

that they include the contributions made by this thesis.
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Figure 2.6: Thesis Chapters



Chapter 3

Literature Review and Research

Methodology

3.1 Introduction

With the exponential increase of capabilities of current technology, the need to

provide reliable systems has increased in parallel. The safety property (nothing

bad ever happens) and liveness property (something good will eventually happen)

specifications and verifications for reactive systems have increased to avoid mal-

functioning systems and losses of various types. Coordinating the work of the

different tasks and components of these systems is important to ensure a consist-

ently running system.

The reliance on database transactions has increased markedly due to the rapid

increase in the technology and number of users with access to this technology.

Conventional database concurrency methods model finite transaction schedules

[12, 14, 41]. The representation of histories of an unlimited number of transac-

tions, as a model, can be achieved using temporal logic. Distributed network

systems consist of certain properties, and their algorithms should be specified to

maintain these properties. Conventional testing methods cannot physically cover

all the potential possibilities that might arise when designing the systems, espe-

cially where these systems consist of multiple components that interact with each

other in a certain manner. Providing rigorous methods of specifying and verify-

ing these systems to eliminate errors using mathematical proofs is difficult as it

requires people with mathematical expertise to maintain such proofs. Even with

using mathematical proofs, simple human error means that accomplishing such

proofs is, in any case, impossible. An advantage of using temporal logic is that

there is no need for special expertise to ensure rigorous verification. Another ad-

vantage is the exhaustive checks that can be performed by existing model checkers,

34
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such as NuSMV [36] and Spin [37].

3.2 Literature Review

Formal methods, in general, are considered to be powerful when being used to build

critical systems in order to make sure that they are robust and secure. Temporal

logic in particular has been used in specifying both hardware and software systems.

Due to the availability of powerful model checker tools, temporal logic can be used

to specify required properties of systems and to subsequently verify them.

Temporal logic has been, is currently is, used in specifying and verifying the

various properties of reactive systems. The ability to use temporal logic and model

checking to rigorously reason about the specifications properties in reactive sys-

tems is the major advantage which led to their use in Human Computer Interaction

(HCI) in the computer technology [42]. As user interfaces are considered reactive

systems as they interact with their environment, in [43, 44], temporal logic was

used to formally specify and verify software user interfaces to minimize the possib-

ility of introducing bugs in software as the possibility increases with the growth of

the software user interface, which becomes harder to test for the existence of such

bugs. In some fields, such as in Air Traffic Control (ATC), testing can be very

expensive and indeed determining the number of test cases that are sufficient to

ensure an exhaustive analysis can be very difficult [42]. Using temporal logic and

model checking in these types of scenarios can decrease the the number of tests

needed, as well as giving the ability to test the various possible system states [42].

Electronic systems used on artificial satellites and aircraft are called avionics

which is a term coming from ‘aviation electronics’. These systems control many

different operations and functions of the devices which they are used in. The

operation of this type of systems has to maintain certain properties at all times.

Temporal logic has been used in avionics software which is concerned with safety

and reliability properties in avionics [45]. Temporal logic is also used in robotics

so that properties and the system model are correct. In health-care, temporal

logic has been used due to the high risk to any error that can be caused by a bug

in a device or a program [45]. Temporal logic has been used in traffic control [46].

To avoid congestion in traffic control, some statements need to be implemented.

An example of these statements is a statement like ’always avoid traffic’ can be

implemented using temporal logic. Testing is not enough in these kinds of systems

as testing only shows presence of bugs not their absence.

Concurrency is a topic that has been considered for a number of decades, and

indeed has seen increased interest in accordance with the rise in new mobile tech-

nologies. The data accessed by any transaction should qualify and meet certain
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conditions upon completion of the transaction (when the transaction commits).

Different algorithms are used in this field to accomplish this task. In [12], a rep-

resentation of how multi-step transactions can access data items infinitely many

times is given.

In [47], the concurrency control between mobile transactions and update trans-

actions was studied and a protocol proposed to ensure the serializability of sched-

ules. Its main goal was to ensure data consistency and maximize data currency for

mobile transactions. An extensive simulation was undertaken and its performance

compared with the results of other methods. In [48], a timestamp-based concur-

rency control protocol was used to maintain the data consistency of broadcast

transactions. This research also made an attempt to reduce the abort rate to min-

imize concurrency control. The results of associated simulation were compared

to another protocol to demonstrate the efficiency of protocol proposed therein.

Another protocol was developed in [49] for broadcast transactions that allowed

hopeless transactions to be discarded. The main goal was to decrease transaction

restart rates and increase system throughput, as compared with other protocols,

through the simulation results. All of these protocols relied on the use simulations

for their protocols, which could potentially contain undiscovered errors. By con-

trast, we will use model checking, which explores all possible system states in a

brute-force manner.

Research into modelling infinite histories was initially reported in [50], which

covered transactions that repeated infinitely often. In [12], modelling infinite his-

tories of multistep transactions was studied for mobile transactions. This research

used linear temporal logic (LTL) in specifying the properties of these transactions.

Partial-ordered temporal logic (POTL) was used to specify concurrent database

transactions in [51], whilst the specification of this type of transaction was achieved

using quantified-propositional temporal logic (QPTL) in [52]; in [53], LTL was

used. A monadic fragment of first-order temporal logic was used to specify the

concurrent transactions in [54]. All of these logics are of exponential space com-

plexity and, with the exception of LTL, are at worst undecidable. An advantage

of LTL is the ability of available model checkers to use it; a disadvantage of these

logics, again with the exception of LTL, is that it is impractical to demonstrate

even basic serializability [12].

Distributed network routing algorithms deal with directing and redirecting

messages between the different network routers and end points [17]. The router’s

job is to send the message to one of it’s neighbours with which it has a connection in

order to deliver the message to its destination [17]. A fundamental algorithm which

can also be also be used for routing is the flooding algorithm [18]. Flooding forms

the basis of many important distributed processes, for example, the construction
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of BFS trees which are used in the work on distributed Leader Election [19]. The

flooding algorithm utilizes every available path in the network [20]. In flooding,

a message is sent from one node to all of its neighbours. Those neighbours which

receives a message will forward the message to all of its neighbours except the

one(s) from which it was originally received [21, 20, 18, 22].

Dealing with timing in processes events is very important to determine the

sequence of events timing. When dealing with events within a process, the local

clock can be used to determine the timing of different events. The difficulty

comes when dealing with distributed processes, where time synchronization is

very difficult. Processes in distributed systems communicate with each other using

messages. the event of sending a message from one process to another leads to

an event of a message being delivered at the recipient process. An event of a

message being received happens only after an event of sending a message originally

happened at the sender. If we have two processes, a and b, and process a sends a

message to process b, we can say that if process b receives a message from process

a, then process a must have sent the message to process b before process b received

it.

To solve the problem of time synchronization in distributed systems, in 1978,

a computing scientist, Leslie Lamport, introduced what is called logical clocks

to synchronize processes in distributed systems [55]. These clocks can be used

to record causality which means that some events in a distributed system must

always occur before other events, which means that the event that happened

before caused the event that happened after to occur. The ‘happens-before’ logical

relationship among pairs of events is denoted by →. We can represent a message

m sent from process a to process b as: send(m) → receive(m) According to

Lamport’s solution, a timestamp is associated with every event that happens in

every process across the entire distributed system. This is achieved by having a

local clock (or counter) in each process and associating a timestamp with every

event in that process. If we have two processes Pi and Pj with local clocks Ci and

Cj, respectively, and Pi sends a message to Pj where a is the send event and b is

the received event, then Ci(a) < Cj(b). This is achieved by setting Cj(b) to the

following: Cj(b) = max(Ci(a) + 1, Cj(b)).

Expanders are a very important class of graphs (having the property of being

simultaneously sparse and well connected) that have applications in various areas

of computer science and mathematics; for instance, in the design and analysis

of communication networks, cryptography, error-correcting codes, pseudorandom-

ness, complexity, coding theory, metric embeddings, etc. (for details, see this well-

known survey [56]). For example, in the context of distributed computer networks

they have been used for building censorship-resistant networks [57, 58], fault toler-
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ant networks [59], efficient (Byzantine) agreement and leader election algorithms

[60, 61, 62, 63], analysing information spreading, etc. [64]. Thus, even the efficient

construction (in static or dynamic fault-tolerant settings) of expander networks is

an important line of research [65, 66, 67, 68, 69].

Distributed systems can be specified as a combination of the specifications used

for constituent components by using well-studied process calculi approaches such

as CSP [1], CCS [2], the π-calculus [70], the Ambient Calculus [71] and I/O auto-

mata [72]. These methods are useful when components have significant internal

actions/states that affect external actions but which need to be abstracted away to

demonstrate the properties of their external behaviour. In this thesis, our interest

is in the network flooding algorithm where individual components, in this case

physical nodes in a network, have a minimal number of internal states. The global

properties that must be demonstrated derive their complexity from the topology

of the associated network graph. It may be difficult to achieve a desirable global

topology as some form of composition of components, and may necessitate further

proofs to show that the topology has indeed been achieved. Here, we choose a

more direct logic-based approach, specifying the overall system - algorithm and

network topology - as a set of temporal logic constraints in order to demonstrate

the required properties. This has the added benefit that a different network to-

pology can, if required, be easily specified by changing a single constraint, rather

than many components, in order to achieve the same effect.

3.3 Motivation

One of the most difficult challenges for software engineering is to manage the

complexity of the algorithms and software found in concurrent systems. Network

systems have come to prominence in many aspects of modern life, and there-

fore software engineering techniques for treating concurrency in such systems has

gained in importance. Considerable effort was expended in previous research in the

attempt to increase performance in concurrent system environments and network

algorithms. The specification of network algorithms and their safety and liveness

properties through the use of formal methods is the ultimate aim of the research

presented in this thesis. Temporal logic has proved to be a successful technique

when used in formal methods, and which has practical application due to the

availability of powerful model checking tools such as the NuSMV model checker.

We will investigate the specification and verification of network algorithms using

temporal logic and model checking. In the first part of this thesis, we will demon-

strate the safety property with regards to the data consistency or serializability of

a model describing the execution of an unbounded number of concurrent transac-
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tions over time which use temporal logic. The particular interest here is that these

concurrent transactions could represent software schedulers for an unknown num-

bers of transactions being executed across a network. The second part focusses on

specifying and verifying the liveness properties of networked flooding algorithms.

3.4 Research Methodology

The objective of this research is the specification and verification of network al-

gorithms using linear temporal logic. The main reason for using linear temporal

logic is due to the fact that this method can be extended in order to verify the

histories of an unlimited number of transactions. In addition to this, another ad-

ded benefit is that a different network topology can be easily specified by changing

a single constraint, rather than many components, in order to achieve the same

effect. With the developments of model checkers, NuSMV is powerful tool when

dealing with a large number of states and in verifying real-world systems [73]. In

Linear Temporal Logic (LTL), time is modelled by representing it as a path where

the future is determined. It is used in specifying general reactive and concurrent

systems [74, 75].

In this research, we will model the network algorithm as finite state transition

systems, where the specification is expressed in LTL. Afterwards, automatically

the state space of the state transition system is going to be explored to verify if

the protocol or algorithm satisfies the desired specifications. The model checking

is guaranteed to terminate due to the finite nature of the model. Considering

the power of the model checker and the important element that if any of the

specifications do not hold that a counterexample is given [36]. In this thesis, the

specifications and verification of network algorithms will be modelled as a finite

state machine in NuSMV input language. The protocol transactions and the

network algorithm processes are created based on the behaviour of the protocol or

the algorithm over time. The model will be identified by a set of desired properties

to ensure that the NuSMV model matches these properties, which will be expressed

in LTL. Finally, if the specification of the desired property satisfies all system

behaviours, the model checker will produce TRUE; otherwise, a counterexample

will be given by the NuSMV model checker, representing an error source.



Chapter 4

Network Routing Protocols

4.1 Introduction

Current internet routing protocols differ according to the algorithms used. This

chapter focusses on systems of routers where the the routers are accessed by con-

current transactions. The transactions access and update the routers’ data; it

is vital that this data remains consistent. Because of the high concurrency of

such systems, they are considered system critical, where their failure can lead to

considerable losses. Since different transactions attempt to access the routers at

the same time, it becomes difficult to deal with them due to the importance of

maintaining the integrity of the data being accessed. A protocol is presented in

this chapter that aims to achieve the consistency condition for concurrent trans-

actions, namely serializability. This protocol is checked for cycles in the conflict

graph in terms of the concurrent transactions accessing the data on routers [76].

Due to the availability of powerful model checking tools, temporal logic is used

to specify and verify this protocol. Since routers are naturally ordered in some

given manner, the transactions access them in an ordered manner. A transaction

can access a set of routers, and indeed can skip routers in the set. The routers

so skipped represent ‘gaps’ in the set of routers accessed. By knowing the size

of such gaps in the different transactions, an upper bound can be placed on the

number of transactions that need to be considered and a serializability condition

can be formulated which can then be verified by the model checker.

In the next section, we will present a review of relevant previous work. In

section 4.2, we will discuss concurrent transactions and serializability, in addi-

tion to discussing ‘gap theory’, which underlies our work. In section 4.3, we will

describe the methodology involved in using temporal logic. Section 4.4 presents

the transactional model used in this chapter and gives a detailed description of

how gap theory is used. Section 4.5 describes the protocol. In section 4.6, we

40
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formally define LTL and in Section 4.7 we specify the protocol in LTL. The LTL

specification is coded into NuSMV in Section 4.8 and verifications are made using

the NuSMV model checker, and the subsequent results reported. The last section

gives a number of concluding remarks regarding the sections mentioned above.

4.2 Motivation

s2This chapter focusses on specifying and verifying a protocol for an unlimited

number of multi-step transactions accessing a finite set of routers with different

properties using temporal logic and a model checker. Serializability in concurrent

systems is considered a particularly challenging topic in the field of computer

systems. Due to the strict properties of critical computer-based systems and, in

recent years, the increased number of mobile transactions, our work introduces a

routing protocol that can efficiently detect any breach of serializability should the

routers be accessed by multi-step transactions with gaps. By calculating the sizes

of the gaps in the different transactions, a cycle can be easily detected. This is

because there will be no need to check all the different-sized cycles possible. Our

work benefits from previous research which defined gaps and introduced a theorem

to calculate gap size [77]. This chapter applies this theorem, as introduced in [77],

to routing systems. We model the protocol in temporal logic (LTL) and use the

NuSMV model checker to prove or indeed that the models satisfy the serializability

property.

4.3 Methodology

The objective of this chapter is to specify the correctness, in terms of the serializ-

ability, of concurrent transactions executing on routers’ data, using specifications

written in LTL. The purpose of using temporal logic, such as LTL, is that the

method can verify an unlimited number of transaction schedules. The significance

of temporal logic in computer science is clear, especially in the specification and

verification of critical computer-based systems. The availability of model check-

ers, such as NuSMV, that can be used to model temporal logic properties, and

their capability to dealing with a large number of states and verifying real-world

systems, allow us to verify the correctness of the proposed protocol. To gain a

fully automated verification, the NuSMV model checker will be used to verify

the protocol properties specified in temporal logic. The protocol presented will

be modelled in terms of finite state transition systems whose specifications are

expressed in LTL. The next step will be to explore the state space of the state
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transition system, where it is possible to automatically check if the protocol sat-

isfies its specifications, or otherwise. Using LTL, it is possible to express the

properties that must be fulfilled by the system. The model checker will be used

in the final stage, where it will return a“true” result if the specifications of the

required properties have indeed been satisfied; a counterexample is given by the

model checker to indicate any potential source of error.

4.4 Concurrent Transactions and Serializability

A transaction is a sequence of operations performed on one or more databases

which is representative of a single real-world transition. This section introduces

some of the basics of concurrent data transactions and their histories. In partiuc-

ular, we will be concerned here with an unlimited number of transactions creating

an unlimited number of histories. However, the number of live transactions at any

given point in time will clearly be limited to some finite integer, n.

4.4.1 Concurrent Transactions and Histories

Definition 4.4.1 A multi-step transaction [10] Ti is formed of a sequence of read

and write steps on data items from a totally ordered set of data items Di =

{x1, x2, . . . , xm}, where every read step ri(x) comes before its corresponding write

step wi(x), so that

Ti = ri(x1)wi(x1)...ri(xm)wi(xm).

We assume an infinite set of such transactions, T = {Ti : i ∈ N1}, where N1 is

the set of positive integers over all time.

A schedule, or history, is the sequence of all the steps of the transactions in T

h = . . . , sj, . . . , sj′ , . . . ,

such that each step s of a transaction Ti occurs at most once in h, and any step s′

that comes before s in Ti comes before s in h. The order of the steps in h is denoted

<h, so that if a step sj occurs before a step (of a possibly different transaction) sj′

in h, we have the condition that sj <h sj′.

A history is serial if all the operations of transaction appear together in h, i.e.,

for all steps sj, sj′, sj′′ in h and i ∈ N1, if sj <h sj′′ <h sj′ and sj and sj′ are

steps of Ti, then sj′′ is also a step of Ti.

Given a history h, the conflict graph G(h) of h is a directed graph whose nodes

are equal to the set of transactions T = {Ti : i ∈ N1}, and, for all i, j ∈ N1, there

is an edge from node Ti to node Tj iff one of the following conditions is satisfied:
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(i) a write step in Ti occurs in h before a read step of Tj to the same data item;

(ii) a read step in Ti occurs in h before a write step of Tj to the same data item;

(iii) a write step in Ti occurs in h before a write step of Tj to the same data item.

Two different transactions are said to be conflicting if they require access to a

shared data item and at least one of their operations is a write operation (on

the shared data item). This conflict can leave the database in an inconsistent

state when transactions are running concurrently. To avoid a resulting inconsist-

ent database, some form of scheduling the concurrent transactions is needed. A

history h is said to be serializable if it is equivalent to some serial schedule of the

transactions (see [14]). In this case, the results of executing the transactions yields

the same result as if they were executed in a serial order. Serializable histories

allow greater concurrency than serial histories, leading to higher throughput. It

is well known that in the case of finitely many transactions a history h is serial-

izable iff its conflict graph has no cycles. In [12], Theorem 2.4 shows that in the

case of infinitely many transactions accessing a finite number of data items,the

serializability of their history h also corresponds to acyclicity in the conflict graph

G(h).

4.4.2 Transactions Accessing Data in the Same Order

Serializability of histories can be proved for finitely many transactions in polyno-

mial time [12, 13, 14, 15] by showing that there are no cycles of the transactions

in the conflict graphs. The problem of searching for cycles in conflict graphs

when there is an unlimited number of transactions is that of deciding which finite

number of transactions might form a cycle, as there are infinitely many possible

choices. This problem was addressed in [12], where it was found that if there is a

fixed global total order <D on the finite set of all data items {x1, . . . , xm},

x1 <D . . . <D xm,

accessed by the infinitely many transactions, and transactions are only allowed

to access contiguous data items that respect this order, then the conflict graph

G(h) of an infinite history h has a cycle if, and only if, it has a cycle of length 2

(Theorem 3.7 of [12]). So, if transactions are all of the form:

Ti = ri(xi1)wi(xi1)ri(xi1+1)wi(xi1+1) . . . ri(ximi−1)wi(ximi−1)ri(ximi )wi(ximi )

a history has a cycle iff there is a cycle of length 2, i.e., we only need to consider

the two transactions and two data items that cause the conflict. This somewhat
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restrictive condition on data access was relaxed in the case of infinitely many

transactions generated by a fixed finite number n of transactions iterating infinitely

many times in[77], so as to require that the order of access by transactions respects

the global order but that there could be ‘gaps’ in the sequence of data items

accessed. So, for example, if we have the globally ordered data items

x1 <D x2 <D x3 <D x4,

, a transaction could, for example, access x2 then x4 (here there is a gap as x3 is

not accessed - but this is allowed). However, a transaction could not access, for

example, x3 and then x2 as the global order of access <D would not be respected.

The bound in [77] on the length of cycles in the conflict graphs when there are gaps

in the succession of data items being accessed by transactions is given below. We

will use the notation in Definition 2.5 of [77], where if a set of data items D′ ⊆ D

is denoted by {xa, . . . , xb}, which will mean that xa <D . . . <D xb. Firstly, we

define the ‘gap’ in the data items accessed by a transaction.

Definition 4.4.2 Assume that the transaction Ti accesses a set of data items

Di ⊆ D such that

Di = {xa, . . . , xc}

where xa <D . . . <D xc. Then, the gap Gi of the set Di can be calculated as

follows:

Gi = (c− a+ 1)− (|Di|) (4.1)

where (c − a + 1) is the number of elements in the sequence xa . . . xc, and |Di| is

the cardinality of the set Di [77].

Secondly, the maximum gap G of k (≤ n) transactions is defined as follows:

Definition 4.4.3 Let {Ti : 1 ≤ i ≤ n} be a set of transactions that iterates an

unlimited number of times to constitute infinitely many transactions T = {Ti : i ∈
N}, and let each Ti ∈ T access a set of data items Di. At any given point in time

there exist k transactions, where 1 ≤ k ≤ n, such that

k⋃
i=1

Di = {xa, xa+1, . . . , xu}

where xa <D . . . <D xa + 1 . . . <D xu. The maximum gap G can then be calculated

as follows:

G =

0, ∀i, 1 ≤ i ≤ k,Gi = 0

u− a− 1, ∃i, 1 ≤ i ≤ k,Gi 6= 0.
(4.2)
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The main result is Theorem 3.4 in [77], which states the following:

Theorem 4.4.4 Assume D to be an irreflexively totally ordered set of data items

such that

D = {x1, x2, . . . , xn−1, xn}

which is accessed by a set of transactions T generated by n transactions iterating

an unlimited number of times, as in Definition 4.4.3, and that access the set D

as per Definition 4.4.3. Assume we have a maximum gap G = n − 2 in the set

D denoted by Gn−2 and that there is a cycle in the corresponding conflict graph

G(h). There then exists a cycle of length n, denoted by Cn, in the corresponding

conflict graph G(h).

The following example will explain how we use these definitions and theorems.

Assume that we have five transactions, T1, . . . , T5, accessing the set of data items

D = {x1, x2, . . . , x8}, as in Definition 2.5 of [77], as follows:

D1 = {x2, x3} D2 = {x3, x4},

D3 = {x3, x6} D4 = {x3, x5},

D5 = {x4, x5}.
First we calculate the gap Gi using equation 4.1 in Definition 4.4.2 as follows:

G1 = 3− 2− 2 + 1 = 0, G2 = 4− 3− 2 + 1 = 0,

G3 = 6− 3− 2 + 1 = 2, G4 = 5− 3− 2 + 1 = 1,

G5 = 5− 4− 2 + 1 = 0.

After finding the gaps, we find the maximum gap. The maximum gap is G = 3

(G3). Hence, by Theorem 4.4.4, the maximum cycle will be of length 5 (C5).

Building a precedence graph for the history h of all transactions T1, . . . , T5 will

determine if we have a cycle of length 5 (C5). This method will be used in specify-

ing and verifying the serializability of a routing protocol, where we will be able

to detect a cycle in an efficient manner. Theorem 4.4.4 (Theorem 3.4 in [77]) can

be used in many applications, as discussed in [77]. One of the more important

applications discussed in [77] is that of booking a flight e-ticket through different

agencies. It is clear that destinations are naturally ordered. Booking a ticket from

any place to another will present different options, one of which is where a person

can book a direct ticket, meaning that there will be no transit and thus creating a

gap. Another option is when a ticket is booked that has multi-stop destinations.

In the second situation, there could also be gaps. In the case where the ticket con-

tains all the stops on the path from departure to destination, there is no gap. In
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the following section, we will bear this example in mind when considering routing

protocols.

4.5 Description of the Protocol

An important class of routing protocols is that of administrative protocols, which

we intend to model herein. In our protocol, we will assume that we have different

routers connecting different systems, where the packets are passed through some,

or all, of them from the sending node to the receiving node. The router’s job is to

create a path where the packet will travel from source to destination. The path

consists of the different routers it passes through until it reaches its destination.

The routers are naturally ordered in some manner, where they are presented as

a set D. Each router has its own information table. We denote each router

by ri ∈ D. A packet can travel through two or more routers according to the

path it is set to travel through. A packet path can be set where the packet can

reach the destination by going from the first and closest router (source) to the

router which is closest to the destination (destination) without going through

any other routers. Another scenario is when the path through which a packet

must travel to reach its destination consists of more than two routers. The router

table needs to be updated, through which data is kept consistent. The different

concurrent transactions associated with sending data across a network require this

concurrency where a transaction can check (read) the router or update (write on)

the router. A scheduler needs to be used to avoid conflicting transactions from

stopping the network or corrupting data while sending it across the network. The

scheduler in the proposed protocol needs to maintain serializability. The main

two steps in the transactions that we will be using in our protocol are the read

step and the write step, where accessing and updating the associated data occurs

accordingly.

It is clear that the routers are naturally ordered in some manner. Therefore,

creating a path from router A to router F can include many choices in terms of

the other routers included in the path. In our model, we assume that there can

be either a direct or multi-stop path between two given routers. To represent

this scenario, we assume that we have the set routers D, which here we will call

destinations, where |D| = k are ordered as per Figure 4.1. The set D contains

all destinations starting from location (router) A to end at location F . The next

location from location i is xi, such that xi ∈ D, as illustrated in Figure 4.1. The

first option in creating a path is that the path runs directly from A to F without

passing through any other destinations. We call this a direct path without stop.

Transaction T1 , which represents this case, accesses the set D1 = {A,F}. The
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gap for the set D1 is G1 = k − 2. This path is illustrated as edge 1 in Figure

4.2. The second choice is to have a path from A to B then from B to F , which

is represented by edges 2 and 3 in Figure 4.2. A third choice might be to select

a path from A to B, then from B to C, and finally from C to F . A fourth path

which can be selected might be by going from A to B to C to D to E, and then

finally from E to F ; this path contains all the stops from the initial point A to

the final point F . Here we represent the read step of the transaction as accessing

the destination (router), whilst the write step represents the modification on this

router. The set D represents the ordered routers as defined in Definition 2.5 of

[77]. The number of ignored destinations from the start to the end destination is

represented by the gap, as given in Definition 4.4.2. The maximum gap illustrates

the number of destinations that not accessed in the path where there is any avail-

able path from A to F .

•A −→ •B 99K •i
xi−→ • 99K •F

Figure 4.1: Representation of the set of ordered routers.

•A 2
//

1

,,•B //

4

33•C // •i
xi // • // •F

Figure 4.2: Representation of the set of ordered routers with gaps.

4.6 Temporal Logic

Temporal logic is used to provide reasoning about a changing world [24], where

the formula truth values may vary over time [12]. Facts about past, present,

and future states can be expressed in the formulae of temporal logic. The use

of temporal logic for formal specification and verification of computer systems

was introduced by Amir Pnueli [78]. Temporal logic has been broadly used in

the representation of temporal information because the concept of time is built

into it. Verification of concurrent and reactive systems makes extensive use of

temporal logic [23]. E-commerce and traffic control systems are examples of such

systems where, at the same time, an error in this type of system is considered fatal.

Model checkers for different types of temporal logic have been developed with the
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ability to verify real-world systems in only a short period of time given that these

systems generally contain a very large number of states. Temporal logic is helpful

in the specification of concurrent systems by describing the event ordering over

time. With the exponential growth of technologies and concurrent systems, these

systems have become more complicated and an understanding of their interactions

more important. This means that the specification and verification of some of their

properties are essential [25, 26]. In a paper called “What good is temporal logic?”,

which is considered to be of particular significance in the field, Leslie Lamport

emphasized that the main function of temporal logic lies in modelling concurrent

systems [79]. We will use Linear Temporal Logic (LTL) in the specification and

verification of our routing protocol.

4.6.1 Syntax of LTL

The alphabet of LTL consists of a set of propositional symbols pi, i = 0, 1, 2, . . .,

which in our use will include special read/write step propositional symbols ri(xj), wi(xj),

with i ≥ 1 and j ≥ 1, booleans ¬,∨,∧,>,⊥, and temporal operators X, F, O, G,

U. Formulae in LTL are those generated by:

φ ::= pi|ri(xj)|wi(xj)|¬φ|φ1 ∨ φ2|φ1 ∧ φ2|Xφ|Fφ|Oφ|Gφ|φ1Uφ2

The symbols> and⊥ will also be used to denote true and false values, respectively.

The symbols ⇒ and ⇔ have their usual logical meanings.

4.6.2 Semantics of LTL

Linear Temporal Logic is interpreted over a sequence of states s0, . . . , sa, . . . (a ∈
N). An interpretation of LTL, I(sa), at a given state sa assigns truth values p

Is(a)
i ,

ri(xj)
I(sa) and wi(xj)

I(sa)(∈ {⊥,>}) to the propositional symbols pi, ri(xj) and

wi(xj), respectively. A (Kripke) structure M , as defined in [5], is a sequence of

interpretations I(s0), . . . , I(sa), . . . for the sequence of states. The semantics of

an LTL formula φ is given by a truth relationship M, sa |= φ, which means that

φ holds at state sa in the structure M . The relation |= is defined inductively as

follows:
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M, sa |= pi iff p
I(sa)
i = >

M, sa |= ri(xj) iff ri(xj)
I(sa) = >

M, sa |= wi(xj) iff wi(xj)
I(sa) = >

M, sa |= ¬φ iff M, sa 6|= φ

M, sa |= φ1 ∨ φ2 iff M, sa |= φ1 or M, sa |= φ2

M, sa |= φ1 ∧ φ2 iff M, sa |= φ1 and M, sa |= φ2

M, sa |= Xφ iff M, sa+1 |= φ

M, sa |= Fφ iff there exists k ≥ a such that M, sk |= φ

M, sa |= Oφ iff there exists k ≤ a such that M, sk |= φ

M, sa |= Gφ iff, for all k ≥ a, M, sk |= φ

M, sa |= φ1Uφ2 iff there exists c ≥ a such thatM, sc |= φ2 and, for all a ≤ b < c,M, sb |= φ1

4.7 Specification of Routing Protocol in LTL

In this section, we will specify the routing protocol properties. Assume we have

four transactions T1, T2, T3 and T4 accessing four ordered sets of routers D1, D2, D3

and D4, respectively. These transactions are iterated infinitely often to generate

an infinite history. The data items in the sets represent the different routers. Here,

we represent our protocol using four different transactions accessing the ordered

routers in such a way as to produce a gap in the accesses. The router item sets

are as follows:

D1 = {x3, x4}, D2 = {x3, x4}, D3 = {x3, x5}, D4 = {x4, x5}.

The transactions are as follows:

T1 : {begin1, r1(x3), w1(x3), r1(x4), w1(x4), end1};

T2 : {begin2, r2(x3), w2(x3), r2(x4), w2(x4), end2};

T3 : {begin3, r3(x3), w3(x3), r3(x5), w3(x5), end3};

T4 : {begin4, r4(x4), w4(x4), r4(x5), w4(x5), end4};

Here, we have a gap G1, where one data element (x4) is skipped in transaction

T3, and can create cycles of sizes 2, 3 and 4. Accordingly, we can tell that we will

have a cycle with a length of 3 and we will only be checking for this cycle. The

transactions arrive at the scheduler S in the order T1, T2, T3 and then T4. The
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semantics of the formula ϕ are given by a truth relation M, si |= ϕ, where M is

a (Kripke) structure for LTL which satisfies the basic properties of the histories

given in (P1)-(P5) below. Given a state si, these properties will yield a matching

sequence of steps of reads and writes which becomes true in si, si+1, . . . . These will

be used in conjunction with a LTL specification of the following routing protocol

history, h:

h = r1(x3)w1(x3)r3(x3)w3(x3)r2(x3)w2(x3)r2(x4)

w2(x4)r1(x4)w1(x4)r4(x4)w4(x4)r4(x5)w4(x5)r3(x5)w3(x5)

The property (P6) will be the LTL formulae that specify the existence of a cycle.

We also add to the beginning and ending of the transactions the propositions

begini and endi, respectively, indicating when a transaction begins and ends.

Using temporal logic operators, we encode the properties (P1) - (P6) of the

protocol in LTL. We present an encoded LTL code for every property for all the

transactions below. We only present an example of each property, where this

example is to unfold the LTL formula in NuSMV. The remaining unfoldings are

described in the following section. The properties of the protocol are as follows:

(P1) No two reads without a write in-between

Any transaction which has completed a read step to one data item cannot read

another data item without having it write to the first one prior to the second

read. If x <D y, which means that x precedes y in the data item domain, D, ri(y)

cannot be executed before wi(x) [73]. This property is to maintain the structure

of multi-step transactions as per Definition 4.4.1. We can encode this property

into the LTL formula as follows:

σ1 =
∧
i≥1

∧
x,y∈Di,x<Dy

G[(ri(x)⇒ F (wi(x) ∧ F (ri(y)))]

Taking the case of T1, this means that T1 cannot read x3 and x4, where x3 <D x4,

without having first written to x3. This is encoded into LTL in NuSMV as:

LTLSPEC G (T1=r1x3 -> (F (T1=w1x3 & F (T1=r1x4))))

We can also write it in another way as:

LTLSPEC G (((T1=r1x4) & O(T1=r1x3)) -> O(T1=w1x3))

(P2) A write step happens if an item was read

A transaction Ti can only write to x if it has read x beforehand [73].

σ2 =
∧
i≥1

∧
x∈Di

G[(wi(x)⇒ O(ri(x)))]
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Taking the case of T1, this means that if T1 accomplished a write step on x3, it

must have previously read x3 to ensure that we have read and write steps to each

data item x. This is encoded into LTL in NuSMV as follows:

LTLSPEC G ((T1=w1x3) -> O(T1=r1x3))

(P3) A step remains true until the next operation of the same transac-

tion itself becomes true

No changes will be made to a read/write step until the next operation in Ti be-

comes true, i.e., if ri(x)/wi(x) is true, it is unchanged until the next step, where

x <D y, becomes true [73].

σ3 =
∧
i≥1

∧
x∈Di

G[wi(x)⇒ ¬(ri(x))] ∧
∧
i≥1

∧
x,y∈Di,x<Dy

G[ri(y)⇒ ¬(wi(x))]

If T1 reads x3, then r1(x3) stays true until T1 has written to x3, at which point

r1(x3) becomes false and w1(x3) becomes true. After that, if T1 needs to read

another data item, say x4, then w1(x3) becomes false and r1(x4) becomes true.

This property is encoded into LTL in NuSMV as follows:

LTLSPEC G(((T1=w1x3) -> !(T1=r1x3)) & G((T1=r1x4) -> !(T1=w1x3)))

(P4) Each successive state includes only one occurrence of a step

This is adopted so as not to have two different steps that are false in a given state,

and after that the same steps are true in a subsequent state [73].

σ4 =
∧
i,i′≥1

1≤j,j′≤m
i6=i′,j 6=j′

G[¬((¬(ri(xj) ∧ ¬ri′(xj′)) ∧X(ri(xj) ∧ ri′(xj′)))

∧ ¬((¬ri(xj) ∧ ¬wi′(xj′)) ∧X(ri(xi) ∧ wi′(xj′)))

∧ ¬((¬wi(xj) ∧ ¬wi′(xj′)) ∧X(wi(xj) ∧ wi′(x
′
j)))]

This property emphasizes the fact that if, say, transaction T1 reads item x3, then it

cannot simultaneously write and read in the next step; that is, only one successful

step can happen in each state. This is written in LTL for T1 in NuSMV as follows:

LTLSPEC G ((T1=begin1) -> X!((T1=r1x3)&(T1=w1x3)))

LTLSPEC G ((T1=r1x3) -> X!((T1=w1x3)&(T1=r1x4)))

LTLSPEC G ((T1=r1x4) -> X!((T1=w1x4)&(T1=end1)))

(P5) Any given transaction can read and write only once to a data item

[73]



CHAPTER 4. NETWORK ROUTING PROTOCOLS 52

For all x ∈ Di, a transaction Ti can only read data item x once and only write to

data item x once.

σ5 = (
∧
i≥1

∧
x∈Di

G¬[ri(x) ∧ F (¬ri(x) ∧ Fri(x))Uendi])

∧ (
∧
i≥1

∧
x∈Di

G¬[wi(x) ∧ F (¬wi(x) ∧ Fwi(x))Uendi])

This means that a transaction can only access the data item once for both the

read and write steps in a given history. If transaction T1 writes on data item x3

having previously read x3, it is not allowed to read x3 again until transaction T1

ends. This is encoded into LTL as follows:

LTLSPEC G ((T1=w1x3 & O(T1=r1x3)) -> (F!(T1=r1x3)))U(T1=end1)

(P6) There is a cycle of length 3

The conflict graph of the routing protocol is serializable if there is no cycle in the

conflict graph G of a history h that is generated by the protocol. Since we found

a maximum gap G = 1 (G1), this means that we only need to check for a cycle of

length 3 (C3). If we find this cycle, this means that the history is not serializable.

To achieve this, we use the following LTL formula:

σ6 =
∧

i,j,k≥1
i 6=j 6=k

∧
x,y∈Di
z∈Dj,Dk
y∈Dk,Di

! G[(ri(x) ∨ wi(x))⇒ F (wj(x) ∨ (wj(x) ∧ (wj(z) ∨ rj(z))))⇒

F (wk(x) ∧ wk(z) ∧ wk(y) ∨ (wk(x) ∧ (wk(z) ∧ (wk(y)))⇒ F (wi(y)]

In this LTL formula we are looking to see if we can have a cycle of length 3. A

cycle can be produced by three or more transactions where the first transaction

conflicts with the second, creating an edge from the first to the second transaction

in the conflict graph, and where the second transaction conflicts with the third,

similarly creating an edge from the second to the third transaction in the conflict

graph. Finally, the third transaction conflicts with the first, creating an edge from

the third to the first transaction in the graph. In this scenario, we will have a cycle

of length 3 which matches our goal. This LTL formula will look for a similar match

according to the transactions available. This is encoded into LTL in NuSVM as

follows:

LTLSPEC !G((T1=r1x3)->F(T3=w3x3)->F(T2=w2x3)->F(T1=w1x4))

This will check whether there is no cycle of this form. This will detect the cycle

T1T3T2T1 of length 3. As a result, the NuSMV model checker will give a counter-

example stating that this condition has not been satisfied, which means that it
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is not the case that we do not have this cycle, i.e., we have a cycle. The error is

shown in Figure 4.3. If we remove the ! from the beginning, this will not cause an

error, and instead we will have a result that is returned as being true.

Figure 4.3: Counterexample on cycle T1T3T2T1.

The following LTL formula in NuSMV will check if there is a cycle of length 3

formed as T1T2T4T1:

LTLSPEC !G((T1=r1x3)->F(T2=w2x3)->F(T4=w4x4)->F(T1=w1x4))

The result in Figure 4.4 indicates a counterexample, which means that this cycle

exists.

Figure 4.4: Counterexample on cycle T1T2T4T1.

The following will check if there is a cycle of length 3 formed as T2T1T4T2:

LTLSPEC !G((T2=r2x3)->F(T1=w1x3)->F(T4=w4x4)->F(T2=w2x4))
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Figure 4.5 shows a result that indicates a counterexample, which again means that

this cycle exists.

Figure 4.5: Counterexample on cycle T2T1T4T2.

The following formula will check if there is a cycle of length 3 formed as T3T2T4T3:

LTLSPEC !G((T3=r3x3)->F(T2=w2x3)->F(T4=w4x4)->F(T3=w3x5))

Figure 4.6 indicates that a counterexample is given, which means that this cycle

exists.

Figure 4.6: Counterexample on cycle T3T2T4T3.

The following formula will check if there is a cycle of length 3 formed as T3T1T4T3:

LTLSPEC !G((T3=r3x3)->F(T1=w1x3)->F(T4=w4x4)->F(T3=w3x5))

Figure 4.7 indicates that a counterexample is given, which means that this cycle

exists.
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Figure 4.7: Counterexample on cycle T3T1T4T3.

The following formula will check if there is a cycle of length 3 formed as T3T1T4T3:

LTLSPEC !G((T4=r4x4)->F(T2=w2x4)->F(T3=w3x5)->F(T4=w4x5))

Figure 4.8 indicates that a counterexample is given, which means that this cycle

exists.

Figure 4.8: Counterexample on cycle T3T1T4T3 .

4.8 Verification of the Routing Protocol using

the NuSMV model checker

We will use the NuSMV model checker [80] to determine whether the protocol

specifications expressed in LTL hold, or otherwise. The model checker will return

a true result if the specification of the required property conforms with all system

behaviours; otherwise, a counterexample will be given by NuSMV that represents
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the error source. Encoding the protocol in LTL is shown in Appendix A. We will

first explain some keywords and variables used in the model. We used MODULE

move(Tr,n,Ta,Tb,Tc). The variables (Tr,n,Ta,Tb,Tc) represent:

Tr: a transaction that is currently in process.

n: an integer indicating the number of the transaction.

Ta, Tb, Tc: other transactions that are waiting in the queue.

T1,T2,T3, T4: transactions number one, two, three and four.

r1x1: T1 reads item x1.

w1x1: T1 writes on item x1.

4.9 Conclusion

In this chapter, we have presented a protocol to be used in routing administration.

The importance of this work is in the different ways routers can be accessed by an

unlimited number of concurrent transactions, and how correctness (serializability)

can be proved when there are gaps in successive accesses to routers using the

results in [77]. We have given the specification and verification of the protocol

using LTL, which was then coded into the NuSMV model checker. In order to

prove serializability, so as to determine if a conflict graph contains a cycle when

the number of transactions is unlimited, we computed the gaps in router accesses

from which the specific length of cycle to be checked was calculated, rather than

searching for cycles of all possible lengths. The anticipated benefits of this work

are in the verification of administrative routing protocols. Despite the contribution

of this research, and indeed its different potential applications, it is limited by the

order in which the transactions have to access the data items. This opens the door

to further research in this area. Future work will consider other situations where

data is accessed in a different manner.



Chapter 5

Synchronous Network Flooding

5.1 Introduction

As discussed in the literature in Section 3.2, distributed systems can be specified

as a composition of the specifications of their constituent components using well-

studied process-calculi approaches such as CSP [1], CCS [2], the π-calculus [70],

the Ambient Calculus [71] and I/O automata [72]. These methods are useful

when components have significant internal actions/states that affect the associated

external actions, but which need to be abstracted away to prove the properties

of the external behaviour. Our interest in this chapter is the network flooding

algorithm where individual components, in this case physical nodes in a network,

have minimal internal states. The global properties to be proved derive their

complexity from the topology of the network graph. It may be difficult to achieve

a desired global topology as some kind of composition of components, and may

necessitate an extra proof to show that the topology has indeed been achieved.

We choose a more direct logic-based approach specifying the overall system - both

algorithm and network topology - as a set of temporal logic constraints in order

to prove the required properties [81]. This has the added benefit that a different

network topology can be easily specified by changing a single constraint, rather

than many components, in order to achieve the same effect.

This chapter is structured as follows. In Section 5.2, we describe the synchron-

ous flooding algorithm. Section 5.3 then defines the temporal logic and operators

used in the specification. The specification for the network flooding is given in

Section 5.4, along with the proof obligation for the basic property of termination.

This is applied when comparing termination in different network topologies in

Section 5.5. A worked example is described in Section 5.6, as well as its proof in

NuSMV. Some concluding remarks are given in Section 5.7.

57
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5.2 The Synchronous Flooding Algorithm

Distributed network routing algorithms deal with directing and redirecting mes-

sages between the different network routers and end points [17]. We refer to

routers and endpoints as nodes. Synchronous distributed algorithms assume a

‘global clock’ where actions happen in clock ticks, or rounds. This means that the

network has bounded link delays and lockstep synchronization with pulses of the

global clock. In the message synchronization property, a message sent from node

v to neighbour u at pulse p of v must be delivered to u before pulse p + 1 of u

[20]. In the first round, a message is sent from the initial node to its neighbours,

as shown in Figure 5.1(b). In the second round, the neighbours which receive this

message will forward it to all of its neighbours except the ones from which it was

received. Eventually, all the nodes in the network will receive the message in a

particular round.

In this chapter, we investigate ‘memoryless’ flooding; that is, a node does

not explicitly remember if it has previously taken part in the process or which

other nodes have previously interacted with it. This may happen, for example,

if the node does not have enough memory to store its past history or there are

multiple flooding operations occurring simultaneously which it does not want to,

or cannot, distinguish. It does, however, know which node(s) sent it the message in

the present round and forwards copies of the message to all its other neighbours.

Note that if in any round a node receives the message from all its neighbours,

it does not need to do anything in the subsequent round. If at some point no

node forwards the message we say that flooding has terminated. It is hard to be

sure whether the flooding process will ever terminate, especially in complicated

topologies with cycles. Figures 5.1(a)-(c) demonstrate the synchronous flooding

algorithm in a network of four nodes. Nodes which hold a message “M” are double-

circled. Figures 5.2 (a)-(e) demonstrates another example of the synchronous

flooding algorithm in a network of three nodes; again, nodes which hold a message

“M” are double-circled.
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(a) Round 0

(b) Round 1

(c) Round 2

Figure 5.1: Flooding example 1
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(a) Round 0 (b) Round 1 (c) Round 2

(d) Round 3 (e) Round 4

Figure 5.2: Flooding example 2

5.3 Linear Temporal Logic

In both this and the following chapters we will use standard Linear Temporal

Logic with the temporal operators defined below.

5.3.1 Syntax of LTL

The LTL alphabet consists of a set of propositional symbols Pi, i = 0, 1, 2, . . . (we

will use different capital letters to P in different contexts), booleans ¬,∧,>,⊥,
and temporal operators X, Y, F, G. Formulae in LTL are those generated by:

φ ::= Pi|¬φ|φ1 ∧ φ2|Xφ|Y φ|Fφ|Gφ

The Boolean connectives ∨, ⇒ and ⇔ will be defined in terms of ¬ and ∧ in the

usual manner.

5.3.2 Semantics of LTL

Linear Temporal Logic is interpreted over a sequence of temporal states (which

we sometimes refer to as ‘points in time’, even though they may not themselves

represent real time) s0, . . . , sa, . . . (a ∈ N). An interpretation of LTL, I(sa), at

a given state sa assigns truth values P
Is(a)
i to the propositional symbols Pi. A
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structure M is a sequence of interpretations I(s0), . . . , I(sa), . . . for the sequence

of states. The semantics of the LTL formula φ are given by a truth relationship

M, sa |= φ, which means that φ holds at state sa in the structure M . The relation

|= is defined inductively as follows:

M, sa |= Pi iff p
I(sa)
i = >

M, sa |= ¬φ iff M, sa 6|= φ

M, sa |= φ1 ∧ φ2 iff M, sa |= φ1 and M, sa |= φ2

M, sa |= Xφ iff M, sa+1 |= φ

M, sa |= Yφ iff M, sa−1 |= φ (a > 0)

M, sa |= Fφ iff there exists k ≥ a such that M, sk |= φ

M, sa |= Gφ iff, for all k ≥ a, M, sk |= φ

Intuitively, the temporal operator X reads as “in the next state”, Y reads as “in

the previous state”, F reads as “in some future state”, and G reads as “in all

future states”. A structure M is a model of an LTL formula φ if

M, s0 |= φ

In general, a given LTL formula φ will have many models. The behaviour of

network flooding in different contexts (e.g., in different network topologies) is a

set of models. We specify such network flooding in temporal logic by giving a LTL

formula φ whose models correspond exactly to the behaviour exhibited by network

flooding. We can then use this φ to construct further LTL formulae (called ‘proof

obligations’) that assert the properties of φ such as when flooding behaviour leads

to termination.

5.4 Specification of the Synchronous Flooding

Algorithm

In the specification here, temporal logic states will correspond to rounds in the

progression of the network flooding. Successive rounds change the state of the

network; for example, the nodes in the network that are receiving messages in

a particular round. Let N be the set of nodes in the size of the network under

consideration. The following subsections give the propositions and constraints on

these nodes that define the behaviour of the rounds.
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5.4.1 Edge Propositions

The set of graph edge propositions is given by:

{E{g,h} | g, h ∈ N, g 6= h}

Intuitively, E{g,h} is true if there is an edge between the distinct nodes g and h

in the graph. Note that we have used a set {g, h} as a subscript in E{g,h}, which

is to indicate that E{g,h} is the same proposition as E{h,g}, i.e., edges in N are

undirected, and to say that an edge from g to h is the same as saying that there

is an edge from h to g. We can specify whether two nodes g and h have an

edge between them by specifying whether E{g,h} is True or False. In this way,

a specific graph topology can be defined one edge at a time. Secondly, we can

give general Boolean constraints on the edge propositions. The set of solutions for

the constraints is the set of combinations of the edge propositions that are True,

corresponding to a set of graph topologies for N . As a third possibility, we may

choose not to specify any Boolean constraints on edge propositions if we want to

prove some particular network flooding property for all graph topologies on N .

However, the use of edge propositions does require a basic temporal constraint,

namely that the Boolean value of an edge variable is time-independent. Nodes

g and h have an edge between them either always or never, as edges represent

physical connections that do not change with time. This temporal constraint is

given by:

φe ≡
∧

g,h∈N,
g 6=h

(GE{g,h} ∨G¬E{g,h})

5.4.2 Send-message Propositions

Messages may be sent between nodes g and h in both directions. Thus, we have

the send propositions

{Sg,h | g, h ∈ N, g 6= h}

where Sg,h is true in a particular round if node g sends a message to node h in

that same round. As sending messages between nodes is directional, Sg,h and Sh,g

are different propositions which may differ on their respective truth values in each

round. Also, the sending of messages is time-dependent, so the truth value of a

particular send will vary over time. The basic constraint on send propositions

relates to the edge propositions, as messages can only be sent from node g to

node h along an edge from g to h, and accordingly E{g,h} has to be True. The
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constraint is:

φs ≡
∧

g,h∈N,
g 6=h

G(Sg,h ⇒ E{g,h})

This states that, at any given point in time, if a message is sent from node g

to node h, i.e., that Sg,h is True, then there must be an edge between g and

h at that point in time, i.e., E{g,h} is True. This constraint and, indeed, edge

propositions in general are only needed when a class of graph topologies for N is

being considered where edges may be present in particular topologies in the class

but absent in others. If a fixed graph topology is under consideration, we do not

need edge propositions as we can explicitly restrict the set of send propositions to

pairs of nodes between which we know edges exist.

5.4.3 Message-received Propositions

We have a set of propositions Mg for the nodes g ∈ N

{Mg | g ∈ N}

such that, in any given round, Mg is True if node g receives a message. In our

model of the flooding algorithm, after the initial round, node g holds a message if

it has been received by g in that same round, i.e., some neighbour node h sends

a message to g in that round - see the first conjunct in φm below. However, node

h will only send a message to g if g did not send a message to h in the previous

round - see the second conjunct in φm below.

φm ≡ (XG
∧
g∈N

(Mg ⇔
∨
h∈N,
h 6=g

Sh,g)) ∧ (XG
∧

g,h∈N,
g 6=h

(Sg,h ⇔ Y(Mg ∧ ¬Sh,g)))

5.4.4 Initial Conditions

The initial temporal state corresponds to the initial round when some initial node

holds a message which is then sent to all its neighbours in the next round, thus

triggering network flooding. Therefore, Mg will be true for exactly one i0 ∈ N and,

as our send-message propositions are True in the round that the corresponding

message is received, no send-message proposition is True in the initial round.

These two conditions are captured in the two outer-level conjuncts below:

φi ≡ (Mi0 ∧
∧

g∈N,g 6=i0

¬Mg) ∧ (
∧

g,h∈N

¬Sg,h)



CHAPTER 5. SYNCHRONOUS NETWORK FLOODING 64

If we want to vary the initial node, we can use the following variable version:

φiv ≡ (
∨
i∈M

Mi ∧
∧

g∈N,g 6=i

¬Mg) ∧ (
∧

g,h∈N

¬Sg,h)

5.4.5 Topological Constraints

In 4.1, we stated that edges of N can be defined in one of three ways:

(i) explicitly define a single topology for N by listing the edges;

(ii) implicitly define a class of topologies for N by defining the constraints on

edges in N ;

(iii) allow for all topologies in N .

Case (iii) means that there are no constraints. We give a worked example of case

(i) later in the chapter. Here, we consider case (ii), and show how common classes

of network topologies that are of interest in network flooding can be defined by

Boolean constraints on the propositions E{g,h}(g, h ∈ N).

5.4.5.1 Regular Graphs

Suppose that N has n nodes:

N = {g1, . . . , gn}

A regular graph with nodes N has degree m, where 1 ≤ m ≤ n−1, i.e., every node

g ∈ N has m neighbours. The class of all regular topologies in N is specified by

the following condition on the edge propositions below. We denote the cardinality

of a set H by |H|.

φtop ≡
∨

1≤m<n−1

∧
g∈N

∨
H⊆N−{g},
|H|=m

(
∧
h∈H

E{g,h} ∧
∧
h/∈H

¬E{g,h})
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For the set of nodes N = {1, 2, 3, 4}, φtop instantiates to:

( ((E{1,2} ∧ ¬E{1,3} ∧ ¬E{1,4}) ∨ (E{1,3} ∧ ¬E{1,2} ∧ ¬E{1,4}) ∨ (E{1,4} ∧ ¬E{1,2} ∧ ¬E{1,3}))
∧ ((E{2,1} ∧ ¬E{2,3} ∧ ¬E{2,4}) ∨ (E{2,3} ∧ ¬E{2,1} ∧ ¬E{2,4}) ∨ (E{2,4} ∧ ¬E{2,1} ∧ ¬E{2,3}))
∧ ((E{3,1} ∧ ¬E{3,2} ∧ ¬E{3,4}) ∨ (E{3,2} ∧ ¬E{3,1} ∧ ¬E{3,4}) ∨ (E{3,4} ∧ ¬E{3,1} ∧ ¬E{3,2}))
∧ ((E{4,1} ∧ ¬E{4,2} ∧ ¬E{4,3}) ∨ (E{4,2} ∧ ¬E{4,1} ∧ ¬E{4,3}) ∨ (E{4,3} ∧ ¬E{4,1} ∧ ¬E{4,2})) )

∨
( ((E{1,2} ∧ E{1,3} ∧ ¬E{1,4}) ∨ (E{1,3} ∧ ¬E{1,2} ∧ E{1,4}) ∨ (E{1,4} ∧ E{1,2} ∧ ¬E{1,3}))
∧ ((E{2,1} ∧ E{2,3} ∧ ¬E{2,4}) ∨ (E{2,3} ∧ ¬E{2,1} ∧ E{2,4}) ∨ (E{2,4} ∧ E{2,1} ∧ ¬E{2,3}))
∧ ((E{3,1} ∧ E{3,2} ∧ ¬E{3,4}) ∨ (E{3,2} ∧ ¬E{3,1} ∧ E{3,4}) ∨ (E{3,4} ∧ E{3,1} ∧ ¬E{3,2}))
∧ ((E{4,1} ∧ E{4,2} ∧ ¬E{4,3}) ∨ (E{4,2} ∧ ¬E{4,1} ∧ E{4,3}) ∨ (E{4,3} ∧ E{4,1} ∧ ¬E{4,2})) )

5.4.5.2 Expander Graphs

Expanders are a very important class of graphs (having the property of being

simultaneously sparse and well connected) that have applications in various areas

of computer science and mathematics; for instance, in the design and analysis

of communication networks, cryptography, error-correcting codes, pseudorandom-

ness, complexity, coding theory, metric embeddings, etc. (for details, see this well-

known survey [56]). For example, in the context of distributed computer networks

they have been used for building censorship-resistant networks [57, 58], fault toler-

ant networks [59], efficient (Byzantine) agreement and leader election algorithms

[60, 61, 62, 63], analysing information spreading, etc. [64]. Thus, even the efficient

construction (in static or dynamic fault-tolerant settings) of expander networks is

an important line of research [65, 66, 67, 68, 69].

Intuitively, an ‘expander’ graph N is one where every subset S ⊆ N of vertices

expands ‘quickly’; how quickly it expands is determined by an ‘expansion para-

meter’. A graph N has expansion parameter ε if, for every subset S ⊆ N with

|S| ≤ |N |/2, the set of edges connecting nodes in S with nodes not in S is greater

than or equal to ε|S|. We can constrain the network N to topologies with the

expansion parameter ε by the following Boolean constraint on propositions:

φtop ≡
∧
S⊆N,

|S|≤|N|/2

∨
T⊆N{×}N,
|T |≥ε|S|

∧
{g,h}∈T

(E{g,h} ∧ ({g, h} ∪ S 6= ∅) ∧ ({g, h} * S))

Here, the set N{×}N is the set of ordered pairs of nodes (g, h) in the Cartesian

product N×N viewed as two-element sets {g, h} (so that {g, h} = {h, g}, whereas

(g, h) 6= (h, g)). Also, {g, h} ∪ S 6= ∅ and {g, h} * S are evaluated as being True

or False accordingly in each respective conjunct. The constraint essentially states

that corresponding to every subset of nodes S, with |S| ≤ |N |/2, there is a set of
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edges T , where |T | ≥ ε|S|, each of which connects a node in S with a node not in

S.

5.4.6 Termination

The required property that first comes to mind in network flooding is termination.

Termination occurs if, in some round, no node in the system receives a message.

In our temporal model, this means that no message-received proposition mg will

be true. So, if network flooding is modelled by φe, φs, φm, φi and φtop as above,

then the proof obligation for termination is:

φe ∧ φs ∧ φm ∧ φi ∧ φtop ⇒ F
∧
g∈N

¬mg

5.5 Applications

We use our specification of flooding to compare the time it takes for the flooding

algorithm to terminate in different topologies. Whilst standard LTL is not de-

signed to resolve timing issues, we can determine which network topology takes

fewer rounds to terminate by superimposing the temporal behaviour of the net-

work in one topology on the behaviour of another. So, the temporal model has two

cases of network flooding, on the same set of nodes but with different connections

and proceeding together in rounds in a lock-step fashion, and with two messages

- one for each topological case - circulating in the network. We can illustrate this

model with a simple example. Suppose that N = {0, 1, 2} and the two topologies

are constructed as shown in the following figure:

Figure 5.3: Flooding on two topologies

Assume 0 is the initial node in both cases. We illustrate the progression of

the rounds in terms of the send-message propositions Sg,h and message-received
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propositions Mg. Distinguishing these propositions for the two topologies, we have

the following propositions:

Topology1 : S1
0,1, S

1
0,2, S

1
1,2,M

1
0 ,M

1
1 ,M

1
2

Topology2 : S2
0,1, S

2
1,2,M

2
0 ,M

2
1 ,M

2
2

The propositions that are True in successive rounds in the two models are shown

in Figures 5.4(a)-(d) below. Nodes which hold a message are circled.
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(a) Round 0

(b) Round 1

(c) Round 2

(d) Round 3

Figure 5.4: Flooding rounds in two topologies

Note that in round 3 M1
0 is True, whereas M2

0 , M2
1 , or M2

2 are not True. So,

Topology2 terminates before Topology1 as there is a round in which no node holds

a message in Topology2. whereas a node still holds a message in Topology1. We
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give the formal proof that has to be carried out in the general case below.

Given two topologies Topology1 and Topology2 on a set of nodes N , the proof

obligation that Topology1 terminates before Topology2 is:

(φ1
e ∧ φ1

s ∧ φ1
m ∧ φ1

i ∧ φ1
top) ∧ (φ2

e ∧ φ2
s ∧ φ2

m ∧ φ2
i ∧ φ2

top)⇒

F((
∧
g∈N

¬M1
g ) ∧ (

∨
g∈N

M2
g )) (5.1)

Here, φ1
e, φ

1
s and φ1

m relabel the propositional variables from φe, φs and φm of

subsections 5.4.1, 5.4.2 , 5.4.3 respectively, adding a superscript 1, whilst φ2
e, φ

2
s

and φ2
m do the same but with a superscript 2. The formulae φ1

i and φ2
i also possibly

differ in their respective initial nodes, and φ1
top and φ2

top according to the topologies

that they define. In (5.1), we check for validity. So, if φ1
top and φ2

top each define a

range of topologies, (5.1) is True (valid) if all topologies of φ1
top terminate before

all topologies of φ2
top . If (5.1) returns False, then some topology of φ2

top terminates

before some topology of φ1
top . We could then proceed to test if all the topologies

of φ2
top terminate before all those of φ1

top by checking the validity of:

(φ2
e ∧ φ2

s ∧ φ2
m ∧ φ2

i ∧ φ2
top) ∧ (φ1

e ∧ φ1
s ∧ φ1

m ∧ φ1
i ∧ φ1

top)⇒

F((
∧
g∈N

¬M2
g ) ∧ (

∨
g∈N

M1
g )) (5.2)

It is possible that (5.2) would also return False, in which case some topologies

of φ1
top would terminate before some topologies of φ2

top , and further that some

topologies of φ2
top would terminate before some topologies of φ1

top .

Apart from varying topologies of the network N , we could also vary the initial

node. This can be achieved by replacing the initial conditions φi that have a

fixed initial node, by initial conditions φiv that vary the initial node, in the proof

obligation. Thus,

(φ1
e ∧ φ1

s ∧ φ1
m ∧ φ1

iv ∧ φ
1
top) ∧ (φ2

e ∧ φ2
s ∧ φ2

m ∧ φ2
iv ∧ φ

2
top)⇒

F((
∧
g∈N

¬M1
g ) ∧ (

∨
g∈N

M2
g )) (5.3)

is valid if, for all topologies φ1
top starting from any initial node, flooding terminates

before flooding terminates in any topology φ2
top with any initial node.
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5.6 Worked Example

Here, we compare the termination of two topologies on a network of five nodes

through the use of formal proofs. The two network topologies for this example are

depicted in Figure 5.5.

Figure 5.5: Two topologies containing five nodes

To check if a property is met, after creating the system model and its properties

we encode it into the model checker NuSMV to verify if the property is satisfied.

Synchronous flooding block diagram representing this is shown below in Figure

5.6.
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Synchronous 

Flooding Model 

Flooding 

Properties 

Model Checker 

NuSMV 

True 
Counter-

example 

Yes NO 

Topology1  

Topology2  

Property 

satisfied? 
 

Figure 5.6: Synchronous flooding model checking block diagram.

Firstly, we will test to see if one topology terminates before the other, where both

have the initial node 0. As mentioned in 5.4.2, we may optimize the number of

propositions used by only having send-message propositions for the edges that are

present in each of the respective topologies, which is valid in this instance as we

are comparing two fixed topologies. This restriction on send-message variables

for each topology also defines the topology, and thus no additional variable edge

propositions Ei,j are required. Thus, we have the following propositions for the

two topologies in Figure 5.5 above:

Topology1 : S1
0,1, S

1
1,0, S

1
0,2, S

1
2,0, S

1
0,3, S

1
3,0,

S1
0,4, S

1
4,0, S

1
1,4, S

1
4,1, S

1
2,3, S

1
3,2,

M1
0 ,M

1
1 ,M

1
2 ,M

1
3 ,M

1
4

Topology2 : S2
0,1, S

2
1,0, S

2
1,2, S

2
2,1, S

2
2,3, S

2
3,2, S

2
3,4, S

2
4,3, S

2
0,4, S

2
4,0,

M2
0 ,M

2
2 ,M

2
2 ,M

2
3 ,M

2
4

As there are no edge propositions, we ignore φe, φs and φtop and only consider φi

and φm for each topology. Instantiating the definitions of φi and φm of subsections
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5.4.4 and 5.4.3 respectively, yields:

φ1
i ≡ M1

0 ∧ ¬M1
1 ∧ ¬M1

2 ∧ ¬M1
3 ∧ ¬M1

4∧
¬(S1

0,1 ∨ S1
1,0 ∨ S1

0,2 ∨ S1
2,0 ∨ S1

0,3 ∨ S1
3,0∨

S1
0,4 ∨ S1

4,0 ∨ S1
1,4 ∨ S1

4,1 ∨ S1
2,3 ∨ S1

3,2)

φ1
m ≡ (XG( (M1

0 ⇔ S1
1,0 ∨ S1

2,0 ∨ S1
3,0 ∨ S1

4,0)∧
(M1

1 ⇔ S1
0,1 ∨ S1

4,1)∧
(M1

2 ⇔ S1
0,2 ∨ S1

3,2)∧
(M1

3 ⇔ S1
0,3 ∨ S1

2,3)∧
(M1

4 ⇔ S1
0,4 ∨ S1

1,4)) ) ∧
(XG( (S1

0,1 ⇔ Y(M1
0 ∧ ¬S1

1,0))∧
(S1

1,0 ⇔ Y(M1
1 ∧ ¬S1

0,1))∧
(S1

2,0 ⇔ Y(M1
2 ∧ ¬S1

0,2))∧
(S1

0,2 ⇔ Y(M1
0 ∧ ¬S1

2,0))∧
(S1

0,3 ⇔ Y(M1
0 ∧ ¬S1

3,0))∧
(S1

3,0 ⇔ Y(M1
3 ∧ ¬S1

0,3))∧
(S1

0,4 ⇔ Y(M1
0 ∧ ¬S1

4,0))∧
(S1

4,0 ⇔ Y(M1
4 ∧ ¬S1

0,4))∧
(S1

1,4 ⇔ Y(M1
1 ∧ ¬S1

4,1))∧
(S1

4,1 ⇔ Y(M1
4 ∧ ¬S1

1,4))∧
(S1

2,3 ⇔ Y(M1
2 ∧ ¬S1

3,2))∧
(S1

3,2 ⇔ Y(M1
3 ∧ ¬S1

2,3))) )

φ2
i ≡ M2

0 ∧ ¬M2
1 ∧ ¬M2

2 ∧ ¬M2
3 ∧ ¬M2

4∧
¬(S2

0,1 ∨ S2
1,0 ∨ S2

1,2 ∨ S2
2,1∨

S2
2,3 ∨ S2

3,2 ∨ S2
3,4 ∨ S2

4,3 ∨ S2
0,4 ∨ S2

4,0)
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φ2
m ≡ (XG( (M2

0 ⇔ S2
1,0 ∨ S2

4,0)∧
(M2

1 ⇔ S2
0,1 ∨ S2

2,1)∧
(M2

2 ⇔ S2
1,2 ∨ S2

3,2)∧
(M2

3 ⇔ S2
2,3 ∨ S2

4,3)∧
(M2

4 ⇔ S2
3,4 ∨ S2

0,4)) ) ∧
(XG( (S2

0,1 ⇔ Y(M2
0 ∧ ¬S2

1,0))∧
(S2

1,0 ⇔ Y(M2
1 ∧ ¬S2

0,1))∧
(S2

1,2 ⇔ Y(M2
1 ∧ ¬S2

2,1))∧
(S2

2,1 ⇔ Y(M2
2 ∧ ¬S2

1,2))∧
(S2

2,3 ⇔ Y(M2
2 ∧ ¬S2

3,2))∧
(S2

3,2 ⇔ Y(M2
3 ∧ ¬S2

2,3))∧
(S2

3,4 ⇔ Y(M2
3 ∧ ¬S2

4,3))∧
(S2

4,3 ⇔ Y(M2
4 ∧ ¬S2

3,4))∧
(S2

4,0 ⇔ Y(M2
4 ∧ ¬S2

0,4))∧
(S2

0,4 ⇔ Y(M2
0 ∧ ¬S2

4,0))) )

To prove that Topology1 terminates before Topology2 when the initial node is

selected to be node 0, we need to prove (by (5.2) in section 5.4.5 above, ignoring

φe, φs, and φtop) that:

(φ1
m ∧ φ1

i ) ∧ (φ2
m ∧ φ2

i )⇒

F((¬M1
0 ∧ ¬M1

1 ∧ ¬M1
2 ∧ ¬M1

3 ∧ ¬M1
4 ) ∧ (M2

0 ∨M2
1 ∨M2

2 ∨M2
3 ∨M2

4 ))

This proof has been carried out using NuSMV and does indeed return True,

showing that Topology1 terminates before Topology2 when the initial node is

selected to be node 0 for both. Appendix B Section B.2 shows encoding this case

in LTL into the NuSMV model checker. Figure 5.7 shows this result.
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Figure 5.7: Toplogy1 terminates before Topology2 with initial node 0.

To verify our specification, we have also used NuSMV to demonstrate that the

following expression, which states that Topology2 terminates before Topology1

when the initial node is selected to be node 0 for both:

(φ2
m ∧ φ2

i ) ∧ (φ1
m ∧ φ1

i )

⇒ F((¬M2
0 ∧ ¬M2

1 ∧ ¬M2
2 ∧ ¬M2

3 ∧ ¬M2
4 ) ∧ (M1

0 ∨M1
1 ∨M1

2 ∨M1
3 ∨M1

4 ))

is False. Appendix B Section B.1 shows encoding this case in LTL into the

NuSMV model checker. Indeed, NuSMV does return False as shown in Figure

5.8.
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Figure 5.8: Toplogy2 terminates before Topology1 with initial node 0.

As Topology1 has been proved to terminate before Topology2 with initial node

0, we consider the possibility of Topology1 terminating before Topology2 regardless

of the initial node chosen for each. By the discussion in subsection 5.4.4, this means

replacing φ1
i and φ2

i by the following φ1
iv and φ2

iv , respectively:

φ1
iv ≡ (M1

0 ∧ ¬M1
1 ∧ ¬M1

2 ∧ ¬M1
3 ∧ ¬M1

4∨

¬M1
0 ∧M1

1 ∧ ¬M1
2 ∧ ¬M1

3 ∧ ¬M1
4∨

¬M1
0 ∧ ¬M1

1 ∧M1
2 ∧ ¬M1

3 ∧ ¬M1
4∨

¬M1
0 ∧ ¬M1

1¬ ∧ ¬M1
2 ∧M1

3 ∧ ¬M1
4∨

¬M1
0 ∧ ¬M1

1¬ ∧ ¬M1
2 ∧ ¬M1

3 ∧M1
4 )

φ2
iv ≡ (M2

0 ∧ ¬M2
1 ∧ ¬M2

2 ∧ ¬M2
3 ∧ ¬M2

4∨
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¬M2
0 ∧M2

1 ∧ ¬M2
2 ∧ ¬M2

3 ∧ ¬M2
4∨

¬M2
0 ∧ ¬M2

1 ∧M2
2 ∧ ¬M2

3 ∧ ¬M2
4∨

¬M2
0 ∧ ¬M2

1¬ ∧ ¬M2
2 ∧M2

3 ∧ ¬M2
4∨

¬M2
0 ∧ ¬M2

1¬ ∧ ¬M2
2 ∧ ¬M2

3 ∧M2
4 )

So, the proof obligation for Topology1 always terminating before Topology2, for

a random choice of initial nodes, is to check the validity of:

(φ1
m ∧ φ1

iv) ∧ (φ2
m ∧ φ2

iv)⇒

F((¬M1
0 ∧ ¬M1

1 ∧ ¬M1
2 ∧ ¬M1

3 ∧ ¬M1
4 ) ∧ (M2

0 ∨M2
1 ∨M2

2 ∨M2
3 ∨M2

4 ))

where we substitute the φ1
iv and φ2

iv given above. The result of executing the proof

in NuSMV is True, i.e., Topology1 terminates before Topology2 regardless of the

starting nodes chosen. The code is shown in Appendix B Section B.3. This result

is shown in Figure 5.9.

Figure 5.9: Topology1 terminates before Topology2 always.

5.7 Conclusions

We have provided a specification of network flooding in propositional linear tem-

poral logic suitable for proving termination properties. The specification can cater

for any class of graph topologies for a given size of network; it does not cater for

networks of arbitrary size, however. A temporal-logic specification of flooding for

networks of arbitrary size would need to use first-order temporal logic. Although
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first-order temporal logic can specify problems of unlimited size - for example, the

specification of a transactional system over an unbounded number of data items

given in [54] - there are practical and theoretical obstacles to formal verification

in such logics. Even with the specifications here, and the use of one of the most

powerful model checkers available, NuSMV, proofs will only be possible in practice

for fairly small network sizes. Nevertheless, experimentation with network topo-

logies on a small scale can provide insight into the design of networks on a larger

scale. The intended use of the approach here is to facilitate the design of network

hardware and software by experimentation with different topologies and also dif-

ferent code/algorithms at the nodes. The flooding problem gives an example of a

very basic algorithm at a network node - on receipt of a message, a node sends on

the message to all the neighbours from which it did not receive the message. In the

same way as network topologies can easily be changed by changing the topological

constraints, so too can the code/algorithm at nodes be changed by supplying new,

possibly more sophisticated, message-processing constraints, which can then be

verified.



Chapter 6

Asynchronous Network Flooding

6.1 Introduction

In the synchronous model presented in the previous chapter the sending and receipt

of a message occurred in the same unit of time that was used, that is, in the same

‘round’. Here, we introduce the possibility that the sending and receipt of a

message may occur during different time units. If during some unit in time a

message is sent but is not received in that unit in time, we say that the message

is in ‘transit’. The two main primitives will be:

• Tg,h: a message from node g to node h is in transit

• Rg,h: a message from node g to node h is received

The sending of a message represented by the proposition Si,j in the previous

chapter will correspond to a sent message either being in transit or already re-

ceived. Allowing for the possibility of a sent message not being received immedi-

ately gives our model an element of asynchrony. The asynchronous flooding model

will be fashioned by the kind of properties we are interested in proving. As with

the synchronous case, one of our aims is to be able to compare time to termination

for different topologies. However, it is not interesting to compare the termination

time between two (non-deterministic) asynchronous networks as it is fairly easy

to see that flooding in any such non-trivial network with cycles can continue for

an arbitrarily long time. Thus, flooding in any one of two such networks could

terminate before the other by suitably delaying termination.

We are interested in comparing synchronous and asynchronous networks to see

if asynchronicity can result in earlier termination. This means being able to relate

‘rounds’ in the synchronous case to the asynchronous case. We describe a formal

model of asynchrony in Section 6.2 along with a generalized notion of ‘round’

for the asynchronous case. This will be presented as a model in linear temporal

78
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logic in Section 6.3. In Section 6.4, we will give proof obligations to show that

an asynchronous model can terminate earlier than a synchronous model, and use

these proof obligations to verify examples in NuSMV. Section 6.5 discusses the

achievements of this chapter.

6.2 An Asynchronous Network Flooding Model

In order to define ‘rounds’ for an asynchronous model, it is convenient to define

asynchronous flooding formally as a state transition system (S,→), where S are

the states and → is the transition relation, so that we can clearly identify trans-

itions that we want to exclude as rounds. The states in the state transition system

will be sets of actions which we define beforehand.

Definition 6.2.1 Let N be a finite set of nodes of a network. An action on N is

one of the following actions for nodes g,h ∈ N:

A1 an action Tg,h indicating a message is in transit from node g to node h;

A2 an action Rg,h indicating a message from node g to node h is received;

A3 an action Mg indicating a message has been received at node g from some

other node, or g holds a message as the initial node.

Definition 6.2.2 Suppose that (N,E) is the graph of a network with a set of

nodes N and a set of undirected edges E, and let g0 ∈ N be a fixed initial node.

A state s ∈ S is either the set s0 = {Mg0}, called the initial state, or a finite set

of actions on N satisfying the following conditions:

S1 for all g, h ∈ N , actions Tg,h or Rg,h can only belong to s if there is an edge

between g and h in E;

S2 for all g ∈ N and states s not equal to the initial state, Mg belongs to s iff

Rh,g belongs to s for some h ∈ N .

To define the state transition system, we also need to define the transition relation.

Definition 6.2.3 Given states s, s′ ∈ S, there is a transition s → s′ iff, for all

g, h ∈ N , the following conditions are satisfied:

TS1 if Mg ∈ s and Rh,g, Tg,h /∈ s, then either Tg,h ∈ s′ and Rg,h /∈ s′ or Rg,h ∈ s′

and Tg,h /∈ s′;

TS2 if Mg, Tg,h ∈ s, and Rh,g /∈ s, then Tg,h, Rg,h ∈ s′;
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TS3 if Rh,g ∈ s and Tg,h /∈ s, then Tg,h, Rg,h /∈ s′;

TS4 if Tg,h ∈ s, then Rg,h ∈ s′, and Tg,h ∈ s′ if and only if Mg ∈ s and Rh,g /∈ s;

TS5 if Mg, Tg,h /∈ s, then Tg,h, Rg,h /∈ s′.

Here, s was the last state of the network before the current state of the network,

s′. Condition TS1 states that if there was a message at node g which was not

received from node h, and there was no message in transit from g to h, then g

sends a message to h which may be in transit to h or may have been received by

h. Condition TS2 states that if there was a message at node g which was not

received from node h and there was already a message in transit from g to h,

then the message that was in transit from g to h has been received and another

message from g to h is in transit. Condition TS3 states that if node h has just

sent a message to node g and there was no message in transit from g to h, then no

message sent from g to h is either in transit or has been received by h. Condition

TS4 states that, no matter what the state is of other nodes and messages in the

network, a message that was in transit from node g to node h in one state of the

network is received by h in the next state of the network, and also that there is

another message in transit from g to h if, and only if, g had a message in s and did

not receive a message from h in the last state. Condition TS5 states that if node

g did not have a message and there was not already a message in transit from g

to a node h, then there is no message from g to h, either in transit or received, in

the current state.

We define executions or ‘runs’ of the asynchronous network in terms of the

state transition system.

Definition 6.2.4 Let (N,E) be the graph of a network with set of nodes N and

set of edges E, and let g0 be the initial node. Let (S,→) be the asynchronous

flooding state transition system for this network and initial node, as defined above.

A run of the flooding algorithm, with respect to G = (N,E, g0), is a sequence of

states of S
s0, s1, . . . , si, . . .

such that:

R1 s0 = {g0},

R2 si−1 → si for all i ≥ 1.

This definition of runs allows for states where no node holds a message, as all

messages are in transit (see the example below). In the synchronous model, at

least one node in every state of the network, before termination, holds a message.
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Our extension of the notion of ‘rounds’ to asynchronous flooding is to states in

the state transition system where some node holds a message. A run in which all

states, before termination, have nodes with messages, will be said to be in ‘round

form’.

Definition 6.2.5 Let G = (N,E, g0) be as per the definition of runs above, and

let RG denote the corresponding set of all runs. A run r ∈ RG

r = s0, s1, . . . , si, . . .

is in round form iff, for all i ≥ 0,

Mg ∈ si for some g ∈ N.

Example 6.2.6 Consider the following runs:

r1 = {M0}, {R0,1, R0,2,M1,M2}, {R1,2, R2,1,M1,M2}, {R1,0, R2,0,M0}, {}
r2 = {M0}, {T0,1, T0,2}, {R0,1, R0,2,M1,M2}, {R1,2, R2,1,M1,M2},

{R1,0, R2,0,M0}, {}
r3 = {M0}, {R0,1, T0,2,M1}, {R1,2, R0,2,M2}, {}

Figure 6.1: Example 2.6

Here, r1 is in round form and corresponds to the synchronous execution of G.

The run r2 is not in round form as the second state, {T0,1, T0,2}, has no Mg action.

Note that r3 is in round form as every state, prior to termination, has some Mg

action. However, it is different to r1 and does not correspond to a synchronous

run. Interestingly, the delay in transit of the message from node 0 to node 2 in r3

results in earlier termination for r3, i.e., termination is achieved in fewer rounds.
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When choosing a suitable measure of the ‘time taken’ for a run to terminate,

the duration of non-round states, such as {T0,1, T0,2} of r2 above, has no meaning

in terms of numbers of ‘observable’ events in network flooding, i.e., the events

Mg of messages arriving at nodes. In fact, as we show in the theorem below, we

can delete all non-round states from a run in RG and the resulting sub-sequence

of states will still be a run in RG and will be in round form. Therefore, when

considering the runs in RG which terminate the quickest, we can confine our

attention to runs in round form, and the measure of the time taken to termination

is, as in the synchronous case, the number of rounds to termination.

Theorem 6.2.7 Let G = (N,E, g0) be a network graph (N,E) along with an

initial node g0 ∈ N as above. Suppose that r ∈ RG is a run and that rRF is the

sub-sequence of states of r which are rounds. Then, rRF is a run in RG (and is

in round form).

Proof It suffices to show that if we remove the first state that is not a round,

then the resulting sequence of states is still a run. The theorem then follows by

repeatedly removing the first occurrences of non-round states in a similar manner

until no non-round states remain and we are left with a run rRF in round form.

Let

r = s0, s1, . . . , si−1, si, si+1, . . .

where i ≥ 1, s0, . . . , si−1 are rounds and si is not a round. Consider the subsequent

r−i of r given by

r−i = s0, . . . , si−1, si+1, . . . (6.1)

We need to show that r−i is a run. Let (S,→) be the state transition system, as in

Definitions 6.2.1 - 6.2.3, generating runs in RG. To show that r−i is a run in RG,

we need to show that r−i can be generated by (S,→). As (S,→) generates a state

sj+1 from the previous state sj alone, by the conditions TS1-TS5 of Definition

6.2.3, it is clear that in both r and r−i: s1 are generated from s0, . . ., si−1 is

generated from si−2, si+2 is generated from si+1, . . .. Therefore, for r−i to be a

run in RG, it only remains to show that si+1 can be generated from si−1. Now, as

si is not a round, si has no Mg and thus no Rg,h actions. So, si consists entirely

of Tg,h actions. Let

si = {Tg1,h1 , . . . , Tgk,hk} (6.2)

where k ≥ 1. As r is a run, we know that si+1 is generated from si The only

condition for (S,→) that generates a state from a state with only Tg,h actions is

TS4, which produces the corresponding set of Rg,h actions. Thus, from (6.2),

si+1 = {Rg1,h1 , . . . , Rgk,hk} (6.3)
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Also, as r is a run, si−1 generates si. The only condition for (S,→) that generates

Tg,h but does not generate Rg,h is TS1. Thus,

{Mg1 , . . . ,Mgk} ⊆ si−1 and {Rh1,g1 , . . . , Rhk,gk , Tg1,h1 , . . . , Tgk,hk} ∩ si−1 = ∅

However, condition TS1 allows Rg,h to be generated instead of the corresponding

Tg,h. Thus, if we generate Rg1,h1 , . . . , Rgk,hk instead of Tg1,h1 , . . . , Tgk,hk of si in

(6.2), we get exactly the state si+1 of (6.3). Hence, si+1 can be generated from

si−1, and so the r−i of (6.1) is a run in RG.

The importance of this theorem when comparing asynchronous and synchronous

systems is explained in Section 6.4 below.

6.3 Temporal Model

Given a network graph and initial node G = (N,E, g0), the states of the linear

temporal logic structure that models G will be exactly the states of the state

transition system (S,→) of G, as given in Section 6.2 above.

6.3.1 Propositions

There is a proposition corresponding to each action in (S,→). Thus, the sets of

propositions are:

(i) message in transit from g to h propositions: {Tg,h | {g, h} is an edge in E};

(ii) message received from g to h propositions: {Rg,h | {g, h} is an edge in E};

(iii) message received at node g propositions: {Mg | g is a node in N}.

6.3.2 States

In Definition 6.2.2, a state s in (S,→) is a finite sets of actions. The corresponding

temporal state will have the propositions of the actions in s returned as True.

However, condition S2 of Definition 6.2.2 which requires that a Mg action belong

to a (non-initial) state iff a Rh,g action that also belongs to some node h, needs

the following additional temporal constraint:

φS2 ≡ XG
∧
g∈N

(Mg ⇔
∨
h∈N,
h 6=g

Rh,g)
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6.3.3 Run constraints

We lift the run constraints directly from the transition relation→ conditions TS1-

TS5 of Definition 6.2.3. Condition TS1 requires that, for all nodes g and h, if an

Mg action belongs to the previous state and Rh,g and Tg,h do not, then either Tg,h

belongs to the current state and Rg,h does not, or Rg,h belongs to the current state

and Tg,h does not. The temporal constraint in terms of the truth values of the

propositions is:

φTS1 ≡ XG
∧

g,h∈N,
g 6=h

((Y(Mg ∧ ¬Rh,g ∧ ¬Tg,h))⇒ ((Tg,h ∧ ¬Rg,h) ∨ (Rg,h ∧ ¬Tg,h)))

The leftmost X is needed as the TS1-TS5 conditions are from the point of view

of a state with a previous state, so we start after the initial state. Condition

TS2 requires that, for all nodes g and h, if the Mg and Tg,h actions belong to the

previous state and Rh,g does not, then both Tg,h and Rg,h belong to the current

state. The temporal constraint is:

φTS2 ≡ XG
∧

g,h∈N,
g 6=h

((Y(Mg ∧ Tg,h ∧ ¬Rh,g))⇒ (Tg,h ∧Rg,h))

Condition TS3 requires that, for all nodes g and h, if a Rh,g action belongs to the

previous state and Tg,h does not, then neither Tg,h nor Rg,h belong to the current

state. The temporal constraint is:

φTS3 ≡ XG
∧

g,h∈N,
g 6=h

((Y(Rh,g ∧ ¬Tg,h))⇒ (¬Tg,h ∧ ¬Rg,h))

Condition TS4 requires that, for all nodes g and h, if a Tg,h action belongs to the

previous state, then Rg,h belongs to the current state and Tg,h is in the current

state iff Mg was in the previous state and Rh,g was not. The temporal constraint

is:

φTS4 ≡ XG
∧

g,h∈N,
g 6=h

((YTg,h)⇒ Rg,h ∧ (Tg,h ⇔ Y(Mg ∧ ¬Rh,g)))

Condition TS5 requires that, for all nodes g and h, if neither a Mg nor a Tg,h action

belongs to the previous state, then neither Tg,h nor Rg,h belongs to the current

state. The temporal constraint is:

φTS5 ≡ XG
∧

g,h∈N,
g 6=h

((Y(¬Mg ∧ ¬Tg,h))⇒ (¬Tg,h ∧ ¬Rg,h))
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The conditions TS1-TS5 describe synchronous runs if no Tg,h action appears in any

state in (S,→). This corresponds to replacing all Tg,h propositions in φTS1 -φTS5

by False. In this case, if we also substitute Rg,h propositions by Sg,h propositions

in the conjunction φs2 ∧ φTS1 ∧ φTS3 ∧ φTS3 , we get a temporal logic formula

equivalent to the constraint φm for received messages in the synchronous flooding

described in the previous chapter.

We also need to add a temporal constraint to the initial state of (S,→) to be

the set {Mg0}. This means the proposition Mg0 is True and all other propositions

are False. The initial temporal state constraint is:

φinit ≡ (Mg0 ∧
∧
g∈N,
g 6=g0

¬Mg) ∧ (
∧

g,h∈N,
g 6=h

(¬Tg,h ∧ ¬Rg,h))

6.3.4 Termination

To specify the termination of a run, it is initially tempting to proceed as in the

synchronous case and specify that there is a state in which no node holds a message.

However, in the asynchronous case it is possible to have many states where no node

holds a message because messages are in transit; clearly, however, if this is the case

then the run has not yet terminated. Thus, we need to specify a state in which

no node holds a message and no messages are in transit. The temporal constraint

for termination is:

φterm ≡ F
∧

g,h∈N,
g 6=h

(¬Mg ∧ ¬Tg,h)

6.3.5 Rounds

In Section 6.4 below we will compare the time to termination of synchronous and

asynchronous runs of network flooding. As discussed in Section 6.2, we do so by

counting the rounds in runs of both types. For this, we need all the states of the

asynchronous runs to be rounds, i.e,. some node has to receive a message in every

state before the run terminates. This can be expressed by the constraint that no

state can have a Tg,h action and no Rg,h actions. This does not affect terminated

states, which have no Tg,h and no Rg,h actions. The temporal constraint is:

φround ≡ G¬((
∨

g,h∈N,
g 6=h

Tg,h) ∧ (
∧

g,h∈N,
g 6=h

¬Rg,h))
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6.4 Comparing Asynchronous and Synchronous

Termination

In the previous chapter, we compared the number of rounds taken to termination

in two network topologies by superimposing successive states of rounds in one

topology over the successive states of rounds in the other. In this section, we will

compare the number of rounds to termination of flooding between a terminating

asynchronous network and a synchronous network with the same topology to see if

the asynchronous network can terminate in fewer rounds. We will assume a single

fixed set of nodes and graph topology for both cases and the same initial node.

From the previous chapter, the states in the synchronous network in successive

rounds are the model of the temporal logic formula:

φm ∧ φi, (6.4)

where φm are the message-received constraints and φi are the initial conditions.

In this chapter, the succession of states in the asynchronous case, here called runs,

are the models of the temporal logic formula:

φS2 ∧ φTS1 ∧ φTS2 ∧ φTS3 ∧ φTS4 ∧ φTS5 ∧ φinit . (6.5)

To prove that there are runs in the asynchronous case that can terminate in fewer

rounds than the synchronous case, we might, tentatively, consider checking for the

validity of the following temporal formula:

¬( φS2 ∧ φTS1 ∧ φTS2 ∧ φTS3 ∧ φTS4 ∧ φTS5 ∧ φinit ∧ φm ∧ φi (6.6)

⇒ F(
∧

g,h∈N,
g 6=h

(¬Mg ∧ ¬Tg,h) ∧ (
∨
g∈N

M s
g )) ) (6.7)

Line (6.6) represents the states of the superimposed asynchronous and synchronous

networks and line (6.7) asserts that at some point in time there will be no further

asynchronous actions (i.e., the asynchronous case has terminated) but there will

be some synchronous actions (i.e., the synchronous case has not terminated). The

whole formula spread over lines (6.6) and (6.7) has an outer negation. It is quite

literally asserting that, for all asynchronous and synchronous runs, it is not true

that the asynchronous case terminates before the synchronous. For there to be an

asynchronous run that terminates before the synchronous, the test for the validity

of formula (6.6),(6.7) should return False. As we have used mostly different

propositional variables for asynchronous systems in (6.5) in this chapter to those
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for synchronous systems in (6.4) in the previous chapter, the only variables we

need to relabel are the Mg variables, which we relabel only in the synchronous

case to have a superscript s.

However, there is a problem with the formula (6.6),(6.7). The behaviour of

the asynchronous system in line (6.5) is for runs which may have states that

are not rounds. It is possible that an asynchronous run may terminate in fewer

rounds than a synchronous run, but this will not show up in the temporal logic

formula (6.6),(6.7) as successive states of the asynchronous runs are in lock-step

with rounds of the synchronous runs, and the asynchronous run may have states

that are not rounds. Thus, an asynchronous run may take more states to terminate

than the synchronous run takes rounds (this will show up in (6.6),(6.7)) but the

asynchronous run may actually take fewer rounds of its own (this will not show

up in (6.6),(6.7)). We could restrict the asynchronous runs to those in round form

by adding the extra conjunct φround to the asynchronous behaviour, yielding the

proof obligation:

¬( φS2 ∧ φTS1 ∧ φTS2 ∧ φTS3 ∧ φTS4 ∧ φTS5 ∧ φround ∧ φinit ∧ φm ∧ φi (6.8)

⇒ F(
∧

g,h∈N,
g 6=h

(¬Mg ∧ ¬Tg,h) ∧ (
∨
g∈N

M s
g )) ) (6.9)

However, φround does not eliminate non-round states in an asynchronous run, but

eliminates the whole run if there is a state that is not a round. It could be the

case that a run that has states that are not rounds is nevertheless the one that

terminates in the fewest rounds. Fortunately, this is not a problem if we invoke

Theorem 6.2.7. Theorem 6.2.7 states that if we delete all non-round states in a

run, the remaining sub-sequence of states is still a run. So, even though φround may

eliminate the run which has non-round states but terminates in the fewest number

of rounds, Theorem 6.2.7 guarantees that there will be another run identical to the

eliminated run, but without its non-round states. Thus, formula (6.8),(6.9) is the

required proof obligation that demonstrates that an asynchronous run can(not)

terminate before the synchronous run.

6.4.1 Worked Examples

In 6.4.1.1, we give an example of a network where asynchronous flooding can

terminate before synchronous flooding, and in 6.4.1.1 6.4.1.2 we give an example

of a network where it cannot. To check if a property is met, after creating the

system model and its properties we encode it into the model checker NuSMV to

verify if the property is satisfied. The flooding block diagram representing this is
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shown below in Figure 6.2.

Flooding Model 
Flooding 

Properties 

Model Checker 

NuSMV 

True 
Counter-

example 

Yes NO 

Network 

Property 

satisfied? 
 

Figure 6.2: Synchronous and Asynchronous flooding model checking block dia-
gram.

6.4.1.1 Asynchronous Can Terminate Before Synchronous

We will verify formally that the network in Example 6.2.6, Figure 5.1, has an

asynchronous run which terminates in fewer rounds than the synchronous run

with initial nodes 0 using NuSMV. We have the following propositions for the

asynchronous and synchronous cases, respectively:

Asynchronous : T0,1, T1,0, T0,2, T2,0, T1,2, T2,1,

R0,1, R1,0, R0,2, R2,0, R1,2, R2,1,

M0,M1,M2

Synchronous : S0,1, S1,0, S0,2, S2,0, S1,2, S2,1,

M s
0 ,M

s
1 ,M

s
2



CHAPTER 6. ASYNCHRONOUS NETWORK FLOODING 89

For the asynchronous case, instantiating the definitions of φS2 of Subsection 6.3.2,

φTS1 -φTS5 and φinit of Subsection 6.3.3, and φround of Subsection 6.3.5, we have:

φS2 ≡ XG ((M0 ⇔ R1,0 ∨R2,0)∧
(M1 ⇔ R0,1 ∨R2,1)∧
(M2 ⇔ S0,2 ∨ S1,2))

φTS1 ≡ XG (((Y(M0 ∧ ¬R1,0 ∧ ¬T0,1))⇒ ((T0,1 ∧ ¬R0,1) ∨ (R0,1 ∧ ¬T0,1)))∧
((Y(M1 ∧ ¬R0,1 ∧ ¬T1,0))⇒ ((T1,0 ∧ ¬R1,0) ∨ (R1,0 ∧ ¬T1,0)))∧
((Y(M0 ∧ ¬R2,0 ∧ ¬T0,2))⇒ ((T0,2 ∧ ¬R0,2) ∨ (R0,2 ∧ ¬T0,2)))∧
((Y(M2 ∧ ¬R0,2 ∧ ¬T2,0))⇒ ((T2,0 ∧ ¬R2,0) ∨ (R2,0 ∧ ¬T2,0)))∧
((Y(M1 ∧ ¬R2,1 ∧ ¬T1,2))⇒ ((T1,2 ∧ ¬R1,2) ∨ (R1,2 ∧ ¬T1,2)))∧
((Y(M2 ∧ ¬R1,2 ∧ ¬T2,1))⇒ ((T2,1 ∧ ¬R2,1) ∨ (R2,1 ∧ ¬T2,1))))

φTS2 ≡ XG (((Y(M0 ∧ ¬R1,0 ∧ T0,1))⇒ (T0,1 ∧R0,1))∧
((Y(M1 ∧ ¬R0,1 ∧ T1,0))⇒ (T1,0 ∧R1,0))∧
((Y(M0 ∧ ¬R2,0 ∧ T0,2))⇒ (T0,2 ∧R0,2))∧
((Y(M2 ∧ ¬R0,2 ∧ T2,0))⇒ (T2,0 ∧R2,0))∧
((Y(M1 ∧ ¬R2,1 ∧ T1,2))⇒ (T1,2 ∧R1,2))∧
((Y(M2 ∧ ¬R1,2 ∧ T2,1))⇒ (T2,1 ∧R2,1)))

φTS3 ≡ XG (((Y(R1,0 ∧ ¬T0,1))⇒ (¬T0,1 ∧ ¬R0,1))∧
((Y(R0,1 ∧ ¬T1,0))⇒ (¬T1,0 ∧ ¬R1,0))∧
((Y(R2,0 ∧ ¬T0,2))⇒ (¬T0,2 ∧ ¬R0,2))∧
((Y(R0,2 ∧ ¬T2,0))⇒ (¬T2,0 ∧ ¬R2,0))∧
((Y(R2,1 ∧ ¬T1,2))⇒ (¬T1,2 ∧ ¬R1,2))∧
((Y(R1,2 ∧ ¬T2,1))⇒ (¬T2,1 ∧ ¬R2,1)))

φTS4 ≡ XG (((YT0,1)⇒ R0,1)∧
((YT1,0)⇒ R1,0)∧
((YT0,2)⇒ R0,2)∧
((YT2,0)⇒ R2,0)∧
((YT1,2)⇒ R1,2)∧
((YT2,1)⇒ R2,1))

φTS5 ≡ XG (((Y(¬M0 ∧ ¬T0,1))⇒ (¬T0,1 ∧ ¬R0,1))∧
((Y(¬M1 ∧ ¬T1,0))⇒ (¬T1,0 ∧ ¬R1,0))∧
((Y(¬M0 ∧ ¬T0,2))⇒ (¬T0,2 ∧ ¬R0,2))∧
((Y(¬M2 ∧ ¬T2,0))⇒ (¬T2,0 ∧ ¬R2,0))∧
((Y(¬M1 ∧ ¬T1,2))⇒ (¬T1,2 ∧ ¬R1,2))∧
((Y(¬M2 ∧ ¬T2,1))⇒ (¬T2,1 ∧ ¬R2,1)))
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φround ≡ G ¬((T0,1 ∨ T1,0 ∨ T0,2 ∨ T2,0 ∨ T1,2 ∨ T2,1)∧
(¬R0,1 ∧ ¬R1,0 ∧ ¬R0,2 ∧ ¬R2,0 ∧ ¬R1,2 ∧ ¬R2,1))

φinit ≡ (M0 ∧ ¬M1 ∧ ¬M2)∧
(¬T0,1 ∧ ¬R0,1 ∧ ¬T1,0 ∧ ¬R1,0∧
¬T0,2 ∧ ¬R0,2 ∧ ¬T2,0 ∧ ¬R2,0∧
¬T1,2 ∧ ¬R1,2 ∧ ¬T2,1 ∧ ¬R2,1)

For the synchronous case, instantiating the φm and φi of the previous chapter

yields:

φi ≡ (M s
0 ∧ ¬M s

1 ∧ ¬M s
2 )∧

(¬S0,1 ∧ ¬S1,0 ∧ ¬S0,2 ∧ ¬S2,0 ∧ ¬S1,2 ∧ ¬S2,1)

φm ≡ (XG( (M s
0 ⇔ S1,0 ∨ S2,0)∧

(M s
1 ⇔ S0,1 ∨ S2,1)∧

(M s
2 ⇔ S0,2 ∨ S1,2)) ) ∧

(XG( (S0,1 ⇔ Y(M s
0 ∧ ¬S1,0))∧

(S1,0 ⇔ Y(M s
1 ∧ ¬S0,1))∧

(S2,0 ⇔ Y(M s
2 ∧ ¬S0,2))∧

(S0,2 ⇔ Y(M s
0 ∧ ¬S2,0))∧

(S1,2 ⇔ Y(M s
1 ∧ ¬S2,1))∧

(S2,1 ⇔ Y(M s
2 ∧ ¬S1,2))) )

By equation (6.8),(6.9) above, in order to demonstrate that no asynchronous run

terminates before the synchronous run, we need to prove the following formula

with the substitutions for φS2 , φTS1 -φTS5 , φround , φinit , φi and φm, as given above:

¬( φS2 ∧ φTS1 ∧ φTS2 ∧ φTS3 ∧ φTS4 ∧ φTS5 ∧ φround ∧ φinit ∧ φm ∧ φi

⇒

F( (¬T0,1 ∧ ¬T1,0 ∧ ¬T0,2 ∧ ¬T2,0 ∧ ¬T1,2 ∧ ¬T2,1)∧

(¬M0 ∧ ¬M1 ∧ ¬M2) ∧ (M s
0 ∨M s

1 ∨M s
2 ) ) )

This proof has been carried out using NuSMV as shown in code in Appendix

C Section C.1 and returns False, giving an asynchronous run which terminates

before the synchronous run.

6.4.1.2 Asynchronous Cannot Terminate Before Synchronous

We will formally verify the network Figure 5.2 below using NuSMV:
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Figure 6.3: Figure of four nodes

This does not have an asynchronous run which terminates in fewer rounds

than the synchronous run with initial node 0 for both. We have the following

propositions for the asynchronous and synchronous cases, respectively:

Asynchronous : T0,1, T1,0, T0,2, T2,0, T1,2, T2,1, T1,3, T3,1, T2,3, T3,2

R0,1, R1,0, R0,2, R2,0, R1,2, R2,1, R1,3, R3,1, R2,3, R3,2,

M0,M1,M2,M3

Synchronous : S0,1, S1,0, S0,2, S2,0, S1,2, S2,1, S1,3, S3,1, S2,3, S3,2,

M s
0 ,M

s
1 ,M

s
2 ,M

s
3

For the asynchronous case, instantiating the definitions of φS2 of Subsection 6.3.2,

φTS1 -φTS5 and φinit of Subsection 6.3.3, and φround of Subsection 6.3.5, we have:

φS2 ≡ XG ((M0 ⇔ R1,0 ∨R2,0)∧
(M1 ⇔ R0,1 ∨R2,1 ∨R3,1)∧
(M2 ⇔ S0,2 ∨ S1,2 ∨ S3,2)∧
(M3 ⇔ S1,3 ∨ S2,3))

φTS1 ≡ XG (((Y(M0 ∧ ¬R1,0 ∧ ¬T0,1))⇒ ((T0,1 ∧ ¬R0,1) ∨ (R0,1 ∧ ¬T0,1)))∧
((Y(M1 ∧ ¬R0,1 ∧ ¬T1,0))⇒ ((T1,0 ∧ ¬R1,0) ∨ (R1,0 ∧ ¬T1,0)))∧
((Y(M0 ∧ ¬R2,0 ∧ ¬T0,2))⇒ ((T0,2 ∧ ¬R0,2) ∨ (R0,2 ∧ ¬T0,2)))∧
((Y(M2 ∧ ¬R0,2 ∧ ¬T2,0))⇒ ((T2,0 ∧ ¬R2,0) ∨ (R2,0 ∧ ¬T2,0)))∧
((Y(M1 ∧ ¬R2,1 ∧ ¬T1,2))⇒ ((T1,2 ∧ ¬R1,2) ∨ (R1,2 ∧ ¬T1,2)))∧
((Y(M2 ∧ ¬R1,2 ∧ ¬T2,1))⇒ ((T2,1 ∧ ¬R2,1) ∨ (R2,1 ∧ ¬T2,1)))∧
((Y(M1 ∧ ¬R3,1 ∧ ¬T1,3))⇒ ((T1,3 ∧ ¬R1,3) ∨ (R1,3 ∧ ¬T1,3)))∧
((Y(M3 ∧ ¬R1,3 ∧ ¬T3,1))⇒ ((T3,1 ∧ ¬R3,1) ∨ (R3,1 ∧ ¬T3,1)))∧
((Y(M2 ∧ ¬R3,2 ∧ ¬T2,3))⇒ ((T2,3 ∧ ¬R2,3) ∨ (R2,3 ∧ ¬T2,3)))∧
((Y(M3 ∧ ¬R2,3 ∧ ¬T3,2))⇒ ((T3,2 ∧ ¬R3,2) ∨ (R3,2 ∧ ¬T3,2))))
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φTS2 ≡ XG (((Y(M0 ∧ ¬R1,0 ∧ T0,1))⇒ (T0,1 ∧R0,1))∧
((Y(M1 ∧ ¬R0,1 ∧ T1,0))⇒ (T1,0 ∧R1,0))∧
((Y(M0 ∧ ¬R2,0 ∧ T0,2))⇒ (T0,2 ∧R0,2))∧
((Y(M2 ∧ ¬R0,2 ∧ T2,0))⇒ (T2,0 ∧R2,0))∧
((Y(M1 ∧ ¬R2,1 ∧ T1,2))⇒ (T1,2 ∧R1,2))∧
((Y(M2 ∧ ¬R1,2 ∧ T2,1))⇒ (T2,1 ∧R2,1))∧
((Y(M1 ∧ ¬R3,1 ∧ T1,3))⇒ (T1,3 ∧R1,3))∧
((Y(M3 ∧ ¬R1,3 ∧ T3,1))⇒ (T3,1 ∧R3,1))∧
((Y(M2 ∧ ¬R3,2 ∧ T2,3))⇒ (T2,3 ∧R2,3))∧
((Y(M3 ∧ ¬R2,3 ∧ T3,2))⇒ (T3,2 ∧R3,2)))

φTS3 ≡ XG (((Y(R1,0 ∧ ¬T0,1))⇒ (¬T0,1 ∧ ¬R0,1))∧
((Y(R0,1 ∧ ¬T1,0))⇒ (¬T1,0 ∧ ¬R1,0))∧
((Y(R2,0 ∧ ¬T0,2))⇒ (¬T0,2 ∧ ¬R0,2))∧
((Y(R0,2 ∧ ¬T2,0))⇒ (¬T2,0 ∧ ¬R2,0))∧
((Y(R2,1 ∧ ¬T1,2))⇒ (¬T1,2 ∧ ¬R1,2))∧
((Y(R1,2 ∧ ¬T2,1))⇒ (¬T2,1 ∧ ¬R2,1))∧
((Y(R3,1 ∧ ¬T1,3))⇒ (¬T1,3 ∧ ¬R1,3))∧
((Y(R1,3 ∧ ¬T3,1))⇒ (¬T3,1 ∧ ¬R3,1))∧
((Y(R3,2 ∧ ¬T2,3))⇒ (¬T2,3 ∧ ¬R2,3))∧
((Y(R2,3 ∧ ¬T3,2))⇒ (¬T3,2 ∧ ¬R3,2)))

φTS4 ≡ XG (((YT0,1)⇒ R0,1)∧
((YT1,0)⇒ R1,0)∧
((YT0,2)⇒ R0,2)∧
((YT2,0)⇒ R2,0)∧
((YT1,2)⇒ R1,2)∧
((YT2,1)⇒ R2,1)∧
((YT1,3)⇒ R1,3)∧
((YT3,1)⇒ R3,1)∧
((YT2,3)⇒ R2,3)∧
((YT3,2)⇒ R3,2))
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φTS5 ≡ XG (((Y(¬M0 ∧ ¬T0,1))⇒ (¬T0,1 ∧ ¬R0,1))∧
((Y(¬M1 ∧ ¬T1,0))⇒ (¬T1,0 ∧ ¬R1,0))∧
((Y(¬M0 ∧ ¬T0,2))⇒ (¬T0,2 ∧ ¬R0,2))∧
((Y(¬M2 ∧ ¬T2,0))⇒ (¬T2,0 ∧ ¬R2,0))∧
((Y(¬M1 ∧ ¬T1,2))⇒ (¬T1,2 ∧ ¬R1,2))∧
((Y(¬M2 ∧ ¬T2,1))⇒ (¬T2,1 ∧ ¬R2,1))∧
((Y(¬M1 ∧ ¬T1,3))⇒ (¬T1,3 ∧ ¬R1,3))∧
((Y(¬M3 ∧ ¬T3,1))⇒ (¬T3,1 ∧ ¬R3,1))∧
((Y(¬M2 ∧ ¬T2,3))⇒ (¬T2,3 ∧ ¬R2,3))∧
((Y(¬M3 ∧ ¬T3,2))⇒ (¬T3,2 ∧ ¬R3,2)))

φround ≡ G ¬((T0,1 ∨ T1,0 ∨ T0,2 ∨ T2,0 ∨ T1,2 ∨ T2,1 ∨ T1,3 ∨ T3,1 ∨ T2,3 ∨ T3,2)∧
(¬R0,1 ∧ ¬R1,0 ∧ ¬R0,2 ∧ ¬R2,0 ∧ ¬R1,2 ∧ ¬R2,1 ∧ ¬R1,3

∧¬R3,1 ∧ ¬R2,3 ∧ ¬R3,2))

φinit ≡ (M0 ∧ ¬M1 ∧ ¬M2 ∧ ¬M3)∧
(¬T0,1 ∧ ¬R0,1 ∧ ¬T1,0 ∧ ¬R1,0∧
¬T0,2 ∧ ¬R0,2 ∧ ¬T2,0 ∧ ¬R2,0∧
¬T1,2 ∧ ¬R1,2 ∧ ¬T2,1 ∧ ¬R2,1∧
¬T1,3 ∧ ¬R1,3 ∧ ¬T3,1 ∧ ¬R3,1∧
¬T2,3 ∧ ¬R2,3 ∧ ¬T3,2 ∧ ¬R3,2)

For the synchronous case, instantiating the φm and φi of the previous chapter

yields:

φi ≡ (M s
0 ∧ ¬M s

1 ∧ ¬M s
2 ∧ ¬M s

3 )∧
(¬S0,1 ∧ ¬S1,0 ∧ ¬S0,2 ∧ ¬S2,0 ∧ ¬S1,2 ∧ ¬S2,1 ∧ ¬S1,3 ∧ ¬S3,1 ∧ ¬S2,3 ∧ ¬S3,2)
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φm ≡ (XG( (M s
0 ⇔ S1,0 ∨ S2,0)∧

(M s
1 ⇔ S0,1 ∨ S2,1 ∨ S3,1)∧

(M s
2 ⇔ S0,2 ∨ S1,2 ∨ S3,2)∧

(M s
3 ⇔ S1,3 ∨ S2,3)) ) ∧

(XG( (S0,1 ⇔ Y(M s
0 ∧ ¬S1,0))∧

(S1,0 ⇔ Y(M s
1 ∧ ¬S0,1))∧

(S2,0 ⇔ Y(M s
2 ∧ ¬S0,2))∧

(S0,2 ⇔ Y(M s
0 ∧ ¬S2,0))∧

(S1,2 ⇔ Y(M s
1 ∧ ¬S2,1))∧

(S2,1 ⇔ Y(M s
2 ∧ ¬S1,2))∧

(S1,3 ⇔ Y(M s
1 ∧ ¬S3,1))∧

(S3,1 ⇔ Y(M s
3 ∧ ¬S1,3))∧

(S2,3 ⇔ Y(M s
2 ∧ ¬S3,2))∧

(S3,2 ⇔ Y(M s
3 ∧ ¬S2,3))) )

By equation (6.8),(6.9) above, in order to demonstrate that no asynchronous run

terminates before the synchronous run, we need to prove the following formula

with the substitutions for φS2 , φTS1 -φTS5 , φround , φinit , φi and φm, as given above:

¬( φS2 ∧ φTS1 ∧ φTS2 ∧ φTS3 ∧ φTS4 ∧ φTS5 ∧ φround ∧ φinit ∧ φm ∧ φi

⇒

F( (¬T0,1 ∧ ¬T1,0 ∧ ¬T0,2 ∧ ¬T2,0 ∧ ¬T1,2 ∧ ¬T2,1 ∧ ¬T1,3 ∧ ¬T3,1 ∧ ¬T2,3 ∧ ¬T3,2)∧

(¬M0 ∧ ¬M1 ∧ ¬M2 ∧ ¬M3) ∧ (M s
0 ∨M s

1 ∨M s
2 ∨M s

3 ) ) )

This proof has been carried out using NuSMV as shown in code in Appendix C

Section C.2 and returns True, proving that no asynchronous run terminates before

the synchronous run.

6.5 Conclusions

We have chosen a specification method for asynchronous network flooding that is

directed at performing an analysis of the termination times for such systems. Tak-

ing our cue from the synchronous case, we decided to use the number of rounds as

the measure of time to termination. This has meant giving a plausible definition

of ‘rounds’ for the asynchronous case which corresponds to the accepted defini-

tion of rounds when asynchronous flooding executes as a synchronous system. As

all messages that arrive ‘at the same time’ are aggregated into the same round,

this has ruled out standard process calculi approaches such as CSP [1] and CCS
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[2], which only allow two processes at a time to synchronize the sending and re-

ceiving of messages. Flooding would require a node (as a process) to be able to

synchronize the sending and receiving of messages with many nodes (processes)

in the same round. Thus, the notion of a round would be lost and it would be

difficult to recover a count of rounds, each of which would comprise multiple sends

and receives. Indeed, the model checker, NuSMV, has an asynchronous process

description language which can be used if desired, but the interleaved model of

concurrency that it implements would have the same problem with specifying

rounds. We have used NuSMV purely as a temporal logic prover for direct spe-

cifications of temporal constraints. In contrast to CSP and CCS, the calculus of

broadcasting systems (CBS) [82] does allow one-to-many communication, mainly

for sending to all processes (nodes), but processes can only send one at a time.

Petri nets [83] also allows many messages to be sent in one instant, but messages

(‘tokens’) are either sent from all incoming edges (‘arcs’) or none.

In our previous work on synchronous flooding, considerable emphasis was

placed on specifying constraints on graph topologies, thereby defining multiple

topologies for a given set of network nodes so that termination properties could be

proved for all topologies. Here, we have compared the termination times between

an asynchronous and a synchronous network by testing the validity of a formula

of the form (see equation (6.8),(6.9)):

¬(Φa(. . . , Tg,h, . . . , Rg,h, . . . ,Mg, . . .) ∧ Φs(. . . , Sg,h, . . . ,Mg, . . .)

⇒ Θa then s) (6.10)

where Φa defines all (non-deterministic) asynchronous runs, Φs defines a unique

(deterministic) synchronous run, and Θa then s asserts that an asynchronous run

terminates before the synchronous run. So, with the negation, the formula (6.10)

states that no asynchronous runs can terminate before the synchronous. If the

formula is False, i.e., not valid, there is some asynchronous run that can terminate

before the (unique) synchronous run. If we added edge propositional variables

Eg,h to Φs so that multiple topologies and therefore many synchronous runs were

defined by Φs, then if the resulting formula:

¬Φa(. . . , Tg,h, . . . , Rg,h, . . . ,Mg, . . .) ∧ Φs(. . . , Eg,h, . . . , Sg,h, . . . ,Mg, . . .)

⇒ Θa then s) (6.11)

returned False, that would mean that some asynchronous run would terminate

before some synchronous run. If (6.11) returned True, it would mean that all

synchronous runs terminate before all asynchronous runs. To prove that some
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asynchronous run terminates before all synchronous runs would require a more

expressive temporal logic such as QPTL [84], which is not supported by NuSMV

and for which verification is much more problematic.

Finally, we have only specified a model of bounded asynchronous flooding

where a sent message can be delayed one round in a non-deterministic manner.

This could be extended to delays of up to a larger fixed number of rounds. Al-

though different configurations of messages at nodes could result from the possib-

ility of different lengths of delays, it is not clear whether the properties that we

have focussed on in this work, namely the fewest rounds to the termination of a

run, would be affected.



Chapter 7

Conclusions

This chapter provides a general set of conclusions for the research completed in this

thesis. The individual chapters in the thesis contain more detailed conclusions, to

which the reader is also referred.

Temporal logic has been used in specification and verification of properties of

systems which have interacting components and environment. These systems are

referred to as reactive systems. Safety-critical systems is a type of the reactive

systems where safety is critical and fault tolerance is avoided as errors can cause

loss of people lives and/or huge financial loss. This research focused on distributed

systems network algorithms. Distributed systems have components that interact

with each other and the environment. The use of linear temporal logic in this

research showed how powerful is temporal logic in specifying properties of network

algorithms. Both safety and liveness properties were specified and verified in this

research. This work presented novel approaches to specify and verify these two

important properties

This first part of this work handled transactions on data items being accessed

in a concurrent manner. The concurrency of such a scenario is representative of

distributed network systems where shared memory is used. Concurrent access of

shared resources makes handling the different transactions a very difficult task.

The protocol we presented has a certain similarity when the data items are shared

resources. The data items are stored on routers’ memories which are accessed by

unlimited number of transactions in a concurrent manner. We presented a protocol

that can be used to detect cycles caused by conflicting transactions accessing the

shared resources. The use temporal logic and the model checker NuSMV to model

the network of routers accessed by unlimited number of transactions according to

the gap theory presented the first contribution novelty.

On the other hand, the other type of distributed network systems uses message

passing. We modelled the well-known flooding algorithm, which uses message

passing between different network nodes to accomplish its required tasks. The

97
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message is sent from one (initial) node to all other nodes in the network. We

specified the flooding algorithm using linear temporal logic and, using the NuSMV

model checker, subsequently verified these specifications. We successfully specified

the termination property for network flooding, where now we can determine if

network flooding on a given topology will terminate or otherwise. This presented

the second contribution novelty as researchers didn’t consider using temporal logic

to specify properties of the memory-less flooding algorithm. We also specified

asynchronous flooding and compared its termination with the previously described

synchronous flooding. This presented the third contribution in this research.

We can see that temporal logic can be used in the specification and verifica-

tion of network algorithms. In the case that a property was not met, the model

checker gives a counterexample showing the states that cause the error. The states

represent a trace which can be helpful in defining the error. This provides some

considerable benefit over other techniques where it is not otherwise possible to

model such problems. Although temporal logic is powerful and model checkers

have improved over the past few decades, the state explosion problem limits prob-

lems where there are a large number of states to be specified and verified. Even

with the specifications presented in this research, and the use of one of the most

powerful model checkers available, NuSMV, proofs will only be possible in practice

for fairly small sizes of network. A strong mathematical background can help in

solving and proving some problems where data is accessed in different ways other

than what is presented in this work. Some problems faced during this research

will need more time and effort to tackle in addition to higher mathematical skills.

7.1 Future work

The contribution of Chapter 4 has different potential applications. Due to the

limitation of the order in which the transactions gain access to the data items,

this research opens the door to further research in this area. Future work will

consider other situations where data is accessed in a different manner.

The flooding problem gives an excellent example of a very basic algorithm on

a network node - on receipt of a message, the node sends on the message to all

its neighbours except for those from which it received the message. In the same

way that network topologies can be easily modified by altering the topological

constraints, future work could also investigate whether the code/algorithm at the

nodes could be changed by supplying new, possibly more sophisticated, message-

processing constraints which can then be verified.

In Chapter 6, we have only specified a model of bounded asynchronous flooding

where a sent message can be delayed one round in a non-deterministic manner.
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Future work could be extended to consider delays of up to a larger, fixed number

of rounds. Although different configurations of the messages at the nodes could

result from the possibility of different lengths of delays, it is not clear whether the

properties that we have focussed on in this work, namely the fewest number of

rounds to the termination of a run, would be affected.

Finally, future work could also attempt to develop tools to support the tem-

poral logic analysis of distributed software/algorithms. For example, a tool could

input pseudo-code for the algorithm at all nodes and output an appropriate

NuSMV script for the network where each node has the behaviour of the algorithm.
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[42] F. Paternò and C. Santoro, “Integrating model checking and hci tools to

help designers verify user interface properties,” in International Workshop on

Design, Specification, and Verification of Interactive Systems, pp. 135–150,

Springer, 2000.

[43] A. Cauchi, G. Pace, and S. Spina, “Model checking user interfaces,” 2008.

[44] M. B. Dwyer, V. Carr, and L. Hines, “Model checking graphical user interfaces

using abstractions,” in ACM SIGSOFT Software Engineering Notes, vol. 22,

pp. 244–261, Springer-Verlag New York, Inc., 1997.

[45] P. Bellini, R. Mattolini, and P. Nesi, “Temporal logics for real-time system

specification,” ACM Computing Surveys (CSUR), vol. 32, no. 1, pp. 12–42,

2000.

[46] S. Coogan and M. Arcak, “Freeway traffic control from linear temporal lo-

gic specifications,” in 2014 ACM/IEEE International Conference on Cyber-

Physical Systems (ICCPS), pp. 36–47, IEEE, 2014.

[47] K.-Y. Lam, E. Chan, H.-W. Leung, and M.-W. Au, “Concurrency control

strategies for ordered data broadcast in mobile computing systems,” Inform-

ation Systems, vol. 29, no. 3, pp. 207–234, 2004.

[48] S. Lim and H. Cho, “Timestamp based concurrency control in broadcast disks

environment.,” in AIS, pp. 333–341, Springer, 2004.

[49] K.-w. Lam, C. Wong, and W. Leung, “Using look-ahead protocol for mobile

data broadcast,” in Information Technology and Applications, 2005. ICITA

2005. Third International Conference on, vol. 2, pp. 342–345, IEEE, 2005.
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Appendix A

Routing protocol encoding into

LTL

[]

We used MODULE move(Tr,n,Ta,Tb,Tc). The variables (Tr,n,Ta,Tb,Tc) rep-

resent:

Tr: a transaction that is currently in process.

n: an integer indicating the number of the transaction.

Ta, Tb, Tc: other transactions that are waiting in the queue.

T1,T2,T3, T4: transactions number one, two, three and four.

r1x1: T1 reads item x1.

w1x1: T1 writes on item x1.

The code is shown here:

{MODULE move(Tr,n,Ta,Tb,Tc)

ASSIGN

next(Tr):=case

Tr= begin1 &n= 1 &(!(Tr=r1x3) & (!(Ta=r2x3)) & (!(Tb=r3x3)) ) : r1x3;

Tr= r1x3 &n= 1 : w1x3;

Tr= w1x3 &n= 1 : r1x4;

Tr= r1x4 &n= 1 : w1x4;

Tr= w1x4 &n= 1 : end1;

Tr= end1 : begin1;

Tr= begin2 &n= 2 &(!(Tr=r2x3) & (!(Ta=r1x3)) & (!(Tb=r3x3)) ) : r2x3;

Tr= r2x3 &n= 2 : w2x3;

Tr= w2x3 &n= 2 : r2x4;

Tr= r2x4 &n= 2 : w2x4;
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Tr= w2x4 &n= 2 : end2;

Tr= end2 : begin2;

Tr= begin3 &n= 3 &(!(Tr=r3x3) & (!(Ta=r1x3)) & (!(Tb=r2x3)) ) : r3x3;

Tr= r3x3 &n= 3 : w3x3;

Tr= w3x3 &n= 3 : r3x5;

Tr= r3x5 &n= 3 : w3x5;

Tr= w3x5 &n= 3 : end3;

Tr= end3 : begin3;

Tr= begin4 &n= 4 &(!(Tr=r4x4) & (!(Ta=r1x4)) & (!(Tb=r2x4)) ) : r4x4;

Tr= r4x4 &n= 4 : w4x4;

Tr= w4x4 &n= 4 : r4x5;

Tr= r4x5 &n= 4 : w4x5;

Tr= w4x5 &n= 4 : end4;

Tr= end4 : begin4;

TRUE : Tr;

esac;

MODULE main

VAR

T1 : {begin1,r1x3,w1x3,r1x4,w1x4,end1};

T2 : {begin2,r2x3,w2x3,r2x4,w2x4,end2};

T3 : {begin3,r3x3,w3x3,r3x5,w3x5,end3};

T4 : {begin4,r4x4,w4x4,r4x5,w4x5,end4};

x: process move(T1,1,T2,T3,T4);

y: process move(T2,2,T1,T3,T4);

z: process move(T3,3,T1,T2,T4);

w: process move(T4,4,T1,T2,T3);

ASSIGN

init(T1):= begin1;

init(T2):= begin2;

init(T3):= begin3;

init(T4):= begin4;

FAIRNESS (T1=end1)

FAIRNESS (T2=end2)

FAIRNESS (T3=end3)

FAIRNESS (T4=end4)
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LTLSPEC F( (T1=r1x3)->X(T1=w1x3)->X(T3=r3x3)->X(T3=w3x3)->(T2=r2x3)->

X(T2=w2x3)->X(T2=r2x4)->X(T2=w2x4)->X(T1=r1x4)->X(T1=w1x4)->X(T4=r4x4)->

X(T4=w4x4)->X(T4=r4x5)->X(T4=w4x5)->(T3=r3x5)->X(T3=w3x5))

--T1

LTLSPEC G (((T1=r1x4) & O(T1=r1x3)) -> O(T1=w1x3))

--T2

LTLSPEC G (((T2=r2x4) & O(T2=r2x3)) -> O(T2=w2x3))

--T3

LTLSPEC G (((T3=r3x5) & O(T3=r3x5)) -> O(T3=w3x3))

--T4

LTLSPEC G (((T4=r4x5) & O(T4=r4x4)) -> O(T4=w4x4))

--T1

LTLSPEC G (T1=r1x3 -> (F (T1=w1x3 & F (T1=r1x4))))

--T2

LTLSPEC G (T2=r2x3 -> (F (T2=w2x3 & F (T2=r2x4))))

--T3

LTLSPEC G (T3=r3x3 -> (F (T3=w3x3 & F (T3=r3x5))))

--T4

LTLSPEC G (T4=r4x4 -> (F (T4=w4x4 & F (T4=r4x5))))

---T1

LTLSPEC G ((T1=r1x3) -> O(T1=begin1))

LTLSPEC G ((T1=w1x3) -> O(T1=r1x3))

LTLSPEC G ((T1=r1x4) -> O(T1=w1x3))

LTLSPEC G ((T1=w1x4) -> O(T1=r1x4))

LTLSPEC G ((T1=end1) -> O(T1=w1x4))

--T2

LTLSPEC G ((T2=r2x3) -> O(T2=begin2))

LTLSPEC G ((T2=w2x3) -> O(T2=r2x3))

LTLSPEC G ((T2=r2x4) -> O(T2=w2x3))

LTLSPEC G ((T2=w2x4) -> O(T2=r2x4))

LTLSPEC G ((T2=end2) -> O(T2=w2x4))

--T3

LTLSPEC G ((T3=r3x3) -> O(T3=begin3))

LTLSPEC G ((T3=w3x3) -> O(T3=r3x3))
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LTLSPEC G ((T3=r3x5) -> O(T3=w3x3))

LTLSPEC G ((T3=w3x5) -> O(T3=r3x5))

LTLSPEC G ((T3=end3) -> O(T3=w3x5))

---T4

LTLSPEC G ((T4=r4x4) -> O(T4=begin4))

LTLSPEC G ((T4=w4x4) -> O(T4=r4x4))

LTLSPEC G ((T4=r4x5) -> O(T4=w4x4))

LTLSPEC G ((T4=w4x5) -> O(T4=r4x5))

LTLSPEC G ((T4=end4) -> O(T4=w4x5))

--T1

LTLSPEC G ((T1=begin1) -> X!((T1=r1x3)&(T1=w1x3)))

LTLSPEC G ((T1=r1x3) -> X!((T1=w1x3)&(T1=r1x4)))

LTLSPEC G ((T1=r1x4) -> X!((T1=w1x4)&(T1=end1)))

--T2

LTLSPEC G ((T2=begin2) -> X!((T2=r2x3)&(T2=w2x3)))

LTLSPEC G ((T2=r2x3) -> X!((T2=w2x3)&(T1=r2x4)))

LTLSPEC G ((T2=r2x4) -> X!((T2=w2x4)&(T2=end2)))

--T3

LTLSPEC G ((T3=begin3) -> X!((T3=r3x3)&(T3=w3x3)))

LTLSPEC G ((T3=r3x3) -> X!((T3=w3x3)&(T3=r3x5)))

LTLSPEC G ((T3=r3x5) -> X!((T3=w3x5)&(T3=end3)))

--T4

LTLSPEC G ((T4=begin4) -> X!((T4=r4x4)&(T4=w4x4)))

LTLSPEC G ((T4=r4x4) -> X!((T4=w4x4)&(T4=r4x5)))

LTLSPEC G ((T4=r4x5) -> X!((T4=w4x5)&(T4=end4)))

once by a transaction

LTLSPEC G ((T1=w1x3 & O(T1=r1x3)) -> (F!(T1=r1x3)))

LTLSPEC G ((T1=w1x4 & O(T1=r1x4)) -> (F!(T1=r1x4)))

LTLSPEC G ((T2=w2x3 & O(T2=r2x3)) -> (F!(T2=r2x3)))

LTLSPEC G ((T2=w2x4 & O(T2=r2x4)) -> (F!(T2=r2x4)))

LTLSPEC G ((T3=w3x3 & O(T3=r3x3)) -> (F!(T3=r3x3)))

LTLSPEC G ((T3=w3x5 & O(T3=r3x5)) -> (F!(T3=r3x5)))

LTLSPEC G ((T4=w4x4 & O(T4=r4x4)) -> (F!(T4=r4x4)))

LTLSPEC G ((T4=w4x5 & O(T4=r4x5)) -> (F!(T4=r4x5)))

--T1

LTLSPEC G ((T1=r1x3) -> F(T1=r1x3))
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LTLSPEC G ((T1=w1x3) -> F(T1=w1x3))

LTLSPEC G ((T1=r1x4) -> F(T1=r1x4))

LTLSPEC G ((T1=w1x4) -> F(T1=w1x4))

--T2

LTLSPEC G ((T2=r2x3) -> F(T2=r2x3))

LTLSPEC G ((T2=w2x3) -> F(T2=w2x3))

LTLSPEC G ((T2=r2x4) -> F(T2=r2x4))

LTLSPEC G ((T2=w2x4) -> F(T2=w2x4))

--T3

LTLSPEC G ((T3=r3x3) -> F(T3=r3x3))

LTLSPEC G ((T3=w3x3) -> F(T3=w3x3))

LTLSPEC G ((T3=r3x5) -> F(T3=r3x5))

LTLSPEC G ((T3=w3x5) -> F(T3=w3x5))

--T4

LTLSPEC G ((T4=r4x4) -> F(T4=r4x4))

LTLSPEC G ((T4=w4x4) -> F(T4=w4x4))

LTLSPEC G ((T4=r4x5) -> F(T4=r4x5))

LTLSPEC G ((T4=w4x5) -> F(T4=w4x5))

LTLSPEC G ((T1=w1x3) -> O!(T2=r2x3))

LTLSPEC G ((T1=w1x3) -> O!(T3=r3x3))

LTLSPEC G ((T3=w3x3) -> O!(T2=r2x3))

LTLSPEC G ((T2=w2x4) -> O!(T1=r1x4))

LTLSPEC G ((T2=w2x4) -> O!(T3=r4x4))

LTLSPEC G ((T1=w1x4) -> O!(T4=r4x4))

LTLSPEC G ((T4=w4x5) -> O!(T3=r3x5))

-- We can also check in another way as follows:

--X3

LTLSPEC G ((T2=r2x3 & O(T1=r1x3)) -> (F!(T1=w1x3)))

LTLSPEC G ((T3=r3x3 & O(T1=r1x3)) -> (F!(T1=w1x3)))

LTLSPEC G ((T3=r3x3 & O(T2=r2x3)) -> (F!(T2=w2x3)))

--X4

LTLSPEC G ((T2=r2x4 & O(T1=r1x4)) -> (F!(T1=w1x4)))

LTLSPEC G ((T4=r4x4 & O(T1=r1x4)) -> (F!(T1=w1x4)))

LTLSPEC G ((T4=r4x4 & O(T2=r2x4)) -> (F!(T2=w2x4)))

--X5
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LTLSPEC G ((T4=r4x5 & O(T3=r3x5)) -> (F!(T3=w3x5)))

-----The gap G=1 tis means that we can have a cycle of length= 3

--- Here we check for this cycle only.

---these create the cycle if we put ! before G

--1321

LTLSPEC !G((T1=r1x3)->F(T3=w3x3)->F(T2=w2x3)->F(T1=w1x4))

--if we remove "!" before G it will execute and give TRUE , i.e,

--doesn’t check for cycle.

--- this is continuing to check of n length cycle

--1241

LTLSPEC G((T1=r1x3)->F(T2=w2x3)->F(T4=w4x4)->F(T1=w1x4))

--2141

LTLSPEC G((T2=r2x3)->F(T1=w1x3)->F(T4=w4x4)->F(T2=w2x4))

--3242

LTLSPEC G((T3=r3x3)->F(T2=w2x3)->F(T4=w4x4)->F(T3=w3x5))

--3143

LTLSPEC G((T3=r3x3)->F(T1=w1x3)->F(T4=w4x4)->F(T3=w3x5))

--4234

LTLSPEC G((T4=r4x4)->F(T2=w2x4)->F(T3=w3x5)->F(T4=w4x5))

FAIRNESS running



Appendix B

Synchronous Flooding Algorithm

encoding into LTL

[]

B.1 Topology1 terminates before Topology2

with initial node =0

[]

MODULE main

VAR

-- Topology #1 nodes:

n1_0: node(TRUE);

n1_1: node(FALSE);

n1_2: node(FALSE);

n1_3: node(FALSE);

n1_4: node(FALSE);

-- Topology #1 edges:

e1_01: edge(n1_0, n1_1);

e1_02: edge(n1_0, n1_2);

e1_03: edge(n1_0, n1_3);

e1_04: edge(n1_0, n1_4);

e1_14: edge(n1_1, n1_4);

e1_23: edge(n1_2, n1_3);

-- Topology #2 nodes:

n2_0: node(TRUE);
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n2_1: node(FALSE);

n2_2: node(FALSE);

n2_3: node(FALSE);

n2_4: node(FALSE);

-- Topology #2 edges:

e2_01: edge(n2_0, n2_1);

e2_04: edge(n2_0, n2_4);

e2_12: edge(n2_1, n2_2);

e2_23: edge(n2_2, n2_3);

e2_34: edge(n2_3, n2_4);

ASSIGN

-- Topology #1 rules:

next(n1_0.has_message) := next(e1_01.send_b_to_a | e1_02.send_b_to_a |

e1_03.send_b_to_a | e1_04.send_b_to_a);

next(n1_1.has_message) := next(e1_01.send_a_to_b | e1_14.send_b_to_a);

next(n1_2.has_message) := next(e1_02.send_a_to_b | e1_23.send_b_to_a);

next(n1_3.has_message) := next(e1_03.send_a_to_b | e1_23.send_a_to_b);

next(n1_4.has_message) := next(e1_04.send_a_to_b | e1_14.send_a_to_b);

-- Topology #2 rules:

next(n2_0.has_message) := next(e2_01.send_b_to_a | e2_04.send_b_to_a);

next(n2_1.has_message) := next(e2_01.send_a_to_b | e2_12.send_b_to_a);

next(n2_2.has_message) := next(e2_12.send_a_to_b | e2_23.send_b_to_a);

next(n2_3.has_message) := next(e2_23.send_a_to_b | e2_34.send_b_to_a);

next(n2_4.has_message) := next(e2_04.send_a_to_b | e2_34.send_a_to_b);

LTLSPEC F (

(!n1_0.has_message & !n1_1.has_message & !n1_2.has_message &

!n1_3.has_message & !n1_4.has_message) &

(n2_0.has_message | n2_1.has_message |

n2_2.has_message | n2_3.has_message | n2_4.has_message)

);

MODULE node(has_message_initially)

VAR

has_message: boolean;

ASSIGN

init(has_message) := has_message_initially;

MODULE edge(node_a, node_b)
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VAR

send_a_to_b: boolean;

send_b_to_a: boolean;

ASSIGN

init(send_a_to_b) := FALSE;

init(send_b_to_a) := FALSE;

next(send_a_to_b) := node_a.has_message & !send_b_to_a;

next(send_b_to_a) := node_b.has_message & !send_a_to_b;

B.2 Topology2 terminates before Topology1

with initial node =0

[]

MODULE main

VAR

-- Topology #1 nodes:

n1_0: node(TRUE);

n1_1: node(FALSE);

n1_2: node(FALSE);

n1_3: node(FALSE);

n1_4: node(FALSE);

-- Topology #1 edges:

e1_01: edge(n1_0, n1_1);

e1_02: edge(n1_0, n1_2);

e1_03: edge(n1_0, n1_3);

e1_04: edge(n1_0, n1_4);

e1_14: edge(n1_1, n1_4);

e1_23: edge(n1_2, n1_3);

-- Topology #2 nodes:

n2_0: node(TRUE);

n2_1: node(FALSE);

n2_2: node(FALSE);

n2_3: node(FALSE);

n2_4: node(FALSE);

-- Topology #2 edges:
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e2_01: edge(n2_0, n2_1);

e2_04: edge(n2_0, n2_4);

e2_12: edge(n2_1, n2_2);

e2_23: edge(n2_2, n2_3);

e2_34: edge(n2_3, n2_4);

ASSIGN

-- Topology #1 rules:

next(n1_0.has_message) := next(e1_01.send_b_to_a | e1_02.send_b_to_a |

e1_03.send_b_to_a | e1_04.send_b_to_a);

next(n1_1.has_message) := next(e1_01.send_a_to_b | e1_14.send_b_to_a);

next(n1_2.has_message) := next(e1_02.send_a_to_b | e1_23.send_b_to_a);

next(n1_3.has_message) := next(e1_03.send_a_to_b | e1_23.send_a_to_b);

next(n1_4.has_message) := next(e1_04.send_a_to_b | e1_14.send_a_to_b);

-- Topology #2 rules:

next(n2_0.has_message) := next(e2_01.send_b_to_a | e2_04.send_b_to_a);

next(n2_1.has_message) := next(e2_01.send_a_to_b | e2_12.send_b_to_a);

next(n2_2.has_message) := next(e2_12.send_a_to_b | e2_23.send_b_to_a);

next(n2_3.has_message) := next(e2_23.send_a_to_b | e2_34.send_b_to_a);

next(n2_4.has_message) := next(e2_04.send_a_to_b | e2_34.send_a_to_b);

LTLSPEC F (

(!n2_0.has_message & !n2_1.has_message & !n2_2.has_message &

!n2_3.has_message & !n2_4.has_message) &

(n1_0.has_message | n1_1.has_message | n1_2.has_message |

n1_3.has_message | n1_4.has_message)

);

MODULE node(has_message_initially)

VAR

has_message: boolean;

ASSIGN

init(has_message) := has_message_initially;

MODULE edge(node_a, node_b)

VAR

send_a_to_b: boolean;

send_b_to_a: boolean;

ASSIGN

init(send_a_to_b) := FALSE;
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init(send_b_to_a) := FALSE;

next(send_a_to_b) := node_a.has_message & !send_b_to_a;

next(send_b_to_a) := node_b.has_message & !send_a_to_b;

B.3 Topology1 terminates before Topology2

regardless of initial node

[]

--- This code checks if topology1 terminates before

--- topology2 regardless of starting state

MODULE main

VAR

t1: topology1;

t2: topology2;

LTLSPEC F (t1.is_terminated & !t2.is_terminated);

--LTLSPEC F (t2.is_terminated & !t1.is_terminated);

MODULE topology1

VAR

n0: node;

n1: node;

n2: node;

n3: node;

n4: node;

e01: edge(n0, n1);

e02: edge(n0, n2);

e03: edge(n0, n3);

e04: edge(n0, n4);

e14: edge(n1, n4);

e23: edge(n2, n3);

INIT

count(n0.has_message, n1.has_message, n2.has_message, n3.has_message,

n4.has_message) = 1;

ASSIGN

next(n0.has_message) := next(e01.send_b_to_a | e02.send_b_to_a |
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e03.send_b_to_a | e04.send_b_to_a);

next(n1.has_message) := next(e01.send_a_to_b | e14.send_b_to_a);

next(n2.has_message) := next(e02.send_a_to_b | e23.send_b_to_a);

next(n3.has_message) := next(e03.send_a_to_b | e23.send_a_to_b);

next(n4.has_message) := next(e04.send_a_to_b | e14.send_a_to_b);

DEFINE

is_terminated := !n0.has_message & !n1.has_message & !n2.has_message &

!n3.has_message & !n4.has_message;

MODULE topology2

VAR

n0: node;

n1: node;

n2: node;

n3: node;

n4: node;

e01: edge(n0, n1);

e04: edge(n0, n4);

e12: edge(n1, n2);

e23: edge(n2, n3);

e34: edge(n3, n4);

INIT

count(n0.has_message, n1.has_message, n2.has_message, n3.has_message,

n4.has_message) = 1;

ASSIGN

next(n0.has_message) := next(e01.send_b_to_a | e04.send_b_to_a);

next(n1.has_message) := next(e01.send_a_to_b | e12.send_b_to_a);

next(n2.has_message) := next(e12.send_a_to_b | e23.send_b_to_a);

next(n3.has_message) := next(e23.send_a_to_b | e34.send_b_to_a);

next(n4.has_message) := next(e04.send_a_to_b | e34.send_a_to_b);

DEFINE

is_terminated := !n0.has_message & !n1.has_message & !n2.has_message &

!n3.has_message & !n4.has_message;

MODULE node

VAR

has_message: boolean;

MODULE edge(node_a, node_b)
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VAR

send_a_to_b: boolean;

send_b_to_a: boolean;

ASSIGN

init(send_a_to_b) := FALSE;

init(send_b_to_a) := FALSE;

next(send_a_to_b) := node_a.has_message & !send_b_to_a;

next(send_b_to_a) := node_b.has_message & !send_a_to_b;



Appendix C

Asynchronous flooding algorithm

encoding into LTL

[]

C.1 Asynchronous Can Terminate Before

Synchronous

[]

MODULE main

VAR

-- Declare models:

async: model_with_3_nodes(0);

sync: model_with_3_nodes(0);

ASSIGN

-- Define edges of async model:

init(async.e01.__mode) := asynchronous;

init(async.e02.__mode) := asynchronous;

init(async.e12.__mode) := asynchronous;

-- Define edges of sync model:

init(sync.e01.__mode) := synchronous;

init(sync.e02.__mode) := synchronous;

init(sync.e12.__mode) := synchronous;

LTLSPEC

!F (async.is_terminated & !sync.is_terminated);

MODULE model_with_3_nodes(initially_active_node)

121



APPENDIX C. ASYNCHRONOUS FLOODING ALGORITHMENCODING INTO LTL122

VAR

n0: node(initially_active_node = 0);

n1: node(initially_active_node = 1);

n2: node(initially_active_node = 2);

e01: maybe_edge(n0, n1);

e02: maybe_edge(n0, n2);

e12: maybe_edge(n1, n2);

ASSIGN

next(n0.has_message) := next(e01.b_to_a.received | e02.b_to_a.received);

next(n1.has_message) := next(e01.a_to_b.received | e12.b_to_a.received);

next(n2.has_message) := next(e02.a_to_b.received | e12.a_to_b.received);

DEFINE

is_terminated := !n0.has_message & !n1.has_message & !n2.has_message;

INVAR

!is_terminated | !(

e01.__has_transmitting |

e02.__has_transmitting |

e12.__has_transmitting

);

JUSTICE

TRUE;

MODULE node(has_message_initially)

VAR

has_message: boolean;

ASSIGN

init(has_message) := has_message_initially;

MODULE maybe_edge(node_a, node_b)

FROZENVAR

__mode: {disabled, synchronous, asynchronous};

VAR

a_to_b: maybe_directed_subedge(node_a, __mode, b_to_a);

b_to_a: maybe_directed_subedge(node_b, __mode, a_to_b);

DEFINE

__has_transmitting := a_to_b.transmitting | b_to_a.transmitting;

MODULE maybe_directed_subedge(start, mode, reverse)

VAR



APPENDIX C. ASYNCHRONOUS FLOODING ALGORITHMENCODING INTO LTL123

transmitting: boolean;

received: boolean;

DEFINE

__should_send := (mode != disabled) & start.has_message & !reverse.received;

ASSIGN

init(transmitting) := FALSE;

init(received) := FALSE;

next(transmitting) := case

!__should_send : FALSE;

transmitting : TRUE;

TRUE : {FALSE, mode = asynchronous};

esac;

next(received) := __should_send xor transmitting xor next(transmitting);

C.2 Asynchronous Cannot Terminate Before

Synchronous

[]

--Asynchronous Cannot Terminate Before Synchronous

MODULE main

VAR

-- Declare models:

async: model_with_4_nodes(0);

sync: model_with_4_nodes(0);

ASSIGN

-- Define edges of async model:

init(async.e01.__mode) := asynchronous;

init(async.e02.__mode) := asynchronous;

init(async.e03.__mode) := disabled;

init(async.e12.__mode) := asynchronous;

init(async.e13.__mode) := asynchronous;

init(async.e23.__mode) := asynchronous;

-- Define edges of sync model:

init(sync.e01.__mode) := synchronous;

init(sync.e02.__mode) := synchronous;
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init(sync.e03.__mode) := disabled;

init(sync.e12.__mode) := synchronous;

init(sync.e13.__mode) := synchronous;

init(sync.e23.__mode) := synchronous;

LTLSPEC

!F (async.is_terminated & !sync.is_terminated);

MODULE model_with_4_nodes(initially_active_node)

VAR

n0: node(initially_active_node = 0);

n1: node(initially_active_node = 1);

n2: node(initially_active_node = 2);

n3: node(initially_active_node = 3);

e01: maybe_edge(n0, n1);

e02: maybe_edge(n0, n2);

e03: maybe_edge(n0, n3);

e12: maybe_edge(n1, n2);

e13: maybe_edge(n1, n3);

e23: maybe_edge(n2, n3);

ASSIGN

next(n0.has_message) := next(e01.b_to_a.received | e02.b_to_a.received |

e03.b_to_a.received);

next(n1.has_message) := next(e01.a_to_b.received | e12.b_to_a.received |

e13.b_to_a.received);

next(n2.has_message) := next(e02.a_to_b.received | e12.a_to_b.received |

e23.b_to_a.received);

next(n3.has_message) := next(e03.a_to_b.received | e13.a_to_b.received |

e23.a_to_b.received);

DEFINE

is_terminated := !n0.has_message & !n1.has_message & !n2.has_message &

!n3.has_message;

INVAR

!is_terminated | !(

e01.__has_transmitting |

e02.__has_transmitting |

e03.__has_transmitting |

e12.__has_transmitting |

e13.__has_transmitting |

e23.__has_transmitting
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);

JUSTICE

TRUE;

MODULE node(has_message_initially)

VAR

has_message: boolean;

ASSIGN

init(has_message) := has_message_initially;

MODULE maybe_edge(node_a, node_b)

FROZENVAR

__mode: {disabled, synchronous, asynchronous};

VAR

a_to_b: maybe_directed_subedge(node_a, __mode, b_to_a);

b_to_a: maybe_directed_subedge(node_b, __mode, a_to_b);

DEFINE

__has_transmitting := a_to_b.transmitting | b_to_a.transmitting;

MODULE maybe_directed_subedge(start, mode, reverse)

VAR

transmitting: boolean;

received: boolean;

DEFINE

__should_send := (mode != disabled) & start.has_message & !reverse.received;

ASSIGN

init(transmitting) := FALSE;

init(received) := FALSE;

next(transmitting) := case

!__should_send : FALSE;

transmitting : TRUE;

TRUE : {FALSE, mode = asynchronous};

esac;

next(received) := __should_send xor transmitting xor next(transmitting);
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