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Abstract: We consider solutions of the eigenvalue equation at zero energy for a class
of non-local Schrödinger operators with potentials decreasing to zero at infinity. Using
a path integral approach, we obtain detailed results on the spatial decay at infinity of
both L2 and resonance solutions. We highlight the interplay of the kinetic term and the
potential in these decay behaviours, and identify the decay mechanisms resulting from
specific balances of global lifetimes with or without the potential.

1. Introduction

The study of spectral properties of Schrödinger operators H = − 1
2� + V on L2(Rd),

featuring the Laplacian and a potential V , has a long history in mathematics. Potentials
decaying to zero at infinity produce a fascinating variety of spectral behaviours and
phenomenology, including the possibility of finite or countably infinite discrete spectra,
(dense sets of) embedded eigenvalues or singular continuous spectrum, resonances,
criticality, Efimov effect, enhanced binding, or scattering. In this, there is a split of
qualitative behaviours according to the rates of decay of the potential (which led to
concepts of ‘long range’ and ‘short range’ potentials). The results indicate that the
existence of embedded eigenvalues is a long range effect, and the appearance of positive
point spectrum is a combination of slow decay and oscillations of the potential. For
surveys we refer to [9,12,16,48] and the numerous references therein.

Zero-energy level, which coincides with the edge of the continuous spectrum, often
marks a borderline between various regimes of spectral behaviour, in particular, between
existence and non-existence of bound states, thus also shedding light on the mechanisms
of “birth" of such states. Whether zero is an eigenvalue is, in general, a difficult problem.
Some early results on existence or non-existence of zero-energy eigenvalues go back to

KK was supported by the National Science Center (Poland) Grant 2015/18/E/ST1/00239 and by the
Alexander von Humboldt Foundation (Germany). JL thanks IHES, Bures-sur-Yvette, where part of this paper
has been written.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-019-03515-3&domain=pdf
http://orcid.org/0000-0003-0444-7734


K. Kaleta, J. Lőrinczi

the papers [1,25,30,32,33,35,44,46,47,56]. For potentialswhich are negative at infinity,
decaying at a rate V (x) � −c|x |−γ , c > 0, as |x | → ∞, and satisfying some further
conditions, it has been established in [18] that for γ ∈ (0, 2) zero is not an eigenvalue, see
also [13,55]. For potentials that are positive at infinity the situation changes [43,59]. In [4]
it has been shown that for Schrödinger operators on L2(R3)with rotationally symmetric
potentials V ∈ L p(R3), p > 3

2 , whose positive part satisfies V +(x) ≤ C |x |−2 for
x large enough, zero is not an eigenvalue corresponding to a positive eigenfunction if
C = 3

4 , while a positive L2-eigenfunction does exist if C > 3
4 . (The result holds more

generally for non-symmetric potentials and higher dimensions as well.) For some further
results on the existence of compactly supported eigenfunctions at zero-eigenvalue for
compactly supported V ∈ L p(Rd), p < d

2 , we refer to [31,34]. Apart from some cases
using direct methods of analysis, the two most used techniques leading to these results
are based on unique continuation or resolvent expansions.

Recently, a theory of non-local Schrödinger operators started to shape up, which
has enriched the range of spectral phenomena and opened a new perspective to the
understanding of classical Schrödinger operators as a specific case. Such operators H =
L+V arise by replacing theLaplacianwith a suitable pseudo-differential operator like the
fractional Laplacian L = (−�)α/2, 0 < α < 2. The α = 1 case is a model of a massless
relativistic quantum particle in a potential [15,38], while operators with other exponents
have been used in the physics literature to describe photonic quantum effects [36,61,62],
laser cooling via trapping of particles [3], Lévy glasses [5], and other phenomena. For a
further discussion of applications we refer to [28] and the references therein.

In the present paper our primary aim is an analysis of eigenfunction decay at zero-
eigenvalue or zero-resonance for a class of non-local Schrödinger operators on L2(Rd),
with decaying potentials. One of our goals is to highlight the role of the potential in
an interplay with the kinetic operator term −L in generating the decay behaviours.
Embedded eigenstates have been investigated in quantum theory since the seminal paper
by von Neumann and Wigner [58], and led to applications in experimental physics, see
e.g. [7,8,42]. We emphasize, however, that our focus in this paper is to eigenfunctions
at the continuum threshold for a class of non-local operators, that is, we are not dealing
with strictly positive eigenvalues and related eigenfunctions here. For emerging interest
in this direction in the physics literature see [14,60].

The occurrence of zero or strictly positive eigenvalues for non-local Schrödinger
operators just begins to bemathematically studied. In the recent paper [39], seeTheorems
2.8 and 2.10, two sets of potentials generating zero-eigenvalues or zero-resonances for
massless relativistic Schrödinger operators in dimension one have been constructed (as
well as examples leading to strictly positive eigenvalues). More recently, in [24] this
has been extended to fractional Laplacians of all order and arbitrary dimensions. Let
κ > 0, α ∈ (0, 2), and P be a harmonic polynomial, homogeneous of degree l ≥ 0,
i.e., satisfying P(cx) = cl P(x) for all c > 0, and �P = 0. Denote μ = d + 2l, and
consider the potentials and functions

Vκ,α(x) = − 2α

�(κ)
�
(μ + α

2

)
�
(α

2
+ κ
)

(1 + |x |2)κ 2F1

(
μ+α
2

α
2 + κ

μ
2

∣∣∣∣− |x |2
)

ϕκ(x) = P(x)

(1 + |x |2)κ ,

(1.1)
where 2F1 is Gauss’ hypergeometric function. Then

(−�)
α
2 ϕκ + Vκ,αϕκ = 0



Zero-Energy Bound State Decay

holds in distributional sense with ϕκ ∈ L2(Rd) if κ ≥ μ
4 , and

|Vκ,α(x)| =

⎧⎪⎪⎨
⎪⎪⎩

O
(|x |−α

)
if κ ∈ (l, μ

2 ) \ {μ−α
2 }

O
(|x |−2α

)
if κ = μ−α

2
O
(|x |−α log |x |) if κ = μ

2
O
(|x |2κ−μ−α

)
if κ ∈ (

μ
2 ,

μ+α
2 ).

(1.2)

Furthermore, for large |x | it follows that

Vκ,α(x) < 0 if κ ∈ (l, μ − α

2

]
(1.3)

Vκ,α(x) > 0 if κ ∈ (μ − α

2
,
μ + α

2

)
. (1.4)

We note that the above examples by no means indicate that zero eigenvalues are
common or easy to locate. By using methods of operator analysis, we have established
further cases or conditions of existence aswell as non-existence of embedded eigenvalues
in [40]. For d = 3 it is known that the operator (−�)1/2 + V has no non-negative
eigenvalue provided that |V |, |x · ∇V | and |x · ∇(x · ∇V )| are jointly bounded by
C(1 + x2)−1/2, with a small C > 0, see [49]. Related work on unique continuation
for fractional Schrödinger equations imply further non-existence results [17,50,53,54].
Some further recent work include non-positive potentials with compact support and L
chosen to be themassive relativistic operator [41], and a class of generalized Schrödinger
operators [10].

In our previous works [27,29] we have investigated eigenfunction decay for a large
class of non-local Schrödinger operators. Using a path integration approach, L was
assumed to be the infinitesimal generator of a ‘jump-paring’ Lévy process, i.e., having
the property that

∫

|x−y|>1, |y|>1
ν(|x − y|)ν(|y|)dy ≤ Cν(|x |), |x | > 1,

where ν is the Lévy jump density entering the symbol of the kinetic part −L of the
operator (for details see the next section), and C > 0 is a constant. This condition means
that double (and by iteration, any multiple) large jumps are stochastically dominated by
single large jumps, and it covers a large family of operators and related random processes
of interest, including the fractional Laplacian and isotropic stable processes, relativistic
Laplace operators and relativistic stable processes, etc. Classical Schrödinger operators
can also be better understood against this backdrop as a limiting case, when the process
becomes a Brownianmotion and path continuity leads to singularly different behaviours.

Our approach based on path integration proved to be rather efficient, providing both
sharp results and insight into the mechanisms governing the decay behaviours. In the
first paper quoted above we considered confining potentials V (increasing to infinity as
|x | → ∞), and found that, for instance, if the potentials grow at a sufficiently regular
rate in the sense that supB V ≤ c infB V for all unit balls B far enough from the origin,
with a constant c > 0, then the ground state ϕ0 behaves like ϕ0 � ν

V . In this case
the contributions of the kinetic and potential terms in H separate neatly. In the second
paper we considered decaying potentials (decreasing to zero as |x | → ∞), such that
λ0 = inf Spec H < 0. In this case both V and ν decrease to zero, and now the interplay
between the two terms determining the decay is more intricate. We have shown that the
decay behaviour depends on how some quantities related to intrinsic jump preferences of
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the related Lévy processes comparewith the gap between the ground state eigenvalue and
the continuum edge. Specifically, if λ0 is sufficiently low-lying, then ϕ0 � ν. However,
when the gap is small and ν is chosen to have an increasingly light tail proceeding
from a polynomial or sub-exponential, through an exponential, to a super-exponential
decay rate, a sharp regime change can be observed and the rate of decay of ϕ0 suddenly
becomes slower than the rate of decay of ν, see also [28].

The mechanisms generating these properties can be appreciated by the stochastic
quantities entering the expressions. When L is chosen such that the process (Xt )t≥0 it
generates has the jump-paring property and V is an increasing potential, we obtain

ϕ0(x) � 
B(x,1)ν(x), with 
B(x,1) = Ex
[∫ τB(x,1)

0
e− ∫ t

0 V (Xs )dsdt

]
, (1.5)

where τB(x,1) = inf{t > 0 : Xt 	∈ B(x, 1)} denotes the first exit time of the process from
a unit ball centered in x , so that 
B(x,1) is the mean survival time in the given ball under
the potential. This means that the fall-off rate depends on how soon the process perturbed
by the potential on average leaves unit balls far out. Dependent on how negative λ0 is
and how light the tails of ν are, this relationship is preserved for decaying potentials up
to a point when too light tails cause a drop below a critical level in the domination of
single large jumps, which the ground state energy cannot compensate. Then the sojourn
times due to multiple re-entries in unit balls of the process become comparable with the
exit times and pile up ‘backlogs’ in the fall-off events, which slow the decay of ϕ0 down.
Indeed, when ν has so light tails that the jump-paring condition no longer holds, ϕ0
decays necessarily (and possibly much) slower than ν. In the extremal case of a classical
Laplacian this will be reflected by the fact that while the transition probability density
of Brownian motion (replacing the role of ν) has Gaussian tails, ground states under
decaying V decrease only exponentially.

Our concern in the present paper is how ϕ0 decays in the conditions when λ0 =
inf Spec H = 0. We note that in classical results on ground state decay of usual (local)
Schrödinger operators by Agmon, Carmona, and other authors (see a discussion, e.g., in
[37, Ch. 3]), a gap between the lowest eigenvalue and the edge of the continuous spectrum
is an essential ingredient, and the results break down when this gap is brought to zero.
In [2] it has been shown that for d ≥ 2 a zero-energy eigenfunction ϕ for a potential V
satisfying

∥∥|x |2−d/pV
∥∥

L p(Rd )
< ∞, for some p ≥ 1 possibly being infinite, implies a

power-law lower bound on the decay given by |x |aϕ 	∈ L2(Rd), with some a ∈ (0,∞).
The authors also showed that for a potential slower than |x |−2, exponential decay of a
zero-energy eigenfunction is possible. For some upper bounds on the decay rates see
[21]. A more encompassing study of exponential decay has been made in [20], in which
also decays faster than exponential have been ruled out.

Our framework for non-local Schrödinger operators with λ0 < 0 discussed above
does not extend to the zero eigenvalue case, however, we will develop here a new
framework by using a restricted set of operators L , requiring a doubling property of
the jump kernels instead of the more general jump-paring property. This includes frac-
tional Schrödinger operators and others that are in a sense comparable. To the best of
our knowledge, there were no attempts made so far in the literature using a similar
path integration-based approach to understand embedded eigenstates at the continuum
threshold. Our hope is that the techniques we propose here will contribute to a descrip-
tion of such states also for non-local Schrödinger operators having jump kernels with a
lighter tail and, eventually, classical Schrödinger operators too, which will need further
technical steps.
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In particular, from our approach it will be seen below that, since now λ0 = 0, there
is a complete lack of an energetic advantage from negative eigenvalues leading to the
behaviours discussed above, and now the influence of the potential appears through
vestigial effects resulting from its sign at infinity. This will also reflect in the fact that in
this case the contributions of the exits and the re-entries in local neighbourhoods even
out and add up to such an extent that (1.5) no longer holds, and the decay events become
now governed by global lifetimes such as


B(x,|x |/2) = Ex
[∫ τB(x,|x |/2)

0
e− ∫ t

0 V (Xs )dsdt

]
.

From this expression it can be appreciated that in the λ0 = 0 case there is a rather
delicate difference between the behaviour of paths under the perturbing potential and
free fluctuations of the process, and this slight difference is responsible even for the very
existence of a ground state at zero eigenvalue (for further details see Sect. 6).

Below we start from the assumption that, for a class of operators L and decaying
V , the eigenvalue equation (−L + V )ϕ = 0 is satisfied by a function ϕ ∈ L p(Rd), for
some p > 0, describing zero-energy eigenfunctions (when p = 2) or zero-resonances
(when p 	= 2). Then we will study the asymptotic behaviour of ϕ(x) as |x | → ∞which,
following from the choice of the input operators, has a pointwise decay to zero. Ourmain
results for asymptotically positive potentials are Theorems 4.1–4.3, giving upper and
lower bounds on ϕ when these functions are positive or when they may have zeroes and
distinct nodal domains. For asymptotically negative potentials we have Theorem 5.1,
giving upper bounds. We note that our results apply to both zero-energy eigenfunctions
and zero-resonances. As it will be seen in applications to specific cases (Theorems 6.1–
6.4), these estimates perform remarkably well, giving exact or close hits of the precise
asymptotics in (1.2) above.

The remainder of this paper is organized as follows. In Sect. 2 we introduce the
class of non-local Schrödinger operators considered, and briefly summarize the relevant
properties of the jump processes used in their Feynman–Kac representations. We also
give an expression of the solutions of the eigenvalue equation using a path integral
representation, which will be a key formula used throughout below. In Sect. 3 we derive
and prove some self-improving upper and lower estimates on the solutions of related
harmonic functions, on which our main conclusions will rely. In Sects. 4 and 5 we
obtain the decay behaviours separately for potentials positive and negative at infinity,
respectively. In the concluding Sect. 6 we illustrate these results on specific examples,
and discuss some mechanisms lying behind these decays.

2. Non-local Schrödinger Operators and Feynman–Kac Semigroups

2.1. Non-local Schrödinger operators and related random processes. We start by a
general remark on notation. A ball centered in x ∈ Rd and of radius r > 0 will be
denoted by B(x, r), and its complement in Rd by B(x, r)c. We write a ∧ b = min{a, b}
and a ∨ b = max{a, b}. The notation C(a, b, c, . . .) will be used for a positive constant
dependent on parameters a, b, c, . . ., dependence on the operator L or, equivalently, on
the related Lévy process (Xt )t≥0 will be indicated byC(L) andC(X), while dependence
on the dimension d is assumedwithout being stated explicitly. Since constants appearing
in definitions and statements play a role, they will be numbered C1, C2, . . . so that they
can be tracked. We will also use the notation f � Cg meaning that C−1g ≤ f ≤ Cg
with a constant C ≥ 1, while f � g means that there is a constant C ≥ 1 such that
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the latter holds. By f ≈ g we understand that lim|x |→∞ f (x)/g(x) = 1. In proofs
c1, c2, . . . will be used to denote auxiliary constants.

Consider the pseudo-differential operator L with symbol ψ , defined by

L̂ f (ξ) = −ψ(ξ) f̂ (ξ), ξ ∈ Rd , f ∈ Dom(L), (2.1)

with dense domain Dom(L) = { f ∈ L2(Rd) : ψ f̂ ∈ L2(Rd)} ⊂ L2(Rd), and where
the hats denote Fourier transform. We assume the symbol to be of the form

ψ(ξ) = Aξ · ξ +
∫

Rd\{0}
(1 − cos(ξ · z))ν(dz), (2.2)

where A = (ai j )1≤i, j≤d is a symmetric non-negative definitematrix, andν is a symmetric
Radon measure on Rd\ {0}, i.e., ν(E) = ν(−E), for every Borel set E ⊂ Rd\ {0}, with
the property that

∫
Rd (1 ∧ |z|2)ν(dz) < ∞. In the present paper we assume throughout

without further notice that the measure ν(dz) has infinite total mass and it is absolutely
continuous with respect to Lebesgue measure, i.e., ν(Rd\ {0}) = ∞ and ν(dz) =
ν(z)dz, with ν(z) > 0, z ∈ Rd . For simplicity, we denote the density also by ν. It is a
standard fact [23] that −L is a positive, self-adjoint operator with core C∞

0 (Rd), and
the expression

L f (x) =
d∑

i, j=1

ai j
∂2 f

∂x j∂xi
(x) + lim

ε↓0

∫

|z−x |>ε

( f (z) − f (x))ν(z − x)dz,

for x ∈ Rd and f ∈ C∞
0 (Rd) holds. Also, Spec(−L) = Specess(−L) = [0,∞).

Below we will use the symmetrization

�(r) = sup
|ξ |≤r

ψ(ξ), r > 0, (2.3)

of the symbol ψ . Let H(r) = ‖A‖
r2

+
∫

Rd\{0}
(
1 ∧ |z|2

r2

)
ν(dz). A combination of [52,

Rem. 4.8] and [45, Sect. 3] gives that

C1H

(
1

r

)
≤ �(r) ≤ C2H

(
1

r

)
, r > 0, (2.4)

holds with suitable constants C1 ∈ (0, 1), C2 > 1, independent of A and ν. Also, it
follows directly that r �→ H(r) is non-increasing and the doubling property H(r) ≤
4H(2r), r > 0, holds, in particular, �(2r) ≤ 4(C2/C1)�(r), for all r > 0.

Furthermore, let

B =
{

f ∈ C2
c (R

d) : f (x) = 1 for x ∈ B(0, 1/2), f (x) = 0

for x ∈ B(0, 1)c and 0 ≤ f ≤ 1
}

.

Then for fs(x) = f (x/s) with f ∈ B and s > 0, the bounds

‖L fs‖∞ ≤ 2ν(B(0, s)c) +
1

s2
sup

i, j=1,...,d

∥∥∥∥
∂2 f

∂xi∂x j

∥∥∥∥∞

(
‖A‖ +

∫

|y|≤s
|y|2ν(dy)

)

≤
(
2 ∨ sup

i, j=1,...,d

∥∥∥∥
∂2 f

∂xi∂x j

∥∥∥∥∞

)
H(s), s > 0
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hold. Let fs(x) = f (x/s) for s > 0, and denote

C3(L , s) := inf
f ∈B

‖L fs‖∞ . (2.5)

From the above observations it follows that

C3(L , s) ≤ 1

C1

(
2 ∨ inf

f ∈B
sup

i, j=1,...,d

∥∥∥∥
∂2 f

∂xi∂x j

∥∥∥∥∞

)
�(1/s), s > 0. (2.6)

A special feature of the operators of the form (2.1) with (2.2) is that they can be
treated by a path integral approach. For each choice of the matrix A and the measure
ν(dz) = ν(z)dz, the operator L is the infinitesimal generator of an Rd -valued rota-
tionally symmetric Lévy process, d ≥ 1, on the space of càdlàg paths (i.e., functions
[0,∞) → Rd which are continuous from the right, having left limits). We denote by
(Xt )t≥0 the Lévy process generated by L , the probability measure of the process start-
ing in x ∈ Rd by Px , and expectation with respect to Px by Ex . It is a general fact
that (Xt )t≥0 is a strong Markov process with respect to its natural filtration, and its
characteristic function is given by

E0
[
eiξ ·Xt

]
= e−tψ(ξ), ξ ∈ Rd , t > 0,

whereψ is the symbol of−L as defined in (2.2)which, fromaprobabilistic perspective, is
the Lévy–Khintchin formula for the class of Lévy processes we consider. In this context,
A is the diffusion matrix describing the Brownian component of the process (Xt )t≥0,
and ν(dz) is the jump measure (called Lévy measure) describing the jump component,
while the drift is zero, thus the Lévy triplet of the process is (0, A, ν). When A ≡ 0, the
random process (Xt )t≥0 is a purely jump process, otherwise it contains an independent
Brownian component.

The above properties jointly imply that (Xt )t≥0 is a strong Feller process, or equiva-
lently, its one-dimensional marginal distributions are absolutely continuous with respect
toLebesguemeasure, i.e., there existmeasurable functions p(t, x, y) = p(t, 0, y−x) =:
p(t, y − x), corresponding to transition probability densities, such that P0(Xt ∈ E) =∫

E p(t, x)dx , for every Borel set E ⊂ Rd , see [51, Th. 27.7]. Let D ⊂ Rd be an open
bounded set and consider the first exit time

τD = inf {t ≥ 0 : Xt /∈ D}
from D. The transition probability densities pD(t, x, y) of the process killed on exiting
D are then given by the Dynkin–Hunt formula

pD(t, x, y) = p(t, y − x) − Ex [p(t − τD, y − XτD ); τD < t
]
, x, y ∈ D. (2.7)

The Green function of the process (Xt )t≥0 on D is thus G D(x, y) = ∫∞
0 pD(t, x, y)dt ,

for all x, y ∈ D.
We also recall that when D ⊂ Rd is a bounded open domain, the following formula

due to Ikeda and Watanabe holds [22, Th. 1]: for every η > 0 and every bounded or
non-negative Borel function f on Rd such that dist(supp f, D) > 0, the equality

Ex [e−ητD f (XτD )
] =

∫

D

∫ ∞

0
e−ηt pD(t, x, y)dt

∫

Dc
f (z)ν(z − y)dzdy, x ∈ D,

(2.8)
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holds. Furthermore, by [52, Rem. 4.8], the estimate

E0[τB(0,r)] ≤ C4

�(1/r)
, r > 0, (2.9)

follows with a constant C4 independent of the process. For more details on Lévy pro-
cesses and their generators we refer to [23,51].

In the remainder of the paper we will use the following class of Lévy processes and
related operators L .

Definition 2.1. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) and Lévy triplet (0, A, ν), satisfying the following conditions.

(A1) There exist a non-increasing function g : (0,∞) → (0,∞) and constants C5,
C6 > 0 such that

ν(x) � C5g(|x |), x ∈ Rd\ {0} , and g(|x |) ≤ C6g(2|x |), |x | ≥ 1.

(A2) There exists tb > 0 such that supx∈Rd p(tb, x) = p(tb, 0) < ∞.
(A3) There exists a constant C7 = C7(X) such that

sup
x,y: |x−y|≥s/8

G B(0,s)(x, y) ≤ C7
�(1/s)

sd
, s ≥ 1.

Assumption (A1) is a statement on the profile of ν, including a doubling property.
Assumption (A2) is equivalent with e−tbψ ∈ L1(Rd), for some tb > 0, which by the
Markov property of (Xt )t≥0 extends to every t > tb. Assumption (A3) is a technical
condition on the Green function for particular balls. As it will be seen below, the class
satisfying Assumptions (A1)–(A3) includes isotropic and anisotropic stable processes,
i.e., fractional Schrödinger operators, and layered stable processes, corresponding to
another class ofLévy-operators comparablewith fractional Schrödinger operators,which
will be discussed in Sect. 6.

Throughout this paper we will use X -Kato class potentials. We say that the Borel
function V : Rd → R, called potential, belongs toKX associated with the Lévy process
(Xt )t≥0 if it satisfies

lim
t↓0 sup

x∈Rd
Ex
[∫ t

0
|V (Xs)|ds

]
= 0. (2.10)

Also, we say that V = V+ − V− is in X -Kato class whenever its positive and negative
parts satisfy V− ∈ KX and V+ ∈ KX

loc, where V+ ∈ KX
loc means that V+1B ∈ KX for

all compact subsets B ⊂ Rd . It is straightforward to see that L∞
loc(R

d) ⊂ KX
loc, and by

stochastic continuity of (Xt )t≥0 alsoKX
loc ⊂ L1

loc(R
d). Note that condition (2.10) allows

local singularities of V .
With an operator L given by (2.1) and an X -Kato class potential V , viewed as a

multiplication operator, we call the operator

H = −L + V in L2(Rd) (2.11)

defined by form-sum a non-local Schrödinger operator. To study the spectral properties
of this operator, we use a Feynman–Kac type representation.
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2.2. Feynman–Kac semigroups and generalized eigenfunctions. Consider the one-
parameter family of operators

Tt f (x) = Ex
[
e− ∫ t

0 V (Xs )ds f (Xt )
]
, t > 0.

By standard arguments based onKhasminskii’s Lemma, see [37, Lem. 3.37–3.38], for an
X -Kato class potential V it follows that there exist constants C8(X, V ), C9(X, V ) > 0
such that

sup
x∈Rd

Ex
[
e− ∫ t

0 V (Xs )ds
]

≤ sup
x∈Rd

Ex
[
e
∫ t
0 V−(Xs )ds

]
≤ C8eC9t , t > 0. (2.12)

This implies that the operators Tt , t > 0, are well defined on every L p(Rd), 1 ≤ p ≤ ∞,
and

‖Tt‖p,p ≤ ‖Tt‖∞,∞ ≤ C8eC9t , t > 0.

Moreover, the family {Tt : t ≥ 0} is a strongly continuous semigroup of operators on
each L p(Rd), 1 ≤ p ≤ ∞, which we call the Feynman–Kac semigroup associated with
the process (Xt )t≥0 and potential V . We define

H f = − s-limt↓0
Tt f − f

t
, f ∈ L p(Rd),

such that the limit exists in L p(Rd). We denote the set of all such functions by DomL p H
and call it the L p-domain on H . It is known that H is a closed unbounded operator such
that DomL p H is dense in L p(Rd). For p = 2 the operator H can be identified with a
self-adjoint operator as given by (2.11), defined in a quadratic form sense [11, Ch. 2].

Next we summarize some basic properties of the operators Tt which will be useful
below. Recall that for a function f ∈ L2(Rd)wewrite f ≥ 0 (resp., f > 0) if f (x) ≥ 0
(resp., f (x) > 0) almost everywhere in Rd .

Lemma 2.1. Let (Xt )t≥0 be a symmetric Lévy process with Lévy–Khintchin exponent
satisfying (2.2) such that Assumption (A2) holds with some tb > 0, and let V be an
X-Kato class potential. Then the following properties hold:

(1) For all non-negative Borel measurable functions f, g the equality

∫

Rd
f (x)Tt g(x)dx =

∫

Rd
Tt f (x)g(x)dx, t > 0,

holds, i.e., Tt are symmetric operators.
(2) The operators Tt : L p(Rd) → L∞(Rd) for 1 < p ≤ ∞, t ≥ tb, and Tt : L1(Rd) →

L∞(Rd) for t ≥ 2tb, are bounded.
(3) For all t ≥ 2tb, Tt has a bounded measurable integral kernel u(t, x, y), symmetric in

x and y, i.e., Tt f (x) = ∫Rd u(t, x, y) f (y)dy, for all f ∈ L p(Rd) and 1 ≤ p ≤ ∞.
(4) For all t > 0 and f ∈ L∞(Rd), Tt f is a bounded continuous function, that is

{Tt : t ≥ 0} is a strongly Feller semigroup.
(5) For all t > 0 the operators Tt are positivity improving, i.e., Tt f > 0 for all

f ∈ L2(Rd) such that f ≥ 0 and f 	= 0 a.e.
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The proof of these general properties is left to the reader, which can be obtained as
an extension to the present set-up of the facts in [37, Sects. 3.2–3.3]. Note that we do
not assume that p(t, x) is bounded for all t > 0, and thus in general the operators
Tt : L p(Rd) → L∞(Rd) need not be bounded for t < tb.

Related to the Feynman–Kac semigroup, we define the potential operator by

GV f (x) =
∫ ∞

0
Tt f (x)dt = Ex

[∫ ∞

0
e− ∫ t

0 V (Xs )ds f (Xt )dt

]
,

for non-negative or bounded Borel functions f on Rd . Recall that τD denotes the first
exit time of the process from domain D. Whenever D ⊂ Rd is an open set, it follows
by the strong Markov property of the process that for every x ∈ D

GV f (x) = Ex
[∫ τD

0
e− ∫ t

0 V (Xs )ds f (Xt )dt

]

+ Ex
[
e− ∫ τD

0 V (Xs )ds GV f (XτD ); τD < ∞
]
.

(2.13)

For further information on potential theory we refer to [6].
Let V be a decaying X -Kato class potential by which we mean V (x) → 0 as |x | →

∞. The main object of our investigations in this paper are the solutions ϕ ∈ L p(Rd),
p ≥ 1, ϕ 	≡ 0, of the equation

Hϕ = 0, (2.14)

or, equivalently,

Ttϕ = ϕ, t ≥ 0. (2.15)

In the L2-framework

� := inf Specess H = inf Specess(−L) = 0

is the edge of the essential spectrum of H and (2.14) can be understood as the eigenvalue
equation at �. Whenever the solution ϕ to (2.14) is such that ϕ ∈ DomL2 H , we call
it a zero-energy eigenfunction (or zero-energy bound state) and then 0 is an eigenvalue.
Otherwise, we call both (by a slight abuse of language) a zero-resonance.

Throughout we will assume that every zero-energy eigenfunction ϕ is L2-normalized
so that ‖ϕ‖2 = 1. Moreover, by Lemma 2.1 it follows that Tt (L p(Rd)) ⊂ L∞(Rd) and
Tt (L∞(Rd)) ⊂ Cb(Rd) for every t > 2tb and p ≥ 1. Therefore, any solution ϕ to (2.14)
and (2.15) is a bounded and continuous function, in particular, it makes sense to study
their pointwise estimates.

Below we will make frequently use of the following resolvent representation of solu-
tions of (2.14). Choose θ > 0. Then by multiplying both sides of (2.15) and integrating
with respect to time, we obtain

ϕ(x) = θ(θ + H)−1ϕ = θ

∫ ∞

0
Ex
[
e− ∫ t

0 (θ+V (Xs ))dsϕ(Xt )
]

dt, x ∈ Rd . (2.16)
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Combining this with (2.13) applied to f = ϕ for an arbitrary open set D ⊂ Rd and
x ∈ D, and using the strong Markov property of the Lévy process (Xt )t≥0, we readily
obtain

ϕ(x) = θ

(∫ τD

0
+
∫ ∞

τD

)
Ex
[
e− ∫ t

0 (θ+V (Xs ))dsϕ(Xt )
]

dt

= θEx
[∫ τD

0
e− ∫ t

0 (θ+V (Xs ))dsϕ(Xt )dt

]

+Ex
[
e− ∫ τD

0 (θ+V (Xs ))dsϕ(XτD ); τD < ∞
]
, (2.17)

which will be a fundamental formula in what follows.

3. Self-improving Estimates

In this section we show some key estimates which will serve to proving our main results
below. Let R0 ≥ 1 be a fixed number. Throughout this section we will consider non-
increasing functions u, v, w : [R0,∞) → (0,∞) such that there exist C10, C12 ≥ 1
satisfying

u(r) ≤ C10u(2r) w(r) ≤ C12w(2r), r ≥ R0, (3.1)

and
∫

|x |>r
u(|x |)dx ≤ w(r), r ≥ R0. (3.2)

In what follows we will also use the notations

Ku,v := u

v
and hu,v(r) :=

∫

R0≤|y|≤r
Ku,v(|y|)dy, r ≥ R0,

and ωd will denote the volume of a unit d-dimensional ball.

Lemma 3.1. Let u, v, w : [R0,∞) → (0,∞) be non-increasing functions such that
(3.1) and (3.2) hold with constants C10, C12 ≥ 1 and

lim
r→∞

w(r)

v(r)
= 0. (3.3)

Moreover, suppose that f is a bounded non-negative function on Rd such that

f (x) ≤ C13

v(|x |)

(∫

|z−x |> |x |
2

f (z)u(|z − x |)dz +
w(|x |)
|x |d

∫
|x |
32 <|z−x |≤ |x |

2

f (z)dz

)
, (3.4)

for |x | ≥ R0 and a constant C13 > 0, and let η := C10C13. If

sup
r>R0

Ku,v(r)eηhu,v(r) < ∞, (3.5)

then there exist R > 2R0 and C14 = C14(R) such that

f (x) ≤ C14 ‖ f ‖∞ Ku,v(|x |)eηhu,v(|x |), |x | ≥ R. (3.6)
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In particular, if ∫

|y|≥R0

Ku,v(|y|)dy < ∞, (3.7)

then

f (x) ≤ C14eηhu,v(∞) ‖ f ‖∞ Ku,v(|x |), |x | ≥ R, with hu,v(∞) := lim
r→∞ hu,v(r).

(3.8)

Proof. Observe that (3.8) follows directly from (3.6). We only need to prove (3.6). Let

c1 := sup
r≥R0

Ku,v(r)eηhu,v(r) (3.9)

and R > 2R0 be large enough such that

c2 := sup
|x |≥R

w(|x |)
v(|x |) <

1

(1 + c1)C13
(
C12 + 2−d

) . (3.10)

By (3.4) and the part of (3.1) stated for u, for every |x | ≥ R we obtain

f (x) ≤ C13

v(|x |)

(∫
|z−x |> |x |

2|z|≤R

f (z)u(|z − x |)dz +
w(|x |) 1{|x |≤2R}

|x |d
∫

|x |
32 <|z−x |≤ |x |

2

f (z)dz

)

+
C13

v(|x |)

(∫
|z−x |> |x |

2|z|>R

f (z)u(|z − x |)dz +
w(|x |) 1{|x |>2R}

|x |d
∫

|x |
32 <|z−x |≤ |x |

2

f (z)dz

)

≤ C13 ‖ f ‖∞
v(|x |)

(
ωd Rd u(|x |/2) + ωd w(2R)

2d u(2R)
u(|x |)

)

+
C13

v(|x |)

(∫
|z−x |> |x |

2|z|>R

f (z)u(|z − x |)dz +
w(|x |) 1{|x |>2R}

|x |d
∫

|x |
32 <|z−x |≤ |x |

2

f (z)dz

)

≤ C13 ωd

(
C10Rd +

w(2R)

2d u(2R)

)
‖ f ‖∞

u(|x |)
v(|x |)

+
C13

v(|x |)

(∫
|z−x |> |x |

2|z|>R

f (z)u(|z − x |)dz +
w(|x |)
|x |d

∫
|x |
32 <|z−x |≤ |x |

2|z|>R

f (z)dz

)
.

From this we obtain the two independent estimates

f (x) ≤ C13 ωd

(
C10Rd +

w(2R)

2du(2R)

)
‖ f ‖∞

u(|x |)
v(|x |)

+
C13

v(|x |)
∫

R≤|z|≤|x |
|x−z|> |x |

2

f (z)u(|x − z|)dz

+ C13
w(|x |)
v(|x |)

(∫
|z|> |x |

2
u(|z|)dz

w(|x |) +
1

2d

)
sup

|z|≥ |x |
2 ∨R

f (z)
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and

f (x) ≤ C13 ωd

(
C10Rd +

w(2R)

2du(2R)

)
‖ f ‖∞

u(|x |)
v(|x |)

+ C13‖ f ‖∞
w(|x |)
v(|x |)

(∫
|z|> |x |

2
u(|z|)dz

w(|x |) +
1

2d

)
.

They give, respectively,

f (x) ≤ c3 ‖ f ‖∞
u(|x |)
v(|x |) +

C13

v(|x |)
∫

R≤|z|≤|x |
|x−z|> |x |

2

f (z)u(|x − z|)dz

+ c2 C13

(
C12 +

1

2d

)
sup

|z|≥ |x |
2 ∨R

f (z) (3.11)

and

f (x) ≤ c3‖ f ‖∞
(

u(|x |)
v(|x |) + c2C13

(
C12 + 2−d)

)
, (3.12)

for |x | ≥ R, where

c3 := C13 ωd

(
C10Rd +

w(2R)

2du(2R)

)
∨ 1.

Also, recall that η = C10C13, denote c4 = c2(1 + c1)C13
(
C12 + 2−d

)
, and notice that by

(3.9) and (3.10) it follows that c4 < 1.
Now we show that for every p ∈ N

f (x) ≤ c3 ‖ f ‖∞

[
Ku,v(|x |)

p∑
k=1

(
ηhu,v(|x |))k−1

(k − 1)! + cp
4

]
, |x | ≥ R. (3.13)

Notice that if this holds, then by taking the limit p → ∞ it follows that

f (x) ≤ c3 ‖ f ‖∞ Ku,v(|x |)eηhu,v(|x |), |x | ≥ R,

which is the bound stated in the lemma. To prove (3.13) we perform induction on p ∈ N.
First observe that for p = 1 the estimate (3.13) follows from (3.12). Suppose now that
(3.13) holds for p − 1 ∈ N. By using (3.11) and the induction hypothesis, we see for all
|x | ≥ R that

f (x) ≤ c3 ‖ f ‖∞ Ku,v(|x |)

+ c3C10C13 ‖ f ‖∞ Ku,v(|x |)
p−1∑
k=1

ηk−1

(k − 1)!
∫

1≤|z|≤|x |
Ku,v(|z|)hu,v(|z|)k−1dz

+ c3 ‖ f ‖∞
(

c2C12C13 + c1c2C13(C12 + 2−d) + c2C13(C12 + 2−d)
)

cp−1
4 .
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By a substitution we obtain
∫

R0≤|z|≤|x |
Ku,v(|z|)hu,v(|z|)k−1dz

=
∫

R0≤|z2|≤|x |
Ku,v(|z2|)

(∫

R0≤|z1|≤|z2|
Ku,v(|z1|)dz1

)k−1

dz2

= ωk
d−1

∫ |x |

R0

Ku,v(ρ2)ρ
d−1
2

(∫ ρ2

R0

Ku,v(ρ1)ρ
d−1
1 dρ1

)k−1

dρ2

= ωk
d−1

k

(∫ |x |

R0

Ku,v(ρ1)ρ
d−1
1 dρ1

)k

= 1

k

(∫

R0≤|z|≤|x |
Ku,v(|z|)dz

)k

(3.14)

and thus

f (x) ≤ c3 ‖ f ‖∞ Ku,v(|x |) + c3 ‖ f ‖∞ Ku,v(|x |)
p−1∑
k=1

ηk

k! hu,v(|x |)k + c3 ‖ f ‖∞ cp
4

= c3 ‖ f ‖∞

[
Ku,v(|x |)

p∑
k=1

(
ηhu,v(|x |))k−1

(k − 1)! + cp
4

]
, |x | ≥ R,

which is the claimed bound. ��
Remark 3.1. With some extra work it is possible to check that under the non-restrictive
assumption that the function Ku,v is almost non-increasing, i.e., there exists C ≥ 1 such
that Ku,v(s) ≤ C Ku,v(r) for all R0 ≤ r ≤ s, condition (3.7) can be understood also in
terms of a convolution condition. Indeed, if (3.7) holds, then

sup
|x |≥2R0

∫
|z−x |>R0,|z|>R0

Ku,v(|x − z|)Ku,v(|z|)dz

Ku,v(|x |/2) < ∞,

and a converse property is that

sup
|x |≥R0

∫
|z−x |>R0,|z|>R0

Ku,v(|x − z|)Ku,v(|z|)dz

Ku,v(|x |) < ∞

implies (3.7). The proof involves some lengthy but simple calculations, and the details
are left to the interested reader.

The next lemma deals with a lower bound on positive functions satisfying an integral
inequality.

Lemma 3.2. Let u, v : [1,∞) → (0,∞) be non-increasing functions such that u
satisfies (3.1) with a constant C10 ≥ 1, and suppose that f is a positive function on Rd

such that

f (x) ≥ C15

v(|x |)
∫

|z|<|x |
|z+x |<|z−x |

f (z)u(|z − x |)dz, |x | > 1, (3.15)
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for a constant C15 > 0. Then

f (x) ≥ ηe−ηhu,v(1)Ku,v(|x |)eηhu,v(|x |), |x | > 1, (3.16)

with constant

η := C15

C10

(
1

2
∧ inf

x :|x |=1

∫
|z|≤1

|z+x |<|z−x |
f (z)dz

)
.

In particular,

f (x) ≥ ηKu,v(|x |), |x | > 1. (3.17)

Proof. By (3.15) we get

f (x) ≥ C15

C10

u(|x |)
v(|x |)

(∫
|z|≤1

|z+x |<|z−x |
f (z)dz +

∫
1<|z|<|x |

|z+x |<|z−x |
f (z)dz

)
, |x | > 1,

and by symmetrization of the second integral,

f (x) ≥ C15

C10
Ku,v(|x |)

(∫
|z|≤1

|z+x |<|z−x |
f (z)dz

+
1

2

(∫
1<|z|<|x |

|z+x |<|z−x |
f (z)dz +

∫
1<|z|<|x |

|z−x |<|z+x |
f (−z)dz

))
, (3.18)

for all |x | > 1. Next we prove that for every p ∈ N

f (x) ≥ ηKu,v(|x |)
p∑

k=1

(
η(hu,v(|x |) − hu,v(1))

)k−1

(k − 1)! , |x | > 1, (3.19)

holds with

η := C15

C10

(
1

2
∧ inf|x |=1

∫
|z|≤1

|z+x |<|z−x |
f (z)dz

)
.

Clearly, if (3.19) is true for every p ∈ N, then estimate (3.16) also holds.
We use induction on p. For p = 1 the inequality (3.19) is an immediate consequence

of (3.18). Suppose now that the induction hypothesis holds for some p ∈ N. By (3.18)
and (3.19) and rotation symmetry we obtain

f (x) ≥ ηKu,v(|x |)
(
1 + η

p∑
k=1

ηk−1

(k − 1)!
∫

1<|z|<|x |
u(|z|)
v(|z|) (hu,v(|z|) − hu,v(1))

k−1dz

)
,

for |x | > 1. Similarly as in the calculation above leading to (3.14), we obtain
∫

1<|z|<|x |
u(|z|)
v(|z|) (hu,v(|z|) − hu,v(1))

k−1dz

= ωd−1

∫ |x |

1

u(r)

v(r)
(hu,v(r) − hu,v(1))

k−1rd−1dr

= (hu,v(|x |) − hu,v(1))k

k
, |x | > 1,
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and thus we conclude that

f (x) ≥ ηKu,v(|x |)
(
1 +

p∑
k=1

ηk

k! (hu,v(|x |) − hu,v(1))
k

)

= ηKu,v(|x |)
p+1∑
k=1

ηk−1

(k − 1)! (hu,v(|x |) − hu,v(1))
k−1, |x | > 1,

as required. ��

4. Decay of Zero-Energy Eigenfunctions for Potentials Positive at Infinity

4.1. Upper bound. Nowwe turn to discussing the spatial decay properties of eigenfunc-
tions of non-local Schrödinger operators presented in Sect. 2. In this section we consider
decaying potentials that are non-negative at infinity in the following sense:
(A4) V is an X -Kato class potential such that V (x) → 0 as |x | → ∞, and there exists

r0 > 0 such that V (x) ≥ 0 for |x | ≥ r0.
It will be useful to introduce the notation

V∗(x) := inf
r0≤|y|≤ 3

2 |x |
V (y), |x | ≥ r0.

Notice that V∗(x) is a radial and non-increasing function such that V∗(x) ≥ 0, |x | ≥ r0.
We will need a uniform estimate of functions that are harmonic with respect to the

operator H . Since our approach is via a Feynman–Kac type stochastic representation,
we use throughout the following probabilistic definition. Let D be an open subset of Rd

and let V be a Kato-class potential such that V (x) ≥ 0 on D. We call a non-negative
Borel function f on Rd an (X, V )-harmonic function in the domain D if

f (x) = Ex
[
e− ∫ τU

0 V (Xs )ds f (XτU ); τU < ∞
]
, x ∈ U, (4.1)

for every open set U with its closure U contained in D, and a regular (X, V )-harmonic
function in D if (4.1) holds for U = D (where τU is the first exit time from U ). By
the strong Markov property every regular (X, V )-harmonic function in D is (X, V )-
harmonic in D. Whenever V ≡ 0 in D, we refer to f as a (regular) X-harmonic
function.

An initial version of the type of bound we prove below has been first obtained in [29,
Lem. 3.1] and it can be derived from the general results in [6]. Here we need a variant
suitable for the purposes of the present paper; note that the following estimate does not
exclude the case V ≡ 0. Recall the expression (2.3).

Lemma 4.1. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in (2.2)
such that Assumptions (A1)–(A3) and (A4) hold; specifically, let (A4) hold with some
r0 > 0. Then for every η ∈ (0, 1

4 ] there exists a constant C16 > 0 such that for every
non-negative function f on Rd which is regular (X, V )-harmonic in a ball B

(
x, η|x |),

|x | ≥ r0/(1 − η), the bound

f (y) ≤ C16

V∗(x) ∨ �
( 1

|x |
)

⎛
⎜⎜⎝

∫

|z−x |>2η|x |
f (z)ν(z − x)dz +

�
( 1

|x |
)

|x |d
∫

η|x |
8 <|x−z|≤2η|x |

f (z)dz

⎞
⎟⎟⎠ ,

(4.2)
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is satisfied, whenever |x − y| <
η|x |
32 .

Proof. We borrow some notation from [29, Sect. 3.2]. Let 0 < s1 < s2 < s3 ≤ ∞ and
define

K2(s1, s2, s3) := inf {C ≥ 1 : ν(x − y) ≤ C ν(x), |y| ≤ s1, s2 ≤ |x | < s3} . (4.3)

Using (A1) of Definition 2.1, it is seen that K2(s1, s2, s3) is well-defined and a non-
decreasing function in s1 ∈ (0, s2), for every fixed 0 < s2 < s3 ≤ ∞. Also, using (A3)
of the same definition, we define

K3(s) := sup
x,y: |x−y|≥s/8

G B(0,s)(x, y), s > 0. (4.4)

For a detailed explanation of the role and probabilistic interpretation of these parameter
functions we refer the reader to the discussion of Eqs. (2.13) and (2.14) in [29]. Then,
for s1 ≥ 1 and s2 = 2s1, define

h1(s1, s2) = K2(s1, s2,∞)
[
C3

(
L ,

s1
16

) (
C17(s1) |B(0, s1)| + E0[τB(0,2s1)]

)
+ 1
]

and

h2(s1) = C3

(
L ,

s1
16

) [
C3 (L , s1) C17(s1) + E0[τB(0,2s1)] sup

|y|≥ s1
4

ν(y)

]
+ sup

|y|≥ s1
16

ν(y),

where

C17(s1) := K3(s1) +
E0[τB(0,2s1)]∣∣B(0, s1

4 )
∣∣ K2

( s1
4

,
s1
2

, s1
)2

.

By (A1) there exists an absolute constant c1 > 0 such that

K2(s1, s2,∞) ≤ c1 and K2

( s1
4

,
s1
2

, s1
)

≤ c1,

and, from (2.4) and (A1) we get

sup
|y|≥ s1

4

ν(y) ≤ sup
|y|≥ s1

16

ν(y ≤ c2
�(1/s1)

sd
1

.

This, together with (2.6), (2.9), (A3), and the doubling property of the function� yields

h1(s1, s2) ≤ c3 and h2(s1) ≤ c4
�(1/s1)

sd
1

, (4.5)

with constants c3, c4 > 0.
Let s1 ≥ 1 arbitrary, and consider a non-negative function f on Rd which is regular

(X, V )-harmonic in a ball B
(
x, s1

)
, |x | ≥ r0 + s1. Then, by applying the argument in the
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second part of the proof of [29, Lem. 3.1] with the deterministic multiplicative functional

e−ηt replaced by e− ∫ t
0 V (Xs )ds , we get

f (y) ≤
(

Ey
[∫ τ

B(x,
s1
16 )

0
e−V∗(x)t dt

]
∧ Ey[τB(x,

s1
16 )]
)

×

⎛
⎜⎜⎝h1(s1, s2)

∫

|z−x |>s2

f (z)ν(z − x)dz + h2(s1)
∫

s1
8 <|x−z|≤s2

f (z)dz

⎞
⎟⎟⎠ ,

for all |y − x | < s1/32 and |x | ≥ r0 + s1. Finally, by taking s1 := η|x | (then s2 = 2η|x |)
with |x | ≥ r0/(1 − η) (so that |x | ≥ r0 + η|x |), using (4.5) and the estimates

Ey
[∫ τB(x,η|x |/16)

0
e−V∗(x)t dt

]
≤ c5

V∗(x)
and Ey[τB(x,η|x |/16)] ≤ c6

�(1/|x |)
(recall that V∗(x) ≥ 0 and herewe use the convention 1/0 = +∞), we obtain the claimed
bound

f (y) ≤ c7
V∗(x) ∨ �

( 1
|x |
)

⎛
⎜⎜⎝

∫

|z−x |>2η|x |
f (z)ν(z − x)dz +

�
( 1

|x |
)

|x |d
∫

η|x |
8 <|x−z|≤2η|x |

f (z)dz

⎞
⎟⎟⎠ ,

for |x − y| < (η|x |)/32 and |x | ≥ r0/(1 − η). This completes the proof. ��
We single out two choices of (X, V )-harmonic functions of special interest below,

for which the above estimate directly applies.

Corollary 4.1. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) such that Assumptions (A1)–(A3) and (A4) are satisfied; specifically, let (A4) hold
with some r0 > 0. The following hold:

(1) If

f (x) =
⎧⎨
⎩

Ex
[

e− ∫
τ

B(0,r0)
c

0 V (Xs )ds
]

for x /∈ B(0, r0),

1 for x ∈ B(0, r0),
(4.6)

then for every |x | ≥ 2r0,

f (x) ≤ C4

V∗(x) ∨ �
( 1

|x |
)

⎛
⎜⎜⎝

∫

|z−x |> |x |
2

f (z)ν(z − x)dz +
�
( 1

|x |
)

|x |d
∫

|x |
32 <|x−z|≤ |x |

2

f (z)dz

⎞
⎟⎟⎠ .

(2) Let η ∈ (0, 1/4]. If

f (y) =
⎧⎨
⎩

Ey
[

e− ∫ τB(x,η|x |)c
0 V (Xs )dsϕ(XτB(x,η|x |)c )

]
for y ∈ B(x, η|x |),

ϕ(y) for y /∈ B(x, η|x |),
(4.7)
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for some x /∈ B(0, r0/(1 − η)) and a function ϕ : Rd → [0,∞), not identically
zero, then

f (y) ≤ C4

V∗(x) ∨ �
( 1

|x |
)

×

⎛
⎜⎜⎝

∫

|z−x |>2η|x |
f (z)ν(z − x)dz +

�
( 1

|x |
)

|x |d
∫

η|x |
8 <|x−z|≤2η|x |

f (z)dz

⎞
⎟⎟⎠ ,

whenever |y − x | <
η|x |
32 .

The above corollary is a straightforward consequence of Lemma 4.1. Indeed, by the
strong Markov property of the underlying Lévy process, the function f defined by (4.6)
is regular (X, V )-harmonic in every ball B

(
x, |x |/4), |x | ≥ 2r0. Similarly, for given

x /∈ B(0, r0/(1−η)), the function (4.7) is regular (X, V )-harmonic in a ball B
(
x, η|x |).

We can now make use of the above estimates and the technical results obtained in
the previous section to derive upper bounds for the zero-energy solutions for potentials
satisfying (A4).

Theorem 4.1. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) such that Assumptions (A1)–(A3) and (A4) hold; specifically, let (A4) hold with
some r0 > 0. Moreover, let ϕ be a solution of (2.14). Then the following hold.

(1) If

lim|x |→∞
�
(

1
|x |
)

V∗(x)
= 0 and

∫

|x |>2r0

ν(x)

V∗(x)
dx < ∞,

then there exists C > 0 and R ≥ 2r0 such that

|ϕ(x)| ≤ C ‖ϕ‖∞
ν(x)

V∗(x)
, |x | > R.

In particular, ϕ ∈ L1(Rd).
(2) If

lim|x |→∞
�
(

1
|x |
)

V∗(x)
= 0 and

∫

|x |>2r0

ν(x)

V∗(x)
dx = ∞,

and

sup
|x |≥2r0

[
ν(x)

V∗(x)
exp

(
η∗
∫

2r0≤|z|≤|x |
ν(z)

V∗(z)
dz

)]
< ∞,

with η∗ := C4C6, then there exist C > 0 and R ≥ 2r0 such that

|ϕ(x)| ≤ C ‖ϕ‖∞
ν(x)

V ∗(x)
exp

(
η∗
∫

r0≤|z|≤|x |
ν(z)

V∗(z)
dz

)
, |x | > R.
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(3) If lim inf |x |→∞
�
(

1
|x |
)

V∗(x)
> 0, ϕ ≥ 0, and ϕ ∈ L p(Rd) for some p ∈ (1,∞), then

there exists C > 0 such that

ϕ(x) ≤ C ‖ϕ‖p

⎛
⎜⎜⎜⎜⎜⎜⎝

( ∫
|z|>|x |

ν(z)
p

p−1 dz

) p−1
p

�
( 1

|x |
) +

1

|x |d/p

⎞
⎟⎟⎟⎟⎟⎟⎠

, |x | > 2r0.

Proof. By applying the resolvent formula (2.17) with any θ > 0 and D = B(0, r0)c,
and then on letting θ ↓ 0, we obtain

ϕ(x) = Ex
[

e− ∫
τB(0,r0)c

0 V (Xs )dsϕ(XτB(0,r0)c
); τB(0,r0)c < ∞

]
, |x | > r0, (4.8)

and hence

|ϕ(x)| ≤ ‖ϕ‖∞ Ex
[

e− ∫
τB(0,r0)c

0 V (Xs )ds
]

, |x | > r0.

Next, let f be the function defined in (4.6). With this we obtain

|ϕ(x)| ≤ ‖ϕ‖∞ f (x), |x | > r0. (4.9)

Choosing

u(|x |) := C5g(|x |), w(|x |) := �

(
1

|x |
)

, v(|x |) := V∗(|x |), |x | ≥ 2r0,

with g as given in Assumption (A1), by Corollary 4.1 (1), we get for |x | > 2r0

f (x) ≤ C4

v(|x |) ∨ w(|x |)

⎛
⎜⎜⎝

∫

|z−x |> |x |
2

f (z)u(|z − x |)dz +
w(|x |)
|x |d

∫

|x |
32 <|x−z|≤ |x |

2

f (z)dz

⎞
⎟⎟⎠ .

To showparts (1)–(2) of the theoremnote that, by assumption, lim|x |→∞ �(1/|x |)/v(|x |)
= 0, thus we may assume that r0 is large enough such that �(1/|x |) ∨ v(|x |) = v(|x |),
for |x | ≥ 2r0. This means that the estimate (3.4) holds with constant C13 = C4, radius
R0 := 2r0∨1, and the above defined functions u, w and v.Moreover, assumptions (3.1)–
(3.3) are also satisfied. Then the first two statements of the theorem follow directly by
Lemma 3.1 and (4.9).

Next we prove the remaining part (3). First note that ϕ ≥ 0 and similarly as in (4.8)
we obtain

ϕ(x) = Ex
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ(XτB(x,|x |/4) )

]
, |x | > 2r0.
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Corollary 4.1 (2) gives the bound

ϕ(x) ≤ C4

�
( 1

|x |
)

⎛
⎜⎜⎝

∫

|z−x |> |x |
2

ϕ(z)ν(z − x)dz +
�
( 1

|x |
)

|x |d
∫

|x |
32 <|x−z|≤ |x |

2

ϕ(z)dz

⎞
⎟⎟⎠ ,

for |x | > 2r0. Finally, by Hölder inequality with suitable p, q,

ϕ(x) ≤ C4

�
( 1

|x |
) ‖ϕ‖p

⎛
⎜⎜⎝
∫

|z|> |x |
2

ν(z)qdz

⎞
⎟⎟⎠

1/q

+
c

|x |d ‖ϕ‖p |B(0, |x |/2)|1/q

≤ c1 ‖ϕ‖p

⎛
⎜⎜⎜⎜⎜⎜⎝

( ∫
|z|>|x |

ν(z)
p

p−1 dz

) p−1
p

�
( 1

|x |
) +

1

|x |d/p

⎞
⎟⎟⎟⎟⎟⎟⎠

, |x | > 2r0,

which completes the proof. ��
As it will be seen below, Theorem 4.1 (1)–(2) gives sharp upper bounds, provided

ϕ ≥ 0 (compare with the lower bounds in Theorem 4.3). We will now prove that if ϕ

is antisymmetric with respect to a given (d − 1)-dimensional hyperplane π in Rd with
0 ∈ π , and has a definite sign on both of the corresponding half-spaces, then the decay
rate in (1) of |ϕ| at infinity far away from π improves, while the upper bound in (3)
remains unchanged. By rotating the coordinate system if necessary, we may assume that
π = {x ∈ Rd : x1 = 0}. We make the assumption

ϕ
(
(−x1, x2, . . . , xd)

) = −ϕ
(
(x1, x2, . . . , xd)

)
, x = (x1, . . . , xd) ∈ Rd ,

and ϕ
(
(x1, . . . , xd)

) ≥ 0 whenever x1 > 0. (4.10)

The next theorem deals with the case when ϕ has no definite sign, but does satisfy (4.10).

Theorem 4.2. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) such that Assumptions (A1)–(A3) and (A4) hold; specifically, let (A4) hold with
some r0 > 0. Suppose that there exist C0 > 0 and R0 > 0 such that

|ν(z1) − ν(z2)| ≤ C0
ν(z2)

|z2| |z1 − z2|, |z1| ≥ |z2| ≥ R0, (4.11)

Moreover, let ϕ be a solution of (2.14) such that (4.10) holds. The following hold:

(1) If lim|x |→∞
�
(

1
|x |
)

V∗(x)
= 0,

∫
|x |>2r0

ν(x)
V∗(x)

dx < ∞, ϕ ∈ L1(Rd) and there exists a
constant C1 > 0 such that

ν(y)

V∗(y)
≤ C1

ν(x)

V∗(x)
, |y| ≥ |x |/2 ≥ 2r0, (4.12)

then there exists C > 0 and R ≥ 2r0 ∨ 4R0 such that for |x1| > R we have

|ϕ(x)| ≤ C (‖ϕ‖∞ ∨ ‖ϕ‖1)
ν(x)

V∗(x)

(
�(1/|x |)

V∗(x)
∨
(

1

|x |
∫

2r0<|z|< |x |
2

|z1| ν(z)

V∗(z)
dz

))
.
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(2) If lim inf |x |→∞
�
(

1
|x |
)

V∗(x)
> 0 and ϕ ∈ L p(Rd), p > 1, then there exists C > 0 such

that

|ϕ(x)| ≤ C ‖ϕ‖p

⎛
⎜⎜⎜⎜⎜⎜⎝

( ∫
|z|>|x |

ν(z)
p

p−1 dz

) p−1
p

�
( 1

|x |
) +

1

|x |d/p

⎞
⎟⎟⎟⎟⎟⎟⎠

, |x1| > 2r0.

Proof. Using the resolvent formula (2.17) with θ > 0 and D = B(x, |x |/4)c, and then
letting θ ↓ 0, we obtain

ϕ(y) = Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ(XτB(x,|x |/4) )

]
, |y − x | <

|x |
4

, |x | ≥ 2r0.

Denote H+ := {z ∈ Rd : z1 > 0
}
and H− := {z ∈ Rd : z1 < 0

}
. With this notation, by

(4.10) we obtain

ϕ(y) + Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ−(XτB(x,|x |/4) ); XτB(x,|x |/4) ∈ H− ∩ B(0, |x |/2)c

]

︸ ︷︷ ︸
=: I1(x,y)

= Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ(XτB(x,|x |/4) ); XτB(x,|x |/4) ∈ B(0, |x |/2)

]

︸ ︷︷ ︸
=: I2(x,y)

(4.13)

+ Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ+(XτB(x,|x |/4) ); XτB(x,|x |/4) ∈ H+ ∩ B(0, |x |/2)c

]

︸ ︷︷ ︸
=: I3(x,y)

.

In particular,

ϕ(x) = |ϕ(x)| ≤ |I2(x, x)| + I3(x, x), x1 ≥ 2r0.

To obtain (1), first we estimate |I2(x, x)|. By the Ikeda–Watanabe formula (2.8), the
change of variable (z1, . . . , zd) = z �→ ẑ = (−z1, z2, . . . , zd) in the inner integral over
H− ∩ B(0, |x |/2), and (4.10) we obtain

I2(x, x) =
∫

B(x,|x |/4)
GV

D(x, dy)

∫

B(0,|x |/2)
ϕ(z)ν(y − z)dz

=
∫

B(x,|x |/4)
GV

D(x, dy)

∫

H+∩B(0,|x |/2)
ϕ(z)

(
ν(y − z) − ν(y − ẑ)

)
dz.
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Thus by (4.10), (A1), and Theorem 4.1 (1) there exist c1, c2, c3 > 0 and R̃ ≥ 2r0 such
that for |x | > 2R̃ ∨ 4R0 it follows that

|I2(x, x)| ≤ c1
ν(x)

|x | GV
D

(
x, B(x, |x |/4))

∫

B(0,|x |/2)
|ϕ(z)||z1|dz

≤ c2
ν(x)

|x |V∗(x)

(∫

|z|≤R̃
|ϕ(z)||z1|dz +

∫

2r0<|z|< |x |
2

ν(z)

V∗(z)
|z1|dz

)

≤ c3
ν(x)

V∗(x)

1

|x |
∫

2r0<|z|< |x |
2

ν(z)

V∗(z)
|z1|dz.

To estimate I3, denote

fx (y) =
{

I3(x, y) for y ∈ B(x, |x |/4),
ϕ(y)1H+∩B(0,|x |/2)c (y) for y /∈ B(x, |x |/4), (4.14)

for every |x | ≥ 2r0. The function fx (y) is regular (X, V )-harmonic in a ball B(x, |x |/2),
and by Corollary 4.1 (2) it follows that

fx (y) ≤ C4

V∗(x) ∨ �
( 1

|x |
)

⎛
⎜⎜⎝

∫

|z−x |> |x |
2

fx (z)ν(z − x)dz +
�
( 1

|x |
)

|x |d
∫

|x |
32 <|x−z|≤ |x |

2

fx (z)dz

⎞
⎟⎟⎠

as long as |y−x | < |x |/128 and |x | ≥ 2r0. By the definition in (4.14) and the assumption

that lim|x |→∞
�
(

1
|x |
)

V∗(x)
= 0, there exists R ≥ 2r0 such that the above estimate gives for

|x | ≥ R

I3(x, x) ≤ C4

V∗(x)

∫

|z−x |> |x |
2

|z|> |x |
2 , z1>0

ϕ(z)ν(z − x)dz + C4

�
( 1

|x |
)

|x |d V∗(x)

∫

|x |
4 ≤|x−z|≤ |x |

2

ϕ(z)dz

+ C4
�
( 1

|x |
)

|x |d V∗(x)

∫

|x |
32 <|x−z|< |x |

4

I3(x, z)dz =: J1(x) + J2(x) + J3(x).

The terms J1 and J2 can be estimated directly by using Theorem 4.1 (1), (4.12) and
(2.4). Indeed, by increasing R > 0 if necessary, we obtain

J1(x) ≤ c4
V∗(x)

⎛
⎝ sup

|y|< |x |
2

ν(y)

V∗(y)

⎞
⎠
∫

|z|> |x |
2

ν(z)dz ≤ c5
ν(x)

V∗(x)

�
( 1

|x |
)

V∗(x)
, |x | ≥ R,

and

J2(x) ≤ c6
�
( 1

|x |
)

V∗(x)

⎛
⎝ sup

|y|< |x |
2

ν(y)

V∗(y)

⎞
⎠ ≤ c7

ν(x)

V∗(x)

�
( 1

|x |
)

V∗(x)
, |x | ≥ R,
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for some positive constants c4, . . . , c7. Moreover, there exists c8 > 0 such that

J3(x) ≤ c8
�
( 1

|x |
)

V∗(x)
sup

y: |y−x |< |x |
4

I3(x, y), |x | ≥ R.

By (4.13) and Theorem 4.1 (1) we get for |y − x | <
|x |
4 and x1 > R that

I3(x, y)

≤ ϕ(y) + Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ−(XτB(x,|x |/4) )

]

≤ c9 ‖ϕ‖∞
ν(y)

V∗(y)
+ Ey

[
e− ∫ τB(x,|x |/4)

0 V (Xs )dsϕ−(XτB(x,|x |/4) )

]
,

and by one more use of (2.8),

Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ−(XτB(x,|x |/4) )

]

= c10

∫

B(x,|x |/4)
GV

B(x,|x |/4)(y, z)
∫

{w:w1<0}
ϕ−(w)ν(w − z)dwdz

≤ c11 ‖ϕ‖1
ν(x)

V∗(x)
,

for |y − x | <
|x |
4 and x1 > R. Due to (4.12), this means that

sup
y: |y−x |< |x |

4

I3(x, y) ≤ c12 (‖ϕ‖∞ ∨ ‖ϕ‖1)
ν(x)

V∗(x)
, x1 > R.

Putting together all the above estimates, we see that the upper bound in assertion (1)
holds.

To establish (2), observe that similarly as above, for |y − x | <
|x |
4 and |x | ≥ 2r0 it

follows that

ϕ(y) = Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )ds (ϕ+(XτB(x,|x |/4) ) − ϕ−(XτB(x,|x |/4) )

)]
,

which yields for |x | ≥ 2r0

ϕ(y) ≤ Ey
[

e− ∫ τB(x,|x |/4)
0 V (Xs )dsϕ+(XτB(x,|x |/4) )

]
≤ ϕ(y) + Ey [ϕ−(XτB(x,|x |/4) )

]
.

(4.15)

Define

fx (y) =
{

Ey
[
e− ∫ τB(x,|x |/4)

0 V (Xs )dsϕ+(XτB(x,|x |/4) )
]

for y ∈ B(x, |x |/4),
ϕ+(y) for y /∈ B(x, |x |/4),
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for every |x | ≥ 2r0. By the first inequality in (4.15) and Corollary 4.1 (2), we obtain

ϕ(x) ≤ C4

�
( 1

|x |
)

⎛
⎜⎜⎝

∫

|z−x |> |x |
2

ϕ+(z)ν(z − x)dz +
�
( 1

|x |
)

|x |d
∫

|x |
32 <|x−z|≤ |x |

2

fx (z)dz

⎞
⎟⎟⎠ ,

for x1 > 2r0, giving

ϕ(x) ≤ c13 ‖ϕ‖p

( ∫
|z|>|x |

ν(z)qdz

)1/q

�
( 1

|x |
) +

c14
|x |d

∫

|x |
32 <|x−z|≤ |x |

2

fx (z)dz, x1 > 2r0.

(4.16)

It suffices to estimate the latter integral. By the definition of the function fx and the
second inequality in (4.15), we obtain

∫

|x |
32 <|x−z|≤ |x |

2

fx (z)dz ≤
∫

|x |
32 <|x−z|≤ |x |

2

|ϕ(z)|dz +
∫

|x |
32 <|x−z|≤ |x |

4

Ez [ϕ−(XτB(x,|x |/4) )
]

dz.

Similarly as above, (2.8) implies that for all |z − x | < |x |/4, x1 > 2r0, the estimate

Ez [ϕ−(XτB(x,|x |/4) )
] = c15

∫

B(x,|x |/4)
G B(x,|x |/4)(z, y)

∫

{w:w1<0}
ϕ−(w)ν(w − y)dwdy

≤ c16
�
( 1

|x |
) ‖ϕ‖p

(∫

|y|>|x |
ν(y)qdy

)1/q

,

holds, and thus

∫

|x |
32 <|x−z|≤ |x |

2

fx (z)dz ≤ c17 ‖ϕ‖p |x |d/q + c18 ‖ϕ‖p |x |d
(∫

|y|>|x | ν(y)qdy
)1/q

�
( 1

|x |
) .

Inserting this estimate into (4.16), the claimed bound in (3) follows. ��
As it will be seen in specific cases in Sect. 6 below, by iterating the bounds in (1)–(2),
we can often get the bound with 1/|x | instead of �(1/|x |)

V∗(x)
∨ 1

|x | .

4.2. Lower bound. For a given potential V satisfying Assumption (A4) denote

V ∗(x) := sup
|y|≥ |x |

2

V (y), |x | ≥ 2r0,

and


B(x,|x |/2)(x) := Ex
[∫ τB(x,|x |/2)

0
e−V ∗(x)t dt

]
, |x | ≥ 2r0.
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Clearly, V ∗(x) is a radial and non-increasing function. The auxiliary function 
V has
the suggestive meaning of lower envelope of themean lifetime of the Lévy process under
the potential V in a ball B(x, |x |/2), that is,


B(x,|x |/2)(x) ≤ Ex
[∫ τB(x,|x |/2)

0
e− ∫ t

0 V (Xs )dsdt

]
, |x | ≥ 2r0. (4.17)

The first lemma gives a lower estimate on 
B(x,|x |/2)(x).

Lemma 4.2. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in (2.2)
such that Assumptions (A1)–(A3) hold, and let V be a potential satisfying (A4); specifi-
cally let (A4) hold with some r0 > 0. Then there exists C > 0 such that


B(x,|x |/2)(x) ≥ C

V∗(x) ∨ �
( 1

|x |
) , |x | ≥ 2r0.

Proof. First notice that for every η > 0,


B(x,|x |/2)(x) ≥ E0
[∫ η

0
e−V ∗(x)t dt; τB(0,|x |/2) > η

]
, |x | ≥ 2r0.

Thus


B(x,|x |/2)(x) ≥ 1 − e−V ∗(x)η

V ∗(x)

(
1 − P0(τB(0,|x |/2) ≤ η)

)
, |x | ≥ 2r0.

Moreover, by [45, eq. (3.2)] combined with (2.4), there exists c1 > 0 such that for every
r, η > 0

P0(τB(0,r) ≤ η) ≤ c1η�

(
1

r

)
,

which gives

1 − P0(τB(0,|x |/2) ≤ η) ≥ 1 − c1η�

(
1

|x |
)

, |x | ≥ 2r0.

Since the constant c1 is uniform in η > 0, we may take η := 1

2c1�
(

1
|x |
) , which implies

that


B(x,|x |/2)(x) ≥
1 − exp

(
− V ∗(x)

2c1�
(

1
|x |
)
)

2V ∗(x)
, |x | ≥ 2r0.

To conclude, it suffices to observe that if V ∗(x) ≥ �
(

1
|x |
)
, then


B(x,|x |/2)(x) ≥ 1 − e
− 1

2c1

2

1

V ∗(x)
, |x | ≥ 2r0,
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and when V ∗(x) ≤ �
(

1
|x |
)
,


B(x,|x |/2)(x) ≥ 1

2c2

1 − exp

(
− V ∗(x)

2c1�
(

1
|x |
)
)

V ∗(x)

2c1�
(

1
|x |
)

1

�
(

1
|x |
) ≥ e

1
2c1

2c2

1

�
(

1
|x |
) , |x | ≥ 2r0,

as required. ��
With this lemma we also have the following estimate.

Lemma 4.3. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in (2.2)
such that Assumptions (A1)–(A3) hold and let V be a potential satisfying (A4); specifi-
cally let (A4) hold with some r0 > 0. Then for every positive solution ϕ of (2.14) there
exists C > 0 such that

ϕ(x) ≥ C

V∗(x) ∨ �
( 1

|x |
)
∫

|z|<|x |
|z+x |<|z−x |

ϕ(z)ν(x − z)dzdy, |x | > 2r0.

In particular,

ϕ(x) ≥ C

C2
5C6

(∫

B(0,r0)
ϕ(z)dz

)
ν(x)

V∗(x) ∨ �
( 1

|x |
) , |x | > 2r0.

Proof. By applying the resolvent formula (2.17) with any θ > 0 and D = B(x, |x |/2),
and letting θ ↓ 0, we get

ϕ(x) ≥ Ex
[
e−V ∗(x)τB(x,|x |/2)ϕ(XτB(x,|x |/2) )

]
, |x | > 2r0.

Then by the Ikeda–Watanabe formula (2.8) and (A1),

Ex
[
e−V ∗(x)τB(x,|x |/2)ϕ(XτB(x,|x |/2) )

]

≥
∫

B(x,|x |/2)

∞∫

0

e−V ∗(x)t pB(x,|x |/2)(t, x, y)dt
∫

|z|<|x |
|z+x |<|z−x |

ϕ(z)ν(y − z)dzdy

≥ c2 
B(x,|x |/2)(x)

∫
|z|<|x |

|z+x |<|z−x |
ϕ(z)ν(x − z)dz, |x | > 2r0.

An application of Lemma 4.2 completes the proof of the first inequality. The second
estimate is a direct consequence of the first. ��

We are now in the position to state the main theorem of this subsection.

Theorem 4.3. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) such that Assumptions (A1)–(A3) hold and let V be a potential satisfying (A4);
specifically let (A4) hold with some r0 > 0. Let ϕ be a positive solution of (2.14). Then
the following hold.
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(1) If lim|x |→∞
�
(

1
|x |
)

V ∗(x)
= 0 and

∫
|x |>2r0

ν(x)
V ∗(x)

dx < ∞, then there exist C > 0 and
R ≥ 2r0 such that

ϕ(x) ≥ C
ν(x)

V ∗(x)
, |x | > R.

(2) If lim|x |→∞
�
(

1
|x |
)

V ∗(x)
= 0 and

∫
|x |>2r0

ν(x)
V ∗(x)

dx = ∞, then there exist η∗, C > 0 and
R ≥ 2r0 such that

ϕ(x) ≥ C
ν(x)

V ∗(x)
exp

(
η∗
∫

2r0≤|y|≤|x |
ν(y)

V ∗(y)
dy

)
, |x | > R.

(3) If lim inf |x |→∞
�
(

1
|x |
)

V ∗(x)
> 0 and

∫
|x |>2r0

ν(x)

�
(

1
|x |
)dx < ∞, then there exist C > 0 and

R ≥ 2r0 such that

ϕ(x) ≥ C
ν(x)

�
(

1
|x |
) , |x | > R.

(4) If lim inf |x |→∞
�
(

1
|x |
)

V ∗(x)
> 0 and

∫
|x |>2r0

ν(x)

�
(

1
|x |
)dx = ∞, then there exist η∗, C > 0

and R ≥ 2r0 such that

ϕ(x) ≥ C
ν(x)

�
(

1
|x |
) exp

⎛
⎝η∗

∫

2r0≤|y|≤|x |
ν(y)

�
(

1
|y|
)dy

⎞
⎠ , |x | > R.

Proof. As noted before, ϕ ∈ Cb(Rd). First we prove (1)–(2). Let

u(|x |) := 1

C5
g(|x |) and v(|x |) := 1{1≤|x |≤2r0}V ∗(2r0) + 1{1≤|x |≤2r0}V ∗(|x |), |x | ≥ 1,

with g given by Assumption (A1). By our assumptions and Lemma 4.3, there exist
c1 > 0 and R ≥ 2r0 such that

ϕ(x) ≥ c1
1

v(x)

∫
|z|<|x |

|z+x |<|z−x |
ϕ(z)u(|x − z|)dz, |x | > R.

Since 0 < ϕ ∈ Cb(Rd) and
∫

|z|<|x |
|z+x |<|z−x |

ϕ(z)u(|x − z|)dz ≤ c3 ‖ϕ‖∞, for 2r0 ≤ |x | ≤ R,

the same inequality holds also for this range of |x |. Thus the assumptions of Lemma 3.2
are satisfied with the functions u and v. Hence there exist constants c3 > 0 and η∗ > 0
for which the estimate

ϕ(x) ≥ c3
ν(x)

V ∗(x)
exp

(
η∗
∫

2r0≤|y|≤|x |
ν(y)

V ∗(y)
dy

)
, |x | > R,

holds. This implies (1) and (2). The proof of (3) and (4) follows by the same argument
as above with the same u(|x |) and v(|x |) := 1

C1
�
( 1

|x |
)
, |x | ≥ 1. ��
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5. Decay of Zero-Energy Eigenfunctions for Potentials Negative at Infinity

Now we turn to discussing the spatial decay properties of eigenfunctions of non-local
Schrödinger operators with decaying potentials that are negative at infinity.

(A5) Let V ∈ L∞(Rd) be such that there exists r0 > 0 and C > 0 such that

0 ≤ −V (x) ≤ C�(1/|x |), |x | ≥ r0.

Notice that under (A5) it follows that V (x) → 0 as |x | → ∞, i.e., V is indeed a decaying
potential. It also covers potentials with compact support such as potential wells.

We will now prove a counterpart of Theorem 4.2 (3) in the case when the potential is
negative at infinity and the negative nodal domain of ϕ is a subset of a given half-space.
By rotating the coordinate system if necessary, without loss of generality we can assume
that

there exists l ∈ R such that suppϕ− ⊂ {y ∈ Rd : y1 < l
}
. (5.1)

Theorem 5.1. Let (Xt )t≥0 be a Lévy process with Lévy–Khintchin exponent ψ as in
(2.2) such that Assumptions (A1)–(A3) and (A5) hold; specifically, let (A5) hold with
some r0 > 0. Moreover, suppose that for every ε ∈ (0, 1) there exists M ≥ 1 such that

�(r) ≤ ε�(Mr), r ∈ (0, 1]. (5.2)

If ϕ is a solution of (2.14) such that ϕ ∈ L p(Rd), for some p > 1, and (5.1) holds, then
for every ε ∈ (0, 1) there exist C > 0 and R > 3r0 such that

ϕ(x) ≤ C
(‖ϕ‖p ∨ ‖ϕ‖∞

)
⎛
⎜⎜⎝

(∫
|y|>|x | ν(y)

p
p−(1+ε) dy

) p−(1+ε)
p

�(1/|x |) +
1

|x | d
p

⎞
⎟⎟⎠

1−ε

, x1 ≥ R.

Moreover, if ϕ(l + x1, x2, . . . , xd) = −ϕ(l − x1, x2, . . . , xd), x ∈ Rd , with l given by
(5.1), then there exists R̃ > 3r0 ∨ |l| such that the same upper bound is true for ϕ(x)

replaced by |ϕ(x)|, whenever |x1| ≥ R̃.

Proof. For η ∈ (0, 1/4] we denote Dη := B(x, η|x |), x ∈ Rd . First note that there
exists η ∈ (0, 1/4] such that

sup
|x |> r0∨1

1−η

Ex
[

e
∫ τDη
0 |V (Xt )|dt

]
< ∞. (5.3)

Indeed, by (2.9) and Assumption (A5), there is c > 0 such that

Ex
[∫ τDη

0
|V (Xt )|dt

]
≤ sup

y∈Dη

|V (y)| Ex [τDη ] ≤ c
�(1/((1 − η)|x |))

�(1/(η|x |)) , |x | >
r0

1 − η
,

and, by using (5.2), we can derive from the above that

sup
|x |> r0∨1

1−η

Ex
[∫ τDη

0
|V (Xt )|dt

]
< 1,
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for sufficiently small η. Similarly, by the fact that V ∈ L∞(Rd), cf. (A5), and using
(2.9),

sup
|x |≤ r0∨1

1−η

Ex
[∫ τDη

0
|V (Xt )|dt

]
< 1

for η small enough. Hence, by Khasminskii’s Lemma we see that there exists η ∈ (0, 1
4 ]

such that (5.3) holds. Next, by applying (2.17) for θ > 0 we obtain

ϕ(x) = θEx
[∫ τDη

0
e
∫ t
0 (|V (Xs )|−θ)dsϕ(Xt )dt

]
+ Ex

[
e
∫ τDη
0 (|V (Xs )|−θ)dsϕ(XτDη

)

]
,

for |x | > r0∨1
1−η

. Letting θ → ∞ this gives

ϕ(x) = Ex
[

e
∫ τDη
0 |V (Xs )|dsϕ+(XτDη

)

]
− Ex

[
e
∫ τDη
0 |V (Xs )|dsϕ−(XτDη

)

]
, |x | >

r0
1 − η

,

with η specified above, where ϕ± denotes the positive and negative parts of ϕ, re-
spectively. (We note that passing to the limit is possible due to (5.3) and dominated
convergence.) In particular,

ϕ(x) ≤ Ex
[

e
∫ τDη
0 |V (Xs )|dsϕ+(XτDη

)

]
, |x | >

r0 ∨ 1

1 − η
, (5.4)

and

Ex
[
ϕ+(XτDη

)
]

≤ ϕ(x) + Ex
[

e
∫ τDη
0 |V (Xs )|dsϕ−(XτDη

)

]
, |x | >

r0 ∨ 1

1 − η
. (5.5)

Furthermore, by Hölder inequality with p̃, q̃ > 1 such that 1/ p̃ + 1/q̃ = 1, we obtain

Ex
[

e
∫ τDη
0 |V (Xs )|dsϕ±(XτDη

)

]
≤
(

Ex
[

eq̃
∫ τDη
0 |V (Xs )|ds

])1/q̃ (
Ex
[
ϕ

p̃
±(XτDη

)
])1/ p̃

,

(5.6)

for |x | > r0∨1
1−η

. Again, by Khasminskii’s Lemma and by decreasing η (dependent on q̃)
if necessary, we obtain that

Cη,̃q := sup
x∈Rd

(
Ex
[

eq̃
∫ τDη
0 |V (Xs )|ds

])1/q̃

< ∞.

Therefore, by (5.4) and (5.6), it follows that

ϕ(x) ≤ Cη,̃q

(
Ex
[
ϕ

p̃
+ (XτDη

)
])1/ p̃

, |x | >
r0 ∨ 1

1 − η
, (5.7)

and

Ex
[

e
∫ τDη
0 |V (Xs )|dsϕ−(XτDη

)

]
≤ Cη,̃q

(
Ex
[
ϕ

p̃
−(XτDη

)
])1/ p̃

, |x | >
r0 ∨ 1

1 − η
. (5.8)
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Fix now an arbitrarily small ε > 0 and choose η = η(ε) ∈ (0, 1
4 ] small enough such

that (5.7) holds with p̃ = 1 + ε and Cη,̃q < ∞, where q̃ = 1 + 1/ε. In particular,

ϕ(x)1+ε ≤ Cη,1+1/ε Ex
[
ϕ1+ε
+ (XτDη

)
]
, |x | >

r0 ∨ 1

1 − η
. (5.9)

We define fx (y) = ϕ1+ε
+ (y) for y ∈ Dc

η, and fx (y) = Ey
[
ϕ1+ε
+ (XτDη

)
]
for y ∈ Dη.

Clearly, fx is X -harmonic in Dη. Recall that both Dη = B(x, η|x |) and fx depend on
the position x . By Corollary 4.1 (2), there exists c1 = c1(η) such that

fx (x) ≤ c1
�(1/|x |)

∫

|y−x |>2η|x |
fx (y)ν(x − y)dy

+
c1

|x |d
∫

η
8 |x |<|y−x |<2η|x |

fx (y)dy, |x | ≥ 2(r0 ∨ 1).

Denote the summands at the right hand side above by I1(x) and I2(x), respectively.
Again, by applying Hölder inequality with p̃ = p/(1 + ε) and q̃ = p/(p − (1 + ε)), and
using Assumption (A1), it is seen that there exists c2 = c2(ε, p) > 0 such that

I1(x) ≤ c1
�(1/|x |)

(∫

Rd
ϕ

p
+ (y)dy

) 1+ε
p
(∫

|y|>2η|x |
ν(y)

p
p−(1+ε) dy

) p−(1+ε)
p

≤ c2 ‖ϕ‖1+ε
p

(∫
|y|>|x | ν(y)

p
p−(1+ε) dy

) p−(1+ε)
p

�(1/|x |) , |x | ≥ 2(r0 ∨ 1) ∨ 1

2η
.

Moreover, by the definition of fx , (5.5), and (5.8) applied with p̃ = p, q̃ = q,

I2(x) ≤ c1
|x |d

(∫

η|x |<|y−x |<2η|x |
|ϕ(y)|1+ε dy +

∫
η
8 |x |<|y−x |≤η|x |

Ey
[
ϕ1+ε
+ (XτDη

)
]

dy

)

≤ c1
|x |d

(∫

η|x |<|y−x |<2η|x |
|ϕ(y)|1+ε dy + ‖ϕ‖ε∞

∫
η
8 |x |<|y−x |≤η|x |

ϕ(y)dy

+Cη,q ‖ϕ‖ε∞
∫

η
8 |x |<|y−x |≤η|x |

(
Ey
[
ϕ

p
−(XτDη

)
])1/p

dy

)
, |x | ≥ 3(r0 ∨ 1),

and by a further application of the Hölder inequality with p̃ = p/(1 + ε) and q̃ =
p/(p − (1 + ε)) to the first integral, and with p, q to the second and third, we get

I2(x) ≤ c3 ‖ϕ‖1+ε
p

|x | (1+ε)d
p

+
c4 ‖ϕ‖ε∞

|x | d
p

(
‖ϕ‖p +

(∫

|y−x |≤η|x |
Ey
[
ϕ

p
−(XτDη

)
]

dy

)1/p
)

,

for |x | ≥ 3(r0 ∨ 1), with some c3 = c3(ε, p) and c4 = c4(ε, p). It suffices to estimate
the latter integral. By (2.8), Assumption (A1), (5.1) and (2.9), for every y ∈ B(x, η|x |)
and x ∈ Rd such that x1 > 3(r0 ∨ 1), it follows that



K. Kaleta, J. Lőrinczi

Ey
[
ϕ

p
−(XτDη

)
]

= c5

∫

Dη

G Dη (y, z)
∫

Dc
η

ϕ
p
−(w)ν(w − z)dwdz

= c5

∫

Dη

G Dη (y, z)
∫

{w:w1<l}
ϕ

p
−(w)ν(w − z)dwdz

≤ c6Ey[τDη ] ‖ϕ‖p
p ν(x)

≤ c7 ‖ϕ‖p
p

ν(x)

�
(

1
η|x |
) ≤ c8 ‖ϕ‖p

p
ν(x)

�
(

1
|x |
) ,

with some c5, . . . , c8, possibly depending on ε via η. Thus

I2(x) ≤ c3 ‖ϕ‖1+ε
p

|x | (1+ε)d
p

+
c9 ‖ϕ‖ε∞ ‖ϕ‖p

|x | d
p

⎛
⎜⎝1 +

⎛
⎝ν(x)|x |d

�
(

1
|x |
)
⎞
⎠

1/p
⎞
⎟⎠ , x1 > 3(r0 ∨ 1),

with c9 = c9(ε, p). Note also that under (A1) there exists c10 > 0 such that ν(x) ≤
c10�

(
1
|x |
)

|x |−d , |x | ≥ 3(r0 ∨ 1). By putting all the above estimates together, we see

that there exists a constant c11 = c11(ε, p) such that

ϕ(x) ≤ c11
(‖ϕ‖p ∨ ‖ϕ‖∞

)
⎛
⎜⎜⎝

(∫
|y|>|x | ν(y)

p
p−(1+ε) dy

) p−(1+ε)
p

�(1/|x |) +
1

|x | d
p

⎞
⎟⎟⎠

1/(1+ε)

,

whenever x1 > 3(r0 ∨ 1) ∨ 1
2η , which is the first claimed bound. The second statement

of the theorem follows from this by the antisymmetry argument. ��
A further discussion of the potentials negative at infinity in some specific cases will

be made at the end of Sect. 6.1 below.

6. Specific Cases and Decay Mechanisms

6.1. Isotropic and anisotropic fractional Schrödinger operators. Let L(α), α ∈ (0, 2),
be a family of self-adjoint pseudo-differential operators determined by their Fourier
transforms

̂L(α) f (ξ) = −ψ(α)(ξ) f̂ (ξ), ξ ∈ Rd ,

f ∈ Dom(L(α)) =
{

g ∈ L2(Rd) : ψ(α)ĝ ∈ L2(Rd)
}

,

where

ψ(α)(ξ) =
∫

Rd\{0}
(1 − cos(ξ · z))ν(α)(z)dz. (6.1)

Here we take ν(α)(x) = g(x/|x |)|x |−d−α , d ≥ 1, where the function g : Sd−1 →
(0,∞), with the (d − 1)-dimensional unit sphere Sd−1 centered in the origin, is such
that g(θ) = g(−θ) and c1 ≤ g(θ) ≤ c2, for every θ ∈ Sd−1, with finite positive
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constants c1, c2 (cf. (2.2)). Clearly, every ν(α)(z)dz is a symmetric Lévy measure on
Rd \ {0} such that

ν(α)(x) � |x |−d−α, x ∈ Rd \ {0} . (6.2)

In particular,
∫

Rd\{0} ν(α)(z)dz = ∞ and Assumption (A1) holds. Also, one can easily

check that ψ(α)(ξ) � |ξ |α . From this we can easily see that the maximal function � of
the symbol ψ defined in (2.3) satisfies

�(r) � rα, r > 0. (6.3)

When the spherical density g is non-trivial, the operator L(α) is often called ananisotropic
fractional Laplacian of order α/2, and the corresponding stochastic process generated
by it is an anisotropic α-stable Lévy process. When g ≡ Cd,α for a constant Cd,α > 0,
the operator L(α) = −(−�)α/2 is given by the usual isotropic fractional Laplacian,
generating a rotationally symmetric Lévy process.

Note that, by symmetry, for every t > 0 it follows that

sup
x∈Rd

p(t, x) = p(t, 0) =
∫

Rd
e−tψ(ξ)dξ < c3t−d/α, t > 0, (6.4)

and, as proven in [19],

p(t, x) ≤ c4t |x |−d−α, t > 0, x ∈ Rd \ {0} . (6.5)

Then (6.4) gives (A2), and (A3) follows by a combination of (6.4), (6.5) and [29, Lem.
2.2].

First we consider potentials that are positive at infinity in the sense of (A4) and look
at positive solutions of (2.15).

Theorem 6.1. Let L(α), 0 < α < 2, be a pseudo-differential operator determined by
(6.1) and V be an X-Kato class potential for which there exists r0 > 0 such that
V (x) > 0 and V (x) � |x |−β , for |x | ≥ r0, with some β > 0. Suppose that there exists
a positive function ϕ ∈ Cb(Rd) which is a solution of (2.15). Then the following hold:

(1) If β < α, then there exist constants C1, C2 > 0 such that

C1

(1 + |x |)d+α−β
≤ ϕ(x) ≤ C2

(1 + |x |)d+α−β
, x ∈ Rd .

In particular, ϕ ∈ L p(Rd), for every p ≥ 1.
(2) If β ≥ α, then there exist γ ∈ (0, 1) and a constant C3 > 0 such that

ϕ(x) ≥ C3

(1 + |x |)d−γ
, x ∈ Rd .

In particular, ϕ /∈ L p(Rd), for every p ∈ [1, d
d−γ

]. On the other hand, if ϕ ∈ L p(Rd)

for some p > 1, then there exists C4 > 0 such that

ϕ(x) ≤ C4

(1 + |x |)d/p
, x ∈ Rd .

In particular, if ϕ ∈ L p(Rd) with p = d
d−γ−ε

for some ε ∈ (0, 1), then there exists
C4 > 0 such that

ϕ(x) ≤ C4

(1 + |x |)d−γ−ε
, x ∈ Rd .
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Proof. Due to (6.2) and (6.3), the upper bounds in (1)–(2) follow directly from Theo-
rem4.1 (1) and (3). The corresponding lower estimates are a consequence of Theorem4.3
(1) and (4), respectively. ��

This has the following implication.

Corollary 6.1. Under the assumptions of Theorem 6.1 it follows that the function ϕ

belongs to L1(Rd) if and only if α > β.

Remark 6.1. Let V be a potential positive at infinity, and V (x) � |x |−β as |x | → ∞,
and consider the fractional Laplacian (−�)α/2, 0 < α < 2. Although the constants are
hard to control in sufficient detail, a calculation using the above estimates shows that
if β ≥ α and C1C15

C5C10
≥ d, then zero is not an eigenvalue of (−�)α/2 + V . We note that

C10 and C15 play the more important role here, giving some best constants involving
the jump doubling domination rate and another ratio related to jump activity. Also, from
Theorem 6.1(2) we see that whenever (0, 1) � γ ≥ d

2 , which may occur when d = 1,
the operator H has no zero eigenvalue.

It can already be seen from the above theorem that there is a transition in the local-
ization properties of ϕ when α > β changes to α ≤ β. For a closer understanding of
this transition around α ≈ β, we consider a more refined class of potentials.

Theorem 6.2. Let L(α), 0 < α < 2, be a pseudo-differential operator determined by
(6.1)and V be an X-Kato class potential for which there exists r0 > 0 such that V (x) > 0
and V (x) � |x |−α(log |x |)δ , for |x | ≥ r0, with some δ > 0. Suppose that there exists a
positive function ϕ ∈ Cb(Rd) which is a solution of (2.15). Then the following hold.

(1) If δ > 1, then there exist constants C1, C2 > 0 such that

C1

(1 + |x |)d(log(1 + |x |))δ ≤ ϕ(x) ≤ C2

(1 + |x |)d(log(1 + |x |))δ , x ∈ Rd .

In particular, ϕ ∈ L p(Rd), for every p ≥ 1.
(2) If δ = 1, then there exist 0 < γ1 ≤ 1 ≤ γ2 and constants C4, C5 > 0 such that

C1

(1 + |x |)d(log(1 + |x |))1−γ1
≤ ϕ(x) ≤ C2

(1 + |x |)d(log(1 + |x |))1−γ2
, x ∈ Rd .

In particular, ϕ ∈ L p(Rd) for every p > 1, but ϕ /∈ L1(Rd).
(3) If δ ∈ (0, 1), then there exist 0 < γ1 ≤ 1 ≤ γ2 and constants C6, C7 > 0 such that

C6
e

γ1
1−δ

(log |x |)1−δ

(1 + |x |)d(log(1 + |x |))δ ≤ ϕ(x) ≤ C7
e

γ2
1−δ

(log |x |)1−δ

(1 + |x |)d(log(1 + |x |))δ , x ∈ Rd .

In particular, ϕ ∈ L p(Rd), for every p > 1, but ϕ /∈ L1(Rd).
(4) If δ ≤ 0, then exactly the same bounds and L p-properties hold as in (2) of Theo-

rem 6.1.

Proof. Similarly as above, the upper bounds in (1)–(4) follow by an application of the
estimates in Theorem 4.1 (1)–(3); specifically, both upper estimates (2) and (3) result
from assertion (2) of this theorem. The corresponding lower estimates are consequences
of the respective bounds in (1), (2), and (4) of Theorem 4.3. ��
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From the results above it is seen that the possible localization properties of the positive
zero-energy eigenfunctions or zero-resonances for decaying potentials positive at infinity
splits naturally into disjoint regimes representing the following three different scenarios.
(For the simplicity of the discussion here, we assume that V is a potential that is positive
at infinity and regular enough so that V (x) � V ∗(x) � V∗(x) far away from the origin).
Let r0 > 0 be large enough, and define

h(r) =
∫

r0<|x |<r

ν(x)

V (x)
dx and h̃(r) =

∫

r0<|x |<r

ν(x)

�(1/|x |)dx, r > r0.

Clearly, h and h̃ are bounded functions on (r0,∞) if and only if the ratios ν/V and
ν/�(1/|x |), respectively, are integrable at infinity. The following situations occur:

• Scenario (1): If lim|x |→∞ �(1/|x |)
V (x)

= 0 and the ratio ν(x)
V (x)

is integrable at infinity,
then

ϕ(x) � ν(x)

V (x)
,

for large enough |x |. In particular,ϕ ∈ L1(Rd). Clearly, in this case the corresponding
function h is bounded.

• Scenario (2): If lim|x |→∞ �(1/|x |)
V (x)

= 0 and the integrability of ν(x)
V (x)

at infinity breaks
down, then h(r) → ∞ as r → ∞. Hence (1) is no longer true and the function h
contributes into the behaviour of ϕ at infinity like

C1
ν(x)

V (x)
eγ1h(|x |) ≤ ϕ(x) ≤ C2

ν(x)

V (x)
eγ2h(|x |),

for large enough x , with some 0 < γ1 ≤ 1 ≤ γ2 and C1, C2 > 0. Observe that
Scenario (1) differs from (2) by the boundedness of h.

• Scenario (3): If lim inf |x |→∞ �(1/|x |)
V (x)

> 0, then the fall-off rate of ϕ at infinity
rapidly decreases so that

ϕ(x) ≥ C1
ν(x)

�(1/|x |)eγ h̃(|x |),

for large x , with some γ, C1 > 0. Clearly, in case h̃ is bounded, it does not contribute
to the above lower rate.

Now we revisit the examples in (1.1) in the situation of Theorems 6.1 and 6.2.

Example 6.1. Let α ∈ (0, 2), d ≥ 1, and L(α) = −(−�)α/2. In this case

ν(x) = C(d, α)

|x |d+α
and ψ(x) = �(|x |) = |x |α.

To have ϕκ > 0, we consider l = 0 in (1.1), and to have positive potentials at infinity,
we consider κ ∈ ( d−α

2 , d+α
2 ), α ≤ d, in accordance with (1.4). With these choices the

following hold:
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(1) If d
2 < κ < d+α

2 , then by (1.2) we obtain Vκ(x) � |x |−β as in Theorem 6.1 with
β = β(κ) = d + α − 2κ . Since 0 < β < α for this range of κ , we are in Scenario
(1) above and

ϕκ(x) � 1

(1 + |x |)d+α−β
,

with d + α − β = 2κ as in Theorem 6.1 (1). Here we recover the exact asymptotic
behaviour of ϕκ at infinity.

(2) If κ = d
2 , then by (1.2) we obtain Vd/2(x) � |x |−α log |x |, and Theorem 6.2 gives

that there exist 0 < γ1 ≤ 1 ≤ γ2 and constants C1, C2 > 0 such that

C1

(1 + |x |)d(log(1 + |x |))1−γ1
≤ ϕd/2(x) ≤ C2

(1 + |x |)d(log(1 + |x |))1−γ2
.

Hence we are now in scenario (2) above. In particular, this means that we recover
the behaviour ϕκ(x) � 1/|x |d as in (1.1), with a near miss dependent on how close
γ1 ≤ 1 ≤ γ2 are to each other. Clearly, this is a marginal and the most delicate case,
and closing the gap would require a more refined analysis. Note that this special case
coincides with the threshold κ for which ϕκ /∈ L1(Rd).

(3) If 0 ∨ d−α
2 < κ < d

2 , then by (1.2) we obtain V (x) � |x |−α , placing this case in
Scenario (3). Theorem 6.1 (2) gives that there exist C1 > 0 and γ = γ (κ) ∈ (0, 1)
such that

ϕκ(x) ≥ C1

(1 + |x |)d−γ
.

Moreover, observe that for every κ from this range and p > d
2κ it follows that

ϕκ ∈ L p(Rd). Then by the upper bound in Theorem 6.1 (2) we also get

ϕκ(x) ≤ C2

(1 + |x |)2κ−ε
,

for every small enough ε > 0, with some C2 > 0.

When the solution of the eigenvalue equation (2.15) is antisymmetric with respect to
a given hyperplane and has a definite sign in each nodal domain, then at least far away
from this nodal plane some of our upper estimates improve significantly. If the solution ϕ

is no longer positive on Rd but it satisfies (4.10), then the upper bounds in Theorems 6.1
(1)–(2) and Theorem 6.2 (1)–(3) also holdwith ϕ replacedwith |ϕ| (this is a consequence
of Theorem 4.1 (1)–(2) and Theorem 4.2 (2)). However, due to Theorem 4.2 (1), in this
case the upper bound for |ϕ| improves and the upper estimates in Theorems 6.1 (1) and
Theorem 6.2 (1)–(2) upgrade as follows.

Corollary 6.2. The following situations occur:

(1) Under the assumptions of Theorem 6.1, if β < α and ϕ ∈ Cb(Rd) is a solution of
(2.15) such that (4.10) holds, then there is C1 > 0 such that

|ϕ(x)| ≤ C1

(1 + |x |)d+α−β

1

(1 + |x |1{|x1|≥1})α−β
, x ∈ Rd .
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(2) Under the assumptions of Theorem 6.2, if δ > 1 and ϕ ∈ Cb(Rd) is a solution of
(2.15) such that (4.10) holds, then there is C2 > 0 such that

|ϕ(x)| ≤ C2

(1 + |x |)d(log(1 + |x |))δ
1

(1 + 1{|x1|≥1} log |x |)δ , x ∈ Rd .

Example 6.2. Comparing these upper bounds with the exact behaviours of ϕκ for l = 1
and the potentials Vκ(x) � |x |−β in (1.1) with β = d + α + 2 − 2κ , κ ∈ ( d+2

2 , d+α+2
2 ),

we see that in this case our result is not as sharp as in the cases above, however, it is
still remarkably close to the exact rates. Indeed, we get here the upper bound |ϕκ(x)| ≤

C1
(1+|x |)4(κ−1)−d , while the true behaviour is |ϕκ(x)| � 1

|x |2κ−1 . We emphasize that the
symmetry/antisymmetry properties of eigenfunctions as in (4.10) are of much interest
in spectral theory and are known to have important consequences (see, e.g., [26]).

Finally, we present a result for the case of fractional Schrödinger operators with
potentials that are negative at infinity.

Theorem 6.3. Let L(α), 0 < α < 2, be a pseudo-differential operator determined by
(6.1), and V be an X-Kato class potential for which there exists r0 > 0 such that
V (x) ≤ 0 and |V (x)| ≤ C |x |−α , for |x | ≥ r0, with some C > 0. Suppose that there
exists a function ϕ ∈ L p(Rd), for some p > 1, which is a solution to (2.15) with
the property that there exists i ∈ {1, 2, . . . , d} such that ϕ(x1, . . . ,−xi , . . . , xd) =
−ϕ(x1, . . . , xi , . . . , xd) and suppϕ− ⊂ {

x ∈ Rd : xi ≤ 0
}
. Then for every q ∈ (0, d

p )

there exist C = C(q) and R > 0 such that

|ϕ(x)| ≤ C
(‖ϕ‖p ∨ ‖ϕ‖∞

) 1

|x |q , |xi | ≥ R.

Proof. This is a direct application of Theorem 5.1 as now ν(x) � |x |−d−α and �(r) �
rα . ��
Roughly speaking, the above result says that for potentials that are negative in a neigh-
bourhood of infinity and for antisymmetric solutions with nodal domains in the corre-
sponding hyperplanes, L p-integrability, with p > 1, always gives a polynomial decay
of order near to d/p, far from the antisymmetry axis. This result can be compared with
the examples in (1.1). Specifically, for every i = 1, 2, . . . , d and l = 1 we can take
Pi (x) = cxi and

ϕκ,i (x) = cxi

(1 + |x |2)κ ,

with κ ∈ (1, d−α
2 + 1

]
. As seen in (1.3), this leads to the case of potentials Vκ,α negative

in a neighbourhood of infinity. We clearly have |ϕκ,i (x)| ≤ C(1 + |x |)−d/p and ϕκ,i ∈
L p(Rd), for every p > d

2κ−1 .

6.2. Layered-type Schrödinger operators. Let L(α,γ ), α ∈ (0, 2), γ > 2, be a family of
self-adjoint pseudo-differential operators determined by

̂L(α,γ ) f (ξ) = −ψ(α,γ )(ξ) f̂ (ξ), ξ ∈ Rd ,

f ∈ Dom(L(α)) =
{

g ∈ L2(Rd) : ψ(α,γ )ĝ ∈ L2(Rd)
}

,
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with

ψ(α,γ )(ξ) =
∫

Rd\{0}
(1 − cos(ξ · z))ν(α,γ )(z)dz, (6.6)

where ν(α,γ )(x) = g(x/|x |)|x |−d−α(1 ∨ |x |)−(γ−α), d ≥ 1. Here g : Sd → (0,∞) is
such that g(θ) = g(−θ) and c1 ≤ g(θ) ≤ c2, for every θ ∈ Sd , with finite positive
constants c1, c2. As before, every ν(α,γ )(z)dz is a symmetric Lévy measure on Rd \ {0}
such that

ν(α,γ )(x) � |x |−d−α(1 ∨ |x |)−(γ−α), x ∈ Rd \ {0} .

In particular,
∫

Rd\{0} ν(α,γ )(z)dz = ∞,
∫

Rd\{0} |z|2ν(α,γ )(z)dz < ∞, and

�(r) � r2, r ∈ (0, 1).

Moreover, it follows from [57] that the probability transition densities p(t, x) exist and
satisfy

p(t, x) ≤ c3
(
(t−d/α ∨ t−d/2) ∧ t |x |−d−α(1 ∨ |x |)−(γ−α)

)
, t > 0, x ∈ Rd .

This, in particular, gives (A2) and, together with [29, Lem. 2.2], implies that Assumption
(A3) holds as well. The operators L(α,γ ) generate the class of layered α-stable processes.

We get the following result for potentials that are positive at infinity.

Theorem 6.4. Let L(α,γ ), 0 < α < 2, γ > 2, be a pseudo-differential operator deter-
mined by (6.6) and V be an X-Kato class potential for which there exists r0 > 0 such
that V (x) > 0 and V (x) � |x |−β , for |x | ≥ r0, with some β > 0. Suppose that there
exists a positive function ϕ ∈ Cb(Rd) which is a solution of (2.15). Then the following
hold:

(1) If β < 2, then there exist constants C1, C2 > 0 such that

C1

(1 + |x |)d+γ−β
≤ ϕ(x) ≤ C2

(1 + |x |)d+γ−β
, x ∈ Rd .

In particular, ϕ ∈ L p(Rd), for every p ≥ 1.
(2) If β ≥ 2, then there exists a constant C3 > 0 such that

ϕ(x) ≥ C3

(1 + |x |)d+γ−2 , x ∈ Rd .

On the other hand, if ϕ ∈ L p(Rd) for some p > 1, then there exists C4 > 0 such
that

ϕ(x) ≤ C4

(1 + |x |)d/p
, x ∈ Rd .

For potentials negative at infinity a result similar to Theorem 6.3 holds as well.
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6.3. Decay mechanisms. From the above it is seen that the decay of ground states at zero
eigenvalue depends essentially on two factors. On the one hand, the sign of the potential
at infinity makes a qualitative difference, and as seen in the case of classical Schrödinger
operators, it has an impact even on the existence of ground states. From the decay results
above one can appreciate that a positive tail of the potential has a (soft) bouncing effect
tending to contain paths in compact regions, while a negative potential leaves more room
for the paths to spread out to infinity. This difference makes the analysis of potentials
negative at infinity much more difficult than of potentials positive at infinity.

On the other hand, the decay depends on some mean times spent in some regions by
the paths. Using (2.9) and (4.17), we can give another interpretation of the results above,
further highlighting the mechanisms. Assume, for simplicity, that V (x) � V ∗(x) �
V∗(x), for large enough |x |. Then we see that the conditions involving the ratios

�
(

1
|x |
)

V (x)
�

Ex
[∫ τB(x,|x |/2)

0 e− ∫ t
0 V (Xs )dsdt

]

E0[τB(0,|x |)]
in Theorems 4.1–4.3 actually refer to a balance of the mean survival times of paths in a
ball B(x, |x |/2) under the potential versus in the ball B(0, |x |) free of the potential. Due
to the doubling property, these two times are comparable, and describe specific global
lifetimes (note that B(x, |x |/2) can also be replaced by B(x, c|x |), 0 < c < 1, without
qualitatively changing the results). This is in sharp contrast with the case of confining
potentials or decaying potentials leading to a strictly negative and sufficiently low-lying
ground state eigenvalue, where the decay is governed by local lifetimes as given in (1.5).
When

Ex
[∫ τB(x,|x |/2)

0
e− ∫ t

0 V (Xs )dsdt

]
= o(E0[τB(0,|x |)])

as in Scenarios (1)–(2) above, the potential has a relatively pronounced effect, making
the paths favour (large) neighbourhoods of the origin than (large) neighbourhoods of
far out points. This is reflected in the decay behaviours of ϕ by V entering explicitly in
Scenario (1) discussed in Sect. 6.1. When, however,

Ex
[∫ τB(x,|x |/2)

0
e− ∫ t

0 V (Xs )dsdt

]
= O(E0[τB(0,|x |)])

as in Scenario (3), the effect of the potential is weak also in relative terms, and the
two lifetimes evolve on the same scale, bordering (though clearly differing from) the
situation of free fluctuations and absence of a ground state.
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29. Kaleta, K., Lőrinczi, J.: Fall-off of eigenfunctions for non-local Schrödinger operators with decaying

potentials. Potential Anal. 46, 647–688 (2017)
30. Kenig, C.E.: Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique contin-

uation. In: Harmonic Analysis and Partial Differential Equations (El Escorial, 1987). In: García-Cuerva
J. (ed.) Harmonic Analysis and Partial Differential Equations. Lecture Notes in Mathematics, vol. 1384,
pp. 69–90. Springer (1989)

31. Kenig, C.E., Nadirashvili, N.: A counterexample in unique continuation. Math. Res. Lett. 7, 625–630
(2000)

32. Knowles, I.: On the number of L2-solutions of second order linear differential equations. Proc. R. Soc.
Edinb. Sect. A 80, 1–13 (1978)



Zero-Energy Bound State Decay

33. Knowles, I.: On the location of eigenvalues of second-order linear differential operators. Proc. R. Soc.
Edinb. Sect. A 80, 15–22 (1978)
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