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Abstract: This work aims at evaluating the usability of remote sensing RGB imagery by an Unmanned Aerial Vehicle (UAV) in
assessing wheat drought status. A UAV survey is conducted to collect high-resolution RGB imageries by using DJI S1000 for
the experimental wheat fields of Gucheng town, Heibei Province, China. The soil moisture for different plots of the experimental
filed is kept at an approximately constant level for the whole growing season in a well controlled environment, where field
measurements are performed just after the UAV survey to obtain the soil water content for each plot. A machine learning based
wheat drought assessment framework is proposed in this work. In the proposed framework, wheat pixels are first segmented
from the soil background using the classical normalized excess green index (NExG). Rather than using pixel-wise classification,
a pixel square of appropriate dimension is defined as the samples, based on which various features are extracted for the wheat
pixels including statistical features and spectral index features. Different classification algorithms are experimented to identify a
suitable one in terms of classification accuracy and computation time. It is discovered that Support Vector Machine with Gaussian
kernel can obtain an accuracy over 90%, which demonstrates the usefulness of RGB imagery in wheat drought assessment.
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1 Introduction

Water stress usually has adverse effects on plants such as
closing stomata, up-taking less carbon dioxide, which in-
evitably diminish crop growth resulting in less biomass and
yield [1]. In addition, water scarcity has become one of the
top three global problems and China is a vast country with
severe shortage of water. It is reported that agriculture takes
62.06% of fresh water for the arable land in the north part
of China. Unfortunately, the current efficiency of irrigation
in China is only about 52%, well below advanced countries
which can achieve an efficiency of about 70%–80% of wa-
ter usage. Therefore, there is an urgent need to optimize
the irrigation scheduling so that irrigation efficiency can be
improved, i.e. significantly reducing the water usage while
meeting crop needs and maintaining crop productivity and
yield [2]. It is evident that direct or indirect crop drought
assessment is a prerequisite for optimizing irrigation strat-
egy. Consequently, this work is focused on indirect wheat
drought assessment.

Various crop drought monitoring approaches are available
in the literature which can be broadly divided into direct
ground measurement based approaches and indirect remote
sensing based approaches. Ground measurement based ap-
proach is usually labour-intensive, time-consuming and with
a high cost. This is because a large amount of sampling
points need to be defined to cover a large area, and ex-
perimental test is required to determine the crop/soil water
stress. As a result, there is a trend to adopt remote sensing
technology to infer drought information extracted from spec-
tral measurement of various cameras. For example, satellites
equipped with multispectral camera can provide useful mois-
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ture information regarding the soil and crop, where short-
wave infrared (SWIR) bands are directly related to water ab-
sorption [3, 4] and near-infrared band is also closely related
to plant water status [5]. Although suitable for large area
applications, it is also acknowledged that there are certain
drawbacks for satellite based remote sensing [6], summa-
rized as below

• The cost of satellite remote sensing is usually high;
• The spatial resolution of satellite imageries is usually

low and can be easily affected by environment such as
cloud;

• The revisit time of satellite is usually fixed and not flex-
ible.

On the other hand, with user-defined spatial-temporal reso-
lutions, low cost and flexibility, Unmanned Aerial Vehicle
(UAV) based remote sensing is drawing increasing research
interest, and has become an important complement for satel-
lite or manned aircraft based remote sensing [7]. In this ap-
proach, different spectral cameras (e.g. RGB, multispectral,
hyperspectral, thermal) can be installed on UAV for various
applications including water stress assessment [8, 9].

This work is mainly focused on evaluating the usability
of remote sensing RGB imagery by a small UAV of low al-
titude in assessing wheat drought status. In this work, the
RGB camera is chosen mainly due to its low cost and simple
data processing in comparison with multispectral and hyper-
spectral cameras. A UAV survey was performed by installing
Sony NEX-7 camera on the commercial aircraft DJI S1000
to collect high-resolution RGB imageries, where the exper-
imental wheat fields as detailed in Section 2.1 are chosen
with different wheat plots being carried out different water
treatments throughout the whole wheat growing seasons in
a well controlled environment by using intelligent irrigation
system and rain shelter. Field measurements are also per-
formed just after the UAV survey to calculate the soil water
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ratio for each wheat plot. As a result, a real UAV RGB im-
agery data with groundtruth soil water rate is obtained for
wheat drought assessment.

Then a machine learning based wheat drought assessment
framework is developed in this work, which are mainly com-
posed of the following basic steps.
• Data collection: collect a series of high-resolution

aerial imageries using the low altitude UAV-camera sys-
tem, i.e. DJI S1000 with Sony NEX-7;

• Data pre-processing: pre-process UAV imageries to de-
rive an orthomosaic image using Agisoft software and
crop the region of interest;

• Wheat pixel segmentation: segment wheat pixels from
background (e.g. road, soil and residue) using the clas-
sical normalized excess green index NExG; this is be-
cause there are no enough soil pixels in wheat fields
under wet condition for data-driven analysis;

• Feature extraction and classifier training: define appro-
priate features for wheat pixels under different condi-
tions, and train the classification model. In this work,
rather than deploying pixel-wise classification, pixel
squares of approximate dimension are treated as the
samples, based on which different features are extracted
including statistical features and spectral index features.

• Deploy the learnt classifier to the field of interest to gen-
erate the classification map.

Based on the developed framework, it was discovered that a
classification accuracy over 90% can be achieved using the
classical SVM classifier with Gaussian kernel in discriminat-
ing wheat pixel under wet and dry plots, which demonstrates
the usefulness of UAV RGB imagery of low altitude in as-
sessing wheat drought status. The trained classifier is also
applied to the whole region to derive a classification map
including wheat under wet condition, wheat under dry con-
dition and background. The main contribution of the work is
to develop a complete machine learning based wheat drought
assessment framework and validate its effectiveness using
real experimental data. And the main conclusion is that UAV
RGB imageries of low altitude is useful in assessing wheat
drought status. It is noted that an extended version of the
work is given in [10].

The remaining part of the paper is organized as follows.
Section 2 introduces the study site, filed measurements and
UAV-camera systems. In Section 3, the machine learning
based wheat drought assessment framework is elaborated.
In Section 4, the experimental results are presented. Section
5 concludes the paper with future work discussion.

2 Materials

In this section, materials for the UAV survey are given
including study site, field measurements and UAV-camera
systems for airborne imageries.

2.1 Study site: wheat filed
The study was carried out in the wheat field of the

Gucheng Ecological-Meteorological Integrated Observation
Experiment Station, Chinese Academy of Meteorologi-
cal Sciences, which is located at the east of Gucheng
town, Dingxing county in Hebei Province, China (39o08′N ,
115o40′E, elevation of 15.2m). There is totally 42 wheat

plots for soil water content experiments, which are well sep-
arated from each other using a special design. The crop un-
der investigation is winter wheat.

2.2 Field measurements of soil water rate
The experimental wheat field is designed in such a way

that soil moisture of each plot is kept at an approximately
constant level for the whole growing season in a well con-
trolled environment by using rain shelter and intelligent ir-
rigation system. The raw soil samples of each plot are col-
lected on 10th, April, 2017 at depth of 10 centimetre and 20
centimetre respectively to attenuate uncertainties. After raw
soil samples were weighted using Electronic Balances BS-
423S, they were then processed using Drying Ovens DHG-
9245A to remove water and weighted again so that soil water
rates were calculated by the ratio, where the final soil water
rate was calculated by taking the average. The soil water
rates can generally be divided into two classes (e.g. high
and low), and consequently the wheat plots are termed wet
wheat plot and dry wheat plot respectively depending on the
corresponding soil water rate.

2.3 UAV-camera systems and airborne imageries
In this work, the commercial aircraft DJI S1000 was used

as the platform of low altitude UAV-camera system and the
Sony NEX-7 is chosen as the RGB camera. During the flight,
the camera was fixed on a gimbal, pointing vertically down-
wards.

The airborne campaigns were conducted at about 20 me-
ters above the ground on 09th, April, 2017 and the spatial
resolution of the final orthomosaic image was 4.54 mm/pix.
A laptop installed with Ground Controlling Station (GCS)
software was used to monitor and control the autonomous
UAV flight through telemetry radio. The cameras were trig-
gered so that an overlap up to 75 % of imageries could be
obtained. Then 36 UAV imageries were stitched using the
commercial software PhotoScan (Agisoft, Russia) so that an
orthomosaic image (covering an area of 3540 m2) could be
generated.

The RGB image for the Region Of Interest (ROI) is
cropped from the orthomosaic image and shown in Fig 1,
where 18 different plots are analysed including 11 wet plots
and 6 dry plots. For the same of simplicity, the left-column
plots are termed west 1 to west 6 from top to bottom, sim-
ilarly, the middle-column plot i and right-column plot i are
termed Middle i and East i respectively.

3 Machine learning based wheat drought assess-
ment framework

There is no explicit relationship between UAV imageries
and soil water ratio and so the implicit relationship has to
be worked out using data-driven approaches [11]. Conse-
quently, in this paper, a machine learning based framework
was proposed to evaluate the usefulness of UAV remote sens-
ing imagery of low altitude (in particular RGB imageries) in
wheat drought assessment. The complete flowchart of the
proposed framework is displayed in Fig. 2, which mainly
comprises of image preparation and pre-processing, wheat
segmentation, training samples construction including fea-
ture extraction, classifier training and classification. Some
key elements of the developed framework are detailed in the
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Fig. 1: RGB image of FoI from the orthomosaic image.
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Fig. 2: Flowchart of the proposed machine learning based
wheat drought assessment framework.

following subsections.

3.1 Image pre-processing
With a series of aerial imageries, the commercial soft-

ware PhotoScan (Agisoft, Russia) is first adopted to gener-
ate an orthomosaic image. Then the orthomosaic image is
processed using Gaussian blur filter to reduce the effects of
random noises. On this basis, the region of interest can be
cropped from the orthomosaic image for the following wheat
pixel segmentation and further processing.

3.2 Wheat segmentation
Directly assessing soil moisture is highly desirable, how-

ever, this is hard for wheat at a late growing stage (i.e. with
a high canopy cover). This is mainly because the soil pixels
at high canopy cover regions are very limited as can be seen
from Fig 1. Consequently, this work instead works on wheat
pixels. As a result, it is necessary to separate wheat pixels
from soil and residue background.

This is usually achieved by inspecting the differences
in spectral reflectance between vegetation and soil pixels.
Green plants usually show relatively low values in Red and
Blue channels with a peak in Green spectral band in com-
parison to background pixels [12]. However, initial studies
demonstrate that non-normalised RGB values were not suit-

able for this task, since they are directly proportional to the
total light reflected from a surface and therefore highly sen-
sitive to illuminating intensity [13]. Instead different colour
based vegetation indices are frequently used in the literature.
To ease understanding of the notations, throughout this pa-
per, Red, Green and Blue denote the digit number of dif-
ferent RGB channels either in the range of [0, 255] or [0, 1];
while red, green, blue denote the normalized values (or chro-
maticity conversion) of Red, Green and Blue by dividing
Red, Green and Blue by (Red+Green+Blue).

There exist a number of vegetation indices to segment
crop from background, such as normalized excess green in-
dex NExG = 2g − r − b [14], normalized difference in-
dex NDI = (Green−Red)/(Green+Red) [13], Excess
Green minus Excess Red ExG − ExR [15], where ExR
denotes excess red ExR = 1.3R − G [16] among many
others. In this work, the NExG is adopted due to its fine per-
formance via trial & error experiments; NExG represents the
difference of the divergence of both red from green and blue
from green.

To remove background pixels from RGB image including
road, and soil above wheat field, it is necessary to define an
appropriate threshold for the one dimensional NExG index
distribution. In this paper, the well known Otsu’s threshold-
ing method [17] is adopted, which finds the optimal thresh-
old by maximizing the weighted sum of between-class vari-
ances. The derived threshold is 0.345 using Otsu’s algorithm
and the wheat segmentation result is shown in Fig 3.

Wheat segmentation

Fig. 3: Wheat segmentation using Otsu’s algorithm: wheat
(white pixels), background (black pixels).

Remark: In this work, spectral index is adopted to seg-
ment wheat pixel from background due to its simplicity and
generality. More advanced algorithms can also be adopted to
achieve this wheat segmentation task such as various cluster-
ing algorithms based on various spectral features.

3.3 Samples and feature extraction
Machine learning applications highly rely on training

samples. Consequently, in this section, the training sam-
ples along with the corresponding features for classification
model construction are detailed.



3.3.1 Samples

In machine learning applications, a vital step is to define
appropriate training samples, from which corresponding fea-
tures can be extracted for classification model contribution.
In remote sensing for precision agriculture, there are gener-
ally a large number of pixels and so pixel-wise classification
is usually time-consuming in both training and classification.
In addition, in pixel-wise classification, the features are usu-
ally limited to pixel values and more representative features
(such as texture feature, statistical features) can not be de-
fined. To improve the effectiveness and efficiency of the
classification algorithms, in this work, instead of conducting
pixel-wise classification a sample is defined by a pixel square
of dimension k × k with k being a pre-defined value. Con-
sequently, the volume of data can be substantially reduced
since k2 pixels are treated as one sample.

The ground truth data for soil water rate is given in Section
2.2, however, it is for each plot rather than specific wheat
pixels or pixel square as aforementioned. In this paper, the
training samples under wet soil plot and dry soil plot are
chosen in the following steps.

Algorithm 1: Steps to derive samples
(1) Plot selection: pixels in West 1&2 are chosen for wet wheat,

and the pixels in West 3 and Middle 3 are for dry wheat.;

(2) Pixel square: the aforementioned regions are gridded into
pixel square of dimension k × k;

(3) Non-wheat pixel removal: only pixel squares with wheat pixel
proportion over 20% is kept as a wheat sample.

(4) Sample label: the remaining pixel squares after non-wheat
pixel removal are labelled using the label for the plots.

Following the steps in Algorithm 1, a labelled training
dataset is obtained for classification algorithm training and
selection.

3.3.2 Feature extraction

With the samples defined in Section 3.3.1, we further
define appropriate features extracted from pixel squares to
maximally represent the properties of the samples. In this
work, various types of features are defined for the wheat
pixels in the pixel squares including statistical features and
special index features. The statistical features include mean,
variance, range, standard derivation, skewness and entropy
for each RGB band. Three special index features are also
considered including GoR = Green/Red, NExG = 2g −
r − b and NDI = (Green − Red)/(Green + Red); with
loss of generality only the mean values of the aforemen-
tioned spectral indices within the pixel squares are consid-
ered. There are totally 21 features.

Generally speaking, feature selection can be further
adopted to select the most representative features to reduce
the computation load or even improve the classification per-
formance [20]. However, in this work all 21 features are
directly used in classification model. This is because on the
one hand the number of features is not high and on the other
hand the training and testing samples are also not large due
to pixel square rather than pixel in sample construction.

3.4 Classifier training
With labelled training samples for wet wheat and dry

wheat, the next step is to train a classifier with which given a
new sample its class label can be determined. Different clas-
sification algorithms are available in the literature. There
is a built-in App termed “classificationLearner” in Mat-
lab, which can quickly evaluate the performance of different
classification algorithms including Decision tree, Discrimi-
nant analysis, Logistic regression, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN) among many others.
In this work, this App is adopted to train different types of
classification models so that the most suitable one in terms of
classification accuracy and computation time can be identi-
fied. In this process, the five-fold cross validation is adopted
to evaluate the classification performance. Then the learnt
classification model can be applied to the whole ROI for real
application.

4 Results and discussions

In this part, experimental validation of the proposed
framework for wheat drought assessment using remote sens-
ing RGB imagery of low altitude is conducted.

As discussed in Section 3.4, different classification algo-
rithms are first compared using five-fold cross-validation in
the “classificationLearner” App. The classification perfor-
mance (with 3314 training samples) along with computation
time using Matlab 2017a on Windows computer using Intel
Core i5-3570 CPU@3.4GHz with RAM 8GB are summa-
rized in Table 3. Considering the classification accuracy and

Table 1: Classifier performance comparison
Algorithm Accuracy Time (sec)

Complex tree 86% 1.98
Medium tree 88.4% 0.56

Logistic Regression 90.0% 3.58
SVM (Quadratic) 90.5% 10.2
SVM (Gaussian) 90.3% 1.57
KNN (Cosine) 89.0% 0.52

computation time concurrently, SVM with Gaussian kernel
is adopted in this paper, which can achieve a satisfying per-
formance while taking a reasonable training time.

Second, the classification map for the ROI using SVM
with Gaussian kernel is performed. In this process, the whole
imagery is first gridded into the corresponding pixel squares
using Algorithm 1 so that features can be extracted. The
classification time is 0.27 sec, which is very fast. The clas-
sification results are displayed in Fig. 4. To make the result
more interpretable, the corresponding groundtruth map for
different plots is also displayed.

It can be visually seen from Fig 4 that
(1) The ratio of yellow pixels is high in dry plots and low in

wet plots, so the classification results are very positive;
(2) Most of the classification errors for wet wheat plot ap-

pear at the boundary of the wheat plot; this is mainly
because some soil pixels and wheat pixels are put into
one pixel square in creating testing dataset.

Overall, it can be concluded that remote sensing RGB im-
ageries obtained by using an UAV of a low altitude can
provide valuable information for wheat drought assessment.
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Fig. 4: Classification map with background pixels (blue),
wet wheat pixels (cyan) and dry wheat pixels (yellow).

And the main reason is that wheat grew in dry soil condition
will reflect different RGB reflectance from the wheat grew
in wet soil condition.

5 Conclusions and future work

This paper is mainly focused on evaluating the usefulness
of UAV RGB imagery on wheat drought assessment. An
experiment has been carefully designed for wheat drought
comparison by keeping the soil moisture of wheat fields at
an almost constant level (i.e. wet field and dry field). RGB
imageries are collected by using DJI-S1000 with Sony NEX-
7 camera. A machine learning based framework for wheat
drought assessment has been proposed by integrating vari-
ous techniques such as image processing, feature engineer-
ing and classification. It is shown that the developed frame-
work can achieve an accuracy of over 90% in discriminating
wet wheat and dry wheat. This is only an initial study, where
future works are summarized in the following aspects.

(i) To perform a more reliable wheat drought assessment,
other bands including NIR, Short-wavelength (SWIR)
for water absorption, and Mid-wavelength (MWIR) for
temperature should also be considered. Then Multi-
spectral images are generated, which can provide a bet-
ter discriminating ability;

(ii) Experiments should be further designed so that wheat
under different levels of drought can be analysed so that
a regression analysis can be conducted between special
indices and soil water content.

(iii) At an early stage with smaller value of canopy cover,
it would be of interest to verify whether UAV imagery
can be used to assess the soil drought.
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