
1 

Automated Model Based Engine Calibration 
Procedure using Co-Simulation 

T. Fletcher1, N. Kalantzis1, M. Cary2, B. Lygoe2, A. Perouvanis1, K. Ebrahimi1 

1Loughborough University, Loughborough, UK 
2Ford Motor Company, Dunton Technical Centre, UK 

 

Abstract: The final validation and sign-off of a production powertrain control module (PCM) 

calibration is a time-consuming and expensive task and requires a high degree of expertise. There are 

two main reasons for this; firstly, the validation test is an iterative process due to the fact that 

calibration changes may affect the true operating point of the engine at the desired test point. 

Secondly, modifications to the calibration require expert knowledge of the complete control strategy 

so as to improve the correlation to validation data without potentially negatively impacting the 

correlated mapping points. This paper describes the implementation of an optimisation routine on a 

virtual platform in order to both reduce the requirement for experimental testing during the validation 

procedure, and for development of the optimisation routine itself prior to execution on the engine 

dynamometer. It is shown that in simulation, the optimisation routine is capable of producing an 

acceptable calibration within just 5 iterations, reducing the 11-week process down to just a few days. 

It is also concluded that there are also a number of further improvements that could be made to further 

improve the efficiency of this process. 

Keywords – Engine Calibration Optimisation, Powertrain Co-Simulation, Model Based 

Calibration; Torque Estimation. 

1 - Introduction 

Engine calibration validation (the final “sign-off” of an engine Powertrain Control Module (PCM) 

calibration) is a crucial step in the development of the new engine variant because it is the last chance 

for engineers to identify and rectify discrepancies between the predicted engine behaviour and actual 

engine performance as seen by consumers. It is also an incredibly complex task due to the sheer 

number of parameters and control actuators used on modern vehicles to meet increasingly stringent 

emissions regulations [1, 2]. At the same time, international legislators are moving away from testing 

using modal drive cycles such as the New European Driving Cycle (NEDC) and towards highly 

dynamic test cycles such as the Worldwide harmonised Light vehicles Test Procedure (WLTP) and 

the Real Driving Emissions (RDE) test in order to bridge the gap between official fuel economy and 

emissions figures and real-world consumer experience [3]. The combination of these factors is 

requiring automotive OEMs to not only produce highly efficient engines, but also for them to ensure 
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that they operate efficiently at a wide range of operating points rather than at specific “mapping” 

points. 

This work is part of the Validation Platform for Engine Calibration (VPEC) project funded by the 

Digital Engineering and Test Centre (DETC) which focusses on the process improvement of the 

validation of an engine calibration at Ford Motor Company. The validation procedure begins with a 

completed engine mapping calibration and involves testing the engine on a dynamometer through a 

series of around 300 steady-state test points using normal operation modes. Once the testing is 

complete, any error states are identified, and the calibration is adjusted to minimise the error before 

re-testing. This iterative process currently takes up to 11 weeks from beginning to end and is 

performed for every unique engine and vehicle variant before going to production.   

The aim of this project is to produce a virtual calibration process which can be used to optimise the 

calibration in conjunction with dynamometer testing, theoretically reducing the number of 

experimental iterations and significantly reducing the cost and time of the validation process. In 

addition, as demonstrated in this paper, the validation platform is also being used to test optimisation 

algorithms developed by The Mathworks which can be used to automate the validation process. 

Automation of the validation procedure enables 24-hour testing, speeding up the process, as well as 

reducing the workload on calibration subject matter experts. 

2 - Background 

Traditionally, engine torque control has been performed by the driver directly controlling a throttle 

valve. With the advent of turbo-charging, the torque control problem became more difficult, requiring 

the simultaneous control of both throttle and wastegate to meet the driver demand in the most efficient 

way [4, 5]. In addition, the torque delivery needs to be smooth, consistent and predictable to the 

operator.  

In modern vehicles, the accurate estimation and control of the brake torque output of an engine is 

becoming increasingly significant for two main reasons. Firstly, progressively stricter emissions 

regulations are putting more emphasis on precise engine control, especially for hybrid vehicle 

architectures; which often require the acceleration demand from the driver to be divided between the 

engine and one or more electric motors [6, 7, 8]. Secondly, the uptake of Advanced Driver-Assistance 

Systems (ADAS) and autonomous vehicles are gradually removing the driver from the control loop. 

Accurate and reliable estimates of the engine torque are required for ADAS, such as for adaptive 

cruise control [9], shift quality control [10] and engine speed control [11].  

In laboratory settings, the engine torque can be effectively measured by the use of a cylinder pressure 

transducer, however, these sensors are prohibitively expensive for consumer vehicle applications. 
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Hence it is necessary to estimate the torque indirectly based on the readings from other sensors [12]. 

Torque estimation is an incredibly complicated task due to the considerable number of design, 

environmental and control parameters that impact the engine performance. Modern engines have a 

variety of controllable parameters which will each affect the torque of the engine, ranging from the 

basics such as throttle position, ignition timing and fuel injection timing to more innovative 

technologies such as Variable Camshaft Timing (VCT) and Variable Length Intake Manifolds 

(VLIM). Even small perturbations in any of these can significantly affect the brake torque. In 

addition, the brake torque will also be affected by environmental conditions in the combustion 

chamber as a result of variations in intake Manifold Charge Temperature (MCT), Engine Coolant 

Temperature (ECT) and ambient temperature and pressure. Finally, even though a single engine 

design may be used in multiple vehicles, its performance will vary between vehicles due to variations 

in the final implementation, especially with regard to intake and exhaust system installation. 

Therefore, it is not possible to design and calibrate an engine for one vehicle and then simply use it 

on another vehicle without re-calibration. 

There are a number of different approaches to the torque estimation problem. The most basic of these 

is a fully “mapped” calibration which uses a series of lookup tables based on engine speed, mass air 

flow, spark advance, injected fuel mass, etc., which then need to be populated through extensive 

testing [13]. This is a highly reliable and deterministic method, but suffers from the “curse of 

dimensionality” as the number of tables increases to include corrections for camshaft timing, Exhaust 

Gas Recirculation (EGR), etc.. As a result, the time required to populate the lookup tables and the 

memory required to store them becomes prohibitive for production engines. On the other hand, there 

are various more advanced indirect measurement techniques such as; sliding mode estimation [14], 

Kalmann filtering [15, 16, 17], Unknown Input Observers (UIO) [12, 18], adaptive parameter 

estimation [12, 18] and dirty differentiation estimation [12, 19]. These techniques use the 

measurement of other engine and vehicle states such as crankshaft speed and manifold pressure to 

estimate the brake torque in real-time.  

The Ford Motor Company uses a semi-empirical model for predictive control of both the air flow and 

the torque produced by the engine. This technique sits somewhere in between the two categories 

above, using a number of theoretical assumptions to minimise the requirement for lookup tables. This 

model is calibrated using empirical data gathered at specific “mapping points” represented by engine 

speed, manifold pressure and VCT indices. In normal operation, the calibration is then interpolated 

based on the current state of the engine and the demanded engine torque. This technique balances the 

requirement for a predictable deterministic response suitable for robust torque control of the engine 

whilst limiting the requirement for extensive calibration testing. Despite this, the strategy still requires 
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extensive calibration and validation testing to be performed to ensure reliability under real world 

driving conditions. As a result, it is vital to ensure that testing is performed as efficiently as possible. 

3 - Ford Gasoline Engine Control (FGEC) Strategy 

A simplified version of the torque control strategy is outline in Figure 1. The strategy works as 

follows; 

1. A torque demand is received by the PCM 

2. The torque demand is converted to a normalised cylinder air charge (or “load”) demand based 

on lookup tables. 

3. Simultaneously, the engine speed and torque demand are used to determine the optimum 

variable camshaft timing angles based on a predetermined schedule. 

4. The VCT angles, engine speed and air charge requirement are used to calculate a target 

Manifold Absolute Pressure (MAP) based on a semi-empirical model. 

5. The MAP target is used to control the throttle angle and turbo-charger wastegate using a 

combination of feedforward and feedback control. 

6. (The engine responds to the control actuations and produces an amount of brake torque) 

 
Figure 1 - FGEC Control Strategy Outline 

This work focusses validation of the 4th step, the air charge calibration, although the VPEC project as 

a whole also covers the torque calibration (Step 2). It can be seen from Figure 1 that changes to the 

calibration will inherently affect the actual operating point of the engine for a given torque demand. 

This means that any test points affected by a calibration change will require re-testing to confirm the 

changes have had the desired effect at the new operating point. 
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4 - Validation Process 

The overall process is shown in Figure 2 and described below; 

Start Validation Test on 
Dynamometer Error State? EndNo

Calibration 
Optimisation

Yes

Base Map 
Validation Data

 
Figure 2 – Validation Process 

1. An engine base map and PCM calibration is obtained alongside the base map validation data 

(around 7500 mapping points). 

2. The engine is installed on the dynamometer and the PCM is programmed as closely as possible 

to how it would be set up in a real vehicle. This means all control actuators are in fully-

automatic mode. 

3. The test cell is used to run the engine through a set of (around 300) pre-determined speed and 

torque test points which represent the engine operating range at stabilised engine operating 

temperatures.  

i. The demand torque and speed are logged alongside the Mass Air Flow (MAF), Manifold 

Absolute Pressure (MAP), and measured brake torque. 

4. The logged data is analysed by experts and the calibration is adjusted to remove error states in 

the development validation, being sure to also keep the original base map within the error 

tolerances. 

5. The new calibration is re-tested on the engine dynamometer. All test points affected by the 

calibration change are re-examined. 

6. Steps 3-5 are repeated until the error states have been removed. 

The validation process is very time consuming because each test point for the validation is dependent 

on the calibration itself and, due to interpolation, changes to the calibration will also affect 

neighbouring test points as well as the identified error state. As a result, even relatively minor changes 

to the calibration can require a large number of test points to be re-examined even if they were 

previously within the error tolerances. 
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5 - Co-Simulation Environment 

The co-simulation environment consists of three main components; the WaveRT engine model, the 

PCM or “ECU”, and the “Test Scheduler”, see Figure 3. The WaveRT engine model is a 0D 

representation of the 1D air-path engine model created in Ricardo Wave by Ricardo plc. Both the 

original Wave model and the auto-generated WaveRT model have been correlated by Ricardo plc. 

with test data provided by Ford. Therefore, for this work, the engine model has been treated as a 

“black-box” model which simply outputs the engine airflow, manifold pressure and torque based on 

a number of engine control inputs including; throttle position, wastegate position, camshaft timing, 

ignition timing, etc..  

 
Figure 3 – Co-Simulation Model 

The “ECU” block is a Simulink representation of the Ford Powertrain Control Module (PCM) which 

is parameterised with the calibration to be tested. It takes inputs from the test scheduler in the form 

of an engine torque demand and uses these in conjunction with feedback from engine “sensors” to 

manage the engine control inputs.  

Finally, the “Test Scheduler” is a state-flow model of the engine test procedure as would be performed 

by test cell technicians, see Figure 4. The test scheduler is provided with a complete list of the required 

test points in a given order. It ramps to each test point from the previous one, waits for stabilisation 

of the operating point, and then takes a measurement as the average value over a set period of time 

or number of engine cycles. It works through each test point until all required test data have been 

collected and then shuts down the engine model. 

More detailed information about the co-simulation environment is available in a separate paper by 

Nikolaos Kalantzis [20]. 
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Figure 4 – Test Scheduler Stateflow Diagram 

6 - Results & Analysis 

The iterative process described in Section 4 was carried out for a 1.0 litre 3-cylinder GTDI engine. 

The results of the first iteration are shown in Figure 5 and Figure 6. It can be seen in the blue circles 

in Figure 5 and in the left hand plot of Figure 6 that the original calibration did not entirely meet the 

measures of Measure of Success (MoS), which is set to ±5% relative error. There were around 10 

points which exceeded the desired accuracy, with a maximum residual error of 8.85%. In particular, 

the calibration tended to overestimate at low speed and medium load, but underestimate at low speed, 

high load. As both of these areas are critical to real-world usage, this calibration would not be 

acceptable.  

The first run of the optimisation function was able to bring all but one of the error states to within the 

MoS. However, the optimisation did also push one of the previously acceptable test points outside 

the desired MoS, meaning that a total of 2 test points were now outside the 5% relative error tolerance, 

with a reduced maximum error of 6.37%. In addition to the error states, the first optimisation step 

also reduced the mean residual slightly. 

The change in the calibration will have now affected the actual operating point of a number of test 

points including, but not limited, to those which were error states under the first dynamometer run 

and therefore another dynamometer test is performed. The results of the second dynamometer test 

and the second optimisation run are shown in Figure 7 and Figure 8. It can be seen that the maximum 

relative error was actually smaller than that predicted at the end of the first optimisation run; at just 

5.55% for the test point which was pushed outside the MoS in optimisation step 1.  
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Figure 5 – First Iteration Residuals 

Figure 6 – First Iteration Residual Map 
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Figure 7 – Second Iteration Residuals 

Figure 8 – Second Iteration Residual Map 
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Examining the results in detail reveals that the previous worst point (+6.37% at 1200rpm) was in fact 

within the MoS on the second run of the model. This is not necessarily surprising, because the actual 

operating point of this test point will have changed significantly due to the substantial change in the 

calibration in this region due to the optimisation routine trying to minimise this error state. 

The second iteration was able to bring all test points within the desired MoS with a maximum residual 

error of 4.97%. However, because this new calibration will have again affected the actual operating 

point of the engine at each test point, it is still necessary to run the dynamometer co-simulation again. 

The third co-simulation run showed that the change in calibration had pushed the maximum residual 

back outside the MoS when accounting for the change in actual engine operating point and therefore 

the process was iterated twice more until the results of the co-simulation were within the pre-defined 

MoS. In total, this took a total 5 simulations and 4 optimisation runs, see Figure 9. 

Each validation test run took around 1.5 hours running on a 4-core parallel simulation, which was 

equivalent to around 9 hours of experimental testing. The optimisation routine took around 1 hour to 

complete for each iteration, resulting in a total simulated optimisation time of just under 12 hours. 

However, simulation is not the end goal of the project and therefore it is useful to consider the total 

time for the experiment on a dynamometer which would be around 49 hours, a significant 

improvement from the 11-week turnaround time for the manual procedure. 

 
Figure 9 - Maximum Residual Error by Iteration 
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7 - Conclusions 

The simulation results have shown that the proposed method of iterated between co-simulation and 

optimisation have progressively improved the calibration until it has met the desired MoS. It has also 

been demonstrated that, for the co-simulation model at least, it has been possible to meet the desired 

MoS of ±5% for all test points with a single optimised calibration. It is also interesting to note that as 

anecdotally experienced with manual calibration methods, the automated iterative process showed 

simulated results which were worse than the previous iteration due to the movement of the actual 

operating point of the engine for a pre-defined test point. 

The automated optimisation demonstrated a theoretical reduction in the calibration validation time 

from 11 weeks to just 2 days on an engine dynamometer. This improvement comes from a 

combination of factors. Firstly, the automated procedure can be run on a 24-hour basis rather than 

being limited to supervised one or two shift testing. Secondly, the elimination of manual calibration 

changes significantly reduces the logistical delays of scheduling testing, expert analysis and re-testing 

as required on an ad-hoc basis. Finally, the automated optimiser developed by The Mathworks is 

significantly quicker than manual examination of the test data. 

Finally, it should be noted that this paper demonstrates the process in a simulated environment which 

is not subject to experimental error, noise or other environmental factors which may affect the quality 

of the results. Therefore, actual turn-around time on the engine dynamometer may be slower, however 

this work has shown that it is likely to still be significantly more time-efficient than manual validation. 

Further work on the VPEC project is continuing at Ford, who are currently working to automate the 

iterative optimisation process on their test cells. In addition to the on-going work to test the automated 

procedure on a dynamometer, further improvements have been proposed for the future. Firstly, it is 

possible to restrict the number of test points to be retested by examining the changes made by the 

optimiser. Therefore, only test points which will have been affected should be retested on subsequent 

iterations. Early results show that this can further reduce testing time by a factor of four or more. 

Secondly, the model has demonstrated substantial correlation to the test data especially under 

particular conditions. Therefore, a hybrid simulation/experimental validation method has been 

proposed to use a combination of simulated results and experimental results to allow the calibration 

to converge in fewer experimental iterations. 
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