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Efficacy of depth jumps to elicit a post-activation performance enhancement in junior 28 

endurance runners 29 

 30 

Abstract 31 

 32 

Objectives: To determine the effect of performing depth jumps (DJ) pre-exercise on running economy 33 

(RE) and time to exhaustion (TTE) at the speed associated with maximal oxygen uptake (sV̇O2max) in a 34 

group of high-performing junior middle-distance runners. 35 

Design: Randomized crossover study. 36 

Methods: Seventeen national- and international-standard male distance runners (17.6 ± 1.2 years, 63.4 37 

± 6.3 kg, 1.76 ± 0.06 m, 70.7 ± 5.2 ml.kg-1.min-1) completed two trials. Following a 5 min warm-up at 38 

60% V̇O2max, participants performed a 5 min run at 20%Δ below oxygen uptake corresponding with 39 

lactate turn-point to determine pre-intervention RE. Participants then completed either six DJ from a 40 

box equivalent to their best counter-movement jump (CMJ) or a control condition (C) involving body 41 

weight quarter squats. After a 10 min passive recovery, another 5 min sub-maximal run was performed 42 

followed by a run to exhaustion at sV̇O2max. 43 

Results: Compared to the C trial, DJ produced moderate improvements (-3.7%, 95% confidence interval 44 

for effect size: 0.25-1.09) in RE, which within the context of minimal detectable change is considered 45 

possibly beneficial. Differences in TTE and other physiological variables were most likely trivial (ES: 46 

<0.2). Individual responses were small, however a partial correlation revealed a moderate relationship 47 

(r=-0.55, p=0.028) between change in RE and CMJ height.  48 

Conclusions: The inclusion of a set of six DJ in the warm-up routine of a well-trained young male 49 

middle-distance runner is likely to provide a moderate improvement in RE. 50 

 51 

 52 

Keywords: warm-up, potentiation, pre-activation, running, physiology, plyometrics 53 

 54 

  55 
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Abbreviations 56 

C = control condition 57 

CI = confidence interval 58 

CMJ = counter-movement jump 59 

DJ = depth jumps 60 

HR = heart rate 61 

LTP = lactate turnpoint  62 

MDC95 = minimal detectable change (95% confidence) 63 

MLC = myosin light chains 64 

PAPE = post-activation performance enhancement 65 

RE = running economy 66 

sLTP = speed associated with lactate turnpoint 67 

sV̇O2max = speed associated with V̇O2max 68 

TE = typical error  69 

TTE = time to exhaustion 70 

 71 

 72 
  73 
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Introduction 74 

 75 

Warm-up strategies for endurance athletes typically aim to achieve acute metabolic and cardiovascular 76 

adjustments, which enhance the oxygen uptake (V̇O2) kinetic response1. Distance running performance 77 

is underpinned by several important physiological determinants, which are limited by metabolic and 78 

cardiovascular factors, however neuromuscular characteristics also play an important role2. It is 79 

currently unknown whether high-intensity strength-based activities incorporated into a warm-up are 80 

capable of acutely activating the neuromuscular system, thus providing additional benefits to the 81 

determinants of performance in distance runners. 82 

 83 

For short-duration athletic tasks, such as sprints and jumps, there is a large body of evidence 84 

demonstrating possible improvements in performance 5-12 min after completion of a ballistic exercise 85 

(e.g. plyometrics) or a heavy resistance exercise (>85% one repetition maximum)3,4. This enhancement 86 

of voluntary movement has been referred to as ‘post-activation performance enhancement’ (PAPE)5, 87 

and can be explained by a number of physiological mechanisms. Most notably, acute enhancement in 88 

voluntary movement have often been attributed to a ‘potentiation’ response, which increases myosin 89 

light chains (MLC) phosphorylation, thereby enhancing rate of force development6. However, this 90 

effect is short-lived (~5 min)7 and has rarely been observed during voluntary contractions. Other 91 

unrelated physiological effects that may explain a PAPE include: an increase in muscle temperature8, 92 

modulation of the H-reflex9, an increase in motor unit recruitment6, elevations in hormones10, and 93 

changes in limb stiffness3. Although, some of these mechanisms have been shown to facilitate a short-94 

term improvement in explosive power performance, there has been recent speculation that endurance-95 

related outcomes may also benefit11.  96 

 97 

Improvements in RE and time-trial performance have been reported following a chronic strength 98 

training intervention12, however only a few studies have reported how these methods might acutely 99 

enhance these parameters13-15. A series of sprints (6x10 s) wearing a weighted vest prior to an 100 

incremental treadmill run has been shown to improve peak running speed and RE via changes in leg 101 
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stiffness, compared to a warm-up which included non-weighted sprints13. High-load resistance exercise 102 

has also been shown to enhance 20 km time-trial performance in well-trained cyclists15. A similar 103 

finding was observed in a group of elite rowers during a 1 km time trial, with power in the first 500 m 104 

displaying improvement following a series of 5x5 s isometric contractions on the rowing ergometer14. 105 

Both of these investigations14,15 attributed the improvements to a potentiation response. A PAPE is 106 

transient, therefore selecting an appropriate recovery duration following a strength-based stimulus is 107 

crucial to ensuring fatigue has dissipated sufficiently yet a post-activation state remains. A rest period 108 

of 5-10 min following a set of voluntary contractions has been suggested for endurance athletes11, and 109 

the aforementioned studies in endurance runners13 and cyclists15 utilized a 10 min recovery.    110 

 111 

Simple strategies incorporated into warm-up routines, which have the potential to improve 112 

performance, are likely to be of considerable interest to athletes and their coaches. Chronic plyometric 113 

training has been shown to enhance RE and performance12 and plyometrics have been used to acutely 114 

enhance sprint performance in athletically trained males16. Importantly, plyometrics do not require 115 

specialist or cumbersome equipment and can be easily utilized in a field-based setting with athletes. 116 

Based on the aforementioned information, we conjecture that a simple plyometric exercise would 117 

improve RE and performance.  Consequently, the aim of this study was to examine the influence of 118 

performing depth jumps (DJ) on RE and TTE in a group of high-performing junior middle-distance 119 

runners. 120 

 121 

Methods 122 

 123 

Following institution level ethical approval and in accordance with the Declaration of Helsinki, 17 124 

junior male middle-distance runners of national and international standard took part in this study (Table 125 

1). All participants were classified as post-pubertal (≥1 year) based upon a calculation of predicted 126 

maturity offset17 and were free of injury. Participants (and parents/guardians for those <18 years) were 127 

informed of the purpose of the investigation and thereafter provided written, informed consent to take 128 

part. 129 
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 130 

***Table 1 about here*** 131 

 132 

Participants attended the laboratory on three occasions, each separated by 2-7 days. Trials were 133 

completed at the same time of day under similar conditions (barometric pressure: 750-770 mmHg, 134 

temperature: 16.0-19.3oC, relative humidity: 30-43%) on a motorized treadmill (HP Cosmos Pulsar 4.0, 135 

Cosmos Sports & Medical GmbH, Munich, Germany). Participants were requested to arrive in a 136 

hydrated state, at least 2 h post-prandial and having not participated in any strenuous exercise in the 137 

preceding 24 h. 138 

 139 

The first testing session involved a discontinuous submaximal incremental running assessment followed 140 

by a V̇O2max test with the treadmill gradient inclined to 1% throughout. Following a 5 min warm-up, 141 

participants completed 5-7 bouts of running each lasting 3 min with 30 s passive rest to allow for a 142 

capillary blood sample to be taken. The speed of the first stage was selected based upon the participants 143 

best times and published recommendations18. Speed was subsequently increased by 1 km.h-1 each stage 144 

until lactate turn-point (LTP), defined as a rise in lactate of >1 mMol.L-1 from the previous stage19, was 145 

reached. Following a 5 min passive recovery, participants ran at the speed associated with their LTP 146 

(sLTP) and every minute thereafter, the treadmill speed increased by 1 km.h-1 until volitional 147 

exhaustion. V̇O2max. was defined as the highest 30 s mean V̇O2 value obtained during the V̇O2max. test. 148 

sV̇O2max was identified as the final speed achieved for >30 s during the assessment of V̇O2max. After 20 149 

min active recovery (slow walking), participants performed three maximum CMJs with hands placed 150 

on hips on a force plate (Kistler 9287BA, Kistler Instruments Ltd, Hampshire, UK) sampling at 1000 151 

Hz, with 90 s rest permitted between each attempt. Jump height was determined by calculating centre 152 

of mass displacement from the participants take-off velocity. CMJ height was used to individualize box 153 

height (to the nearest 0.01 m) for the DJ. Participants were then familiarized with the exercises to be 154 

used in the two warm-up scenarios (DJ and C). 155 

 156 
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On the second and third visits to the laboratory, participants completed two performance trials in a 157 

quasi-randomized counter-balanced order (ABBA method). One trial included a warm-up involving a 158 

set of DJ and the other a control condition (C), involving unloaded quarter squats. The two trials 159 

commenced with a warm-up at 60% V̇O2max followed by 5 min of running at a speed corresponding to 160 

20%Δ below V̇O2 at LTP20. The delta value represents the difference between V̇O2 at sLTP and V̇O2max. 161 

Speed was determined by deducting 20% of this delta value from V̇O2 at LTP and entering this value 162 

into the linear regression equation for the speed-V̇O2 relationship for each participant.  Following a 5 163 

min passive recovery, participants completed six repetitions of either DJ or the C exercise. For the DJ, 164 

participants placed their feet on the edge of the box, were instructed to step off a box whilst maintaining 165 

an extended knee on the supporting leg, and rebound as high as possible whilst minimizing their ground 166 

contact time. In the C trial, participants were instructed to descend into a shallow squat position (~140o 167 

knee flexion) with heels remaining in contact with the ground, before slowly returning to standing. This 168 

exercise was included to mask the active effect that was anticipated from the DJ and minimize the 169 

likelihood of a placebo response. Both protocols were followed by a further 10 min of passive rest to 170 

allow neuromuscular fatigue to dissipate but maximize the likelihood of a PAPE response being 171 

realized. Immediately prior to remounting the treadmill, participants were asked to provide a rating (1-172 

10) of perceived readiness21. To evaluate the effect of the intervention on RE, participants then ran for 173 

a further 5 min at 20%Δ below V̇O2 at LTP. This was followed by a 1 min rest and a run to exhaustion 174 

at sV̇O2max. Participants were blinded to the duration they had been running for throughout the trial.  175 

 176 

At the start of each testing session, participant’s body mass was taken using digital scales (MPMS-230, 177 

Marsden Weighing Group, Oxfordshire, UK) to the nearest 0.1 kg. Stature and sitting height were also 178 

measured with a stadiometer (SECA GmbH & Co., Hamburg, Germany) to the nearest 0.01 m for 179 

prediction of maturity offset. A 20 μL blood sample was taken from the earlobe at rest and the end of 180 

every running stage across all testing sessions. Samples were hemolysed and subsequently analyzed for 181 

blood lactate concentration (Biosen C-Line, EKF Diagnostic, Barleben, Germany). Gas exchange was 182 

measured breath-by-breath via an automated open circuit metabolic cart (Oxycon Pro, Enrich Jaeger 183 

GmbH, Hoechberg, Germany) calibrated to manufacturer’s recommendations. Typical error (TE) of 184 
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measurement has previously been reported for RE using this system in junior distance runners (<2%) 185 

and test-retest reliability is considered excellent (intra-class correlation coefficient: >0.9)19. Following 186 

filtering of breath-by-breath data to remove errant breathes, oxygen consumption (V̇O2) and carbon 187 

dioxide production (V̇CO2) were averaged for the final 2 min of both 5 min stages in the main trials and 188 

were subsequently used to calculate RE in terms of energy cost using updated non-protein respiratory 189 

quotients22. To verify a steady-state had been achieved, the difference between the first 60 s of the final 190 

two minutes and the last 60 s was calculated. A difference smaller than the minimal detectable change 191 

(MDC95), calculated as TE of the mean x 1.96 x √2, confirmed a plateau had been achieved. HR was 192 

measured continuously throughout both trials (Polar RS400, Polar Electro Oy, Kempele, Finland) with 193 

an average of the final 2 min of each stage used in analysis. A rating of perceived exertion (6-20 scale) 194 

was also taken during the final 30 s of each 5 min stage as a subjective indicator of effort. Time to 195 

volitional exhaustion was recorded to the nearest second for the continuous run at sV̇O2max, and blood 196 

lactate was taken immediately after.  197 

 198 

V̇O2 is typically expressed as a ratio to body mass, however this approach is only valid when the 199 

relationship between these two variables is in direct proportion, which is often not the case in humans23. 200 

Thus, it is recommended that specific scaling exponents are calculated for different populations of 201 

participants23. An allometric scaling exponent was therefore obtained by combining baseline data from 202 

participants in the present study with a larger cohort of homogenous male runners (n=35, 17.3 ± 1.4 203 

years, 62.8 ± 6.5 kg, 1.77 ± 0.06 m, 70.4 ± 7.0 ml.kg-1.min-1). Natural logarithms (In) of absolute V̇O2 204 

and body mass were taken for sLTP -1 km.h-1 and linear regression was used to obtain values for the 205 

model lny = lna + b.lnx, where [a] is the scaling constant and [b] is the scaling exponent corresponding 206 

to body mass. The allometric model was identified as = 104.6 𝑥0.85 , therefore a scaling exponent of 207 

0.85 (95% confidence interval (CI) = 0.53-1.17) was used in subsequent analysis of RE, expressed as 208 

kJ.kg-0.85.km-1.  209 

 210 
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Data used for scaling was analysed using SPSS Statistics (v22, IBM, New York USA). Normality of 211 

distribution was confirmed visually using Q-Q plots and objectively with a Shapiro-Wilks statistic. 212 

Prior to scaling, the assumption of homoscedasticity was assessed using a scatterplot of the standardized 213 

residual and standardized predicted variables. Data collected in trials were analysed using Microsoft 214 

Excel 2013 and a published spreadsheet24. Values are presented as mean ± SD, unless otherwise stated. 215 

ES’s for the measures taken during submaximal running were calculated as the difference between 216 

change scores divided by the standard deviation of pre-test scores across both trials. For measures taken 217 

during the run to exhaustion, ES’s are presented as a ratio between the mean difference between trials 218 

and the within-subject standard deviation. ES values were interpreted as trivial (<0.2), small (0.2-0.59), 219 

moderate (0.6-1.2) and large (>1.2)25. Magnitude based inferences were calculated using MDC95 values 220 

from previous reliability work in this population19.  221 

 222 

As PAPE response appears to be related to strength status4, a partial correlation that controlled for the 223 

influence of pre-test score was performed in SPSS Statistics on the percentage change score for RE in 224 

the DJ trial and CMJ performance. Quantification of individual responses to an intervention requires 225 

consideration of the error associated with measurement, which can be derived from the control 226 

condition of an experiment26. Thus, inter-individual responses were explored by calculating the true 227 

individual difference using the formula26: 228 

 √𝑆𝐷𝐷𝐽
2 − 𝑆𝐷𝐶

2   229 

Where SDDJ and SDC represents the SD of the change score for RE or the SD of scores for TTE in the 230 

DJ and C trials respectively. This value was also expressed in standardized units (with 95% confidence 231 

limits), by dividing the true individual difference by the pooled pre-intervention standard deviation26. 232 

Expressing individual responses in standardized units (an effect size) allows practitioners to interpret 233 

more easily the effectiveness of the intervention on individual athletes.      234 

  235 

 236 

Results 237 
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 238 

The difference between the 5 min warm-ups that preceded both trials was negligible (%V̇O2max: 61.2 ± 239 

4.4% vs 60.0 ± 4.2%, ES=0.17). Table 2 displays the results for measures taken during submaximal 240 

running before and after the DJ and C interventions. Participants perceived readiness to perform was 241 

moderately higher (ES: 0.62) following DJ compared to the C condition. Performing DJ provided a 242 

possible benefit (-3.7%, ES: 0.67) to RE. The effect on blood lactate, HR and RPE was trivial (ES: 243 

<0.2). The effect of DJ on TTE at sV̇O2max and blood lactate response was most likely trivial (ES: <0.2) 244 

compared to the C trial (Table 2). 245 

 246 

***Table 2 about here*** 247 

 248 

A moderate negative correlation (r=-0.55 (95% CI: -0.25 to -0.90), p=0.028) was observed between the 249 

change in RE following DJ and CMJ height after controlling for pre-intervention RE. The true 250 

individual difference for change in RE in the DJ trial was calculated as 0.19 kJ.kg-0.85.km-1 (95% CI: 251 

0.15-0.23 kJ.kg-0.85.km-1). In standardized units, the individual responses were 0.42 (95% CI: 0.33-0.51) 252 

representing a small individual effect to the DJ intervention for RE. These individual changes in RE for 253 

the DJ trial are shown with the mean group change in Figure 1.  Individual responses in TTE were 254 

trivial (6.5 s, ES: 0.04). 255 

 256 

 257 

***Figure 1 about here*** 258 

 259 

 260 

Discussion 261 

 262 

The aim of this experiment was to examine whether the inclusion of DJ in the warm-up routine of a 263 

group of high-performing junior middle-distance runners could acutely influence RE, and TTE at 264 

sV̇O2max. Findings suggest that DJ provide a moderate benefit (-3.7%, ES: 0.67) to RE but TTE was 265 
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unaffected. In the context of MDC95 values, DJ were considered a possibly beneficial stimulus to 266 

enhance RE. There were small differences in individual RE responses to DJ, and this appears partly 267 

attributable to an individual’s explosive strength capabilities.  268 

 269 

Despite a large body of evidence demonstrating positive acute effects from high-load resistance4 and 270 

ballistic3 exercise on explosive power tasks, very few studies have been conducted examining whether 271 

endurance-related parameters could also benefit. This is the first study to show improvements (-3.7%, 272 

ES: 0.67) in RE following a single-set (6-repetitions) of high-intensity plyometric exercise. This effect 273 

is similar in magnitude to improvements observed in RE following chronic periods (6-14 weeks) of 274 

strength training in distance runners12. Using a similar protocol to the current study, Barnes and 275 

colleagues13 observed large (-6.0%, ES: 1.40) improvements in RE following 6x10 s sprints with a 276 

weighted vest (20% body mass). It is likely that the larger improvements noted in the Barnes13 study 277 

compared to the present study were a result of the higher volume of loaded conditioning work 278 

performed. Similarly, Feros and co-workers14 found that using isometric contractions (5x5 s) on a 279 

rowing ergometer increased mean power for the first half of a 1 km rowing time trial by 6.6% (ES: 280 

0.64). Collectively, these data suggest a moderate-large benefit for task-specific conditioning activities 281 

to enhance performance-related outcomes.    282 

 283 

There were trivial differences in blood lactate and HR during sub-maximal running between trials (ES: 284 

<0.2). The absence of change in blood lactate value suggests that the contribution from anaerobic 285 

glycolysis to energy expenditure did not alter, thus total metabolic cost of running was also reduced. 286 

The lack of change in HR during the DJ trial is a somewhat surprising result, as a reduction in energy 287 

cost would imply that a lower volume of oxygen is required by the active muscles, It may be possible 288 

that noticeable reductions in HR only occur when changes in RE are large. This is supported by findings 289 

from Barnes et al13 who observed large (ES: 1.40) improvements in RE and small (ES: 0.45) reductions 290 

in submaximal HR. This indicates that cardiorespiratory-related mechanisms are unlikely to be 291 

responsible for the change observed in RE. One or more acute alterations in neuromuscular 292 

characteristics, which are also known to underpin RE, are therefore the likely mechanism of effect.  293 
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 294 

The mechanistic bases for the acute improvements in performance-related outcomes observed following 295 

a high-intensity conditioning activity remains controversial5. It is recognized that enhancement of 296 

voluntary muscle contraction via increases in MLC phosphorylation lasts 4-6 min7, thus it seems 297 

unlikely that this mechanism was responsible for the improvement observed. A high-intensity 298 

plyometric exercise, which involves augmented eccentric muscle contractions, may also activate a large 299 

pool of motor units, which are then accessible during subsequent exercise6. Thus, for any given sub-300 

maximal exercise performed shortly after, a lower relative intensity of activation is required, thereby 301 

reducing energy cost27. It may also be possible that plyometric exercise, which elicits a stretch reflex 302 

response, acutely elevates the transmittance of excitation potentials via the Ia afferent, which increases 303 

output from the motoneuron pool6, observable on an electromyography trace as an increase in the H-304 

wave.  Indeed, an increase in H-wave amplitude has been observed for 5-11 min in the knee extensors 305 

following maximal voluntary contraction9. Acute changes in leg stiffness have previously been shown 306 

during endurance running13 in response to a PAPE stimulus. It is therefore possible that an increase in 307 

musculotendinous stiffness may also have helped optimize the length-tension relationship of muscles, 308 

thereby reducing the magnitude and velocity of shortening, and therefore lowering energy usage27. 309 

Indeed, higher Achilles tendon stiffness is associated with superior RE28, implying that an acute 310 

improvement in this quality may reduce the energy cost of running. Elevations in hormones such as 311 

testosterone10 and plasma catecholamines5, have also been reported immediately following a loaded 312 

conditioning activity, and are associated with improved physical performance. Finally, we cannot 313 

discount the possibility that the DJ provided a greater rise in muscle temperature compared to the C 314 

trial8. Given the low volume (six repetitions) of DJ used and the absence of change in metabolic and 315 

cardiovascular parameters this mechanism seems unlikely.     316 

 317 

Although it is clear that endurance-trained athletes are capable of benefitting from a PAPE protocol11, 318 

the phenomenon is more likely to occur in stronger individuals4.  This is partly confirmed by findings 319 

in the present study as explosive strength capability, measured via a CMJ, was correlated (r=-0.55, 320 

p=0.028) with change in RE following DJ. This suggests that distance runners with greater levels of 321 
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explosive strength are more likely to benefit from a PAPE protocol. In this study, DJ were performed 322 

from a height equal to a participants CMJ, therefore more explosive individuals received a higher 323 

stimulus than those who were less explosive. The possibility that differences in the absolute intensity 324 

of the stimulus applied explain the improvement observed in change in RE following DJ cannot be 325 

discounted. There are alternative options for determining an appropriate box height for performing DJ, 326 

which could be explored in the future. A box height that maximizes an individual’s reactive strength 327 

index (the ratio between jump height in metres and contact time) has been proposed as a method of 328 

selecting DJ intensity29. This method has been shown to produce a DJ height approximately 10 cm 329 

lower than CMJ height in physically active males30, thus it is unlikely a greater PAPE would have been 330 

observed using this strategy. 331 

 332 

Identification of individual responses is only possible if the random within-subject variation is 333 

accounted for by calculating the extent to which the net mean effect of an intervention differs between 334 

participants. The true individual responses to DJ were small, even when uncertainty was accounted for 335 

(ES: 0.42, 95% CI: 0.33-0.51, Figure 1). The overall effect of DJ, after removing the effects of random 336 

variation can therefore be summarized as -0.35 ± 0.19 kJ.kg-0.85.km-1 (mean ± SD of individual response) 337 

or, in standardized units 0.67 ± 0.42. Thus, the positive effect typically ranged from small (ES: 0.25) to 338 

borderline moderate-large (ES: 1.09). 339 

 340 

TTE at sV̇O2max and end blood lactate were very similar between trials (ES: <0.2). Following a PAPE-341 

inducing stimulus, a state of neuromuscular activation and fatigue coexist6, therefore selecting a 342 

recovery time that allows fatigue to dissipate, yet a state of activation to remain, is essential to ensure a 343 

benefit is realized. In the present study, RE was measured 10 min after completion of DJ. The run to 344 

exhaustion then started 16-min after the DJ, thus any PAPE may have dissipated by this point in the 345 

trial. A similar response pattern was observed in a 20 km cycle time trial after heavy (5-repetition 346 

maximum) leg pressing exercise and a 10 min recovery15. Overall time was significantly quicker 347 

following heavy leg pressing, however this improvement was largely the consequence of a higher power 348 

output in the first 2 km of the time trial, with little difference observed in the remainder of the trial 349 
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compared to a control condition15. As TTE at sV̇O2max is influenced by different physiological factors 350 

compared to RE2, it is also possible that this parameter does not benefit from a warm-up protocol of 351 

this nature. Predicted sV̇O2max has shown improvements following a warm-up that included weighted 352 

vest sprints and a similar recovery (~20 min) to the present study. Thus, future research should 353 

investigate the efficacy of various loaded conditioning activities on key performance-related measures.    354 

 355 

It is important to highlight that the pre-intervention values for RE displayed a difference of 4.8% 356 

between trials (see Table 2), which is greater than the within-subject variation previously recorded in a 357 

similar cohort19. Given the design of the study, blinding of participants to the intervention they were 358 

about to perform, careful calibration of equipment, and high similarity between inter-trial warm-up 359 

intensities, it is not obvious why this difference occurred. A difference of 2.9% was present in the pre-360 

intervention V̇O2 values, which is similar to intra-individual variability previously recorded (2.8%)19. 361 

When combined with subtle differences in body mass (0.3%) and respiratory exchange ratio values 362 

(0.7%), both in favor of the DJ trial, this appears to have generated inflated pre-intervention values in 363 

the DJ trial.  364 

 365 

Conclusions 366 

 367 

Including six DJ, 10-min prior to a run just below lactate turn-point provides a moderate benefit to RE 368 

in high-performing junior male middle-distance runners. Runners who display higher levels of 369 

explosive strength seem more likely to experience a positive response. It appears less likely that 370 

continuous efforts at sV̇O2max are likely to benefit, however this may have been influenced by the timing 371 

of the protocol in this study.  372 

 373 

Practical applications 374 

 375 

 Incorporating a simple high-intensity plyometric-based exercise in the warm-up routine of a 376 

distance runner possibly provides a means of acutely improving RE.  377 
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 Middle-distance runners should experiment with incorporating a set of DJ into their warm-up 378 

routine 10 min prior to a continuous run at approximately sLTP.  379 

 A moderate improvement in RE should allow a higher absolute speed to be attained for the 380 

same relative submaximal intensity, thus augmenting the training response, however further 381 

research is required to verify this suggestion. 382 

  383 
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 462 

Characteristic Mean ± SD 

Age (years) 17.6 ± 1.2 

Body mass (kg) 63.4 ± 6.3 

Stature (m) 1.76 ± 0.06 

V̇O2max. (mL.kg-1.min-1) 70.7 ± 5.2 

sLTP (km.h-1) 16.7 ± 1.4 

sV̇O2max. (km.h-1) 21.7 ± 1.4 

CMJ (m) 0.416 ± 0.065 

  463 

Table 1. Characteristics of study participants (n=17). V̇O2max. = maximal oxygen uptake, 464 

sLTP = speed at lactate turn point, sV̇O2max. = speed associated with maximal oxygen uptake, 465 

CMJ = counter-movement jump. 466 
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 468 

Variable Trial 
Pre-

intervention 

Post-

intervention 

Mean percentage 

change ± 95% CI  

Effect size 

(interpretation) 
Magnitude based inference 

Perceived 

readiness (1-10) 

DJ - 6.9 ± 0.9 
13.3 ± 9.8 0.62 (moderate) Possibly beneficial 

C - 6.1 ± 1.3 

Submaximal running  

Running 

economy  

(kJ.kg-0.85.km-1) 

DJ 9.35 ± 0.44 9.00 ± 0.42 -3.7 ± 1.3 
0.67 (moderate) Possibly beneficial 

C 8.92 ± 0.41 8.88 ± 0.41 -1.0 ± 0.8 

Blood lactate 

(mMol.L-1) 

DJ 2.8 ± 0.9 2.4 ± 0.8 -14.3 ± 6.1 
0.15 (trivial) Very likely trivial 

C 2.6 ± 0.8 2.3 ± 0.8 -11.5 ± 6.2 

Heart rate 

(b.min-1) 

DJ 172 ± 10 173 ± 10 0.6 ± 0.4 
0.08 (trivial) Most likely trivial 

C 171 ± 11 173 ± 10 1.1 ± 0.6 

RPE 
DJ 12 ± 1 13 ± 1 6.8 ± 6.2 

0.12 (trivial) Most likely trivial 
C 12 ± 2 13 ± 1 5.4 ± 3.6 

Run to exhaustion 

Time to 

exhaustion (s) 

DJ - 160 ± 39 
1.3 ± 6.5 0.06 (trivial) Most likely trivial  

C - 158 ± 34 

End lactate 

(mMol.L-1) 

DJ - 8.1 ± 2.1 
2.5 ± 7.7 0.13 (trivial) Most likely trivial 

C - 7.9 ± 1.9 

 469 
Table 2. Results and qualitative inferences of measures taken during submaximal running at 20%Δ below V̇O2 at lactate turn-point and for the 470 

run to exhaustion at speed associated with V̇O2max. CI = confidence interval, DJ = depth jumps, C = control trial (body weight quarter squats), 471 

RPE = rating of perceived exertion (6-20 scale)  472 
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 473 

 474 

Figure 1. Mean±SD change and individual values (n=17) for running economy at 20%Δ below V̇O2 475 

associated with lactate turn-point in the depth jump trial 476 

 477 


