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a b s t r a c t 

Surface profilometry techniques such as coherent scanning interferometry or focus variation require long scan 

times and are thus vulnerable to environmental disturbance. Hyperspectral interferometry (HSI) overcomes the 

problem by recording all the spatial and spectral information necessary to reconstruct a 2D surface height map in 

a single shot. In this paper, we present a new HSI system that uses a pinhole array to provide the necessary gaps 

for the spectral information. It is capable of measuring 2500 independent points, twice the previous maximum 

number, with a maximum unambiguous depth range of ∼825 μm and a larger maximum surface tilt angle of 

33.3 mrad. The use of phase information allows height to be measured to a precision of ∼6 nm, an order of 

magnitude improvement on previous HSI systems. 
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. Introduction 

A wide range of contact and non-contact techniques now exist to

easure absolute surface profiles and roughness. Contact tools such

s drag stylus profilers or atomic force microscopy can make measure-

ents irrespective of material composition, are able to cope with modest

urface discontinuities and provide axial resolutions down to a few pi-

ometers [1] . However, the resultant force on the sample may change

ts shape or cause surface damage [1,2] . With scanning times per line

s long as several minutes, measurements are also vulnerable to envi-

onmental disturbances such as temperature and humidity changes or

mbient vibrations [3] . Areal scans comprising several line scans take

orrespondingly longer and are thus even more vulnerable to such in-

uences. 

Optical surface profilers based on coherence scanning interferometry

CSI) or focus variation avoid some of the problems of contacting instru-

ents, and as a result are finding widespread industrial application [4] .

n CSI, a Mirau or Michelson objective with a broadband source is used

o scan a sample in the axial direction, the height of a given point on the

ample being determined from the point of maximum fringe modulation

t the corresponding camera pixel. The broadband nature of CSI allows

bsolute height measurements of surface steps without phase unwrap-

ing, which would not be possible with monochromatic sources. How-

ver mechanical scanning components increase the required acquisition
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ime, hence the sensitivity to environmental disturbances is high [5] .

ingle shot measurement approaches are required to remove environ-

ental sensitivities, such as the system proposed by Schwider and Zhou

n which a broadband Fizeau interferometer and grating spectrometer

ere used to measure absolute 1D line profiles [6] . 

A recent technique known as hyperspectral interferometry (HSI)

liminates the need for any mechanical movement, enabling single-shot

real measurements with low environmental sensitivity. As with CSI,

he use of a broadband source removes the depth ambiguity that would

e present when measuring discontinuous surfaces with a monochro-

atic source. A Linnik-type interferometer and a hyperspectral imager

re used to spatially separate a set of narrowband interferograms on a

D photodetector array (PDA) enabling 2D unambiguous optical path

ifference measurements in a single shot [7,8] . In the original proof of

oncept [7] , an interference filter (etalon) was used to turn the broad-

and spectrum from a super luminescent diode (SLED) into a frequency

omb that illuminates the object and a reference mirror. The object was

maged through the interferometer onto the PDA, while a diffraction

rating at the pupil plane of the imaging optics redirected the narrow-

and interferograms that correspond to each peak of the frequency comb

o distinct positions onto the PDA, along the grating’s dispersion axis.

arly implementations of HSI yielded a modest number of independent

eight measurements ( ∼200), an unambiguous depth range of 350 μm

nd a depth measurement precision of 80 nm [7, 8] . Due to the etalon,
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ptical throughout was compromised to ∼1/15 of the input power and

ixel utilisation was only ∼2% of the available PDA. 

A more efficient implementation of HSI utilised a microlens array

MLA) to significantly increase the number of independent measure-

ent channels [9] . The MLA was placed at the output of an imaging

innik interferometer at an intermediate plane where the object is im-

ged with some magnification, effectively spatially sampling the object

nd the reference mirror. At the focal plane of the MLA, an array of

pots appears, each spot being an image of the pupil of the main imag-

ng optics by one of the microlenses. An imaging spectrometer based on

 diffraction grating then turns this set of spots onto an array of linear

pectra on the PDA. A small rotation between the MLA and the dis-

ersion axis of the grating was introduced to prevent overlap between

pectra. The MLA-based HSI system provided 1225 channels ( > 6 × more

han the etalon based system), 10 × more optical throughput and an un-

mbiguous depth range of 880 μm. However, the MLA acts effectively

s a Shack-Hartmann sensor and when the wavefront of the object beam

eaches it at an angle (due to local surface slope) the corresponding spot

t the MLA focal plane drifts from the spot produced by the reference

eam and thus the interference is lost. This means that an MLA-based

ystem can only deal with relatively small surface height gradients. 
ig. 1. Optical setup. The top part of the figure shows the two wavelengths illuminat

sed for absolute height measurements. The bottom diagram shows the interferom

uminescent diode, SLED; 2 ×2 90:10 fibre coupler; fibre Bragg gratings FGB1 and FB

plitter, BS; reference mirror, R; object surface, O; pinhole array, PHA; imaging lense

38 
In the current paper, this shortcoming is addressed by means of an

lternative way to spatially sample the interferometer output image. It is

ased on a pinhole array (PHA) similar to those used in lens-less in-line

olographic microscopes [10] or more prominently in spinning Nipkow

isk confocal microscopy [11] . Although the optical power throughput

s reduced compared to an MLA-based system, a higher channel count

nd improved tolerance to large surface height gradients is achieved. In

ddition, the use of phase information is investigated for the first time

n an HSI system, which is found to result in over one order of magni-

ude improvement in depth measurement precision. The paper is struc-

ured as follows: Section 2 describes the new proposed optical setup;

ection 3 the experimental methodology to study the system perfor-

ance; Section 4 presents experimental results for three different sam-

les and a discussion and conclusions are offered in Section 5 . 

. Experimental setup 

The optical system is separated into two major subsystems: a bal-

nced Linnik interferometer and a hyperspectral imaging system as

hown in Fig. 1 . The overall system is identical to the MLA-HSI pre-

ecessor as described in [9] , except for the interface between the two
ion configuration used for spectral calibration and the broadband configuration 

eter and spectrometer subsystems. The main system components are: Super- 

G2; variable fibre attenuator, VFA; collimator lens L 0 ; Lenses L 1 , L 2 , L 3 ; Beam 

s L 4 , L 5 ; transmission diffraction grating, G; and photodetector array, PDA. 
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Fig. 2. Encoding of surface height in pinhole-array-based hyperspectral inter- 

ferometer: (a) object with a surface step profile. The insert above shows a cross- 

section through the sample with height distribution h ( x, y ) . Lines indicating 

cross-sections through the zero optical path difference and sample datum sur- 

faces are also shown; (b) image of the object on the pinhole array; (c) array 

of spectra (no reference beam in the interferometer); (d) spectra (shown here 

in monochrome for clarity) are modulated by fringes which frequency encode 

surface height from datum (adapted from [9] ). 
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ubsystems: the object is imaged here onto an array of pinholes rather

han microlenses. The hyperspectral imager in turn images the pinholes

ather than the spots of light behind the microlenses. Provided the pin-

ole size is comparable to the spot size, the PHA-HSI therefore shares

any of the same design considerations as the MLA-HSI. 

.1. Light source and interferometer 

The interferometer’s main light source is a super-luminescent

iode (SLED, Superlum S840-HP1 15 mW) with a centre wavelength

c = 840 nm and a bandwidth Δ𝜆= 50 nm at full-width-half-maximum

FWHM). A 90:10 2 ×2 single mode fibre coupler provides a two-state

utput for two independent illumination states. State one provides a

two wavelength ” illumination condition by means of two series fibre

ragg gratings FBG1 and FBG2. This provides two selectively-filtered

avelengths 𝜆1 = 820 nm and 𝜆2 = 853 nm with a narrow spectral

and < 0.01 nm for spectral calibration of the wavelength axis in the

pectral images as described in [9] . State two provides a broadband

llumination condition by coupling the SLED output directly into the

nterferometer launch optics. A variable fibre attenuator (OZ optics

eutral density for SM 780HP fibre) is used to adjust the input power

o avoid saturating the PDA for any given exposure time. 

At the launch arm of the Linnik interferometer, singlet lens L 0 
100 mm focal length) collimates the expanded beam, while lenses L 1 
nd L 2 in both arms (150 mm focal length) are near-infrared (NIR)

chromatic doublets set to illuminate the reference mirror and the ob-

ect surface with collimated beams. BS is a 50:50 non-polarizing beam-

plitter cube. L 2 in the reference and object arms and L 3 (150 mm focal

ength) at the recombination arm form bi-telecentric systems that image

he reference mirror and the object at the back focal plane of L 4 . At that

lane, an image of the object interferes with the collimated reference

eam so as to form a broadband interferogram [9] . 

.2. Hyperspectral imager 

A pinhole array on a chromium plated glass (50 ×50 pinholes, square

rid, 10 μm pinhole diameter, 120 μm pitch) is used to spatially sample

he superimposed images of the object and reference mirror. The effec-

ive field of view is 5.88 mm × 5.88 mm. A given pinhole labelled by

ndices ( m, n ) collects light from a small region on the sample surface,

entred on a point with coordinates ( x m 

, y n ), where m = 0, 1, 2, …, N x 

1; n = 0, 1, 2,…, N y – 1 and N x , N y are respectively the number of

inholes along the x and y axes [9] . 

The pinholes are imaged onto a photodetector array (PDA, Apogee

16M, 4096 × 4096 pixels, pixel size 9 μm, array size 36.86 mm array

iagonal 52.13 mm) with imaging lenses L 4 (Nikkor 50 mm f/# 1.8) and

 5 (Nikkor 135 mm f/# 2.8). A blazed near-infrared diffraction grating

 (300 lines m m 

−1 ) diffracts the collimated beams that L 4 produces for

ach pinhole, thus creating a 1-D spectral signal that fits between the

mages of neighbouring pinholes. The − 1 diffraction order has the high-

st intensity for this grating and is captured by L 5 to image an array

f spectra onto the PDA. The magnification m 54 for lenses L 4 and L 5 is

qual to 2.709 (as measured using the known pinhole pitch and the dis-

ance between pinhole images on the PDA), which in combination with

he 300 lines m m 

−1 diffraction grating result in an individual spectrum

ength of approximately 2.093 mm on the PDA. Therefore, a maximum

f ∼234 pixels are available for each spectrum. 

.3. Spatial encoding of spectral information 

The spatial encoding of spectral information is identical to that for a

LA. The key points from [9] are summarized here to aid comprehen-

ion of the concept. 

Fig. 2 (a) shows a schematic view of an object that has a surface step

hich is imaged onto the PHA ( Fig. 2 (b)). Both the coordinate system

f the sample, and the row/column axes of the PHA, are rotated by a
39 
mall angle 𝛼 with respect to the row/column axes of the PDA to avoid

ross-talk and spectral leakage of adjacent spectra. A PHA with reduced

umber of pinholes ( N x = N y = 5) is used in Fig. 2 (b) to illustrate the

oncept. 

Provided the diffraction grating G in Fig. 1 is set with the grooves

arallel to the columns of the PDA array, the spectra align parallel to

he rows. Fig. 2 (c) illustrates the spectra when only one of the reference

r object beams is imaged onto the MLA. When both beams are present

n the MLA ( Fig. 2 (d)), the spectra are modulated with fringes with

 spatial frequency that encodes the optical path difference between

he object and reference beams for the corresponding pinhole in the

HA. We denote the sampling points along the wavenumber axis by

 p where p = 0, 1, 2,…, N k – 1, and N k is the total number of sample

oints. 

.4. Reduced sensitivity to sample tilt 

A drawback of the previously-proposed MLA-based system [9] is that

ts performance deteriorates when imaging a specularly-reflecting sam-

le whose normal is misaligned with respect to the optical axis of L 2 . As

tated previously this is because the rays from the tilted surface enter

ach microlens at a finite angle causing the focused spots to shift side-

ays. This is shown schematically in Fig. 3 (a) for a single microlens,

ogether with the intensity cross section through the microlens’s point

pread function. 
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Fig. 3. Susceptibility of (a) MLA- and (b) PHA-based HSI systems to sample tilt 

for the case of smooth (non-speckled) wavefronts. 
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If 𝜃
( 𝑀) 
𝑚 represents the angle between the surface normal and optical

xis of L 3 , the lateral shift of the spot is 

𝑥 = 2 𝜃( 𝑀 ) 
𝑚 

𝑓 3 (1)

here f 3 is the focal length of a microlens. Interference signal is there-

ore lost when 𝛿x equals or exceeds the diameter of the point spread

unction (PSF) of the imaging system, given by 

 𝑃𝑆𝐹3 = 

1 . 22 λ𝑐 
𝑁 𝐴 3 

, (2)

here 𝜆c is the central wavelength and NA 3 is the numerical aperture

f the microlenses. The maximum allowable surface slope angle for a

LA-based system, 𝜃
( 𝑀) 
𝑚 , follows from Eqs. (1) and (2) as: 

( 𝑀 ) 
𝑚 

= 

0 . 61 λ𝑐 
𝑓 3 𝑁 𝐴 3 

≈
1 . 22 λ𝑐 
𝐷 3 

, (3)

here 𝐷 3 = 100 μm is the microlens diameter. 

The situation for the PHA-based HSI system, on the other hand, is dif-

erent because the pinhole locations are fixed. So long as light reaches

 given pinhole from the sample, interference with the reference beam

ill always occur. The limitation on tilt angle is now given by the re-

uirement that light from the sample passes through aperture E 1 . Tilt or

urface slope in the object causes the focused spot at E 1 to move in the

lane of the circular aperture. Loss of signal occurs when this spot moves

aterally by a distance 
𝐷 1 
2 from the centre position, where 𝐷 1 = 20 mm is

he diameter of E 1 . This corresponds to a maximum permissible surface

lope angle 

( 𝑃 ) 
𝑚 

= 

𝐷 1 
4 𝑓 2 

, (4)

here f 2 is the focal length of lens L 2 . For the systems described in

his paper and [9] , 𝜃
( 𝑃 ) 
𝑚 and 𝜃

( 𝑀) 
𝑚 take the values 33.33 mrad and 10.24

rad, respectively; the use of the PHA therefore results in an increase

n allowable tilt by approximately 3.25 ×. 

. Data analysis 

.1. ‘Standard’ HSI analysis 

Each pinhole produces a 1-D spectral intensity signal in the same

ay as each microlens in the previous MLA set-up [9] . Identical sig-
40 
al processing procedures are therefore applicable. After removal of the

C term, each interferogram is multiplied by a Hanning window and

ourier transformed. An iterative bounded Newton-Raphson method is

sed to locate the Fourier peak from each interferogram. At the peak,

requency and phase information is recorded and the frequency is con-

erted to optical path difference, z 0 , using the following equation: 

 0 ( 𝑚, 𝑛 ) = ( 2 𝜋∕Δ𝑘 ) 𝑓 𝑘 ( 𝑚, 𝑛 ) , (5)

 k is the frequency in units of cycles across the spectral bandwidth

sed, Δ𝑘 = 𝑘 2 − 𝑘 1 , where k 1 and k 2 are the minimum and maximum

avenumbers respectively [9] . The ‘two wavelength’ measurement pro-

ides the scaling factor that allows pixel location to be converted to

avenumber. z 0 can be considered as an estimate of the OPD, which is

elated to the surface height value as: 

 0 ( 𝑚, 𝑛 ) = 2 
[
ℎ 0 − ℎ ( 𝑚, 𝑛 ) 

]
. (6)

 0 is the known distance from the sample datum surface to the plane of

ero optical path difference, as shown in Fig. 2 (a). 

.2. HSI analysis using phase information 

HSI implementations so far have used only the frequency of the

ecorded fringes to infer depth. The phase of the interference signal,

s determined from the argument of the Fourier transform peak, has

reviously been ignored. By contrast, phase in CSI has been used for

any years to provide lower-noise estimates of OPD [12] . A general al-

orithm to estimate OPD from the phase at the transform peak, using

ntensity measured as a function of wavenumber, has been proposed re-

ently [13] and we therefore investigate its applicability to HSI data. 𝜙1 

ill be used to denoted the phase calculated from the real and imaginary

arts of the transform at the positive frequency peak corresponding to

PD = z 0 . It can be shown that 𝜙1 is a sum of two terms: 

1 = 𝜙0 + 𝑘 1 𝑧 0 (7)

0 is a phase offset that arises due to the relative phase shifts on reflec-

ion from the object and the reference mirror. The second term arises

rom the fact that the interference signal is shifted by − 𝑘 1 along the

avenumber axis prior to Fourier transformation. By the Fourier shift

heorem, this gives rise to an additional factor exp ( ik 1 z 0 ) at the Fourier

eak at OPD = z 0 . 

A single phase measurement is insufficient to separate the 𝜙0 and

 1 z 0 terms from Eq. (7) . If 𝜙0 is not known a priori , for example from

ocumented material properties or a previous calibration, it can be

stimated in a least squares sense from data taken from a region of

he sample known to have a constant value of 𝜙0 [13] . Such an esti-

ator for 𝜙0 will be denoted �̂�0 , with the estimators for z 0 provided

y Fourier peak location and phase denoted by �̂� 
(1) 
0 and �̂� 

(2) 
0 , respec-

ively. 𝜙1 − �̂�0 is a wrapped phase, lying in the range –𝜋 to 𝜋, but can

e unwrapped by using the phase 𝑘 1 ̂𝑧 
(1) 
0 to give the phase estimator

or z 0 : 

̂ 
( 2 ) 
0 = 

1 
𝑘 1 

[ 

𝜙1 − �̂�0 − 2 𝜋 𝑁 𝐼 𝑁 𝑇 

( 

𝜙1 − �̂�0 − 𝑘 1 ̂𝑧 
( 1 ) 
0 

2 𝜋

) ] 

(8)

here NINT is a function that rounds to the nearest integer. The map

f OPD resulting from applying Eq. (8) to the fringe pattern from each

f the pinholes can then be converted into a height map using Eq. (6) .

he performance of these two approaches is compared experimentally

n the next section. 

. Experimental results 

The system was tested with three different object configurations, as

hown in Fig. 4 . Every time a new sample was loaded into the object

rm of the interferometer, its surface was brought to the plane of zero

ptical path difference with the reference beam (which we refer to here

s zero delay line, ZDL) by means of a translation stage. As the object
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Fig. 4. Different object configurations viewed from above. The red dashed line 

is a cross section through the Zero Delay Line surface. 
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Fig. 5. Portion of an image of the PHA through the imaging spectrometer when a

configuration and reference wave alone; (b) broadband illumination configuration an

waves (mirror surface at 50 μm from the ZDL); (d) as (c) but with the mirror surface 

41 
oves towards the ZDL, the spatial frequency of the spectral fringes is

radually reduced and it approaches 0 at the ZDL location. Fringes due

o a global relative tilt between the object and reference mirror surfaces

an also be observed (and compensated for) close to the ZDL. These ap-

ear across the whole object field of view because the chromium mask

n the PHA is not fully opaque at near infrared wavelengths, and are

onvenient for the removal of any residual tilt against the reference

eam. 

Fig. 4 (a) shows the case of a gold-coated mirror that was placed at

our different positions relative to the ZDL. Fig. 4 (b) shows a pair of

auge blocks with known height difference, which were used to assess

he accuracy of step height measurements. Fig. 4 (c) illustrates a silver

oated mirror mounted on a PZT driven tilting stage (S-334.2SL, Physics

nstruments, maximum mirror range ± 50 mrad, repeatability = 5 μrad).
 gold-coated flat mirror is observed using: (a) two-wavelengths illumination 

d reference wave alone; (c) Broadband configuration with reference and object 

at 100 μm from the ZDL. 
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Fig. 6. Separation between the spots corresponding to 𝜆1 and 𝜆2 pinhole images 

for each of the 50 × 50 pinholes. 

t  
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t can be tilted by a known angle 𝛼tilt with respect to the optical axis to

ssess the performance of the system in terms of surface slope. Further

etails of these experiments are provided in Sections 4.2 –4.4 . 

.1. Two-wavelength illumination 

Using the two-wavelengths illumination configuration, an image is

aken with light from the reference or object arm alone. Each pinhole

n the array produces two spots, as shown in Fig. 5 (a). The horizontal

rrowed line indicates the image locations of a single pinhole at the two

avelengths 𝜆1 and 𝜆2 . The m ’ and n ’ axes are parallel to the m and

 axes, respectively, but with an arbitrary shift between the two coor-

inate system origins, and demonstrate the rotation of the PHA with

espect to the PDA. This image is used for the calibration of the wave-

ength axis for the later spectral images using the same procedure as

escribed in [9] . As the grating equation is non-linear the distance d be-

ween the 𝜆1 and 𝜆2 pinhole images vary slightly with pinhole indices

s shown in Fig. 6 . 

.2. Broadband illumination – gold-coated mirror 

A gold-coated mirror mounted on a translation stage was used as

he first object. This allowed the noise level in the measurements to be

stimated at a range of distances from the ZDL. Using broadband illumi-

ation, two images were taken: one with the reference wave, the other

ith the object wave. This provided the spectrum of each of the two

aves and hence allowed the DC and low-frequency terms in the inter-

erence signal to be fully removed for subsequent single-shot imaging

9] . A series of interferograms was then taken at 50 μm steps from the

DL location as shown schematically in Fig. 4 (a). With increasing OPD,
ig. 7. Interferogram corresponding to the central pinhole when the mirror is at 10

pectral normalisation and application of a Hanning window; (b) Magnitude of the Fo

rom ZDL. 

42 
he modulation frequency of the individual spectra increases as shown

n Fig. 5 (c) and (d). The horizontal profile through the fringe modulated

pectrum corresponding to the centre pinhole when the mirror was at

00 μm from ZDL is shown in Fig. 7 (a). The DC term was first removed,

hen the signal was normalised to remove the influence of the source
0 μm from the ZDL: (a) Intensity profile vs wavenumber after DC subtraction, 

urier transform of (a); (c) Same as (b) but with horizontal axis scaled to distance 
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Fig. 8. Stacked height maps of a flat gold coated mirror moved axially with a translation stage in 50 μm steps at 50, 100, 150 and 200 μm, respectively. 

Table 1 

Rms residual values in nm for flat gold-coated mirror at three locations relative to ZDL position. 

Analysis method Polynomial degree Δℎ = 50 μm Δℎ = 100 μm Δℎ = 150 μm Δℎ = 200 μm 

Peak location 1 122 141 157 222 

Peak location 2 95.4 123 141 213 

Phase 2 5.8 7.9 10.1 12.6 
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pectral envelope, and finally a Hanning window was applied along the

avenumber axis to reduce spectral leakage [9] . The Fourier transform

ontains a dominant peak, the position of which indicates the distance

rom the mirror surface to the ZDL, as described in Section 3.1 . 

Fig. 8 shows three 50 × 50 stacked height maps of the mirror at

isplacements Δℎ = 50, 100 and 150 μm from the ZDL. Each map corre-

ponds to a field of view of 5.89 × 5.89 mm 

2 . A total of 7500 indepen-

ent coordinates were measured, 2500 for each surface map. The mean

isplacement measured by the system between the first and second

ocations (cyan and red surfaces, respectively) is 48.74 μm, 51.34 μm

etween the second and third locations (red and green surfaces) and

8.56 μm between the third and fourth locations (green and blue sur-

aces). These values are consistent with the nominal known displace-

ent of 50 μm and a positioning accuracy of ∼ 1 μm, corresponding to

/10 of a division on the micrometer of the manually-driven translation

tage. 

The modulation of the spectral interference profile approaches zero

utside the range 𝑘 = 7 . 709 × 10 6 − 7 . 263 × 10 6 m 

−1 which is equivalent

o a wavelength range of 815–865 nm. This is the same as the speci-

ed bandwidth of the SLED source and is twice the wavelength range

f the previously-described MLA system [9] . The spectral range 815–

65 nm was sampled with 234 pixels, giving an effective inter-pixel in-

rement in wavelength and wavenumber of 𝛿𝜆= 0.21 nm, and 𝛿𝑘 =
1 . 904 × 10 3 m 

− 1 , respectively. The corresponding theoretical height

ange ℎ 𝑚 = 

π
2 𝛿𝑘 = 0 . 825 mm . 
43 
The measurement error of the system can be characterised by the

oot mean square (rms) residuals after least squares fitting of a polyno-

ial surface to the data. The rms values for a first and second degree fit

re shown in Table 1 . The residuals from a 2nd degree polynomial fit,

n the range 95–141 nm, are ∼6 × lower than corresponding values for

he previously described MLA system [9] . 

Even lower residuals are produced by the phase analysis method.

he extracted phase maps 𝜙1 ( m, n ) for 50,100, 150 and 200 μm from

DL are shown in Fig. 9 . An average phase offset value �̂�0 = 0.897 rad

as calculated using the procedure described in [13] . The final height

aps h ( m, n ) produced after unwrapping using Eq. (8) are shown in

ig. 10 . Some of the phase values for Δℎ = 50 μm were not unwrapped

orrectly leading to anomalously high residual values and are not con-

idered further here. 

The height maps show relatively large deviations from flatness (rms

esidual of 438 and 509 nm with respect to a best-fit plane); as these

re approximately 8 × the known deviation from flatness for the mirror

 𝜆/10 at 633 nm) they are likely to be an artefact of the sensor. One

ossible cause is a defocusing error: if lenses L 1 in the reference and

bject arms have a small axial position errors, the wavefronts arrive at

he PHA with slightly different curvatures. The reproducible nature of

his systematic error, apparent in the very similar profiles in Fig. 10 for

he four different distances from ZDL position, means that it could

n any case be removed by suitable calibration. The main feature of

nterest is the noise level. At 5.8 nm and 12.6 nm rms residual with
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Fig. 9. Raw phase maps 𝜙1 ( m, n ) before unwrapping for gold mirror sample at 

Δℎ = 50 μm (a), 100 μm (b), 150 μm (c), and 200 μm (d). 
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Fig. 11. Height map for gauge block step sample. 
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espect to a 2nd degree polynomial for the cases Δℎ = 50 μm and

00 μm, respectively, this is over an order of magnitude lower than

ith the standard peak location analysis method. 

.3. Broadband illumination – height step 

The second sample was made from calibration blocks so as to con-

ain a well-defined surface step, as shown schematically in Fig. 4 (b).
Fig. 10. Height maps h ( m, n ) for gold mirror sample after phase unwrapping at

44 
he base block is a 30 mm × 34 mm × 9 mm gauge block onto which

wo smaller gauge blocks of dimensions 30 mm × 9 mm × 1 mm and

0 mm × 9 mm × 1.05 mm are wrung together. The average step height

ver the full step width was 49.765 μm ± 40 nm as determined with a

ALYSURF CLI 2000 surface profiler. 

Fig. 11 shows the measured areal profile over a 5 mm × 5 mm region

traddling the step as measured using the peak location analysis method.

s the PHA is rotated relative to the step edge, some of the pinholes
 (a) Δℎ = 50 μm, (b) Δℎ = 100 μm, (c) Δℎ = 150 μm and (d) Δℎ = 200 μm. 
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Fig. 12. Gauge block step sample setup shown from the side (left); close-up of 

region (d) with area of interest (a) around the step (right). 
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surements between different offsets are consistent with one another to 

F

(

r

ample simultaneously parts of the top and bottom surface at the same

ime resulting in noisy data in that region. 

In order to reduce the error in this region and obtain a good estimate

f measured height on each side of the step, an extrapolation technique

as used as shown in Fig. 12 . 

A region of interest around the diagonal transition line was bounded

s indicated by the green dashed lines at position (a) in Fig. 12 .

he remaining parts of the top and bottom surfaces were fitted with

st degree polynomials to reduce noise as indicated by zone (b). Fi-

ally, two-way extrapolation was performed which extrapolates the

tted top and bottom surfaces backwards and forwards respectively

s indicated by zone (c), using the first degree best-fit polynomi-
ig. 13. Left: Measured height map for silver mirror at 5 mrad apparent tilt angle, 50

a) 0 mrad plane at 50 μm from ZDL, (b) measured 0 mrad with residual angle 𝜃res 

elative to (b). 

Table 2 

Tilt sample rms height error, and calculated tilt angle 𝜃, for three off

Nominal tilt angle / 

mrad 

Rms height error / nm 

Δℎ = 50 𝜇m Δℎ = 100 𝜇m Δℎ = 150 

1 161 147 163 

2 151 164 154 

3 180 184 191 

4 212 178 188 

5 282 185 192 

10 628 273 340 

15 615 1315 863 

45 
ls, to obtain an estimate of the step height. Although higher degree

olynomials could have been used as alternative extrapolating func-

ions, a simple plane provided a good fit to the data on both sides

f the step, and with a reduced number of parameters is less sus-

eptible to noise-induced errors at the edges of the extrapolated re-

ion. The widths of each zone (a), (b), (c) were respectively 1 mm,

 mm, 0.5 mm for both top and bottom surfaces. (d) is the sum of

ll (b) and (c). The average step height across the sample is |ℎ 𝑠𝑡𝑒𝑝 | =
9 . 78 μm with a maximum deviation of ± 57.03 nm for the case Δℎ =
0 μm. Corresponding values for Δℎ = 100 μm were |ℎ 𝑠𝑡𝑒𝑝 | = 49 . 92 μm ±
67 . 89 nm ; and for Δℎ = 150 μm, |ℎ 𝑠𝑡𝑒𝑝 | = 50 . 21 μm ± 83 . 73 nm . Note

hat this error refers to the variations in step height along the cal-

ulated transition line and does not represent the rms height error

f the top or bottom surface which varied typically over the range

00–300 nm. 

.4. Broadband illumination – tilting surface 

The third sample was a silver coated mirror mounted on a PZT driven

ilting stage. The mirror rotates a known angle about an axis perpendic-

lar to the optical axis. A tilted sample with 5 mrad nominal tilt using

he tilting stage, at 50 μm from the ZDL, is shown in Fig. 13 . A first

egree fit was applied to the surface map and the unit surface normal

ector was used to establish the surface tilt relative to a reference mirror

ose also at 50 μm from ZDL with nominal 0 mrad tilt. 

The 0 mrad reference plane shown in Fig. 13 (right, (b)) has a slightly

egative tilt value if counter clockwise rotation is defined to be positive.

he angular shift between any two planes can be calculated from the

urface normals of the 1st degree fitted planes. The results for all tilt an-

les, relative to the measured 0 mrad reference plane, and at different

ffsets from the ZDL are shown in Table 2 . Below 𝜃 = 10 mrad, the mea-
 μm from ZDL location; Right: Schematic side view, XZ plane of measurement; 

to (a), (c) is tilted surface plane with 𝜃nom = 5 mrad, 𝜃 is measured tilt angle 

sets Δh from zero OPD position. 

Calculated tilt angle / mrad 

𝜇m Δℎ = 50 𝜇m Δℎ = 100 𝜇m Δℎ = 150 𝜇m 

0.80 0.78 0.74 

2.11 2.08 1.99 

3.61 3.61 3.59 

4.14 4.18 4.22 

5.58 5.57 5.44 

11.81 11.82 11.80 

15.13 17.71 17.71 
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Fig. 14. Measured height profiles for silver mirror at 0, 1, 2, 3, 4, 5, and 10 mrad tilt angle when the mirror is at 50 μm from the ZDL. 
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ithin 0.14 mrad. Deviations between the requested and the measured

ilt angle are larger at up to 0.6 mrad, however the tilt stage is under

pen loop control so there is no independent verification of the actual tilt

ngle achieved. Although the errors increase at and above 𝜃 = 10 mrad,

he results demonstrate that the pinhole-array based system is able to

easure surfaces at angles of up to 15 mrad, which is 50% more than

he upper theoretical limit on surface tilt angle, 𝜃
( 𝑀) 
𝑚 , as calculated in

ection 2.4 for a microlens-array based system. 

. Conclusions 

An improved hyperspectral interferometry system has been devel-

ped, and its performance on optically smooth, stepped and tilted sur-

aces has been explored in this paper. The new system uses an array

f pinholes at the input of an imaging spectrometer to separate spatial

nd spectral information on a large format photodetector array. 2500

hannels can be measured simultaneously, which more than doubles

he throughput of the previously described system based on a microlens

rray and corresponds to a pixel utilization greater than 50%. Using a

inhole array solves the problem of wavefront separation at the pupil

lane which is present in the microlens array based system, thus allow-

ng a tilt angle acceptance of ± 33.3 mrad without loss of modulation.

 pinhole array of 50 × 50 pinholes with a diameter of 10 μm and a

itch of 120 μm allows coverage of an area of 5.88 × 5.88 mm 

2 with a

aximum unambiguous height range of 825 μm. The use of phase in-

ormation to calculate surface profile, as opposed to the usual Fourier

eak location method, was investigated in an HSI system for the first

ime. Although systematic errors were significant, random errors were
46 
educed by over an order of magnitude, to values below 10 nm for a flat

irror. 
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