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Abstract 

Empirical validation of building simulation results is a 

complex and time-consuming process. A well-structured 

and thorough experimental design is therefore a crucial 

step of the experimental procedure. A full-scale empirical 

validation study is planned to take place within IEA EBC 

Annex 71: “Building energy performance assessment 

based on in situ measurements”. The experimental data 

are currently being gathered in two experiments being 

conducted at the Fraunhofer IBP test site at Holzkirchen 

in Germany. This paper describes the methodology 

followed during the experimental design of the project. 

Particular focus is on how Building Performance 

Simulation (BPS) was used to assist the preparation of the 

actual experiment, to determine suitable test sequences, 

magnitudes of heat inputs and temperature variations. A 

combination of both deterministic and probabilistic 

simulation (using the method of Morris) is employed to 

replicate the actual experiment and to assess the 

sensitivity of the model to uncertain input parameters. A 

number of experimental errors are identified in the 

experiment, primarily concerning the magnitude of heat 

inputs. Moreover, the paper includes a discussion on 

lessons learned from the simulations and on the reliability, 

reproducibility and limitations of the suggested 

experimental design procedure.  

Introduction 

There are numerous international policies and 

frameworks currently in force, aiming to help reduce 

energy consumption in the building environment to tackle 

the challenges imposed by climate change. As a result, 

dynamic modelling becomes more widely used for 

building performance assessment (Clarke & Hensen, 

2015) and to demonstrate compliance with building 

regulations (Raslan & Davies, 2010). Consequently, there 

is a need to confirm that building performance simulation 

(BPS) programs are able to provide accurate simulation 

predictions. 

Considerations regarding the input uncertainties and 

modelling assumptions are two areas that require attention 

in BPS to enhance the physical correctness of the model 

and quality of simulation results (Coakley et al., 2014; 

Mantesi et al., 2018). A BPS model contains hundreds of 

input variables and parameters. Current state-of-the-art 

BPS tools have several limitations related to air flow, 

lighting, HVAC systems, and occupants, among others 

(Clarke & Hensen, 2015). Therefore, a detailed validation 

methodology is necessary to be able to create a reliable 

comparison between software and reality. Judkoff and 

Neymark (1995), described the validation methodology 

adopted by NREL preceding the BESTEST project [also 

adopted in ASHRAE Standard 140 (ANSI/ASHRAE, 

2014)], which incorporated three kinds of tests: 

• Analytical verification: the output from a program 

algorithm is compared to the results provided by 

analytical solutions under simple boundary 

conditions.  

• Comparative testing: it is used to compare a 

simulation program to other programs. This approach 

includes sensitivity testing and inter-model 

comparison.  

• Empirical validation: this allows calculated results 

from a program to be compared with monitored, 

experimental data from a real building, test cell or 

laboratory experiment.  

Empirical validation of building simulation results is a 

complex process. It can include a high level of uncertainty 

in the experiment, it is considered expensive and time 

consuming (Ryan & Sanquist, 2012), yet it can test the 

combined effect of all the internal errors in a program 

(Lomas et al., 1997). There are a number of previous 

studies focused on empirical validation of simulation 

results (Lomas et al, 1997; Loutzenhiser et al., 2007; 

Kalyanova et al., 2009; Strachan et al., 2015; Cattarin et 

al., 2018).  

A large-scale empirical validation exercise was conducted 

as part of the IEA EBC Annex 21 project on 

“Environmental Performance” to assess the predictive 

ability of dynamic thermal simulation programs. The 

project compared the results of 25 BPS tools commonly 

used in EU, USA and Australia at the time (Lomas et al., 

1997). Subsequently, several other successful 

international projects for empirical validation purposes 

followed including IEA EBC Annex 42 project on “The 

Simulation of Building-Integrated Fuel Cell and Other 

Cogeneration Systems” and IEA EBC Annex 43 on 

“Testing and Validation of Building Energy Simulation 

Tools” (IEA EBC projects, n.d.). As part of IEA EBC 

Annex 43, Loutzenhiser et al. (2007) empirically 

validated the ability of seven solar radiation models 

implemented in four BPS codes in calculating irradiated 

solar energy on buildings. A series of experiments was 

performed in an outdoor test cell. Similarly, as part of a 
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different project within IEA EBC Annex 43, Kalyanova 

et al. (2009) used a full-scale outdoor test facility to 

empirically validate the accuracy of five BPS tools in 

modelling double-skin facades. 

A key observation, as highlighted in (Strachan et al., 

2015) is that most monitoring projects have not been 

designed to provide the comprehensive coverage required 

for validation of an entire building in simulation 

programmes. A full-scale building empirical validation 

experiment was conducted within the IEA EBC Annex 58 

project: “Reliable building energy performance 

characterization based on full-scale dynamic 

measurements” (IEA Annex 58, 2015). The BPS 

validation scenario in Annex 58 was designed to test the 

basic functionalities of BPS tools, mainly focussing on the 

thermal performance of the building envelope (i.e. 

transmission losses, thermal bridges, solar gains). In 

(Strachan et al., 2015) the authors described the empirical 

validation methodology followed during the Annex 58 

project. Among others, the experimental design was 

characterised as an essential step of the methodology.  

A full-scale empirical validation is highly demanding of 

time and cost. It is therefore essential that the experiments 

fully excite the building dynamics through a range of 

boundary conditions and that all important heat and mass 

flow paths are comprehensively monitored. 

Consequently, a well-structured, thorough experimental 

design is a crucial step of the process. The means for 

undertaking the experimental design in a full-scale 

empirical validation is to model the selected building, 

using BPS, in a representative local climate dataset. There 

are two objectives in undergoing such a step. First, to 

design the overall experiment by specifying test 

sequences and suitable experimental configurations that 

allow to cover the range scientific questions by the 

following validation. And second, to design the 

monitoring scheme and determine instrumentation 

requirements. The latter is achieved with the use of 

sensitivity studies to identify important simulation 

parameters that need to be measured, or measured with 

increased accuracy.  

Research Aim 

The aim of the paper is to describe the procedure followed 

to specify the requirements of the experiment for a full-

scale empirical validation exercise, currently being 

conducted within IEA Annex 71 project: “Building 

energy performance assessment based on in situ 

measurements” (IEA Annex 71, n.d.). The particular 

focus is on how BPS was used to define and test the 

different stages of the experiment, in terms of test 

sequences, magnitudes of heat input and temperature 

variations, along with instrumentation requirements.  

The research objectives were: 

• To create a preliminary synthetic dataset of the 

experiment to evaluate the usability of the real 

measurement dataset, before the actual experiment is 

conducted.  

• To conduct a Sensitivity Analysis (SA) to identify 

important parameters that need to be measured more 

accurately during the experiment.  

Methodology 

A whole building monitoring project is currently being 

conducted on the Fraunhofer IBP’s Twin Houses at 

Holzkirchen, Germany (Fig.1) (IBP Fraunhofer, 2012). 

The two houses are of residential layout, detached, 

identical, located side-by-side to allow direct comparison. 

They are equipped with extensive measurement and 

control equipment. The weather data are recorded in-situ. 

The houses are air-tight, insulated with U-values ranging 

between 0.29 W/m2K and 0.22 W/m2K for the external 

walls. The structure comprises externally-insulated brick 

walls for the external envelope and honeycomb brick 

walls for the internal partitions, insulated concrete for the 

ground floor and first floor slabs and lightweight timber-

framed roof. All windows are double-glazed with a 

glazing U-value of 1.2 W/m2K and with electric external 

roller blinds. The empirical validation exercise is focused 

on the ground floor and the attic. The cellar space is 

treated as a boundary condition. A constant flow rate 

balanced mechanical ventilation system is in operation.  

 

Figure 1: South view of one of the Twin Houses in 

Holzkirchen, Germany. 

The outcome of this BPS validation exercise aims to build 

on the findings of the empirical validation experiment 

conducted within IEA Annex 58 (IEA Annex 58, 2015). 

The former BPS validation scenario in Annex 58, was 

designed to test the basic functionalities of BPS tools, 

mainly restricted to the thermal performance of the 

building envelope. The current project aims to investigate 

further important aspects, such as building services 

equipment and the impact of occupancy. Consequently, 

the two houses are now equipped with different heating 

systems (i.e. electric radiators compared to underfloor 

heating) and the synthetic users based on stochastic 

variations of occupancy profiles (Flett & Kelly, 2017). 

These synthetic user profiles include internal heat loads, 

humidity gains and automatically operated windows and 

doors.  

The procedure for undertaking the experimental design 

for the Twin Houses full-scale empirical validation 

project comprised the following steps:  

 



1. Modelling the selected houses using BPS. The Twin 

houses were modelled in EnergyPlus V8.8 

(EnergyPlus, n.d.) using up-to-date, post-construction 

drawings of the building geometry and surrounding 

environment, construction details of the existing 

fabric, material properties from the manufacturers, 

surface properties and thermal bridges measured 

during the previous Annex 58 validation study, 

infiltration rates measured by a blower door test, 

information on HVAC systems based on 

manufacturers’ specification, constant user-specified 

ventilation flow rates (representing the air flow rates 

that will be used in the actual experiment) and the Test 

Reference Year (TRY) weather file of Munich, as the 

average climate data for this location. 

2. Creating stochastic occupancy profiles. The 

validation scenario of Annex 71 includes the impact 

of occupancy. Occupying the Twin Houses with real 

humans would bring some disadvantages for the 

experiment and introduce large uncertainties. To 

avoid this, it was decided to represent realistic 

deviations in internal heat gains and building 

operation using “synthetic users”. A number of 

different occupancy profiles were developed for the 

simulation models; one for the experiment and 99 

more for the sensitivity analysis. These represented 

typical room-wise usage profiles and corresponding 

internal heat gains based on the use of each space, 

assuming a typical four-members family of two adults 

and two children. 

3. Specifying the experimental sequence/ 

experimental schedule. The different phases of the 

experiment were specified based on the purpose of the 

validation exercise and the different parameters for 

investigation. Three main user profiles were created, 

each having a different hypothesis. User 1 aimed to 

investigate if simulation programs are able to handle 

user interactions like small room-wise occupancy 

differences and some basic building service 

equipment, operating in identical setpoint temperature 

in all rooms and night setback. User 2 was a more 

complex realistic situation, including operating 

internal doors and external windows and having 

different set temperature profiles in the individual 

rooms. User 3 intended to check if simulation 

programs are handling the thermal and energetic 

influences of moisture effects. The experiment 

included also an initialisation and reinitialization 

phase, where all the rooms were set to the same 

constant temperature, aiming to bring both buildings 

to identical initial conditions. A free-floating phase 

was included at the end of the experimental schedule 

to test if simulation programs are able to handle small 

heat inputs dominated by solar gains under summer 

conditions correctly. Finally, it was decided to include 

a Fault Detection and Diagnosis (FDD) phase and a 

free Pseudo-Random Binary Sequence (PRBS). These 

                                                           
1 JEPlus is an EnergyPlus simulation manager, used to 

execute and control multiple simulation. 

two phases are not primarily intended for the 

validation experiment but serve the activities of other 

subtasks within Annex 71 by providing realistic high 

accuracy measurement data. 

4. Specifying uncertain input parameters. All input 

parameters fed to the simulation models were subject 

to a certain level of uncertainty. Firstly, a list of all 

uncertain input parameters was made, along with their 

base values. The uncertain parameters were identified 

considering what will/can be measured as part of the 

experiment and what is the information that will be 

released to the modelling teams of the empirical 

validation exercise. The base values of these 

parameters were specified to the best of existing 

knowledge (e.g. material properties were based on 

manufacturers’ data, surface properties were 

measured in the previous Annex 58 empirical 

validation project). Then a uniform distribution with a 

fixed relative range of 20% was assigned to each 

parameter to account for major unexpected 

differences, resulting from measurement uncertainty, 

system faults and others. 

5. Running the deterministic simulations. The 

selected buildings were simulated using the specified 

experimental schedule and the TRY weather data 

aiming to replicate the actual experiment. The purpose 

of this step was to identify and correct possible errors 

in the experimental specification.  

6. Running the probabilistic simulations. A 

Sensitivity Analysis (SA) was carried out to identify 

important simulation parameters, i.e. parameters that 

have the most significant influence over simulation 

predictions and that need to be measured carefully 

during the actual experiment. The details of this 

sensitivity analysis are described in the related section 

later in this paper. 

Fig.2 illustrates a schematic representation of the 

experimental design methodology adopted as part of the 

Annex 71 full-scale empirical validation project.  

The SA was performed using Python SALib (SALib, 

n.d.). 570 simulations were conducted using JEPlus1 v1.7 

(JEPlus, n.d.). The method of Morris (Morris, 1991; 

Campolongo et al., 2007) was adopted, as a screening 

method, to determine the sensitivity of the models to all 

uncertain input parameters. The Morris sampling method, 

allows the quantification of the importance of factors as 

well as those factors that have a direct or indirect effect 

on the examined output. Its experimental approach is 

based on ‘one-factor-at-a-time’ (OAT) experiments, in 

which the impact of changing the value of each of the 

chosen factors is evaluated in turn (Giglioli and Saltelli, 

2008). This characteristic of Morris technique and its 

convergence of the sampling procedure (i.e. stability of 

the rank order) (Morris, 1991; McLeod et al., 2013; Hopfe 

& Hensen, 2011) qualifies it for this study’s SA. 



Table 1 includes the uncertain input parameters 

investigated as part of the SA, along with their base, 

maximum and minimum values. 

Deterministic Results 

The actual full-scale empirical validation project was 

replicated using BPS. Deterministic simulation was used 

to create a preliminary synthetic dataset of the actual 

experiment. The predicted internal air temperatures and 

heating demand were analysed per zone for each of the 

different experimental phases and for both Twin Houses. 

The aim of this step was to assess if the heat input would 

be enough to excite the dynamics of the fabric, to check if 

the specified internal heat gains would result in severe 

overheating that might pose safety issues in the actual 

experiment and to test whether there were any 

unpredicted issues in the experimental specification that 

might compromise the validity of the experiment output. 

The internal air temperature of both houses, along with 

the dry-bulb temperature, are plotted in Fig. 3 for one of 

the main living areas, the ground-floor living room, for 

three consecutive days in the experimental phase User 2. 

The heating demand in the living room is plotted for both 

houses in Fig.4, for the same three-day period in User 2 

phase. 

The simulation predictions showed insignificant 

differences in the amplitude of the internal air 

temperatures of the two houses, although the heat up 

times after night setback were found to be different 

between the two heating systems, as expected (Fig.3). 

However, a noticeable difference was obvious in the 

predicted heating demand of the two different heating 

systems (i.e. electric heaters in House N2 and underfloor 

heating in House O5), as shown in Fig.4. 

 

 

Figure 3: Zone air temperature in the ground floor 

living room. Simulation results for both Twin Houses 

(with O5 using underfloor heating and N2 using electric 

heaters), plotted against outdoor dry bulb temperature 

for three consecutive days in User2. 

 

Figure 4: Zone heating demand in the ground floor 

living. Simulation results for both Twin Houses (see Fig 

3), for three consecutive days in User 2. 

 

During the preparation of the experimental specification, 

BPS highlighted two important issues with regards to 

internal air temperatures. The first was that the initial high 

magnitude of internal heat gains in the kitchen 

(representing cooking processes), resulted in severe 

overheating, with temperature reaching above 50oC. This 

was partly due to the lack of mechanical ventilation in the 

room and partly to the fact that in a real cooking process 

a large proportion of the energy used does not go to the 

room air but to the food. There were two options to 

resolve this issue; either to introduce a supply air point in 

the kitchen, or to decrease the amount of internal heat 

gains in the zone. The second option was decided as more 

suitable for the purposes of the experiment because the 

natural air exchange through the operable kitchen door 

was one of the validation goals.  

Another finding of the deterministic simulation was with 

regards to the PRBS experimental phase. The initial 

2000W PRBS signal proved to be excessive for the 

rooms, resulting in very high indoor air temperatures. To 

solve this problem, the PRBS signal was reduced to 700W 

to avoid exceeding 35oC but to maintain a signal high 

enough to significantly excite the building’s thermal mass 

to allow for parameters identification for low order 

models (investigated in other subtasks of Annex 71).  

Finally, a third finding of the deterministic simulations 

was that the initial experimental specification, which had 

the heating setpoint directly connected to the occupancy 

during User 2, produced very fragmented heating inputs. 

Although this might have served well the purposes of the 

validation exercise, it is not a realistic scenario. The room-

wise setpoints were adjusted to continue heating during 

periods of absence shorter than 2 hours.  

Many other assumptions in the experimental design were 

confirmed by the simulation results, giving assurance to 

the involved teams regarding the usability of the data. As 

an example the heating capacities, ventilation flow rates 



and the duration of the individual experimental phases can 

be mentioned. 

Sensitivity Analysis 

The results of the SA are shown in Fig.5 and Fig.6 for 

House O5 (underfloor heating). Similar findings are 

derived for the other house (N2 – electrical heaters). For 

reasons of brevity, only the results of experimental phase 

User 2 for House O5 heating demand are included in this 

paper.  

The absolute value of μ* shows the ranking order of the 

input parameters, in other words the overall influence of 

each input factor on the simulation output (Fig.5). The 

higher the μ*, the more influential the parameter 

(Campolongo et al., 2007; McLeod et al., 2013). A 

graphical representation of σ vs μ* (given in the scatter 

graphs of Fig.6) is given to evaluate the monotonicity of 

the input parameters. If the input factors are positioned 

below the σ/μ* = 0.1 line then their behaviour is 

considered linear. If the input factors are positioned 

between the lines σ/μ* = 0.1 and σ/μ* = 0.5 then they are 

monotonic. If the input factors are between the lines σ/μ* 

= 0.5 and σ/μ* = 1 they are almost-monotonic. Finally, if 

they are above the σ/μ* = 1 line they are considered highly 

non-linear and non-monotonic (McLeod et al., 2013). 

The SA indicated that the most significant input factor 

was found to be the effect of thermal bridges, having a 

linear effect on the heating demand. Moreover, the 

mechanical ventilation supply flow rate of the living room 

and the attic space were found among the most influential 

input parameters, also showing a linear effect on the 

heating demand. Finally, the temperature of the cellar 

boundary condition and the hot water flow rate of the 

underfloor heating system were found to be two more 

influential parameters. 

 

Figure 5: Morris analysis on zone heating demand of 

House O5 (underfloor heating): sensitivity ranking. The 

black, dotted rectangle encloses the parameters with a 

significance factor > 5%. 

                                                           
2 The graphs were not included in this paper due to the 

limited length of the manuscript. 

 

Figure 6: Morris plot of absolute mean (μ*) and 

standard deviation (σ) on zone heating demand of House 

O5 (underfloor heating), showing the 6 out of 27 most 

sensitive parameters. 

To distinguish between significant and insignificant input 

parameters, a significance factor of 5% on the actual 

heating demand was considered as the threshold. All 

factors that had an influence on the output above 5% were 

considered significant, all other factors were taken as non-

influential.  

Looking at the results of the SA at the zone level2, the air-

tightness of the exterior and interior (operable) door, 

along with the opening area of the operable window were 

found to have a relatively noticeable impact on the 

simulation predictions of the room-wise heating demand. 

Moreover, the heating demand in several zones was also 

sensitive to the specification of the exterior wall and roof 

surface emissivity and absorptivity.  

As a result of these findings parts of the instrumentation, 

(e.g. the underfloor heating flowmeter), have undergone a 

second calibration process. The entire measurement chain 

from the sensor to the data acquisition system was 

calibrated. Regarding the thermal bridges a higher 

number of junctions were analysed in detail than was 

intended before. Regarding the operable door and window 

the design of the tracer gas measurement was changed in 

a way to provide better data on the air flows through both 

openings. 

Discussion 

BPS is often associated with the concept of a virtual 

laboratory used to conduct virtual experiments to assess 

the performance of hypothetical, alternative design and 

operation scenarios and to find quantifiable answers to 

“what-if” design questions  (Loonen et al., 2014; Clarke 

& Hensen, 2015). This paper has presented a 

methodology describing how BPS was used to assist the 

experimental design of a full-scale empirical validation 

project. The different phases of the experiment were 



replicated using EnergyPlus. Based on these virtual 

experiments a synthetic dataset was created to investigate 

whether the anticipated outcome of the monitoring project 

would be adequate to meet the objectives of the empirical 

validation study and to identify possible faults in the 

experimental specification, that might pose a risk to the 

project and affect the usability of the results. Moreover, 

these tests were also used to determine the requisite 

degree of scaling up of internal heat gains and/or the 

prolongation of different experimental phases, before the 

empirical experimental design is finalised.   

During this process a number of experimental errors were 

identified and corrected, primarily concerning the 

magnitude of heat inputs and potential risks posed by the 

resultant internal temperatures. The reliability of the 

experimental design relies on the awareness that a model 

is never an actual representation of reality. Hence the 

findings of the virtual experiment were used to assist 

decision-making for the actual experiment, knowing that 

there may be a discrepancy between the simulation results 

and the actual measurements. For example, the flexibility 

offered within the BPS environment sometimes 

contradicts what is feasible from an experimental point of 

view. Providing 10 kW internal gains for cooking into the 

kitchen is easy in BPS. In a real experiment on the other 

hand that requires a very substantial electrical installation. 

And even if the required electrical power can be provided 

to the room, a fire hazard would be introduced in the 

experiment, as a result of high air and surface 

temperatures. 

In the deterministic simulation results potential 

experimental errors were not taken into account (except 

the intended “errors” for the FDD-phase), neither was the 

inevitable uncertainty in the values of a number of input 

parameters. To overcome this issue, a SA involving 

probabilistic simulation was employed to rank the impact 

of all uncertain input factors on the sensitivity of the 

output. This process revealed those factors that needed to 

be measured more carefully during the actual monitoring 

project. As an initial estimate a standardised assumption 

of a ±20% uniform distribution was used to explore the 

input ranges of the uncertain parameters (with respect to 

their normative or assumed base value). The rationale for 

this standardised approach, in the absence of more certain 

information, was to avoid introducing bias to the SA 

results, due to assigning variable ranges of uncertainty. 

However, it should be acknowledged that representing the 

actual range of uncertainty more realistically could be 

preferable to also account for the likely measurement 

uncertainty of different input factors. Doing so might 

reveal further influential parameters, that in a fixed 

uncertainty range would be disregarded as unimportant. 

For example, the supply flow rate of the ventilation 

system could be measured with an accuracy far better than 

±20%. However, the opening factor of an operable 

window might be associated with a higher degree of 

uncertainty in a house occupied with real users. 

In the present SA all thermal bridges were treated 

globally, by assuming a simultaneous increase in all linear 

thermal bridges of the fabric. This decision was based on 

the assumption that linear thermal transmittance (ψ-value) 

calculations would be performed for all the junctions 

between the different construction elements anyway. 

However, analysing the impact of each linear thermal 

bridge separately, would help prioritise which junctions 

need to be calculated more accurately and which could be 

ignored by relying on benchmark ψ-values. 

Conclusion 

This paper has presented a novel methodological 

procedure for incorporating virtual BPS experiments as a 

diagnostic precursor in support of a full-scale empirical 

validation exercise. The validation experiment is 

currently being conducted as part of the IEA Annex 71 

project: “Building energy performance assessment based 

on in situ measurements”. The new methodology for the 

experimental design was introduced, by sequentially 

describing the different steps followed in the process and 

explaining how BPS assisted in creating and correcting 

the initial experimental schedule. The methodology 

comprised a combination of both deterministic and 

probabilistic simulations, each serving a different 

purpose. 

Using deterministic simulation, the actual experiment was 

replicated in EnergyPlus in order to create a synthetic 

dataset. This process ensured that the expected outcome 

of the final experiment would be suitable to meet the 

objectives of the project, before the actual experiment 

took place. Using probabilistic simulation, the various 

uncertain parameters were ranked according to their 

impact on the output variable (zonal heating demand). As 

a result, the most influential factors, which need to be 

measured precisely during the actual experiment, were 

identified. The reliability, reproducibility and limitations 

of this methodology were discussed, along with 

suggestions for how it may be adapted to accommodate 

more complex situations, such as where parameter 

uncertainty can be better estimated or is non-uniform. 

This methodology demonstrates a universally applicable 

method for including uncertainty and sensitivity analysis 

into BPS experiments which could be used as an adjunct 

to the empirical validation process in a multitude of 

building performance research contexts. In addition, the 

techniques used here provide the basis for further virtual 

BPS experiments which could have wider applications in 

architectural and building services design development. 
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Figure 2: Graphical representation of the experimental design procedure conducted as part of the Annex 71 full-scale 

empirical validation project.  

 

Table 1: Parameter uncertainties investigated in the SA: base, minimum and maximum values. 

Category Parameter Base value Min value Max value Units 

Global parameters Ground reflectivity 0.23 0.184 0.276 Dimensionless 

  Snow modifier 4 3.75 4.75 Dimensionless 

Surface properties Cellar temperature  18 14.4 21.6 °C 

  Roof emissivity (external) 0.9 0.72 0.99 Dimensionless 

  Roof emissivity (internal) 0.9 0.72 0.99 Dimensionless 

  Roof absorptivity (external) 0.63 0.504 0.756 Dimensionless 

  Roof_absorptivity (internal) 0.25 0.2 0.3 Dimensionless 

  Wall_emissivity (external) 0.9 0.72 0.99 Dimensionless 

  Wall_emissivity (internal) 0.9 0.72 0.99 Dimensionless 

  Wall_absorptivity (external) 0.23 0.184 0.276 Dimensionless 

  Wall_absorptivity (internal) 0.17 0.136 0.204 Dimensionless 

Shading material properties Blind conductivity  0.023 0.0184 0.0276 W/m·K 

  Blind reflectivity 0.68 0.544 0.816 Dimensionless 

  Blind emissivity 0.9 0.72 0.99 Dimensionless 

  Blind to glass distance  0.06 0.048 0.072 m 

Airflow parameters 

Air mass flow coefficient  

for window  0.00001 0.000008 0.000012 kg/s·m 

 

Air mass flow exponent  

for window 0.7 0.56 0.84 Dimensionless 

 

Air mass flow coefficient  

for interior doors  0.02 0.016 0.024 kg/s·m 

 

Air mass flow exponent  

for interior doors 0.7 0.56 0.84 Dimensionless 

 

Air mass flow coefficient  

for exterior door  0.0002 0.00016 0.00024 kg/s·m 

 Window opening area (in attic) 0.1 0.08 0.12 Dimensionless 

Envelope  Thermal bridges 0 0 20 % 

HVAC Supply flow rate in living-room  100 80 120 m3/h 

 Supply flow rate in attic 35 28 42 m3/h 

 Electric heaters capacity  2000 1600 2400 W 

 Electric heaters radiant fraction 0.3 0.24 0.36 Dimensionless 

 Hot water flow in UFH  qo* 0.8*qo 1.2*qo m3/s 

* qo is the hot water flow rate in each zone 

 


