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10 ABSTRACT

11 This work presents a new multilayer nonhydrostatic formulation for surface water
12 waves. The new governing equations define velocities and pressure at an arbitrary
13 location of a vertical layer and only contain spatial derivatives of maximum second-
14 order. Stoke-type Fourier and shoaling analyses are carried out to scrutinize the
15  mathematical properties of the new formulation, subsequently optimizing the
16  representative interface and the location to define variables in each layer to improve
17  model accuracy. Following the analysis, the one-layer model exhibits accurate linear
18  and nonlinear characteristics up to kd = n, demonstrating similar solution accuracy to
19 the existing second-order Boussinesq-type models. The two-layer model with
20  optimized coefficients can maintain its linear and nonlinear accuracy up to kd = 4m,
21 which boasts of better solution accuracy a larger application range than most of the
22 existing fourth-order Boussinesq model and two-layer Boussinesq models. The three-
23 layer model presents accurate linear and nonlinear characteristics up to kd = 10m,
24  effectively removing any shallow water limitation. The current multilayer

25  nonhydrostatic water wave model does not predefine the vertical flow structures and
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more accurate vertical velocity distributions can be obtained by taking into account the

velocity profiles in coefficient optimization.

ADDITIONAL INDEX WORDS: Nonhydrostatic Modeling, Multilayer Model,

Wave Propagation, Surface Gravity Waves
INTRODUCTION

Coastal engineers and researchers develop mathematical and numerical models to
simulate different types of water waves for engineering applications, from initiation,
propagation from deep to shallow water, breaking in nearshore zone to run-up on the
beach. For shallow waves with wavelength much greater than water depth, the water
motion is predominantly horizontal and propagates at the same speed with negligible
vertical acceleration, satisfying the hydrostatic pressure assumption. This leads to the
shallow wave theory as described by the shallow water equations. However, outside of
the nearshore zones where water becomes deeper, the wave dispersion effects become
significant; waves of different frequencies propagate at different phase speed and can
no longer be accurately described by the shallow water equations. Therefore, the
shallow water equations only support limited applications in coastal engineering.

Through incorporating more frequency dispersion and nonlinearity effects to the
non-dispersive shallow-water theory, Boussinesq-type equations provide a more robust
mathematical model for wave propagation in coastal regions (Brocchini, 2013).
Peregrine (1967) pioneered the derivation of the Boussinesq equations with a variable
water depth using the depth-averaged velocity as a dependent variable. This classical
Boussinesq formulation includes only the lowest-order frequency dispersion and
nonlinearity effects, and is only applicable to relatively shallow water. A number of
attempts have been made to extend the applicability of Boussinesq equations to deeper
water. Madsen and Serensen (1992) presented a set of improved Boussinesq equations
by including extra high-order terms to better describe wave dispersion and shoaling.
Nwogu (1993) derived an alternative set of Boussinesq equations using the velocity at

an arbitrary water level as an independent variable to allow applications in deeper water.
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Gobbi, Kirby and Wei (2000) adopted a fourth-order polynomial to approximate the
vertical flow distribution (alternative equations generally used quadratic polynomial
approximation), retaining more nonlinear and dispersive terms in the Boussinesq
equations to improve their application range. Lynett and Liu (2004a) proposed a set of
multilayer Boussinesq equations by approximating the vertical flow field in each layer
with quadratic polynomials; the equations present good linear and nonlinear behavior
although the highest order of spatial differentiation is only less than three, leading to
simple numerical discretization. More Boussinesq-type equations have been reported
in literature, which usually follow a similar approach to one of the above models (Liu
and Fang, 2015; Madsen and Schaffer, 1998). Clearly, the improved accuracy of the
Boussinesq equations comes at a price of more sophisticated formulation (Agnon,
Madsen and Schaffer, 1999; Madsen, Bingham and Liu, 2002; Madsen, Bingham and
Schaffer, 2003), demanding complicated numerical schemes to resolve the higher-order
derivative terms and also high computational cost.

Theoretically, a numerical model solving the fully 3D hydrodynamic equations, e.g.
the Euler equations or the Navier-Stokes equations, can accurately represent a full range
of wave phenomena from deep to shallow water. The main challenge in discretizing
these fully 3D equations to predict free-surface wave motions is to accurately capture
the moving free surface which is part of the solution itself. A number of techniques
have been developed for this purpose, including the volume of fluid (VOF) method
(Hirt and Nichols, 1981; Lin and Liu, 1998), Lagrangian-Eulerian method (Silva Santos
and Greaves, 2007) and level set methods (Osher and Fedkiw, 2001). Some of these
approaches can also handle sharp-fronted free surface and wave overturning. However,
these surface-capturing approaches are commonly computationally demanding,
prohibiting their wider application to large-scale wave climate prediction. In case where
the free surface can be assumed to be continuous and featured as a single value function
of the horizontal plane, simplified numerical methods can be employed to solve the 3D

governing equations to reduce computational cost. These models typically involve
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decomposition of the pressure terms into hydrostatic and non-hydrostatic components,
and are known as non-hydrostatic models.

In developing non-hydrostatic models, a key challenge is to impose the pressure
boundary condition at the free surface and resolve the non-hydrostatic terms, which
plays an important role in providing accurate description of wave dispersion. When
developing their 3D quasi-hydrostatic model, Casulli and Stelling (1998) assumed
hydrostatic pressure distribution at the top layer of the vertical dimension; a large
number of vertical layers are required to provide meaningful solutions for short waves.
Stelling and Zijlema (2003) subsequently implemented the Keller-box method to
approximate the non-hydrostatic pressure terms; the resulting model can accurately
capture the wave characteristics with one or two vertical layers, leading to much
improved computational efficiency. To obtain the free surface boundary condition,
Yuan and Wu (2004) derived non-hydrostatic pressure at the top layer by integrating
the vertical momentum equation from the center of the layer to the moving free surface,
providing increased phase accuracy for the simulation of dispersive waves. Ahmadi,
Badiei and Namin (2007) proposed a new implicit approach to treat the non-hydrostatic
pressure at the top layer, releasing the model from any hydrostatic pressure assumption
across the entire water column and giving improved solution accuracy for free surface
elevation and wave celerity. Young and Wu (2009) reported an effective approach to
obtain the analytical pressure distribution at the top layer by introducing Boussinesq-
like equations into their implicit non-hydrostatic model. Later on, Choi, Wu and Young
(2011) presented an efficient curvilinear non-hydrostatic model for surface water waves
using a higher order (either quadratic or cubic spline function) integral method for the
top-layer non-hydrostatic pressure within a staggered grid framework. Most of these
non-hydrostatic models discretize the vertical domain into uniform layers; the number
of layers required for a specific application is usually determined through trial and error.

Considering the fact that the velocity and non-hydrostatic pressure are predominant

near the free surface, non-uniform vertical discretization, i.e. with finer resolution
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layers on the top, may be used to improve the model capability in describing wave
dispersion. This strategy was adopted by Yuan and Wu (2006) to develop their 3D
implicit surface-wave model. Zhu, Chen and Wan (2014) introduced an approach to
achieve optimal distribution of vertical layers by considering the analytical dispersion
relationship of a non-hydrostatic Euler water wave model.

Mostly based on direct discretization of the Euler equations or the Navier-Stokes
equations, the non-hydrostatic models have been widely used for the simulation of wave
propagation from deep water to the surf zone. It is difficult to analyze the accuracy for
these models, which is dependent on the use of different vertical layers and different
numerical methods. There still lacks of a comprehensive theoretical framework to
precisely determine the application range of a model. Preliminary attempt was made by
Bai and Cheung (2013) to derive a new multilayer formulation by integrating the
continuity and Euler equations over each layer and specify its application range through
analysis of wave dispersion and nonlinearity.

It is evident that 1) specifying the pressure especially at the top-layer and 2) using
the non-uniform vertical layers can significantly improve the nonhydrostatic models'
capability to describe wave dispersion and nonlinearity characteristics. This paper
combines these two strategies to derive a new set of multilayer nonhydrostatic
formulations from the Euler equations. To balance the benefit of using lower-order
derivatives and the desire of achieving high accuracy of linearity and nonlinearity, the
pressure and velocities are approximated as quadratic polynomials using the Taylor
expansions. Different from the aforementioned existing models that define the variables
at the center or at the edge of a layer, the current model defines the pressure and
velocities at an arbitrary level within a layer. As the fluid can be assumed inviscid and
incompressible, the irrotationality condition is reinforced to simplify the fluid dynamics
equations. The new formulation involves only the first- and second-order spatial
derivatives, which can be solved using simpler numerical methods. Systematic analysis

of dispersion and nonlinearity is further performed to evaluate the merits and limitations
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of the new formulation. The thicknesses of layers and the position of flow variables at
each layer are finally determined by minimizing the linearity and errors in comparison
with Stokes theory.

The rest of the paper is organized as follows: the next section briefly reviews the
continuity and Euler equations for describing free-surface fluid motions. The third
section present detailed derivation of the new formulation; the fourth section discusses
the linearity and nonlinearity characteristics of the new formulation for up to three

layers; and finally, conclusions are drawn in the last section.
METHODS

Euler equations are chosen as the governing equations for surface water waves.
velocities and pressure are defined at an arbitrary location of each vertical layer, and a

new multilayer nonhydrostatic formulation is detailed derived.

Governing Equations

The current work focuses on surface gravity waves, including wind waves, swell and
tsunamis, and so the variation of water density is insignificant over the temporal and
spatial scales for most of the engineering applications, leading to incompressible flows.
Also, for wave propagation over a large spatial scale, the velocity gradient is relatively
small; the vortices are usually weak; and so the viscous effect becomes negligible. The
inviscid and incompressible fluid assumptions lead to irrotational flows and the flow

dynamics may be described by the Euler equations based on momentum conservation

uou ou ou  of 13 O

ot ox 0oy 0z ox p Ox

N O S S N )

ot ox oy oz oy poy
a—w+ua—w+va—w+wa—wz—la—q 3)
ot Ox oy 0z p 0z

and the continuity equation based on mass conservation

—4—+—=0 4)
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where ¢ denotes the time; x, y and z represent the 3D Cartesian coordinates; u, v and w
are the velocity components in the three coordinate directions; { is the free surface
elevation above the still water level; 4 = { + d defines the total flow depth with d being
the still water depth; g and p are respectively the acceleration due to gravity and fluid
density; g is the non-hydrostatic pressure components and consequently the total

pressure p is given by
p=pg({-2)+q (%)

where pg({ — z) calculates the hydrostatic pressure. Due to the irrotational fluid

assumption, Eqs. (1-4) satisfy the following conditions

u_ow ov_owau_ov
0z ox 6z Oy dy ox

(6)

For water wave simulations, the dynamic and kinematic boundary conditions must

also be satisfied at the free surface, i.e.

q=0 atz=¢ (7)
_0¢,,% . ,% _
=2 +u ™ +v8y atz=¢ (8)

Assuming a rigid and impermeable bed, the no-flux boundary condition is given by

=—yU——v— 9)

New Multilayer Wave Equations

The water column is divided into N vertical layers by (N — 1) non-intersecting
interfaces between the bottom and the free surface, as shown in Figure 1, with an

arbitrary interface located at

: ——ad (10)

J J

where 1 = a1> az...051> o >oy+1 ...> an-1> 0. The vertical layers are not necessary to
be uniform. The free surface defines the upper interface of the top layer and is time-
independent. Theoretically, the upper and lower interfaces of the top layer may intersect
under severe wave conditions, leading to unphysical solutions. To avoid this, it is
required that the thickness of the top layer must be at least larger than the wave
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amplitude. In applications, it is recommended that the thickness of the top layer should
be set conservatively larger than the wave height, taking into account the shoaling effect
in shallow water. This restricts the use of excessive number of vertical layers to improve
model accuracy; but it will not pose much restriction on actual applications as the
current formulation is derived to accurately describe wave propagation with fewer
layers. More details will be provided in the following sections.

The flow variables, i.e. velocities and pressure, can be defined at an arbitrary
elevation /; within a vertical layer j, where

h,=-p.d (11)
and aj.1 > f; >o;.

Herein it intends to develop a new mathematical model to flexibly describe the wave
motions from deep to shallow water zones. Even in the deep water, the vertical variation
of the water motions in each layer will be weak and predominantly horizontal.
Subsequently, the velocities at an arbitrary point within layer j may be expanded using

a Taylor series with respect to 4;:

u:uj+(z_hj)[5_“jj+ﬂ[az“] . (12)

0z 2 62_2/

Using the irrotationality condition (6), the above equation can be written as

uzuj+(z—hj)[a—w)/+Mi(awjj+”' (13)

2 aza

Using the continuity equation Eq.(4), it can be further rewritten as

u:uﬁ(z—hj)(a_wl—M(az_‘u@lgm (14)

Ox 2 o’ oy’

Similarly, the expressions for the horizontal velocity component v and the vertical

velocity component w can be obtained, i.e.

v:v}.+(z_h,.)[awjj—(z_h’)2 (e 2y) o (15)

—_— + —_—
Oy 2 o' oy

and
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The partial derivatives in Egs. (14) ~ (16) may be expressed using the variables at

the elevation /;. The first-order derivatives thus become

which can lead to

(

ow
ox

)

5)

aWj ah] ou Ov
=—t+ Ll —+—| +
ox ox\ox Oy ;

ﬁwj ah,[@u aVJ
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(17)
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(20)

1)

(22)

(23)

(24)

(25)

(26)

In the above derivation, the products of the horizontal bottom gradients are neglected,

and therefore the resulting formulation is restricted to the applications with slowly

varying bottom.
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Similarly, the second-order derivatives are rewritten as
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zazujm oh Y h,
ox’ ox ) ox’
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- , -
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2 ’ 2
[\

27

(28)

(29)

(30)

€2))

(32)

where the second-order bottom effects and products of the first-order bottom gradients

are neglected.

The velocities at an arbitrary point within layer j can thus be expressed as

aw
Oox

wu (o h){

v=vj+(z h [—y

ov.

w=w, _(Z_hj)((?—ijrEj_

2
Lo (ou, oy, (z=h) u, O,
ox | ox oy 2 o’ o’ (33)
2 Oh, oh; (oh, Y &°h, &h
“ox oy Toxt T oy’
oh, (ou, ; (z- h/.)2 o, o,
oy \ oOx 2 o’ oy (34)
6/1. * oh, oh, (oh,\ &'h, &%h,
+0|| = | —Z L
6x Cox ay oy o’ oy’
h 2 2 2
Oh, ow, ok, ow, | (2-4) Fw,  Fw,
Ox Ox 0Oy 0Oy 2 For i) (35)
on, Y (oY &h, &%h,
+O — sl T~ | o D 2
Ox oy ox~ 0oy

The Taylor series expansion may be also applied to the nonhydrostatic pressure,

leading to

10



2

4

6

7

9

q:q,+(z—h,-)(2—q] Azt (a—qj + (36)

z ). 2 ﬁzzl_

Substituting the vertical momentum Eq. (3) into the above equation yields

dmaoten (2] () oo 2] 2]

2
(z=h,) 6(ow ow ow ow
Lyt v—tw— | +--
2 0z\ ot ox oy oz ;

Substitution of the continuity Eq. (4) into the above expression gives

=q, - (z—h)awj+u (ﬁ_wj +v ow —w(a—uj -w &
9=9,~P N e ), ./'ayj Nax), j@yj

2
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2 o’u 0%y ou v o’u o%v
+v, | o=t W, +w,
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Using the irrotationality condition in Eq. (6), the nonhydrostatic pressure at an

arbitrary point within layer j can be finally expressed as

=q,— (z—h) (G_WJ +u (%) +v ow -w (a—uj -w &
LTI ), T e ), ) T ), T e ),
2 2 2 2 2
(2 (2 (2] (2 (22 (39)
(z—n,) [\awox ), \away) \ox), (o) \ox o)
+p J J J J NI
2 o’u v o'u 0w ’’w  O'w
+u, | —+ +v, | W =
oxt axdy ), oyox oy ), o' o),

which may be further expressed in terms of the variables at the elevation #;, i.e.
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For the corresponding first-order derivatives,
ox), oOx 8 o o ! oy ox oy
, , (41)
Oh.\ ©Oh. Oh. (Oh.
vol| =L | 2L | T
ox ox oy \ oy
Q) %y O O O, O, (O O
) o oyl o T oax 7 oy ox oy
| } (42)
oh; \" Oh; Oh, ( Oh,
vol| = | =L,
ox ox 0Oy 5y
In each layer, the horizontal momentum Eq. (1) may be written as
ou,
+(6_j o [ o () -e S & (43)
o \ox), 6y oz ), £ ox ),
Incorporating the irrotationality condition in Eq. (6), Eq. (43) becomes
ou,
o (2] o, (a_] o (2] - L&) (44)
ot ox ), oy ; ox ), ox plox),

Combining with Egs. (23), (24), (21) and (40), Eq. (44) can be now rewritten as

%+u.%+v.6u‘/+ _%:_gag 18q/+ _Bh‘. 6w. Gh/. 6w/.+v_6w/. (45)
oo Tox oy 7 oox ox po ‘o oy ox\o ooy

Similar expression can be obtained for the horizontal momentum Eq. (2), i.e.

o0 Tox oy jéy 6y p@y Tox ox oyl ot oox

With Eq. (40), the dynamic boundary condition in Eq. (7) can now be expressed as
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Combining equations (33)-(35), the kinematic boundary condition in Eq. (8) and the

bottom boundary condition in Eq. (9) can be respectively rewritten as

w06y O€ ., 06 (o By Ovy D€ Oy OC Dwy
ot ox oy ox oy Ox Ox Oy Oy

H(eohy )Kag oh,, a_g%J[au_M%]_[ahN owy  0hy 6wN } (48)

ox Ox Oy Oy ox oy ox Ox oy Oy
0’ wN o’wy B o’u, +62uN og 62VN _g”

o’ ox’ oy* ) ox ox’ 6

and
ad o od o o [ow_ ad (o oy
od od Ox Ox Oy Oy Ox| Ox Ox\ Ox ay
w1+u1—+v1—:(d+hl)
xow (o v ), Oh|ow ad(ow  ow (49)
ox Oy oy| oy oyl ox oy

(d+h) od( o u, ) od 62 v, ) (w, *w
+ +— — ||
2 x| o’ oy 6y Oy Ox oy
Assuming continuous velocities and pressure across an interface, the Taylor series
expanded flow variables with respect to /4; at interface z; must be equal to those based
on hj+1, ie.

b hy no ok, ho ho h
wy = v =y ow =w g =g (50)

The continuity equation Eq. (4) and the irrotationality condition Eq. (6) have been
commonly used to derive the expressions for velocities u, v and w and the
nonhydrostatic pressure ¢ in each layer. Any two of the above four continuity

relationships can be deduced by the other two. Taking the horizontal velocity u and the
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continuity condition across the interface lead to

2
uw{z.—h) fﬁa+fﬂ_§ia+fﬁ_ _<Z_h0 yif+5%? _
NS o ox ox oy 2 ot oy
2
ow., Oh.  (0Ou. Ov, z,—h, o*u.., Ou.
Uji +(Zj _hj+1) et +— i + i _( — l) ”‘,24,1 + ”/2+1
Ox ox | ox oy 2 Ox oy

2
S LR LA M G N T
N ox o> o
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! dy ox Ox Oy Oy 2

2
w, _(Z,——h. ) Ot +.6VH1__ahh4 OW;u Oy OW, __(Zf"hf“) 82M7+‘+.62”9H
oA e oy ax ax Oy oy 2 ox? ol

(52)

Whilst deriving the new multilayer equation system, all of the z-direction derivatives
have been automatically eliminated, leading to a much-simplified formulation. Unlike
Boussinesqg-type equations, the vertical velocity w and pressure ¢ are not expanded in
the form of horizontal velocities # and v in order to prevent higher order derivative
terms in the equations. In turn, these simplified equations can be numerically
discretized using simpler numerical scheme, minimizing the possible numerical errors
caused by sophisticated vertical discretization near to the bathymetry with abrupt

changes.

RESULTS

As a summary, the multilayer nonhydrostatic momentum equations are given as

follows
ou, ou, ou, ow, aq, Oh, ow. Oh, ( ow, ow,
“ fu, “ +vji+wjﬁ__ga_§_ii g R Wi v, Yl (53)
ot ox oy ox ox p Ox oy oy ox\ ot oy
ov, ov, ov. ow, 0q Oh. ow. Oh, ( ow. ow
ot ox oy oy oy p Oy ox Ox oy \ ot 0,

with the following free-surface boundary conditions
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the bottom boundary condition

_a_g_u ag_ a_g—(é’_hN)[a]/{_N+%+a_§awN +6_§%j

od ow, od ow, O {6%/ +8d(%+%H

od ox ox 5; x| ox  ox | ox oy
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ox 0oy) oy| oy oy\ox Oy

(d+n) [ 6d( o, cu |, (o @) (w o
+ — + Lt + +
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and the continuity conditions across an interface of layers (if more than one layers are

used)
ow, Oh,(0u; v, (z—h.)2 0*u, 0u,
u.+(z.—h.) A ARGt Bt AN | J 2/+ 2/ _
J 7 ey ox\ ox Oy 2 ox oy (58)
2
u. +(Z. —h, ) awjﬂ + ahj“ auj“ + avj“ - (Zj _hj”) azuf“ + 62uj+1
Jj+l J j+1 ax ax ax ay 2 axz 6)/2
2, R
(e, 2y 2o S 2y O Oy (5 7h) (S Sy
J ey oy ox ox oy Oy 2 o 6y2
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(39)
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The above N-layer nonhydrostatic equation system consists of 2N momentum
equations, three sets of boundary conditions and 2(N — 1) continuity conditions, a total
of 4N + 1 coupled equations for 4N + 1 variables including u;, v;, wy and ¢;(j = 1 ~ N)
and an additional free surface elevation (.

The above governing equations only possess derivatives of up to second-order, which
can be easily and efficiently solved using a well-established numerical method, e.g.
finite difference method, finite volume method and finite element method. For
numerical implementation, the system of equations may be solved in two steps:
hydrostatic step and nonhydrostatic step. The hydrostatic components (i.e. the
governing equations without considering the nonhydrostatic pressure effect) are solved
in the hydrostatic step while the nonhydrostatic pressure terms are computed in the
second step. In the nonhydrostatic step, the relationships between u;, v;, w; and ¢; are
given in Egs.(53)-(55), which are substituted into the bottom condition Eq.(57) to give
an elliptic equation for the non-hydrostatic pressure. The focus of this work is to
introduce the new multilayer nonhydrostatic formulation for surface water waves. The
corresponding numerical model is currently being developed and will be presented in a
future paper.

Although the above governing equations are derived for gravity water waves, it has
not predefined any specific vertical profiles for the velocities and pressure and therefore
they can indeed provide more natural vertical profiles for these variables, as shown in

the theoretical analysis in the following section.
ANALYSIS

The new multilayer governing equations should be further analyzed to reveal their
properties and optimize parameterization. The analyses undertaken herein are limited
to one horizontal dimension for simplicity, but the procedure and conclusions can be
directly extended to the two-dimension case. The optimized values for coefficients o;

and f; will be obtained by analyzing the linear properties of the equations, including the
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linear dispersion, linear shoaling and linear velocity profile. The nonlinear properties
of the formulations are further examined after these coefficients are determined.
Fourier Analysis

Stoke-type Fourier analysis is conducted to obtain the linear and nonlinear second
and third harmonics of the governing equations (Madsen, Bingham and Liu, 2002). The

first-, second- and third-order solutions may be extracted through a perturbation

expansion
¢ =" cos(kx—wt)+e* A% cos2 (kx— ot )+ &' AV cos 3 (kx — wr) (60)
u, = U cos(kx—aot)+ U cos2 (kx - wt) + £°U" cos 3 (kx — ) (61)
w, =—eW " sin (k- ot) - W sin2 (kx - wt) - &*W sin 3 (ke — oot ) (62)
q, = ng(.l) cos (kx —wt)+ sfo.z) cos 2 (kx —wt)+ 53Qj(,3) cos3(kx— ot ) (63)

where ¢ is a small perturbation parameter, A9, U/, W and Q") are real functions (i =
1, 2 and 3), k is the wavenumber, and w is the cyclic frequency. To avoid unbounded
solutions at the third order, the frequency and first-order solutions are expanded as

follows

o=o(t+s20"), UV <UD (1+220), w0 =w (1422w, 0 = 0" (1+2°0)")
(64)

where superscript (13) denotes the third-order terms arisen from the first-order solutions.
Substituting Eq. (60) - (64) into the governing equations Eq. (53), (55)-(59) and
collating all the terms of order O(¢") will lead to the first, second and third-order
solutions. Results from the analysis for the first-three-layer formulations are compared
with the exact Stokes solutions (Fenton, 1985; Kennedy et al., 2001).

Shoaling Analysis

In one horizontal dimension with a slowly varying bathymetry d = d(ex), solutions

of the following form may be sought by following Madsen, Bingham and Liu (2002),
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= AW exp{i[mt—jk(x) dx]} u, = Uj') (1+ia}dx )exp{i[a)t —J‘k(x)dx}}

w, = iW/_(‘) (1+io-/2.dx)exp{i[a)t—_|.k(x)dx]}, q,= Qf.') (1+io-jdx)exp{i[mt—jk(x)dx}}

(65)
where i is the imaginary unit, ¢/ is introduced to account for a small phase due to a
slowly varying bottom. Substituting Eq. (65) into the linearized formulation and
keeping only the first-order derivatives, it obtains the real and imaginary parts of the
solutions. UM, WV and O/ are solved in terms of AV to give the first-order solutions
for monochromatic waves on a slowly varying bottom. Further eliminating o/, Ux'?,
WD and 05V yields the equation in the form of

A, _ ﬂ
=t (66)

where so is the shoaling coefficient. The equation will be analyzed by comparing with

the shoaling gradient from Stokes linear theory (Madsen and Serensen, 1992).
DISCUSSION

Stoke-type Fourier and shoaling analyses are carried out to scrutinize the
mathematical properties of the new formulation. The representative interface and the

location to define variables in each layer are optimized to improve model accuracy.

One-Layer Formulation

The one-layer formulation involves four variables, i.e. {, u1, wi, g1, which can be
obtained by solving Eq. (53), (55), (56) and (57). The specific expressions for the
first-, second- and third-order solutions for monochromatic waves on a horizontal
bottom and the shoaling coefficient can be obtained using Wolfram Mathematica. The
corresponding dispersion relation, the associated velocities and the shoaling coefficient
are detailed in Appendix A.

Through examination of linear property, the most accurate set of the representative
interface and the location to define variables will be chosen. The coefficient f1 can be

directly determined by fitting the calculated phase speed c or the group velocity ¢ with

18



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

the exact linear solution for Stokes waves. However, as the velocity profile may play
an important role in wave-structure interaction and the shoaling coefficient is a
fundamental quantity for wave propagation over varying bathymetry, optimized value
of B1 is obtained by minimizing the errors for phase speed, group velocity, shoaling

effect and velocity profiles following the method of Lynett and Liu (2004a), i.e.

e

1 & e
lmearzg Z:(; |C C|+ Z

(67)
where the superscript e denotes the exact solution from the Stokes theory. As the one-
layer model is supposed to be applied in coastal wave transformation that generally
occurs when water depth kd is less than &, f; is thus optimized over the range Q =,
leading to f1=0.50 and Ajinear = 0.014.

The resulting phase speed, wave group celerity and shoaling coefficient for the one-
layer model are plotted in Figure 2. The model has a maximum error of less than 3%
for the phase speed and less than 10% for the group velocity in the entire range, which
has the similar accuracy as the second-order dispersion Boussinesq equations derived
by Nwogu (1993) and Madsen, Murray and Serensen (1991). The shoaling coefficient
has an excellent agreement with the Stokes first theory for 2 < 5/8n. However, the
discrepancy increases monotonically with kd beyond this range.

The vertical profiles of horizontal and vertical velocities are plotted in Figure 3,
showing good agreement with those resulting from the linear Stokes theory, especially
for the vertical velocity component. The predicted horizontal velocity near to the
bottom is slightly larger than that from the Stokes theory, especially for high
wavenumbers. The possible reason may be that the water motion is predominantly
horizontal and vertical velocity is much weaker than the horizontal velocity in shallow
and intermediate water. The solutions from one-layer model agree more favorably with

the exact solutions than the second-order Boussinesq theory as reported by Gobbi,
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Kirby and Wei (2000). The reason may lie in the fact that the current formulation does
not predefine the vertical velocity structures as the Boussinesq theories do.

Following the procedure of solving the Stokes water theory, the first-order solutions
provide forcing to drive the second-order solutions; the first and second-order solutions
together provide forcing to the third-order solutions. The corresponding second- and
third-order solutions are provided in Appendix A.

Stokes wave theory gives the second- and third-harmonic amplitudes

@) kq"? cosh kd (ZCosh2 kd + 1)
aStnkes = . 3 (68)
4 sinh” kd

and

(1)3 6
3 _ 3k’a"" 8cosh®kd +1 69
a .=

Stokes 64 sinh® kd (69)

They are used as references for comparison with the solutions obtained from the present
formulations.

Figure 4 compares the second- and third-order wave amplitudes from the one-layer
model and Boussinesq equations of Nwogu (1993). As the results are normalized with
Stokes solutions (68) and (69), the unity indicates perfect agreement. The Boussinesq
solutions converge to the Stokes solution as kd approaches zero. The one-layer system
exhibits different convergence patterns, and there are offsets towards kd = 0O for the
second- and third-order solutions. The similar results also appear at the multi-layer
nonhydrostatic free-surface model from Bai and Cheung (2013), and they thought that
it is due to the slower convergence of the dispersion relation in shallow water. As the
present formulations have the similar accuracy as Boussinesq equations derived by
Nwogu (1993) (see Figure 2), it prefers that these different convergence patterns might
be due to the fact that Boussinesq equations usually express the vertical velocity w with
one lower order polynomials than that for the horizontal velocities u and v while the
present formulations describe them with the same order polynomials. Furthermore,
Nwogu (1993) assumed the vertical velocity linearly varying and the horizontal

velocities quadratically varying in the vertical direction respectively, however, this
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paper expresses all of them as quadratic polynomials. Such different kinematic
structures may be the reason why distinct convergence characteristics are exhibited
from Boussinesq equations and the present formulations. However, it must be
emphasized that the solution from the one-layer system presents overall good
agreement with the Stokes nonlinear theory for &d < & than that from Nwogu (1993);
the discrepancy for both the second and third-order solutions becomes less noticeable

for larger kd.

Two-Layer Formulation

Considering the two-layer equation system in one horizontal dimension with a
horizontal bottom, the dispersion relationship and velocities can be derived, which are
listed in Appendix B with the corresponding shoaling coefficient.

The values of coefficients f; and a; can be again obtained by minimizing the error
Alinear in Eq. (67) as for the one-layer system, i.e. Atinear = 0.014. This yields Q = 4n, i
= 0.641, a1 = 0.391 and p> = 0.305, which are referred to as optimized coefficients
herein. Most of the previous studies related to the optimization of coefficients for the
Boussinesqg-type equations considered only the shoaling effect and dispersion related
characteristics, but neglected the vertical velocity structures (Gobbi, Kirby and Wei,
2000; Madsen, Murray and Serensen, 1991; Nwogu, 1993; Schéffer and Madsen, 1995).
Following these approaches (i.e. without considering the vertical velocity structures),
coefficients are obtained and given by 1 = 0.895, a1 = 0.535 and f> = 0.105, which are
referred to as partially optimized coefficients.

Many numerical models based on the Navier-Stokes equations or the Euler equations
adopt uniform layers in the vertical direction (Casulli and Stelling, 1998; Lin and Liu,
1998; Stelling and Zijlema, 2003; Zijlema and Stelling, 2005), except the model with
non-uniform layers reported by Yuan and Wu (2006) that can achieve the same
accuracy with less layers. Herein, the performance of the current formulation with

uniform vertical layers is also examined. The associated coefficients for the current
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two-layer equation system are 1 = 0.75, a1 = 0.50 and > = 0.25, which are referred to
as uniform-layer coefficients.

Figure 5 plots the phase speed, group velocity and shoaling effect with the three
groups of coefficients as mentioned above. The coefficients obtained from Eq. (67)
give the maximum errors of 1.0% and 4.5% for the phase speed and the group velocity
respectively; the error corresponding to the shoaling coefficient increases as the
wavenumber kd increases and reaches its maximum value (less than 0.06) at kd = 4x. It
appears that the optimized coefficients obtained by neglecting vertical velocity
structures provide the most accurate solutions for the phase speed, group velocity and
shoaling effect, with relative errors less than 0.6% and 1.8% respectively for the phase
speed and group velocity and absolute error less than 0.04 for the shoaling effect. For
the model with uniform layers, the predicted phase speed is found to be closest to the
exact solution; however, the errors for the group velocity and shoaling effect are the
largest among the three sets of coefficients.

Figure 6 shows the horizontal and vertical velocities predicted by the two-layer
equation system with aforementioned three groups of coefficients, in comparison with
the exact linear solution for various relative water depth kd. The coefficients obtained
from Eq. (67) lead to the most accurate results compared with the exact solution, even
for kd = 4n. The model with two uniform layers also well represents the vertical velocity
profiles, despite the slight deviation observed at the interface between the layers in the
region with relative large water depth. Completely wrong velocity profiles are predicted
for large kd with the partially optimized coefficients, which are obtained by only
considering the phase speed, group velocity and shoaling effect. Both of the horizontal
and vertical velocities should theoretically reach their maximum values at the free
surface; however, the predicted vertical velocity profile with the partially optimized
coefficients reaches its maximum at the interface between the two vertical layers; the
medium-depth velocity is several times larger than that at the surface. Although these

coefficients may lead to more accurate phase speed, group velocity and shoaling effect,
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they produce unacceptable velocity profiles and therefore will be discarded in the rest
of'this study. From now on, the two-layer equation system adopts 1 =0.641, a1 =0.391,
S2 = 0.305 as the default optimized coefficients based on its overall good dispersion
properties.

The two-layer equation system with the optimized coefficients provides much
improved linear dispersion properties than the fourth-order Boussinesq equations
derived by Gobbi, Kirby and Wei (2000). Their model gives a (4, 4) Padé dispersion
relationship and the phase speed up to the range of kd = 7 with an error of 1% and the
group velocity up to the range of kd = 5 with an error of 5%. Furthermore, the deviation
between the Boussinesq model predicted vertical velocity profile and the exact linear
theory becomes evidently when kd > 8. The present two-layer equation system with
optimized coefficients also outshines the two-layer Boussinesq model derived by
Lynett and Liu (2004a). Lynett and Liu’s Boussinesq model can only predicts phase
speed up to the range of kd =~ 10 and group velocity up to the range of kd =~ 8 with the
same errors as the present two-layer model; the shoaling effect predicted by the present
two-layer model has an overall much better accuracy. Additionally, the present two-
layer equation system predicts a smooth vertical profile to a much higher degree of
accuracy in a wider range; on the other hand, the Boussinesq model predicts a
discontinuous vertical velocity gradient, causing an unphysical sharp change in the
vertical velocity profile.

The second and third-order solutions for the two-layer equation system can be
obtained using Mathematica, in a similar way as that for the one-layer formulations and
are omitted here for simplicity. Figure 7 shows these solutions obtained using
respectively the uniform-layer and default optimized coefficients, in comparison with
the Stokes theory. The two second-order solutions are approximately anti-symmetry for
kd < Tn/4. Tt is just coincidental and there is no specific physical reason behind it.
Although the two-layer solutions with the optimized coefficients leads to slight larger

error than the uniform-layer solutions in the special range n/4 < kd < 7n/4, they have an
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overall higher degree of accuracy over the optimized range 0 < kd < 4r. The model with
two uniform layers gives in a maximum error of 8% for the second-order solution and
14% for the third-order solution, while the model with optimized coefficients predicts
a maximum error of 4% for the second-order solution and less than 9% for the third-

order solution.

Three-Layer Formulation

The linear solutions including the dispersion relationship, phase speed, group
velocity, shoaling coefficient and velocity profiles, as well as the second and third-order
nonlinear solutions, to the three-layer model can be obtained in the same way as that
for the one and two-layer formulations. All of the mathematical expressions are omitted
here for simplicity and only results (comparison with analytical solutions) are discussed
here.

Coefficients representing the phase speed, group velocity and shoaling effect
obtained by following Eq. (67) are found to induce the same errors as the one and two-
layer systems, i.e. Alincar = 0.014, resulting in £1 = 0.965, a1 = 0.880, f> = 0.555, a2 =
0.185, p3 = 0.118 and the range of Q = 10xn (referred to as optimized coefficients).
Figure 8 shows the resulting phase speed, group velocity and shoaling effect with these
coefficients. The model with the optimized coefficients exhibits more accurate
solutions, predicting a maximum relative error of 0.6% for the phase speed and of 1.2%
for group velocity, compared with the 1.2% and 11.4% resulting from the uniform-layer
model associated with the uniform-layer coefficients of 1 = 0.833, a1 = 0.667, p» =
0.500, a2 = 0.333 and 3 = 0.167. For the shoaling effect, the maximum absolute errors
predicted by the two models are 0.025 and 0.271, respectively. The three-layer model
with optimized coefficients is also superior to the four-layer Boussinesq model derived
by Lynett and Liu (2004b) which gives maximum errors of more than 1% and 11% for
phase speed and group velocity over the range kd < 10m. Furthermore, the three-layer
model with optimized coefficients performs consistently better than the one and two-
layer models within its application range.
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Figure 9 presents the velocity profiles from the three-layer model with the optimized
coefficients and the three-uniform-layer model. Large errors are observed on the
vertical velocity profiles for both # and w from the three-uniform-layer model when kd
> 4w and the largest discrepancies are detected at the interfaces. On the other hand, the
three-layer model with optimized coefficients predicts the vertical velocity profiles to
a much higher degree of accuracy. Furthermore, the model is able to provides
satisfactory results in extremely deep water, e.g. up to kd = 10n. The model is also
superior than the four-layer Boussinesq model derived by Lynett and Liu (2004b) in
predicting the vertical velocity profile which shows evident errors for kd > 8.

Figure 10 presents the second- and third-order solutions to uniform-layer model and
the model with optimized coefficients, in comparison with the analytical solution from
the Stokes theory. The errors of the second and third-order solutions to the three-
uniform-layer model increase as the kd increases and reach the maximum values of over
8% and 15% at kd = 10n. The model with optimized coefficients provides overall
satisfactory second and third-order solutions, except for the range of kd < 2m.
Considering the fact that the three-layer model is usually used in intermediate to deep
water (outside the range of kd < 2m), the three-layer model with optimized coefficients

can lead to reasonable accurate results.
CONCLUSIONS

A new formulation of the multilayer nonhydrostatic equations for surface water
waves has been derived. The model defines velocities and pressure at an arbitrary
location of a layer; subsequently the Taylor expansion is applied to derive the vertical
flow field, and finally matches with the continuity conditions across the interface
between two adjacent layers. With the maximum second-order spatial derivatives and
identical structure of the formulations at different layers, the new governing equations
can be numerically solved using a standard numerical scheme. Stoke-type Fourier and

shoaling analyses have been carried out to scrutinize the properties of the new equations;
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the representative interface and the unknowns evaluation locations in each layer are
chosen to improve the model accuracy.

Optimization of the model coefficients for one-layer model is obtained for
applications in the range of kd < m. The model with the optimized coefficients captures
similar accurate linear and nonlinear wave behaviors to the existing second-order
Boussinesqg-type models (Madsen, Murray and Serensen, 1991; Nwogu, 1993; Wei et
al., 1995). Optimized coefficients are derived for the two-layer model for applications
in the range of kd < 4x. The resulting model predicts the phase speed and group velocity
within the error bound of 1.0% and 4.5% and provides the second and third-order
solutions within the error bound of 4% and 9%. It maintains better linear and nonlinear
accuracy and has larger application range than existing four-order Boussinesq model
and the two-layer Boussinesq model (Gobbi, Kirby and Wei, 2000; Lynett and Liu,
2004a). The linear and nonlinear optimization of the interface and variable evaluation
locations for the three-layer model is implemented for the application range of kd < 10mx.
The model with the optimized coefficients exhibits accurate linearity for phase speed
and group velocity within the error bound of 0.6% and 1.2% respectively, which
effectively removes any shallow water limitation. It gives accurate nonlinear results
towards the deep water for the second and third-order solutions within 2% and 4% of
error bounds respectively, despite relatively large errors in the shallow-water region.
Furthermore, as the current multilayer nonhydrostatic water wave model does not
predefine the flow structures in the vertical direction and the optimization of
coefficients considers the error in velocity profiles, it provides more accurate vertical

profiles of the velocity field.
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APPENDIX A.

The corresponding dispersion relation for one-layer formulations is

: ok 4kd +2(1- B)pK’d’
442d°k +(-1+ B’ Bld*k*

The associated velocities are

28kt 2+Rd(1-p)
® 442K +(1-B) pik‘d’
and
O __ 4(1-B,) gdk’ 4,

o[ 44207 +(1-4) rd'k" |
The shoaling coefficient for the one-layer formulation is

G+ SOk + 80k d* + 50k’ + S{Kd* +0(kd")
B Sé:)) +S§12)k2d2 +S£:)k4d4 +S§2k6d6 +S£2k8d8

where
S =4
SU = —6+148 —148°
SU =682 +128° —6p'
SU =B 2+ B2 12-1381 +34 8 -338° +11°
SW = B I4=3/28 328 +4B° ~19/285 +78] ~7/4p°

sW =16

(A.1)

(A.2)

(A3)

(A.4)

(A.5)
(A.6)
(A7)
(A.8)
(A.9)

(A.10)

30



10

11

12

13

14

15

s =328 -32 (A.11)

=8p —16ﬁ13+8ﬂ|4 (A12)
S\ =882 —248° +328" —24/8° +88° (A.13)
= ﬂlz - 41813 + 8ﬁ14 - 101815 + Sﬁf _4ﬁ17 + ﬂlx (A 14)

The second harmonic solutions from the one-layer formulations are

r k(N +N'kd + N*k*d” + N°kd* + N*k'd* + N°k°d® + N°k°d®) (A15)
8[—dgk2 ~(1-B) B2d’ gk* + @ +2k°d*r* —4(1- B,)° ﬂfk“d“a)z] '

K1+26a (1-8)']
8 .
20 (U + W)+ 4 [ gk (40" —apkdw ") + a0 )+ 40 (W - fikdU ") )}

Ul(z) —

—dgk® +2(1- B,) Bd’ gk* + & + 2 d* 0’ +4(1- B)’ Pk d*

(A.16)

o _ dk* (1-3))
! 4
20(U" =)+ gl (4U“) ~4Bkaw" + B d*U" )+ 4o’ (W) - pkdU")
—dgk® ~2(1- B) Bid’ gk' + @ +2K°d* & —4(1- B} fPk'd* &’

(A.17)

2> (U =) g [2+(-1+26°d%) B+ (28] 457 ) K d” |
+HABAK - [gkl 36+ B2)-4k'd g + ak’d* (1- ) a)ZJW(I)A(I)
o ==P2 +[2d6gk7(1 B) B +d gk’ (4-108 +7p} )ﬁl] A
4Bk - [wkd 3g-2fg—2dw’ )+ (—1+ﬁ1)2w2]U“>A(‘>

—[Sdsgké(—H B) B +208 JW(‘)A“)

+[-dgk2 —2(1-B)Bd’ gk’ + @ + 2K d’ > —4(1- B )’ ﬁfk“d“af]

(A.18)
where
N°=44"U" 0 (A.19)
NIZZ[U(l)z _W<1)(W<1> +A(‘>(—2+2ﬂl)wﬂ (A.20)

31



10

11

12

13

14

15

16

17

18

N*=4"U" (8-45,+ B} ) o (A.21)

N'==4p [0 (<14 8) 4w (W0 =005 240 o) | (A.22)
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The third-order wave amplitude for one-layer formulations is

k(M°+M'kd + M A + MK d® + M*k'd* + MK’ d* + M °k°d®)
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The dispersion relationship for the two-layer system is

o mdk+m)Rd +mEd +m K d
gk ml) +mDaP e +mQitd® + mkd’ + mQ i a?
where
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Velocities for the two-layer system are
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The shoaling coefficient for the two-layer system is
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FIGURE CAPTIONS

Figure 1 Definition sketch. The water column is divided into N vertical layers by (N —
1) non-intersecting interfaces, and velocities and pressure are defined at an arbitrary
elevation 4; within each vertical layer z;.

Figure 2 Accuracy of the phase speed, group velocity and linear shoaling gradient for
the one-layer formulation. they show a high degree of accuracy with Stokes theory
over the range kd < 7.

Figure 3 Vertical profiles of the horizontal velocity (top row) and vertical velocity
(bottom row) for different kd. The present formulations yield a good agreement with
the linear Stokes theory and have a higher degree of accuracy than the second-order
Boussinesq theory.

Figure 4 Accuracy of the second and third-order nonlinear amplitudes from one-layer
and Boussinesq models. The present solution obtains an overall good agreement with
the Stokes second-order theory for kd < m, and yields much smaller maximum error
than that predicted by the Boussinesq models derived by Nwogu (1993) and Wei et
al. (1995) for the same range.

Figure 5 Accuracy of the phase speed, group velocity and linear shoaling gradient of
the two-layer formulation. The formulation with partially optimized coefficients
provides the most accurate solutions for the phase speed, group velocity and shoaling
effect, and the uniform-layer formulation yields the closest phase speed but the most
inaccurate group velocity and shoaling coefficient.

Figure 6 Vertical profiles of the horizontal velocity (top row) and vertical velocity
(bottom row) for different kd. The formulation with optimized coefficients yields the
most accurate results compared to Stokes theory over the range kd < 4x, and the two-
uniform-layer mode also well represents the vertical velocity profiles with slight
deviations at the medium water depth in the region with relative large water depth,
while the formulation with partially optimized coefficients predicts completely

wrong velocity profiles for large kd.
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Figure 7 Accuracy of the second and third-order nonlinear wave amplitudes. The
optimized coefficients lead to slight larger error than the uniform-layer solutions in
the special range n/4 < kd < 7m/4 but obtain an overall higher degree of accuracy over
the optimized range 0 < kd < 4n.

Figure 8 Accuracy of the phase speed, group velocity and linear shoaling gradient for
the three-layer formulation. The three-layer model with optimized coefficients
exhibits more accurate characteristics than the uniform-layer model and performs
consistently better than the one and two-layer models within its application range.

Figure 9 Vertical profiles of the horizontal velocity (top row) and vertical velocity
(bottom row) for different kd. The three-layer model with optimized coefficients
predicts the vertical velocity profiles to a much higher degree of accuracy than the
three-uniform-layer model, and it can be able to provides satisfactory results in
extremely deep water, e.g. up to kd = 10m.

Figure 10 Accuracy of the second and third-order nonlinear amplitudes. The three-layer
model with optimized coefficients provides overall satisfactory second and third-

order solutions than the three-uniform-layer model.
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