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Abstract 

Multi-level or hierarchical models present various features for dealing with data 

grouped at several levels. The majority of applications of hierarchical models use 

clustered data that is static in nature and collected over a long period of time. The 

purpose of this study is investigating hierarchical models for application with 

highly dynamic systems.  

Steady-state data are conventionally employed for engine torque mapping 

purposes. The data takes much time to collect and the dynamics of the system 

are routinely ignored.  This valuable information could be used for better control 

of the system. 

In this study, an innovative transient spark-sweep approach is developed for 

collecting dynamic torque data more efficiently. The means of data collection 

implies a structure for which a multi-level model is best suited. A multi-model 

augmented D-optimal design is created, and the experimental data collected. 

Spark excitation is applied at speed/load points using Amplitude Modulated 

Pseudo Random Signal (AMPRS), and the torque response over the operating 

space is thus obtained.  

Conditional first-order linearization is used within the identification process for 

determining the hierarchical model parameters. The level-1 Nonlinear Auto 

Regressive eXogenous (NARX) models are separately determined using an 

Iterative Generalized Least Square (IGLS) method and the results are employed 

for initialisation of the covariance matrix and the model level-2 parameters. A 

novel gradient optimiser was established to facilitate the dynamic hierarchical 

model identification. Additionally, the uncertainty associated with model selection 

was mitigated using a multi-model approach.  

The model identified is evaluated and compared with experimental dynamic and 

steady-state data. It shows behaviour, both dynamic and steady state, providing 
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prediction over a wider extrapolated spark range than conventional approaches. 

The new approach is eight time faster than current state-of-the-art approaches. 

 

Keywords:  

Conditional linearization, dynamic torque, gradient optimisation, hierarchical 

model, mixed effects, multi model, spark sweep, transient engine mapping. 
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Chapter 1 Introduction 

Nowadays, development of a new engine is an increasing challenge for 

automotive manufacturers. There are various factors to consider such as 

downsizing, reducing fuel consumption and emissions control. Due to 

environmental concerns, emission regulations are becoming considerably 

stricter. As a consequence, new vehicles need to be equipped with engines that 

conforms to the new standards. This demands more cost effective and expedited 

development of the engines to meet the demands of the market. 

Engine mapping and calibration is an important part of the engine development 

process. In characterisation experiments associated with this, the engine is 

allowed to stabilize on the test bed for a certain amount after which an average 

measurement is taken over a fixed interval of time. Steady-state approaches are 

not efficient and require significant time and effort to provide a map of the engine 

over its operating space.  

Different techniques are developed to simplify and reduce engine mapping and 

calibration procedures. One of the methods is capturing engine operating 

conditions by sweeping the operating points without stabilization, which can be 

considered a transient condition. Transient tests such as these can reduce the 

engine mapping time but must be able to predict the steady-state operating point 

accurately for use in legacy control strategies.  

For optimization of engine performance, torque is a critical parameter.  Using 

more efficient transient methods, a dynamic torque model can be developed and 

validated for estimation of steady-state. In order to deal with the transient data, 

proper selection of a dynamic model is required. The form of this model is a 

function of the way in which the data is collected and its inherent structure. 

The principle of parsimony requires that any model should be defined to give the 

required accuracy with a minimum level of complexity according to some metric.  
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This inevitably introduces a trade-off from which the best solution is selected 

according to the requirements at hand. 

In this study, a hierarchical nonlinear mixed effect model is developed based on 

transient engine torque data collected using spark excitation over the engine 

operating space. The model is evaluated using its transient and steady-state 

response prediction. 

1.1 Torque-based Engine Control 

An engine is controlled to provide favourable driveability and maximum engine 

performance in terms of emissions and fuel consumption [1]. One of the main 

goals of the controller is delivering a rapid torque response whilst maintaining 

durability, protecting the engine from damage that can be caused by knock or 

overheating [2]. 

Since torque is one of the primary responses of interest, torque management is 

at the core of many modern engine control schemes [1]. Using the throttle to 

regulate the flow of air into the engine is the conventional means of torque control 

in SI engines. The change of torque caused by throttle position induces dynamic 

excitation that influence torque output as a function of time. Change in torque 

using the throttle is relatively slow due to the dynamics associated with the air 

system, as a result spark advance is often used to modulate torque more rapidly. 

Additional parameters influencing torque production often include turbocharger 

wastegate or vane position, the air-fuel ratio and the amount of exhaust gas 

recirculation [3]. 
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Figure 1-1 Representation of a traditional vehicle control structure (Top) and a 

torque-based SI engine control structure (Bottom) [4] 

With no direct torque measurement available on the majority of production 

engines, direct feedback control is not possible.   By modulating the throttle pedal 

a driver is effectively demanding different levels of torque from the engine.  The 

controller takes this desired torque and from it calculates a desired load.  Load 

here is defined as the normalised air charge or mass of air inducted into the 

cylinder. Based on this value of load the controller works to set actuators to 

achieve the desired load and hence torque. At the core of this approach is an 
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inverse torque model that relates a driver demand to actuator settings on the 

engine that result in the required torque being produced. To reduce the on-board 

computational burden the information that the model provides is encoded in tables 

or maps that are stored on the Engine Control Unit (ECU). 

The above provides an inexpensive and reliable way of implementing torque 

control provided maps can be obtained from data efficiently.  One disadvantage 

of this approach is that the maps typically extrapolate poorly and also need to be 

re-determined for every change to the base engine design [1].  

The innovation of the electronic throttle system completely changed the approach 

to engine control. A torque-based control strategy removes many unnecessary 

elements of the classic control system and improves driveability by providing 

more accurate torque information. Figure 1-1 demonstrates the structure of a 

conventional control scheme in comparison with a torque-based SI engine control 

scheme [4]. 

Apart from the drivers request, the final torque produced is determined by other 

factors including torque increase or decrease requested by the traction control 

system, driveability constraints e.g. limiting driveline fluctuations, etc.  Figure 1-2 

shows a torque based control structure including the driver interpretation scheme, 

driveline controller and engine controller [1]. 

 

 

Figure 1-2 A torque based control structure [1] 
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1.2 Mathematical Models 

The behaviour of a system can be described using a set of mathematical 

equations, these represent the relationship between the system inputs, outputs, 

system states and parameters. These models can be generated using physical 

knowledge of the system, or discerned by experimentation [5]. The main 

classifications of various models are now briefly explained. 

 Static and dynamic: 

Systems are categorized according to the dependence of their outputs on the 

progression of time. A system is static if system behaviour is independent of time. 

On the other hand, a dynamic system is one that whose output is a function of 

time. 

 Discrete and continuous: 

A continuous system is one that varies continuously with time. A discrete system 

is one that varies discontinuously in time with its output values and states 

changing at distinct (and usually fixed) points in time. 

 Linear and nonlinear: 

A model can be considered linear if all the operators and mathematical equations 

exhibit linearity, otherwise it is a nonlinear. A system is said to be linear if its output 

is some linear combination of terms, the terms are normally a scalar constant 

multiplied by some combination of inputs, outputs and system states. 

 Deterministic and stochastic: 

A stochastic model includes at least one uncertain parameter normally defined 

using a probability density function. In a deterministic model, the mathematical 

relationship and parameters are defined explicitly and are not probabilistic in 

nature. 

   

https://en.wikipedia.org/wiki/Linear
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 White, Grey and Black box: 

This type of model classification is usually associated with the type of knowledge 

available about the system under study. White box models are referred to the 

models that can be determined from physical principles without any need for 

observation data. Black box models are purely based on experimental data and 

mapping the relationship between the input and outputs of the system, there is 

usually no physical knowledge of the system. A grey box model is a mixture of 

white and black box models, formed using a combination of data and empirically 

determined relationships.  

The various categorisations of mathematical models used for describing system 

behaviour are summarised in Figure 1-3. 

 

Figure 1-3 The general type of configurations for Mathematical models 

System identification is the process by which a model is selected, and its 

parameters determined to achieve some required level of performance e.g. 

accuracy, variance, stability, computational overhead, etc. Various approaches to 

system identification are explained comprehensively in [6]. 

Modelling techniques
Black box Grey box White box

Model uncertainty
Deterministic Stochastic

Model linearity
Linear Nonlinear

System manner
Discrete Continuous

Time dependency
Static Dynamic

Mathematical models
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1.3 Necessity for Multi-level Modelling 

A multi-level or hierarchical model can be used to describe a system whose 

behaviour may be described as being clustered or grouped. The grouping is 

represented in the model at different levels of its structure. The first applications 

of this approach were in the 1970s for educational studies and sociology [7]. In 

different texts, the approach is referred to by difference names. For example, 

mixed-effects or random-effects models in biometric applications. In 

econometrics and statistical texts, it is often referred to random-coefficient 

regression models and covariance component models, respectively. In general 

they are referred to as hierarchical models, since this reflects structure, features 

and application of the multi-level models [8]. 

Using a multi-level model, it is possible to separate and describe variance at the 

upper and lower levels of the model separately. Multi-level models can be a 

mixed-effect or fixed-effect models depending on the presence or absence of 

random effects on its regression coefficients [9]. 

Hierarchical approaches deliver a model with variable mean and covariance 

among the groups of randomly sampled data and they can define the distribution 

and usage of the random parameters. A multilevel regression analysis generates 

a more precise model compared to single-level approaches. This is achieved 

using a combination of information from the individual and group levels within a 

single framework [10]. A single-level model typically underestimates the standard 

error of the regression coefficients since it ignores the multi-level structure of the 

data [11].   

There are several methods employed to establish a hierarchical model. The 

approach allows for description of system behaviour using different equations at 

different levels of the model, providing considerable flexibility. These equations 

may also be combined using algebraic substitution [10]. Typically, a multi-level 

model consists of two levels; however, can be extended to three or more. The 
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response variables of interest are always presented at the lowest level, but 

explanatory variables may exist at each level of the model [12] [13]. 

Multi-level models consider variation at level-1 and level-2 in estimating level-2 

coefficients adding significant complexity. It should be considered if this additional 

complexity warranted for the task at hand compared to classical (and less 

complex) regression approaches. Typically there is no benefit if there is little 

variance or there is not enough data at higher levels of model [9]. It is possible 

that the data is hierarchical in structure, but a non-hierarchical model is sufficient. 

In this situation, cross-classified or multiple membership models are useful. There 

are some conditions where a hierarchical model combined with a regular 

regression approach can be used, more information about these type of models 

is available in Leeuw and Meijer [14]. 

Hierarchical models are useful for many different applications. For example, it is 

often heterogeneously clustered in subgroups when the data obtained for 

statistical surveys. One of the most popular applications is for repeated 

measurement data [15]. This is data for which there are several repeated fixed 

time measurements at the lower level, often missing data or different time 

intervals for measurement of some individuals (lower level) may be seen. The 

multi-level model structure deals with the missing data easily since data are 

clustered separately.  

Data collected in previous experiments may also be included using a multi-level 

models also known as meta-analysis. In meta-analysis, historic data are applied 

to increase the sample size and generalize the study [14]. 

1.4 Engine Mapping and Calibration Techniques 

In a test cell, the engine is coupled to a dynamometer to measure the outputs of 

interest. By measuring torque, the power of engine is calculated at different 

conditions using Equation (1-1). 
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𝑃 = 𝑇𝜔 (1-1) 

where 𝑃 is the power of the engine, 𝜔 is the angular velocity and 𝑇 is the 

measured torque. For engine transient testing, it is necessary to consider the 

effect of inertia on the torque measurement. Inertia resists the change of speed 

during transients and is determined using Equation (1-2). 

∆𝑇 = 𝐽𝛼  (1-2) 

where 𝐽 is the rotational inertia for rotating parts of dynamometer rotor and 𝛼 is its 

angular acceleration.  

 Steady-state and Transient Engine Characterization 

Steady-state testing is the main type of testing used for engine characterisation. 

In this method, the engine is stabilised at some operating point before any 

measurement is made.  

Steady-state engine testing is time consuming and several investigators have 

suggested ways that the time taken might be reduced.  In sweep-based engine 

testing the engine control inputs are ramped continuously. This is the main idea 

behind the engine rapid measurement presented by Röpke et al. [16]. By 

eliminating the stabilization time and recording the measurement for shorter 

periods of time, the duration of testing is reduced. Röpke et al. [16] also presented 

an example for illustrating the differences between steady-state and transient 

measurements. They show that by using rapid measurement in spark ignition 

engines the time can be as little as one third of that normally required.   

Most legacy engine control schemes require steady state data, one of the main 

obstacles in using transient methods is that the dynamics of the system must be 

considered. To obtain steady-state estimates from transient measurements it is 

necessary to compensate for the engine and measurement system dynamics as 

exemplified by Sugita et al. [17]. They identify the dynamics of the system using 

an ARX model and effectively filter the data removing any dynamic distortion. 
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Transient exhaust gas emissions are studied and it is shown that using this 

method the accuracy of transient measurement can be improved. 

Hendricks and Sorenson [18] developed a naturally aspirated engine model which 

was validated using fast transients. In this study, different transient operations 

were performed to collect engine experimental data. Throttle steps were applied 

at constant speed, throttle steps at constant torque, acceleration using torque 

ramps and load steps with fixed throttle angle. In transient operation the engine 

is shown to operate over a wider range of its operating space. The results show 

accurate estimation for manifold pressure and air mass flow. 

Intake manifold filling dynamics in transient engine operation have been studied 

by Chevalier et al. [19]. By considering fast air mass flow, they concluded that the 

related dynamics can be ignored but there remained some doubt about the effect 

of transient operation on volumetric efficiency. They mentioned that four 

phenomena can affect the engine breathing performance during the transient 

operation. These are inertia, wave effects, heat transfer and friction effects. Inertia 

effects resist changes in intake air flow. Consequently, during tip-in, manifold 

pressures are often higher than expected whilst in tip-out they are often lower.  

Wave effects are produced by pressure pulsations in the intake system. During 

steady-state operation, a standing wave develops. There is insufficient time for 

the waves to settle down in transient operation. Depending on valve timing with 

respect to the peaks and troughs of the standing wave air charge can be higher 

or lower compared with steady-state. 

Chevalier et al.’s comparison of steady-state and transient volumetric efficiency 

using simulation shows that differences between the two are less than 2%. 

Further investigation on the validity of volumetric efficiency, defined over cycle, 

during transient engine operation was performed by Smith et al. [20]. By using 

simulation results, it was shown that volumetric efficiency in steady-state and 

transient operations are similar. This study shows that the pressure waves 

propagate rapidly along the intake system so can be neglected during engine 
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transient operation. The results of this study relied on the simulation results of an 

SI V8 engine with wide open throttle without any experimental verification. 

An experimental study was performed by Ward et al. [21] on a Ford diesel engine 

to investigate the accuracy and repeatability in transient compared with steady-

state operation. In addition to the mechanical and thermal inertia of the engine, 

they considered the instrument response dynamics. They performed their 

experiments varying torque and kept the engine speed constant. During the test, 

they observed a sudden drop in torque at the end of downward ramps due to rapid 

unloading of the dynamometer. They measured air flow using a vortex shedding 

flow meter but suggest the use of a faster air flow meter such as a hot wire sensor. 

Smith et al. [20] state that even if a hot wire sensor is applied, it is not fast enough 

to determine any differences. They concluded that the slower ramps correspond 

better to steady-state measurements than the faster ones. They find that the data 

at the start of ramps has more error due to the inertial lag and removing this part 

of the data was shown to improve results.  

Hendricks et al. investigate intake manifold filling dynamics [22] to determine a 

modified pressure and temperature state equation. The manifold pressure state 

equation is used to calculate instantaneous air mass flow considering the filling 

and emptying dynamics of the intake manifold. The authors evaluated a modified 

model under transient and steady-state operation, the results show the validity of 

the model during transient and steady-state operation. They estimated the air 

mass flow using normalized air charged and concluded that it is a simpler 

approach to those using volumetric efficiency. Again, there is a lack of empirical 

evidence for this study. 

1.5 Problem Statement 

In this study, methods associated with identification and use of hierarchical 

models are chosen to better define dynamic systems. A dynamic model is 

inevitably more complicated which makes it more difficult to incorporate within this 

framework. The primary application investigated is engine torque 
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characterisation. Conventional engine mapping methods are based on steady-

state data collection which is time consuming and consequentially expensive. The 

use of dynamic methods has been shown to significantly reduce the time required 

for system characterisation.  

In this study, the following problems are addressed; 

 The static form of hierarchical models encountered in literature are extended 

for use with structured dynamic data.  

 The identification approach used for determination of the hierarchical model 

parameters is improved for use with dynamic systems (these improved 

approaches may also be applied to static analyses). 

 The pre-processing approaches required prior to the identification are 

developed specifically to deal with the large quantities of data and undesired 

frequencies associated with dynamic tests.   

 The identification approach is developed such that transient and steady-state 

estimation of the system response is possible. This makes it possible to use 

the model for description of the system dynamics and determination of the 

system steady-state response required for legacy control schemes. 

1.6 Aims and Objectives 

The focus of this study is the development, identification and optimisation of a 

dynamic hierarchical nonlinear mixed effects models for use with dynamic 

systems. In this regard, the following objectives will be achieved: 

1. An efficient design of experiment technique will be developed to provide an 

efficient combination of design points. It will define the operating points where 

the experimental data need to be collected. 

2. The experimental data collection procedure will be properly determined 

according to the definition of the input and output variable at each level of the 

hierarchical model. 
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3. The collected data should be processed before applying it to the identification 

procedure in order to refine the response dynamic from the undesirable engine 

dynamics and variations. 

4. The configuration of the level-1 model will be selected using a dynamic model. 

The level-1 model should be identified using the experimental data. This is 

applicable for the level-2 initialisation procedure. 

5. The level-1 covariance model is required to be appropriately defined in order 

to improve the level-1 identification iteratively. 

6. The level-2 model is configured using a multi-dimensional model according 

the number of the level-2 factors. 

7. The conditionally linearization algorithm is extended to determine the 

hierarchical model parameters in a more efficient way. The principles of the 

gradient descent optimisation is applied for accelerating the optimisation 

procedure. 

8. The utility of the developed model is evaluated using dynamic torque data for 

the prediction of the dynamic and steady-state response of the engine for 

mapping purposes. 

1.7 Main Contributions 

The most significant contribution and the novel developments can be summarised 

as following: 

1. A dynamic model is specified for the engine torque transient operation. The 

model is developed using a dynamic conditionally linear repeated 

measurement approach. The notable achievements of the developed model 

are as follows: 

 The structure of data is reflected by the hierarchical model definition. 

 According to the general definition of a hierarchical model, there are two 

components of variance. 

 A mixture of fixed and mixed effects model parameters is included in the 

level-2 model definition. 
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2. The hierarchical nonlinear mixed effects model is identified using an 

expansion of the conditional first-order linearization approach. The maximum 

likelihood approach is used in the identification process. Accordingly, the 

following improvement is determined in this study to facilitate the identification 

procedure: 

 A novel univariate regression process is employed to estimate the level-2 

spline knot position and initialise the random effects parameters. 

 An original approach is implemented to estimate the initial values for the 

level-1 covariance model parameters. 

 An iterative generalised least square identification algorithm is 

implemented by considering the appropriate stability constraints and the 

expected physical behaviour of the response signal. Additionally, the 

causality and invertibility of the level-1 noise model is evaluated at the 

same time. 

 The principle of the profile likelihood is employed to reduce the number of 

parameters that need to be estimated. 

 Analytical gradients are derived and applied in the minimisation of the 

posterior-likelihood for level-2 coefficients and random effects separately, 

in order to accelerate the convergence of the optimisation process. 

 Likewise, analytical gradients are developed for the profile-likelihood 

optimisation procedure to speed up the convergence in the identification 

of the level-2 coefficients, and the level-1 and level-2 covariance models. 

 The multi-model interference is utilised to mitigate the model selection 

uncertainty and improve the inferential robustness. 

3. The multi-model D-optimal design technique is utilised to generate test plans 

to support the level-2 tensor product piecewise polynomial models. 

4. The time of the level-1 input and output signals are aligned in order to 

overcomes the disability of the hierarchical model in supporting the prediction 

of discrete factors.  

5. The engine load variation is efficiently determined and compensated during 

the level-1 dynamic model identification process. A novel approach is 
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employed to correct the data back to the target DoE factor. Additionally, the 

modified instantaneous experimental data is employed in the level-2 

identification procedure.  

6. In general, the application of the dynamic torque engine mapping improves 

the data collection procedure significantly in compare with the conventional 

steady-state approach. The predicted steady-state spark sweeps demonstrate 

good conformity to the experimental steady-state data.  

1.8 Structure of Thesis 

Literature pertinent to the work undertaken is reviewed in Chapter 2. Hierarchical 

mixed effects models are examined as one of the branches of the multi-level 

models and the hierarchical nonlinear mixed effects model structure is explained. 

Other possible kinds of model structure are described, and these are investigated 

to compare for use in the application. The discussion about the hierarchical 

nonlinear mixed effects models continues with introduction to the classic 

identification approaches in this field of study. The two-stage and first-order 

linearization approaches are described, and their features are compared 

according to the application considered in this study. Also, there is a brief review 

of the identification approach for the other possible structures of the hierarchical 

models. The common applications of the hierarchical models are mentioned, and 

the application of the hierarchical models in the specific field of the engine 

mapping is thoroughly investigated in Section 2.4. The other studies in engine 

torque modelling is reviewed to provide a background in the considered 

application for the evaluation in this study. 

Chapter 3 explains the required theoretical information for the level-1 and level-2 

analysis. Initially, the conditional first-order linearization method is introduced 

using an expansion of the first-order linearization method. This concept is applied 

and expanded more in the level-2 identification procedure. Additionally, the 

applied structure of the hierarchical torque model is defined in Section 3.1.1. The 

covariance model and nonlinear ARX model structures, applicable in the level-1 
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model analysis, in addition to the structure of the multi-dimensional model for the 

level-2 analysis are explained in this chapter. 

The experimental design techniques employed is discussed in Chapter 4. In this 

regard, the main concepts of the DoE are explored, and practical D-optimal 

designs are developed and evaluated according to the design sufficiency criteria. 

Additionally, the efficiency of the design is improved using a multi-modelling 

technique. A space-filling design is determined practically which is used for the 

comparison with the optimal design and it is more applicable for generating the 

first candidate design for the optimal design. 

In order to justify the application of the dynamic hierarchical model, the data is 

collected in the experimental engine test. The process for generating the dynamic 

data and the preparation of the data before applying in the hierarchical model 

identification is explained in Chapter 5. The dynamic engine test procedure and 

the test setup are briefly mentioned, and then the pre-processing steps such as 

filtering and subsampling decisions are explained in Section 5.2. 

The level-1 model analysis is presented in Chapter 6. The level-1 NARX model is 

constructed with the different configuration, and the most appropriate model is 

chosen for the rest of level-1 analysis. The procedure for the determination of the 

input-output delay is defined in Section 6.2 and the compensation of the level-2 

variation in the experimental data is identified in Section 6.3. The covariance 

model identification is determined using ARMA model principle. The major part of 

the level-1 identification procedure is developed using iterative generalised least 

square method. This is validated using the experimental data. Additional 

constraints are needed to be considered during the identification of a dynamic 

model in order to provide a sensible predicted steady-state spark sweep for the 

torque application. 

Chapter 7 focuses on the level-2 model identification process. Initially, the level-

2 models are defined in the matrix principle and the mixed effect level-1 

parameters are decided. The conditionally first order linearization is expanded in 
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Section 7.2. The identification method needs some assumptions and initialisation 

values in order to be converged after a number of reasonable iterations. 

Therefore, the level-2 knot selection method is explained in Section 7.3. 

Additionally, the level-2 and level-1 covariance parameters are respectively 

determined in Section 7.4 and Section 7.5. The developed approach for the 

analysis of dynamic data needs to be implemented in the optimisation algorithm 

which needs to provide the result in a sensible period of time. It can’t be applicable 

with current computational hardware, unless the principle of the gradient 

optimisation is implemented in addition to the identification algorithm. This is 

explained in Section 7.6. The dynamic hierarchical model, presented in this study, 

is empirically evaluated using the dynamic torque data. The results are assessed 

in both of dynamic and steady-state prediction separately. 

The presented study is summarised and concluded in Chapter 8. The validation 

results of the developed model are concluded and the benefit of the dynamic 

torque model in compare with the conventional approach is expressed in Section 

8.2. The contributions of this study are defined clearly by pointing to the related 

part of the document. Finally, the prospective extensions are suggested for the 

development of this study.       

The additional employed methods and principles in this study are gathered in 

appendices. The overall structure of the document and the connection of the 

different sections in the main chapters are illustrated in Figure 1-4. 
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Figure 1-4 The main sections of the document 

  



19 
 

Chapter 2 Literature Review 

There are various approaches to deal with structured data. There are fundamental 

differences in these methods and the various approaches to defining a prediction 

model are diverse. In this section, research related to this study will be 

investigated in order to identify the research gaps associated with multi-level 

modelling approaches. 

2.1 Hierarchical Mixed Effects Models 

Multi-level models are used to describe populations which are grouped 

subsidiaries of other populations i.e. the data is nested. The dependent variables 

at the lowest level can be written using a linear or nonlinear equation with random 

residuals at the higher level [23].  

The term “random effects” refers to the random variation associated with the 

model coefficients [9], contrarily “fixed effects” are associated with model 

coefficients that are not subject to random variation and are therefore fixed.  Since 

the only randomness in a fixed effect model is associated with the level-1 

residuals, analysis of these type of models can easily be performed using ordinary 

least squares regression. This is an attractive robustness property in fixed effects 

model estimation that can be extended to models of more than just two levels 

[14].  

The model is considered to have mixed effects if the model coefficients 

themselves are random in nature. The terminology can be confusing, and it 

should be noted that this refers to the type of model coefficients. Coefficients that 

are fixed within groups cannot be considered random coefficients. Fixed effects 

are estimated using least square or maximum likelihood approaches, while 

estimation of the random effects is through linear unbiased estimation. It is 

suggested by Snijders and Boster [23] to use a random coefficient model when a 

covariance model can be applied to the analysis of uniquely defined data groups. 
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Grafarend [24] presents an interesting schematic names the magic triangle for 

comparison of the various possible model types. This can be seen on Figure 2-1. 

According to this shape, a mixed effects model can be determined whenever 

there are both random and fixed effects parameters for the model. 

 

Figure 2-1 Magic triangle represents different type of possible models [24] 

Regularly, researchers categorize mixed effects regression models as below [25]: 

 Linear mixed effects models (LME) 

 Generalized linear mixed models (GLMM) 

 Nonlinear mixed effects models (NLME) 

 Frailty models 

Using a linear regression model for cross-sectional data with additional random 

effects generates LME methods applicable for longitudinal data analysis. A 

logistic regression model can be determined where the longitudinal response is a 

binary variable. If the logistic model consists of any random variables, then it is a 

Generalized Linear Mixed Model (GLMM). A frailty model is formulated using 

random effects in a standard survival model. Survival model is associated with 

event-time data which determines in times to an event of interest. It can be used 
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to describe variation among data groups and considers correlation in each data 

group [25]. 

Different types of models can be used for formulation of the hierarchical model. 

The simplest is a polynomial model which can be regarded more generally as a 

Taylor expansion. The number of unknown parameters depends on the order of 

the polynomial. For multi-variable models, it is better to use scaled variables to 

prevent any estimation problem or to apply the Gram-Schmidt method to make 

polynomial terms orthogonal. This can be done to obtain a more accurate model 

fit with higher order polynomials [14]. 

Linear models are capable, simple and can provide reasonable fit. Since, in many 

cases, not enough information about the system is provided by such a simple 

model, the response associated with the covariates is limited to a local region. In 

comparison, nonlinear regression models can provide a better description of the 

system, with better extrapolation of the data. It can also be simpler to relate each 

nonlinear model parameter to a physical feature of the system. There are no 

particular closed-form or analytical algorithm for determining a nonlinear model, 

therefore iterative methods are usually deployed to identify these type of models 

[25]. 

A piecewise polynomial-spline regression model can be defined using knots to 

join them on the x-axis. A cubic spline regression model with a continuous second 

derivative at the spline knot is more favourable for representing physical data. A 

polynomial model with spline terms is much more flexible, capable of 

parsimoniously representing a nonlinear system. The identification process 

associated with a spline model is more complicated than a polynomial model. The 

number of spline knots in addition to their position and degree need to be 

determined. In this regard, Akaike Information Criteria (AIC) or cross-validated 

log-likelihood functions can be applied to prevent model overcomplexity and 

overfitting caused by unnecessary spline knots. Often it is better to use equally 

spaced or quantile spline knots for a spline model. A general form of the extended 
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M-th degree polynomial model with an additional N spline knots is shown in 

Equation (2-1) [14]. 

𝑓(𝑥) =  ∑ 𝛼𝑚

𝑀

𝑚=0

𝑥𝑚 + ∑𝛼𝑀+𝑛

𝑁

𝑛=1

(𝑥 − 𝛾𝑛)+
𝑀 (2-1) 

where the term of (𝑥 − 𝛾𝑛)+
𝑀 defines a truncated polynomial term in the spline knot 

𝛾𝑛 which is (𝑥 − 𝛾𝑛)
𝑀 if 𝑥 > 𝑎 or 0 if 𝑥 < 𝑎. Similarly, for (𝑥 − 𝛾𝑛)−

𝑀, the value is 

(𝑥 − 𝛾𝑛)
𝑀 if 𝑥 < 𝑎, otherwise it is 0. 

Using too many knots can reduce the smoothness of the model. To prevent a 

non-smooth model caused by large number of spline knots, the regression model 

coefficients can be penalized as shown by De Leeuw and Meijer [14]. 

Various methods are proposed for estimation of hierarchical model parameters. 

The models must be able to summarize the distribution of the observed data. 

Additionally, the distribution of the repeated samples obtained under similar 

conditions must be provided. Different approaches can be applied to determine 

the confidence in the likelihood of observing similar events, for example,  

variability, standard error, confidence interval and so on [10]. 

Maximum Likelihood estimation is the most popular technique for assessing 

structural and variance parameters of multilevel models. The ML approach treats 

the uncertainty of the observation data by determining the highest likelihood of 

the values of the unknown parameters given the data. For this purpose, a 

likelihood function is determined according to the sample distribution of the 

outcome. It may also be used to obtain information about other parameters, for 

example fixed effects, random effects or even the covariance. ML provides an 

acceptable estimation even for small sample sizes or where the random variables 

originate from samples that are not normally distributed.  

The ML approach comprises an iterative estimation of the weight of random 

parameters with the aim of maximization of the likelihood function. A log likelihood 

function may alternatively be applied in some cases to make the estimation 
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process easier. For example, for sample data obtained over the range [0 1] 

application of the loglikelihood makes data differentiation easier. The 

minimization of negative loglikelihood function is equivalent to maximisation of the 

likelihood function [10]. 

The covariance and mean are fundamental to ML estimation. There is a better 

estimation for these parameters with large and complete data.  Accordingly, it is 

often better to delete individuals with the missing or corrupted data before 

applying them in ML estimation. Although, the estimation of model parameters 

can become biased when the number of eliminated individuals increases. the Full 

Information Maximum Likelihood (FIML) technique can be applied for determining 

intra- and inter- individual covariance matrices. The general form of the FIML is 

expressed in Equation (2-2) [10]. 

𝐹𝐹𝐼𝑀𝐿 =  
1

𝑁
∑(𝑙𝑜𝑔|𝑅𝑖| + (𝑧𝑖 − 𝜇𝑖)

′ 𝑅𝑖
−1 (𝑧𝑖 − 𝜇𝑖) + 𝐾𝑖)

𝑁

𝑖=1

 (2-2) 

where 𝑧𝑖, 𝑅𝑖 and 𝜇𝑖 are vector of complete data, covariance matrix and means of 

the entire sample respectively, and 𝑁 is the sample size. 𝐾𝑖 is a constant value 

which represents the number of complete data points, calculated using Equation 

(2-3) where 𝑃𝑖 is the number of variables [10]. 

𝐾𝑖 =  log (2𝜋) × 𝑃𝑖 (2-3) 

Only a single error term is included within a standard regression model, this can 

cause some adverse effects on time series data that can be overcome by 

including random effects. In Figure 2-2 the overall trend of a mixed effects model 

with random effects is contrasted with a fixed effect model which has variation 

associated only with the single error term. Both diagrams show a growth chart for 

people of various ages, it is clear that the fixed effect model does not provide a 

good estimate with height fluctuations occurring as age is increased. Due to the 

existence of random parameters inside a nonlinear function, the behaviour of 

nonlinear mixed effects models are different to a marginal mixed model [26]. 
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In hierarchical mixed effects model it is crucial to choose when to apply random 

or fixed parameters. According to various studies, it is recommended to consider 

fixed effects if the level-2 coefficients are of interest otherwise random effects can 

be applied. Another suggestion is that if the data groups represent any particular 

group of individuals, then a fixed effect model should be used [9]. 

 

Figure 2-2 Fixed (left) and mixed (right) effect time series models [26] 

2.2 Hierarchical Nonlinear Mixed Effects Model Structure 

There are many cases when the application of hierarchical models will lead to a 

better model, these are summarised by Davidian and Giltinan [15]. A multi-level 

model is suggested: 

 Whenever a particular response is repeatedly measured using a number of 

different inputs.  

 When a model needs to be provided to determine the behaviour of the system 

for every individual measurement separately. Use of a hierarchical model 

maintains some consistency across the models but allows for variation of the 

coefficients within the models. 



25 
 

 If nonlinear dependency need to be incorporated in the model between the 

coefficients and the response. 

 When variation in the data is not homogeneous. Therefore, it needs to be 

determined using a mean response variation or a serial correlation at both 

levels. 

The general form of hierarchical nonlinear models is introduced as follows 

[15][27]: 

Level-1:      𝑦𝑖 = 𝑓(𝑢𝑖, 휃𝑖) + 𝑒𝑖    ,   𝑒𝑖~𝒩(0, 𝜎
2𝑅𝑖(휃𝑖 , 𝜉))       (2-4) 

Level-2:      휃𝑖 = 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖)        ,   𝑏𝑖~ 𝒩(0, 𝐷(𝜔))  (2-5) 

where 𝑦𝑖 is the vector of experimental observations for the 𝑖𝑡ℎ experiment unit. A 

non-linear function 𝑓(𝑢𝑖 , 휃𝑖) can be employed as a function with the specific 

parameter vector 휃𝑖. The level-1 error term 𝑒𝑖 is assumed to be normally 

distributed with the covariance term 𝜎2𝑅𝑖(휃𝑖, 𝜉). The covariance term is formed 

using 𝜎2 as variance and 𝑅𝑖(휃𝑖 , 𝜉) as the correlation terms dependent on 𝜉  as the 

vector of level-1 dispersion parameters.  

Likewise, 𝑎𝑖 are level-2 covariates, engine speed and load in this study, and can 

be expressed using 𝑎𝑖 = (𝑁𝑖, 𝐿𝑖). 𝛽 is the vector of fixed population parameters 

and  𝑏𝑖 is the vector of random effects parameters related to the 𝑖𝑡ℎ experiment 

which is normally distributed with the corresponding level-2 covariance defined 

by 𝐷(𝜔). In the hierarchical model, every level-1 parameter in the parameter 

vector 휃𝑖 can be determined using a separate level-2 equation. Some or all of the 

elements of the level-1 parameter vector 휃𝑖 can be altered using fixed or mixed 

effects. 

Here, the structure presented is the general form of level-2 model which is the 

parametric definition. This definition of the model is applicable whenever there is 

any pertinent covariate information, if not, the level-2 model defined 

nonparametrically or semi-parametrically [15]. Accordingly, the variation of 휃𝑖 is 

not defined using any form of parametric equation for level-2 and there is no 
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assumption about the level-2 distribution. Instead, a distribution function is merely 

considered for 휃𝑖 without any restriction and the level-2 variation is determined 

using 휃𝑖~𝐻, where 𝐻 can represent any type of distribution.  

In contrast with the parametric structure, the level-2 covariates 𝑎𝑖 are not provided 

directly in the nonparametric construction and prior knowledge about the system 

is dismissed during model training.  A nonparametric approach is not suited for 

the definition of hierarchical models for applications with defined level-2 factors. 

A semi-parametric model permits level-2 covariates in the model but is not 

normally distributed as with the parametric model. In this case, the model is 

provided using a combination of the two previous model definitions. A 

semiparametric model incorporates a parametric function for 휃𝑖 while there is 

more flexibility in the distribution of random effects. Consequently, the 

construction of the level-1 model remains similar to Equation (2-4) and the level-

1 error term 𝑒𝑖 is assumed normally distributed as before, but  level-2 of the model 

can be expanded as below [15]. 

Level-2:      휃𝑖 = 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖)  ,        𝑏𝑖~h  , h𝜖ℋ  (2-6) 

Where ℋ represents the class of smooth densities including h as a density. 

Another approach is the use of a prior distribution for all or some of the level-1 

and level-2 parameters at a third stage of the model (level-3). In this case the first 

two stages are expressed similarly to Equations (2-4) and (2-5) using a 

multivariate normal distribution at level-1 and level-2 of the model. Level-3 of the 

model is the hyperprior distribution. Different types of distribution can be assumed 

for each parts of model at this stage [15]. 

Both semi-parametric and Bayesian approaches are applicable whenever there 

is no prior knowledge about the distribution of the model parameters. If there is 

enough information about the structure of the model and the random effects 

parameters can be determined normally distributed, then the Bayesian and semi-

parametric model structure adds unnecessary complexity to the model. 
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 Generic Identification Approaches 

The general form of a hierarchical model is now considered as presented in 

Equations (2-4) and (2-5). In this regard, there are various identification 

techniques suggested for hierarchical model identification. Individual estimation, 

which also known as two-stage regression, is an algorithm that deals with 

hierarchical data. It must be noted that the two-stage regression approach 

estimates the hierarchical model efficiently whenever enough measured data is 

available [27]. 

Initially, level-1 model coefficients are estimated for each individual model. At this 

stage of the model, the Generalized Least Square (GLS) method can be used for 

approximation of level-1 coefficients. Thereafter, any identification procedure can 

be employed to identify coefficients of the hierarchical model [15]. This technique 

is employed by Cary [28] for engine applications. 

After estimation of individual model coefficients (휃𝑖), various procedures need to 

be considered for construction of the level-2 analysis. The two-stage approach 

determines the level-1 coefficients (휃𝑖
∗) as true 휃𝑖 which suggests the use of the 

mean and covariance of the 휃𝑖
∗ for estimation of the level-2 model. The main issue 

with this is that the level-2 covariance estimate is upwardly biased because of the 

lack of certainty in the estimation of the 휃𝑖. The global two-stage method applies 

uncertainty in the estimation of the 휃𝑖. In this case, an asymptotic level-2 

covariance matrix is determined using a loglikelihood approach for the estimation 

of 휃𝑖 and the level-2 covariance matrix. 

As mentioned before, having sufficient data is the main prerequisite of the two-

stage regression technique, the application of this technique for sparse data is 

restricted. It is important to provide a reliable local fit before level-2 identification 

however this is not always possible. This can be caused by lack of data, 

environmental effects or issues associated with the measurement of some 

individuals. Consequently, an efficient local fit cannot be generated and must be 

excluded when the level-2 model is identified. Ignoring some of the level-1 models 
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increases sparsity of the data and simultaneously decreases the reliability of the 

two-stage regression for training an effective hierarchical model [15].  

In the above situation, linearization methodology can be applied. An explicit form 

of marginal likelihood can be determined using addition of both random effects 

and individual errors. 

Recall Equations (2-4) and (2-5), which defines the general form of level-1 and 

level-2 of the hierarchical model. The nonlinear and linear form of hierarchical 

models are fundamentally different when they need to deal with the marginal 

distribution for the responses given random effects. This can be solved using the 

marginal distribution of the level-1 response 𝑦𝑖, Equation (2-7) [15]. 

∫𝑝𝑦|𝑏(𝑦𝑖|𝑥𝑖1, … , 𝑥𝑖𝑛, 𝑎𝑖, 𝛽, 𝜉, 𝑏)𝑝𝑏(𝑏|𝐷) 𝑑𝑏  (2-7) 

A normal distribution is assumed for 𝑝𝑦|𝑏 and 𝑝𝑏 in the hierarchical linear models. 

Therefore, the above integration can be evaluated considering the independency 

of the level-1 covariance matrix from the level-2 random effect term. On the other 

hand, no feasible solution can generally be defined for Equation (2-7) in 

hierarchical nonlinear models. Instead the solution can be estimated using ML 

estimation. The level-1 noise term in Equation (2-4) is expanded using Cholesky 

decomposition [29] of the level-1 covariance matrix 𝑅𝑖 = 𝑅𝑖
1/2
𝑅𝑖
𝑇/2

. 𝑇 is transpose 

of matrix. Equation (2-4) is then expressed as follows. 

𝑦𝑖 = 𝑓(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖)) + 𝑅𝑖
1/2(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖), 𝜉)𝜖𝑖  (2-8) 

where 𝜖𝑖 is independent from 𝑏𝑖 with the zero-mean value. Here, dependency of 

level-1 model on level-2 random effect is clearly shown by 𝑓(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖)).  

A general solution is proposed according to the expectation of the random effect. 

The simplest form, the first order linearization, employs Taylor series expansion 

of Equation (2-8) in 𝑏𝑖 with the assumption of 𝐸[𝑏𝑖] = 0. As a result, the 

approximation of (2-8) can be shown as below [30]. 
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𝑦𝑖 ≈ 𝑓(𝑔(𝑎𝑖, 𝛽, 0)) + 𝐽𝑖(𝛽, 0)∆𝑖(𝛽, 0)𝑏𝑖 + 𝑅𝑖
1/2(𝑔(𝑎𝑖, 𝛽, 0), 𝜉)𝜖𝑖  (2-9) 

where 𝐽𝑖 is the derivative of the level-1 function 𝑓(휃𝑖) in respect to level-1 

coefficients 휃𝑖. Also ∆𝑖 is the derivative of 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖) with respect to the level-2 

random parameters 𝑏𝑖, which are evaluated at 𝑏𝑖 = 0. In this solution, the level-2 

variation is only provided as an additive linear term 𝐽𝑖(𝛽, 0)∆𝑖(𝛽, 0)𝑏𝑖. Therefore, 

the model is approximated with an imprecise estimation of the fixed level-2 

parameter 𝛽 if the variance component is of significant magnitude. In order to 

improve approximation of the model, Lindstrom and Bates [30] suggest taking a 

Taylor series expansion about a value closer to 𝑏𝑖 rather than 𝐸[𝑏𝑖] = 0. This 

concept will be explained in Section 3.1. 

The previous methods, both two stage regression and the first-order linearization, 

are useful for fully parametric models. For nonparametric hierarchical structures, 

described in Section 2.2, the conditional density depends on the level-1 

covariance parameter and inputs. Therefore, it can be expressed as the product 

of the marginal distributions. Two different methods can be employed to extract a 

nonparametric maximum likelihood estimation according to the expectation 

maximization and design-based algorithms, both explained in [15]. The cost 

function is acquired as a nonparametric maximum likelihood. In the case of a 

semiparametric structure where the level-2 covariates are used in the model 

structure, a smooth nonparametric maximum likelihood cost function is provided 

for the identification [15]. 

The marginal density is more complicated when an assumption about a prior 

distribution is used but can be evaluated using a complex multi-dimensional 

integral. Instead, it is suggested to use a conditional distribution and replace the 

covariance parameters with the a priori known, or approximated values in order 

to simplify the approach. A full discussion about Bayesian approach can be found 

in [15]. 
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2.3 Common Applications of the Hierarchical Models 

Researchers in various fields have applied the multi-level modelling technique. 

The features of nonlinear mixed effects models facilitate inter-subject variation 

analysis of the pharmacokinetic processes for determination of dosing guidelines. 

It has also been applied to HIV virus progression dynamics, veterinary, forestry 

and agricultural study [27]. Due to the clustering ability of these types of models, 

they are an appropriate tool for comparison within and between data groups.  

The  NLME model is shown to have a lower within data group (local data) error 

and narrower confidence interval compared to other non-compartmental analyses 

[31].  Lorino et al. [32] use NLME for longitudinal data. To prevent over 

parameterization of the problem, a fixed-effect model was initially developed, and 

then random effect parameters were added separately to the model. In the last 

step, they introduced several factors to combine with the NLME model. Applying 

random effects to the fixed model had a significant effect on relative standard 

error which was 3 time lower than the standard error for a fixed effect model. 

2.4 Application of the Hierarchical Models in Engine Mapping 

A two-stage modelling approach can be applied to many aspects of engine 

modelling. Several examples of application for engine mapping purposes are 

available [33]–[35]. In these studies, spark sweeps were collected for different 

combinations of engine speed, load, air-fuel ratio and exhaust gas recirculation 

ratio. Data from 27 spark sweeps were repeated 10 times and a linear model with 

segmented polynomial term fitted, Equation (2-10) [33].  

𝑦 =  𝛽0 + {
𝛽𝐿(𝑥 − 𝑀𝐵𝑇)

2     𝑖𝑓 𝑥 ≤ 𝑀𝐵𝑇

𝛽𝑃(𝑥 − 𝑀𝐵𝑇)
2     𝑖𝑓 𝑥 ≥ 𝑀𝐵𝑇 

} (2-10) 

Here 𝛽0 is the peak torque, −𝛽𝐿 and −𝛽𝑝 are the quadratic coefficients before and 

after MBT (Maximum Brake Torque) respectively. Since the above model was not 

accurate enough at low engine speeds and high loads, a quadratic linear 

segmented polynomial model was chosen instead using trial and error. In the 
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second stage of the model, the variation of peak torque, MBT and 𝛽𝐿 were 

modelled using a separate polynomial model for each, based on engine speed, 

load and air-fuel ratio as covariates. ML estimation is used to identify the model 

parameters and a correlation matrix of the random errors for every spark sweep 

was simplified using an identity matrix. The model developed gave good levels of 

prediction across various engine operating conditions. 

The studies mentioned above were later reviewed by Goldstein and Lewis [36]. 

Since there was a lack of proper experimental design in [33] [34], The objectives 

of [36] was presenting an efficient design for two-stage repeated measurement of 

engine data. Three factors were used, engine speed, load and air-fuel ratio, in the 

experimental design. First, an equally spaced (space-filling) design was 

considered for every design factor. The design was three-dimensional with 27 

design points which included 3 unique values of each design factor. The results 

showed that this is an insufficient design. In the next step, they revised their 

design using a two-dimensional design with 25 unequally spaced design points 

for engine speed and load. They assumed a parabolic relation between torque 

and spark advance but formed their regular grid designs without considering the 

chosen model structure. This type of designs was not sufficient and did not cover 

all of the engine operating region. 

In another study, hierarchical models were developed and applied to the design 

of an engine control strategy [37]. An equally spaced grid design with torque and 

engine speed dimensions was generated with 25 points. Polynomial regression 

models were fitted to evaluate fuel consumption, emissions, throttle opening and 

injection timing for each design point in steady-state conditions. An optimal 

experimental design for hierarchical models is proposed, using a sequential DoE 

and employing a confidence region for both the linear and nonlinear models.  

A more comprehensive study on the application of hierarchical engine models 

considers a free-knot B-spline and radial basis function for level-2 of the model.  

The models presented in this study were applied mainly for torque modelling, N2O 

emission and combustion stability. An optimal design was developed for a hybrid 
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B-spline polynomial (HBSP) model by minimizing the average prediction error 

variance (V-optimal design). Applying HBSP models is beneficial for engine 

mapping since they can provide efficient prediction over the whole engine 

operating region.  

Cary [28] also outlines an iterative generalized least square (IGLS) with AICc and 

BIC used in the model fitting process.  The level-1 model parameters were 

investigated to find if it is necessary to apply any random effects at level-2. In this 

regard, initially all the model parameters were defined as mixed effects 

parameters, then at each step, parameters were changed to fixed effects and a 

new hierarchical model was developed separately. The generated models were 

compared using an information criteria technique and the level-2 covariance 

matrix of each model was analysed using eigen-values to find over-parameterised 

models. An EGR valve flow model was used to demonstrate the performance of 

the mixed-effect multi-level models. Additionally, the application of a multi-

objective optimisation technique is suggested for a more realistic model. 

According to the fundamentals described by Cary [28] the study uses a 

hierarchical torque model with first-order linearization to characterise a 

turbocharged 1.6 litre engine. Static engine torque data were measured based on 

a steady-state process involving spark sweeps. The model introduced 

incorporates spline terms at both stages of the hierarchical model. The design of 

experiment in this study was generated using fixed engine speed and load. The 

model fitting was performed using a modified Iterative Generalized Least Square 

(IGLS) approach according to the profile likelihood [38]. 

Hierarchical modelling techniques are appropriate for use with sweep-based 

engine data. Rose et al. [39] uses sweep based engine mapping data to fit a 2-

stage regression model, spark sweep data was collected from a 1.0L 8-valve 

engine. The hierarchical model is used to study engine torque production whilst 

spark advance is changed, engine speed, load and the air-fuel ratio are 

maintained at a constant value. A V-optimal design with 49 points was established 

in MATLAB’s MBC (Model based calibration) toolbox. Different types of inter-
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sweep model such as cubic polynomial, 2-knot spline, 4-knot spline were 

compared using Lindstrom’s Generalised Cross Validation (GCV) criterion. It is 

noted that an efficient and more realistic engine test plan can be determined using 

optimal design methods. The model parameters were identified using ordinary 

least square (OLS) and maximum likelihood estimation (MLE). Figure 2-3 shows 

some MLE example fits to the spark sweep data [39]. 

 

Figure 2-3 Fitted model to the exampled spark sweep data using MLE [39] 

The hierarchical modelling approach was also applied to described throttle air 

flow dynamics by Khan [40]. In this study, transient data was measured using a 

throttle ramp and data refined visually using MBC toolbox. Although many 

different types of experimental design were introduced, the author used a space 

filling design with Latin Hypercube Sampling (LHS). Therefore, there are many 

design points in the DoE, the final design used 202 points for 4 design factors 

including engine speed, load and intake cam phase and exhaust cam phase. 
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Growth curve including an exponential term was proposed for level-1 to generate 

a sigmoid response with a concave pattern. A second-degree polynomial, RBF 

(Radial Basis Function) and MLP (Multi-Layer Perceptron) network models were 

investigated for use as the level-2 model the latter showing a better response with 

lower RMSE in comparison. 

2.5 Engine Torque Modelling 

Katsumata et al. [41] presented an engine torque model to calculate cyclic torque 

using cylinder pressure, heat release rate and intake air models. They evaluated 

the transient torque estimate of their suggested model using a four-cylinder 

natural aspirated engine. The comparison of experimental and simulation results 

verified accuracy of the models during an increase in throttle angle. Heat release 

rate of the engine is a key feature, the study shows that there are some limitations 

in engines with particularly fast combustion where estimation of the heat release 

rate is more difficult. 

A Hammerstein nonlinear input-output model is used for development of a SI 

engine torque model by Togun et al. [42]. Nonlinear autoregressive exogenous 

(NARX) and Nonlinear Autoregressive Moving Average with Exogenous input 

(NARMAX) models were determined as appropriate model types for modelling 

and control of internal combustion engines in both online and offline applications. 

For both applications the NARMAX model can be identified using a recursive 

method or group data handling for nonlinear model parameter identification. Since 

the response of the combustion engine is not instantaneous due to manifold 

pressure dynamics this was considered in the torque model. The delay used was 

roughly proportional to the engine speed and was called the induction to power 

stroke delay. A linear regression approach was adopted for a nonlinear 

Hammerstein model. In this regard, they considered a linear ARX model for the 

part of the Hammerstein model with dynamic and linear properties. The 

nonlinearity of the model was simply applied using a polynomial system. They 

applied the PRBS input signal to simulate the model output and identify the 
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Hammerstein model. Finally, they evaluated the model experimentally using a 

carburetted naturally aspirated four-cylinder engine. 

Engine torque estimation techniques were investigated by Lee et al. [43]. They 

applied two techniques, one stochastic and the other based on frequency 

analysis. Both methods show fast and accurate estimation. The stochastic 

estimation technique is based on signal processing. In this method, the physical 

system complexity is transformed automatically to a simple correlation function. 

In frequency analysis, the discrete Fourier transform is used for filtering the speed 

signal. In this process, a single-input and single output model (SISO) was 

considered for the engine crankshaft dynamics. The SISO model consisted of 

indicated torque as an input and crankshaft speed as an output and their relation 

was defined in the spatial frequency domain.  

They evaluated the model using experimental data from a 4-cylinder SI engine 

and considered real-time estimation. Initially, a stochastic estimation method was 

used for the indicated torque estimation during engine operation and the 

coefficients of the basis function were estimated and applied for every instance. 

The online estimated results were compared to the actual values. Although it 

exhibited an overshoot on the peak torque, the estimation was good. In this study, 

the presented torque model was only evaluated at low engine speeds and engine 

tests were performed during steady operation. 

In another study, Cavina and Ponti [44] estimated torque using frequency analysis 

of the engine block. In this study, mean value of the indicated torque and load in 

every cycle were estimated using a signal processing methodology based on a 

Discrete Fourier Transform. They evaluated their algorithm using a two-cylinder 

diesel engine. The algorithm demonstrated fast and accurate indicated torque 

estimation, though there were some fluctuations in the estimated torque when the 

flywheel velocity was nearly constant. They included the flywheel velocity signal 

in the estimation and improved the result compared with the use of engine block 

vibrations alone. 
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2.6 Other Dynamic Engine Modelling Solutions  

Other forms of model have also been applied to determine a predictive model for 

engine dynamics. These include Linear Parameter Varying (LPV) Models [45]–

[47], Mean Value Engine Models (MVEM) [47]–[49] and artificial neural network 

[50]–[52]. 

Complex nonlinear systems can be represented using a collection of linear 

systems. Linear models are defined around an operating point and are valid over 

a certain region [53]. An LPV system contains a grid of local Linear Time Invariant 

(LTI) models in a scheduling space. The LPV system connects these LTI models 

using interpolation [54]. This type of model is restricted to linear interpolation and 

needs an initial value in a lookup table for offsetting the predicted response. 

Importantly, there are no random effect parameters and covariance terms in the 

LPV models. 

A mean value engine model is typically a mathematically compact engine model 

that is computationally inexpensive. MVEMs are used to predict engine behaviour 

based on cycle average values [55]. In a comparative study by Karlsson and 

Fredriksson [56], the MVEM was determined to be an efficient approach for 

simulation and control design of a nonlinear engine model. One of the most 

common applications of the mean value engine model is intake manifold air flow 

modelling [2]. This type of model normally uses an event-based approach which 

local dynamic variation.  

Artificial neural networks models Inspired by biological neural networks employ a 

computational network to simulate the system [57]. The basic configuration of 

neural network models consists of neurons and their connections. There is a 

numerical weight on each connection. Weights demonstrate the relation between 

two neurons and the behaviour of the network. Besides the weight, there is an 

offset value called the bias. The model error is divided into two parts of bias error 

and variance error. Bias error emerges when the model is not flexible enough to 
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fit to the real data. The bias error is a comparison between a real system with 

expected model output and it can decreased by a more complex model [58]. 

Artificial neural network models are applied for modelling different systems and 

its capabilities have attracted automotive engineers to apply it to estimation of 

engine dynamics [59]. A limitation is the fact that global covariance parameters 

cannot properly be defined compared to an hierarchical model [60]. 

The other dynamic modelling technique is the usage of Kalman filter. It is mainly 

applicable in control applications. This method provides an estimation of states 

for a dynamic model where a direct measurement is infeasible. Therefore, Kalman 

filter is employed in mathematical models for an on-board estimation of a dynamic 

response. The dynamic model is developed in a combination of the other 

modelling techniques such as mean value model which provides an on-board 

observer for intake manifold pressure dynamics [61][62] or torque of the engine 

[63].  

Although, all of the mentioned methods can be implemented successfully to 

define dynamic behaviour they are not as flexible as hierarchical nonlinear mixed 

effects models in the application of the variance components at both levels of the 

model. Therefore, the lack of this feature in these algorithms makes them less 

favourable for a practical application. 

Generally, the random effects variation explicitly takes the effect of unknown 

variations into account for the model identification. For example, this can be 

related to variations of the engine or test cell conditions on a day to day basis in 

the case of engine mapping applications. The model provided by the LPV 

technique completely neglects such a variation and generates a model with a 

simple linear interpolation for the global model. Therefore, The LPV model can 

solely be justified for fixed conditions when the data collected. Therefore, the 

application of LPV models is completely impractical for real applications and is 

just useful for a limited range of applications. On the other hand, a properly 

implemented hierarchical mixed effects model generates a universal model by the 
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application of random effects variation and covariance existing in both stages of 

the model. Subsequently, a hierarchical nonlinear mixed effects model is 

introduced in this study to describe complex dynamic systems. 

2.7 Research Gaps 

In this chapter, research topics related to the current study were reviewed. The 

principles of multi-modelling techniques are wide in scope. The hierarchical 

nonlinear mixed effects models are generally employed in pharmacokinetics and 

biological studies. One of the main features of these studies is that the data is 

collected over a long period of time. Therefore, it is possible to organise data in 

different data groups and use a hierarchical model for the analysis. In addition, 

the size of data is also more limited, and the covariance matrix has a compact 

structure. 

The application of hierarchical nonlinear mixed effects models was investigated 

in the field of engine mapping. Conventional engine mapping techniques are 

based on steady-state data which can be simply categorized for multi-modelling 

approaches. The use of these types of models for dynamic systems has not 

previously been undertaken. It is much more complicated to determine an efficient 

model for such data. 

A parametric structure is chosen for an easier interpretation of the model 

parameters in comparison with a semi-parametric or non-parametric structure. 

Although, the Bayesian approach can provide a more comprehensive structure, 

the complexity of this method makes it less favourable for the analysis of dynamic 

data. 

In order to determine the hierarchical model, a practical identification technique 

needs to be selected and developed properly for the analysis of dynamic data. It 

must be noted that the data is highly dynamic and requires pre-processing before 

it is possible to use it in the identification. 
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First-order linearization approach can be applied. Nevertheless, the difficulty of 

dynamic data analysis demands some critical changes for its use. Primarily, the 

algorithm must be simplified by determining a proper starting position for the key 

parameters which can reduce the number of iterations required for achieving an 

acceptable result. The algorithm needs to be expanded to include conditional first 

order linearization. Also, it is better to use a level-1 identification algorithm 

separately to make an initial estimate the level-1 coefficients and covariance 

model.  

Dynamic data collection techniques supply more data and information about the 

system in a much shorter period of time, compared with steady-state. Therefore, 

the size of the dynamic data is incomparable with the type and size of data 

previously used in hierarchical model applications. Here, the difficulty of the 

dynamic data demands more complex level-1 and level-2 models and the size of 

data results in much larger covariance and random effects matrices. Thus, it is 

necessary to consider an additional improvement to the identification algorithm in 

order to provide a practical method undertake the computation associated with 

the identification in a reasonable amount of time. In this regard, the analytical 

gradient optimisation is preferable to a generic optimisation method.  

In conclusion, it is expected that the general application of hierarchical mixed 

effects model can be developed for dynamic data. The novelty of the 

aforementioned modifications and conditional linearization will significantly 

expand the functionality of this method for the analysis of complex systems.  
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Chapter 3 Theoretical Methodology 

3.1 Conditional First-order Linearization 

Different methods for hierarchical model identification were briefly discussed in 

Section 2.2.1. Here, the maximum likelihood estimation (MLE) method is 

presented based on the marginal density for 𝑦𝑖 with  

𝑝(𝑦|𝑢𝑖 , 𝑎𝑖, 𝛽, 𝜎
2, 𝜉) = ∏ ∫𝑝(𝑦𝑖|𝑢𝑖 , 𝑎𝑖, 𝛽, 𝜎

2, 𝜉, 𝑏𝑖)𝑝(𝑏𝑖|𝐷) 𝑑𝑏𝑖
𝑚
𝑖=1    (3-1) 

As was discussed in Section 2.2.1, there is no closed-form expression for this 

integral in the case that the model is nonlinear in 𝑏𝑖, first-order conditional 

linearization can be used to determine a solution. Lindstrom and Bates [30] 

showed that a Taylor series expansion about a zero value is not satisfactory as 

previously shown in Equation (2-9). As an alternative solution, they suggest using 

a value closer to 𝑏𝑖 rather than its expectation, 𝐸[𝑏𝑖] = 0. Therefore, a Taylor 

series expansion is taken about a value of 𝑏𝑖 = 𝑏𝑖
∗ . The approximated model is 

defined in Equation (3-2). 

𝑦𝑖 ≈  𝑓(𝑢𝑖 , 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗))  +  𝛺𝑖(𝛽, 𝑏𝑖

∗)(𝑏𝑖 − 𝑏𝑖
∗)  +  𝜎𝑅𝑖

1/2
(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖

∗), 𝜉)𝑒𝑖
∗  (3-2) 

where 𝑏𝑖
∗ is the 𝑖𝑡ℎ realisation of the level-2 random errors, 𝑅𝑖

1/2
 is the Cholesky 

factorisation of 𝑅𝑖 and 𝑒𝑖
∗ is an identically and independently distributed random 

vector with zero mean and variance 𝐼 (unity variance). 𝛺𝑖(𝛽, 𝑏𝑖
∗) can be defined 

as: 

𝛺𝑖(𝛽, 𝑏𝑖
∗)  =  𝐽𝑖(𝛽, 𝑏𝑖

∗)𝛥(𝛽, 𝑏𝑖
∗)   (3-3) 

where 𝐽𝑖(𝛽, 𝑏𝑖
∗) is the Jacobian matrix of level-1 model with respect to the level-1 

parameters 휃𝑖 and can be evaluated by 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗). Correspondingly, 𝛥(𝛽, 𝑏𝑖

∗) are 

partial derivatives of the level-2 model 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗) with respect to the random 

effect parameters 𝑏𝑖
∗. These are shown in Equation (3-4) and (3-5). 
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𝐽𝑖(𝛽, 𝑏𝑖
∗) =  

𝜕𝑓(𝑢𝑖, 휃𝑖)

𝜕휃𝑖
   (3-4) 

𝛥(𝛽, 𝑏𝑖
∗) =  

𝜕𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗)

𝜕𝑏𝑖
∗   (3-5) 

Referring to the definition of the level-2 model which includes level-2 random 

effects and previously specified in (7-8), the marginal mean and variance of 𝑦𝑖 

can be written using Equations (3-6) and (3-7) with the assumption of normally 

distributed errors. 

E[𝑦𝑖]  = 𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗)) – 𝛺𝑖(𝛽, 𝑏𝑖

∗)𝑏𝑖
∗   (3-6) 

V[𝑦𝑖] = 𝛺𝑖(𝛽, 𝑏𝑖
∗)𝐷(𝜔)𝛺𝑖

𝑇(𝛽, 𝑏𝑖
∗) + 𝜎2𝑅𝑖(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖

∗), 𝜉)  (3-7) 

Considering Equation (3-5) which 𝛥(𝛽, 𝑏𝑖
∗) = 𝐹 then (3-7) can be written as: 

V[𝑦𝑖]  = 𝐽𝑖(𝛽, 𝑏𝑖
∗)𝐹𝐷(𝜔)𝐹𝑇𝐽𝑖

𝑇(𝛽, 𝑏𝑖
∗) + 𝜎2𝑅𝑖(𝑔(𝑎𝑖 , 𝛽, 𝑏𝑖

∗), 𝜉) = 𝑊𝑖(𝜔, 𝜎
2, 𝜉)  (3-8) 

As can be seen in the above equations, the level-2 random effect parameter is 

incorporated in both the mean and variance of the marginal density given by a 

conditional first-order linearization approach, while the level-2 random effect just 

appears in the variance term of the general first-order linearization method. This 

proves the supremacy of conditional linearization over a first order linearization 

[64]–[66]. Fundamentally, the term 𝛺𝑖(𝛽, 𝑏𝑖
∗)𝑏𝑖

∗ in the Equation (3-6) provides an 

adjustment for the level-1 estimates back to the expected value. 

In order to determine a hierarchical model, it is necessary to identify level-2 

parameters, besides the common level-1 and level-2 covariance structure. These 

parameters are 𝛽, 𝜔, 𝜎2 and 𝜉 regarding the mentioned expansion above. 

Lindstrom and Bates [30] suggest using a fixed estimate of 𝑏𝑖
∗ while using MLE or 

IGLS for parameter estimation. 
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 Hierarchical Torque Model Structure 

The application of the hierarchical dynamic models is investigated in this study 

using dynamic engine torque data. In this case, an Amplitude Modulated Pseudo 

Random Signal (AMPRS) [67] spark advance signal is used to excite the engine 

torque dynamics. In this process, data is collected at a particular operating point 

defined as a specified engine speed and load. This results in quasi-steady 

operation with dynamic variation of the spark signal.  

The dynamic spark-sweep data can be represented using a multi-level model. A 

local model is used to describe the dynamic spark data for each operating point 

and the global model is used to describe changes in this between operating 

points. Different types of multi-level modelling are investigated to select the most 

suitable approach for the desired application.  

The hierarchical mixed effects model represents a much better representation of 

test-to-test variation compared to the LPV or neural network approaches. This is 

a result of including random effect at both levels of the model. The hierarchical 

torque model is defined by the advanced (or retarded) spark and indicated (or 

brake) torque relationship at level-1 at each speed (N) and load (L) in level-2. 

Presented schematically in Figure 3-1 an overview of the structure of hierarchical 

torque model can be seen. 

The level-1 model is defined using a dynamic model to show the transient 

behaviour of the torque with respect to spark at every operating point. The type 

of dynamic model will be introduced in Section 3.3 and the identification 

procedure will be defined in Chapter 6.  

The level-2 models provide level-1 model coefficients and parameters according 

to the level-2 covariates. The type of applied hierarchical model is a mixed effects 

model since the random effect is exerted in the level-2 model. An arbitrary 

variation in the level-2 response is therefore provided due to unknown or 

neglected parameters during model training for example, environmental effect on 

the system.  
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Figure 3-1 Structure of hierarchical dynamic torque model 

In this study, the structure of hierarchical model is fully parametric at level-2 

including the level-2 covariates and random effect parameters. Accordingly, 

nonparametric and semiparametric approaches are irrelevant and cannot be 

applied for model definition and the identification purposes.  

3.2 Auto Regressive Moving Average Models 

Time-series are generated by collecting experimental data over time sequentially. 

Due to the nature of time-series, there are dependencies between the elements 

of the series.  Each observation is affected by the preceding one. It is essential 

for development of a prediction model to understand the impact of this 

dependency (serial correlation). The magnitude of the correlation depends on the 

time difference between data points. In the other words, it is expected that the 

correlation between data increases when the time between them decreases [68].  

The autocovariance (ACVF) and autocorrelation (ACF) functions provide useful 

statistical information about the dependency of the data in a time-series. For the 
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lag 𝑘, covariance and correlation can be defined by Equations (3-9) and (3-10) 

respectively [68].  

𝛾(𝑘) = 𝐶𝑜𝑣[𝑒𝑖, 𝑒𝑖±𝑘]                                                𝑘 = 0,1, … (3-9) 

𝜌(𝑘) = 𝐶𝑜𝑟𝑟[𝑒𝑖, 𝑒𝑖±𝑘] =  𝛾(𝑘)/𝜎
2                  𝑘 = 0,1, … (3-10) 

where 𝜎2 is the model variance and can be defined by 𝜎2 =  𝛾(0). 

For large data sets, ACVF and ACF can be approximated through Auto 

Regressive Moving Average (ARMA) models. ARMA models consist of two 

components, the auto regressive component and the moving average 

component. An 𝐴𝑅𝑀𝐴(𝑝, 𝑞) model of the order 𝑝 and 𝑞 in the autoregressive and 

moving average parts respectively is defined in Equation (3-11) [69]. 

𝑋𝑡 − 𝜙1𝑋𝑡−1 −⋯− 𝜙𝑝𝑋𝑡−𝑝 =  𝑍𝑡 + 휃1𝑍𝑡−1 +⋯+ 휃𝑞𝑍𝑡−𝑞 (3-11) 

𝑋𝑡 −∑𝜙𝑃𝑋𝑡−𝑃

𝑝

𝑃=1

=  𝑍𝑡 +∑휃𝑄𝑍𝑡−𝑄

𝑞

𝑄=1

 (3-12) 

Meanwhile, this can be expressed in a more compact form using the backward 

shift operator, 𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘. 

𝜙(𝐵)𝑋𝑡 = 휃(𝐵)𝑍𝑡    (3-13) 

where = [𝑏0  𝑏 …  𝑏𝑘] . In this case, 𝜙(𝑏) and 휃(𝑏) consist of polynomial equations 

with the p and q degrees as follow: 

𝜙(𝑏) = 1 − 𝜙1𝑏 −⋯− 𝜙𝑝𝑏
𝑝  (3-14) 

휃(𝑏) = 1 + 휃1𝑏 +⋯+ 휃𝑞𝑏
𝑞  (3-15) 

Clearly, an 𝐴𝑅(𝑝) or 𝑀𝐴(𝑞) equations are created if 𝑞 = 0 or 𝑝 = 0 respectively. 

It is important to define the ARMA model using a causal function, which is 

necessary for calculation of the autocovariance and autocorrelation functions. 

The ARMA models existence, uniqueness, causality and invertibility are also 
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important considerations. They are essential for generating a stable ARMA model 

with positive definite correlation and covariance matrices. If 𝜙(𝑏) = 1 − 𝜙1𝑏 −

⋯− 𝜙𝑝𝑏
𝑝 ≠ 0 for all |𝑏| = 1 then a stationary and unique solution exists for the 

ARMA model. An ARMA model is causal and invertible if Equations (3-14) and 

(3-15) are not equal to zero for all |𝑏| ≤ 1. If an ARMA model is causal then the 

causality function can be defined using Equation (3-16) [69].  

𝑋𝑡 =  𝑍𝑡 + 𝜓1𝑍𝑡−1 + 𝜓2𝑍𝑡−2 +⋯ = ∑𝜓𝑟𝑍𝑡−𝑟

∞

𝑟=0

, 𝜓0 = 1  (3-16) 

An invertible ARMA model can be determined under the same conditions using 

Equation (3-17). 

𝑍𝑡 =  𝑋𝑡 + 𝜋1𝑋𝑡−1 + 𝜋2𝑋𝑡−2 +⋯ = ∑𝜋𝑟𝑋𝑡−𝑟 , 𝜋0 = 1

∞

𝑟=0

  (3-17) 

The constants 𝜓𝑟 and 𝜋𝑟 are the coefficients of the causality and invertibility 

functions respectively. It is impossible to use causality or invertibility coefficients 

if the identified ARMA model cannot satisfy causal or invertible criteria. Therefore, 

it is necessary to manipulate the identified coefficients to make it causal and 

invertible. If the identified ARMA model is non-causal and/or non-invertible, there 

is an equivalent causal and/or invertible model which can generate a similar 

ACVF using the algorithms presented in Rao [70]. 

For calculation of ACVF and ACF the above equations apply. As a result, 

autocovariance can be calculated using Equation (3-18) [69] for a lag of 𝑘. 

Considering Equation (3-10) the corresponding autocorrelation can be 

determined using Equation (3-19). 

𝛾(𝑘) =  𝜎2∑𝜓𝑟𝜓𝑟+|𝑘|

∞

𝑟=0

  (3-18) 
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𝜌(𝑘) =  𝛾(𝑘)/ 𝛾(0) =∑𝜓𝑟𝜓𝑟+|𝑘|

∞

𝑟=0

/∑𝜓𝑟
2

∞

𝑟=0

  (3-19) 

It can be seen that ACVF and ACF can be calculated using constant coefficients 

of the causal function mentioned before in Equation (3-16). Since this equation is 

derived from Equation (3-11) it is dependent on the coefficients of the ARMA 

model. Therefore, an iterative calculation needs to be implemented to find the 

coefficients of the causality function. In this regard the coefficients of the causal 

function can be determined for a lag of 𝑘 using Equation (3-20),  by consideration 

of the following conditions [69]. 

𝜓𝑟 = 휃𝑟 +∑𝜙𝑘𝜓𝑟−𝑘                                             {

휃0 = 1                      
휃𝑟 = 0  , 𝑟 > 𝑞
𝜓𝑟 = 0  , 𝑟 < 0

𝑝

𝑘=1

    (3-20) 

Finding the coefficients of the ARMA model is critical for finding ACF and ACVF 

using the above-mentioned algorithm. There are different methods for 

identification of the ARMA model. A maximum likelihood or two-stage estimator 

can be applied simply for the first order autoregressive model expressed by 

𝐴𝑅𝑀𝐴(1, 0) or 𝐴𝑅(1). In the two-stage estimator, the single coefficient of the AR 

model can be determined using Equation (3-21) [68]. 

𝜙 =  ∑𝑋𝑟

𝑛

𝑟=2

𝑋𝑟−1 ∑𝑋𝑟

𝑛−1

𝑟=2

⁄   (3-21) 

There are various methods for identification of a general form of the 𝐴𝑅(𝑝) model. 

the most popular approach is Yule-Walker estimation [71]. This approach is based 

on finding the autocovariance and autocorrelation coefficients for a lag of 1 to 𝑝 

and using a regression approach to identify model coefficients. At first, the 𝐴𝑅(𝑝) 

model can be defined using Equation (3-22).  

𝑋𝑡 = 𝜙1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝 +  𝑍𝑡  (3-22) 
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Both sides of the equation are multiplied by lagged elements of 𝑋𝑡−1, … , 𝑋𝑡−𝑝 

separately and the expectance of the multiplication can be calculated as 

correlation parameters for the various lags formed in (3-23).   

𝑋𝑡𝑋𝑡−1 = 𝜙1𝑋𝑡−1𝑋𝑡−1 +⋯+ 𝜙𝑝𝑋𝑡−𝑝𝑋𝑡−1  
𝐸[ ]
⇒   𝜌1 = 𝜙1𝜌0 + 𝜙2𝜌1 +⋯+ 𝜙𝑝𝜌𝑝−1  

𝑋𝑡𝑋𝑡−2 = 𝜙1𝑋𝑡−1𝑋𝑡−2 +⋯+ 𝜙𝑝𝑋𝑡−𝑝𝑋𝑡−2
𝐸[ ]
⇒   𝜌2 = 𝜙1𝜌1 + 𝜙2𝜌0 +⋯+ 𝜙𝑝𝜌𝑝−2 

⋮                                                  ⋮                                     ⋮ 

𝑋𝑡𝑋𝑡−𝑝 = 𝜙1𝑋𝑡−1𝑋𝑡−𝑝 +⋯+ 𝜙𝑝𝑋𝑡−𝑝𝑋𝑡−𝑝  
𝐸[ ]
⇒   𝜌𝑝 = 𝜙1𝜌𝑝−1 + 𝜙1𝜌𝑝−2 +⋯+ 𝜙𝑝𝜌0 

 (3-23) 

The above equations can be written in matrix form and it must be remembered 

𝜌0 = 1: 

[

𝜌1
𝜌2
⋮
𝜌𝑝

] =  [

1
𝜌1
⋮

𝜌𝑝−1

𝜌1
1
⋮

𝜌𝑝−2

…

…
⋱
…

𝜌𝑝−1
𝜌𝑝−2
⋮
1

] [

𝜙1
𝜙2
⋮
𝜙𝑝

]  →  𝛲 = 𝑅.𝛷  (3-24) 

Consequently, this system can be solved easily using �̂� =  𝛲/𝑅 . 

The other method for autoregressive model identification is Burg’s algorithm. This 

approach applies a recursion of the partial autocorrelation function. It is 

achievable by minimisation of the forward and backward prediction errors. Burg’s 

algorithm provides higher likelihood in comparison with the Yule-Walker algorithm 

[69]. In this thesis, the Yule-Walker approach is selected for the sake of simplicity 

and approximation of the model efficiently [68]. It is applicable when moving 

average terms do not appear in the model. 

For an ARMA model, the coefficients of the moving average components require 

identification in conjunction with the coefficients of the autoregressive model. A 

useful technique for fitting a mixed autoregressive moving average models is the 

Hannan-Rissanen algorithm [69]. This approach is able to handle any type of 

𝐴𝑅𝑀𝐴(𝑝, 𝑞) model. The Hannan-Rissanen algorithm can be used to determine 
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𝜙1, … , 𝜙𝑃, 휃1, … , 휃𝑞  coefficients of the AR and MA segments. This algorithm 

employs a stepwise routine as follows: 

 At the first step, an 𝐴𝑅(𝑚) model basis is created by means of 𝑚 > 𝑚𝑎𝑥(𝑝, 𝑞). 

Accordingly, the Yule-walker method simply fits a model to find the 

coefficients. As a result, the moving average covariates or unobserved 

quantities can be estimated. 

�̂�𝑡 = 𝑋𝑡 + �̂�1𝑋𝑡−1 +⋯+ �̂�𝑚𝑋𝑡−𝑚  , 𝑡 = 𝑚 + 1,… , 𝑛        (3-25) 

where n is the number of observations. 

 Considering Equation (3-11), which defines the general form of an ARMA 

model, the response vector and the regression matrices can be determined 

as shown below [69]:  

𝑌 =  [

𝑋𝑚+𝑞+1
𝑋𝑚+𝑞+2
⋮
𝑋𝑛

]        (3-26) 

𝑈 =

[
 
 
 
 𝑋𝑚+𝑞
𝑋𝑚+𝑞+1

𝑋𝑚+𝑞−1
𝑋𝑚+𝑞

⋯
⋯

⋮ ⋮ ⋯
𝑋𝑛−1 𝑋𝑛−2 ⋯

𝑋𝑚+𝑞+1−𝑝
𝑋𝑚+𝑞+2−𝑝

�̂�𝑚+𝑞

�̂�𝑚+𝑞+1

�̂�𝑚+𝑞−1

�̂�𝑚+𝑞
⋮ ⋮ ⋮

𝑋𝑛−𝑝 �̂�𝑛−1 �̂�𝑛−2

⋯ �̂�𝑚+1
⋯ �̂�𝑚+2
⋯    ⋮
⋯ �̂�𝑛−𝑞 ]

 
 
 
 

   (3-27) 

 If 𝑌 =  𝛽𝑈 then 𝛽 = [𝜙1, … , 𝜙𝑃, 휃1, … , 휃𝑞] can be estimated using least square 

regression. 

�̂� = (𝑈′𝑈)−1𝑈′𝑌       (3-28) 

It is essential to find the most suitable model order for effective estimation of the 

autocorrelation error. Therefore, the most efficient 𝑝 and 𝑞 order of the ARMA is 

determined by minimizing the AIC and AICc. This can be calculated using 

Equation (3-30) [69][72]. 

𝐴𝐼𝐶 =  −2ℓ(𝜙𝑝, 휃𝑞 , 𝜎
2) + 2(𝑝 + 𝑞 + 1)      (3-29) 

𝐴𝐼𝐶𝑐 =  −2ℓ(𝜙𝑝, 휃𝑞 , 𝜎
2) + 2(𝑝 + 𝑞 + 1)𝑛/(𝑛 − 𝑝 − 𝑞 − 2)       (3-30) 
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where ℓ(𝜙𝑝, 휃𝑞 , 𝜎
2) is maximum loglikelihood estimate, determined using 

Equation (3-31) [69]. 

ℓ(𝜙𝑝, 휃𝑞 , 𝜎
2) = ln(𝜎2) +

∑ ln 𝑟𝑗−1
𝑛
𝑗=1

𝑛
    (3-31) 

In the above equation, 𝑟𝑗−1is determined through the Innovations Algorithm. The 

Innovations Algorithm is a recursive method for fitting a pure moving average 

model. It generally uses a Durbin-Levinson approach to identify the coefficients 

of the MA model. In this equation, the second term can be ignored if 𝑛 → ∞ or 

there are a large number of observations. Also, penalty factors for AIC and AICc 

are the same [72]. Since ARMA model parameters are estimated using the 

Hannan-Rissanen algorithm, white noise variance 𝜎𝐻𝑅
2  is applied for loglikelihood 

estimation and can be calculated using Equation (3-32) [69]. 

𝜎𝐻𝑅
2 = 

𝑆(𝜙, 휃)

𝑛 − 𝑚 − 𝑞

=   
∑ (𝑋𝑡 − 𝜙1𝑋𝑡−1 −⋯−𝜙𝑝𝑋𝑡−𝑝 − 휃1�̂�𝑡−1 −⋯− 휃𝑞�̂�𝑡−𝑞)

2𝑛
𝑡=𝑚+𝑞+1

𝑛 −𝑚 − 𝑞
 

 (3-32) 

3.3 Level-1 Nonlinear ARX Model 

A Nonlinear AutoRegressive eXogenous (NARX) model is defined for the level-1 

dynamic torque model. In this section, the general structure of the ARX model is 

introduced and selection of the NARX model structure is also discussed.  

A common form of the ARX model structure can be found in many references  

[67][73]–[75]. If the input and output of dynamic system is defined as 𝑢 and 𝑦 

respectively, then the structure of the linear ARX model is defined by Equation 

(3-33). 

𝑦(𝑘 + 𝑛𝑠) = 

−𝑎𝑛𝑠−1𝑦(𝑘 + 𝑛𝑠 − 1) −⋯− 𝑎0𝑦(𝑘) + 𝑏1𝑢(𝑘 + 𝑛𝑠 − 1 − 𝑛𝑘) + 휀 

 

(3-33) 
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where 𝑛𝑠 is number of the system states, related to the dynamics of the system. 

Therefore, the previous outputs and input terms and current inputs are used to 

determine the current and future values of the output. 𝑛𝑘 is associated with the 

delay or lag between input and related output signals. In the above equation, 

variable 휀 is a random error term.  

A more complex form of the ARX model consists of a number of system zeros. In 

this case, additional delayed input terms are added to the above equation. Due 

to the simplicity and ease of the implementation and identification, Equation (3-33) 

contains only one delayed input term.  

The above-mentioned structure is a linear ARX model with polynomial terms. In 

this study, a nonlinear ARX model is desired for level-1 due to the nature of the 

spark sweep curvature. As a result, the linear ARX model is extended by applying 

spline terms and a higher polynomial degree for the input signal. The spline is 

used to connect data points with a smooth curve and reduces the complexity of 

the required polynomial model for fitting [76][77]. In this way, nonlinearity is 

introduced into the extended ARX structure. Hence, the NARX model can be 

represented as shown in Equation (3-34). 

𝑦(𝑘 + 𝑛𝑠) = −𝑎𝑛𝑠−1𝑦(𝑘 + 𝑛𝑠 − 1) −⋯− 𝑎0𝑦(𝑘)

+ 𝑏1𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) + 𝑏2𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘)
2
+⋯

+ 𝑏𝑟𝑝𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘)
𝑟𝑝

+ 𝑐𝑎(𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) − γ)+
𝑟𝑎

+ 𝑐𝑏(𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) − γ)−
𝑟𝑏
+ 휀 

 

(3-34) 

where γ is the spline knot, 𝑟𝑝 is the maximum polynomial degree of the input 

signal, 𝑟𝑎 is the spline degree active above the knot and similarly 𝑟𝑏 is the spline 

degree active below the knot. In the above equations, The NARX model 

coefficients 𝑎0, … , 𝑎𝑛𝑠−1 are the autoregressive state coefficients, 𝑏1, … , 𝑏rp are the 

exogenous monomial coefficients, 𝑐𝑎, 𝑐𝑏 are the exogenous spline coefficients, 

above and below the knot respectively and γ is the position of the spline knot. The 
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NARX model presented in Equation (3-34) is a single-input, single-output 

nonlinear ARX model. If there are any additional input or output channel, the input 

or output terms can be duplicated to expand the model to have multiple inputs 

and outputs. 

Subscripted positive or negative signs are used to indicate the spline terms active 

above or below the knot respectively, as indicated below. 

(𝑢)+ = max [𝑢 , 0]    ,    (𝑢)− = min [𝑢 , 0]  (3-35) 

It is necessary initially to determine the system delay. The basis function matrix 

needs to be formed alongside the response vector for identification. 

Assuming 𝑌 =  𝜑휃 + 휀 is the general form of the regression system, where the 

coefficients vector is formed 휃 = [𝑎𝑛𝑠−1, … , 𝑎0, 𝑏1, 𝑏2, … , 𝑏rp, 𝑐𝑎, 𝑐𝑏], unknown 

model coefficients in the vector 휃, can be identified using an ordinary least square 

(OLS) or generalised (weighted) least square (GLS or WLS) method in 

conjunction with maximum likelihood estimation (MLE). The identification 

methods applied for the determination of the unknown parameters of the NARX 

model will be explained in Chapter 6.  

3.4 Level-2 Piecewise Polynomial Splines model 

At level-2, multi-dimensional tensor product piecewise polynomial splines are 

employed, this is referred to as a PPS model. According to the definition of the 

hierarchical model, the level-2 models define variation of 휃𝑖 according to the level-

2 factors. In this instance, engine speed and load (𝑁, 𝐿) are the assigned level-2 

factors. 

As the name suggests, the proposed PPS model consists of both monomial and 

spline basis functions. A similar configuration and complexity of polynomial and 

spline terms is assumed for every level-2 input. The following notation is 

presented to define a two-dimensional PPS model basis function in a more 
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straightforward manner. The spline basis 𝐺𝑗
𝑇 can be written for 𝑗𝑡ℎ level-1 model 

parameter using Equation (3-36). 

𝐺𝑗
𝑇([𝑃𝐹1, 𝑆𝐹1, 𝐾𝐹1,±] ⊗ [𝑃𝐹2, 𝑆𝐹2, 𝐾𝐹2,±]) (3-36) 

where 𝑃 denotes the maximum degree of the polynomial terms varying from 0 to 

𝑃.  The degree of the spline term and the number of spline knots are defined using 

𝑆 and 𝐾 respectively. The subscript 𝐹1 and 𝐹2 determine the relationship of the 

parameters to each of the level-2 factors. Spline knot behaviour is summarized 

using subscript ± to determine where the spline term is active above (+) or below 

(−) the knot, the ⊗ represents the tensor or Kronecker product. In this case, 

every single term in each factor will be multiplied by all the terms of the other 

factor. For instance, a two-dimensional PPS basis function can be defined for the 

global model as shown in Equation (3-37) using the above definitions if the level-

2 factors are engine speed and load (𝑁, 𝐿). 

𝐺𝑖,𝑗
𝑇 ([2, 2,  1+] ⊗ [1,3, 1−])  

 [1 𝑁𝑖 𝑁𝑖
2 (𝑁𝑖 − 𝛾𝑁𝑖,𝑗)+

2
] ⊗ [1 𝐿𝑖 (𝐿𝑖 − 𝛾𝐿𝑖,𝑗)−

3
] 

(3-37) 

The spline knots are different for each level-1 coefficient and are indicated using 

subscript 𝑗. Applying the Kronecker operator to Equation (3-37) results in: 

𝐺𝑖,𝑗
𝑇 ([2, 2,  1+] ⊗ [1,3, 1−])   (3-38) 

[1 𝑁𝑖 𝑁𝑖
2 (𝑁𝑖 − 𝛾𝑁𝑖,𝑗)+

2
      𝐿𝑖 𝑁𝑖𝐿𝑖 𝑁𝑖

2𝐿𝑖 (𝑁𝑖 − 𝛾𝑁𝑖,𝑗)+
2
𝐿𝑖      … 

(𝐿𝑖 − 𝛾𝐿𝑖,𝑗)−
3
𝑁𝑖(𝐿𝑖 − 𝛾𝐿𝑖,𝑗)−

3
𝑁𝑖
2(𝐿𝑖 − 𝛾𝐿𝑖,𝑗)−

3
(𝑁𝑖 − 𝛾𝑁𝑖,𝑗)+

2
(𝐿𝑖 − 𝛾𝐿𝑖,𝑗)−

3
] 

 

Determination of a proper level-2 model configuration is required to understand 

the system behaviour in response to each level-2 factor. In this study, two different 

types of configuration are applied for generating a two-dimensional PPS for the 

level-2 model.  These are: 



53 
 

𝐺𝑖,𝑗
𝑇 ([2,2,  2+] ⊗ [3,3, 1−]) 

= [1 , 𝑁𝑖, 𝑁𝑖
2 , (𝑁𝑖 − 𝛾𝑁1,𝑗)+

2 , (𝑁𝑖 − 𝛾𝑁2,𝑗)+
2 ]
𝑇
⊗  [1 , 𝐿𝑖 , 𝐿𝑖

2, 𝐿𝑖
3, ( 𝐿𝑖 − 𝛾𝐿,𝑗)−

3 ]
𝑇

 

(3-39) 

𝐺𝑖,𝑗
𝑇 ([2,2,  2+] ⊗ [1,3, 1−]) 

= [1 , 𝑁𝑖, 𝑁𝑖
2 , (𝑁𝑖 − 𝛾𝑁1,𝑗)+

2 , (𝑁𝑖 − 𝛾𝑁2,𝑗)+
2 ]
𝑇
⊗  [1 , 𝐿𝑖 , ( 𝐿𝑖 − 𝛾𝐿,𝑗)−

3 ]
𝑇
 

(3-40) 

It can be seen that there are two linear spline terms with different knots (𝛾𝑁1,𝑗, 

𝛾𝑁2,𝑗) in the N-basis while there is a cubic spline term with one particular knot (𝛾𝐿,𝑗) 

in the L-Basis. 

3.5 Summary 

In this chapter, a priori knowledge about the identification approach employed 

and types of models are reviewed and expanded. The general structure of the 

hierarchical nonlinear mixed effects model is specified based on a parametric 

system according to the decision made in Section 2.7. In this study, a conditional 

first order linearization technique is introduced which will be developed and used 

in Chapter 7. 

A general model structure is introduced for different parts of the model training. 

An ARMA model structure is presented for determination of the covariance model 

for the level-1 random error. A nonlinear ARX model is considered for the main 

structure of dynamic model at level-1 and a PPS model is employed for the level-

2 model definition. Both of these models include polynomial and spline terms. The 

level-1 and level-2 model identification algorithm will be explained in Chapter 6 

and Chapter 7 respectively.  
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Chapter 4 Design of Experiment Techniques 

The general structure of the hierarchical model was introduced in Section 2.2. 

Data is collected for every operating point individually.  The points at which data 

is collected should be properly distributed over the operating space to provide a 

good hierarchical model.  

In this chapter experimental design techniques are investigated for the creation 

of an efficient experimental design. For the hierarchical dynamic model 

investigated in this study, the level-2 factors are engine speed and load, which 

will define the design points of the DoE. The designs presented will be validated 

according to the prediction error variance of the design and the prediction ability 

of the design will be assessed according to the intended application. 

4.1 General DoE Techniques 

Space-filling designs are considered the simplest methods that can be used for 

designing an experiment. Accordingly, two different approaches to generating a 

space-filling designs are investigated, Halton-sequences and Latin Hypercube 

Sampling (LHS). The Halton-sequence design is a quasi-random method and it 

makes use of prime numbers. LHS sequentially divides the design space to 

provide an appropriate number of points [78].  

Figure 4-1 [79] shows a Latin hypercube sampling design for 4 and 3 design 

points in 2 and 3 dimensions respectively. The orthogonal grids are employed to 

divide the design space into equal spaces according to the number of design 

points. For a space filling design with 𝑛 points, each dimension of the design is 

divided into 𝑛 elements of the same size, and only one design point can exist in 

each row and column of the grid. The design points are randomly generated for 

a determined probability distribution in order to satisfy a cumulative probability 

curve.  
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Figure 4-1 Sample of Latin hypercube design in 2 and 3 dimensions 

Optimal designs are employed to find the best combination of design points to 

reduce the number of experimental runs required. There are different types of 

optimal design, each offering different advantages. The various optimal designs 

are named according to the optimisation objective. For example, A-optimal 

minimizes the average variance of the regression coefficient,  V-optimal minimise 

the average prediction error variance, and D-optimal designs [80] maximises the 

determinant of the information matrix |𝑋𝑇𝑋|. Optimal designs depend on many 

different parameters such as the value of the starting points and the number of 

iterations [81].  

The general implementation procedure for an optimal design is as following:  

 A candidate list is generated randomly using a selection of points from a 

candidate set. 

 Some arbitrary points, picked from the candidate set, are added to the design. 

In this phase, the optimal design criterion is evaluated and any of the added 

points decrease the design optimality are eliminated from the design. In the 

elimination phase, the total number of points removed are equal to the number 

added to keep the size of the design constant.  
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 The performance of every new design is evaluated and compared with the 

previous iteration. Iterations are terminated in one of two ways, after a set 

number of iterations have been completed or the design criterion is less than 

a defined threshold [28]. Figure 4-2 demonstrates an optimal design 

procedure. 

Candidate list 
of design points

Select 
an initial set of points 

Excursion
Replace a group of 

points with another
New DoECurrent DoE

Final DoE

Converged?NO

YES

Compare new & old 
DoE based on 

desired criterion

Replace 
with New DoE

 

Figure 4-2 Optimal design procedure 
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4.2 D-optimal Design 

In this section, optimal design is implemented to create an efficient design for 

identification of level-2 of the hierarchical model [14] using D-optimality which 

seeks to minimise the covariance of the parameter estimates.  

Initially, a candidate set is generated using an Halton-sequence, this places 

candidate points in a squared space. The candidate list is cropped taking account 

of the system operating limits. In this study, engine operating conditions are 

mainly constrained at the low load and high load operating conditions. In the next 

stage the design points with the worst impact on the determinant of the 

information matrix are replaced. A sample design with 50 points generated by the 

D-optimality process is shown in Figure 4-3. The candidate points are defined by 

dots () and the final design points are specified by (o).  

 

Figure 4-3 D-optimal design with 50 points 
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Figure 4-4 D-optimal design with 50 points and 21 unique points 

Using D-optimality usually results in replicated points or accumulation of design 

points. A design with replicated points is displayed in Figure 4-4, since some 

points are duplicated, the number of unique points in this design is 21. By 

comparing these two designs, it is clear that the accumulated points are merged 

at the best points. 

Several models of different complexity were compared to determine the 

performance and accuracy of the designs, four different models were considered 

with quadratic polynomial and spline terms in the speed and load factors. The 

only difference between these models is the number of spline knots in each factor. 

The specifications of these models are summarized in Table 4-1. The spline-knots 

are selected divide design space evenly.  
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Table 4-1 Specification of the created models for comparison of the designs 

 
Polynomial 

degree 
Spline  
degree 

Spline  
Knots 

No. of 
terms in 

the 
basis 

function  
 

N 
(Speed) 

L 
(Load) 

N 
(Speed) 

L 
(Load) 

N 
(Speed) 

L 
(Load) 

Model 
1 

2 2 2 2 3650 rpm 0.6 16 

Model 
2 

2 2 2 2 3650 rpm 
0.6 
1 

20 

Model 
3 

2 2 2 2 
2225 rpm 
5075 rpm 

0.6 20 

Model 
4 

2 2 2 2 
2225 rpm 
5075 rpm 

0.6 
1 

25 

 

The Maximum Prediction Error Variance (MPEV) was evaluated to determine the 

difference between designs. To do this the basis function of the candidate set 𝑋𝐶 

and design 𝑋𝐷 is calculated for each model, after which prediction error variance 

was determined using Equation (4-1) [81]. 

𝑃𝐸𝑉 = 𝑋𝐶(𝑋𝐷
𝑇𝑋𝐷)

−1𝑋𝐶
𝑇  (4-1) 

Consequently, MPEV is determined as the maximum diagonal value of PEV. The 

calculated MPEVs for each design is evaluated for two different design sizes and 

the results are summarized in Table 4-2. There was no difference in MPEV values 

using a different model so the comparison is made according to the design size. 

Table 4-2 Maximum Prediction Error Variance in each design 

 50 Design points 70 Design points 

 
No 

Replicated 
Points 

Replicated 
Points 

No 
Replicated 

Points 

Replicated 
Points 

MPEV 0.3009 0.2937 0.2278 0.1869 
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In this table, all calculated values are less than 1 which is an acceptable value for 

the MPEV. The design sufficiency is expected to be improved since more 

information is available in the larger design. According to the table, MPEV values 

are slightly lower in a design with 70 points against the 50 points. 

The evaluation of MPEV does not entirely verify that the applied design can 

generate a proper prediction for the application. Therefore, the prediction 

provided by the designs are compared with experimental data, therefore 

Maximum Brake Torque (MBT) prediction is compared. 

The results of the comparison are summarized in Figure 4-5. The MBT surfaces 

are evaluated for model-1 and model-3 generated using the design process with 

50 points for both with replication and with no replication of points. A comparable 

predicted MBT surface is generated using model-1.  

The overall shape of model-3’s prediction with no replicated points is affected by 

extrapolation of the surface in the region outside of the design boundaries. 

Therefore, it can be said to be an acceptable design, since the predicted values 

are close to the expected MBT surface. For model-3 with replicated points, the 

model appears to be overfitted and generates an invalid and fluctuating MBT 

surface. 

In general, the optimal design approach generates a design with low prediction 

error variance. However, the design points are not properly distributed in the 

space. Consequently, the design is impacted by the lack of information in regions 

of the design space with few or no points. In order to deal with this problem, the 

design can be improved using design augmentation and multi-modelling. Two 

models are generated using the model structure that will be described in Section 

7.1, defined using Equations (3-40) and (3-39). Unlike the models in Table 4-1 

the spline knot locations are unknown a-priori and are estimated using the data. 

 

 



61 
 

E
x
p

e
c
te

d
 p

ra
c
ti
c
a
l 
s
u

rf
a

c
e

 

 

D
e
s
ig

n
 

50 points  

with NO replicated points 

50 points  

with replicated points 

m
o

d
e

l-
1
 

  

m
o

d
e

l-
3
 

  

Figure 4-5 Expected MBT surface in comparison with the provided MBT surface 

with D-optimal design 
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The information matrix for each model can be calculated using |𝑋𝑘
𝑇𝑋𝑘| where 𝑋𝑘 

is the corresponding regression matrix for the 𝑘𝑡ℎ model. The robustness of a 

multi-model design can be evaluated using the technique presented by Smucker, 

Castillo and Rosenberger [82] as follows: 

𝜙(𝑀) =∏ |𝑋𝑘
𝑇𝑋𝑘| 

𝑚

𝑘=1

  (4-2) 

The excursion technique is employed to exchange design points from the 

candidate list at each iteration [83]. The overall robustness of the design is 

improved by adding points in the poorly distributed regions and some of the points 

are essentially added to improve the MPEV of the design. A sample of this type 

of design is shown in Figure 4-6. 

 

Figure 4-6 Augmented multi-model D-optimal design 
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Table 4-3 Improvement of DoE in every step of process 

Steps MPEV Design 

(1) 

Candidate list 
- 

 

(2) 

Initial Design 
0.78 

 

(3) 

Optimal Design 
0.29 

 

(4) 

Augmented Design 
0.25 
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It can be seen that an improved distribution of design points is possible using a 

multi-modelling approach with some space-filling points added. The improvement 

of the MPEV value is summarized in Table 4-3. The MPEV is improved using 

design augmentation but more significantly so through the use of a multi-

modelling optimal design technique. 

4.3 Space Filling Design 

Space-filling designs are investigated to provide a DoE for level-2 of a hierarchical 

dynamic torque model. In this study, the quasi-random design uses a Halton-

sequence to generate the points [84][85]. In this study, a Halton-sequence 

method is utilised to provide a starting design to initialise D-optimal algorithm. 

The range of the Halton-sequence points is [0, 1]. Subsequently, the points are 

scaled to the engine operational range for each of the factors considered. Since 

engine operation is restricted at low and high loads, the points beyond the 

constraints are removed from the candidate list. A sample design created using 

the Halton-sequence technique is presented in Figure 4-7. 

The engine operational bounds are shown by the red lines in the low and high 

engine loads. despite the fact that the random points are well distributed in the 

central region, the design accuracy is impacted by the lack of coverage at the 

edges of the design. Therefore, the Halton-sequence design is augmented using 

additional points on the design boundaries. Figure 4-8 shows the design produced 

using augmented points. 

The MPEV is evaluated for defined Halton-sequence designs and the results are 

shown in Table 4-4. The value for MPEV should be less than 1, while the first 

design without augmentation shows a much higher value. The other Halton-

sequence design, with points placed deliberately at the edges of the design, 

shows tolerable MPEV values and it is just slightly higher than 1 for model-4. 
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Figure 4-7 A Halton-sequence space filling DoE 

 

 

Figure 4-8 An augmented Halton-sequence DoE 
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Table 4-4 The MPEV for each Halton-sequence design 

 

 

 

 

 

 

4.4 Summary 

Different DoE techniques were introduced for hierarchical dynamic torque 

modelling purposes. The design is constructed based on the level-2 factors of the 

hierarchical torque model, which are engine speed and load in this study. A 

space-filling design is employed for initialisation of a D-optimal design. A quasi-

random Halton-sequence is employed to create a space-filling design, and this is 

improved using by adding points on the boundaries of design space. 

D-optimality provides a more efficient design by minimising the covariance of the 

parameter estimates in the level-2 model employed. The MPEV for this approach 

is much lower than a simple space-filling design. However, the design points are 

not distributed properly, and the number of unique design points are much lower 

than the total number of points. This can be improved using a multi-modelling 

approach to make a more general DoE with better dispersion of the design points. 

  

 Halton-sequence 
Halton-sequence 

With Boundary Points 

Model 1 58.7 0.78 

Model 2 141.2 0.97 

Model 3 658.8 0.94 

Model 4 8367.4 1.03 
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Chapter 5 Experimental and Data Collection Method 

5.1 Experimental Dynamic Torque Testing Procedure 

Dynamic engine torque data is collected in order to assess the performance of 

the identification approach for hierarchical dynamic modelling. The DoE is 

developed using the procedure explained in Chapter 4. The torque response is 

recorded as the AMPRS spark signal is run through the ECU at each of the design 

points. Figure 5-1 shows a sample AMPRS signal. 

 

Figure 5-1 An AMPRS sample for the spark excitation 

The engine must be protected during the rapid variations of the spark position 

from knock and high temperature in the cylinder. To achieve this the magnitude 

of the AMPRS is bounded to predefined spark limits, minimum spark for thermal 

protection and MBT or Border Line Detonation (BLD) positions for knock. These 

positions are scavenged using the Ford AutoTEST software and fed to the signal 

generator. 
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An alternative approach to fixed limits is the use of recursive identification to 

update prior knowledge as the test is undertaken. In this work, the Robust 

Recursive Least Square (RRLS) [86] method is employed to provide a recursive 

model for MBT, BLD and minimum spark. Figure 5-2 shows an example of the 

application of RRLS in the prediction of MBT. A recursive model determines a 

reliable prediction after a certain number of iterations. Subsequently, the engine 

test is started from the safest operating conditions. It can provide enough samples 

to initialise recursive model properly. 

     

Figure 5-2 Predicted MBT by RRLS algorithm 

The dynamic experiment was carried out on a prototype 3-cylinder 1.0 litre Ford 

GTDI engine with a compression ratio of 11.5:1. It is coupled to a 220kW AC 

dynamometer. A full description of the engine specification and test cell layout 

can be found in [87]. 

The experimental data is collected for 60 seconds at every operating point. The 

engine responses are recorded at a high sample rate of 1 [kHz] in order to obtain 

the necessary dynamic information. Before identification, the data collected 

requires pre-processing to remove unwanted frequencies. This process is 

explained in Section 5.2. 
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The engine is equipped with Variable Valve Timing (VVT) feature. In order to 

provide a full set of data for engine mapping purposes, various cam timings are 

required. Different Intake Valve Opening (IVO) and Exhaust Valve Closing (EVC) 

are specified in a number of indexes, for each index cam timing is fixed. Since 

there are different operational limits at each index, a new DoE is generated for 

each using the technique explained in Section 4.2. The DoE constraints are 

obtained through prior experimentation [88]. 

The input channel for the level-1 model is spark retard or advanced position 

[degree] and the output channel is brake torque [Nm]. The Gross Mean Effective 

Pressure (GMEP) [bar] channel is recorded to calculate indicated torque [Nm]. 

Engine speed [rpm] and load [ ] are supplied as level-2 covariates and DoE 

factors. Air flow [kg/h] is recorded to determine the precise load value during the 

experiment.  

5.2 Data Pre-processing 

The data pre-processing subsamples and pre-processes data so that any 

significant dynamic content is neither lost nor aliased. The steps taken during pre-

processing are as follows: 

 Removal of the periodic frequencies: 

This is accomplished by applying a digital Fourier transform to the response data. 

The measurement signal is affected by the engine rotational dynamics, these are 

removed from the response signal. The firing frequency of the engine can be 

calculated using Equation (5-1). 

𝑓𝑒  =  𝑛𝑐𝑦𝑙  𝑁/120 [𝐻𝑧]  (5-1) 
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Figure 5-3 Digital Fourier transform of the engine dynamic response before 

(top) and after (bottom) removing the engine rotational dynamics 

where N is the engine rotational speed [rpm] and 𝑛𝑐𝑦𝑙 is total number of cylinders. 

Then the harmonic frequencies are defined using 𝑓𝑒 , 𝑓𝑒 2⁄  , . . . , 𝑓𝑒 𝑛𝑐𝑦𝑙⁄  . A Notch 

filter [89] is applied after diagnosis to remove the undesired frequencies from the 

dynamic signal. 

The effectiveness of the algorithm is demonstrated in Figure 5-3. The top figure 

shows the amplitude spectrum for the digital Fourier transform of the unmodified 

brake torque data signal operating at 1000 [RPM]. According to Equation (5-1), 
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the fundamental frequencies for the rotational dynamics are expected to be 8.33, 

12.5 and 25 [Hz]. The bottom figure presents a frequency response after applying 

the Notch filter. 

 Smoothing the response signal: 

The next step in the data pre-processing employs a Savitzky-Golay filter [90] to 

smooth the response to further attenuate high frequencies, since the engine 

inertial dynamics of interest are predominantly low frequency phenomena. The 

Savitzky-Golay filter is essentially a least squares polynomial fit to the data 

contained within a window of pre-specified width. Figure 5-4 illustrates the 

effectiveness of the Savitzky-Golay filter on smoothing the data. Raw samples 

are defined using squares and filtered data are denoted by circles. A smoother 

signal is obtained while the changes in trend and magnitude of data is negligible. 

     

Figure 5-4 Smoothness of dynamic torque signal using Savitzky-Golay filter 
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 Data synchronisation and compensation: 

A simple and initial identification method needs to be applied in this pre-

processing step. In this stage, spline knot and coefficients of the NARX model are 

initialised. Some of these parameters are starting values for the optimisation 

process. Since engine load varies during the spark excitation a compensation is 

applied. this is explained thoroughly in Section 6.2.    

The other significant parameter considered is system delay. In general, the 

response data are recorded with a slight delay after the excitation. As can be seen 

in Equation (3-33) the NARX model includes 𝑛𝑘 which describes the delay 

between the input and response signals. The delay is determined during the initial 

model training. The approaches employed for delay determination are described 

in Section 6.2.  

 Data subsampling: 

For each measurement taken at a design point, there are around 60,000 points, 

since the torque signal is sampled at 1 kHz for 60 seconds. Given that there are 

typically 70 design points per index, the analysis must deal with about 4.2 million 

individual data points. Consequently, subsampling of the data is imperative if the 

subsequent analysis procedures are to be computationally feasible. If 

subsampling is too severe then significant dynamics will be lost, and the model 

will predict poorly. 

Figure 5-5 shows the differences in the response using various sample rates. 

According to this comparative plot, even the data taken with a 20 [Hz] sampling 

frequency shows equivalent behaviour to data taken at 1 [kHz]. According to this 

graph, data subsampling preserves the dynamic behaviour while removing most 

of the noise.    
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Figure 5-5 Data sampling frequency comparison  

5.3 Summary 

An experimental test plan was developed based on the introduced hierarchical 

torque model structure. The cam timing is kept fixed at each design point defined 

previously in the DoE and the spark signal is modulated using AMPRS. Engine 

brake torque is recorded as the level-1 response. The experimental data are 

recorded at a high sample rate and there are some unwanted frequencies and 

noise in the recorded signal. Consequently, some additional pre-processing is 

necessary prior to the use of the data in the identification process. Figure 6-9 

illustrates the pre-processing sequence adopted. 
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Chapter 6 Level-1 Model Analysis 

Defining the level-1 models is the first step in the identification process for 

determining the hierarchical dynamic model. Remember the definition of a 

hierarchical model in Section 2.2, the level-1 model can be expressed as shown 

below: 

𝑦𝑖|𝑏𝑖 = 𝑓(𝑢𝑖 , 휃𝑖|𝑏𝑖) + 𝑒𝑖    ,   𝑒𝑖~𝒩(0, 𝜎
2𝑅𝑖)       (6-1) 

The level-1 parameters and hence output are conditional on level-2 random 

effects but 𝑏𝑖 can be hidden from the level-1 equation by a slight abuse of notation.   

In this chapter, a nonlinear dynamic model structure will be introduced as a level-

1 transient predictive model. Various configurations of this model are investigated, 

and the major considerations and requirements will be determined. The level-1 

model is evaluated using experimental dynamic torque data.  

In this study, identification results will be evaluated by comparing conventional 

steady-state response data with the steady state predictions from the hierarchical 

dynamic model. This is necessary as previously discussed due to the 

requirements of the legacy control system for steady-state data. 

The level-1 dynamic model is identified in two steps. In the first step, the model 

coefficients and parameters are identified using a simple least square method to 

define delays and initialise the coefficients, alongside this the noise model is also 

determined. In the second step, maximum likelihood estimation is utilised in the 

identification process, employing a covariance model for iterative model 

optimisation. Later, the identified level-1 parameters will be applied in the next 

step to initialise level-2 identification procedure. 
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6.1 NARX Model Configuration 

The NARX model presented in Equation (3-34) is a general form of the model. It 

is employed for describing the dynamic behaviour and conveniently enables 

prediction of the steady-state response.  

The NARX model can be configured by defining the number of states, polynomial 

degree and spline degree. Additionally, the spline can be set to be active above 

or below the knot. The important criteria for the selection of the correct model is 

simplicity and sufficiency. It must be noted that the level-2 model identification is 

dependent on the choice of the level-1 model identification.  

Referring to Figure 3-1 it can be seen that there is a single level-2 model 

associated with every level-1 parameter. As a result, any additional parameter, 

whilst not applying any significant impact on the final result, leads to more 

complexity in the level-2 identification. Consequently, a proper decision on the 

complexity of the model is vital in the development of the hierarchical model. 

Initially, a generic form of the NARX basis function is implemented to assess the 

ability of the NARX models to represent local dynamics and provide a good 

estimate of steady-state behaviour. In this study, a steady-state spark-sweep 

needs to be predicted from the identified dynamic NARX model. All of the NARX 

models considered consist of an equal number of terms and also contain two 

states, the different models considered are listed in Table 6-1. 
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Table 6-1 Model configurations for initial assessment of the NARX model 

Model 
Structure 

CSQP 
Piecewise 

Cubic spline 
Quadratic 
polynomial 

QSLP 
Piecewise 

Quadratic spline 
Linear  

polynomial 

QSQP 
Piecewise 

Quadratic spline 
Quadratic 
polynomial 

Polynomial 
Degree 

[1 , 2] 1 [1 , 2] 

Spline Degree 
(Above) 

3 2 2 

Spline Degree 
(Below) 

[ ] 2 [ ] 

No. of States 2 2 2 

 

The NARX models can be expressed using the following equations. 

𝐶𝑆𝑄𝑃: 𝑦(𝑘 + 2) =  −𝑎1𝑦(𝑘 + 1) − 𝑎0𝑦(𝑘) + 𝑏1𝑢((𝑘 + 1) − 𝑛𝑘) + 𝑏2𝑢((𝑘 + 1) − 𝑛𝑘)
2

+ 𝑐𝑎(𝑢((𝑘 + 1) − 𝑛𝑘) − γ𝑖)+
3
+ 휀 

 (6-2) 

𝑄𝑆𝐿𝑃: 𝑦(𝑘 + 2) =  −𝑎1𝑦(𝑘 + 1) − 𝑎0𝑦(𝑘) + 𝑏1𝑢((𝑘 + 1) − 𝑛𝑘)

+ 𝑐𝑎(𝑢((𝑘 + 1) − 𝑛𝑘) − 𝛾𝑖)+
2
+ 𝑐𝑏(𝑢((𝑘 + 1) − 𝑛𝑘) − 𝛾𝑖)−

2
+ 휀 

 (6-3) 

𝑄𝑆𝑄𝑃: 𝑦(𝑘 + 2) =  −𝑎1𝑦(𝑘 + 1) − 𝑎0𝑦(𝑘) + 𝑏1𝑢((𝑘 + 1) − 𝑛𝑘) + 𝑏2𝑢((𝑘 + 1) − 𝑛𝑘)
2

+ 𝑐𝑎(𝑢((𝑘 + 1) − 𝑛𝑘) − γ𝑖)+
2
+ 휀 

 (6-4) 

The results for two operating conditions are shown in separate columns of Figure 

6-1. The figures indicate the spark position and brake torque values for the 

dynamic (estimated using the model) and steady-state spark sweep data. Steady-

state points are defined using a plus (+) sign while the predicted steady-state 

points from dynamic data are defined using dots (). The estimate of MBT using 

the dynamic data is indicated by ().  
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Figure 6-1 Visual Comparison of the candidate model in two operating points 
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For all of the candidate models, the predicted steady-state spark-sweeps 

correspond reasonably well with the steady-state data obtained through 

experimentation. At lower power operating points (1000 [RPM], 0.5 load), the 

position of MBT is comparable with the peak of the steady-state data. Estimated 

MBT at higher engine powers (2500 [RPM], 0.95 load) is determined using an 

extrapolation by the curvature of the predicted spark-sweep. 

In QSLP a quadratic monomial term is replaced with a quadratic spline term below 

the knot. If an equal spline knot is considered for both terms, the spline terms are 

ineffective since they can be active below and above the knot. Therefore, an 

additional constraint is needed to make sure that coefficients for spline terms are 

not equal. The QSQP model provides a better prediction while the CSQP model 

sometimes shows a cubic response above the knot when there is a sign change 

in the polynomial second derivative. Accordingly, the QSQP model is selected for 

use in the local models. 

6.2 System Delay Estimation 

Identification approaches can be utilised to determine NARX model parameters. 

The most critical part of the identification is determining the delay 𝑛𝑘, and spline 

knot γ.  Delays can be estimated by looking at the cross correlation between input 

and response signals. the delay is determined to be the location of maximum 

cross correlation [91]. Figure 6-2 shows the cross correlation between input and 

response signals. The estimated delay in the left figure is more than 100 samples, 

while in the right figure input and output signals are perfectly aligned and 

maximum cross correlation is located at zero.   

Another mathematical approach utilises the Akaike information criterion for the 

determining the delays. The general types of information criteria in model 

selection is briefly explained in Appendix A. The model is trained iteratively for a 

set of delay values and the optimal delay value is identified to be that obtained for 

the model with the minimum AIC value. The spline term introduces nonlinearity 

into the ARX model and has a significant effect on the curvature of the torque. 
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The spline knot is optimised for each delay value then the remaining model 

coefficients can be found using a regression algorithm such as ordinary least 

square (OLS). 

  

Figure 6-2 Cross Correlation between input and response signals before (left) and 

after (right) synchronization 

It is still possible to distinguish a slight delay after data synchronisation and 

alignment of input and output signals. This is due to the fact that the systematic 

delay is affected by many factors and may vary during the data collection process.  

The synchronisation approach shifts the response by a constant value and can 

therefore not account for this.  

Figure 6-3 shows a portion of the excitation to demonstrate the delay in input and 

output data before and after synchronisation of signals. In this figure, torque (the 

response signal) is shifted to the left using the delay value identified.  
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Figure 6-3 Removal of delay by syncing of input and output signals  

6.3 Compensator Model 

The experimental data is collected according to the DoE as explained previously 

in Chapter 4. Each local model is identified with fixed level-2 factors which are 

engine speed and load in this case. It is however almost impossible to keep these 

parameters entirely fixed during the spark excitation due to the physical limits of 

the test room control system, there is variation in the load and engine speed as 

spark is modulated. These uncontrollable factors are covariate or concomitant 

variables [92]. A compensator model may be applied to adjust experimented data 

based on the variation in engine load from its desired value. 

Figure 6-4 shows the distribution of the load and engine speed for each data point 

while the target operating point is a load of 1.015 and speed 2590 rpm. The 

intersection of the crossed lines is the target value and close to the median of the 
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distribution. The variation at low load tends to be negligible whilst at higher loads 

(with boost active) the turbocharger introduces variation through inconstant air 

supply. Also, it can be seen from Figure 6-4 that the relative variation in engine 

speed is much lower than engine load. 

     

Figure 6-4 Distribution of the level-2 factors during the AMPRS excitation 

The variation adversely affects the identification procedures at both local (level-

1) and global (level-2) levels, hence an additional process is required to reduce 

the variation. In this regard, additional terms need to be added to the NARX 

model. The complexity of the additional terms varies according to the amount of 

dispersion and can be linear, quadratic or higher order. 

Considering brake or indicated torque and spark advance as the NARX model 

output and input respectively, Equation (6-5) represents a NARX model with the 

additional terms described using a quadratic polynomial term.  
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𝑇(𝑘 + 2) =  −𝑎1𝑇(𝑘 + 1) − 𝑎0𝑇(𝑘) + 𝑏1𝑆((𝑘 + 1) − 𝑛𝑘)

+ 𝑏2𝑆((𝑘 + 1) − 𝑛𝑘)
2
+ 𝑐𝑎(𝑆((𝑘 + 1) − 𝑛𝑘) − γ𝑖)+

2
+ 𝑑1∆𝐿

+ 𝑑2∆𝐿
2 + 휀 

 (6-5) 

where ∆𝐿 = 𝐿𝑚𝑒𝑑𝑖𝑎𝑛 −  𝐿(𝑘 + 1) . 

     

Figure 6-5 Predicted spark sweep using a compensator model 

The coefficients of the compensator terms are identified during the initial model 

estimation using OLS along with the other parameters and coefficients. 

Remember that every level-1 coefficient is associated with a separate level-2 

model. Therefore, any additional coefficient makes level-2 identification more 

complicated. Additionally, these coefficients are dependent on the engine load 

which is one of the level-2 factors. As a consequence, it is desirable to eliminate 

these terms from the level-1 model after the initial model training. The 

compensator terms can be removed after adding the effect of load variation to 
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adjust the NARX model output 𝑇(𝑘 + 2). The modified output can be used for the 

rest of level-1 and level-2 identification processes based on the median of the 

load variation. The effectiveness of the compensator model can be evaluated in 

comparison with the steady-state spark sweep data as illustrated in Figure 6-5. 

The spark sweep predicted with the compensator model allows better prediction 

of the steady-state data. 

6.4 Covariance Model Identification 

The covariance matrix is required in the GLS identification as the weighting 

matrix. This can be determined by including a model for the noise. This type of 

model is identified using an ARMA structure previously explained in Section 3.2. 

In this section, the ARMA model identification will be explained. 

The prediction error must be defined after the initial model identification where the 

spline knot and delay have been estimated. The noise signal is calculated by 

comparing the actual response with the estimated one. The current response 

depends on the previous states of the system in the NARX model and therefore 

the responses may be highly correlated. 

An ARMA model is represented by two separate numbers that describe the AR 

and MA orders respectively. For example, ARMA(2,1) defines the second order 

autoregressive model and first order moving average model. The order of the AR 

and/or MA components is mostly related to the type of data. It is much quicker to 

identify an ARMA model with a simple structure and form a covariance function. 

Figure 6-6 demonstrates the noise model prediction using various types of ARMA 

model, a good prediction can be achieved using these different types of ARMA 

model.  
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`      

Figure 6-6 Prediction of noise signal using various type of ARMA models 

In this study, the variation of AR and MA orders are evaluated. AR(1) and 

ARMA(1,1) are selected since the required calculation time is lower and 

identification accuracy is sufficient. It must be noted that a higher order ARMA 

model generates a more sophisticated covariance matrix for which it was 

observed is more likely to result in a non-positive definite covariance matrix. For 

the purpose of this study it is necessary to ensure that the identified ARMA model 

satisfies causality or invertibility criteria and consequently the covariance matrix 

must be positive-definite. 

ARMA models with different orders of the AR and MA are compared in Table 6-2. 

Sum of squared error (SSE), variance and AICc are calculated using equations 

from Section 3.2. Here, the AR models can be selected based on AICc parameter 

and AR(1) presents the minimum value of SSE and AICc. 
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Table 6-2 Performance of different ARMA model on similar noise signal 

AR(p) MA(q) 
No. of 

Coefficients 
SSE Variance AICc 

1 0 1 0.011 1.81e-06 30.46 

1 1 2 0.020 3.28e-06 31.26 

1 2 3 0.022 3.49e-06 33.14 

2 0 2 0.023 3.67e-06 31.03 

2 1 3 0.023 3.71e-06 33.01 

2 2 4 0.023 3.74e-06 35.01 

 

ACF and ACVF are determined using a causal or invertible function as implied in 

Equations (3-18) and (3-19). It can be much easier to form a covariance matrix 

when there are a limited number of samples. As previously mentioned in this 

application there are at least 60,000 samples per measurement point. Although 

the number of points can be reduced using data subsampling, a very large 

covariance matrix is still formed. This can result in failure of the algorithm due to 

computer physical memory limits. As expected, the autocorrelation and 

autocovariance decrease as the lag between two observations increases and 

finally tends to zero. Therefore, it is possible to form a sparse matrix for ACF and 

ACVF to reduce the size of the matrix. In this case, no memory is allocated to the 

zero value arrays.  
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Figure 6-7 Autocorrelation function of noise signal 

The behaviour of the ACF function can be seen in Figure 6-7 where the 

autocorrelation is a high value for adjacent observations but drops to near zero 

when it is calculated for higher lags. Much simpler sparse matrices can be 

generated if minor correlation values are considered to be zero. Sometimes, this 

can be caused by a non-positive definite matrix and it is necessary to consider 

just a narrow bound near zero. In this study, any value less than 휀 = 2.2204 ×

10−16 is considered to be equal to zero. In MATLAB, it is the minimum distance 

to the next largest double precision number. 

Figure 6-8 summarises the approach to determine a covariance matrix. The result 

is used for optimisation of the NARX model. Afterwards, the generated sparse 

ACVF matrix can function as a weight matrix in the GLS approach and is altered 

during the optimisation procedure. This method is explained thoroughly in Section 

6.5. 



87 
 

Residual of 
identified 

model
YuleWalker

Initial 
coefficients of 

AR(m)

Fix Causality

coefficients of 
ARMA(p,q)

Hannan-Rissanen

 m = max(p,q)+1 

Causality Function

Causal? NO

YES

ACF & ACVF 
Vectors

Sparse Matrix
ACF Matrix

ACVF Matrix
     

Figure 6-8 Process flow diagram for identification and forming of 

autocorrelation and autocovariance matrices 

6.5 Level-1 Model Identification and Refinement Procedure 

The objective of the identification process for the local or level-1 model is 

identification of a parameter vector including the spline knots. Additionally, the 

coefficients of the compensator terms are determined alongside the other terms 

and coefficients in the initial identification process. 

Detrending is a key step in the analysis of time-series data where different types 

of trend can be observed in dynamic data [93]. A zero-mean residual detrending 

is the most common approach. In this case, a mean or median value of the output 

signal at every local sweep can be used. In another method, a detrending 

parameter can be identified alongside the other model coefficients. A constant 

parameter is introduced into the NARX model structure as defined in Equation 

(6-6).  
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𝑦(𝑘 + 𝑛𝑠) =  𝑦Detrend − 𝑎𝑛𝑠−1𝑦(𝑘 + 𝑛𝑠 − 1) −⋯− 𝑎0𝑦(𝑘)

+ 𝑏1𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) + 𝑏2𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘)
2

+ 𝑏rp𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘)
𝑟𝑝

+ 𝑐𝑎(𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) − γ)+
𝑟𝑎

+ 𝑐𝑏(𝑢((𝑘 + 𝑛𝑠 − 1) − 𝑛𝑘) − γ)−
𝑟𝑏
+ 휀 

 (6-6) 

The data collected in the experiment cannot directly be used in the identification 

process due to the existence of some residual frequency and data impurity 

caused by other components in the system. The pre-processing steps taken are 

summarized in Figure 6-9 and a more comprehensive discussion about each of 

them can be found in Section 5.2. The influence of each operation does not 

remove the low frequency dynamics of interest.  

Various identification techniques are implemented to determine the dynamic 

response and also enable prediction of the steady-state behaviour. The 

identification approach is based on least-square regression for model coefficient 

identification while spline knot and system delays are optimised accordingly. 

Ordinary Least Square (OLS) regression can be determined using a response 

vector and basis matrix of the NARX equation. It is necessary to determine a 

spline knot and delay prior to forming a basis function. Considering the NARX 

model, Equation (6-6), the left- and right-hand sides of the equation form the 

response vector and design matrix respectively. 
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Figure 6-9 An overview of pre-processing steps for preparation of level-1 data  

The identified delay is reversed to align the input and output data and the adverse 

effects of load are removed using the compensator model explained in Section 

6.3. After synchronisation of data, 𝑛𝑘 = 0 in Equation (6-5), there is no need for 

further determination of the delay and compensator coefficients in the remainder 

of the identification procedure. Delay identification and data synchronisation are 

explained in Section 6.2. 

The process used for level-1 model optimisation is based on a Generalised Least 

Square (GLS) approach, also known as a Weighted Least Square (WLS) where 

a level-1 covariance matrix is applied as the core of the process. A covariance 
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matrix is determined through ARMA model identification which is explained in 

Section 3.2. The core of the level-1 parameter optimisation process is depicted in 

Figure 6-10. 

According to this scheme, the optimisation process consists of two main 

identification procedures. To begin with, the residuals of the initial model 

estimation acquired by the OLS model is applied to train an ARMA model and the 

correlation and covariance matrices are defined using causality parameters that 

were previously determined according to Equations (3-18) and (3-19).  

Generalised Least 
Square (GLS)

Maximum Likelihood 
Estimation (MLE)

Stoppage
Criteria

Optimised 
NARX model 
Parameters

optimised
ARMA Coeffs.

Converged?Max Iteration? NO

YES

YES

New Covariance Matrix
(Weighted Matrix)

New
NARX model 
Parameters

NO

     

Figure 6-10 Describing a schematic of the NARX model optimisation 

procedure 

The complexity of the ARMA model can be investigated using Equation (3-30). It 

should be noted that an ARMA model of higher order can be harder for an 

identification procedure and also results in a more complicated covariance matrix. 

This is a diagonal matrix determined by the covariance at each lag. Generally, a 

symmetrical matrix is formed by the variance on the leading diagonal and the 

covariance of each lag on any other diagonal of the matrix. 
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It is expected that most of the diagonal elements of the matrix are zero since there 

is no covariance for the higher lags. If a more complex ARMA model is considered 

or the decreasing rate of the causality parameter is very low, then there are more 

diagonals of the matrix which need to be filled with the covariance values. If the 

size of the data is large, creating and operating with such a matrix can be 

computationally very time-consuming. In this case, the size of non-zero diagonals 

can be reduced by considering a simpler ARMA model or a threshold defined for 

ignoring the smaller values of covariance. 

The GLS method applies the covariance matrix as a weighting matrix in the 

optimisation process. Identification of the dynamic signal using GLS and OLS is 

compared in Figure 6-11. There is an overshoot and biased response in the 

estimated dynamic response using only the OLS method as a result of the existing 

correlation error. The GLS estimated response employs a covariance model in 

the estimation of the level-1 model parameters using the optimisation process 

defined in Figure 6-10. Some of NARX model parameters such as the de-trending 

parameters or spline knot can be excluded and are assumed to be fixed during 

the model training to ease the identification process. 

Maximum likelihood estimation (MLE) is used in the optimisation process for 

improving the ARMA model according to the new estimation of the model using 

GLS. This process is based on the maximisation of the likelihood function, defined 

in Equation (6-7).  

𝐿 =
1

2
∑(𝑛𝑖𝑙𝑛(2𝜋) + 𝑙𝑜𝑔|𝑉𝑖(𝜑, 휃)| +

1

2
𝑟𝑖
𝑇𝑉𝑖(𝜑, 휃)𝑟𝑖)

𝑁

𝑖=1

 (6-7) 

where inputs are 𝑉𝑖(𝜑, 휃) for the level-1 covariance matrix  and 𝑟𝑖 for identified 

local model residual. The covariance matrix depends on (𝜑, 휃) which is a 

representation of the ARMA model coefficients. 
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Figure 6-11 Dynamic response estimation using OLS and GLS 

Remember that the covariance matrix is formed as a squared matrix and the size 

of the covariance matrix is affected by the number of data samples. According to 

the explanation in Appendix B.1, it is expected that 𝑉𝑖(𝜑, 휃) is a positive matrix for 

which Cholesky decomposition can be applied. Therefore, Equation (6-8) is 

suggested instead of direct calculation of 𝑙𝑜𝑔|𝑉𝑖(𝜑, 휃)|. This can reduce the time 

of calculation significantly for such a large covariance matrix. 

𝑙𝑜𝑔|𝑉𝑖(𝜑, 휃)| = 2 ∑𝑙𝑜𝑔(𝑑𝑖𝑎𝑔(𝐶)) (6-8) 

where 𝐶 is the Cholesky decomposition of covariance matrix 𝑉𝑖(𝜑, 휃). 

Finally, the result of Equation (6-7) can be used as a cost function for the MLE 

optimisation process. Since the optimisation process is divided into two separate 

processes, each process contains the constraints necessary to provide an 

appropriate response. For example, generalised least square responses are 

constrained using stability criteria and ensuring the appropriate steady-state 
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response behaviour. In the MLE optimisation, constraints limit the variation of 

ARMA coefficients using causality and invertibility criteria as explained before. 

     

Figure 6-12 Identified dynamic model using optimisation procedure in 

comparison with 97.5% confidence interval 

The optimisation method presented improves the NARX model response 

iteratively. Therefore, a convergence margin needs to be determined and 

evaluated at each iteration terminating the procedure when the parameters have 

converged. The magnitude of change in spline knot and ARMA coefficients are 

assessed using the previous values using Equation (6-9) after each iteration. The 

optimisation will be terminated if no significant differences are observed in these 

parameters.  

‖𝑎𝑘 − 𝑎𝑘−1‖

‖𝑎𝑘‖
< δ (6-9) 

where, δ is a positive threshold, and in this study assumed to be 0.001. 
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Figure 6-12 shows that the identified dynamic model demonstrates similar 

behaviour compared with experimental data, the identified signal is located mostly 

within a 97.5% confidence interval. 

6.6 Consideration of Steady-state Prediction in Model Identification  

Due to the nature of this study, a steady-state prediction of dynamic signal is 

required. This can be achieved using the approach presented in Appendix C. 

During the optimisation process, some limitations should be applied to the model 

coefficients and spline knot. Also, the spline knots need to be kept away from the 

edges of the curve. If the predicted position of spline knot is located close to the 

edges, the spline term is practically ineffective contributing little to the overall 

shape of curvature and possibly distorting the response at the spark sweep limits. 

Also, model coefficients need to be constrained in a way to provide a stable 

response during identification. The NARX model can be stable whenever the 

poles of the model are located inside the unit circle [58]. Considering the 

denominator in Equation (6-11), the model is stable if there is no root for 𝑧𝑛𝑠 +

𝑎𝑛𝑠−1𝑧
𝑛𝑠−1 +⋯+ 𝑎0 = 0 outside the unit circle.  

𝑧𝑛𝑠𝑌 + 𝑎𝑛𝑠−1𝑧
𝑛𝑠−1𝑌 +⋯+ 𝑎0𝑌 =  𝑦Detrend + 𝐼𝑛𝑝𝑢𝑡 𝑡𝑒𝑟𝑚𝑠 + 휀  (6-10) 

𝑌 =
 𝑦𝐷𝑒𝑡𝑟𝑒𝑛𝑑 + 𝐼𝑛𝑝𝑢𝑡 𝑡𝑒𝑟𝑚𝑠 + 휀

𝑧𝑛𝑠 + 𝑎𝑛𝑠−1𝑧
𝑛𝑠−1 +⋯+ 𝑎0

  (6-11) 

The steady-state spark-sweep response should result in torque reduction when 

the spark is retarded or advanced from MBT where, engine torque is defined by 

the optimum value. Therefore, the model should generate an estimation of 

steady-state torque curve with a downward concavity.  
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Figure 6-13 Expected behaviour of steady-state spark sweep 

The curvature of steady-state engine torque spark-sweep is illustrated in Figure 

6-13. This condition can be enforced by ensuring that the second derivative is 

negative, this is exerted as an additional constraint in the optimisation process. If 

any identified model does not provide a satisfactory response, it should be 

dismissed. In this figure, MBT is located within the available spark range. At 

higher load with a more limited spark range (due to system constraints) a 

hypothetical MBT point can be determined using extrapolation. 

6.7 Summary 

In this chapter, a nonlinear ARX model was introduced for use as the level-1 

dynamic model. Figure 6-14 summarises the process implemented during the 

level-1 dynamic model identification and defines the sequence described in this 

chapter. 
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Figure 6-14 Flow diagram of general process in dynamic local model 

identification 

Different NARX model configurations are evaluated based on the degree of the 

polynomial and spline terms. All of the candidate models contain 2 previous states 

and there are a similar number of level-1 parameters as well. In this regard, there 

are no differences between the numbers of level-2 models for each of these local 

models. A satisfactory dynamic response is shown for all of these models. Also, 

they demonstrated their ability to provide a predictive steady-state spark sweep. 

The QSQP model provides a sensible curvature over all of the local operating 

points. 

As a case study, experimental dynamic engine torque data are employed to 

evaluate the local model identification approach. These models are assessed 

based on their dynamic and steady-state prediction responses. Desired steady-

state responses were achieved using appropriate constraints in the identification 

algorithm. 

The identification procedure initially applies an ordinary least square method. Still, 

the primary identified model can provide a proper dynamic and steady-state 
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identification. A correlated noise signal is generated through this process. The 

ARMA model was utilised to determine serial correlation among the data. An 

optimisation process was implemented based on maximum likelihood estimation 

and a generalised least square method was used to account for serial correlation 

in the final model identification.  

In the next chapter, the identified level-1 model parameters are used to initialise 

the training of the hierarchical model parameters. 

  



98 
 

Chapter 7 Level-2 Model Identification and Validation 

In this chapter, the implementation of the conditional first-order linearization 

algorithm is discussed for the parameterisation of a hierarchical dynamic torque 

model. As discussed previously the conditionally linear form of the two-level 

nonlinear repeated measurements model takes the form: 

𝑦𝑖 ≈  𝑓(𝑢𝑖, 𝑔(𝑎𝑖 , 𝛽, 𝑏𝑖
∗))  + 𝛺𝑖(𝛽, 𝑏𝑖

∗)𝐹(𝑏𝑖 − 𝑏𝑖
∗)  +  𝜎𝑅𝑖

1/2
(𝑔(𝑎𝑖 , 𝛽, 𝑏𝑖

∗), 𝜉)𝑒𝑖
∗  (7-1) 

The key features of this approximation are: 

 The variance components enter the formulation linearly. 

 The 𝑏𝑖
∗ and 𝑒𝑖

∗ are independent of each other. 

 As a consequence of the underlying normality assumption, the expectation 

and variance of the marginal distribution for  𝑦𝑖 can be written as: 

E[𝑦𝑖]  = 𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗)) – 𝛺𝑖(𝛽, 𝑏𝑖

∗)𝐹𝑏𝑖
∗   (7-2) 

V[𝑦𝑖] = 𝛺𝑖(𝛽, 𝑏𝑖
∗)𝐹𝐷(𝜔)𝐹𝑇𝛺𝑖

𝑇(𝛽, 𝑏𝑖
∗) + 𝜎2𝑅𝑖(𝑔(𝑎𝑖, 𝛽, 𝑏𝑖

∗), 𝜉)  (7-3) 

A multi-step identification algorithm is determined to identify the above model 

parameters. Initially, given estimates for 𝜉 and 𝜔, estimates for 𝑏𝑖
∗ given 𝛽 are 

generated by minimising the posterior log-likelihood. Estimates for 𝛽, 𝜉 and 𝜔 are 

subsequently developed by minimising the approximated marginal distribution for 

𝑦𝑖, again using IGLS.  

Given the definition of the NARX model used at level-1, it is apparent the general 

form of 휃𝑖 is: 

휃𝑖 = [𝑎𝑛𝑠−1𝑖 … 𝑎0𝑖 𝑏1𝑖 … 𝑏𝑟𝑝𝑖
𝑐𝑎𝑖 𝑐𝑏𝑖 𝛾𝑖]

𝑇
 (7-4) 

Sufficient prior knowledge exists to take a semi-parametric approach to the level-

2 model definition. As a consequence, piecewise-polynomial splines (PPS) are 

selected with known structure for each element of 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖
∗) but unknown knot 

positions. In this instance, the term semi-parametric refers to the fact that neither 
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the knot positions nor the maximum degree of the monomial terms and the 

corresponding spline basis are specified a priori.  

In a modification to the basic algorithm and to significantly simplify matters for all 

model formulations considered, novel use is made of the existing level-1 models 

to estimate the unknown level-2 PPS knot positions from a series of univariate 

regressions. Once determined from the univariate analysis, the level-2 knots are 

held fixed throughout. In essence, these terms are treated as structural, 

analogous to the knot position of the NARX models discussed in the previous 

chapter. 

The regression coefficients identified from the univariate analysis and the 

corresponding residuals are used as initial estimates for 𝛽 and the 𝑏𝑖
∗ respectively. 

The proper starting values serve to significantly increase the convergence speed 

for gradient optimisers [94][95]. In addition, the use of analytical gradients helps 

reduce the computational overhead associated with the identification.  

Different identification algorithms for hierarchical models are explained in Section 

2.2.1. Here, application of the two-stage regression approach is limited due to the 

complexity of the dynamic system and nonlinearity of the candidate models. 

Therefore, a first-order linearization technique is mainly chosen to identify the 

parameters of the hierarchical model. The approach is extended to include 

conditional linearization for a distinctive random effect parameter in the system. 

Maximum likelihood estimation is used and extended for hierarchical model 

parameter identification. This is followed by parameter initialisation and gradient 

optimisation for improving the identification algorithm. Finally, a comparison is 

made of local model performance having identified the level-2 model. 

7.1 Level-2 Model Configuration 

Considering the 𝑗𝑡ℎ level-1 model parameter corresponding to 𝑖𝑡ℎ level-1 data 

point defined using 휃𝑖,𝑗 =  𝑔(𝑁𝑖, 𝐿𝑖 , 𝛽𝑗) ∈ ℝ
𝑝, where 𝛽𝑗 is the corresponding spline 

basis coefficient vector, the two-dimensional PPS equation can be written as: 
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𝑔𝑖,𝑗(𝑁𝑖 , 𝐿𝑖, 𝛽𝑗)  =  𝐺𝑖,𝑗
𝑇 𝛽𝑗  (7-5) 

As mentioned above, this equation represents the level-2 definition for one 

particular level-1 coefficient. The direct sum operator denoted by  is used to 

express the combined level-2 basis function matrix, 𝐺𝑖, for the 𝑖𝑡ℎ operating point. 

Accordingly, it can be written: 

𝐺𝑖 = 𝑗=1
𝑝
𝐺𝑖,𝑗
𝑇 = [

𝐺𝑖,1
𝑇 0 0

0 ⋱ 0
0 0 𝐺𝑖,𝑝

𝑇
]  (7-6) 

where 𝑝 is related to the total number of level-1 parameters described using the 

level-2 model. The explanatory component of the level-2 model can be expressed 

as; 

휃𝑖 =  𝐺𝑖𝛽 =  [

𝐺𝑖,1
𝑇 0 0

0 ⋱ 0
0 0 𝐺𝑖,𝑝

𝑇
] [
𝛽1
⋮
𝛽𝑛

]  (7-7) 

Throughout it is assumed that the level-2 random effects are linearly additive. 

Hence, the complete level-2 formulation is written: 

휃𝑖 =  𝐺𝑖𝛽 + 𝐹𝑏𝑖,     𝑏𝑖~ 𝒩(0, 𝐷(𝜔)) (7-8) 

where 𝐹 is a fixed design matrix. The structure of 𝐹 is employed to identify 

whether terms in 휃𝑖 are considered to be fixed or mixed effects.  

Considering the QSQP model definition introduced previously in Equation (6-4), 

the vector of level-1 model parameters corresponding to the 𝑖𝑡ℎ level-1 model is 

휃𝑖 = [𝑦𝐷𝑒𝑡𝑟𝑒𝑛𝑑𝑖 , 𝑎1𝑖 , 𝑎0𝑖 , 𝑏1𝑖 , 𝑏2𝑖 , 𝑐𝑎𝑖 , 𝛾𝑖]
𝑇. The 𝑦𝐷𝑒𝑡𝑟𝑒𝑛𝑑𝑖 and 𝛾𝑖 are assumed to be 

“structural” in nature and consequently are considered to be fixed effects. The 

random effect vector 𝑏𝑖 consists of just five non-zero elements with the 

assumption that; 𝑎1𝑖 , 𝑎0𝑖 , 𝑏1𝑖 , 𝑏2𝑖 and 𝑐𝑎𝑖 are considered random effects. Therefore, 

the appropriate form of the fixed design matrix 𝐹 can be expressed: 
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𝐹 = 

[
 
 
 
 
 
 
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0]

 
 
 
 
 
 

 (7-9) 

Cary [28] provides a methodology predicated on comparison of the AIC among 

candidate models coupled with physical reasoning for determining the 

appropriate form of 𝐹. However, due to much greater computational complexity 

this approach has not been pursued here. 

In the next sections, the technique for hierarchical model identification is 

expanded to consider the intra-individual and inter-individual variation. In addition, 

the random effects parameters need to be determined as fixed or mixed in nature. 

To achieve this, an implementation of the Iterative Generalised Least Squares or 

Maximum Likelihood Estimation is employed. 

7.2 Identification of the Hierarchical Model Parameters 

In Section 3.1, a first-order conditionally linear approximation was used to provide 

the marginal distribution for the nonlinear hierarchical model. Under the 

assumption of normality for the random terms in the model the negative log-

likelihood function can be written as: 

𝐿 =
1

2
∑ (𝑛𝑖𝑙𝑛(2𝜋) + 𝑙𝑛|𝑊𝑖(𝜔, 𝜎

2, 𝜉)| + 𝑟𝑖
𝑇𝑊𝑖

−1(𝜔, 𝜉)𝑟𝑖)
𝑚
𝑖=1    (7-10) 

where 𝑟𝑖 = 𝑦𝑖 −  𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖))+ 𝛺𝑖(𝛽, 𝑏𝑖)𝑏𝑖 . 

Assuming 𝐷 = 𝜎2𝐷 [30], it is possible to differentiate (7-10) with respect to 𝜎2, set 

the result to zero and develop a closed form solution for the variance scaling 

parameter 𝜎2: 

𝜎2 = ∑ (𝑟𝑖
𝑇𝑊𝑖

−1(𝜔, 𝜉)𝑟𝑖)
𝑚
𝑖=1 ∑ 𝑛𝑖

𝑚
𝑖=1⁄    (7-11) 
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In this equation, 𝜎2 is conditional on level-2 random effects and coefficients. The 

following profile likelihood function is generated by substituting Equation (7-11) 

into (7-10): 

𝐿𝑃  =  
1

2
∑ (𝑛𝑖 ( 1 + ln(2𝜋) + 𝑙𝑛 (

∑ 𝑟𝑖
𝑇𝑊𝑖

−1(𝜔,𝜉)𝑟𝑖
𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

)) + 𝑙𝑛|𝑊𝑖(𝜔, 𝜉)|)
𝑚
𝑖=1    (7-12) 

It must be noted that Equation (7-12) is employed as a cost function to be 

minimised to determine the parameters 𝛽, 𝜔 , 𝜉 and 𝑏𝑖
∗.  

An IGLS method is used by Lindstrom and Bates [30] to identify the model 

parameters however there are two limitations to their suggested approach. Firstly, 

a linear level-2 model is required and secondly, the level-1 covariance parameter 

needs to be independent from the level-2 parameters.  

Due to the existence of one-dimensional spline knot sequences in the PPS model, 

the level-2 model is nonlinear and therefore the suggested IGLS method cannot 

be used. Davidian and Giltinan [15] proposed a more general technique to 

overcome the deficiencies of the IGLS using the following approach: 

1. Given the current estimations of 𝜔 and 𝜉 denoted by 𝜔(𝑞) and 𝜉(𝑞) respectively 

and the previous estimates 𝛽(𝑞−1) and 𝑏𝑖,(𝑞−1) , 𝑖 =  1,2, … ,𝑀,  minimise in 𝛽 and 

𝑏𝑖 :  

𝐿(𝛽, 𝑏𝑖) = ∑  (𝑙𝑛|𝐷| + 𝑏𝑖
𝑇 𝐷−1𝑏𝑖 + 𝑙𝑛|𝑅𝑖(𝜉)| + [𝑦𝑖 −

𝑚
𝑖=1

𝑓(𝑢𝑖 , 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖))]
𝑇
 𝑅𝑖
−1(𝜉) [𝑦𝑖 − 𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖)])   

 (7-13) 

where Equation (7-13) can be interpreted as twice the negative log likelihood of 

the posterior density of 𝑏𝑖 for fixed 𝛽 and twice the negative log likelihood of 𝛽 for 

fixed 𝑏𝑖 . The resulting estimates are called 𝛽(𝑞) and 𝑏𝑖,(𝑞). It must be noted that in 

Equation (7-13), the level-1 and level-2 covariance parameters (𝐷 and 𝑅𝑖) are 

assumed fixed during the optimisation process.  
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This step is called a “Pseudo-data” step [30] [15], since the estimations of 𝛽(𝑞) 

and 𝑏𝑖,(𝑞) can be determined simultaneously using an augmented nonlinear 

regression technique. Considering the matrices below: 

𝑌 = [𝑦1
𝑇 , … , 𝑦𝑚

𝑇 ]𝑇  

𝑓(𝛽, 𝑏) = [𝑓𝑇(𝑢1, 𝑔(𝑎1, 𝛽, 𝑏1)),… , 𝑓
𝑇(𝑢𝑚, 𝑔(𝑎𝑚, 𝛽, 𝑏𝑚))]

𝑇  

𝑏 = [𝑏1
𝑇 , … , 𝑏𝑚

𝑇 ]𝑇  

𝑅 = 𝑖=1
𝑚
𝑅𝑖 =  𝑑𝑖𝑎𝑔 {𝑅1(𝜉), … , 𝑅𝑚(𝜉)}  

�̃�𝑇 = 𝑖=1
𝑚
𝐷𝑇 =  𝑑𝑖𝑎𝑔 {𝐷𝑇 , … , 𝐷𝑇}.  

 (7-14) 

The estimations of 𝛽(𝑞) and 𝑏𝑖,(𝑞) can be acquired by regression of the augmented 

vector [𝑅
−1 2⁄ 𝑌
0

] on the nonlinear regression function [
𝑅−1 2⁄ 𝑓(𝛽, 𝑏)

�̃�−𝑇 2⁄ 𝑏
].  

2. In this step, the marginal negative log likelihood function introduced in Equation 

(7-10) is applied to estimate 𝜔(𝑞) and 𝜉(𝑞). 

3. Re-estimate 𝛽 using the following approximate linear estimation procedure. 

Approximate 𝑓 (𝑢𝑖 , 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖,(𝑞))) by taking a Taylor-series expansion about the 

current estimate 𝛽(𝑞) retaining only the first two terms: 

𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽, 𝑏𝑖,(𝑞))) ~ 𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽(𝑞), 𝑏𝑖,(𝑞)))  +  휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))(𝛽 − 𝛽(𝑞))   (7-15) 

where 휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞)) =  𝜕𝑓(𝑢𝑖, 𝑔(𝑥𝑖 , 𝛽(𝑞), 𝑏𝑖,(𝑞))) 𝜕𝛽⁄                 

Define the vector 휂𝑖 as: 

휂𝑖 = 𝑦𝑖 − 𝑓(𝑢𝑖, 𝑔(𝑎𝑖, 𝛽(𝑞), 𝑏𝑖,(𝑞))) + 휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))𝛽(𝑞)  (7-16) 

Substituting Equation (7-16) into the marginal negative log-likelihood of Equation 

(7-10) yields the following: 
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𝐿 =
1

2
∑ (𝑛𝑖𝑙𝑛(2𝜋) + 𝑙𝑛|𝑊𝑖(𝜔, 𝜉)| + 𝜇𝑖

𝑇𝑊𝑖
−1(𝜔, 𝜉)𝜇𝑖)

𝑚
𝑖=1    (7-17) 

where  𝜇𝑖 = 휂𝑖 + 𝛺𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))𝑏𝑖,(𝑞) − 휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))𝛽(𝑞) . 

Differentiating Equation (7-17) with respect to 𝛽, setting the result to zero and 

solving for 𝛽 yields the following equation system: 

[∑ 휁𝑖
𝑇(𝛽(𝑞), 𝑏𝑖,(𝑞))

𝑚
𝑖=1 𝑊𝑖

−1(𝜔(𝑞), 𝜉(𝑞))휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))]𝛽 =

 ∑ 휁𝑖
𝑇(𝛽(𝑞), 𝑏𝑖,(𝑞))

𝑚
𝑖=1 𝑊𝑖

−1(𝜔(𝑞), 𝜉(𝑞))(휂𝑖 − 𝛺𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞))𝑏𝑖,(𝑞))  
 (7-18) 

The matrices 휂𝑖, 𝛺𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞)) and 휁𝑖(𝛽(𝑞), 𝑏𝑖,(𝑞)) are defined initially using 𝜔(𝑞), 𝜉(𝑞) 

from step 2, 𝛽(𝑞) and 𝑏𝑖,(𝑞) from step 1. A new estimation for 𝛽(𝑞) is determined 

using Equation (7-17). This completed iteratively until the estimated values have 

converged or stopped after a finite number of iterations. 

4. The process needs to be iterated by returning to the first step. In step 1, replace 

the previously estimated values with the new ones using �̂�(𝑞−1) = �̂�(𝑞),  𝜉(𝑞−1) =

𝜉(𝑞) , �̂�(𝑞−1) = �̂�(𝑞) and �̂�𝑖,(𝑞−1) = �̂�𝑖,(𝑞). The overall procedure should be iterated to 

convergence or stop after a defined number of repetitions. The convergence 

condition can be evaluated using Equation (7-19). The final results can be 

represented as �̂�𝑀𝐿, 𝜉𝑀𝐿, �̂�𝑀𝐿 and �̂�𝑖, 𝑖 = 1,2, … ,𝑚 . 

‖�̂�(𝑞) − �̂�(𝑞−1)‖

‖�̂�(𝑞)‖
< δ𝛽  (7-19) 

where, δ𝛽 is a small positive constant; in this study δ𝛽 is assumed to be 0.001. 

It should be noted that �̂�(�̂�(𝑞−1)) and �̂�𝑖(𝑔(𝑎𝑖, �̂�(𝑞−1), �̂�𝑖,(𝑞−1)), 𝜉(𝑞−1)) are defined 

by the previous estimate and they are fixed during step-1 of the identification 

procedure. Similarly, 𝛺𝑖(𝛽, 𝑏𝑖) =  𝛺𝑖(�̂�(𝑞−1), �̂�𝑖,(𝑞−1)) is fixed during step 2 using 

�̂�(𝑞−1) and �̂�𝑖,(𝑞−1) from step 1 and 𝑊𝑖
−1(𝜔, 𝜉) =  𝑊𝑖

−1(�̂�(𝑞), 𝜉(𝑞)) is also fixed in 

step 3 throughout the estimation of �̂�(𝑞). 
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7.3 Level-2 Knot Selection Algorithm 

The information acquired during Level-1 model identification is then used in the 

identification of the level-2 knot positions conveniently providing starting values 

for 𝛽 and 𝑏𝑖
∗ identification. This involves carrying out a series of nonlinear 

regressions on the level-1 parameter estimates on a univariate basis. The 

parameter estimates (𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗) so derived are then fixed throughout the 

remainder of the identification process. Regression coefficients from this process 

become initial estimates for 𝛽𝑗 and 𝑏𝑖,𝑗 respectively. 

As was discussed in the Section 6.2, level-1 transport delays are identified 

individually and the data time aligned. This eliminates the necessity to include 

such terms in the full hierarchical model. Alternatively, an additional pre-

processing step may be employed to determine a common input delay for all the 

level-1 response data. In reality the identified delay is not a constant, 

consequently this approach is not deemed appropriate. 

Consider the estimated Level-1 coefficient vector defined by 휃̂𝑖. If 휃̂𝑖,𝑗 represents 

the 𝑗𝑡ℎ Level-1 model parameter and 𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗) the corresponding Level-2 

model basis function matrix with 𝛾𝑁𝑖,𝑗 and 𝛾𝐿𝑖,𝑗 the strictly increasing knot 

sequences for the level-2 factors, the level-2 model can be written:  

휃̂𝑖,𝑗 = 𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)𝛽𝑗 + 𝑏𝑖,𝑗 (7-20) 

Note that Equation (7-20) is conditionally linear in 𝛽𝑗. Given  𝛾𝑁𝑖,𝑗 and 𝛾𝐿𝑖,𝑗, 𝛽𝑗 can 

be determined using: 

𝛽𝑗 = (𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)
𝑇𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗))

−1
𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)

𝑇휃̂𝑖,𝑗  (7-21) 

Where 𝐺𝑗 is the associated regression matrix for the 𝑗𝑡ℎ  element of 휃̂𝑖. Substituting  

(7-21) into (7-20) the following nonlinear regression is obtained for the estimation 

of  𝛾𝑁𝑖,𝑗 and 𝛾𝐿𝑖,𝑗: 



106 
 

휃̂𝑖,𝑗 = 𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)(𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)
𝑇𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗))

−1
𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)

𝑇휃̂𝑖,𝑗 + 𝑏𝑖,𝑗       (7-22) 

The (𝛾𝑁𝑖 , 𝛾𝐿𝑖) are estimated by minimising the function: 

arg𝑚𝑖𝑛 (휃̂𝑖,𝑗 − 𝐺𝑗(𝐺𝑗
𝑇𝐺𝑗)

−1
𝐺𝑗
𝑇휃̂𝑖,𝑗)

𝑇

(휃̂𝑖,𝑗 − 𝐺𝑗(𝐺𝑗
𝑇𝐺𝑗)

−1
𝐺𝑗
𝑇휃̂𝑖,𝑗)       (7-23) 

Note, in Equation (7-23) the dependency of 𝐺𝑗 on (𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗) has been dropped 

for notational compactness. Once the estimates for (𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗) have been 

determined through minimisation of Equation (7-23), estimates for �̂�𝑗 follow from 

Equation (7-21). Likewise, initial estimates for the 𝑏𝑖,𝑗 can be evaluated from: 

𝑏𝑖,𝑗 = 휃̂𝑖,𝑗 − 𝐺𝑗(𝛾𝑁𝑖,𝑗, 𝛾𝐿𝑖,𝑗)𝛽𝑗 (7-24) 

The MATLAB function “lsqnonlin” [96] was utilised to minimise Equation (7-23). 

The knot sequences 𝛾𝑁𝑖,𝑗 and 𝛾𝐿𝑖,𝑗 derived from this process are now assumed 

fixed throughout the identification process. In practice, the stability and 

conditioning of the calculated basis function is improved using the matrix 

preconditioning method discussed in Appendix B.2 .  

7.4 Initial Estimates for 𝝎 

To speed up the convergence process, it is desirable that the level-2 covariance 

parameters are initialised to reasonable starting values. These are obtained from 

Equation (7-24), there is one equation for each element of 휃̂𝑖,𝑗. 

An initial estimate of 𝑏𝑖,𝑗 needs to be obtained using the procedure explained 

above. The sample standard deviation of 𝑏𝑖,𝑗 is defined as �̂�𝑗. If the total number 

of Level-1 parameters are defined by 휃𝑖 ∈ ℝ
𝑝 where 𝑗 = 1,… , 𝑝, then the Level-2 

covariance matrix is a symmetrical squared matrix 𝐷 ∈ ℝ𝑝×𝑝 and it is expected to 

include 𝑝(𝑝 + 1)/2 unique elements. 

Cholesky factorization of 𝐷 can be used to achieve positive semi-definiteness of 

the matrix. It is better to replace 𝐷 in the negative log-likelihood equations 
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previously discussed using 𝐷 = 𝑀𝑀𝑇 where 𝑀 is the lower Cholesky factor of 𝐷. 

𝑀 is a lower triangular matrix and 𝑀0 can be formed as below. 

𝑀0 = 𝑑𝑖𝑎𝑔{�̂�1 ⋯ �̂�𝑝} (7-25) 

7.5 Initial Estimates for 𝝃 

The general form of 𝑅𝑖(휃𝑖, 𝜉) can be defined using the following expression. 

𝑅𝑖(휃𝑖 , 𝜉) = 𝑇𝑖
1/2(휃𝑖, 𝜐)𝐶𝑖(𝜌)𝑇𝑖

1/2(휃𝑖 , 𝜐) (7-26) 

where 𝑇𝑖
1/2(휃𝑖, 𝜐) is a diagonal matrix describing the heteroscedastic nature 𝐶𝑖(𝜌) 

is a correlation matrix of the Level-1 data. The Level-1 covariance model 

parameter 𝜉 includes 𝜐 and 𝜌 describing the heteroscedasticity and correlation 

respectively. In this study, it is not necessary to consider a heteroscedastic term 

and Equation  (7-26) can be simplified: 

𝑅𝑖(휃𝑖 , 𝜉) = 𝐶𝑖(𝜌) (7-27) 

Using a variable 𝜉 for Level-1 data provides a complicated structure which makes 

it impossible to estimate the parameters reliably. In many cases a systematic 

correlation pattern may be evident in the data as a consequence of the structure 

of the model or from the data collection method employed. In this study, serial 

correlations among closely located data are almost inevitable due to the dynamic 

nature of the Level-1 model and the high sampling rates required. 

In principle neither the correlation structure nor parameter estimates for a given 

structure need be assumed constant over all level-1 experimental units. However, 

it is immediately apparent that entertaining such possibilities significantly 

increases the complexity of the modelling process since now 𝜉(𝑁𝑖, 𝐿𝑖). Although, 

it is relatively straightforward to accommodate such dependencies, it is much 

more convenient to assume a common 𝜉 for all of the Level-1 data [15]. 
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The correlation model is assumed to be of the Auto Regressive Moving Average 

(ARMA) type as explained already in Section 6.4. In order to make an initial 

estimation of 𝜉, it is required to optimise the following (single variance component) 

negative log-likelihood equations with respect to 𝜉. 

𝐿 =∑(𝑙𝑛(|𝑅𝑖(휃̂𝑖 , 𝜉)|) + 𝑟𝑖
𝑇𝑅𝑖

−1(휃̂𝑖, 𝜉)𝑟𝑖)

𝑚

𝑖=1

 (7-28) 

where 𝑟𝑖 is the corresponding level-1 residual. 

7.6 Gradient Optimisation 

The total amount of data available for training even after subsampling operation 

is considerable. Even though the identification algorithm is composed of a 

sequence of smaller optimisations the computational burden is large. With this in 

mind it is necessary to employ a gradient optimiser [97], rather than using a global 

approach, to reduce the computation time. Supplying analytical gradients further 

expedite convergence by reducing the number of cost function evaluations 

required. To achieve this, analytical gradients are determined with respect to 𝛽 

and 𝑏𝑖
∗ in Equation (7-13) and 𝛽, 𝜔 and  𝜉 in Equation (7-12). In Appendix D these 

are derived using a standard approach to find the matrix derivatives.   

To minimise the posterior likelihood described by Equation (7-13) the necessary 

analytical formulae are: 

𝜕𝐶

𝜕𝑏𝑖
= 2𝐹𝑇𝐽𝑖

𝑇(𝛽, 𝑏𝑖)𝑅𝑖
−1(𝑓𝑖(𝛽, 𝑏𝑖) − 𝑦𝑖) + 2𝐷

−1𝑏𝑖 (7-29) 

𝜕𝐶

𝜕𝛽
= 2∑𝜅𝑖

𝑇(𝛽)𝐽𝑖
𝑇(𝛽, 𝑏𝑖)

𝑚

𝑖=1

𝑅𝑖
−1(𝑓𝑖(𝛽, 𝑏) − 𝑦𝑖) (7-30) 

where 𝜅𝑖(𝛽) =  𝜕휃𝑖 𝜕𝛽⁄ . 

For minimisation of the profile likelihood as described in Equation (7-12), the 

necessary relations are: 
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𝜕𝐿𝑝

𝜕𝜔𝑗
=
1

2
∑𝑡𝑟 (𝑊𝑖(𝜔, 𝜉)

−1[𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑄𝑗𝑀𝑇(𝜔)𝛺𝑖
𝑇
(�̂�, �̂�𝑖,(𝑞))

𝑚

𝑖=1

+𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)𝑄𝑗
𝑇𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))] )

−
1

2𝜎2(𝜔, 𝜉)
∑𝑟𝑖

∗𝑇𝑊𝑖(𝜔, 𝜉)
−1[𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑄𝑗𝑀𝑇(𝜔)𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))

𝑚

𝑖=1

+𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)𝑄𝑗
𝑇𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))]𝑊𝑖(𝜔, 𝜉)

−1𝑟𝑖
∗ 

                 

(7-31) 

𝜕𝐿𝑝

𝜕𝜉𝑗
=
1

2
∑𝑡𝑟 (𝑊𝑖(𝜔, 𝜉)

−1
𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜉𝑗
)

𝑚

𝑖=1

−
1

2𝜎2(𝜔, 𝜉)
(∑𝑟𝑖

∗𝑇𝑊𝑖(𝜔, 𝜉)
−1
𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜉𝑗
𝑊𝑖(𝜔, 𝜉)

−1𝑟𝑖
∗

𝑚

𝑖=1

) 

(7-32) 

𝜕𝐿𝑝

𝜕𝛽
=

(
∑ 𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝑓(𝛽,�̂�𝑖,(𝑞))−𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝑦𝑖−𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝛺𝑖(𝛽,̂�̂�𝑖,(𝑞))�̂�𝑖,(𝑞)

𝑚
𝑖=1

𝜎2
)    

(7-33) 

Let 𝑄𝑗 =
𝜕𝑀(𝜔)

𝜕𝜔𝑗
 in Equation (7-31) and “𝑡𝑟” stands for the matrix “trace”, which is 

the sum of elements on the leading diagonal. 

The MATLAB function “fmincon” [98] is used for the optimisations and can be 

deployed with or without gradient optimisation. The functionality is tested in both 

of the approaches using a 4-core 2.90GHz system with 32GB of RAM. Supplying 

the gradient optimiser, the identification process was achieved in less than 30 

minutes. Without the gradients, the identification process was stopped after 2 

days.  

The application of analytical gradient improves optimisation process in two ways. 

Firstly, it provides gradient information for the optimiser to define the update 

direction for the next iteration and therefore a smaller number of iterations are 

needed for parameter convergence. Secondly, the optimiser considers the matrix 

as a whole instead of individual elements in each cost function evaluation. The 
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size of the data required in this study is large and application of gradient based 

optimisation with analytical gradients makes a significant difference. 

7.7 Identification Process 

The identification algorithm used for conditional first-order linearization is shown 

in . In this diagram, the following equations are applied: 

 Equation (6-6) provides the responses and residuals of the level-1 models for 

the identification process. 

 Equation (7-20) for updating level-1 coefficients. 

 Equation (7-28) for determining the initial level-1 covariance parameters. It is 

not applied for the second iteration since the covariance parameters are 

updated in the identification process. 

 Equation (7-25) is used for the initial level-2 covariance parameters. It is not 

applied for the second iteration since the covariance parameters are updated 

in the identification process. 

 Equation (7-13) is used to determine the posterior log-likelihood. Additionally, 

Equations (7-29) and (7-30) are used for the gradient optimisation. The 

previous estimation of 𝛽(𝑞−1) and 𝑏𝑖,(𝑞−1) are updated through this process. 

 Equation (7-17) is used for calculating the negative log-likelihood. Also, 

Equations (7-31), (7-32) and (7-33) facilitate the optimisation process using 

the gradient analysis. A new estimate of the hierarchical model coefficients 

and covariance are determined.  

 Equation (7-19) is used for terminating the identification. It checks the 

convergence of the identified parameters and number of allowed iterations. 
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Figure 7-1 General process for conditional linearization algorithm 
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7.8 Results and Analysis 

 Validation of the Dynamic Model  

The response prediction provided by the trained hierarchical model is now 

compared with the experimental dynamic torque signal to evaluate the 

identification approach. Initially level-2 is trained using the model explained in 

Equation (3-39), the size of the basis function is 25 elements. A typical 

comparison is presented in Figure 7-2 for a selected transient sweep. There is 

excellent agreement between the predicted and experimental response data. 

     

Figure 7-2 Comparison of the experimental dynamic torque signal and 

predicted signal using identified hierarchical model 

The identified model is compared to the 97.5% confidence interval. A selected 

slice of the response is shown in Figure 7-3. It is observed that the predicted 

torque is mostly located within the defined confidence interval. The predicted 

response is outside of the confidence interval wherever there is a large spark 

step. This is not due to incorrect estimation but can be attributed to a slight delay 

in the predicted response. 



113 
 

     

Figure 7-3 Predicted response using level-2 model in comparison with 97.5% 

confidence interval of the experimental data 

The overall goodness of fit for all sweeps is evaluated using the Normalised Root 

Mean Square Error (NRMSE). The NRMSE for each operating point in the DoE 

is colour-coded and illustrated in Figure 7-4, it is calculated using Equation (7-34) 

[99]. 

𝑁𝑅𝑀𝑆𝐸𝑖 =  1 −
‖𝑦𝑖 − 𝑦�̂�‖

‖𝑦𝑖 −𝑚𝑒𝑎𝑛(𝑦𝑖)‖
 (7-34) 

where 𝑦𝑖 is the actual experimental results for the 𝑖𝑡ℎ operating point and 𝑦�̂� is the 

estimated level-1 model response.  

In Figure 7-4 the worst NRMSE is -0.4 and the best is about 0.88. The sweeps 

with the worst fit are encountered most frequently near the edge of the design or 

at very low speed where the relative frequency of noise is higher. This issue can 

be resolved using an augmented design in the region where the response is poor. 

Alternatively, a different type of level-1 or level-2 model can be provided to 

improve the estimated response in this region. 
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Figure 7-4 Evaluation of the goodness of fit for level-1 models compared with 

level-2 model prediction using NRMSE 

A second model described by Equation (3-40) is also evaluated for level-2 of the 

model, this includes 10 fewer basis function terms. The NRMSE values of the two 

model structures are compared for each design point as shown in Figure 7-5. 

Although there are no significant differences for the points with high NRMSE, the 

first model shows an improvement for the points with a very low NRMSE 

especially the low speed points (design points 53-57). In this case, the worst 

NRMSE value is improved to 0.05.  
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Figure 7-5 The NRMSE for every individual point with various type of model 

Some of the design points are located beyond the usual operating region of the 

engine that cannot be achieved in conventional steady-state testing. The dynamic 

test approach facilitates characterisation of a much wider operating region. This 

is possible in dynamic testing since the engine can be set to very briefly visit 

adverse points, not dwelling long enough for any damage to be done to the 

engine. 

 Evaluation of the Predicted Steady-state Spark Sweep 

In this study an estimated steady-state spark sweep is required for legacy Engine 

Control Units, the estimate is obtained from the dynamic model as described in 

Appendix C. In this section, a comparison is made between the steady-state 

prediction obtained from the level-1 (local) models and the prediction obtained 

from the hierarchical (global) model. A visual comparison of the respective 

predictions over the DoE shows corresponding curvature and magnitude for most 

of the sweeps. Sweeps from four different operating points are shown in Figure 

7-6.  
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The steady-state spark-sweep predicted using the level-1 (local) models is 

depicted by (x) and the corresponding MBT is shown by (). Similarly (o) and () 

are used for the hierarchical (global) model steady-state spark-sweep predictions. 

In most cases the location of MBT is correctly determined. For the operating 

points where extrapolation is required to determine MBT (top-right of Figure 7-6) 

it is possible to observe a large difference in estimated MBT. A small difference 

in the spark-sweep curvature has a significant impact on the extrapolated MBT 

value.  

  

  

Figure 7-6 Level-1 (x) and level-2 (o) comparison for providing a predicted steady-state 

spark sweep for different spark sweeps 
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The uniform data points for level-2 prediction is the other significant observation 

in these graphs. Therefore, the provided spark sweep has a higher resolution than 

level-1 fit. The range and distribution of level-1 points depend on the variations of 

AMPRS. It must be noted that level-2 spark range is cropped according to the 

existed spark range in level-1 data. A wider range of spark can be generated for 

level-2 predicted sweep if required. 

Two types of level-2 model are considered as previously discussed using 

Equation (3-39) and (3-40), these are named model-1 and model-2 respectively. 

The predicted steady-state spark sweep is compared for both of the models at 

the operating point with the worse NRMSE value. The result is shown in Figure 

7-7.  

     

Figure 7-7 Model-1 () and Model-2 (o) comparison for providing a predicted 

steady-state spark sweep 

Although, model-1 determines the spark-sweep curvature correctly it can be seen 

that there is an offset compared to the level-1 (local) model prediction. For model-

2 there is no significant offset. The angle of spark at which MBT occurs in both 

models shows good agreement with the level-1 (local) model prediction. 
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Since the level-2 (global) model is identified using experimental data, it should be 

able to provide a prediction at any point within the design boundaries. This can 

be evaluated using steady-state data at various operating points. Both model-1 

and model-2 are compared with steady-state data obtained at 4 different 

operating points, the results are shown in Figure 7-8. 

  

  

Figure 7-8 Steady-state spark sweep data (x) and level-2 prediction (o) comparison 

The number of points at which steady-state data may be collected is more 

restricted compared with dynamic tests there are a number of points at which it is 

undesirable to collect data. This is exemplified in Figure 7-8 at an engine speed 

of 6500rpm and 1.16 load for which just two points are available. On the other 

hand, there is no restriction on the minimum and maximum spark points in the 

predicted spark sweep using hierarchical modelling algorithm. In this case, the 
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spark position can be bounded by the evaluation of a recursive model for min 

spark and BLD or MBT data. 

The torque estimates compare well with the experimental results. The model-1 

prediction is generally better for most of the points. In the two top graphs of Figure 

7-8 the curvature of both of the experimental and predicted spark sweeps are 

comparable. In the bottom curves the number of experimental points is fewer due 

to infeasible points where it is not possible to safely run engine. The dynamic 

approach still enables collection of data in this region where conventional test 

approaches fail. 

     

Figure 7-9 A combined model prediction using model-1 and model-2 

At the operating point with an engine speed 4257 rpm and 0.183 load, the first 

half the sweep is predicted visually well using model-1 whilst model-2 shows a 

better prediction in the second half. Therefore, the prediction can be improved 

using a combination of the model-1 and model-2. An equal weighting is applied 

to both of the models and a combined prediction result is shown in Figure 7-9. 
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The combined model shows better prediction in terms of the magnitude of the 

response and curvature.  

This particular operating point is chosen to demonstrate the principle of the multi-

modelling approach in the hierarchical models. In this specific case, the response 

can be properly determined with the same effects of the models. However, an 

equal weight for the both type of models can not ideally provide a proper response 

for the other operating points. Alternatively, the multi-modelling approach can 

employ a covariance matrix or AIC (Akaike weight) as the weight matrix to provide 

a combined response for the entire points. 

The data is used to train hierarchical model and the validation data are collected 

on different days. It can be seen that the effects of day to day variation in 

uncontrolled test conditions are mitigated through the use of random effects in the 

hierarchical model. 

7.9 Summary 

In this chapter, the second level of the hierarchical model was developed to 

handle dynamic engine data. The hierarchical model structure considers the 

detrending coefficient and spline knot as fixed effect parameters at level-2, while 

the other level-1 parameters are considered to be influenced by random effects.  

Due to the nonlinearity of the PPS model in 𝑏𝑖, a first-order linearization approach 

is employed to identify the model. This is extended using a conditional 

linearization approach, linearizing around 𝑏𝑖
∗. In this study, 𝑏𝑖

∗ is provided initially 

comparing level-1 model parameters with the primary estimation of PPS model 

and identify level-2 coefficients. 

Novel contributions to the improvement of the identification process outlined in 

this chapter are summarised as follows:  

 The level-2 spline knots are initially estimated in both dimensions of the PPS 

model and they are kept fixed during the optimisation process. As a 
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consequence the number of level-2 parameters is reduced and the level-2 

basis functions don’t change at each step of the optimisation. 

 Since the level-1 model parameters are identified in the previous stage, it is 

possible to use this information to initialise the level-1 random errors and level-

2 random effects. The level-1 and level-2 covariance parameters can be 

estimated in the first step of the identification. In general, this provides a better 

starting point than using a random value and reduces the number of iterations.  

 The application of analytical gradients significantly reduces the time taken to 

identify the model. As a result the hierarchical model can be made more 

complex at level-1 and level-2 to describe the system appropriately.   

In this study, the algorithm suggested is evaluated using dynamic torque engine 

data. The identified level-2 model shows good prediction of the steady-state spark 

sweep compared with the modelled level-1 (local) response. There are some 

minor differences in the responses when noise levels are high, or the operating 

point is beyond the engine’s safe operating region. 
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Chapter 8 Conclusions 

In this thesis hierarchical nonlinear mixed effects models were investigated and 

extended. The results were applied for use in SI engine dynamic torque 

characterisation. Dynamic data was obtained experimentally using AMPRS spark 

signal modulation. The layout of the experimental test points is determined using 

a multi-model D-optimal design. Since the data collection procedure imposes a 

multi-level structure on the data. Multi-level modelling approaches were 

investigated as the general type of model to use with this type of data.  

In comparison with the hierarchical mixed effects models, the LPV models provide 

an inflexible structure and require high levels of complexity to describe complex 

non-linear systems. The lack of an obvious means of incorporating random 

variation in the parameters and covariance in the LPV model structure makes 

them even less useful when these are required. The neural network technique is 

a possible alternative solution, but its parameters are physically meaningless and 

it includes no covariance component. 

A hierarchical mixed effects model is selected since it contains the necessary 

features such as the possibility to include random effects in parameters and a 

covariance component flexibly, at different levels within the model. These features 

are present in a fully parametric hierarchical model. In a non-parametric structure, 

the higher-level structure does not represent the system physics. In a semi-

parametric model, distribution of random effect parameters is not normally 

distributed and cannot be defined by the covariance term. Another solution is the 

Bayesian approach, though it is more complex which makes it less favourable for 

general use.    

Figure 8-1 demonstrates the relationship between the level-1 and level-2 models 

in this application. The level-1 dynamic model provides the engine torque based 

on the effects of spark using a NARX model definition. A PPS model specifies 

variation of the level-1 model parameters according to the speed and load at level-

2. 
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Spark Advance (u)Level-1 input

Engine Speed (N)

Air-Charge (L)
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Indicated Torque (I) [Nm]

Brake Torque (T) [Nm]

Level-1

Dynamic Response
u 

 θi 

Level-2 model

PPSpline (Ni,Li,βi)

     

Figure 8-1 An overview of the hierarchical dynamic torque model structure 

Nonlinearity was included in the model structure by introducing the spline terms 

at both levels of the model. Initially, a NARX model was constructed using a 

QSQP configuration which provides a more sensible prediction of the steady-state 

spark-sweep compared with other types of model.  

Pre-processing of experimental data is required before the level-1 identification. 

The engine periodic frequencies were removed, and the dynamic torque signal 

was smoothed using a notch and Savitzky-Golay filter.  

The input and related output signals are recorded with a delay. Although, the 

NARX model can be equipped with additional parameters to represent delay, it 

requires a further level-2 model which needs to be estimated. The approach taken 

in this work is to synchronise the input and output signals to avoid this. 

The level-2 factors (engine speed and load) are set as constant during the data 

collection however they both fluctuate due to the dynamics of the dynamometer 

controller. It is therefore necessary to account for the variation of these factors in 

the level-1 model. In this work, variation in speed is ignored since it is small 

relative to the load variation and the experimental data were corrected using a 

compensator model. The compensator terms are later removed, once the data is 

corrected, in order to avoid additional level-2 coefficients. 

The level-1 model parameters were optimised iteratively. The covariance model 

defined using an ARMA model, was initially applied as a weighting for least 
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squares regression and the covariance model parameters were optimised at 

every iteration using maximum likelihood estimation. Since the covariance model 

must be a positive definite matrix and causal, and good steady-state prediction is 

required, these were added as constraints to the identification process.   

Conditional first-order linearization was used for identification of the hierarchical 

model parameters. The identified level-1 models were employed to initialise the 

level-2 model parameters whilst specifying the spline knots in both dimensions. 

The level-1 and level-2 covariance parameters were initialised using the 

information provided at level-1.  

The conditional first-order linearization approach was significantly simplified 

however the optimisation is computationally impractical when applied to large 

dynamic datasets. To mitigate this the gradients of the objective functions were 

derived and implemented to reduce the computational requirements. Here, a brief 

explanation of the algorithm developed in this study is presented. 

8.1 Evaluation of the Dynamic Hierarchical Model 

The identified dynamic hierarchical model was compared with the level-1 (local) 

model responses and experimental steady-state spark sweeps. The findings and 

conclusions are presented below: 

 The dynamic hierarchical model provides efficient estimation of steady-state 

and transient torque behaviour. 

 The torque prediction is located within a 97.5% confidence interval of the 

experimental result. The confidence interval is narrower where there is a rapid 

step in spark, but the dynamic behaviour is satisfactory. 

 The prediction accuracy of the hierarchical model is compared with the level-

1 (local) model using NRMSE. Most of the models have an NRMSE value 

higher than 0.6 and in the best case an NRMSE value of 0.9 was achieved. 

Considering the huge variations in the responses and possible misalignment 

during the rapid transient, good conformity is observed. 



125 
 

 The lowest NRMSE values are located at the edges of the design space. 

These are the most difficult points at which to obtain data as there is more 

vibration in the engine and excessive fluctuation in the measured signal. 

 The level-2 PPS basis function is evaluated using two different configurations, 

the second containing 10 fewer terms than the first. Interestingly, the 

prediction capability for points previously having a low NRMSE was improved 

significantly. 

 The dynamic hierarchical model is required for the prediction of a sensible 

steady-state response. The level-1 (local) model steady-state response 

compared favourably with the experimental steady-state measurements. 

 The prediction of spark-sweeps using the level-2 model results in better 

determination of the spark-sweep, with the opportunity to collect more data in 

area of operation that are not feasible when running steady-state. 

 The level-2 model is capable of providing a prediction at any point within the 

DoE boundaries. This feature was evidenced using a steady-state comparison 

with data not included in the set of design points. 

 Both of the level-2 configurations investigated show good correlation with 

experimental steady-state spark sweep data. The quality of the prediction was 

enhanced using a multi-modelling approach. 

8.2 Advantages of the Dynamic Hierarchical Torque Model 

Conventional methods for engine data collection are generally based on steady-

state methods. This method requires time to stabilise the engine before recording 

any data. Consequently, a spark sweep takes a considerable amount of time. In 

the dynamic case, as developed in this work, a spark sweep can be achieved in 

just 60 seconds with the added benefits of higher resolution and wider range of 

data points. 

For the method proposed, it takes 1.5 minutes to set the engine operating point 

for each sweep and transient data collection taking a further 1 minute. A total of 

2.5 minutes for each sweep. The conventional approach on the other hand needs 
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20 minutes to collect a similar sweep with a minimum of 10 different spark 

settings. In order to complete an engine map more than 1200 spark sweeps are 

required at different cam timings. The time required for a completed engine torque 

characterisation is 50 hours using the dynamic spark sweep approach proposed 

compared to 400 hours using the traditional one. The cost of the engine mapping 

is reduced by the same proportion. 

8.3 References to the Contributions 

The following provides details of the location in this thesis where details of the 

contributions made can be found.  An overview of the main contributions is 

available in Section 1.7. 

1. The hierarchical model structure used for dynamic engine torque data was 

defined in Section 3.1.1 and illustrated in Figure 3-1.  This included a NARX 

and PPS model at level-1 and level-2 respectively. The conditionally linear 

approach taken for the identification was explained in Section 7.2 and is 

depicted in .  The mixed effect parameters were determined using Equation 

(7-9).  

2. The conditionally first-order linearization approach is enhanced as below: 

 The level-1 models were optimised using an IGLS algorithm presented in 

Section 6.5 and implemented according to the process shown in Figure 

6-10.  

 The random effect parameters and PPS spline knot and coefficients were 

initialised using the identified level-1 models as shown in Section 7.3.  

 The covariance parameters for the level-1 and level-2 are initialised as 

shown in Sections 7.5 and 7.4.  

 The gradient optimiser is developed using the derived equations for 

determining the posterior likelihood and profile likelihood with respect to 

the model parameters. These are discussed in Section 7.6. 

 The multi-model approach is applied to improve the model prediction. This 

can be seen in Figure 7-9. 



127 
 

3. The experimental test plan was provided using an augmented multi-model D-

optimal design which is presented in Section 4.2, development steps are 

illustrated in Table 4-3. 

4. The experimental data were pre-processed to remove the lag between input 

and output signals, and the modified data is used in the identification process. 

Details are explained in Section 6.2. 

5. There were fluctuations in engine load and some minor variations in engine 

speed. A compensator model was applied to the NARX model and the load 

variation was compensated for the process is explained in Section 6.3.  

6. The hierarchical model predictions were compared with the level-1 dynamic 

and predicted steady-state responses. The results were contrasted with the 

experimental steady-state data. These results are explained in Section 7.8 for 

dynamic and steady-state comparisons separately.  

8.4 Recommendations for Further Work 

The study presented in this thesis establishes the fundamentals and requirements 

for implementation of a dynamic hierarchical nonlinear mixed effects model. A 

transient torque data collection method is developed in order to estimate the 

steady-state behaviour of the engine with respect to changes in spark at some 

combination of speed and load. As a result of the endeavours detailed herein, the 

recommendations for further work are as follows; 

 The multi-dimensional PPS model is a 2D level-2 model considering engine 

speed and load variations. This model could be expanded to include additional 

engine factors. For example, Exhaust Gas Recirculation (EGR) as a third 

dimension of the level-2 model.  

 The application of Bayesian approaches may provide further improvement in 

prediction capabilities.  A more complex dynamic hierarchical model such as 

this may be developed if the distribution of the parameters can be 

distinguished using Bayesian methods. 
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 The DoE is developed using multi-model D-optimal criteria. A genetic 

algorithm could be used in the excursion step of the optimal design to make 

the design process faster to converge. 

 The DoE was carefully constrained to be limited to the known engine operating 

boundaries. However, it is impossible sometimes to collect data in some 

regions due to the complexity of the system. In this case, there is a lack of 

data in the points near or on the design boundaries. This will change the 

design efficiency and the level-2 model quality. Therefore, an algorithm could 

be established to modify the design to replace unfeasible design points with 

more efficient points online during data collection. 

 The level-1 model is implemented based on some preselected NARX 

configurations. These are selected after investigating various types of model 

structures. In selecting a model for this application the simplest configuration 

was the priority. A more complex NARX model or higher degree ARMA model 

could be used if a lower AIC value is possible. Additionally, a multi-modelling 

approach could be established in the level-1 model at the cost of additional 

computation. 

 The level-2 model is defined using a combination of two PPS models. A more 

complicated strategy could be applied to achieve a more robust multi-model 

approach with a different criterion for weighting the models.    

 Online adaption of the developed dynamic model could be investigated, a 

recursive algorithm for example could be applied to update the level-1 local 

model parameters.  
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Appendices 

Appendix A. Model Selection Criteria 

Commonly, a desired model can be selected by calculating the estimation error. 

The smallest possible error for both training and generalization procedures are 

considered the most efficient model. 

The principle of model parsimony requires that models selected for representation 

of a system are both accurate and contain the least number of parameters (for a 

given requirement in accuracy). For this purpose, two criteria of the goodness of 

fit and simplicity are considered. Although it is expected that the complex model 

has a better fit (with possible overfitting) the additional parameters in the model 

may not indicate unnecessary complexity (for a given accuracy requirement).  It 

is usually the case that computational speed is increased for more parsimonious 

models.  

For evaluating the goodness of the fit, it is necessary to determine the likelihood 

function for a particular model. The likelihood function is a function of the model 

parameters and describes the likelihood of the selected parameter values given 

a set of observations.  

Two popular information criteria metrics are Akaike Information Criterion (AIC) 

and Bayesian information criterion (BIC). These methods apply the model criteria 

for selecting a parsimonious model from a number of different models. The AIC 

can be described using Equation (A-1) [100]. 

𝐴𝐼𝐶 = 2𝑘 − 2log (𝐿) (A-1) 

where k is the number of parameters in the model and L is the maximised value 

of the likelihood function for the model. Another definition for Akaike approach is 

based on residual sum of squares (RSS) as Equation (A-2) [101]. 
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𝐴𝐼𝐶 = 2𝑘 + 𝑛 ×  log (
𝑅𝑆𝑆

𝑛
) (A-2) 

where 𝑛 is sample size or number of observations and it is valid for n/k<40. 

When using the AIC method for the model comparison, it must be noted that a 

smaller AIC is a better model so the positive part is the penalty term in the 

equation for avoiding over fitting and solely depends on the number of 

parameters. The penalty term in BIC is larger than AIC. BIC can be expressed as 

shown in Equation (A-3) [102].  

𝐵𝐼𝐶 = 𝑘 log (𝑛) − 2log (𝐿) (A-3) 

where 𝑛 is the number of data points in observed data or sample sizes of the 

observed series. The higher penalty term in BIC picks the models with the smaller 

size in comparison with the AIC criteria. 

Appendix B. Application of Matrix Theories 

B.1 Positive Definite Matrix 

The definition of eigenvalues 𝜆 of the square matrix 𝐷 ∈ ℝ𝑛×𝑛, can be determined 

using Equation (B-1) [103]. 

𝐷𝑒𝑡(𝐷 − 𝜆𝐼) = 0    (B-1) 

where 𝐼 is identity matrix in the same size of 𝐷.  

A symmetric matrix is called positive definite whenever all of its eigenvalues are 

positive. It must be noted if there is any zero in eigenvalues, then it is considered 

as semi-definite matrix. A positive definite matrix is required for the Cholesky 

decomposition used in this study. A covariance matrix is applied for minimisation 

of likelihood function. 

Considering 𝐷 = 𝑀𝑀𝑇 according to the symmetric definition of 𝐷, then the 

singular value decomposition of 𝑀 can be obtained using Equation (B-2): 
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𝑀 = 𝑈 [𝛬
1 2⁄

0
]𝑈𝑇  (B-2) 

Then 𝐷 can be at least a semi definite matrix. 

𝐷 = 𝑈 [𝛬
1 2⁄

0
]𝑈𝑇𝑈 [𝛬

1 2⁄

0
]𝑈𝑇 = 𝑈 [

𝛬
0
]𝑈𝑇  (B-3) 

There are some alternative approaches such as spectral analysis and gradient 

methods [103] but aren’t practical for the correction of a large non-positive definite 

correlation matrix and they cause a reformation increasing the number of nonzero 

elements of the matrix. 

B.2 Matrix Preconditioning 

It is an important to consider a simple, and quick algorithm for matrix 

preconditioning when using matrices in the regression algorithm. Matrices can be 

used as a set of basis function and response vector in any regression theory. In 

this regard, the condition number is defined property of the matrix. It determines 

the accuracy of a regression where the matrix is used. It is expected that a more 

accurate regression will be obtained when the matrices are well-condition. On the 

other hand, approximation is not accurate when matrices are ill-conditioned. As a 

result, a matrix with a lower condition value is more desirable than a higher one. 

An ill-condition matrix is more sensitive to the noise in data and provides worse 

regression results.  

The conditioning of the level-1 and level-2 basis functions significantly impact the 

accuracy of the local and global models. A more complex nonlinear model results 

in a more ill-conditioned matrix. A NARX model represents the level-1 model with 

spline knot and polynomial terms. Increasing the number of terms in the basis 

function or adding any nonlinear term such as a spline term creates a matrix with 

a higher condition value. The level-2 analysis is formed using a piecewise-

polynomial spline model (pp-spline). The basis function generated using pp-spline 
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model can be extremely ill-condition. It is due to the combination of more than 

one input factor in the model, which contains monomial and spline terms. 

Consequently, preconditioning of the basis function matrices improves matrix 

conditioning before using it in the regression algorithm. Various methods exist for 

this purpose. Here, the application of the singular value decomposition as 

preconditioning matrix will be explained. The other methods work in a similar way. 

Assume that the regression system is provided as below: 

𝑌 = 𝑋𝑑    (B-4) 

Conditioning is applied 𝑌 = 𝑋𝑃−1𝑃𝑑 by introduction of the preconditioning matrix 

𝑃−1. If the preconditioning matrix is determined appropriately then it is expected 

that the conditioning of the newly generated basis function 𝑋𝑃−1 is much better 

than 𝑋. The singular value decomposition can be applied as below.  

𝑋 = 𝑈 [
𝐷
0
] 𝑉𝑇   (B-5) 

where the preconditioning matrix can be defined as 𝑃−1 = 𝑉𝐷−1. Therefore, the 

new basis function can be determined using Equation (B-6). 

𝑋𝑃−1 = 𝑈 [
𝐷
0
] 𝑉𝑇𝑉𝐷−1 = 𝑈 [

𝐼𝑝
0
] = 𝑈𝑝   (B-6) 

where 𝑈𝑝 has the ideal condition number of the identity matrix. 

Appendix C. Steady-state Prediction from a Dynamic Model 

The primary advantage of transient mapping procedure is the increased data 

collection rate i.e. a reduction in the time take for testing however steady-state 

estimates are still required for legacy control systems. Consequently, a means 

must be provided to extract the necessary steady-state from the dynamic model.  

Considering QSQP model presented in Equation (6-4), the approach taken here 

is to write the Level-1 model in state-space form: 
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[
𝑦(𝑘 + 1)

𝑦(𝑘 + 2)
] = [

0 1
−𝑎0 −𝑎1

] [
𝑦(𝑘)

𝑦(𝑘 + 1)
] + [

0 0 0
𝑏1 𝑏2 𝑐𝑎

] [

𝑢(𝑘 + 1)

𝑢(𝑘 + 1)2

(𝑢(𝑘 + 1) − γ
𝑖
)
+

2
]    (C-1) 

𝑦(𝑘) = [1 0] [
𝑦(𝑘)

𝑦(𝑘 + 1)
]   (C-2) 

Accordingly, the state-space matrices are defined as: 

𝐴 = [
0 1
−𝑎0 −𝑎2

], 𝐵 = [
0 0 0
𝑏1 𝑏2 𝑐𝑎

], 𝐶 = [1 0]    (C-3) 

Then the mapping from the instantaneous dynamic to the eventual steady-state 

value 𝑌𝑠𝑠, is given by: 

𝑌𝑠𝑠 = (𝐶(𝐼 − 𝐴)
−1𝐵) [

𝑢(𝑘 + 1)

𝑢(𝑘 + 1)2

(𝑢(𝑘 + 1) − γ
𝑖
)
+

2
]    (C-4) 

Appendix D. Analytical Gradients for Conditional Linearization Approach 

D.1 Analytical Gradients for the Posterior Log-Likelihood 

Recall the proposed identification algorithm from Section 7.2, the first step in the 

algorithm involves the minimisation in 𝛽 and 𝑏𝑖, 𝑖 = 1,2, … ,𝑚 of the following 

nonlinear regression problem, given the previous estimates of 𝜔 and 𝜉, denoted 

by �̂�(𝑞−1) and 𝜉(𝑞−1) respectively: 

[
𝑅−1 2⁄ 𝑓(𝛽, 𝑏)

�̃�−𝑇 2⁄ 𝑏
] → [𝑅

−1 2⁄ 𝑌
0

]    (D-1) 

Where the matrices are defined previously in Equation (7-14). In the following two 

sections, the Equation (D-1) will be separately differentiated with respect to 𝑏𝑖 and 

𝛽 in order to develop an analytical gradient. 
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D.1.1 An Analytical Gradient with Respect to 𝒃𝒊 

The corresponding regression cost function for the Equation (D-1) is defined as: 

𝐶 = ([𝑅
−1 2⁄ 𝑌
0

] − [
𝑅−1 2⁄ 𝑓(𝛽, 𝑏)

�̃�−𝑇 2⁄ 𝑏
])
𝑇

([𝑅
−1 2⁄ 𝑌
0

] − [
𝑅−1 2⁄ 𝑓(𝛽, 𝑏)

�̃�−𝑇 2⁄ 𝑏
])         (D-2) 

Expanding the terms of the Equation (D-2) and differentiating with respect to 𝑏, 

after collecting terms yields: 

𝜕𝐶

𝜕𝑏
= 2{𝐹𝑇𝐽𝑖

𝑇(𝛽, 𝑏)}𝑖=1
𝑚 𝑅−1(𝑓(𝛽, 𝑏) − 𝑌) + 2�̃�−1𝑏             (D-3) 

Therefore, it can be implemented in the optimisation algorithm as below: 

𝜕𝐶

𝜕𝑏𝑖
= 2𝐹𝑇𝐽𝑖

𝑇(𝛽, 𝑏𝑖)𝑅𝑖
−1(𝑓𝑖(𝛽, 𝑏𝑖) − 𝑦𝑖) + 2𝐷

−1𝑏𝑖 (D-4) 

The inverse of a square matrix requires of the order 𝑁3 multiplications, where 𝑁 

is the dimension of the matrix. A large matrix for 𝑅𝑖
−1is expected in this study, 

typically 𝑅𝑖
−1 ∈ ℝ3000×3000. Consequently, calculating 𝑅𝑖

−1 directly is not practical. 

Instead, the lower Cholesky factorisation of 𝑅𝑖 = 𝑅𝑖
1/2
𝑅𝑖
𝑇/2

needs to be employed, 

such that 𝑅𝑖
−1 = 𝑅𝑖

−𝑇/2
𝑅𝑖
−1/2

. 

Two equation systems can be solved using back substitution, considering 𝑅𝑖
1/2

 is 

a triangular matrix. 

𝑅𝑖
1/2
𝜓𝑖 = (𝑓𝑖(𝛽, 𝑏𝑖) − 𝑦𝑖) (D-5) 

𝑅𝑖
1/2
𝜗𝑖 = 𝐽𝑖(𝛽, 𝑏𝑖)𝐹 (D-6) 

Substituting the Equations (D-5) and (D-6) into (D-4) yields: 

𝜕𝐶

𝜕𝑏𝑖
= 2𝜗𝑖

𝑇𝜓𝑖 + 2𝐷
−1𝑏𝑖 (D-7) 
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D.1.2 An Analytical Gradient with Respect to 𝜷 

Similarly, the Equation (D-2) is differentiated with respect to 𝛽: 

𝜕𝐶

𝜕𝛽
= 2{𝜅𝑖

𝑇(𝛽)𝐽𝑖
𝑇(𝛽, 𝑏)}𝑖=1

𝑚 𝑅−1(𝑓(𝛽, 𝑏) − 𝑌) (D-8) 

where 𝜅𝑖(𝛽) =  𝜕휃𝑖 𝜕𝛽⁄  

Hence, it can be implemented as below: 

𝜕𝐶

𝜕𝛽
= 2∑𝜅𝑖

𝑇(𝛽)𝐽𝑖
𝑇(𝛽, 𝑏𝑖)

𝑚

𝑖=1

𝑅𝑖
−1(𝑓𝑖(𝛽, 𝑏) − 𝑦𝑖)   (D-9) 

Similarly, in order to prevent from the inversion of the large matrix 𝑅𝑖 in Equation 

(D-9), the principle of the lower Cholesky factorisation can be used again. Then: 

𝑅𝑖
1/2
𝛿𝑖 = 𝐽𝑖(𝛽, 𝑏𝑖)𝜅𝑖(𝛽) (D-10) 

Substituting the Equations (D-5) and (D-10) into (D-9): 

𝜕𝐶

𝜕𝛽
= 2∑𝛿𝑖

𝑇

𝑚

𝑖=1

𝜓𝑖  (D-11) 

D.2 Analytical Gradients for the Log-Likelihood Function 

Recall step 2 of the identification procedure described in Section 7.2, which 

involves estimating 𝜔(𝑞) and 𝜉(𝑞), as the values �̂�(𝑞) and 𝜉(𝑞), by minimising 

Equation (7-12), where 𝑊𝑖(𝜔, 𝜉) = 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐷(𝜔)𝛺𝑖
𝑇(�̂�, �̂�𝑖,(𝑞)) +

𝜎2𝑅𝑖(𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞)), 𝜉) and 𝜎2 is given by Equation (7-11).  

In order to differentiate Equation (7-12) with respect to 𝜔 and 𝜉, it requires two 

principles from matrix calculus [29]. Firstly, the derivative of a matrix inverse, 

𝐴−1(𝑥) with respect to 𝑥 is given by: 



136 
 

𝜕𝐴−1(𝑥)

𝜕𝑥
= −𝐴−1(𝑥)

𝜕𝐴(𝑥)

𝜕𝑥
𝐴−1(𝑥)      (D-12) 

Secondly, terms like 
𝜕

𝜕𝑥
𝑙𝑛(|𝐴(𝑥)|) can be expressed as below: 

𝜕

𝜕𝑥
𝑙𝑛|𝐴(𝑥)| = 𝑡𝑟 (𝐴−1(𝑥)

𝜕𝐴(𝑥)

𝜕𝑥
)      (D-13) 

where the trace of the matrix 𝐴 is defined as 𝑡𝑟(𝐴) = ∑ [𝑎𝑟𝑟]𝑟 ; which is the sum of 

the terms on the leading diagonal.  

Finally, 𝐷 can be replaced with 𝐷 = 𝑀𝑀𝑇 to ensure this matrix is positive definite. 

Here, 𝑀 is the lower Cholesky factor of 𝐷. Therefore, 𝑊𝑖(𝜔, 𝜉) can be rewritten 

as: 

𝑊𝑖(𝜔, 𝜉) = 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)𝑀
𝑇(𝜔)𝛺𝑖

𝑇(�̂�, �̂�𝑖,(𝑞)) + 𝑅𝑖(�̂�, �̂�𝑖,(𝑞), 𝜉)       (D-14) 

D.2.1 An Analytical Gradient with Respect to 𝝎 

The profile likelihood, presented in Equation (7-12), needs to be differentiated 

with respect to 𝜔. Given that the 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))�̂�𝑖,(𝑞) and 𝑓 (𝑢𝑖, 𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞))) are held 

fixed throughout the procedure, then the residual can be defined as: 

𝑟𝑖
∗ = 𝑦𝑖 −  𝑓 (𝑢𝑖 , 𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞))) + 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))�̂�𝑖,(𝑞)       (D-15) 

Therefore, the profile likelihood can be expressed as: 

𝐿𝑝 =
1

2
∑𝑙𝑛|𝑊𝑖(𝜔, 𝜉)|

𝑚

𝑖=1

+
∑ 𝑛𝑖
𝑚
𝑖=1

2
𝑙𝑛 (

∑ 𝑟𝑖
∗𝑇𝑊𝑖(𝜔, 𝜉)

−1𝑟𝑖
∗𝑚

𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

)       (D-16) 

In the Equation (D-16), any terms not dependent on 𝜔 is discarded as they will 

be eliminated once the differential operator is applied. Hence, differentiating 

Equation (D-16) with respect to the 𝑗𝑡ℎ  element of 𝜔 and applying principles 

(D-12) and (D-13) yields: 
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𝜕𝐿𝑝

𝜕𝜔𝑗
=
1

2
∑𝑡𝑟 (𝑊𝑖(𝜔, 𝜉)

−1
𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜔𝑗
)

𝑚

𝑖=1

−
1

2𝜎2(𝜔, 𝜉)
∑𝑟𝑖

∗𝑇𝑊𝑖(𝜔, 𝜉)
−1
𝜕𝑊𝑖
𝜕𝜔𝑗

𝑊𝑖(𝜔, 𝜉)
−1𝑟𝑖

∗

𝑚

𝑖=1

       

(D-17) 

Differentiating 𝑊𝑖(𝜔, 𝜉) with respect to 𝜔, then Equation (D-18) can be obtained. 

𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜔𝑗
= 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))

𝜕𝑀(𝜔)

𝜕𝜔𝑗
𝑀𝑇(𝜔)𝛺𝑖

𝑇(�̂�, �̂�𝑖,(𝑞))

+ 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)
𝜕𝑀𝑇(𝜔)

𝜕𝜔𝑗
𝛺𝑖
𝑇(�̂�, �̂�𝑖,(𝑞))       

(D-18) 

𝑀(𝜔) is a lower triangular matrix with 𝑛𝜔 =
𝑤

2
(𝑤 + 1) elements. Let 𝑄𝑗 =

𝜕𝑀(𝜔)

𝜕𝜔𝑗
  

with elements [ℚ𝑟𝑐]. Then  [ℚ𝑟𝑐] = 1 and the remaining elements of 𝑄𝑗 are 0. Let 

𝑀(𝜔) be comprised of the column vectors {𝑚𝑖
𝑇}𝑖=1
𝑤 . Then the matrix multiplication 

𝑄𝑗𝑀
𝑇(𝜔) yields: 

𝑄𝑗𝑀
𝑇(𝜔) =

[
 
 
 
 
 
0
⋮
𝑚𝑐
𝑇

0
⋮
0 ]
 
 
 
 
 

= 𝑀𝑐  (D-19) 

That is,  𝑀𝑐 is comprised of rows of zeros, except row 𝑟, which contains 𝑚𝑐
𝑇. Thus, 

if 𝐺𝜔 denotes the gradient of Equation (7-12) with respect to 𝜔, then: 

𝐺𝜔 = [
𝜕𝐿𝑝

𝜕𝜔1
⋯

𝜕𝐿𝑝

𝜕𝜔𝑛𝜔
]

𝑇

∈ ℝ𝑛𝜔       (D-20) 

where: 
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𝜕𝐿𝑝

𝜕𝜔𝑗
=
1

2
∑𝑡𝑟 (𝑊𝑖(𝜔, 𝜉)

−1[𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑄𝑗𝑀𝑇(𝜔)𝛺𝑖
𝑇
(�̂�, �̂�𝑖,(𝑞))

𝑚

𝑖=1

+𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)𝑄𝑗
𝑇𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))] )

−
1

2𝜎2(𝜔, 𝜉)
∑𝑟𝑖

∗𝑇𝑊𝑖(𝜔, 𝜉)
−1[𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑄𝑗𝑀𝑇(𝜔)𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))

𝑚

𝑖=1

+𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝑀(𝜔)𝑄𝑗
𝑇𝛺𝑖

𝑇
(�̂�, �̂�𝑖,(𝑞))]𝑊𝑖(𝜔, 𝜉)

−1𝑟𝑖
∗ 

(D-21) 

The main practical concern with Equation (D-21) is that the matrix 𝑊𝑖(𝜔, 𝜉) will 

typically be of large dimension and therefore 𝑊𝑖(𝜔, 𝜉)
−1 will be expensive to 

calculate. One way to mitigate this is to utilise the Woodbury Matrix Inversion 

Lemma [104]: 

[𝐴 + 𝐵𝑉𝐶]−1 = 𝐴−1 − 𝐴−1𝐵(𝑉−1 + 𝐶𝐴−1𝐵)−1𝐶𝐴−1     (D-22) 

where 𝐴 and 𝑉 are non-singular square matrices. Assigning, 𝐴 = 𝑅(𝜉), 𝑉 = 𝐷, 

𝐵 = 𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐹 and 𝐶 = 𝐹𝑇𝛺𝑖
𝑇(�̂�, �̂�𝑖,(𝑞)), then Equation (D-22) becomes: 

𝑊𝑖(𝜔, 𝜉)
−1 = 𝑅𝑖(𝜉)

−1 − 𝑅𝑖(𝜉)
−1𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐹[𝐷(𝜔)

−1 +

𝐹𝑇𝛺𝑖
𝑇(�̂�, �̂�𝑖,(𝑞))𝑅𝑖(𝜉)

−1𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐹]
−1
𝐹𝑇𝛺𝑖

𝑇(�̂�, �̂�𝑖,(𝑞))𝑅𝑖(𝜉)
−1            

(D-23) 

Again, employing the lower Cholesky factorisation 𝐷(𝜔) = 𝑀(𝜔)𝑀(𝜔)𝑇 and 

standard results on matrix inverses, then the following equation can be obtained 

as: 

𝑊𝑖(𝜔, 𝜉)
−1 = 𝑅𝑖(𝜉)

−1 − 𝑅𝑖(𝜉)
−1𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐹[𝑀(𝜔)

−𝑇𝑀(𝜔)−1 +

𝐹𝑇𝛺𝑖
𝑇(�̂�, �̂�𝑖,(𝑞))𝑅𝑖(𝜉)

−1𝛺𝑖(�̂�, �̂�𝑖,(𝑞))𝐹]
−1
𝐹𝑇𝛺𝑖

𝑇(�̂�, �̂�𝑖,(𝑞))𝑅𝑖(𝜉)
−1            

(D-24) 

The primary advantage in employing Equation (D-24) for finding 𝑊𝑖(𝜔, 𝜉)
−1 is that 

the 𝑅𝑖(𝜉)
−1 need only be computed once, prior to minimising Equation (7-12) with 

respect to 𝜔. Generally speaking 𝑅𝑖(𝜉) is large, and consequently 𝑅𝑖(𝜉)
−1 

expensive to compute. Hence computing the 𝑅𝑖(𝜉)
−1 a priori and supplying them 

to the optimisation algorithm yields a substantial time saving per iteration. 
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Conversely, 𝑀(𝜔) is of typically modest dimension and therefore 𝑀(𝜔)−1 is not 

expensive to calculate. 

D.2.2 An Analytical Gradient with Respect to 𝝃 

Consider differentiating Equation (7-12) with respect to the 𝑗𝑡ℎ element of 𝜉. It is 

easily shown that: 

𝜕𝐿𝑝

𝜕𝜉𝑗
=
1

2
∑𝑡𝑟 (𝑊𝑖(𝜔, 𝜉)

−1
𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜉𝑗
)

𝑚

𝑖=1

−
1

2𝜎2(𝜔, 𝜉)
(∑𝑟𝑖

∗𝑇𝑊𝑖(𝜔, 𝜉)
−1
𝜕𝑊𝑖(𝜔, 𝜉)

𝜕𝜉𝑗
𝑊𝑖(𝜔, 𝜉)

−1𝑟𝑖
∗

𝑚

𝑖=1

) 

(D-25) 

In this case, the derivative 
𝜕𝑊𝑖(𝜔,𝜉)

𝜕𝜉𝑗
 will depend upon the form of 

𝑅𝑖(𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞)), 𝜉). For the study at hand it is most likely that 𝑅𝑖(𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞)), 𝜉) 

will be of the form 𝑅𝑖(𝑔(𝑎𝑖, �̂�, �̂�𝑖,(𝑞)), 𝜉) = 𝐶𝑖(𝜌), with 𝜉 = 𝜌. Hence, the form of the 

assumed autocorrelation function will determine the exact nature of 
𝜕𝑊𝑖(𝜔,𝜉)

𝜕𝜉𝑗
.   

It is well known that large serial correlation models suffer from identifiability 

issues, and it is likely that only models will be considered if containing a relatively 

few terms. For example, it is unlikely that a noise model larger than ARMA(2,2) 

would be required. Regardless, if 𝐺𝜉 denotes the gradient of Equation (7-12) with 

respect to 𝜉, then: 

𝐺𝜉 = [
𝜕𝐿𝑝

𝜕𝜉1
⋯

𝜕𝐿𝑝

𝜕𝜉𝑞
]

𝑇

∈ ℝ𝑞      (D-26) 

With respect to (D-25) the main concerns are twofold: 

 𝑊𝑖(𝜔, 𝜉)
−1 is expensive to calculate now, even using Equation (D-24), since 

𝑅𝑖(𝜉)
−1 must be recalculated at each iteration. 

 
𝜕𝑊𝑖(𝜔,𝜉)

𝜕𝜉𝑗
=
𝜕𝑅𝑖(𝜉𝑗)

𝜕𝜉𝑗
 depends on the form of the assumed level-1 noise model. 
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As  𝑅𝑖(𝜉𝑗) is a level-1 correlation matrix generated from an assumed ARMA model 

it will be a Toeplitz matrix [105]; i.e. a matrix where the entries along every 

diagonal of 𝑅𝑖(𝜉𝑗) are constant. 𝑅𝑖(𝜉𝑗) is defined by a vector of (2𝑛 −  1) 

parameters {𝑡−(𝑖−1):(𝑖−1)}𝑖=1
𝑛

, called the Toeplitz vector, that generates 𝑅𝑖(𝜉𝑗). 

D.2.3 An Analytical Gradient with Respect to 𝜷 

Consider differentiating Equation (7-12) with respect to the 𝛽. Firstly, any terms 

from the profile likelihood that do not involve 𝛽 need to be discarded and the 

refined profile likelihood can be written as: 

𝐿𝑝 =

∑ 𝑛𝑖
𝑚
𝑖=1

2
𝑙𝑛 (

∑ (𝑦𝑖+𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞)−𝑓(𝑢𝑖,𝑔(𝑎𝑖,𝛽,𝑏𝑖
∗)))

𝑇
𝑊𝑖(�̂�(𝑞),�̂�(𝑞))

−1
(𝑦𝑖+𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞)−𝑓(𝑢𝑖,𝑔(𝑎𝑖,𝛽,𝑏𝑖

∗)))𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

)  
(D-27) 

Using Equation (7-11) and applying the chain rule: 

𝜕𝐿𝑝

𝜕𝛽

=
∑ 𝑛𝑖
𝑚
𝑖=1

2𝜎2
𝜕

𝜕𝛽
(
∑ (𝑦𝑖 + 𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞) − 𝑓(𝛽, �̂�𝑖,(𝑞)))

𝑇

𝑊𝑖(𝜔, 𝜉)
−1 (𝑦𝑖 + 𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞) − 𝑓(𝛽, �̂�𝑖,(𝑞)))

𝑚
𝑖=1

∑ 𝑛𝑖
𝑚
𝑖=1

)     

(D-28) 

The term (𝑦𝑖 + 𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞) − 𝑓(𝛽, �̂�𝑖,(𝑞)))
𝑇

𝑊𝑖(𝜔, 𝜉)
−1 (𝑦𝑖 + 𝛺𝑖(𝛽,̂ �̂�𝑖,(𝑞))�̂�𝑖,(𝑞) − 𝑓(𝛽, �̂�𝑖,(𝑞))) is expanded 

and any terms that do not involve 𝛽 is discarded. Recall that: 

휁𝑖(𝛽, 𝑏𝑖,(𝑞)) =  𝜕𝑓( 𝛽, 𝑏𝑖,(𝑞)) 𝜕𝛽⁄  (D-29) 

Dropping the dependency of 𝑊𝑖(𝜔, 𝜉)
−1 on 𝜔  and 𝜉, applying Equation (D-29) 

and using standard results on matrix derivatives, then after collecting terms we 

obtain the desired result: 

𝜕𝐿𝑝

𝜕𝛽
=

(
∑ 𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝑓(𝛽,�̂�𝑖,(𝑞))−𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝑦𝑖−𝜁𝑖

𝑇(𝛽,�̂�𝑖,(𝑞))𝑊𝑖
−1𝛺𝑖(𝛽,̂�̂�𝑖,(𝑞))�̂�𝑖,(𝑞)

𝑚
𝑖=1

𝜎2
)    

(D-30) 

Where 𝜎2 can be calculated from Equation (7-11).  
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