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ABSTRACT 
Wearable electronics are becoming increasingly widespread in modern society.  

Though these devices are intended to be worn, integrated into clothing and other 

everyday objects, the technologies and processes used to manufacture them is no 

different than those that manufacture laptops and mobile phones.  Many of these 

devices are intended to monitor the user’s health, activity and general wellbeing, 

within clinical, recreational and assistive environments.  Consequently, the inherent 

incompatibility of these rigid devices with the soft, elastic structure of the human 

body can in some cases can be uncomfortable and inconvenient for everyday life.  

For devices to take the step from a ‘wearable’ to an ‘invisible’, a drastic rethinking of 

electronics manufacturing is required. 

The fundamental aim of this research is to establish parameters of usefulness and 

an array of materials with complimentary processes that would assist in 

transitioning devices to long term almost invisible items that can assist in improving 

the health of the wearer.  In order to approach this problem, a novel architecture 

was devised that utilised PDMS as a substrate and microfluid channels of Galinstan 

liquid alloy for interconnects.  CO2 laser machining was investigated as a means of 

creating channels and vias on PDMS substrates. Trace speeds and laser power 

outputs were investigated in order to find an optimal combination. The results 

displayed upper limits for power densities; where surpassing this limit resulted in  

poor repeatability and surface finish.  It was found that there was an optimal set of 

trace speeds that ranged from approximately 120mm/s to 190mm/s that resulted 

in the most reliable and repeatable performance. Due to the complex nature of a 

materials variable energy absorption properties, it is not possible to quantify a 

single optimal parameter set. 

To understand the performance of these devices in situ, finite element analysis was 

employed to model deformations that such a device could experience.  The aims here 

were to investigate the bond strength required to prevent delamination, between 

the silicon-PDMS and PDMS-PDMS bonds, in addition to the stress applied to the 

silicone die during these deformations.  Based upon the applied loads the required 

bond strengths would need to be at least  ~65kPa to maintain PDMS-PDMS adhesion 

during these tests, while stress on the silicone-PDMS adhesion required an expected 
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higher ~160kPa, both of which are within the reach of existing bonding techniques 

that are capable of withstanding a pressure of ~600kPa before failure occurs.  Stress 

on the silicon die did not exceed ~7.8 MPa during simulation, which is well below 

the fracture stress. 

By developing knowledge about how various components of such a system will 

respond during use and under stress, it allows future engineers to make informed 

design decisions and develop better more resilient products. 
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1 INTRODUCTION 

1.1 Foreword 
In recent years, the general populous has become more connected than ever, with 

the inception of smart watches and fitness trackers. Their recent boom in popularity 

has furthered the need for new manufacturing and design processes to allow the 

creation of devices that are not physically invasive or bothersome during day to day 

wear.  To achieve this transition from “wearables” to “invisibles”, new materials and 

production processes must be utilised, electronics need to go from hard and rigid to 

soft and conformal.   

Creating truly conformal electronics poses many challenges that are vastly different 

from those faced by rigid systems, however, these new conformal devices need to 

be capable enough to lose no functionality when compared to their rigid siblings. 

Care must be taken to reference relevant physiology in order to correctly analyse 

use cases and possible sensor requirements thus creating a substantial definition of 

the problem. 

1.2 Problem Identification 
The world of electronics today would be completely unrecognisable to the 

pioneering engineers like Thomas Edison, who began experimenting with 

thermionic vacuum tubes in the late 19th Century [1].  Engineers have progressed 
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from measuring the size of components in centimetres to requiring electron 

microscopes to measure nanometre scale transistors.  In the process computers 

have transitioned from top secret codebreaking machines during World War II [2] 

to the warehouse sized computers of the space program [3] finally reaching the 

ubiquitous portable computers that we all carry around in our pockets today.  These 

marvels of modern computing are now worn on our wrists or carried in our pockets 

which allow us to stay connected to the wider world, providing us with on demand 

entertainment, schedule our time and act as a source of knowledge.  In addition to 

all the data that are sent to the device, they also record and monitor a wide range of 

data points.  The ability to continually monitor our physical activity levels, heart 

rate, sleep levels and more, gives us great insight into the health of our populations, 

especially when these data are paired with machine learning and ‘big data’ analytics 

[4], [5].  Chronic diseases such as hypertension, diabetes, cardiovascular disease and 

chronic obstructive pulmonary disease account for nearly 70% of the total spend on 

health and social care in England [9].  Fortunately, most of these chronic diseases 

can be averted with simple lifestyle changes such as eating healthily and being 

physically active [10], [11].  However, the current paradigm of telling the public to 

be physically activity “today” in order to reduce the risk of acquiring a chronic 

disease “tomorrow” (i.e. later in life) does not appear to be working [12].  Indeed, 

the prevalence of physical inactivity in England is thought to be ~95% [13].  Not 

being able to see the “return on their investment” in the short term, people may lose 

motivation for their active lifestyle efforts [14], [15].  According to current research, 

the ability to show how behaviour is directly affecting immediate health may be the 

solution to reducing the burden of chronic disease [6], [7].  However, implementing 

this as a form of treatment or strategy for prevention on a large scale is currently 

infeasible. 

Miniaturisation and cost reduction of electronics has been the natural direction of 

progress for many years, moving from the large devices that were delivered on 

trucks, to becoming functioning computers that are given away on the front of 
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magazines for free [8].  This cost and size reduction has spawned the Internet of 

Things (IoT) boom, where everything now contains a computer, including the 

devices people wear.  In order to further this ubiquitous adoption of technology the 

devices that people will need to able to conform to the users’ needs and body. 

Corporations such as Nokia have produced concept designs for such devices [9] 

before the underlying technology was even proven possible.  It was proposed by  
Park et al that miniature non-invasive wearable sensor platforms would be the 

future of long term clinical monitoring [10].  The key to making these technologies 

viable lies in making the devices soft, conformal and comfortable for long term 

wear/use. 

The current technologies in this space are too large, obtrusive, invasive, expensive, 

and/or discretised. Wearables companies are currently attempting to solve some of 

these problems, however, the devices they produce tend to be limited in what they 

can monitor and are often not comfortable to be worn all the time.  This presents an 

opportunity for the surging wearable technologies sector to evolve towards the less 

explored area of “invisibles”. An idea that the device a user wears is completely 

integrated and unnoticeable, during their day to day activities.  This could be 

systems integrated into their clothing, or a lightweight patch with hybrid 

physiological and behavioural health sensors that could be worn invisibly, 

continuously would allow a wearer to understand how their lifestyle behaviours 

(positive or negative) impact their immediate (i.e. acute) health.  More specifically, 

such a hybrid sensor would provide the wearer with acute (i.e. potent) bio-

behavioural feedback that may be more motivational in terms of lifestyle behaviour 

change. 

These new disruptive technologies would help catapult healthcare from being 

centred around hospitals and GP offices into a ubiquitous healthcare environment 

where personalised data may engage the public to self-monitor and self-manage 

their own health.  By placing onus on the user for their own health and showing 
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immediate effects of their behaviour on their body, it could motivate them to change 

and make more informed decision on things like diet and exercise for instance. 

Especially that it has been found that information alone is unlikely to motivate 

behavioural change, but being given autonomy to do this could very well achieve 

this [11].   

Developing medical technologies is incredibly expensive [12].  This is due to strict 

regulation and testing requirements.  The technologies can however be developed 

and marketed towards the health and fitness markets, where standards are much 

laxer than that of the medical world.  This initial market entry point could then be 

used to bridge the gap between health and wellbeing in the consumer market and 

the clinical bed space.  The current level that athletes compete at is pushing the 

human body incredibly close to its physical limits [13].  This means that nutrition; 

training and behavioural programs are becoming highly optimised to the individual, 

but are generally being done without metrics and feedback from the athletes [14].  

This is often due to the expensive nature of the required equipment and the inability 

to monitor the athlete during peak performance on the field or track. The monitors 

that are used have been developed as event monitors, as in they are designed for 

specific points when they will be looking for a specific behaviour. This creates a void 

for a technology that can become a “life monitor”, by monitoring vital signs during 

events, but also during normal every day activities, which is especially important 

when looking at athlete recovery.  There have been some examples where on body 

monitoring is beginning to work its way into completive sport, such as Riddell’s 

InSite concussion monitoring system [15], [16] and heart rate monitors used by 

runners and cyclists [17].  These however still give very limited insight into the 

athlete’s physiological state. 

In order to achieve any of the advancements required for long term, comfortable 

devices, electronics manufacturing and design must take a fundamental shift within 

many of its processes and material selections when it comes to the PCB. Current 
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electronics that are manufactured on fiberglass or even Kapton based substrates are 

unable to deform [18] very much, especially when the deformations are large and 

repetitive as would be required to conform to the human body.  Both the flexibility 

and stretchability of current systems need to be drastically improved to achieve the 

transition from “wearables” to “invisibles”. 

Attempts have been made to transition to the “invisibles” category of technology by 

companies such as mc10 [19]–[21], however their approach creates expensive to 

manufacture and slow to bring to market devices, which have prevented the fast and 

ubiquitous uptake that is normally seen with consumer health monitoring devices.  

The biggest issues that face many of these emerging technologies, is the approach 

that seeks to replace conventional silicon foundry processes, which as of writing is 

the most ubiquitous technique used to manufacture integrated circuits.  These new 

processes often produce devices with lower transistor density and thus increased 

power consumption [22], when compared to their silicon equivalents. 

Many of these new and novel devices may be relatively performant within the scope 

for which they were designed, however cost is a large factor in how effectively these 

devices can be utilised in a commercial setting.  Almost all of these processes utilise 

many manual steps (for which automation would be difficult) to manufacture these 

devices.  This makes them unsuitable for any kind of manufacture at scale and thus 

maintains a high price per unit.  The use of batch processes can increase the yield of 

these manufacturing processes, however, a manufacturing method that utilises 

continuous manufacturing processes would be optimal.  

Devices that can monitor vital signs and health metrics of a person, while being 

almost invisible and able to be purchased at super low cost require developments 

to be carried out across manufacturing, design and materials.  The new technologies 

should be able to take advantage of existing design tools and off the shelf discrete 

components.  To achieve this a paradigm shift in design methodology and approach 

to the assembly and materials structure will need to be developed and researched.   
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1.3 Research Aims and Objectives 
Research into manufacturing methods and the required materials to create soft 

conformal electronics is being carried out globally by various institutions and 

corporations.  However, many of these processes look to “reinvent the wheel” in 

reference to the manufacture of integrated circuits, rather than leveraging 

conventional silicon-based manufacturing processes.  Some work into the utilisation 

of existing technologies has been carried out, however very little has been done to 

investigate scalability and cost reduction of any of these processes or design 

concepts. 

The project objectives are to investigate the following: 

1. Identify a group of materials and techniques that are capable of producing 

flexible, stretchable electronics at commercial scales and at low cost. 

2. Identify the limitations of these materials during use and manufacturing 

processes. 

This project aims to develop a body of knowledge that can be leveraged to create 

flexible, stretchable electronics at commercial scales for a variety of applications. It 

aims to write the rules that underpin both design considerations and limitations that 

bound system design and manufacture, thus enabling commercial applications to 

develop products through utilisation of this research. 

This thesis gives an evaluation of the current market trends and the direction 

wearable technologies are looking to take in the future, going on to evaluate the 

various technical challenges required to bring advanced wearables and invisible 

devices to market .  Through this, developing parameters of usefulness, which can 

be used to focus the research of such devices and understand the requirements that 

would drive these designs.  These parameters were used to develop a set of 

experiments.   The first was to develop a method of manufacturing prototype 

devices.  This approach sought to investigate the use of a CO2 laser to cut millimetre 

scale channels into a PDMS substrate.  The second study looked at selecting an 
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appropriate bonding method for PDMS lamination and load distribution into silicon 

integrated circuits through the use of finite element analysis. 
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2 BACKGROUND 

2.1 Introduction 
This project is one that covers a large range of disciplines that range from the 

manufacture of electronics to human physiology and behaviour research.  These 

topics may be discrete, but the successful manufacture of systems that are able to 

seamlessly integrate into the life of the user requires true understanding of both the 

device’s environment and use. 

2.2 Physiology 
Initial research conducted into the work being carried out at Loughborough 

University’s National Centre for Sport and Exercise Medicine helped to create an 

insight into why all the other sensors used by the group have failed to meet the 

needs of both researchers and clinicians.  After consulting with clinicians and 

researchers at other institutions, such as Joey Eisenmann at Michigan State 

University in the US, there are currently no systems on the market that are capable 

of long term, non-invasive, unobtrusive vital signs monitoring.  The requirements 

from the literature allow a stage to be set for some of the applications for the 

technology, thus aiding the creation of increasingly specific specifications and 

requirements for technologies that are researched throughout this project. 

Physical inactivity is a problem that is drastically affecting both the UK economy and 

healthcare system.  Physical inactivity accounted for nearly 10% of all deaths 

worldwide in 2008.  This huge number is due to physical inactivity being a large 

contributing factor that leads to coronary heart disease, colon cancer, breast cancer, 

type 2 diabetes and premature all-cause mortality [6].   Each of these individual 

conditions occur more in the UK when compared to the global average.  These are 
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all cases that likely could have been prevented through physical activity.  In 2007 

Cycling England (UK, disbanded 2011) published figures stating that over £240 

million could be saved annually if cycling trips increased by just 20% [23] with 

another study published in 2012 stating that if the levels of walking doubled the NHS 

(National Health Service, United Kingdom) would see savings of over £20 billion 

over the next 20 years [24].   However, a study carried out in 2008 indicates that the 

population within England generally spends far too much time in sedentary 

pursuits.  In addition to this, “32% of men and 60% of women were not fit enough 

to sustain walking at 3mph up a 5% incline (i.e. they would require severe or 

maximal exertion, and were classified as ‘unfit’).” [25].  This just demonstrates the 

scale of the problem within England as studies have been carried out that show an 

increased risk of suffering from non-communicable diseases with physical 

inactivity.  The research estimated increases in the life expectancy in some regions 

of up to 0.95 years [26].  The Department of Health for England has looked at 

methods for improving the health and wellbeing for people with long term 

conditions and found that implementing self-care and behavioural interventions are 

some of the best ways to treat these conditions [27].   This lines up perfectly with 

the work being done at Loughborough University’s Physical Activity & Public Health 

Research Group [28].  The health benefits of physical activity have been relatively 

well documented by multiple groups.  These benefits include the prevention of 

multiple different diseases that include cancer and diabetes [7], [23]. In addition to 

the physiological benefits there have been multiple studies showing that 

psychological health is also improved through physical activity [29].   

There is one major barrier to using physical activity as a method of treatment.  This 

is the issue of motivation.  In order to motivate a person to begin exercising regularly 

and being active in order to treat these conditions requires a certain amount of 

persuasion which, at the moment is often done with a behavioural intervention [11].   

These interventions need to be carefully constructed in order to motivate the patient 

into beginning physical activity and convincing them that physical activity will 
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improve their condition.  This has been seen to be even more difficult when using 

physical activity and behaviour change as a preventative measure [30], [31].  

This research into physiology can be utilised as a guide for the capabilities such a 

device requires and some very real applications that have a need for the 

technologies being researched within this project. 

2.3 The Current Market 
There are various research labs and universities all over the world developing 

flexible electronics each with their own strengths and weaknesses.  The main 

protagonists in this field are MC10 (MC10 Inc, MA, USA), a US company based out of 

Lexington, Massachusetts, who are currently deemed the market leader and IMEC 

(Leuven, Belgium) who are currently working to develop various technologies as 

part of the BioFlex Project.  However, as of the time of writing, there are no 

commercial processes that produce truly flexible and stretchable electronics.  When 

information is released by one of these labs or universities it is usually quite sparse 

or lacking specifics.  Researchers at the University of Massachusetts Amherst are 

currently developing a patch-based sensor that is designed to gauge stress and 

fatigue in military personnel [32].  Their processes seem to be investigating printing 

electrics onto a flexible substrate.  From the images provided it seems their attempts 

are looking at printing the transistors directly onto the substrate.  The research is 

very likely many years from any kind of viable product as tool acquisition is still 

being carried out and the facility is still in its early stages [33].  The capabilities of 

the sensors themselves seem to be a lab on chip style device that will be monitoring 

compounds in the wearers sweat. 

The current industry leader for truly stretchable, flexible conformal electronics is 

MC10.  This is a company that has been generating a lot of marketing excitement 

with their only commercial product being the CheckLight.  The CheckLight uses 

conventional flex-PCB manufacture which is neither new or innovative [34].  The 
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technologies that they are looking to commercialise are what they call “digital 

tattoos” which creates very thin, flexible and stretchable electronics [20].  These 

tattoos however are structured by using very thin three-dimensional or two-

dimensional self-similar gold interconnects between every component, down to the 

individual transistors.  The manufacturing methods required to produce these 

components are incredibly complex and require vastly different tools and processes 

when compared to the standard methods used currently by the semiconductor 

industry [19], [20].  MC10 have currently patented the use of electronics that use 

self-similar serpentine interconnects to monitor tissue condition using two 

electrodes [35].  This does not detail what data the technology is capable of 

recording from the skin. 

The two organisations mentioned above seem to be some of the biggest players in 

the field of stretchable conformal electronics, even though both are many years from 

a commercially viable product that takes advantage of their respective technologies. 

2.4 Flexible Technology Designs and Concepts 
In order to create a flexible and stretchable piece of electronics it will need to be 

assembled from multiple components that all perform differing functions and 

therefore have vastly different packaging requirements.  This section on designs and 

concept work has been further subdivided for the reasons stated above.  However, 

certain aspects such as the design of antennae or sensors themselves are not within 

the scope of the project but must still be investigated due to a requirement for their 

integration into a final unit and compatibility with the manufacturing processes 

used. 

In order to realise a device that can be both flexible and stretchable, technologies 

will have to be developed in a variety of fields.  In order to correctly identify what 

these fields are, a system overview has been outlined.  This block diagram breaks 

down a possible device into a subset of components as can be seen in Figure 2-1. 
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Figure 2-1 Block diagram of an example device 

The design of such a system does not end with the device.  The correct selection of 

manufacturing processes are vital to creating a cost effective end product.  The 

processes and flow used to manufacture a device would be vastly different 

depending on the final design of the system.  Each section of the literary review 

below investigates a section of the block diagram above or a manufacturing process 

that could be used for one of these devices.  All these however must be firmly 

grounded with the final application in mind.  It is therefore important to keep in 

mind both the physiological applications and use cases in addition to the current 

market as this research moves forward. 

2.4.1 Antennae Design 
Even though the design of the actual antennae and RF testing are outside the scope 

of the project, it is important to be aware of possible designs and use cases as the 

sensors that are manufactured will require wireless communication with other 

devices.  This means that antennae design must be investigated to ensure 
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manufacturing processes are compatible with most design and manufacturing 

methods used for antennae. 

There are a wide variety of designs for different kinds of antennae, however many 

of these are not suited to being flexible.  However, research being carried out has 

been looking into the use of liquid metal alloys in order to create flexible and 

stretchable antennae.  Work carried out by Cheng et al. at Uppsala University 

developed a 2.4GHz unbalanced loop antenna.  The team used Galinstan alloy 

embedded in PDMS to create the antennae, which allowed it to be stretched multi-

axially during operation.  The team managed to achieve efficiencies of 98% when 

not stretched and the lowest value during a 40% stretch was 84% efficiency when 

transmitting at 2.4GHz [36].  Attempts have also been made at developing micro 

strip patch antennae; however, their efficiencies are much lower than those of the 

unbalanced loop antennae.  The more interesting part of the paper is the use of a 

series of small PDMS posts in order to create a large area void within the PDMS, 

which could be used on other applications [37].  Some have used liquid metals to 

create tuneable antennae that can change their resonant frequency by physically 

changing its dimensions [38].  However, this would be quite difficult at microfluidic 

scales due to the use of pumps, which due to Galinstan’s viscosity would need to be 

relatively powerful.  Once these antennae are built and attached or inserted into the 

human body their behaviour will be dramatically different than in air.  This is due to 

impedance mismatch and detuning because of frequency shifts caused by the 

electrical properties of tissues and structures within the body [39]. The work carried 

out by Vidal et al. investigated using various simulations to quantify this behaviour 

creating an understanding of how antennae will behave and how performance will 

be affected, thus allowing the design to account for these caveats.  Even though the 

sensor designs being discussed in this report are non-invasive, the dielectric 

properties of the tissues could have an effect on antennae performance.  This 

behaviour has had mixed opinions on its effect on transmittance when the antennae 
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is the skins surface [40], [41], therefore further investigation will be required for the 

specific use case. 

2.4.2 Experimental Production Methods 
There is a huge amount of research being carried out in novel production methods 

for flexible and stretchable electronics; however, some of these are far from being 

ready to be integrated into a production let alone having functional prototype 

devices built.  Some of these methods will be discussed below.   

Savagatrup et al. have been investigating the use of various novel materials for use 

in molecularly stretchable electronics.  The materials were classified and then 

organised into three distinct groups: 

• “Random composites of rigid structures sitting atop or dispersed in an elastic 

matrix” [42] 

• “Deterministic composites of patterned serpentine, wavy, or fractal 

structures on stretchable substrates” [42] 

• “Molecular materials, non-composite conductors and semiconductors that 

accommodate strain intrinsically by the rational design of their chemical 

structures” [42] 

The investigations completed are very interesting and show promise however, the 

balance between electrical and mechanical properties has not yet been reached.  The 

technologies are also yet to leave the lab for testing or production. 

Other researchers are attempting to use conventional materials, with novel 

processing techniques.  One example of this is Kim et al. who is looking to use silicon, 

gold and other standard materials from the semiconductor industry.  The team used 

transfer printing in order to retrieve material layers and bond them to the required 

substrate; this method allows the creation of three-dimensional structures, which is 

especially useful for the self-similar interconnects, which allow the electronics to 

stretch [43].  However, the performance of the parts produced through these 
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techniques are heavily lacking when compared to commercially available silicon 

products.  This group seems to be part of MC10. 

Another group that seem to be taking a similar approach is the one lead by M. 

Kaltenbrunner at the University of Tokyo.  The group are using a series of layered 

foils and post-processing steps such as vacuum evaporation and chemical vapour 

deposition to produce systems that are less than 10µm thick [44].  This makes these 

systems extremely flexible, but not stretchable.  In order to solve this problem, they 

apply the prefabricated foils to a pre-stretched polymer substrate, which then 

relaxes creating fine creases in the material.  This method has its limitations 

however, as once the original amount of strain is reached on the substrate, the foil 

will then have a high load placed on it, making it relatively brittle.  In addition to this, 

it requires all design to be carried out at the transistor level making the 

implementation of such designs difficult and expensive.   

Some proof of concept work has been done with carbon nanotubes to create 

electronics that are both flexible and stretchable [45]–[47]; however, there are no 

production facilities that exist which are capable of manufacturing CNT based 

electronics as can be seen in Figure 2-2.  This is due to it being a very young 

technology that needs to mature before it can be used in commercial systems. 
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Figure 2-2 Flexible thin-film transistors and integrated circuits using semiconducting 

carbon nanotube networks. (a) Schematic diagram of a local- gated nanotube TFT on 

a flexible substrate. (b) AFM image showing the channel of the flexible nanotube TFT, 

which consists of random networks of semiconducting carbon nanotubes. (c) 

Photograph of a flexible nanotube circuit with a size of ∼2.5 × 3cm2. (d,e) Photographs 

showing the extreme bendability of the flexible nanotube circuits, where the samples 

are being rolled onto a test tube with a diameter of 10 mm (d), and a metal rod with 

a diameter of 2.5 mm (e) [46]. 

One large problem that many of these experimental production methods face are 

that they are currently unable to match the reliability, speed, density and power 

efficiency of electronics produced on silicon.   

2.4.3 Microfluidics 
Microfluidics are incredibly important for any kind of biosensor application due to 

the need for carrying fluid samples and reactants around the system.  Microfluidics 
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can also be used to carry conductive fluids, which can allow the creation of 

stretchable and even self-healing wires [48].  Having the ability for the conductive 

material to heal itself in the case of damage is important for the longevity and 

reliability for the systems as they are likely to be used in environments that are not 

stable or forgiving, such as on the body during extreme sports.  This means that if a 

section of the device is overstrained which causes a break in the wire, as soon as the 

strain is released, the wire will reconnect, restoring conductivity along the wire [49].  

Microfluidic channels are normally created by etching or forming the substrate and 

filling the channels as a secondary step.  However another method proposed by  

Fassler and Majidi is to freeze cast interconnects with the use of moulds then form 

the substrates around them [50].  This method can however lead to some issues with 

thermal expansion that are not discussed within the paper.  This may also be difficult 

to implement with a scalable production process due to having to move delicate 

structures at temperatures below -20°C. 

Work carried out by Hu et al. at the University of Illinois Urbana-Champaign 

investigated the use of liquid metal in order to create super flexible interconnects.  

They used a PDMS and CNT blend in order to create a conductive polymer that acted 

as a temperature and pressure sensor in addition to a strain gauge.  These were then 

connected with microfluidic channels of Galinstan, which allow the system to be 

exceptionally flexible, getting close to the mechanical properties of skin.  The 

Young’s modulus for the system was measured to be between 0.36MPa and 0.87MPa 

at 200µm thick, which when compared to human skin is in a similar range (0.1MPa 

– 1.1MPa at 200µm) [51] as can be seen below (Figure 2-3).  



Chapter 2: Background 

 

 

Jonathan Flowers - July 2019   39 

 

 

 

Figure 2-3 (a) Final flexible sensor skin (b) liquid metal in contact with PDMS sensing 

element in optical microscope (x5 magnification). [51] 

The use of Galinstan within microfluidic channels presents a problem, which is the 

ease at which Galinstan produces an oxide layer on its surface.  One possible solution 

to this problem is the use of an HCl solution, which reduces the Galinstan oxide layer 

to a more manageable level that makes the material easier to work with [52].  Li et 
al. have been working on this, whereby they have identified issues that Galinstan has 

for microfluidics, which are mostly due to the almost instantaneous oxidation 

process that occurs, creating a substance that will wet to almost any surface.  

Concentrated HCl is used to combat this by preventing the formation of an oxide 

layer.  In order to improve flowability of the Galinstan in microfluidic applications, 

HCl is run through channels along either side of the Galinstan within the PDMS, thus 

allowing the HCl to diffuse through and prevent an oxide layer being formed when 

coming into contact with the PDMS.  This may not be practical in complex designs 
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but a solution that utilises HCl may be found to allow easier filling of Galinstan filled 

channels. 

Another interesting method of manufacture investigated by Koh et al [53] is the use 

of Galinstan as a filler for PDMS.  The loading of liquid Galinstan throughout a cured 

polymer instead of more common conductive solid particles, such as nickel enables 

the creation of flexible polymer composites without much effect to the cured 

modulus of the material as can be seen in Figure 2-4.  This technique shows promise, 

allowing loading of up to 70% volume of conductive material.  However, it is yet to 

be seen if by loading PDMS with Galinstan will protect other contact metals from the 

effects of liquid metal embrittlement. 

 

Figure 2-4 Strain-dependent storage modulus obtained at 1 Hz for various 

concentrations of (a) Galinstan and (b) nickel particles dispersed in V41: T11 PDMS.  

2.4.4 Power 
The design of batteries and various energy harvesting devices is not covered within 

the project itself, however, they are a requirement for a wireless sensor and thus 

investigations into viable power methods and how they could be integrated is 

required. 
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All electronics require a power supply of some sort in order to function.  The types 

of power supply can be separated into three groups;  

• Energy harvesters that are essentially some kind of power generator that 

passively generate electricity for the system from the environment.   

• Energy storage, which is normally referred to as a battery, which is charged 

before use or it may generate energy actively through a chemical reaction.   

• Hybrid energy storage; this would include both an energy harvesting system 

and an energy storage solution.  This hybridised setup can allow the use of 

smaller energy harvesting systems in order to increase the longevity in order 

to increase battery life.   

Due to the requirements for this system, multiple solutions may have to be 

combined in order to maintain the small scale and flexibility of the system.  

Thermoelectric generators seem quite attractive for on-body sensor systems as they 

can take advantage of the temperature differential that exists between the skin and 

the environment.  Flexible thermoelectric generators are under development by 

multiple research groups.  One approach, which may be suitable for flexible 

substrates, taking advantage of co-sputtering to lay down conductive and semi-

conductive thin films [54].  However, the efficiencies of these generators are 

currently quite low.  The other approach used various screen-printing techniques to 

lay down the conductive materials onto a glass fabric.  This produced very high 

quality and efficient generators, achieving a power density of 28mW g-1 [55].  

However, due to the use of a glass fabric, these generators would not be capable of 

stretching at all.  The stretch that is applied to the device could also be used to 

generate power.  The use of a printed PZT layer onto PDMS substrate can act as a 

kinetic energy generator.  These generators can be up to 80% efficient [56], but are 

still in the early stages of development and there is still a lot of classification work 

to do, in addition to integrating systems to utilise the generated power.  A 

demonstrator of this power generation technology can be seen below (Figure 2-5). 
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Figure 2-5 Demonstration of band-type flexible TE generator for harvesting thermal 

energy from human skin: (a) photos of band-type flexible TE generator and (b) 

electricity generation measured on human skin at an air temperature of 15 °C.  Scale 

bar, 1 cm. [55] 

One of the main problems with the use of batteries is that lithium-based batteries 

normally require the use of a liquid or gel electrolyte to function efficiently.  One 

approach is to contain the gel within the layers of the battery creating a flexible 

stretchable battery by creating a matrix of small batteries that are connected using 

self-similar interconnects [57] in ways reminiscent of the technologies used by Choi 
et al [58] for their laminated heating elements.  These batteries achieve very good 

power and energy densities because they are fundamentally a standard lithium-ion 

cell [57].  Other methods involve brand new system and even chemistry designs.  

One such example is the creation of a 3D thin-film battery that is created on a 

perforated substrate in order to increase the available surface area.  This battery 

uses a Ni cathode current collector, a MoOySz as well as a hybrid polymer electrolyte 

and a lithiated graphite anode.  This cell design achieved a capacity of 2mAh/cm2, 

which is about thirty times greater than that of a similar cell using only a two 

dimensional structure [59]. This technology appears to be very promising, however 

it is yet to leave the lab and enter production. 
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Another interesting power generation method being researched by Yang et al, 
whereby liquid Galinstan is used as an electrode in what they refer to as a Liquid 

Metal Triboelectric Nanogenerator.  The team created a triboelectric 

nanogenerators in a range of geometries such as pads, bracelets and macroscopic 

woven structures.  The material makeup of these generators utilised PDSM or 

silicone polymers to encapsulate the devices and claimed a total power output of up 

to 8.43W/m3 [60], possibly making these devices appropriate for low power on 

body sensors.  However, a major drawback of these generation systems is their 

inability to provide continuous power, thus being relegated to that of a battery or 

capacitor charging system. 

2.4.5 Stretchable System Design 
There are a variety of ways to create a stretchable system; however, these require 

modifications to the concepts that are currently employed in the design of 

electronics. 

There seem to be two approaches to this.  The first is targeted towards smart 

textiles, where the electronics are designed so that they can easily be integrated into 

woven fabrics and clothing.  Work being done by Jang et al. looks at embedding 

electronics directly onto stretchable fabrics in order to create breathable 

electronics.  The design uses serpentine interconnects made of copper, which mean 

that when the material is over stretched it experiences plastic deformation [61], 

which can lead to breakages, and thus a relatively short lifespan for the system 

meaning this can cause reliability concerns for more complex designs.  In addition, 

the production method used is completely novel and thus will be very expensive to 

roll out for large-scale production, especially due to the use of techniques such as 

reactive-ion etching and requiring manual retrieval of the produced electronics 

from the glass substrate.   

Another group at IMEC is researching the use of serpentine interconnects using 

conventional fabrication methods, which is very low cost but does not create a truly 
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flexible system.  Electronics are integrated into clothing by stitching and 

encapsulating in a polymer in order to improve strength and reliability by protecting 

the fragile systems.  The designs use packaged SMT ICs and requires an FR4 Stiffener 

under each IC to prevent pad separation [62]. A very similar project is being carried 

out at Ghent University, which uses the idea of creating stretchable electronics by 

placing non-stretchable components in a 'stretchable matrix'.  This method 

specifically uses standard PCB manufacturing technologies; however, it is all done 

at macroscopic scales, therefore creating very large structures and systems. 

The interconnects used are 'horse shoe shaped' meanders made of copper as can be 

seen in Figure 2-6, however the team realised these were not reliable and tried to 

overcome this by using multiple tracks running in parallel.  The problem still exists 

due to plastic deformation occurring within the copper [63].  A similar work, but at 

a smaller scale is being done by Jahanshahi et al. who are doing this without the FR4 

backing but then embedding everything within a polymer, such as PDMS for full 

encapsulation [64].  This faces the same essential problems as all the other groups 

that are using serpentine interconnects. 

 

Figure 2-6 Optical microscope images of the fabricated multitrack meanders are 

shown.  The hazy background is due to the tracks being embedded in PDMS [64] 

The use of serpentine interconnects seems to be quite popular with multiple 

research groups [57], [65], [66].   
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One such group led by Fan et al. is looking at the use of fractals for the track shape.  

This allows the use of solid metals and other materials as conductors but complex 

manufacturing methods are required in order to produce these [65].  Increases in 

resistance due to extended length of self-similar serpentine wires are a problem 

which then requires duplication of connectors and reduces the current capacity of 

the interconnects.  The chance of failure also increases to the creation of stress 

points within the materials during stretching.  Due to the shapes used, it will not 

produce a true multi-axial stretchable solution. 

One of the most interesting concepts that achieved multi-axial stretchable and 

flexible electronics is a concept developed by Zhang et al, using liquid metal 

interconnects with a bare silicon die [67], [68].  The metal used is a eutectic Indium-

Gallium alloy, which has a melting temperature point of -19°C [69], which means 

that the device will remain stretchable and flexible over almost all conditions where 

a human would be able to function.  This makes it perfect for biosensor applications 

as can be seen in Figure 2-7, in addition to the fact it is non-toxic, unlike mercury.  

This design creates flexible and stretchable electronics without the need to reinvent 

semiconductors, allowing a lower cost to manufacture.  It also allows the integration 

of microfluidic lab on chips due to it being based on existing microfluidic 

technologies.  The use of existing silicon components is very likely possible; 

however, this was not investigated in the paper and neither was the interaction 

between the Galinstan and the pads on the silicon die. 
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Figure 2-7 (a): Optical image of the packaged CMOS/microfluidic integrated system. 

(b) Optical micrograph showing the microfluidic channels are aligned with CMOS 

pads and sensors. (c) Optical micrograph showing the interconnect channels are filled 

with liquid metal and the microfluidic sample delivery channel is filled with red food 

dye. (d): Optical micrograph of an interconnect channel aligned with a CMOS contact 

pad before (left) and after (right) liquid metal is injected. (e): A microfluidic channel 

is accurately aligned with the sensor area. Scale bars: (a) 1 cm; (b) 500 μm; (c) 500 

μm; (d) 50 μm; (e) 50 μm. [67] 
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2.5 Materials and Processes 
The materials used to construct these systems are hugely important.  They need to 

be selected in such a way that allows the system to be flexible and stretchable while 

maintaining durability.  Additionally, because of the biomedical and athletic 

applications, any exposed materials must be biocompatible as well. 

To contain all the systems, a suitable substrate is required, and the stringent 

requirements narrow the selection of available materials quite substantially.  PDMS 

is an optically clear silicon based polymer [70] that has similar mechanical 

properties to human skin [51] and is both widely used in the electronics 

industry[56], [71]–[73] and biocompatible [64], [74], [75]. It also has the ability to 

be shaped with extremely high precision and is non-reactive making it useful for lab-

on-chip and microfluidic applications [52], [67], [71], [76].  The optical clarity of 

PDMS also makes it suitable for optical applications, which can decrease the cost and 

overall size of lab-on-chip solutions [73], [76]–[78].  This makes it an excellent 

material choice.  Other materials such as PMMA have similar properties, but 

unfortunately have a considerably higher Young’s Modulus than PDMS and 

especially when compared to human skin [66], [79]–[81] making them unsuitable 

for on-body conformal electronics. 

Hydrogels open up a new range of possibilities for substrates and device form 

factors.  They are a network of hydrophilic polymer chains in which the dispersion 

medium is often water. They can be made of either natural or synthetic polymers 

allowing them to be biodegradable and even conductive for uses in ECG and EEG 

electrodes [82].  They are extremely absorbent, taking in as much as 95 wt% water 

[83]. 

Recent developments within the realm of tough hydrogels has enabled a research 

group within MIT to create a ‘smart band-aid’ which is capable of sensing 

temperature of a wound and based on this information dispense drugs which diffuse 

through the hydrogels [83].  In order to create the hydrogel substrate various 
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polymer networks were created within a range of dissipative polymer networks to 

form the hydrogel as can be seen in Table 2-1.  Certain types of hydrogel have been 

shown to have fracture strengths of over 17MPa [84]. However, as tough as and 

pliable that hydrogel is, it has a single drawback that makes its use for electronics 

extremely challenging.  Hydrogel is normally between 73wt% and 95wt% water, 

which means that any electronics or even interconnects must be completely 

encapsulated in order to prevent liquid ingress within components and short 

circuits from interconnect to interconnect in addition to shocking the wearer.  

Another issue is due to the porous nature of these hydrogels, liquid conductors 

cannot be used.  This means any interconnect systems must utilise self-similar 

serpentine or fractal patterns to prevent breakage when stretched.  A comparison 

between hydrogels, PDMS and PMMA can be seen in Table 2-2. 

Table 2-1 Compositions of a set of tough hydrogels with elastic network and 

dissipative networks (Note that while the water concentration in hydrogels at as-

prepared state ranges from 73 wt% to 85 wt%, it may increase up to 95 wt% after 

swelling in water.) [83] 

 

Table 2-2 Comparison of substrate materials 

Substrate Material Advantages Drawbacks 

PDMS 

Bio-Compatible Thermosetting polymer 

making reforming after 

intimal cure impossible 
Similar Young’s Modulus 

to that of human skin 
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Used extensively in 

microfluidics research 

Optically Clear 

Capable of feature sizes of 

<50nm [85] 

PMMA 

Bio-Compatible 

Much stiffer than human 

skin [79], [86] 

Used extensively in 

microfluidics research 

Optically clear 

Capable of feature sizes of 

<10µm [87] 

Thermoplastic polymer 

allows for repeat 

reforming 

Hydrogels 

Ability to support 

biological structures and 

cells for lab on chip 

applications 

‘Wet’ Material which then 

requires all electronics to 

be coated with an 

insulator (PDMS) [83] 

Similar mechanical 

properties to skin 

Untested biocompatibility 

but possible 

Fluids can diffuse 

through material for drug 

delivery 

Cannot support liquid 

conductors due to 

diffusion 
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In order to carry an electrical current through the system, some sort of conductor is 

required.  Metals are normally the primary candidates for this task, however, in 

order to become stretchable, complex geometries are required [21], [57], [62], [65] 

and even then, repeated deformation will quickly lead to fatigue and failure.  Three 

possible alternatives exist.  The first is the use of conductive polymers, which 

normally consist of conductive nanoparticles being suspended and blended into a 

non-conductive polymer with desirable mechanical properties or are chemically 

synthesised to be conductive.  This will lead to the creation of an electrically 

conductive polymer, but the conductivity of the final material is normally relatively 

poor when compared to metals [44], [88].  The second method is the use of non-

metallic structures such as carbon nanotubes or graphene [47].  The main barrier 

for these materials is their high cost and low yield during manufacturing.  They are 

incredibly difficult to produce with any kind of reliability while maintaining the 

quality of the material [89], [90].  An alternative solution could possibly be to use 

metals while in their liquid state.  One example is that of mercury which has a 

melting point of -38.9°C [91], it is however, highly toxic and harmful to the 

environment.  Another option is an alloy called Galinstan, which melts at -19°C and 

is a much safer material [69].  Figure 2-8 shows Galinstan being handled by hand, 

which is within normal operating procedures for the material.  Galinstan is a eutectic 

mixture of gallium, indium and tin, which allows it to stay molten at room 

temperature and much lower.  This creates the opportunity to use a fluid as a 

conductor and allows for incredible flexibility and conformability for any systems 

that take advantage of this.  Galinstan forms an oxide layer almost instantly [92], 

which allows the material to actually be controlled when filling micro channels using 

this oxide layer [93].  This material shows great promise [67], [94]; however, the 

one drawback is that it causes a phenomenon called liquid metal embrittlement [90] 

when exposed to other metals. For this reason, some investigation has been carried 

out looking into the effects on a range of other metals, and, why this embrittlement 

occurs [95], [96]. This research never looks at how the Galinstan or other metal is 
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affected when both are used as conductors. More research needs to be done in this 

area to ascertain the long-term viability and application as a conductor in the 

production of electronics. 

 

Figure 2-8 Non-toxic Galinstan being handled without protection equipment [97].  

This handling has proven to be safe with the only effect being that it can dry out the 

skin. 

2.6 Sensors 
It is important to be aware of the different types of sensors that are used to collect 

information about various medical conditions or vital signs for the human body.  

Each of these sensors operate in a different manner and require different interfaces 

to the body, thus substantial work needs to be carried out looking into the 

compatibility of each of the most widely used sensor types with the production 

processes and system architecture.  

In order to collect data from the world around it a system must have some kind of 

input device, be it a button or something far more complex.  An investigation of some 

relevant sensor technologies for monitoring vital signs is important.  However, there 
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are thousands of kinds of sensors and metrics to monitor, with huge amounts of 

research on each.  For this reason, only a select few kinds of sensors will be 

investigated here.  Vital signs are defined as a humans’ signs of life, specifically, the 

pulse rate, respiratory rate, body temperature and blood pressure [98].  There are 

different ways to monitor each of these metrics, but for this project, the 

measurement of all vital signs is the bear minimum.  Photoplethysmography is 

capable of monitoring all of these signals, bar body temperature, but can also 

monitor oxygen saturation levels in the blood [99], [100].  This research is being 

carried out by a group of researchers at Loughborough University looking to perfect 

the PPG sensor so that it is capable of being resistant to motion artefacts and skin 

pigmentation through the use of a multi-spectral approach [101].  This technology 

is still in development but seems to be nearing a point where commercial integration 

is possible. PPG utilises the changes in the penetration and reflection of light as it 

passes through the skin, for which a diagram can be seen in Figure 2-9. 

 

Figure 2-9 Diagram demonstrating penetration of light for the use of PPG sensors and 

how the waveform is produced [102] 
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An alternative to the use of PPG for pulse rate and respiration rate is by measuring 

electrical signals and properties of the body.  The use of impedance pneumography 

can allow the monitoring of respiration rate that can be measured with as few as 

two contact electrodes, however, performance of the system can be improved by 

increasing this number to four [103].  Pulse rate can easily be measured with a two 

electrode ECG; work has been carried out on the use of liquid metal as the electrode 

contact.  They are designed to improve the comfort, cost, and simplicity of standard 

electrodes. 

 

Figure 2-10 Circuit drawn onto skin using Galinstan. [104] The above circuit includes 

simple LEDs as discrete components attached to the skin utilising the surface tension 

of Galinstan as an adhesive.  Power is delivered through a battery being held in (B). 

The team succeeded in proving this [104].  However, not much is known about 

Galinstan as an allergen or if extended skin exposure could cause harm, which makes 

a system such as the one shown in Figure 2-10 improbable.  Another important 

metric to monitor is that of glucose levels.  However, this is more difficult as there 

have been no successful attempts at measuring glucose levels non-invasively.  For 

this reason, researchers have turned towards some semi-invasive solutions which 

either use very fine needles that do not completely pierce the skin [105] or even 

ablation techniques that just monitor the interstitial fluid, which according to some 

research, is a more reliable and accurate measure of the body’s actual glucose levels 

[106].  This research has barely scratched the surface of the various sensor 
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technologies that are available, let alone the ones that are currently in development.  

For this reason, it is hugely important that any system design is able to be flexible 

enough to accommodate whatever the best sensor packages available at the time. 

2.7 Manufacturing Processes 
Generally, electronics manufacture has been confined to a standardised set of 

production tools that are based off rigid substrates, or in some cases, Kapton based 

“Flex” substrates.  This process involves etching of copper tracks in an acid bath, 

laminating multiple layers when required, drilling, then electroplating vias and 

finally coating the boards in a layer of solder resist or other kind of insulator. 

Components are then bonded to the boards by a solder paste that is normally screen 

printed before individual components are picked and placed, then the entire board 

is baked in order to melt the solder paste and actually create a firm bond [107].  An 

example of a conventional rigid flex PCB can be seen on the left in Figure 2-11, and 

a cross section of such a system can be seen on the right. 

 

Figure 2-11 An example of a rigid flex PCB that combines both flexible and rigid 

substrates with the a diagram showing a cutaway of the internal structure. [108] 

This process is not compatible with many other materials due to the processing 

steps that require the use of chemical reactions or high temperatures.  It is also a 

batch process rather than a continuous one, which offers the opportunity to increase 

production output if electronics could be produced using continuous processes. 
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One example of a continuous process is Roll-to-Roll manufacturing which can be 

used to increase manufacturing output while simultaneously reducing cost.  This 

process is not compatible with current PCB manufacture due to the use of rigid 

substrates.  However, with investigations carried out on flexible substrates that use 

microfluidic or printed conductive traces, Roll-to-Roll processing presents an 

incredible opportunity to create a shift in how electronics are manufactured.  To 

produce channels at the fine resolutions required for microfluidics, a process called 

Hot Embossing can be used, which has been shown to be capable of producing 

structures less than 1µm in size [109], [110].  An example of the equipment can be 

seen in Figure 2-12, where one roll contains a heated negative tool and the other is 

heated and supports the substrate. 

 

Figure 2-12 Roll-to-Roll Hot Embossing of refractive elements (Photo courtesy of VTT 

Finland) 

The substrates used are normally thermoplastic polymers; work is being carried out 

using thermoset polymers [109], such as PDMS.  Before this becomes a viable option, 

certain hurdles need to be overcome as the PDMS must be fed into the process as a 

resin and cured during forming, which vastly complicates the process.  Roll-to-Roll 

processing can also be used to print conductive traces in a similar way to how 

newspapers are printed, taking advantage of techniques such as gravure or screen-
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printing [50], [55], [111].  These techniques pose their own set of challenges.  The 

inks that are currently available often suffer from poor conductivity or require 

baking at high temperatures.  In addition to this, achieving the resolution required 

for interfacing with modern high density ICs has proven to be quite difficult due to 

edge quality becoming an issue at less than 100µm [111].   Other researchers have 

carried out work on developing CNC methods for laying down Galinstan, such as 

creating a CNC ballpoint style pen [112] and a CNC airbrush [113].  The main issue 

with these techniques is that they may not be capable of scaling while maintaining 

low cost due to their freeform nature and thus are more suitable for prototyping. 

Once the channels have been created using some sort of embossing or casting 

process, they need to be filled with a conductive fluid in order to become useful.  Due 

to the small scale, the behaviour of fluids greatly differs from 'macrofluidic' 

behaviour in that surface tension, fluidic resistance, and energy dissipation can 

dominate the system [114].  This means standard filling techniques may not be as 

effective as they would be at larger scales, thus requiring an alternative approach.  

One such approach is to create a negative pressure gradient above the surface of a 

submerged microfluidic part [115] (see Figure 2-13) .  This technique is similar to 

that used for degassing polymer resins during processing and casting.  This process 

is also capable of alleviating the issue of Galinstan’s oxide layer due to the use of a 

vacuum during filling. 
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Figure 2-13 Atmospheric pressure reduction above a submerged device [115] 

A research group at Harvard University have carried out work using the reverse of 

the process described above.  Instead of using a vacuum, a positive pressure was 

used on the side where a gallium-indium alloy was present and essentially forced 

the fluid through the microfluidic chambers and channels.  This was carried out at 

room temperature when a critical pressure, which depended on channel geometry, 

was reached.  Something noted was that treatments carried out to prevent the EGaIn 

alloy wetting to the PDMS, such as plasma treatment, did not make a significant 

difference to the performance when filling the channels [116].  The filling tests were 

also performed with mercury as a comparison, which showed that the EGaIn alloy 

did not retreat from the channel when pressure was removed, unlike the mercury, 

which fully retreated from the channel.  The team interestingly noted that EGaIn’s 

rheological properties are almost completely dictated by its oxide skin, as when 

exposed to HCl (which has been shown to remove the oxide skin [52], [92], [93], 

[116], [117]) a loss in structural stability was observed.  It was concluded that EGaIn 

behaves as an elastic material until the applied surface stress surpasses a critical 

value, which was found to be in the range of ~0.5N/m.  Once this critical surface 

stress is reached, the material will readily flow as a liquid and return to an elastic 

solid once the stress is released [116].  An example of this flow behaviour can be 

seen in Figure 2-14. 
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Figure 2-14 Examples of liquid metals in microchannels and their dependence on 

pressure. The dimensions of the channels fabricated from PDMS are labeled at the top 

of the figure. The remaining images are back-lit, top-down optical photographs of 

EGaIn (left column) and Hg (right column) in PDMS microfluidic channels. The PDMS 

is transparent, whereas the metals block the light and consequently appear dark. i) 

Both metals filled the channels until they reached the narrow portion of the channel. 

ii) When a critical pressure was exceeded, both metals rapidly (in<1 sec) filled the 

channels. iii) When the system was returned to ambient pressure, the EGaIn structure 

was stable, whereas the Hg instantaneously (<1 s) withdrew from the channel. All 

pressures are gauge pressures. [116] 

At some point during Roll-to-Roll manufacturing, layers will need to be bonded 

together in order to create complex, multi-layer systems.  PDMS is a strange material 

in that adhesives that are not made of PDMS tend to bond poorly to its surface, while 

two PDMS parts can be bonded without any other adhesives.  Work being done by 

Eddings et al. has completed a comparison of different bonding techniques for 

PDMS.  The results of which can be seen in Figure 2-15, where using uncured PDMS 
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as an adhesive formed the strongest bond.  However, this method could lead to 

blocking of microfluidic channels when laying down the adhesive, partial curing, 

where the layers are bonded together before they have fully cured, shows the most 

promise due to the simplicity and lack of additional resin that could possibly block 

any channels after forming.  If complete curing is required before bonding, Oxygen 

plasma and corona discharge are both options that are capable of being used in Roll-

to-Roll processing.  Both of these processes are essentially a surface treatment that 

will not affect the geometry of the part being created.   

 

Figure 2-15 A comparison of five different bonding techniques at their optimal 

conditions at 60 ◦C.  Partial curing experiment: 35 min precure, varying curing ratio 

experiments: PDMS base to cross-linking agent (15:1), uncured PDMS adhesive 

experiments: completely uncured PDMS layer stamped, oxygen plasma treatment: 

700 mTorr chamber pressure, 20W RIE power, 30 second exposure time. Corona 

discharge: 15 kV output, 30 s exposure time. The minimum and maximum bond 

strength values are shown with the average bond strength to illustrate the range of 

values obtained during experimentation. [118] 
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2.8 Fabric Based Technologies 
Smart textiles are deemed by many to be the next step for fashion, performance and 

medical garments.  Allowing integration of sensors to monitor both the environment 

and the wearer and in some cases even reacting to this information would open up 

a world of possibilities.   

There are currently two main ways of integrating interconnects into textiles; the 

first is to weave conductive strands into the fabric when it is being produced, the 

second is to add interconnects to the fabric afterwards using some kind of printing 

or attachment process.   

Applications for conductive threads are not just limited to smart textiles, they have 

been used for years in certain niche applications: clean room garments, military 

apparel, medical application and electronics manufacture [119].  They can be used 

for a wide range of functions within these applications, for example protective 

clothing in explosive environments, infrared absorption and electromagnetic 

interference (EMI) shielding [120]–[122]. 

2.8.1 Woven Electronics 
Woven electronics use some type of conductive fibre that is woven into the textile 

or garment to create interconnects.  Systems that include this technology have 

already reached the consumer market.  An example of this technology is the Smart 

Sock and Fitness T-Shirt from Sensoria [123].  Sensoria have used conductive fibres 

that are woven into a sock to create both interconnects and pressure sensors.  It is 

unknown which technology these socks use.  One possible technology is an e-textile 

sensor described by Enokibori et al who measure the change in capacitance.  Hollow 

conductive fibres are included within the weave of the textile which, when 

compressed, display a change in capacitance.  This change in capacitance can then 

be converted into a pressure reading [124].   
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This technique yields flexible fabrics that, depending on the weave used, can actually 

stretch.  Due to the conductive fibre being made of metal which cannot be deformed 

elastically [119], must be integrated into the fabric in such a way as to include slack 

so that as the fabric is stretched the conductive fibre straightens rather than being 

deformed elastically. An example of this can be seen in Figure 2-16. 

 

Figure 2-16 Schematic of conductive fibre twisted in with the normal fibres [119] 

This same methodology can be used with embroidery, which creates similar results 

but allows more control in the design and positioning of the conductive threads 

[119], in addition to allowing any fabric to be used at the base if certain properties 

are required. 

An alternative to weaving in conductive fibres is treating the existing materials in 

order to make them conductive to create an electrically conductive textile.  Common 

processes to perform this are evaporative deposition, electroless plating, sputtering 

and coating the materials with a conductive polymer [125].  Due to the ability to vary 

the coating composition on strands of the weave, it is possible to create textile 

transistors.  The crossing yarns act as the gate and drain coated with PEDOT:PSS, 

with the contact point having an added electrolyte.  A diagram demonstrating this 

configuration can be seen in Figure 2-17. The resulting transistor, when operated at 

1.5V had an on-off current ration of over 1000 [126]. 
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Figure 2-17 Two yarns coated with PEDOT:PSS, one serves as the gate contact for the 

transistor while the second serves as drain and source contact. At the crossing of the 

two yarns, an electrolyte is placed. A redox process at the interface between 

electrolyte and PEDOT:PSS turns the transistor on and off [119], [126] 

Work carried out by Loughborough University and Nottingham Trent University 

have successfully created transmission lines using embroidery techniques.  The 

research used the DC resistance as an initial indicator of RF performance, which was 

found to be suitable.  However, the results indicated that the current had a 

preference to flow down a single thread rather than traverse between threads [127].  

This aligns with other research that found embroidered or woven conductors are 

not the most efficient design for wireless transmission lines or antennae due to large 

losses, thus reducing the usable frequency range in addition to the power efficiency 

of the device [128].  This can be attributed to limitations in conductor size of the 

threads (<1.5mm) or in the case of plated conductive fabrics, which was found to 

be restricted to manometer scales [128]–[130]. 

2.8.2 Printed Textile Electronics 
Electronic textiles can also be produced using various printing techniques that 

leverage various conductive inks.  These inks always contain a metallic precursor 

such as Ag, Au or Cu, which are highly conductive suspended within a carrier fluid 

[119].  This allows the inks to be printed using a wide range of commercial 
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techniques.  This includes both screen-printing and inkjet printing.  Printing 

methods allow for easier integration of electronics into textiles due to the textile 

acting only as a substrate when compared to weaving interconnects directly into the 

fabrics.  Inkjet fabrication offers a digital production method that requires no masks 

or stencils to be made making it suited for low volume production.  It is capable of a 

resolution of approximately 50µm features and a throughput of 100m2/h.  Due to 

the nozzle size, difficulties are encountered when using high viscosity materials and 

dispersed particle inks that can cause clogging.  For this reason it is preferable to 

use organic semiconductors as inks [119].   

One of the drawbacks of inkjet printing is that many of the inks require some form 

of baking after deposition.  The reason for this is that the metallic particles 

suspended within the carrier fluid do not create a continuous electrical connection.  

By baking the ink and substrate, the carrier fluid is evaporated and the metallic 

particles are sintered together to form a continuous electrical connection [119]. This 

means that possible substrates must be capable of withstanding temperatures in 

excess of 180°C, which is the sintering temperature for Silver Nano-Particle (15-

20nm in diameter) inks [119], [131], [132]. 

Using combinations of different inks and print geometries, sensors can be created 

or assembled.  Work is currently being done by the National Textile Centre at North 

Carolina State University who are investigating printed electronic circuits on non-

woven fabrics.  The project goal is to create garments that are able to monitor a 

variety of physiological parameters including heart rate through ECG, as well as 

respiration and temperature.  Research is being carried out in partnership with 

some conductive ink manufactures in order to vary the properties of the ink.  This 

partnership has enabled the successful production of antennae on non-woven 

textile structures using various print processes [119].  

In order to make these systems both flexible and stretchable, two techniques are 

available.  The first is polymer or organic based inks that can be elastically deformed 
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without breaking.  However, these inks normally exhibit poorer conductive 

properties than their metallic counterparts do [104], [132]–[134].  The second is the 

use of complex geometries for use with conductive metallic based inks.  It has been 

found that the most effective design is that of three-dimensional self-similar 

serpentine conductors.  These designs allow reductions in the stress imposed on the 

conductors and contain additional material to take the loads of the stretching fabric.  

An example can be seen in Figure 2-18, where a layered self-similar interconnect 

laminated onto fabric is deformed in both FEA simulations and experimentally, 

which can be seen in Figure 2-18.  However, the use of serpentine interconnects does 

not completely solve the issues that plague non-elastic materials as the repetitive 

deformation and fatigue eventually weakens the material, causing cracking and thus 

degradation of signal quality [37], [42], [135] due to the effects of work hardening 

and plastic deformation.. 

 

Figure 2-18 Mechanics of materials and structures for stretchable electronics. (a) 

Cross-sectional illustration of representative layers in a stretchable electronic system. 

(b) Deformations of a FS trace and distributions of maximum principal strains in the 
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metal computed by FEA for a system consisting of electronics/UL-Sil(3.0 kPa)/fabric 

and electronics/PDMS (B1–2MPa)/fabric. (c) The computed maximum principal 

strains in the metal as a function of the strain applied to the entire system show 

enhanced stretchability with the UL-Sil material compared with PDMS. (d) Scanning 

electron micrographs (scale bar, 200mm) and corresponding FEA results of 

undeformed and uniaxially stretched (90%) configurations of an FS trace bonded to 

a UL-Sil/fabric substrate [61]. 

2.9 Summary 
Currently a huge array of both competing and complementary technologies exists to 

create flexible, stretchable electronics.  Each of these technologies has its own set of 

strengths and its own set of drawbacks that either prevents it from coming to 

market or limits its application.  In many cases, the production methods used for 

these technologies are either very new and have problems that need to be solved 

before they can scale, or they are slow and labour intensive, drastically raising the 

price of the finished products. 

In order to successfully create a device that is flexible, stretchable and suitable for 

mass production, a multitude of existing technologies that have not previously been 

integrated together will have to be partnered with each other using both novel 

technologies researched during this project as well as production methods to 

manufacture them. 

One major drawback of many of these technologies is that of inaccessibility.  The 

consumer electronics industry has years of experience using certain tools and 

technologies that have been developed over the last 60 years.  Any new technology 

should leverage this experience and knowledge rather than attempting to replace it 

or start again.  In addition to this, world leading corporations such as Intel, IBM and 

Taiwan Semiconductor Manufacturing Company have invested billions of dollars 

[136] into existing fabrication technologies and currently produce incredibly 
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advanced systems that could not be replaced by any of the technologies detailed 

above.  Therefore, in order to both lower the barrier to entry for the technology and 

engineers alike, any production methods or technologies developed should leverage 

existing silicon IC production methods and embedded electronics systems 

knowledge.  

The current array of technologies available all seem to show some promise and will 

play a vital part in bringing ‘invisibles’ to life.  Important aspects such as 

interconnect designs, novel material development and manufacturing processes all 

play a role in the enablement of such devices and shaping the research presented 

here.  The current state of technologies all exist independently of each other and 

require further investigation into their integration.   In order for this to occur a set 

of requirements would need to be developed for future devices.  These parameters 

of usefulness would then be able to guide technology selection and thus the direction 

of this research. 
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3 PARAMETERS OF 
USEFULNESS 

3.1 Introduction 
The parameters of usefulness are a set of guidelines and rules that have been 

synthesised for the possible applications of conformal electronics and systems.  

They have been assembled using the available data detailed in the background 

research in Chapter 2.  The parameters set out to define what goals the technology 

must achieve to allow the creation of useful products and the processes to 

manufacture them. 

The final product will help to set the parameters for production, even though 

developing the sensor itself is outside of the scope of the project, proof of concept 

items will need to be created in order to demonstrate the viability of the research 

when applied and the suitability of the production processes that are utilised.  It is 

hoped these parameters could be used by commercial or research institutions to 

manufacture products and systems that could utilise the production processes 

researched and specified below. 

 

3.2 Parameters of Usefulness 
Below are a set of initial guidelines and constraints that need to be met for the 

researched technologies to be viable within a commercial environment.  From these 

guidelines, appropriate experimentation and testing can be planned to ensure that 

the materials and technologies can meet these goals and not result in an over or 

under engineered system. 
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3.2.1 Assumptions – Constraints – Standards 
In order for this technology to be successful in a marketplace, especially across a 

wide variety of applications, costs must be scalable based on environmental 

requirement and functionality.  A few examples of currently available integrated 

sensor systems are detailed in Table 3-1.  All of these systems are poised to target a 

different level of consumer.  The American Football helmet targets large teams 

rather than individuals, the heart rate monitor targets the general part time athlete 

and the hockey goal keeper armour looks to a niche market of individuals within a 

chosen sport. 

Table 3-1 Example applications and the costs the technologies must reach in order to 

be commercially viable 

Application 
Currently Available 

Technology or Item Cost 

Total retail cost for system 

using Flexible Stretchable 

Technologies 

American Football 

Helmet 

Riddell Revolution Speed 

Flex Helmet - $399.99 

[137] 

Riddell InSite - $150 

[138], [139] 

Total system Cost - 

$549.99 

1. Best $400-450 

2. Ideal $450-$500 

3. Acceptable $500-$550 

4. Unacceptable $550+ 

Heart Rate Monitor 

Polar H7 Bluetooth 

Smart Heart Rate Sensor 

- $70 [140] 

1. Best $5-20 

2. Ideal $20-$40 

3. Acceptable $40-$70 

4. Unacceptable $70+ 
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Hockey Goalie Body 

Armour 

Gryphon Goalkeeping 

Bodyguard (No 

integrated sensing 

technology) - $200 [141] 

1. Best $200-$220 

2. Ideal $220-$240 

3. Acceptable $240-$300 

4. Unacceptable $300+ 

 

All the technologies integrated into the system must be currently in mass 

production.  In order to create a low-cost system, technologies that are not able to 

be used in production or that require large amounts of research until they are ready 

to be integrated should be avoided where possible as this would drastically increase 

both system costs and time to market.  Where possible, systems should not be 

classed as a medical device so as to avoid excessive testing and regulation. This 

means that all materials that come into direct contact with the user must be 

biocompatible and the device must be non-invasive. The product should only be 

used initially in a non-medical consumer/research setting where there is no risk of 

injury or loss of life in case of failure.  Any product developed using the technologies 

researched must endeavour to meet at least the following standards in order to 

ensure the safety of not only the consumer, but the environment during the 

product’s entire lifecycle;  

• Information Technology Equipment Safety Standards (IEC 60950-1, IEC 

62368-1) 

• Batteries if used (IEC 62133) 

• EMC Standards for markets where the device would be used (Various EN 

standards for Europe and FCC standards for the US) 

• Specific Absorption Rate for Electromagnetic radiation (EN 62311) 

• Privacy and information security – All communication between the device 

and base station would need to be encrypted and secured. 

• Chemical makeup – The device should be RoHS compliant 

• Environment and Sustainability (UL 2887) 
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• All materials that come into direct contact with the user must be 

biocompatible (ISO 10993) 

• NEMA enclosure rating of IP65 

• Relevant IPC and J-Standards that govern the design, manufacture and 

testing of electronics.  However, many of these standards would not apply 

due to the unique makeup and construction of the intended systems. 

The standards mentioned above are not an exhaustive list but are intended to be a 

guide for both research and manufacture.   As standards such as these are 

continually updated, it would be up to the engineer designing such a product to 

ensure that all the relevant standards are complied with. 

3.2.2 Architecture and System Design 
If any processing or data analysis is carried out on the device, it should be kept to a 

minimum in order to improve power efficiency.  The device would only process the 

input data to the point where it can be sent to the base station or smartphone.  These 

devices have a larger, more capable CPU and data storage system, which allows 

more detailed analysis to be carried out. Any wireless communication systems used 

should comply with industry standards and be as low power as possible (ANT or 

Bluetooth Low Energy are two possible solutions that are currently available). The 

sampling rate of the system should be variable in order to be adjusted based on 

activity or research requirements.  This would allow improved battery life and 

enhanced sensor operation. Any system designed with these technologies should 

have an ingress protection rating of IP68 to a depth of 3m or more, which will allow 

the sensor to be worn during any activity or sport that does not involve submersion 

in very deep water.  Additionally, this would prevent sweat, moisture or dirt causing 

any issues with the internal electronics as well as protecting the user from any 

possible harm.  If bare die ICs are used within the system, they will need to be 

protected with a UV resistant coating, be it within the substrate or over the entire 

device. 
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3.3 Application Based Specifications 

3.3.1 General Overview and Design Guidelines 
In order for the technologies researched to be applicable in mass production, certain 

things need to be taken into account when investigating materials and various 

processes. Production methods, where possible, should be continuous in order to 

increase output and reduce costs.  An example of this is the Roll-to-Roll 

manufacturing method.  All processes and methods used should be flexible, allowing 

for modification based on the needs of the design.  The aim is to mirror the design 

flexibility that conventional PCB assembly and manufacture allows.  This reduces 

the barrier to entry as well as easing the transition into utilising this new process 

and giving designers freedom to create new and innovative products. Where 

possible the process should produce items that match the relevant standards from 

conventional PCB manufacturing processes, meeting IPC-A-600 would cover 

conditions for which PCBs can be accepted and rejected during the quality assurance 

stage of manufacture.  IPC-6012 specifies the required performance of PCB module 

mounting, interconnecting structures and HDI boards or layers.  IPC specifications 

being an industry standard, should be referenced when developing new processes 

to make sure any lessons learned from conventional electronics production are 

incorporated into these new technologies. 

The processes used should be easily customisable to accommodate any number of 

layers allowing for increased complexity.  At minimum, it must be able to produce a 

device with two electrical layers and one component layer.  An ideal system would 

be capable of having up to 16 electrical layers and 4 component layers.  All processes 

must be capable of the precision required for manufacturing antennae as an 

integrated part of the manufacturing process.  Any and all assembly should be 

component agnostic in the same way that conventional pick-and-place methods 

allow almost any component to be used as part of a PCB.  Finally, the entire process 
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should aim to be completely automated, with as little human intervention as 

possible. 

3.3.2 Application Dependant Design Guidelines 
To create an application agnostic design methodology, and to create flexible and 

stretchable systems, the application must be kept in mind at all times.  For example, 

the requirements for a system to be integrated into a snowboard to perform 

performance measurements would be vastly different to those of an on-body sensor 

patch that could be worn every day.   

Clarification in these requirements can be separated into four main classifications 

that, in theory, should cover almost any possible application. The requirements for 

each level increase with the classification class.  These four classification classes are 

as follows; 

1. Soft Matter Consumer Electronics 

These devices could utilise flexible stretchable electronics to improve the 

density of current electronic systems, to enable new user experiences or 

embed systems into locations that would ordinarily be incompatible with 

existing technologies.  Examples of this could be utilised widely in the IoT 

domain, such as in smart bedding, sports equipment or folding devices 

2. On-body Sensor Applications 

These devices would utilise their conformal nature to allow long term end 

users to comfortably wear these devices, enabling the unobtrusive 

monitoring of biometrics.  These systems could be heavily utilised within 

medical, health and sports applications.  Examples of these sensors are low 

profile, lightweight ECG systems, activity monitors and skin galvanometers. 

Some of these systems could be safety critical and would require high 

reliability and redundancies in their designs. 

 

 



Chapter 3: Parameters of Usefulness 

 

 

Jonathan Flowers - July 2019   73 

 

 

3. Protective Equipment Monitoring Systems 

Protective equipment is used in a huge variety of applications, examples of 

which are the defence, industrial and sporting sectors.  Many of these 

systems would likely be safety critical, while being placed under far larger 

environmental stresses than a typical consumer device.  Examples of these 

devices are smart body armours and helmets. 

4. High Performance Monitoring Applications 

These systems would be used in scientific, industrial and other demanding 

applications that require high reliability and precision.  Structural health 

monitoring systems are an example of an integrated system that would 

benefit from a highly conformal measurement system to enable high 

precision measurements without affecting results or the design of the device 

under test. 
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4 RESEARCH APPROACH 

After completing the above literature review, it is possible to begin research on 

forward looking designs and concepts.  By overviewing existing standards and 

processes, further work can take advantage of multiple technologies and techniques 

that would not ordinarily be combined; allowing the creation of  a novel product and 

manufacturing method to create a low-cost system.  Such a product will need to 

include solutions for the following components:  

• Flexible and stretchable substrate 

• Flexible stretchable interconnects 

• Passive components capable of withstanding deformation 

• Ability to support certain rigid components such as integrated circuits 

• Flexible stretchable antennae 

• User interaction components capable of withstanding deformation 

These components can be seen as blocks that will need to interact with each other 

to create a functioning device.  They will also need to be compatible with an efficient 

manufacturing process, so component and technology selection should always keep 

this in mind.  The way these interact can be seen in Figure 4-1, whereby the overall 

design of a device can directly influence the capability of the system.  For the process 

diagram shown in Figure 4-1b, the order of these blocks would likely move around 

based on the chosen design of a final system in addition to the specific components 

selected for a particular application.   An example would be the use of a trace antenna 

instead of a chip antenna [142] which could lead to some blocks being split up or 

being duplicated. This chapter will attempt to systematically decide on an 
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appropriate set of experiments that are required to aid in the realisation of truly 

flexible and stretchable electronics. 

 

Figure 4-1 Colours in two diagrams are to connect relevant components in the system 

block diagram (a) to the high level process diagram (b).  

4.1 Substrate Selection and Substrate Manufacture 
In order to create flexible and stretchable electronics a suitable substrate would 

need to be chosen, due to the main goal involving long term contact with the skin 

and biological applications.  It would need to be biocompatible and non-reactive.  

PDMS and PMMA are both possible fits for this application, however with its 

superior mechanical properties which are remarkably similar to that of human skin, 

PDMS is a superior candidate.  Additionally, wide use within both the medical and 
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semiconductor industry for various purposes means that there is a lot of expertise 

when working with it and a large amount of literature regarding its mechanical 

properties [68], [134], [143]–[146] and biocompatibility [74], [147].  Fabric based 

technologies have major limitations with regard to interconnects, as they either 

need to be woven in or able to be attached to the fabric in some way.  This completely 

rules out the use of liquid conductors and any microfluidic technologies unless 

combined with one of the other processes or technologies detailed above. 

In order to take advantage of PDMS as a substrate material, it needs to be proven 

that it can be easily processed utilising mass manufacturing methods and rapid 

digital manufacturing methods.  As PDMS is often used in the semiconductor 

industry for the creation of lithography stamps and masks [68], [78], [148], [149] a 

significant amount of knowledge already exists around its manufacture and 

handling.  There is however more limited understanding of rapid manufacturing 

processes surrounding the material.  A study will be required to observe and analyse 

the use of laser machining on PDMS and investigate the link between process 

parameters and finished channel geometry. 

4.2 Electrical Components 
Components for such devices include power sources, sensors, user outputs, 

antennae and integrated circuits.  All of these need to be selected carefully in order 

to comply with the environment that will occur within a system when being used in 

situ.  However, their selection and behaviour are not only heavily application 

specific, but the selection of available components is far too wide to test.  Therefore 

it is important to classify some of the possible mechanical conditions these 

components could undergo and understand how these forces could be transferred 

onto the components during deformation.  
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4.3 Interconnects 
In order to achieve conformal electronics, maintaining a good electrical connection 

between components throughout any and all deformations that may occur during 

use.  Material selection is a large part of this, of which the one chosen must exhibit 

certain mechanical properties in addition to being electrically conductive.  Due to 

the expectation that these products will likely undergo repeated deformation in the 

same location, it is important that any material chosen is able to resist work 

hardening, which over time could induce cracks.  This will especially be an issue for 

designs that utilise self-similar serpentine interconnects, which are often made of 

gold.  By using a metallic compound that is liquid at expected operational conditions, 

it is possible to remove any and all concerns regarding cracking and breaking.  

Additionally, this has the added advantage of enabling self-healing if any of the 

interconnects do break.  The two materials that are generally available and both 

fluid at room temperature are Mercury and Eutectic Gallium-Indium alloys.  

Mercury is not a viable material due to its toxicity [150] to living organisms and 

would therefore be an inappropriate choice for a wearable device.  However, 

Gallium-Indium alloys while non-toxic [151] can embrittle other metals [152], 

[153], for which overcoming this issue is an important goal. 

4.4 Design Concept 
The sections above detail the various components required to create a conformal 

system and the possible gaps in knowledge that need to be filled in order to realise 

such a device. A diagram of a possible design can be seen below in Figure 4-2, of 

which will be used for the development of possible manufacturing processes. 
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Figure 4-2 Proposed layer stack up for Galinstan-microfluidic hybrid circuits 

By using PDMS as a substrate, it gives a surface on which very high-resolution 

structures can be created.  This allows the construction of extremely fine pitch 

fluidic channels.  By filling these channels with Galinstan, flexible and stretchable 

interconnects will be created that are also self-healing [48] as long as the substrate 

and channel encapsulation remain intact.   The suggested layer stack up can be seen 

in Figure 4-2.  This design has been developed in such a way that would allow it to 

be produced using only Roll-to-Roll production methods, thus greatly reducing the 

cost of manufacture.  It also allows the conventional multilayer design 

methodologies that are currently used in PCB design to be used with very little 

modification.  This system design also allows the integration of microfluidic lab-on-

chip systems due to the crossover in design methodologies and manufacturing 

processes also being fully capable of fabrication lab-on-chip systems.  This creates 

the opportunity to integrate lab-on-chip systems, electronics and optics [78] for a 

fully hybridised system and a manufacturing process that allows the creation of 

incredibly dense, low cost systems. 
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Another concept that was investigated was the use of printed traces instead of using 

more complex microfluidic traces.  A major issue with printed traces is their poor 

mechanical properties, which would lead to poor stretchability of the system, unless 

serpentine geometry was used, which is not ideal as it exacerbates the problem of 

relatively poor conductivity in these materials nor provides uniaxial stretching. 

Figure 4-2 shows a proposed layer stack up that would enable the integration of 

various components that can currently be purchased in commercial production 

quantities and some that are not yet available.  The proposed method uses Galinstan 

contained within microfluidic channels to create flexible stretchable interconnects 

between components and sensors.  Due to the liquid state of Galinstan, it would 

allow the creation of interconnects that are both self-healing and totally conformal.  

Investigation needs to be carried out as to its effect on other metals and its electrical 

properties.  These channels could also be used for the transport of biological 

substances to Lab-on-Chip devices to allow for further diagnostics as long as they 

are paired with the relevant collection methods such as micro needle arrays.  These 

channels would be manufactured using Roll-to-Roll hot embossing that would allow 

the creation of incredibly high-resolution channels in order to allow the direct 

connection to modern fine pitch bare die IC components.  In order to create vias or 

sections that penetrate more than one layer, lasers would be required to cut through 

the material, as hot embossing does not possess this capability.  The layers would be 

produced in groups with thin ‘capping’ layers, which could then be easily filled 

without risking damage to the sensitive IC components.  The layers would then be 

bonded together in a stack and the individual devices diced.  By placing the sensitive 

silicon devices within the PDMS substrate instead of placing them on top allows the 

device to stay as close to the neutral axis as possible reducing the stresses on the 

device while creating a sealed unit that has the possibility to be waterproof. 
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4.5 Manufacturing Processes 
The selection of the correct manufacturing process is just as important as the design 

of the system itself.  The processes that will be investigated in this thesis will be 

based around the design detailed in §4.4.  In order to manufacture such a system, a 

few crucial steps would need to be developed.  The creation of thin PDMS films is a 

process that already exists and is currently being worked on by multiple teams all 

over the world [52], [71], [76], [110], [154], Some of these process are able to 

pattern microfluidic channels during the thin sheet manufacturing process, 

however, most of these processes rely on roll-to-roll moulds or chemical etching.  

These processes are costly and unsuitable for rapid prototyping.   The lack of a rapid 

prototyping method for the manufacture of systems can drastically hinder the 

adoption rate of new technologies.  This is an important field to venture into and 

will be the topic of Chapter 5.  

Once the PDMS sheets have been patterned, they will need to be laminated together.  

There are multiple options for creating a bond between two layers of PDMS, 

however, selecting the correct bonding process is crucial to creating a reliable 

system, especially when this bond is required to contain liquid metal conductors.  

This bond needs to maintain homogenous mechanical properties across the device 

under load or risk creating stress raisers that cause delamination.  Additionally the 

available bonding processes take a range of time to take effect, and should therefore 

be selected carefully to keep manufacturing costs low when moving into mass 

production.  The optimal way to investigate this is to simulate a system undergoing 

various deformations using finite element analysis and investigate the required 

bond strength.  This avenue of study is the main body of work in §6, where 

investigations into the required bond strength of laminations will be carried out 

using finite element analysis.   
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5 LASER MACHINING OF 
PDMS TO CREATE 
PREDICTABLE MICROFLUIDIC 
CHANNELS USING A 
CONTINUOUS WAVE CO2 
LASER 

5.1 Introduction 
The research in this chapter was published at the Electronic Components and 

Technology Conference (ECTC) in 2016 by the IEEE [155].  The full paper can be 

seen in Appendix I. 

In order to achieve digital manufacturing of conformal electronics, various 

challenges and bottlenecks need to be overcome with regard to both their design 

and manufacture [156].  To solve this problem this study proposes the use of a CO2 

laser in order to create channels in PDMS for liquid metallic interconnects, which 

can be deformed without inducing fatigue and cracking [92]. 

For the channels to be useful in electronic system design, the manufacturing method 

must be capable of varying channel geometry across the length of the channel.  An 

additional challenge that requires a solution is to include vertical vias that are able 

to form a three dimensional electronic interconnect structure or circuit design 
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[157].  Conventional methods that are used to create these channels for Lab on Chip 

applications normally involve the use of complex lithography, moulding or 

embossing techniques [158], which can introduce problems when creating holes 

directly through the substrate in order to enable vertical interconnects.  One of these 

issues is requiring sacrificial layers in order to create a single component, which 

when scaled can lead to increased costs [159]. 

In this work, several laser based manufacturing methods for creating the channels 

have been investigated for the direct fabrication of microfluidic channels within a 

Polydimethylsiloxane (PDMS) substrate.  The use of lasers as a processing tool 

allows the creation of varied channel sizes in addition to drilling and cutting directly 

through the material all as a digital process that requires little to no tooling.   

This study aims to identify the optimal laser cutting parameters using a continuous 

wave Carbon Dioxide laser for the cutting and engraving of a PDMS substrate.  The 

use of a CW CO2 laser allows the low cost, continuous manufacture of PDMS based 

microfluidic devices with few if any restrictions on channel geometry, while being 

capable of small-scales and high precision.  Various laser parameters such as power 

levels, trace speed and repetitions were tested to narrow down the optimal 

combination in order to create a uniform high-quality cut and surface finish.  This 

has led to a data set that was produced to enable the correct selection of parameters 

when machining PDMS with a CW CO2 laser.  An evaluation of the quality of the 

obtained channels was subsequently carried out using various metrology tools to 

provide a clear understanding of the effects of laser processing parameters on the 

surface finish, depth and geometry of the machined channel in the PDMS substrate.  

It is envisaged that the use of low-cost CW CO2 lasers in both the small-scale 

prototyping and mass manufacture of microfluidic channels on PDMS substrates 

will be viable for scalable three-dimensional manufacturing of wearable electronics.   
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5.2 Aims and Objectives 
PDMS is a material that is often used in the waterproofing and production of various 

electronic devices [78], [160].  As such, the properties of the material are well 

documented, however, its integration with a laser is not.  The aim of this experiment 

is to research the behaviour of PDMS sheet when machined with a continuous wave 

CO2 laser and gain the ability to predict the channel size, shape and finish based upon 

the configuration options chosen for the laser.  This study seeks to find a correlation 

between the finished channel and various laser parameters, as due to the wide range 

of applications in which this could be used, there is not an optimum depth that 

should be targeted, but the ability to select a depth and thus calculate the required 

parameters to achieve it. 

5.3 Methodology 

5.3.1 Sample Preparation 
The chosen material was a derivative of PDMS from Dow Corning, specifically 

Sylgard 184.  This was chosen for its fast cure time and availability in large 

quantities. Sylgard 184 is shipped as a two-part resin, which must be then mixed at 

a recommended ratio of 10:1 (resin to hardener).  Mixing was carried out by hand 

for approximately 3 minutes per 100g of resin. After mixing, it was then placed into 

a vacuum chamber for approximately 15 minutes to degas the mixture, allowing the 

creation of uniform, homogeneous test samples.  Next, 200mm by 200mm float glass 

plates were pre-coated with a soap and water solution and allowed to air dry.  This 

created a thin film allowing for the easy removal of the PDMS sheets after curing.  

The mixed resin was then poured carefully on to the glass plate and a second glass 

plate was placed on top with 2mm thick spacers between and allowed to cure at 

22°C for 48 hours.  The plates were then separated with the assistance of 

compressed air and the sheet of cured PDMS was peeled carefully away from the 

glass. 
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5.3.2 Laser Machining 
The laser used for the patterning of test geometry on the PDMS sheets was a 100W 

Synrad CO2 Marking Laser with an FH Flyer Marking head, also manufactured by 

Synrad.  The laser was configured with a focal point of 300μm and had a 

characteristic wavelength of 10.6μm.  A CO2 laser was chosen due to its ability to 

easily cut the polymer substrate.  Other types such as Nd:YAG and Excimer lasers 

were tested but neither were able to cut the polymer due to incompatible emission 

and absorption spectra or, in the case of the excimer, were too slow to be used in a 

viable continuous production process. The laser is a continuous wave unit that uses 

Pulse Width Modulation to adjust the output power of the laser.  The configuration 

settings exposed to the user include the power output, as a percentage of 100W and 

trace speed, up to a maximum value of 990mm/s.  The movement of the laser is 

controlled by the movement of a small mirror mounted in a fixed position above the 

workpiece.  This allows for high trace speeds and excellent levels of precision; 

however, this setup does limit the viable workpiece size.  Additionally, the beam 

contacting the workpiece will change its angle of incidence depending on the focal 

position rather than being fixed in a perpendicular orientation , as would be the case 

with a bed mounted on a Cartesian plotter head. 

5.3.3 Metrology Techniques 
To quantify the effect of the laser configuration on channel geometry and quality, a 

range of parameters were tested.  These include three power settings (60W, 80W 

100W) in combination with nine speed settings between 250mm/s and 50mm/s in 

25mm/s intervals for comparison and evaluation.  These configuration values are 

summarized in Table 5-1. Each combination of parameters was tested three times 

in order to identify the repeatability of the process.  Eighty-one lines, 20mm in 

length and with 10mm spacing between each line were marked onto the pre-

prepared PDMS substrate.  Once all cuts were made, the samples were diced into 

groups of three lines and washed with isopropyl alcohol, then dried with clean air 
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blasts.  During initial testing, it was found that imaging  and measuring the PDMS 

samples was not possible due to the material’s high clarity in the visible spectrum.  

To overcome this issue, it was found that a surface coating of a Gold-Palladium Alloy 

was required.  This coating was applied using sputtering, allowing the creation of a 

12nm Au-Pd layer to facilitate imaging and surface profiling, which was thin enough 

not to cause any significant changes in measurements.  An example of the images 

produced both before and after the coating was applied can be seen in Figure 5-1.  

The coating allowed increased resolution and reduced the number of zones with 

missing information within the machined channel.  However, due to the 

reflectiveness of the coating, it did create large sections that became over exposed 

on the surface, for which data could not be collected, this was not an issue as it was 

not an area for concern within this investigation. 

Table 5-1 Experimental laser power configurations used 

Laser Power Levels Focal Diameter Trace Speed Energy Output per m2 

100W 

0.3mm 

250 mm/s 1333.33 

225 mm/s 1481.48 

200 mm/s 1666.67 

175 mm/s 1904.76 

150 mm/s 2222.22 

125 mm/s 2666.67 

100 mm/s 3333.33 

75 mm/s 4444.44 

50 mm/s 6666.67 

80W 
250 mm/s 1066.67 

225 mm/s 1185.19 
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Laser Power Levels Focal Diameter Trace Speed Energy Output per m2 

200 mm/s 1333.33 

175 mm/s 1523.81 

150 mm/s 1777.78 

125 mm/s 2133.33 

100 mm/s 2666.67 

75 mm/s 3555.56 

50 mm/s 5333. 33 

60W 

250 mm/s 800.00 

225 mm/s 888.89 

200 mm/s 1000.00 

175 mm/s 1142.86 

150 mm/s 1333.33 

125 mm/s 1600.00 

100 mm/s 2000.00 

75 mm/s 2666.67 

50 mm/s 4000.00 
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Figure 5-1 A) Example image captured of a sample before coating B) Image of the 

same sample after applying a 12nm Au-Pd coating. 

Each of the diced segments were imaged using an Alicona InfiniteFocus with a 10x 

magnification lens, however, the lines cut at 100W 50mm/s-100mm/s were imaged 

with 5x magnification due to their size.  The system was configured to acquire a 

lateral resolution of 3μm and a vertical resolution of 750nm.  Once the data was 

acquired it was imported into MountainsMap7.2 Premium Surface Imaging & 

Metrology Software (Digital Surf, France).  Processing was carried out within the 

software to perform interpolation in order to fill any missing gaps within the 

acquired data and create a three-dimensional depth map of the surface.  An example 

of this interpolation can be seen in Figure 5-2, with b) being an interpolated three-

dimensional model of the surface. 
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Figure 5-2 a) Channel Texture bitmap and b) depth map after gap-fill interpolation 

(Sample 1 - 80W at 100mm/s) 

Field Emission Gun Scanning Electron Microscope (FEGSEM) images were taken of 

a selection of a cross section from some samples in order to observe any changes to 

the material structure and any re-deposition that may have occurred.  These cross 

sections also allowed observation of some of the surface qualities of the channels as 

well as any kind of thermal fracture that may have occurred. A selection of these 

images can be seen in Figure 5-3.  These images include a close up of the entire 

channel as well as some of the artefacts that could be seen occurring around the 

channel itself like in Figure 5-3(b) and Figure 5-3(d). 
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Figure 5-3 FEGSEM Images of two samples, which demonstrate some of the artefacts 

that were left around the channel after processing.  Images a) and b) are from a 100W 

exposure at 50mm/s and demonstrate what appears to be thermal induced fracture 

of the material. Images c) and d) are from a 100W exposure at 75mm/s and clearly 

show re-deposition along the edges of the groove. 

5.3.4 Analytical Techniques 
Depth profile maps were imported into Digital Surf MountainsMap Premium 7.2, 

where the imported data had an interpolation step and then a report generated to 

create a set of graphs and tables that allowed analysis to be completed on the data. 

Channel depth was measured using two methods: i) by calculating the maximum 

depth using every profile across the 1.4mm imaged sample, ii) by using the “Valley 

Depth Tool” which intelligently identifies the bottom of the valley and averages only 
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those points. The latter was preferable to the profile tool, as the deepest part of the 

channel may not always be vertically aligned.  Channel quality was evaluated using 

the upper and lower envelopes of all the profiles (Figure 5-4) and a difference 

calculated at each point as can be seen in Figure 5-5.   

The channel edge shape was identified qualitatively as either having a smooth or 

blunt transition.  An example of smooth transitions can be seen in Figure 5-2 and 

Figure 5-3.  A blunt transition is a sharper transition that has a ridge; edges of this 

type were quite uncommon.   

 

Figure 5-4 Profile curve stack (grey) showing upper and lower envelopes (red) and 

mean (blue) for Sample 1 - 80W at 100mm/s 

 

Figure 5-5 Profile curve range calculated as the difference between upper and lower 

envelopes as seen in Figure 5-4. 

Statistical analysis methods employed to characterise included taking the mean, 

range and standard deviation of each sample repetition.  Initially the data was 
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investigated for outliers and erroneous values, these were classified as any value 

that was 50% greater than the mean of the other two values, therefore the data 

presented is complete. These were then plotted onto various graphs seen in §5.4, for 

critical relationships such as depth vs speed.  Attempts were made to fit a curve 

utilising an exponential curve fit to identify correlation between various laser 

parameters and the properties of the machined groove. Additional statistical data 

was able to be generated for each three-dimensional model from within the 

MountainsMap software, which allowed analysis of the surface quality and texture.  

This enabled the calculation of  the following datapoints; 

• The mean peak height (Rc) as defined by Equation (5-1 where n= number of 

samples and Zt= height between valley and proceeding peak. 

𝐑𝐜 =
𝟏
𝒏 ∑ 𝐙𝐭𝒋

𝒏

𝐣=𝟏

  (5-1) 

• Arithmetical mean deviation of the mean height, which is a measure of the 

arithmetical average value of the departure of the profile above and below 

the centre line throughout the sample (Ra) as defined by Equation  (5-2. 

Where n = number of samples and y=deviation from the centre line. 

𝐑𝐚 =
𝟏
𝒏 ∑|𝒚𝒊|

𝒏

𝒊=𝟏

  (5-2) 

• Number of peaks per mm (RPc) are the number of peaks that extend above a 

predetermined centre line. 

5.4 Results and Discussion 
The results can be divided into two categories, channel profile shape and surface 

finish.  Profile shape covers the channel geometry such as channel depth, channel 
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quality, slope angle and edge transition type.  Surface finish covers the waviness and 

surface roughness of the channel. 

 

Figure 5-6 Depth vs Speed at the mean maximum profile depth.  Coloured bands 

represent variance in measurement across samples, solid line represents fitted 

average 
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Figure 5-7 Depth vs Speed using Valley Depth Tool. Coloured bands represent 

variance in measurement across samples, solid line represents fitted average 

5.4.1 Channel Profile 
Data for the channel depth displayed in Figure 5-6 and Figure 5-7.  It can be seen 

that when the cut was made using 100W power at speeds below 125mm/s the depth 

did not increase as expected.  The expected result was that as the power level 

increases the channel depth increases and as the trace speed decreases, the channel 

depth increases as well.  This therefore means that the 100W channels traced at 

50mm/s should be the deepest channels.  It was seen in the depth maps that the 

shape of the groove no longer followed the Gaussian profile as all the other lines did 

in addition to being much wider.  This can possibly be attributed to the increased 

energy, a higher energy input concentration and longer exposure time, thus creating 

a larger heat affected zone which may possibly be recasting the burnt, ejected mass.  
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Another possibility is when the material is burnt, boiled or vaporized, due to the 

high energy levels involved, there is a possibility the ejected mass is obstructing the 

beam and absorbing a significant portion of the energy from the laser.  During the 

experimentation and the cutting of the channels, large amounts of burnt material 

were observed being ejected from the material and being blown around the 

containment vessel of the laser.  Figure 5-8 shows schematically the process which 

material goes through as it is being exposed to a laser beam.   

 

Figure 5-8 The schematic model of the formation of bulges and the material ejection 

process during polymer machining by laser [161] 

The material is ejected by the rapid expansion of high temperature vaporized and 

molten material.  This caused the material to be recast along the edges, which is 

visible Figure 5-3(d).  This would also explain why the repeatability and quality of 

the channel is drastically reduced.  These hypotheses will need to be investigated, 

further incorporating SEM imagery and high-speed imaging of the process itself.  

Investigation of the material structure within the groove can then be carried out in 

addition to observing the behaviour of ejected mass.   The observed behaviour 

however, does indicate a loss of control of the process at higher energy levels.  A loss 
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of control is evident when the dramatic increase in maximum variance with respect 

to the channel depth, as seen in Figure 5-9, was investigated in addition to energy 

level.  The ribbon plots in Figure 5-6 and Figure 5-7 demonstrate that as laser power 

increases the variation in depth increases as repeatability decreases, regardless of 

trace speed or overall cut depth.   

Besides this observation, the data had R2 values of between 0.926 and 0.997 

indicating an extremely strong correlation between trace speed and channel depth. 

The channel quality can be quantified using the variance graph produced for each 

sample as seen in Figure 5-4.  These values were then plotted in Figure 5-9.  It can 

be seen that above 125mm/s there is no major relationship between speed, power 

and channel quality.  However, as the amount of energy input into the material 

increases and the exposure time is extended, the channel quality is further reduced 

evidenced by Figure 5-9. It shows a strong negative correlation between both trace 

speed and variance.  Some of this increase can be attributed to the increased channel 

depth, however, the same trend still exists when running this comparison with the 

variance as a percentage of the channel depth. 

Due to the configuration of the laser, the slope angles produced are largely 

dependent on the incidence of the beam.  The laser used a scanning head 

configuration, which uses an articulated mirror to redirect the beam.  This means 

that the incidence angle between the beam and material surface changes as the 

beam follows its programmed cutting paths [162].  This angle is, at its maximum will 

be approximately 10° away from vertical.  This angle is not enough to cause any 

noticeable effect to the depth as seen in the relatively consistent depths achieved 

across multiple samples.  It will however affect the slope angle of the grooves.  The 

advantage of using a scanning head such as this is the ability to achieve much higher 

trace speeds than a conventional Cartesian bed laser.  In addition to higher trace 

speeds, scanning heads are less affected by speed ramping due to the much lower 
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mass and thus the inertial effects generated during acceleration and deceleration of 

the laser when compared to an equivalent Cartesian bed system. 

Two types of edge transition exist within the scope of this experiment, smooth and 

blunt.  A blunt transition is defined as having a sharp drop-off from the surface to 

the bottom of the channel.  This drop off will have a width that is narrower than the 

overall depth of the channel.  A smooth transition is one that is wider than the depth.  

It was found that there was no correlation between transition type and either power 

or speed.  The link between the power and transition produced a spearman 

coefficient of 0.068, and for the speed and transition link a value of -0.582.  This 

shows there is a modest correlation between speed and the likelihood of a specific 

transition occurring, however it is far from a strong link.  The transition depth is 

more likely affected by the angle of incidence, for which the laser interacts with the 

material; this was not a controlled variable for this experiment. This is due to the 

way a scanning head operates. 
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Figure 5-9 Speed vs Max Variance of the channel. Key: Blue = 100W, Red = 80W, 

Green = 60W.  

5.4.2 Material Integrity 
It can be seen in Figure 5-3(b) that cracking has occurred at the bottom of the 

channel likely due to the high thermal stresses induced within the material.  These 

stresses are caused by the extremely rapid temperature rise and steep thermal 

gradient between the areas of material exposed to the laser and the immediate 

surrounding areas, both on the surface and below the penetration depth of the beam.  

As of yet it is unknown if this structure of cracks which are less than 200nm in width 

will have an effect on the surface wettability with Galinstan or more importantly 

absorb the fluid and allow penetration of the fluid into the material.  This cracking 

only occurred at higher levels or relative energy deposition that occurred at over 

5000J/m2. This result matches the hypothesis of these fissures being caused by high 

thermal stresses and possibly rapid thermal expansion as material is vaporised and 

ejected from the groove.  Further exploration into this phenomenon could be carried 
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out by investigating if crack presence is directly corelated to the density of the 

energy deposited and its rate.  An investigation into this behaviour could be 

performed by varying focus size, power and trace speed. 

  

5.4.3 Surface Finish 
Surface texture is a significant part of overall surface finish and can be quantified 

using various metrics that are defined by various standards, specifically BS EN ISO 

4287 [163].  From this standard, a specific set of metrics can quantifiably allow the 

comparison of a set of surfaces.  These indicators are Mean Peak Height (Rc), 

Arithmetical Mean Deviation (Ra) and the number of peaks per millimetre (RPc).  

The use of these metrics defines the height and frequency of peaks and troughs on 

the surface as well as defining their deviation from the maximum value.  A typical 

report generated by Mountains Map from each depth map as seen in Figure 5-10, 

can be created and plots of these values from the samples can be seen in Figure 10.  

The only drawback to using these values is that they can only be generated for a 

single profile extracted from the three-dimensional depth maps.  Each profile was 

selected from the deepest part of the channel. 
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Figure 5-10 Surface maps of samples used to investigate surface finish a) 60W at 

50mm/s b) 60W at 250mm/s c) 80W at 50mm/s d) 80W at 250mm/s e) 100W at 

50mm/s f) 100W at 250mm/s (All scales are in µm) 

It can be seen from Figure 5-11(a) that Mean Peak height appears to be affected by 

the amount of power input into the material but not by the trace speed.  However, 

the 80W power output appeared to generate the smoothest channels with the 

lowest overall mean peak heights. However when this value is paired with the mean 

deviation shown in Figure 5-11(b), this relationship becomes far less significant as 

there is a discernible relationship between power and the deviation of peak height.  

There is however, a correlation between the deviation and trace speed (R2 = -

0.581), with higher trace speeds producing a more even and nominal channel 

surface.  This is likely due to shorter exposure times to the laser and thus reducing 

the thermal stresses on the material and resulting in less thermal fracture and 

additional burning, where the material does not have the required energy to be 
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ejected from the exposed zone.  As for the number of peaks that appear over the 

measured length, there is no correlation to trace speed or power, which is apparent 

when the R2 values of -0.011 and -0.116 are examined.  This can clearly be seen in 

the chaotic nature of Figure 5-11(c).  This is very likely due to the chaotic and violent 

nature of the burning and vaporization process that occurs within the laser’s focal 

point on the surface. 

Based on the results obtained in this experiment, it can be seen that between 

125mm/s and 175mm/s would seem to be an optimum trace speed, balancing both 

surface finish and repeatability across all power levels tested.  This is likely due to 

providing material sufficient energy to be ejected from the groove cleanly.  Depth 

adjustment should therefore be carried out by varying laser power rather than trace 

speed. 
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Figure 5-11 Data extracted from each sample surface profile report presented above. 

a) Mean peak height (Rc) vs trace speed. b) Arithmetical mean deviation of the mean 

height (Ra) vs trace speed. c) Average number of peaks per mm (RPc) vs trace speed. 

a

) 

b

) 

c) 
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5.5 Conclusion 
From the results obtained, it can be seen there is a strong correlation among laser 

power, trace speed and channel depth.  However, increases in power can negatively 

affect the channel quality and consistency of geometry.  Therefore the channels 

created are less repeatable and have increased variability across their length; 

making higher laser powers unsuitable for the manufacture of Galinstan carrying 

channels as it could create current bottlenecks by increasing the electrical resistance 

in localised regions.  An example of this inconsistent channel width can be seen in 

Figure 5-10(e), where inconsistent geometries tended to be more prevalent at 

higher energy deposition rates, such as when speeds were below 100mm/s and 

above 80W  In addition to higher power levels alone negatively affecting channel 

quality, lower trace speeds also had this effect, therefore this can be directly 

correlated to power density.   

Based on the results obtained in this study, there are limitations on channel 

dimensions as, in order to create deeper channels, repeatability and channel quality 

would need to be sacrificed.  Additionally a limitation of the laser process used 

resulted in asymmetric channel geometries as seen in Figure 5-10(b) in some cases 

due to the changing angle of incidence of the beam.  This caused changes in the 

amount of light absorbed and reflected by the material which resulted in an 

asymmetric  cross section, and could negatively affect interconnects and lamination 

during deformation of a device.  This could create pressure concentrations and could 

lead to delamination and leaks of liquid metal under bending and compression. 

An ideal channel for use in flexible electronics would be to have sharp edges to allow 

for a good bond when laminating layers of PDMS together.  The processes 

investigated within this study were not able to achieve this reliably, and thus would 

not be suitable for production of flexible, stretchable systems.  They may however 

still be viable for small scale prototyping though.  A possible solution to this problem 

would be to add a temporary sacrificial laminate to the top surface of the film, 
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allowing the channel to be truncated and thus achieve the required geometry.  This 

would require further investigation into the required thickness of the sacrificial 

laminate in conjunction with required laser parameters. 

This study was unable to quantify the absorption spectra when plotted against angle 

of incidence of the material over a range of temperatures.  This greatly effects the 

final channel geometry due to the changes in the amount of power the material is 

able to absorb.  This is an important phenomenon that will need to be included in 

any models that are able to predict both channel geometry and surface finish. 

Further testing of the channel surface, with respect to its interaction with the fluid 

Galinstan, is required in order to investigate how the material flows through and 

wets to the machined channel wall surface.  It is highly likely a cleaning process will 

be required to remove debris left over from the laser patterning in order to improve 

wettability of the surface as this will greatly affect the filling processes and pressures 

required.   
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6 SIMULATING THE 
DEFORMATION OF 
GALINSTAN BASED 
INTERCONNECTS WITH 
PDMS SUBSTRATES 

6.1 Introduction 
Within this chapter, an investigation into the viability of a laminate-based design for 

flexible, stretchable electronics is carried out.  By using a laminated design process, 

manufacturability of the system is drastically improved over other processes; 

however, it does introduce a unique set of problems.  The first of these is the 

required bond strength between layers; lamination methods have various 

techniques to bond the PDMS films, each with their own distinct advantages and 

disadvantages.  Knowledge of the required bond strength allows the selection of the 

correct bonding process.  The second issue concerns the continuity of fluid within a 

laminated structure during deformation.  The use of Galinstan as an interconnect 

material allows the flexing and stretching of the substrate material without the fear 

of a permanent break in a trace, as long as the substrate can withstand the 

deformation.  Once the force on the material is released and thus the deformation is 

removed, the fluid should refill its original space.  However, understanding the fluid 

behaviour within the trace and at what point the trace continuity will fail, is an 

important aspect of being able to create a viable system, even if this failure is 
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temporary.  The use of FEA allows for detailed investigation of the forces applied to 

the internal lamination bonds within the system assisting in the selection of the 

correct bonding technique. FE modelling of experimental models allows for fast 

iteration and insight into mechanical behaviours during deformation that would not 

be possible with physical experimentation.  The process of developing and solving 

an FE model can be broken down into a selection of discrete tasks which can be seen 

in Figure 6-1 which can be used to guide the research carried out in this chapter. 

 

Figure 6-1 Finite Element Analysis Systems Diagram of FE components 

6.2 Aims and Objectives 
The overarching aim of this study is to identify the optimum bonding technique for 

laminating layers of PDMS that could be used as part of a conformal electronic 

system in addition to verifying that an embedded silicon IC would not fracture under 
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potential deformation.  In order to achieve these aims, the following objectives will 

need to be accomplished. 

1. Construct simulation models for a PDMS-Galinstan laminate assembly 

2. Quantify the various bond strengths required within the lamination stack 

and select a suitable bond process 

3. Develop an understanding of the forces experienced by an embedded silicon 

die within a laminated structure. 

In order to evaluate the plausibility of the overall system design two conditions 

would need to be met.  The first is that an embedded silicon die would not fracture 

during a range of possible deformations, which would require the measured Von-

Mises stress to remain below the ultimate yield stress of silicon.  A major limitation 

of this evaluation criteria is that it will not identify any failures of etched 

components or traces on the die itself.  Due to the unique design of various dies, it is 

not plausible to attempt to model them and investigate this failure mode and would 

have to be validated experimentally.   

6.3 Modelling Parameters 
In order to solve complex three-dimensional deformation problems, the use of finite 

element analysis software is required.  Of the options available, Ansys Workbench 

19.2 (Ansys Inc., Canonsburg, Pennsylvania, USA) was chosen due to its flexibility, 

ease of use and powerful analysis capabilities.  The real world is complex and 

intricate, requiring infinite computation power to solve perfectly, therefore certain 

simplifications were made.  These simplifications and assumptions were chosen to 

reduce the required compute power, to reduce experimental complexity, distilling 

the problem to its fundamental components. 

6.3.1 Selection of Solver Methods 
Finite Element modelling techniques have been used extensively to model the 

behaviour of both rigid and flexible systems [146], [164], [165].  It allows the fast 
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iteration of designs to be “manufactured” and tested digitally at low cost, enabling 

researchers to target their efforts towards an optimal design for physical 

experimentation and validation.  The software selected for this purpose was Ansys 

Workbench 19.2 (Ansys Inc., Canonsburg, Pennsylvania, USA) due to its powerful 

processing and analysis capability and its use by researchers investigating soft 

polymer deformations [164], [166].  Ansys Workbench is separated into a set of 

distinct modules.  The most appropriate module to solve the problems detailed 

above is Ansys Mechanical which is designed to solve various structural analysis 

problems.  Within Ansys Mechanical, structural problems can be computed using a 

range of solving methods which are as follows: 

• Static Structural 

• Transient Structural 

• Explicit Dynamics 

• Rigid Dynamics 

• Modal 

Each of these solvers have been designed for a specific set of problem types and have 

various strengths and weaknesses that must be balanced to optimise accuracy 

against the required compute time for each problem.  Of the solvers listed, the static 

structural, transient structural and explicit dynamics solvers will be investigated 

further as they are applicable in solving the presented problem.  The rigid dynamics 

solver is normally applied to problems that do not account for any kind of soft body 

and is designed to solve for behaviours in mechanical systems.  The modal solver is 

used to identify modal vibration frequencies within a constrained model, which is 

outside the scope of this research. 

6.3.1.1 Static Structural 

A static structural analysis calculates the stresses, strains, and forces involved 

within structures induced by a load that does not induce any significant inertia or 

damping effects. Some conditions are required such as a steady state load and 
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response. The static structural solver is capable of the following types of loading 

[167]: 

• Externally applied forces and pressures 

• Steady-state inertial forces (such as gravity or rotational velocity) 

• Imposed (non-zero) displacements 

• Temperatures (for thermal strain) 

Static Structural models the deformation as a set of static equilibrium equations that 

need to be solved at every increment before it can move on to the next step.  When 

presented with a non-linear problem, Ansys Static Structural uses Newton-Raphson 

equations to approximate and determine a solution incrementally.  Ansys Static 

Structural however, is not ideal for computing complex time dependant responses, 

such as impact and dynamic contact mechanics.  These problems normally induce 

non-linear material behaviour, large element deformation which require the 

number of iterations required to solve the problem to increase drastically [168].  For 

Ansys to solve all the conditions within the problem, it must iterate through every 

node and check they are satisfied.  The problems being investigated utilise slow 

moving forces and relatively low strain rates, so therefore fall within the confines of 

static structural solvers.  However, if Ansys is unable to satisfy every node, 

convergence will not occur, which will result in the simulation returning no results 

and defining the problem as impossible to solve [169].  This could therefore result 

in limitations to the amount of deformation that can be applied to the PDMS 

substrate. 

6.3.1.2 Transient Structural 

By definition, transient analysis involves loads that are a function of time. A 

transient analysis can be performed on rigid assemblies and flexible structures. 

Transient structural analyses use the ANSYS Mechanical APDL solver, which can 

calculate the dynamic response of the structure under test and any general time-

dependent load. It can be used to determine strains, stresses, and forces as well as 
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time-varying displacements in an assembly or structure during response to 

transient loads. Loading time scales are such that inertia and damping effects are 

considered during calculations. If inertia and damping effects are not important, it 

may be possible to perform a static analysis instead.  Due to the way in which 

simulations will be setup, inertial and damping effects are negligible and thus not 

important to creating an accurate model. 

The solver is designed for long duration problems, whereby they are broken into 

multiple steady state problems, which are then added together to calculate 

displacement, stress, strain and forces over time [167].  It therefore functions almost 

identically to Static Structural, however it does come at the expense of a longer 

compute time due to the additional problems that require solving.  This would still 

fail to converge on large element distortions and thus limiting the rate and amount 

of deformation that can be applied to the PDMS. 

6.3.1.3 Explicit Dynamics 

The Explicit Dynamics solver is a transient explicit dynamics module that can 

perform a variety of engineering simulations, including the modelling of nonlinear 

dynamic behaviour of solids, fluids, gases and their interaction [167].  Ansys Explicit 

Dynamics solver utilises wave propagation theory, allowing the use of deformable 

bodies in conjunction with rigid models.   Resolution of the equilibrium equations at 

each step, as required by Ansys’ Transient and Static Structure solvers is not 

necessary when using the explicit solver.  The stiffness matrix is modified using 

geometry and material changes at the end of each step by advancing the kinematic 

state from the previous step without any iteration. Accelerations and velocities are 

assumed to be constant during each discrete time step and are used to solve the next 

increment in the sequence.  This makes it especially useful for problems involving 

high speed impacts and applications of forces, which are not applicable to the 

problem presented here as loads are to be applied slowly to avoid the rate 

dependant properties of the materials and simplify the problem. 
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The Explicit solver may use more calculations to carry out this analysis; however, 

each calculation is relatively inexpensive computationally.  In order for explicit 

analysis to be accurate, a large number of increments, of a sufficiently small size 

need to be used; however, if there are too many increments the time taken to solve 

them could be excessive.  Explicit solutions are not always stable, as they need to 

meet certain conditions, such as the stable time increment, which is defined, as “the 

minimum time required that a dilatational wave takes to move across any element 

in the mesh” [170].  This often leads to simulations being more computationally 

intensive overall, as the reduction in expense for a single calculation is outweighed 

by the overall increase in calculations required when compared to static or transient 

structural solvers. 

6.3.1.4 Solver Selection 

By weighing up the strengths and weaknesses of each solver method, it was decided 

that the Static Structural would be best suited to solve the problems encountered 

within the scope of this paper.  However, when adding internal fluid elements to the 

simulations, the Static Structural solver would not be able to take the additional fluid 

pressure changes over time into account.  For this reason, any simulation that 

required the use of an internal fluid would be solved using the transient analysis 

method.  Both the static and transient methods use the same underlying solver, but 

applied slightly differently to accomplish their goals, however when compared to 

the Explicit solver, compute times were shown to take less than ten percent of the 

time as can be seen in Figure 6-2.  These values were generated by creating a simple 

representative model and running this same model through each solver. 



Chapter 6: Simulating the deformation of Galinstan based interconnects with PDMS substrates 

 

 

Jonathan Flowers - July 2019   111 

 

 

 

Figure 6-2 Mean time taken to compute a solution for various problem types using the 

viable solver methods.  All values are presented as a multiple of the time taken to solve 

the problem using the static structural solver.  A shorter bar is representative of a 

faster mean solve time.  

6.3.2 Geometries and Meshing 
When designing the geometry to be simulated, it must be kept in mind that physical 

verification of these digital models can be quite challenging.  In order to overcome 

this issue, the geometries chosen need to be larger than would be used in mass 

manufacture.  This improves the ease at which the results of the simulations can be 

verified.   

The overall geometry chosen was to use a square block with rounded corners as 

seen in Figure 6-3.  The use of a large block was chosen to allow it to be gripped by 

various rigs during verification stages.  Internally it is able to contain various 

channel structures in varying positions to allow accentuated testing of the channels 

at an increased scale.  This larger scale creates the opportunity for easier optical 
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monitoring of the deformation of the system in addition to improved 

manufacturability.  A length of 150mm was chosen as it allowed ample space for the 

model to be gripped or clamped during validation, without affecting the test area 

towards the middle of the piece.  This large geometry was chosen due to limitations 

of the materials characterisation tools. When validation of models is carried out, 

load cells that are immediately available within the department can be used in 

testing. 

 

Figure 6-3 Test sample geometry 

When creating models within most finite element packages, the geometry must be 

subdivided into a mesh.  This mesh is a polyhedral approximation of the part which 

enables mathematical modelling to be carried out on the part. Where possible, it was 

attempted to keep meshes orthogonal to the part and maintain hex element types 

allowing for a more uniform mesh. However, due to some of the complexities of the 

geometry, sections of the model used tetrahedral elements. 

In order to properly mesh the components, a variety of meshing methods and 

refinements were used.  Most sections utilised edge meshing with a fixed number of 

divisions per edge.  This combined with the use of face meshing allowed for the 

creation of an even hexahedral mesh across all samples.  Rigid body surfaces solely 
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utilised face meshing in order to achieve an even mesh.  An example of how these 

edge divisions were used can be seen in Figure 6-4. 

 

Figure 6-4 Edge divisions used to create a precise and even mesh 

Care must be taken when meshing the model to prevent various instabilities within 

the simulations.  One such instability can often occur during large deformations if 

the chosen mesh is not dense enough. Hourglassing is an instability within the mesh 

that can cause inaccuracies throughout result outputs and can be seen in Figure 6-5.  

It occurs when the strain or position changes are not applied to a single integration 

point, deforming an element into a trapezoid shape.  This effect can be alleviated 

with the use of a denser mesh by having at least four elements through the thickness 

of the section.  An example of this four-element solution can be seen in Figure 6-5. 
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Figure 6-5 (Top) Demonstration of hourglassing effect when compared to a denser 

mesh with no instability (Bottom).  Both models were subject to the same constraints 

and deformations [171] 

Ansys has over 160 element types to enable accurate and efficient simulation of a 

variety of problems.  They can be separated into two-dimensional and three-

dimensional elements and then within that, they are grouped into sets that each 

have specific use cases and advantages.  However, increases in accuracy normally 

come at the cost of increased compute time. Looking at the type of problem and the 

geometry to be simulated indicates that the best element type would be solid 

elements for the PDMS and silicon components.  In order to simulate the contained 

Galinstan fluid, some kind of fluid element would need to be used, which grants the 

choice of either standard fluid or hydrostatic fluid elements, depending on how the 

problem is to be modelled and the available compute time. 
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Each element within this mesh must then be assigned a type.  Ansys has a wide range 

of element types that each solve a different set of problems.  Every element will be 

associated with a ‘Family’.  This allows mathematical differentiation between shells, 

membranes, rigid and other problem types.  In order to do this, elements will also 

have different numbers of nodes and have a different element shape with one of two 

geometric orders, linear or quadratic approximation.  The way FE simulation works 

can lead to compounded errors along the model, especially if the solution for the 

parameters is sufficiently smooth.  A higher order approximation can improve this 

and is preferable to a linear geometric order.  

Ansys has an integrated recommendation algorithm that will select an element type 

that it suggests will be optimal for the problem being solved. It is possible to 

override the selection that Ansys makes using an ADPL Command, however, in all 

cases used, Ansys selected the desired element type automatically.   

For the PDMS components, Ansys automated recommendation engine selected the 

SOLID187 element type, which is well suited to non-linear, hyperplastic materials, 

unless they are fully incompressible, which is applicable to the applications and 

material types being used here.   

 

Figure 6-6 SOLID187 Element Geometry [172]  
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The element types that were selected for use by using Ansys’ recommendation 

engine for the anisotropic silicon components were SOLID186 elements.  These are 

3-D 20-Node Structural Solid elements, with an option to interchange between a 

homogeneous and layered type by toggling KEYOPT(3).  This option was disabled in 

order to simulate a homogeneous solid material.  The diagram of this element type 

can be seen in Figure 6-7. 

 

Figure 6-7 SOLID186 - 3-D 20-Node Homogeneous Structural Solid Geometry [173] 

Given that PDMS is a rubber material with a near incompressible response, the use 

of reduced integration was employed to help reduce volume and shear locking 

issues.  Volume locking may occur where the requirement for an element to have no 

change in volume causes an over-constraint on the displacement field.  This can 

result in the mesh artificially becoming far stiffer than it should [174].  Shear locking 

is seen in elements that are exposed to bending, where integration points can be 

subject to nonphysical shear strains because the element undergoes shear rather 

than bending due to the element composition, also creating an artificially stiff mesh 

[175]. 

In order to simulate the internal Galinstan filled components, it was decided that the 

combination of Ansys Computational Fluid Dynamics modules to solve the internal 

fluid problems was not required due to the increased complexity that comes with 
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combining multiple problem types, which drastically increases the compute power 

required to solve the problems.  Due to the way the problem is defined, a set of 

assumptions can be made to drastically simplify the way the fluid is modelled.  

Instead of modelling the Galinstan as a discrete fluid encapsulated within the PDMS 

structure, it could be modelled as a contained hydrostatic fluid.  The downfall of this 

method is that it would not display any leaks or be able to display any air that could 

possibly enter the channel during failure, however it does allow for a large reduction 

in the required compute time to solve the problem.  The process required to create 

a 3D hydrostatic, contained fluid within a solid mesh required the use of Ansys’ 

ADPL Commands which can be seen in Figure 9-1.  This command lined the specified 

faces with a set of secondary surfaces which were then assigned the HSFLD242 

element type, as seen in Figure 6-8, which is specifically designed for the simulation 

of three-dimensional hydrostatic fluids.  This element type is well suited for the 

calculation of fluid volume and pressure especially for coupled problems involving 

solid-fluid interaction. Fluid pressure within the volume is assumed to be uniform 

throughout and is therefore unable to apply pressure gradients, which in turn, is 

unable to simulate sloshing effects. Both temperature and compressibility effects 

may be included but were not utilised in this case and fluid viscosity cannot be 

applied to this element type. 
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Figure 6-8 HSFLD242 - 3-D Hydrostatic Fluid Element Geometry [176] 

An example of the mesh used to model the problems can be seen in Figure 6-9.  

Limitations on a mesh density were artificial in nature, being applied by ANSYS 

licenses rather than a technical requirement [177].  Thus, the number of elements 

for the PDMS block was set at approximately 21,000 elements, allowing room for 

meshing of other objects within the simulation. 

 

Figure 6-9 Example of meshing on three-point bend test model 

6.3.3 Material Models 
The mechanical behaviour of objects within finite element analysis are described 

mathematically using various material modelling techniques.  PDMS would 

normally be modelled as a hyperelastic or viscoelastic material due to its nonlinear 

response.  The Mooney-Rivlin, Neo-Hookean and Ogden models were evaluated and 

compared with a standard elastic model.  In all cased below, W = strain-energy 

function per unit undeformed volume. 
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Mooney-Rivlin: 
W =  𝑐10(𝐼1̅ − 3) + 𝑐01(𝐼2̅ − 3)

+ 𝑐11(𝐼1̅ − 3)(𝐼2̅ − 3) +
1
𝑑

(𝐽 − 1)2 
(6-1) 

Where 𝒄𝟏𝟎, 𝒄𝟎𝟏 𝒂𝒏𝒅 𝒄𝟏𝟏  are empirically determined material constants, 𝑑  = 

material incompressibility parameter,  I1, and I2, = invariants of components of 

the right Cauchy-Green deformation tensor and J is the ratio of the deformed 

elastic volume over the reference (undeformed) volume of materials. 

Neo-Hooke: W =  
𝜇
2

(𝐼1̅ − 3) +
1
𝑑

(𝐽 − 1)2 (6-2) 

Where μ = initial shear modulus of material. 

Ogden: 

W =  ∑
𝜇𝑖

𝛼𝑖
(�̅�1

𝛼𝑖 + �̅�2
𝛼𝑖 + �̅�3

𝛼𝑖 − 3)
𝑵

𝒊=1

+ ∑
1

𝑑𝑘
(𝐽 − 1)2𝑘

𝑁

𝑘=1

 

(6-3) 

In the Ogden model W expressed in terms of the principal stretches 𝜆𝑗 = 

stretches of the left Cauchy-Green tensor.  Where 𝑁, 𝜇𝑖, 𝛼𝑖, 𝑑𝑘 are all material 

constants.  Where J = determinant of the elastic deformation gradient 

The material values for the hyperelastic model were sourced from research carried 

out by Payne [178] and used a material model that was developed to represent 

human skin.  Due to the intended applications for devices utilising the technologies 

researched here, it was logical to ensure materials would be able to conform to the 

deformations of human skin.  The material properties used for the purely elastic 

model of PDMS can be seen below in Table 6-1.  This simplification is possible due 

to the low rate of strain and thus reducing the hyperelastic effects to negligible 

levels. 
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Table 6-1 Parameters used to model PDMS material models using a purely elastic 

response [178] 

Variable Value 

Density 965 𝑘𝑔
𝑚3⁄  

Young’s Modulus 1.32 × 107𝑃𝑎 

Poisson’s Ratio 0.499 

 

For situations where Galinstan was present, the use of a three-dimensional fluid 

hydrostatic element type meant that the only required property for Galinstan was 

density, the value used was 6440 𝑘𝑔 𝑚3⁄ .  This greatly simplifies the material model 

required, as it is not possible to assign viscosity to the HSFLD242 element type. 

The material used within the models was one that was required to represent 

discrete components that are normally manufactured on silicon substrates.  Due to 

the complex nature of these parts and their small-scale manufacture, they were 

modelled as a 5mm x 5mm x 1mm block and is assumed to be a bare silicon wafer 

material. The molecular structure of crystalline silicon means that it cannot be 

modelled as an isotropic material and must be modelled as an anisotropic material 

instead.  Therefore, Miller indices must be considered to model the material 

properties of the cubic crystal structure, an example of the notation and structure 

can be seen in Figure 6-10.  The material properties used to generate this model can 

be seen in Table 6-2, Table 6-3 and Table 6-4. 
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Figure 6-10 Illustration of the silicon structure and Miller Index notation [179] 

Ansys comes with an integrated material library from Granta Design [180].  This 

includes an anisotropic silicon material model with the following properties.  By 

using these integrated material libraries, the time taken to develop the model was 

drastically reduced. 

 

Table 6-2 Material properties used for anisotropic model of silicon [180] 

Property Value 

Density 2330 𝑘𝑔 𝑚3⁄  

Isotropic Secant Coefficient of Thermal 

Expansion 
Tabular – See Table 6-3 

Zero Thermal Strain Relief 

Temperature 
22°𝐶 

Anisotropic Elasticity Tabular – See Table 6-4 

Isotropic Thermal Conductivity 124 𝑊 𝑚 𝐶⁄  

Specific Heat 𝐶𝜌 702 𝐽 𝑘𝑔 𝐶⁄  
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Table 6-3 Coefficient of Thermal Expansion for Anisotropic Silicon [180] 

Temperature (ºC) 
Coefficient of Thermal Expansion 

(º𝑪−𝟏) 

20 2.46 × 10−6 

250 3.61 × 10−6 

500 4.15 × 10−6 

1000 4.44 × 10−6 

1500 4.44 × 10−6 

 

Table 6-4 Anisotropic Elasticity of Silicon Material Model [180] 

 
D[*,1] 

(MPa) 

D[*,2] 

(MPa) 

D[*,3] 

(MPa) 

D[*,4] 

(MPa) 

D[*,5] 

(MPa) 

D[*,6] 

(MPa) 

1 
1.66

× 105 
     

2 64,000 
1.66

× 105 
    

3 64,000 64,000 
1.66

× 105 
   

4 0 0 0 80,000   

5 0 0 0 0 80,000  

6 0 0 0 0 0 80,000 
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The final material used was structural steel which was again included in Ansys’ 

material models from Granta Design.  This material was only used for tools used to 

apply forces during certain tests.  For this reason, the properties themselves are not 

vastly important, only that it is significantly harder and stiffer than the PDMS it is 

applying a deformation to.  The properties for structural steel can be seen in Table 

6-5. 

Table 6-5 Overview of crucial material properties for Structural Steel [180] 

Property Value 

Density 7850 𝑘𝑔 𝑚3⁄  

Young’s Modulus 2 × 1011𝑃𝑎 

Poisson’s Ratio 0.3 

Bulk Modulus 1.6667 × 1011𝑃𝑎 

Shear Modulus 7.6293 × 1010𝑃𝑎 

6.3.4 Boundary Conditions 
Each simulation requires a different selection of boundary conditions and will be 

discussed within the following simulation sections.  A common thread throughout 

all simulations was the rate of load.  Each application of force or displacement 

occurred at rate of 1mm/s to 3mm/s leading to each time step being allocated 

between 10 seconds and 15 seconds.  This low rate was chosen to enable the 

simplification of material models, reducing the effects of hyper elasticity to 

negligible levels and enabling the use of purely elastic material models for all 

components. 

6.3.4.1 Contact Boundary Conditions 

For each of the models, some versions contained additional internal components to 

simulate the inclusion of large silicon dies, which in turn required contact conditions 
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to interact with the PDMS.  The relationship between the two surfaces was defined 

as being a bonded interaction.  This means that the parts cannot separate or incur a 

gap during deformation, nor can they slide against each other.  This allows the 

simulation of a perfect bond, which the reaction force required to maintain the bond 

can be measured and to then select the correct bonding technique during 

manufacturing. 

For the laminated versions of the models, again the relationship between the two 

surfaces was defined as a bonded interaction.  This allowed the force between the 

two surfaces to be measured during the applied deformation to the workpiece and 

the required bond strength to be calculated using both a pressure measurement and 

force probe of the surface.  Based on research carried out by Kersey, Ebacher et al 
[181] the bond strength between PDMS and Silicon, if properly prepared without a 

primer, is capable of withstanding approximately 468kPa (± 128 kPa), so therefore 

applied pressures must not exceed this value to prevent delamination between the 

PDMS and silicon die.  

Contacts between clamping surfaces and the device under test are all modelled as 

frictionless.  With good experimental design this can get close to realistic values 

through the use of lubrication, thus reducing frictional effects to negligible levels; 

having little effect on the final result. 

6.3.4.2 Hydrostatic Fluid Containment Conditions 

In order to simulate the presence of Galinstan within the channels in the model, an 

assumption was made that there would be no fluid flow within the channel, 

therefore, the Galinstan fluid could be modelled as a hydrostatic fluid.  By making 

this assumption, it was not necessary to create a hybrid fluid-solid model, that 

although modern packages such as ANSYS are able to do, places an incredibly large 

computational requirement on the problem.  Therefore, it was decided to use a 

combination of hydrostatic elements and an initial hydrostatic pressure.  The 

hydrostatic body parameters that were used can be seen below in .  Due to the low 
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stresses and forces involved, it was acceptable to model the Galinstan fluid as 

incompressible.  The limitations of modelling the fluid in this way meant that no 

fluid movement would occur within the channels, thus possibly reducing the peak 

pressures that could occur as the fluid would ordinarily move to one end of the 

channel. 

Table 6-6 Hydrostatic Fluid element parameters 

Property Value 

Density 6440 𝑘𝑔 𝑚3⁄  

Fluid Mass Volume of the fluid element 

Fluid Material Model Incompressible 

Coefficient of thermal Expansion 6.1 × 10−5 ℃−1 

6.4 Simulations 
The constraints chosen when building a finite element model are crucial to 

producing a model that can be validated.  Therefore, the use of simulated end clamps 

was employed to ease difficulties when validation was attempted in the lab.  For 

each set of conditions, a slightly different set of constraints was chosen.  Each of the 

tests were carried out using fixed displacements or rotations rather than using force, 

which in turn allowed for easier verification of the models. 

It was decided to carry each test out separately to better understand the behaviour 

of the sample in one axis at a time.  It is thought that a system such as this would 

undergo multi-axis deformation, however, this would be unpredictable and random.  

Therefore it would be advisable to break the simulation down into manageable 

tasks.   

All models used very similar analysis settings to apply to the solver.  Two load steps 

were applied when required, the first to apply the clamping force and the second to 



Flexible Stretchable Electronics for Sport and Wellbeing Applications 

 

 

126  Jonathan Flowers - July 2019 

 

 

apply the force under test.  The only exception to this was the compression model 

which only required a single step.  Each step was five seconds long in order to allow 

the load to be applied slowly, allowing the problem to be modelled as a steady state 

one, and thus simplifying the level of detail required in material models.  Many 

silicon rubbers have properties which can change with regard to the strain rate 

applied [182], by slowing the rate at which the load is applied, these effects become 

negligible.  The large deflection option was enabled to allow the simulation of the 

soft polymers.  This option allows ANSYS to adjust the stiffness of the component 

based on the changes in its geometry during deformation.  For silicone rubbers, this 

is required to accurately portray their behaviour within the simulation. 

6.4.1 Uniaxial Extension 
In order to create a model that can be validated, a method of gripping the sample 

must be included, therefore, the last 20mm of material at each end was clamped.  

The lower surface was modelled as a rigid plane and affixed with an encastre 

boundary condition.  The PDMS block was then placed onto this surface and 

attached with a frictionless boundary condition, in order to allow the block to slide 

during deformation and prevent artificially raising the stress in the polymer by 

being unrealistically fixed to the work surface.  Frictionless contact was chosen in 

order to simplify the model rather than attempt to model the frictional forces that 

would occur as they would likely be negligible with good experimental design. 

Two curved clamping plates were then placed onto the block.  These were modelled 

as rigid surfaces utilising a frictionless contact relationship with the PDMS block.  

These two surfaces were then constrained using joints in order to restrict their 

movements to a single translational axis for compression or in the case of the 

extension side two translational axes.  All joints were applied as “body-ground” in 

order to define their position as absolute within space. 
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In order to speed up simulation times, the model was cross sectioned down the 

length and a symmetry constraint applied.  This allows the simulation to reduce the 

node count of the model by 50% without reducing the mesh density.  This is carried 

out by only constraining displacements and forces normal to the symmetry plane 

and assuming anything parallel to the symmetry plane will be identical on both 

sides.  For the systems being modelled within, this assumption is entirely acceptable.  

This model setup can be seen in Figure 6-11.  This screenshot does not show the 

frictionless boundary conditions nor the joint conditions.   

To hold the block in place on the rigid surface, three faces that were in contact with 

the ground plane were assigned an encastre boundary condition.  This was applied 

in order to correctly constrain the workpiece in a way that would not negatively 

affect the strain force that will be applied. The setup for the simulation boundary 

conditions can be seen in Figure 6-12. 

 

Figure 6-11 Model design for uniaxial strain test showing ground plane and clamping 

surfaces 
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Figure 6-12 Boundary condition assignment for uniaxial strain model 

The extension was then applied to the clamp surface on the side that was not 

encastre bound.  This end then had a displacement applied of 25mm in the X axis 

and 0mm in the Y and Z axes to make sure the displacement occurred in a straight 

line.  The applied displacement was an extension of 16% when compared to the 

original length of the sample, this extension value was obtained through anecdotal 

testing of the ability for the block to extend when being clamped in a vice and 

stretched, without causing fracture or tearing of the workpiece. 

6.4.2 Axial Twist 
A method of gripping the sample was once again included in this model, whereby 

the last 20mm of material at one end was clamped, with the lower surface being 

fixed in all axes, modelling an encastre boundary condition.  The top surface then 

had a displacement of 12mm applied to it in order to simulate the gripping method 

of a standard vice clamp.  This deformation was applied as its own discrete step as 

to create a baseline for further deformation and stresses applied to the sample. A 

90º remote displacement was then applied to all four sides of the last 20mm of the 

opposite end of the sample.  This deformation was chosen based upon anecdotal 
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experimentation that would enable the reliable twisting of the block without tearing 

the outer corners and artificially inducing failure in the workpiece.  The use of a 

remote displacement allows access to additional axes, thus being able to introduce 

a rotational displacement.  These faces were also fixed in the X, Y and Z directions to 

prevent any additional displacement.  The applied boundary conditions can be seen 

in Figure 6-13.  This test did not utilise either rigid surfaces for compression or as a 

ground plane due to a fixed bond or friction required to prevent the surface slipping, 

thus allowing a rotational force to be applied.  This model also did not use symmetry 

due to the applied forces having to cross the would-be plane of symmetry.  

 

Figure 6-13 Axial Twist Applied Constraints (A) Clamp force (B) Encastre boundary 

condition (C) Remote Displacement used to apply a rotational displacement 

6.4.3 Three Point Bend Test 
The following set of conditions are not designed to mimic an ideal three-point bend 

test as it was deemed that during applications, the device would be applied to the 

skin, which during deformation, exhibits both bending and strain.  Therefore, both 

ends of the sample were clamped using a base with encastre boundary conditions 

and a clamp force from above.  The bend test force was then applied by a 5mm 

diameter rod that was moved upwards into the sample using a unidirectional 
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displacement.  The contact conditions between the rod and sample were chosen to 

be frictionless to greatly simplify modelling and simulation.  This could be carried 

out during verification through the use of lubrication between the rod and the 

sample.  The applied boundary conditions can be seen in Figure 6-14. 

 

Figure 6-14 Three-Point Bend Test Applied Constraints (A) Encastre boundary 

condition (B) Clamp Force (C) Applied Vertical Displacement 

6.4.4 Asymmetric Compression 
The boundary conditions required to apply an asymmetric compression force to the 

sample are slightly different to the conditions used with the other kinds of tests, 

whereby a clamp would not be required for testing.  This meant that an encastre 

boundary condition was applied to a small section of the sample base and the lower 

surface in order to anchor them.  A frictionless contact condition was applied 

between the PDMS sample and the lower surface as well as between the PDMS 

sample and the compressive surface.  A remote joint displacement was then applied 

to the top surface in the negative Z axis as can be seen in Figure 6-15.  This was 

chosen to simulate the action of compressing the device by hand on the skin which 

would result in uneven compressive forces across the device. 
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Figure 6-15 Asymmetric Compression Boundary Conditions (A) Encastre Boundary 

Condition (B) Compressive displacement through the use of a joint – Not shown, 

Ground-Body Fixed joint applied to lower surface 

6.4.5 Analysis Methodology 
In order to investigate the stresses that the components underwent, various 

solution views were created, which are designed to render element values for 

chosen outputs across the element and mesh surface.  These values can then be 

probed, looking for maximum and minimum values, in addition to some statistical 

analysis such as standard deviations and means.  The output values that are most 

useful for the performed analysis are the Von-Mises stress, principle stress and 

sheer stress.  The Von-Mises Stress output is used to determine if a material will 

yield or fracture when deformed but relies on the material being ductile [183], 

silicon while brittle exhibits ductile behaviour before failing [184]–[188]  so can 

therefore be analysed in this way.  The principle stress corresponds to the maximum 

eigenvalue of the stress tensor, compared to the Von-Mises which is a metric of the 

stress tensor.  Therefore principle stress is a real stress that can be measured during 

experimentations and thus correlation with real world models can be built.  Shear 
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stresses of the components were also investigated as this would be the likely failure 

mode of any bonds or laminations within the system. 

6.5 Results 

6.5.1 Integrated Silicon Die Analysis 
During deformation it is important that the delicate silicon IC is protected from large 

deformations and stresses by the PDMS material around it.  The main stresses on 

the silicon die were seen to be present at the corners, in addition to a shear force 

across the top and bottom surfaces.  These high stress regions can be seen at the 

corners of the IC in all but the twisting Von-Mises equivalent stress plots in Figure 

6-16 below.  This response is to be expected due to the deformation of the PDMS 

around the rigid component.  The Von-Mises pattern that can be seen for the axial 

twist can be accounted to a group of circumstances. 
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Figure 6-16 Von-Mises equivalent stress for each of the various conditions 

(Assymmetric Compression - Top Left, Axial twist - Top Right, Unixial tensile test – 

Bottom Left, Three Point Bend Test – Bottom Right) 

Within the axial twist model, it can be seen in the maximal principle stress plot in 

Figure 6-17 showing opposing stresses on opposite sides of the component, then by 

combining this with the shear stress across the face of the part (Figure 6-18) and a 

relatively course mesh for this component, the resultant Von-Mises plot results in 

large stresses on the top and bottom faces of the component.  Throughout all tests 

the stress applied to the die never exceeded 7.8 MPa, which did not get close to 

exceeding the fracture stress of a die of this size, which is in the range of 400 MPa 

[187], [189].  This however does not take into account any circuits that have been 

designed onto the die and would likely require detailed empirical testing of 

individual integrated circuits to gain more information on the failure rates of these 

components when undergoing mechanical deformation.  
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Figure 6-17 Maximum principle stress for axial twist conditions 

 

Figure 6-18 Shear stress of silicon die in axial twist conditions 

A small but relevant stress was also applied at the interface of the fluid channel to 

the silicone die.  The pressure applied to the face of the die is directly proportional 

to the deformation of the fluid channel. Due to the fluid being incompressible, any 

and all stress applied to the liquid through the deformation of the channel is 

transferred to an applied pressure evenly across all sides of the channel, including 

the locations of contact with the die.  Silicon has a Young’s modulus of at least 

165GPa whereas PDMS has a Young’s modulus of 13.2MPa, therefore the silicone 

will be essentially rigid throughout the channel deformation while the PDMS will 

deform to maintain the volume of the channel.  It is most likely the failure mode for 

excess channel pressure will be that of the bond between the silicon die and PDMS 

substrate, which within these simulations experienced a maximum separation 

pressure of 160kPa (Figure 6-19) during the asymmetric compression condition.   



Chapter 6: Simulating the deformation of Galinstan based interconnects with PDMS substrates 

 

 

Jonathan Flowers - July 2019   135 

 

 

 

Figure 6-19 Pressure plot of silicon-PDMS contact region from asymmetric 

compression condition 

6.5.2 Bond Strength Analysis 
It can be seen that the largest frictional stress experienced within the PDMS was 

159.2 kPa during the axial twist condition, as seen in .  This occurs at the edge of the 

laminated sections in line with the edge of the embedded silicone component and 

can be contributed to the sudden change in stiffness of what is otherwise an almost 

homogenous cross section to something that is much stiffer.  This additional 

stiffness better resists the applied forces, thus imposing the required deformation 

onto the softer and more conformal PDMS and its laminated bond. 
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Figure 6-20 Frictional stress (Left) and pressure plot (Right) for asymmetric 

compression condition at PDMS to PDMS contact region 

 

 

 

Figure 6-21 Frictional stress (Left) and pressure plot (Right) for tensile loading 

condition at PDMS to PDMS contact region 

 

 

Figure 6-22 Frictional stress (Left) and pressure plot (Right) for three-point bend 

condition at PDMS to PDMS contact region 
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Figure 6-23 Frictional stress (Left) and pressure plot (Right) for axial twist condition 

at PDMS to PDMS contact region 

6.6 Discussion 

6.6.1 Silicon Die Structural Integrity 
Throughout all of the conditions tested, the Von-Mises stress on the silicon die 

reached a maximum of 7.8 × 106 𝑃𝑎 which, when compared to its yield strength of 

6.9 × 109 𝑃𝑎 [190] is well within a comfortable safety margin to survive the stresses 

that would likely be experienced within a device utilising this manufacturing 

technology.  This survivability however, relies upon a good bond with the PDMS 

substrate to allow a continuous load transfer across the entire surface of the silicon 

die.  It does not account for the fracture of any sensitive electronics that would be 

present on the die, as due to their unique and microscopic nature, would require an 

exponentially higher compute power as the node size would be required to be on 

the sub micrometre scale. 

6.6.2 PDMS Bond Strength Requirements 
In order to manufacture a device that utilises liquid metal channels, under most 

conditions, it would require manufacture of the substrates in layers in a similar way 

to existing printed circuit boards.  However, PDMS poses a greater challenge when 

laminating layers, as if the bond were to have a Young’s Modulus, Poisson’s ratio or 

coefficient of thermal expansion that differed from the PDMS used for the substrate 

layers, this could create large stresses during use and deformation of the product, 
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likely leading to its early failure.  Therefore, it is important to understand the 

bonding requirements in order to select the correct process and materials to carry 

out these joins.  Additional care should be taken to optimise the bond type for 

manufacturing speed as this will reduce the time required to manufacture devices 

that utilise PDMS substrates.  As mentioned prior, the research carried out by 

Eddings et al [118], bond strength can vary significantly as can the repeatability of 

the bond strength based on the specific process used.  It is important for mass 

manufacture to select a process that will enable the highest yield possible, therefore, 

the lowest value produced within the error bounds of the process should still exceed 

the maximum bond strength requirement.   

For each of the tests carried out negative pressures and shear forces were of concern 

as these are most likely to induce delamination.   The frictional stress and applied 

pressure act perpendicular to each other, however, when investigating bond 

strength, the tensile strength of the bond is always weaker in tension than it is in 

shear [191], [192].   

The applied pressure on the bond can be directly compared to the tensile and 

pressure tests that have been carried out by Eddings et al, wherein two PDMS 

components were bonded together using various techniques and the pressure 

required to sever the bond between them was measured [118].  The results collected 

included both positive and negative pressures, of which the former was acting to 

bring the two components together and the latter to tear them apart.  The 

simulations carried out within the scope of this research peaked at 497.6 kPa in the 

positive direction and -65.8 kPa in the negative during the axial twist condition and 

uniaxial tensile test respectively.  This relatively low delamination pressure is likely 

due to the thick blocks of PDMS used for modelling that would require delamination 

stresses to overcome a significant amount of material attempting to maintain its 

shape, in addition to the bond strength between the two components.   When 

comparing these results to the bond strengths measured by Eddings et al, it can be 
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seen that any of their tested bonding techniques would suitably maintain the bond 

between the two PDMS components during testing, however, not all of these 

techniques would be suitable to bonding with other substrates such as silicon, and 

metals, in addition to having relatively poor repeatability.  It is for this reason when 

developing these technologies for mass production, it is recommended to use partial 

curing of one of the substrates as the bonding technique allows a relatively fast 

adhesion process and does not require the use of plasmas which could damage 

sensitive integrated circuits. 

6.7 Conclusion 
Overall, the simulations carried out within demonstrate both the feasibility and 

viability of a laminated multilayer PDMS structure, utilising liquid metal filled 

microfluidic channels.  The work identified that excess loading leading to the 

cracking of silicon integrated circuits is an unlikely failure mode; the maximum 

observable stresses were over 8000 times less than the empirical yield strength 

[189].  Rather, the forces that could possibly cause delamination while the system is 

in use are more likely according to the study presented above, where the maximum 

observed pressure was approximately 4 times less than the average PDMS-PDMS 

partial cure bond strength observed by Eddings et al [118].  It must be noted that at 

the time of writing there was no empirical data on the bond strength between silicon 

and PDMS.  This could potentially be a cause for concern when applying a factor of 

safety and should be studied further.  Long-term studies of work induced fatigue of 

the lamination bond strength should be carried out as these failure modes are 

usually considered to be a critical defect when they occur in modern printed circuits.  

It can be assumed that devices built in the way detailed above could have poor 

impact tolerance as the energy absorption is entirely limited by the amount of mass 

of the PDMS encapsulating the silicon dies (and any other components that may be 

used.)  This however was outside of the scope of this project and should be studied 
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in detail if this technology is to be brought to the sports market; where impacts are 

a common occurrence. 

The deformation and stresses experienced by the substrate itself were not 

investigated within the confines of this study due to the increased thickness that was 

chosen for these models; they would demonstrate significantly different 

performance when compared to sub-millimetre thick films of PDMS.  Due to beam 

bending theorem, the strain experienced by the PDMS material would be far greater 

than that of a thin film due to the increase in the area moment of inertia and distance 

from the neutral axis. 
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7 DISCUSSIONS, 
CONCLUSIONS AND 
RECOMMENDATIONS FOR 
FURTHER WORK 

7.1 Chapter Overview 
The overall aim of this research was to identify and determine the feasibility of 

manufacturing flexible, stretchable electronics, utilising technologies and 

techniques that could be scaled for mass production.  This research approached 

some components of this goal which are discussed here along with their limitations, 

in addition to suggesting a direction research on this topic could take in the future. 

7.2 Discussion 
Research into developing soft matter electronics has been relatively broad, with 

researchers approaching these problems from an array of angles that cover smart 

woven textiles [62], [126], [193] to electronic temporary tattoos [20] and many 

others in between.  Recently more research has been carried out with respect to 

defining an approach to bring such wearable devices to market and identifying the 

relevant parameters and requirements that would need to be met in order to create 

a device that is useful and would make a positive impact on society.  This research 

has not changed the outlook on the research carried out within this paper, and in 

some cases supported the work carried out within.  Some research groups have been 
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investigating the use of liquid metal interconnects and processes to manufacture 

these systems en masse further validating the work carried out here [60], [66], [81]. 

The parameters of usefulness defined in Chapter 3 begin to investigate ways these 

technologies may be used, and through this investigation, begin to guide the 

selection and development of technologies to achieve these goals.  These initial 

requirements were developed not for this investigation in particular, but as a way 

to assist in guiding the development of architectures and manufacturing processes.  

This line of questioning gave birth to an initial architecture concept that would guide 

further experimentation and study within this paper, forming the basis for material 

and process selection.   

In order to begin research on a new technology within the modern climate of agile 

development cycles and fast paced iteration, it is important to be able to prototype 

systems at low cost utilising digital manufacturing techniques quickly and efficiently 

at low cost.  The chosen approach that was investigated to solve this problem was 

to use lasers to manufacture channelled substrates without the overhead of 

expensive tooling, in addition to analysing the use of this process within a 

production environment.  Based on the testing and analysis carried out, low cost, 

continuous wave CO2 lasers could be used to provide prototype facilities for both 

engraving channels and cutting vias into PDMS sheet.  This provides a good 

alternative to costly Roll-to-Roll fabrication centres in order to prototype a device 

at low quantity.  However, it can be said the biggest issue that was discovered during 

the experimentation was the challenge of cleaning the workpiece thoroughly if a 

laser is to be integrated into a continuous manufacturing process such as Roll-to-

Roll production. 

As part of the development cycle of new production methods, it is important to build 

knowledge and understanding of the behaviour of components, and utilising this 

understanding to select the correct adhesives, processes and order of operations 

when producing a product.  By modelling these interactions within an FEA package 
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it was possible to learn about how components may respond to the various 

deformations they may experience during their lifetime within possible products.  

This knowledge will allow engineers to better optimise designs for improved 

reliability and select the correct components.  Even more importantly the 

knowledge gained within can assist an engineer in selecting the correct bonding 

process, which will in turn enable a reliable and compact product. 

7.3 Conclusions 
The main research aim, originally set out at the start of this project was “to identify 

a group of materials and techniques that are capable of producing flexible, 

stretchable electronics at commercial scales and at low cost.”  Initial work was 

carried out to identify the requirements and parameters of usefulness, to define and 

quantify what the materials and techniques had to be capable of in order to be 

successful.  These requirements were then leveraged to conceptualise a device 

architecture that could operate within them and formed the foundation for the 

selection of possible materials and manufacturing techniques.  The outcome was a 

multilayer laminate structure that was capable of supporting three-dimensional 

channel routing and integrating both leaded and bare die components.  But, this  

would also require a radical rethinking of printed circuit board manufacture to 

enable a device to be manufactured at scale while keeping cost low. 

Initial investigation began into manufacturing processes that could achieve both 

small scale prototyping without tooling in addition to being able to easily be 

integrated into a large production operation, thus the use of scanning mirror lasers 

were employed.  Laser machining was investigated, covering a variety of possible 

wavelengths and beam generation technologies. Anecdotal experimentation 

exhibited superior absorption wavelengths within the confines of a CO2 based 

system. This allowed cutting and engraving of the optically clear PDMS material 

whereas other laser systems failed to mark the PDMS substrate at all.   
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Performance of the CO2 laser system was further investigated, looking at the process 

occurring within the material and utilising this knowledge to optimise the cutting 

and machining processes to produce more precise and repeatable patterns into the 

PDMS. Various output powers and trace speed combinations were investigated 

resulting in the discovery of an upper-limit power density; where any increase 

caused poor surface finish and inconsistent channel geometries. The study may not 

have determined an optimal parameter set, however, it did generate a collection of 

useful data, which could be used to optimise the process and define a starting point 

for greater understanding of the occurring phenomenon.   

Finite element analysis was then employed to investigate how Galinstan filled 

channels would react to deformation as part of a laminated stack up.  These 

simulations would enable the selection of an appropriate bonding technique for 

production, which resulted in an array of lamination techniques that could be 

supported in various situations, dependant on application.  For instance, if a unified, 

sealed system was required, uncured or partially cured PDMS could be used as an 

adhesive and be able to form an almost perfectly homogeneous substrate.  However, 

if voids are required for channels which will be filled after lamination, varying the 

curing ratio of layers or corona discharge could be used to create this laminated 

assembly at the expense of bond strength. These models allowed the verification of 

the hypothesis that externally applied loads would not be transferred into rigid 

silicon dies and discrete components, but be absorbed by the highly conformal 

PDMS substrate.  Silicon cracking was found to be very unlikely to occur due to the 

incurred stresses being almost negligible with respect to the yield stress of silicon. 

Delamination however, was identified as a potential threat to devices as the 

observed pressures reached 25% of the average empirically derived failure 

pressure possibly resulting in catastrophic failure of the device.  Further 

investigation into bond optimisation and reliability is therefore important to the 

success of a commercial device. 
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A secondary research goal was to “identify the limitations of these materials during 

use and manufacturing processes.”  This goal was created in order to help assess 

what problems may arise during manufacture and to set limitations on the designs 

that utilise this technology.  The main limitations come from Galinstan, which due to 

its liquid state, complicates the design of complex circuits.  Liquid metals will form 

amalgams when they come into contact with other solid metals.  In order to combat 

this conductive passivation, layers will be required on all metallic components that 

come into contact with the fluid.  This will also require that any tooling used in 

production be a non-metal or passivated as well.  Galinstan’s conductivity also does 

not meet performance equivalency of copper or gold, which means there will be 

limitations on current capacity and switching frequencies of systems that utilise 

Galinstan interconnects.  The main limitation revealed by PDMS is the limited array 

of permanent bonding and lamination techniques due to its tacky surface and 

hydrophobic qualities.  However, both of these materials have been identified as 

being able to meet the requirements and parameters of usefulness, though some 

additional research will be required to reach the mass producible, low cost wearable 

device that is the target of many researchers and corporations. 

7.4 Limitations of this Study and Future Work 

7.4.1 Laser Machining of PDMS to Create Predictable Microfluidic 
Channels Using a Continuous Wave CO2 Laser 
Laser machining is a dynamic and repeatable process, however, there are many 

variables which can affect the efficacy of the process.  Due to this wide range of 

variable, which include sheath gasses and their flow rates, in addition to material 

finish, laser power and trace speed among others.  Due to the exponentially 

increasing number of tests required to evaluate all possible combinations for this 

process, the operation parameters were narrowed to focus on the two most 

common and easily adjustable variables, trace speed and laser output power.   
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To further optimise this process for mass production and improve the finish of the 

machined grooves, alternate sheath gasses should be investigated along with 

alternative beam focus patterns.  It is strongly recommended that research 

continues in this area as perfecting this process would be of great use for drilling 

vias in multilayer laminated structures. 

7.4.2 Simulating the Deformation of Galinstan Based Interconnects with 
PDMS Substrates 
Assumptions were made in order to reduce the complexity of the simulations, 

however as is common with assumptions, they reduce the overall fidelity of the 

model.  Assumptions made for this experiment limited the precision of which the 

internal fluid could be modelled.  By modelling the Galinstan as a hydrostatic fluid, 

it would not be possible to investigate the leaking or movement of fluid within the 

channels.  Simulations were also limited to quasi-steady state and transient 

analyses, which precludes any information about how impacts would affect the 

performance of such systems, which is especially important for the use of wearables 

within sports.  The mesh density was also heavily limited due to software licensing, 

this however, could be overcome relatively easily with a more capable license. 

It is also of interest how channel geometry would affect the performance of such 

systems under deformation and load, as certain geometries such as round shape that 

would make mould release easier during Roll-to-Roll production processes.  Further 

investigations are recommended to explore more complex interconnect geometries 

in addition to variation with regard to interconnect cross-sectional geometry.   

7.4.3 Simulation Validation 
Simulation and modelling is always a great first step into understanding how a 

system or material will behave under circumstances, however, it is important to 

verify the models are accurate and precise.  This validation grants confidence in the 

simulations allowing fast iteration during product development and a greater 
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understanding of the behaviour of the system.  Unfortunately, experimental 

validation was not possible within the confines of this research.  It is however 

recommended that it be carried out and cross referenced with the simulation results 

presented. 

7.4.4 Manufacturing Validation 
The manufacturing process for a product is just as important as the architecture and 

understanding of a product’s design.  It is especially important for the processes that 

produce components to be validated and designed for scale.  This research often 

mentioned Roll-to-Roll manufacturing processes, conversely the validation of this 

as a viable process to manufacture complex multilayer laminated electronics 

utilising liquid metal interconnects was not proven.  It is advisable that knowledge 

and expertise be created on this topic.  This knowledge is a crucial piece of the puzzle 

that is required to bring these systems to market in the future and must be 

investigated further. 
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Abstract—This paper seeks to investigate the geometry and 
surface finish of channels machined into polydimethylsiloxane 
using a continuous wave CO2 laser with respect to the 
configurations used when creating these channels. It has been 
found that there is a very strong correlation between both 
power and speed with regard to depth. However, at higher 
energy levels this relationship appears to break down and the 
depth of the cut reduces when compared to similar laser 
configurations at a lower power level.  In order to investigate 
the various mechanisms, that could affect the channel 
geometry, both the laser power and trace speed were varied in 
conjunction with the use of a fixed focal size to allow 
comparison between configurations.  It was discovered that as 
the power level increases repeatability decreases while 
dimensional variability of the channel along its length and 
multiple iterations increases.  It was found that the power 
output of the laser has a greater effect on the dimensions of the 
channels than the total energy input into the material. 

Keywords – laser machining; microfluidics manufacture; 
galinstan; 

I. INTRODUCTION 
Wearable electronics are a set of technologies and 

devices that can be worn to track information related to 
health and fitness markers and sometimes even include 
location and activity data.  These wearable devices must be 
thin, flexible, stretchable and conformal to the human body 
[1].  Low cost and scalable conformal electronics are 
currently seen as the gold standard for on-body sensor 
networks; however, their manufacture has remained elusive, 
it demands abrupt changes to technologies when compared 
to conventional electronics, which are usually rigid.  In order 
to achieve this, various challenges and bottlenecks exist with 
regard to both the design and manufacture of electronics [2].  
Conventional interconnect materials such as copper, gold 
and tin alloys can become the victims of their own 
mechanical properties, as for a device to be flexible and 
stretchable, these materials need to be capable of repeated 
elastic and plastic deformation, which will quickly lead to 
metal fatigue jeopardizing the reliability of the products [3].  
To solve this problem unique high conductivity metallic 
interconnects are proposed, which can be deformed without 
inducing fatigue through the use of a room temperature 
liquid metal called Galinstan in this study [4]. 

The use of Galinstan as a conductor does introduce a new 
set of hurdles that would need to be overcome in order to 

bring these technologies to tangible applications.  Due to 
Galinstan being a liquid, it must be fully encapsulated within 
a confined channel in order to prevent any change in 
geometry of the conductors.  For the channels that have to be 
fabricated to carry Galinstan liquid, the manufacturing 
method must be capable of varying channel geometry across 
the length of the channel.  An additional challenge that 
requires a solution is to include vertical vias that are able to 
form a three dimensional electronic interconnect structure or 
circuit design [5].  Conventional methods that are used to 
create these channels for Lab on Chip applications normally 
involve the use of complex lithography, molding or 
embossing techniques [6], which can introduce problems 
when creating holes directly through the substrate in order to 
enable vertical interconnects. One of these issues is requiring 
sacrificial layers in order to create a single component, which 
when scaled can lead to increased costs [7]. 

The use of conductive fluids such as Galinstan for 
interconnects contained within a soft, flexible substrate has 
been shown to be a promising direction for the manufacture 
of such devices, which, can fit well with existing Roll2Roll 
approach for scalable manufacturing of fluidic channels.  It is 
desirable to have the ability to fabricate 3D interconnected 
channels on a suitable flexible substrate, for which the 
process is capable of high throughput, and is scalable at 
reasonable costs for production and mass manufacture of low 
cost devices.  In this work, several potential scalable 
methods for creating the channels have been investigated for 
the direct fabrication of microfluidic channels within a 
Polydimethylsiloxane (PDMS) substrate.  The use of lasers 
as a processing tool allows the creation of a varied channel 
sizes in addition to drilling and cutting directly through the 
material.   

This paper seeks to identify the optimal laser cutting 
parameters using a continuous wave Carbon Dioxide laser 
for the cutting and engraving of a PDMS substrate.  The use 
of a CW CO2 laser allows the low cost, continuous 
manufacture of PDMS based microfluidic devices with few 
if any restrictions on channel geometry, while being capable 
of small-scales and high precision.  Various laser parameters 
such as power levels, trace speed and repetitions were tested 
to narrow down the optimal combination in order to create a 
uniform high quality cut and surface finish.  This has led to a 
data set that was produced to enable the correct selection of 
parameters when machining PDMS with a CW CO2 laser.  
An evaluation of the quality of the obtained channels was 



subsequently carried out using various metrology tools to 
provide a clear understanding of the effects of laser 
processing parameters on the surface finish, depth and 
geometry of the machined channel in the PDMS substrate.  It 
is envisaged that the use of low cost CW CO2 lasers in both 
the small-scale prototyping and mass manufacture of 
microfluidic channels on PDMS substrates will be viable for 
scalable 3D manufacturing of wearable electronics.  A 
tangible wearable device will be designed at a later stage, to 
demonstrate the processes being developed in this study. 

II. METHODS AND MATERIALS 

A. Polydimethylsiloxane (PDMS) Substrate 
PDMS has been selected as the substrate which was 

supplied by Dow Corning Sylgard 184 blended in a 10:1 
ratio of resin to hardener.  Sheets with a nominal thickness of 
4mm were produced in 200mm by 200mm squares and cured 
at 22°C for 48 hours.  

B. Laser Set-up 
The laser used for the fabrication of via holes and 

channels was a 100W Synrad CO2 Marking Laser with an 
FH Flyer Marking head, also manufactured by Synrad.  The 
laser was configured with a focal point of 300μm and has a 
characteristic wavelength of 10.6μm.  A CO2 laser was 
chosen due to its ability to easily cut the polymer substrate, 
other types such as Nd:YAG and Excimer lasers were tested 
but either were not able to cut the polymer due to 
incompatible emission and absorption spectra or were too 
slow to be used in a viable continuous production process. 
The laser is a continuous wave unit that uses Pulse Width 
Modulation to adjust the power level of the laser.  The 
configuration settings exposed to the user include the power 
output, as a percentage of 100W and trace speed, up to a 
maximum value of 990mm/s. 

C. Channel Fabrication 
To quantify the effect of the laser configuration on 

channel geometry and quality, a range of parameters were 

tested.  These include three power settings (60W, 80W 
100W) in combination with nine speed settings between 
250mm/s and 50mm/s in 25mm/s intervals for comparison 
and evaluation.  They are summarized in Table 1. Each 
combination of parameters was tested three times in order to 
identify the repeatability of the process.  Eighty-one lines, 
20mm in length and with 10mm spacing between each line 
were marked onto the pre-prepared PDMS substrate.  Once 
all cuts were made, the sample was diced into groups of 
three lines and washed with isopropyl alcohol, then dried 
with clean air blasts.  Once dried the samples were then 
sputtered with a 12nm AuPd layer in order to facilitate 
imaging and surface profiling. 

TABLE I.  LASER CONFIGURATIONS USED 

Laser Power 
Levels 

Focal 
Diameter 

Trace 
Speed 

Energy Output per 
m2 

100W 

0.3mm 

250 mm/s 1333.33 

225 mm/s 1481.48 

200 mm/s 1666.67 

175 mm/s 1904.76 

150 mm/s 2222.22 

125 mm/s 2666.67 

100 mm/s 3333.33 

75 mm/s 4444.44 

50 mm/s 6666.67 

80W 

250 mm/s 1066.67 

225 mm/s 1185.19 

200 mm/s 1333.33 

175 mm/s 1523.81 

150 mm/s 1777.78 

125 mm/s 2133.33 

100 mm/s 2666.67 

75 mm/s 3555.56 

50 mm/s 5333. 33 

60W 

250 mm/s 800.00 

225 mm/s 888.89 

200 mm/s 1000.00 

175 mm/s 1142.86 

150 mm/s 1333.33 

125 mm/s 1600.00 

100 mm/s 2000.00 

75 mm/s 2666.67 

50 mm/s 4000.00  
Figure 1.  a) Channel Texture bitmap and b) depth map (Sample 1 - 

80W at 100mm/s) 



D. Characteriasation: Data Acquisition 
Each of the diced segments was imaged using an Alicona 

InfiniteFocus with a 10x magnification lens, however, the 
lines cut at 100W 50mm/s-100mm/s were imaged with 5x 
magnification.  The system was configured to acquire a 
lateral resolution of 3μm and a vertical resolution of 750nm. 

The system produced both texture images and three-
dimensional depth profile maps, which can be typically seen 
in Figure 1.   

Field Emission Gun Scanning Electron Microscope 
(FEGSEM) images were taken of a selection of cross 
section from some samples in order to observe any changes 
to the material structure and any re-deposition that may be 

occurring.  These cross sections also allowed observation of 
some of the surface qualities of the channels as well as any 
kind of thermal fracture that may be occurring. A selection 
of these images can be seen in Figure 2.  These images 
include a close up of the entire channels as well as some of 
the artifacts that could be seen occurring around the channel 
itself like in Figures 2(b) and 2(d). 

E. Characteriasation: Data Analysis 
Depth profile maps were imported into Digital Surf 

MountainsMap Premium 7.2, where various analysis tools 
can be accessed to carry out and extract various metrics for 
the channels that were laser machined.  Channel depth was 
measured using two methods: i) by calculating the 
maximum depth using every profile across the 1.4mm 
imaged sample, ii) by using the “Valley Depth Tool” which 
intelligently identifies the bottom of the valley and averages 
only those points. The latter was the preferable to the profile 
tool, as the deepest part of the channel may not always be 

Figure 3.  Profile curve stack (grey) showing upper and lower envelopes 
(red) and mean (blue) for Sample 1 - 80W at 100mm/s 

Figure 4.  Profile curve range calculated as the difference between upper 
and lower envelopes as seen in Figure . 

Figure 2.  Depth vs Speed using mean maximum profile depth 

Figure 3.  Depth vs Speed using Valley Depth Tool 

Figure 2. FEGSEM Images of two samples, which demonstrate some 
of the artifacts that are left around the channel after processing.  

Images a) and b) are from a 100W exposure at 50mm/s and 
demonstrate what appears to be thermal induced fracture of the 

material. Images c) and d) are from a 100W exposure at 75mm/s and 
clearly show re-deposition along the edges of the groove. 



vertically aligned.  Channel quality was evaluated using the 
upper and lower envelopes of all the profiles (Figure 3) and 
a difference calculated at each point as can be seen in Figure 
4.   

The channel edge shape was identified qualitatively as 
either having a smooth or blunt transition.  An example of 
smooth transitions can be seen in Figure .  A blunt transition 
is a sharper transition that actually has a ridge; edges of this 
type were quite uncommon.   

III. RESULTS AND DISCUSSION 
The results can be divided into two categories, channel 

profile shape and surface finish.  Profile shape covers the 
channel geometry such as channel depth, channel quality, 
slope angle and edge transition type.  Surface finish covers 
the waviness and surface roughness of the channel. 

A. Channel Profile: Depth Analysis 
Data for the channel depth displayed in Figures 5 and 6.  

It can be seen that when the cut was made using 100W 
power at speeds below 125mm/s the depth did not increase 
as expected.  The expected result was that as the power level 
increases the channel depth increases and as the trace speed 
decreases, the channel depth increases as well.  This 
therefore means that the 100W channels traced at 50mm/s 
should be the deepest channels.  It was seen in the depth 
maps that the shape of the groove no longer followed the 
Gaussian profile as all the other lines did in addition to being 
much wider.  This can possibly be attributed the increased 
energy, a higher energy input concentration and longer 
exposure time, thus creating a larger heat effected zone 
which may possibly be recasting the burnt, ejected mass.  
Another possibility is when the material is burnt, boiled or 
vaporized, due to the high energy levels involved, there is a 
possibility the ejected mass is obstructing the beam and 
absorbing a significant portion of the energy from the laser.  
During the experimentation and the cutting of the channels, 
large amounts of burnt material were observed being ejected 
from the material and being blown around the containment 

vessel of the laser.  Figure 7 shows schematically the process 
which material goes through as it is being exposed to a laser 
beam.  The material ejected is done through the rapid 
expansion of high temperature vaporized and molten 
material.  This can cause the material to be recast along the 
edges, which is visible Figure 4(d).  This would also explain 
why the repeatability and quality of the channel is drastically 
reduced.  These hypotheses will need to be investigated 
further incorporating SEM imagery and high-speed imaging 
of the process itself.  Investigation of the material structure 
within the groove can then be carried out in addition to 
observing the behavior of ejected mass.   The observed 
behavior however, does indicate a loss of control of the 
process at higher energy levels.  A loss of control is evident 
when the dramatic increase in max variance with respect to 
the channel depth, as seen in Figure 8, is investigated in 
addition to energy level.  The ribbon plots in Figures 5 and 6 
demonstrate that as laser power increases the variation in 
depth increases as repeatability decreases, regardless of trace 
speed or overall cut depth.   

Besides this observation, the data had R2 values of 
between 0.926 and 0.997 indicating an extremely strong 
correlation between trace speed and channel depth. 

B. Channel Profile: Evaluation of Channel Quality 
The groove quality can be quantified using the variance 

graph produced for each sample as seen in Figure .  These 
values were then plotted in Figure 8.  It can be seen that 
above 125mm/s there is no major relationship between 
speed, power and channel quality.  However, as the amount 
of energy input into the material increases and the exposure 
time is extended, the channel quality is further reduced 
evidenced by Figure 8. It shows a strong negative 
correlation between both trace speed and variance.  Some of 
this increase can be attributed to the increased channel 
depth, however, the same trend still exists when running this 
comparison with the variance as a percentage of the channel 
depth. 

C. Channel Profile: Slope Angle 
Due to the configuration of the laser, the slope angles 

 
 

Figure 8.  Speed vs Max Variance of the channel 
 

Figure 7. The schematic model of the formation of bulges and the 
material ejection process during polymer machining by laser [10] 
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produced are largely dependent on the incidence of the 
beam.  The laser used a scanning head configuration, which 
uses an articulated mirror to redirect the beam.  This means 
that the incidence angle between the beam and material 
surface changes as the beam follows its programmed cutting 
paths[8].  This angle is, at its maximum will be 
approximately 10° away from vertical.  This angle is not 
enough to cause any noticeable effect to the depth as seen in 
the relatively consistent depths achieved across multiple 
samples.  It will however affect the slope angle of the 
grooves.  The advantages of using a scanning head such as 
this enable the ability to achieve much higher trace speeds 
than a conventional Cartesian bed laser.  In addition to 
higher trace speeds, scanning heads are less affected by 
speed ramping due to the much lower mass and thus the 
inertial effects generated during acceleration and 
deceleration of the laser when compared to an equivalent 
Cartesian bed system.  

D. Channel Profile: Edge Transition Type 
Two types of edge transition exist within the scope of 

this experiment, smooth and blunt.  A blunt transition is 
defined as having a sharp drop-off from the surface to the 
bottom of the channel is narrower than the depth.  A smooth 
transition is one that is wider than the depth.  It was found 
that there was no correlation between transition type and 
either power nor speed.  The link between the power and 
transition produced a spearman coefficient of 0.068, and for 
the speed and transition link a value of -0.582.  This shows 
there is a slight correlation between speed and the likelihood 
of a specific transition occurring, however it is far from a 
strong link.  The transition depth is more likely affected by 
the angle of incidence, for which the laser interacts with the 
material; this was not a controlled variable for this 
experiment. This is due to the way a scanning head operates. 

E. Material Integrity 
It can be seen in Figure(b) that cracking has occurred at 

the bottom of the channel likely due to the high thermal 
stresses induced within the material.  These stresses are 
caused by the extremely rapid temperature rise and steep 
thermal gradient between the areas of material exposed to 
the laser and the immediate surrounding areas, both on the 
surface and below the penetration depth of the beam.  As of 
yet it is unknown if this structure of cracks which are less 
than 200nm in width will have an effect on the surface 
wettability with Galinstan or more importantly absorb the 
fluid and allow penetration of the fluid into the material. 

F. Surface Finish 
Surface texture is a significant part of overall surface 

finish and can be quantified using various metrics that are 

 

Figure 10. Data extracted from each samples surface profile report presented 
above. a) Mean peak height vs trace speed. b) Arithmetical mean deviation 
of the mean height vs trace speed. c) Average number of peaks per mm vs 

trace speed 
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Figure 9. Surface maps of samples used to investigate surface finish a) 

60W at 50mm/s b) 60W at 250mm/s c) 80W at 50mm/s d) 80W at 
250mm/s e) 100W at 50mm/s f) 100W at 250mm/s (All scales are in 



defined by various standards, specifically BS EN ISO 4287 
[9].  From this standard, a specific set of metrics can 
quantifiably allow the comparison of a set of surfaces.  
These indicators are Mean Peak Height (Rc), Arithmetical 
Mean Deviation (Ra) and the number of peaks per 
millimeter (RPc).  The use of these metrics defines the 
height and frequency of peaks and troughs on the surface as 
well as defining their deviation from the maximum value.  A 
typical report generated by Mountains Map from each depth 
map as seen in Figure 9, can be created and plots of these 
values from the samples can be seen in Figure 10.  The only 
drawback to using these values is that they can only be 
generated for a single profile extracted from the three 
dimensional depth maps.  Each profile was selected from 
the deepest part of the channel. 

It can be seen from Figure 10(a) that Mean Peak height 
appears to be affected by the amount of power input into the 
material but not by the trace speed.  However, the 80W 
power output appeared to generate the smoothest channels 
with the overall lowest mean peak heights, however when 
this value is paired with the mean deviation shown in Figure 
10(b), this relationship becomes far less significant as there 
is discernable relationship between power and the deviation 
of peak height.  There is however, a correlation between the 
deviation and trace speed (R2 = -0.581), with higher trace 
speeds producing a more even and nominal channel surface.  
This is likely due to shorter exposure times to the laser and 
thus reducing the thermal stresses on the material and 
resulting in less thermal fracture and additional burning, 
where the material does not have the required energy to be 
ejected from the exposed zone.  As for the number of peaks 
that appear over the measured length, there is no correlation 
to trace speed or power, which is apparent when the R2 
values of -0.011 and -0.116 are examined.  This can clearly 
be seen in the chaotic nature of Figure 10(c).  This is very 
likely due to the chaotic and violent nature of the burning 
and vaporization process that occurs within the laser’s focal 
point on the surface. 
 

IV. CONCLUSION 
From the results obtained, it can be seen there is a strong 

correlation to laser power, trace speed and channel depth.  
However, increases in power can negatively affect the 
channel quality and geometry creating channels that are less 
repeatable and have increased variability across their length; 
this makes higher laser powers unsuitable for the 
manufacture Galinstan carrying channels as it will create 
current bottlenecks in addition to increasing the channel 
resistance.   In addition to higher power levels negatively 
affecting channel quality, lower trace speeds also had this 
effect.  This effectively places a limitation on channel 
dimensions as in order to create deeper channels, 
repeatability and channel quality would need to be 
sacrificed.  Further testing of the channel surface with 
respect to its interaction with the fluid Galinstan is currently 

being carried out to investigate how the material flows 
through and wets to the channel wall surface.  Simulation 
and experimental work is also being carried out to 
investigate how the channels deform when undergoing 
mechanical stress, which is a vital piece of knowledge to 
know how the conductors would perform when in use. 
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APPENDIX 2 – ADPL COMMANDS FOR 3D CONTAINED 
HYDROSTATIC FLUIDS 
 
 
!   Commands inserted into this file will be executed just after material definitions in /PREP7. 
!   Active UNIT system in Workbench when this object was created:  Metric (m, kg, N, s, V, A) 
!   NOTE:  Any data that requires units (such as mass) is assumed to be in the consistent solver unit system. 
! It is assumed that NO SYMMETRY effects are in this model. 
 
fini 
/prep7 
*get,typemax,ETYP,,NUM,MAX    ! max defined element type 
*get,realmax,RCON,,NUM,MAX    ! max defined real constant 
*get,mat_max,MAT,,NUM,MAX     ! max defined material 
*get,nodemax,NODE,,NUM,MAX    ! highest numbered node in model 
 
! Create a new higher number for element type, real, and material 
newnode=nodemax+1000          ! number for pressure node for HSFLD242 
newnumber=typemax+1 
*if,realmax,ge,newnumber,then 
   newnumber=realmax+1 
*endif 
*if,mat_max,ge,newnumber,then 
   newnumber=mat_max+1 
*endif 
 
et,newnumber,HSFLD242         ! 3-D Hydrostatic Fluid Element 
keyopt,newnumber,1,0          ! UX, UY, UZ, plus HDSP at pressure node 
keyopt,newnumber,5,1          ! Fluid mass calculated based on the volume of the fluid element 
keyopt,newnumber,6,1          ! Incompressible 
mp,dens,newnumber,6440        ! Density of Galinstan, kg/m^3 
                              ! Ignoring thermal expansion in this example 
type,newnumber                ! Ignoring TB,FLUID in this example 
mat,newnumber                 ! Ignoring Reference pressure for compressible gas 
r,newnumber,0.10156           ! Applying intitial atomospheric Pressure = 0.10156 N/mm^2 
real,newnumber                !  
 
cmsel,s,FluidSurfaces1        ! Select nodes on interior 
esln                          ! Select elements that touch these nodes 
n,newnode,0,0,1.2e-002        ! Pressure node at 0,0,400 (automatically moved to centroid?) 
ESURF,newnode                 ! ESURF HSFLD242 elements over solid element faces 
                              !    Extra node "newnode" with ESURF with HSFLD242 
allsel 
fini 
/solu                         ! return to solving 

Figure 9-1 ADPL Command to enable the generation of three dimensional hydrostatic 

elements required to simulate filled Galinstan Channels 
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