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1 Introduction

This paper was motivated by the following natural question: are there any natural analogs
of integrable cases in rigid body dynamics (e.g. Euler, Lagrange and Kovalevskaya tops)
if one replaces the rotation group SOp3q with another 3-dimensional group?

We do not discuss this question here (see [10] for recent progress in this direction) and
the present paper can be considered as a preparatory work for further study of integrable
cases on low-dimensional Lie groups. Our first goal is to explain why any left-invariant
Hamiltonian system on (the cotangent bundle of) a 3-dimensonal Lie groupG (for instance,
geodesic flows of Riemannian and sub-Riemannian metrics) is Liouville integrable. We
show that integrability of such systems easily follows from the fact that the coadjoint orbits
of G are two-dimensional (Theorem 1) so that the dimension of G and other properties,
e.g., unimodularity (cf. [20]) are less important. Notice that if coadjoint orbits of G have
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dimension ě 4, it may well happen that G admits no integrable left-invariant geodesic
flows at all [5, 16, 17, 18].

Next we give normal forms of left-invariant Riemannian and sub-Riemannian metrics
on 3-dimensional Lie groups. Recall that in general a left-invariant metric on a Lie group
of dimension 3 is defined by six constants gij “ gji, i, j “ 1, 2, 3, but some of them “can be
killed” by means of the automorphism group. For instance, in the case of SOp3q every left-
invariant metric (equivalently, the inertia tensor) can be reduced to a diagonal form so that
there are only three essential parameters known as principal moments of inertia. We will
provide a similar reduction for all simply connected Lie groups of dimension 3 (Theorem
3). We will focus, however, on the case of solvable groups as the cases of SOp3q and
SLp2q have been already extensively studied: the rotation group SOp3q leading to classical
Euler and Euler-Poisson equations is a fundamental object in Geometry, Mechanics and
Mathematical Physics [1, 9, 28], for SLp2q we refer to recent papers [3, 19, 21, 22]. Our
description is explicit and will be given in global coordinates on G (Theorem 5).

We do not want to say that these results are essentially new. Geodesic flows of Lie
groups is a very popular subject (in dimension 3, see [2, 4, 6, 11, 12, 19, 20]) and the
integrability mechanisms are now well understood (see e.g., [7, 8, 23]. We especially would
like to refer to the paper [2] by Barrett et al., devoted to classification of left-invariant
sub-Riemannian metrics on 3-dimensional Lie groups. The authors obtain classification
in different terms which makes the comparison of their results with ours a non-obvious
task. We definitely prefer our approach as we present the answer in a short explicit form
(Theorems 3 and 5) that seems to be quite suitable for further studies of integrable systems
on these Lie groups as illustrated in Section 5.

To avoid possible misunderstanding and confusion with the notation we are using
below, we would like to emphasise that throughout the paper we identify the following
objects related to Lie groups and Lie algebras:

• left-invariant vector fields on a Lie group G;

• left-invariant functions on the cotangent bundle T ˚G;

• elements of the Lie algebra g of the Lie group G;

• linear functions on the dual space g˚.

Notice that each of the corresponding vector spaces carries a natural structure of a
Lie algebra (w.r.t. the Lie bracket of vector field, the canonical Poisson bracket on T ˚G,
the commutator on g and the Lie-Poisson bracket on g˚ respectively). These Lie algebras
are canonically isomorphic. For example, by f0, X1, . . . , Xn´1 we denote a basis of left-
invariant vector fields on G, but we equally may think of them as a basis of the Lie algebra
g, or Cartesian coordinates on g˚, or linear functions on T ˚G.

This work was supported by the Russian Science Foundation (project no. 17-11-01303).
The authors are very grateful to Alexey Borisov and Ivan Mamaev for valuable comments
and stimulating discussions.
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2 Integrability of left-invariant systems on Lie groups with
2-dimensional coadjoint orbits

The purpose of this section is the following

Theorem 1. Let G be a connected Lie group such that its (generic) coadjoint orbits are
two-dimensional. Then any left-invariant Hamiltonian system on T ˚G is Liouville inte-
grable, i.e., possesses n “ dimG independent commuting integrals F0 “ H,F1, . . . , Fn´1

Moreover, F1, . . . , Fn´1 are polynomial in momenta.
In particular, if G is a three-dimensional Lie group, then every left-invariant Hamil-

tonian system on T ˚M is Liouville integrable.

Proof. The proof is based on the description of Lie groups G satisfying the above condition
obtained by A.Konyaev [15] and the classical Noether theorem that states the following:

Theorem 2 (Noether theorem). Consider a Hamiltonian system on T ˚M with a Hamil-
tonian H and let ξ be a vector field on M that preserves the Hamiltonian 1. Then ξ, as
a linear function on T ˚M , is a first integral of this Hamiltonian system, called Noether
integral, i.e., tξ,Hu “ 0.

Let H be an arbitrary left-invariant function on T ˚G and

9q “
BH

Bp
, 9p “ ´

BH

Bq
. (1)

be the corresponding Hamiltonian system on T ˚G endowed with the canonical Poisson
structure.

Recall the following simple fact: if Y is a right-invariant vector field on G, then its
flow Φt

Y : GÑ G is given by

Φt
Y pxq “ expptYeq ¨ x “ LexpptYeqpxq, x P G,

where Ye “ Y peq P TeG is the the value of Y at the identity element e P G. In other words,
the flow of a right-invariant vector field is given by left translations. In the context of the
Noether theorem this means that left-invariant objects are preserved by right-invariant
vector fields.

Let Y1, . . . , Yn denote a basis of right-invariant vector fields on G. In view of the
above remark, Yi preserves H and, according to the Noether theorem, Y1, . . . , Yn span an
algebra Fright of (right-invariant) first integrals for the Hamiltonian system (1) (recall that
we consider Yi as a function on T ˚G linear in momenta, i.e., we set Yipq, pq “ xp, Yipqqy).
This property is, basically, equivalent to the fact that every left-invariant vector field
commute with every rigth-invariant vector field on a Lie group G and, similarly, every
left-invariant function on T ˚G Poisson commute with every right-invariant function.

1This condition can be understood in the following way. Let Φtξ : M Ñ M be the (local) flow of ξ on

M . This map can be naturally lifted to the cotangent bundle pΦtξ : T˚M Ñ T˚M . Then “ξ preserves H”

means H
`

pΦtξpq, pq
˘

“ Hpq, pq for all t P R and pq, pq P T˚M . In other words, H is preserved by the flow of
ξ naturally extended to T˚M .
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This Lie algebra Fright is obviously isomorphic to the Lie algebra g of the Lie group G.
In addition to that, the Hamiltonian H itself is a first integral. To construct n commuting
integrals, we have to distinguish two different cases:

(i) H is not right-invariant;

(ii) H is right-invariant (that is, H is in fact bi-invariant since by our assumption H is
left-invariant).

In the first case, H is functionally independent of Y1, . . . , Yn and therefore can be
added to the algebra of integrals so that we obtain a larger algebra of first integrals
F “ Fright ‘ xHy.

In the second case, H is a certain function of Y1, . . . , Yn and therefore cannot be
considered as an essentially new first integral. However, if we take any left-invariant
vector field X which is not right invariant (such a vector field obviously exists as G is not
commutative), this vector field gives another Noether integral for our Hamiltonian system
and the algebra of first integrals can be taken in the form F “ Fright ‘ xXy.

Thus, in the both cases we obtain a non-commutative finite-dimensional algebra of
first integrals F that contains n` 1 independent integrals. Moreover, from the algebraic
viewpoint F is isomorphic to the direct sum of g and a one-dimensional commutative Lie
algebra (generated by either H or X), i.e. F » g‘ R.

Our first remark is that F provides the integrability of (1) in the non-commutative
sense (see, Mischenko, Fomenko [24]) or, in a slightly different terminology, (1) is superin-
tegrable. Indeed, if the generators of the (finite-dimensional) algebra F of first integrals
are functionally independent, then the non-commutative integrability condition takes the
form

dimG “ n “
1

2
pdimF ` indFq

and in our case we have dimF “ dim g ` dimR “ n ` 1 and indF “ ind g ` indR “

pn´ 2q ` 1 “ n´ 1. (Recall that the index of g is the codimension of a generic coadjoint
orbit which equals two in our case so that ind g “ n´ 2). In particular, this implies that
the invariant isotropic integal submanifolds2 have dimension n´ 1 3.

Now to complete the proof it remains to construct n ´ 1 independent commuting
polynomials F1, . . . , Fn´1 in Y1, Y2, . . . , Yn. In the theory of integrable system on finite-
dimensional Lie algebras, such a collection of polynomials is known as a complete commu-
tative set of polynomials on the dual space g˚. The number of independent polynomials
in this set must, by definition, be equal to 1

2pdim g ` ind gq. Mischenko and Fomenko
conjectured in [25] that such a collection exists for any finite-dimensional Lie algebra g,
and this conjecture was proved by Sadetov [27] in 2004. This remark basically completes
the proof, as we obtain n commuting integrals of the form F1, . . . , Fn´1 and either H (in
case (i)) or X (in case (ii)). All of these integrals (except perhaps for H) are polynomial
in momenta by construction.

2We cannot say “invariant tori” as they are not necessarily compact.
3For example, invariant integral surfaces for left-invariant metrics on SOp3q are not three- but two-

dimensional.

4



We want, however, to describe commuting polynomials F1, . . . , Fn´1 explicitly without
referring to a rather non-trivial construction from [27]. To that end, we use the classifi-
cation of Lie algebras with two-dimensional generic coadjoint orbits obtained by Konyaev
[15].

According to his classification there is an infinite series of such algebras that are semidi-
rect sums of a one-dimensional Lie algebra and a commutative ideal of an arbitrary di-
mension (see a more detailed description below) and six “exceptional” Lie algebras listed
below:

Case 1: 3-dimensional Lie algebra sop3q with relations

re1, e2s “ e3, re1, e3s “ ´e2, re2, e3s “ e1.

Case 2: 3-dimensional Lie algebra slp2q with relations

re1, e2s “ e1, re1, e3s “ ´2e2, re2, e3s “ e3.

Case 3: 4-dimensional Lie algebra A4,8 with relations4

re2, e3s “ e1, re2, e4s “ e2, re3, e4s “ ´e3.

Case 4: 4-dimensional Lie algebra A4,10 with relations

re2, e3s “ e1, re2, e4s “ ´e3, re3, e4s “ e2.

Case 5: 5-dimensional Lie algebra A5,3 with relations

re3, e4s “ e5, re3, e5s “ e1, re4, e5s “ e3.

Case 6: 6-dimensional Lie algebra A6,3 with relations

re1, e2s “ e6, re1, e3s “ e4, re2, e3s “ e5.

First we consider the infinite series mentioned above. Each n-dimensional Lie algebra
from this series admits the following n-dimensional matrix representation:

ˆ

x0A x̄
0 . . . 0 0

˙

, where x̄ “

¨

˚

˝

x1
...

xn´1

˛

‹

‚

, x0, x1, . . . , xn´1 P R

and A is a certain pn ´ 1q ˆ pn ´ 1q matrix which determines the type of g. Two Lie
algebras of this kind with different matrices A1 and A2 are isomorphic if A1 and A2

satisfy the relation A2 “ λPA2P
´1 for some nonzero λ P R and invertible matrix P .

As already noticed, this Lie algebra is a semidirect product of the one-dimensional Lie

4The notation An,k is taken from [26]. Here n denotes the dimension of g and k the number of this Lie
algebra in the list of n-dimensional Lie algebras given in [26], n ď 6.
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(sub)algebra generated by

ˆ

x0A 0̄
0 . . . 0 0

˙

and the pn ´ 1q-dimensional commutative ideal

h “

"ˆ

0n´1 x̄
0 . . . 0 0

˙*

.

A complete set consisting of n ´ 1 independent commuting polynomials for this Lie
algebra is easy to construct: one can just take the linear functions corresponding to the
natural basis e1, . . . , en´1 of this commutative ideal. In other words, the first integrals on
T ˚G are linear functions of the form Fipq, pq “ xp, Yipqqy, where Yipqq is the right-invariant
vector field on G generated by one the basis vectors e1, . . . , en´1 of the commutative ideal
h Ă g » TeG “ LiepGq. This shows, in particular, that all additional integral in this case
are in fact linear. In particular, this is the case for all solvable Lie algebras of dimension
3.

To complete the proof, we need to construct a complete set of commuting polynomials
for the remaining six “exceptional” Lie algebras from Konyaev’s list. Recall that this set
should contain dim g´ 1 polynomials in e1, . . . , en (the basis of g which was used above to
define commutation relations). This can be done in several different ways (and of course
was done by many authors). Below we present one of possible answers for each of these
Lie algebras individually:

Case 1, sop3q: F1 “ e2
1 ` e2

2 ` e2
3, F2 “ e1.

(F1 is Casimir).
Case 2, slp2q: F1 “ e2

2 ` e3e1 , F2 “ e1.
(F1 is Casimir).

Case 3, A4,8: F1 “ e2e3 ´ e1e4, F2 “ e1, F3 “ e2

(F1, F2 are Casimirs).
Case 4, A4,10: F1 “ 2e1e4 ` e2

2 ` e2
3, F2 “ e1, F3 “ e2

(F1, F2 are Casimirs).
Case 5, A5,3: F1 “ e2

3 ` 2e2e5 ´ 2e1e4, F2 “ e1, F3 “ e2, F4 “ e3

(F1, F2, F3 are Casimirs).
Case 6, A6,3: F1 “ e1e5 ` e3e6 ´ e2e4, F2 “ e4, F3 “ e5, F4 “ e6, F5 “ e3

(F1, F2, F3, F4 are Casimirs).

To get commuting functions F1, . . . , Fn´1 on T ˚G we just need to replace ei in the
above formulas by the corresponding linear function Yipq, pq “ xp, Yipqqy where Yi denotes
the right-invariant vector field on G corresponding to the basis vector ei P g.

3 Classification of left-invariant Riemannian and sub-Riemannian
metrics on three dimensional Lie groups

Since we are working with both Riemannian and sub-Riemannian left-invariant metrics,
it is more convenient to describe them in terms of the corresponding Hamiltonians on the
cotangent bundle T ˚G (which can also be understood as quadratic forms on T ˚G). Recall
that for every left-invariant metric (Riemannian or sub-Riemannian) on a Lie group G,
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the corresponding Hamiltonian (quadratic form on T ˚G) can be written as

1

2

n
ÿ

α,β“1

gαβXαXβ,

where X1, . . . , Xn (n “ dimG) is a basis of left-invariant vector fields on G and gαβ are
constants satisfying symmetry and (semi)-positive definiteness conditions.

Equivalently, X1, . . . , Xn can be understood as the Cartesian coordinates on g˚ dual
to a certain basis e1, . . . , en of the Lie algebra g, and in fact by using the canonical
identification of g with pg˚q˚ we may assume that ei “ Xi. In this view, a left-invariant
metric on G is defined by a quadratic form (with constant coefficients) on the dual space
g˚. Our goal is to classify left-invariant metrics on G (equivalently, positive (semi)-definite
quadratic forms on g˚) up to the following natural equivalence relation.

Definition 1. Two quadratic forms (Hamiltonians)

H “
1

2

ÿ

gαβXαXβ and rH “
1

2

ÿ

rgαβXαXβ

are said to be equivalent, if there is an automorphism φ : gÑ g of the Lie algebra g such
that

1

2

ÿ

rgαβXαXβ “
1

2

ÿ

gαβφpXαqφpXβq.

This equivalence relation guarantees that the corresponding automorphism Φ : GÑ G
is an isometry between the (sub-)Riemannian metrics corresponding to H and H̃. In
particular, the corresponding (canonical map) map Φ˚ : T ˚GÑ T ˚G transforms H to H̃
so that the Hamiltonians H and H̃ as well as the corresponding Hamiltonian systems are
equivalent in the strongest possible sense.

Thus, for each 3-dimensional Lie group we just need to reduce a givenH “ 1
2

ř

gαβXαXβ

to a certain canonical form by means of transformations from the automorphism group
Autpgq which is well known for each 3-dimensional Lie algebra g. This can be done by
elementary algebraic manipulations similar to those used in undergraduate Linear Algebra
courses like “completing the square”. We will demonstrate this procedure in detail for the
algebra gIV. Transferring it to all the other cases is just an easy exercise, but first we need
to agree about the notation in order for the final result (Theorem 3) to make sense.

Below is the list of Lie algebras in dimension 3 (known as Bianchi classification) with
a fixed basis X0, X1, X2 and the automorphism group Autpgq explicitly written in terms
of this basis 5 (cf. [13, 14]).

For each Lie algebra we indicate non-trivial commutation relations between basis
elements X0, X1, X2 and then give an explicit matrix form Aφ for the transformations
φ : g Ñ g from the automorphism group Aut pgq. The parameters a, b, α, β, γ, δ in matri-
ces Aφ below take arbitrary real values satisfying the only restriction that detAφ ‰ 0. In
the cases of solvalble Lie algebras I´VII, X0, X1 and X2 denote a basis of g such that X1

and X2 generate a commutative ideal on which X0 acts in a certain way.

5The full automorphism group could be slightly larger, but Autpgq definitely contains its connected
identity component, which is sufficient for our purposes.
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• gI: commutative Lie algebra

¨

˝

X 10
X 11
X 12

˛

‚“ Aφ

¨

˝

X0

X1

X2

˛

‚, Aφ P GLp3,Rq, dim Aut pgIq “ 9.

• gII: (Heisenberg Lie algebra) rX0, X2s “ X1;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

α a β
0 αδ ´ γβ 0
γ b δ

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgIIq “ 6.

• gIII: rX0, X1s “ X1;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α 0
0 0 β

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgIIIq “ 4.

• gIV: rX0, X1s “ X1, rX0, X2s “ X1 `X2;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α 0
0 β α

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgIVq “ 4.

• gV: (book Lie algebra) rX0, X1s “ X1, rX0, X2s “ X2;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α β
0 γ δ

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgVq “ 6.

• gVI0 : (semidirect sum ep1, 1q “ sop1, 1q ` R2) rX0, X1s “ X1, rX0, X2s “ ´X2;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α 0
0 0 β

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgVI0q “ 4.

• gVI: rX0, X1s “ X1, rX0, X2s “ aX2 with a ‰ ˘1, a ‰ 0;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α 0
0 0 β

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgVIq “ 4.

• gVII0 : (semidirect sum ep2q “ sop2q ` R2) rX0, X1s “ ´X2, rX0, X2s “ X1;

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α β
0 ´β α

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgVII0q “ 4.
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• gVII: rX0, X1s “ aX1 ´X2, rX0, X2s “ X1 ` aX2.

¨

˝

X 10
X 11
X 12

˛

‚“

¨

˝

1 a b
0 α β
0 ´β α

˛

‚

¨

˝

X0

X1

X2

˛

‚, dim Aut pgVIIq “ 4.

• gVIII: (simple Lie algebra slp2,Rq) rX0, X1s “ 2X1, rX0, X2s “ ´2X2, rX1, X2s “

X0.
¨

˝

X 10
X 11
X 12

˛

‚“ Aφ

¨

˝

X0

X1

X2

˛

‚, Aφ P SOp2, 1q, dim Aut pgVIIIq “ 3.

More specifically, AJφ

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚Aφ “

¨

˝

1 0 0
0 0 1
0 1 0

˛

‚.

• gIX: (simple Lie algebra sop3q) rX0, X1s “ X2, rX1, X2s “ X0 rX2, X0s “ X1.

¨

˝

X 10
X 11
X 12

˛

‚“ Aφ

¨

˝

X0

X1

X2

˛

‚, Aφ P SOp3q, i.e. Aφ
J “ Aφ

´1, dim Aut pgIXq “ 3.

As a typical example, we now demonstrate the reduction-to-canonical-form process for
the Lie algebra gIV. We start with an arbitrary quadratic form

H “

2
ÿ

i,j“0

gijXiXj .

Notice that due to the positive (semi-)definiteness of H, we have g00 ą 0. In the Rie-
mannian case this fact is obvious. In the sub-Riemannian case, g00 “ 0 would imply that
H “ g11X2

1 ` 2g12X1X2` g
22X2

2 which is forbidden as X1 and X2 generate a proper ideal
in gIV but not the whole Lie algebra. Thus, we can write

H “ g00

ˆ

X0 `
g01

g00
X1 `

g02

g00
X2

˙2

` quadratic form in X1 and X2.

Since the transformation X 10 “ X0 `
g01

g00
X1 `

g02

g00
X2, X 11 “ X1, X 12 “ X2 belongs to the

automorphism group, we see that H can be reduced to the form

H̃ “ g00X2
0 ` aX

2
1 ` bX

2
2 ` 2cX1X2

for some a, b, c P R.
Next for the same reason as above we notice that b ą 0 (in the sub-Riemannian case,

b “ 0 would imply that H “ g00X2
0 ` aX2

1 which is forbidden as X0 and X1 generate a
proper subalgebra of gIV). Hence, we can rewrite H̃ in the form

H̃ “ g00X2
0 ` aX

2
1 ` bX

2
2 ` 2cX1X2 “ g00X2

0 `

ˆ

?
bX2 `

c
?
b
X1

˙2

`

ˆ

a´
c2

b

˙

X2
1
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Now applying the automorphism X 10 “ X0, X 11 “
?
bX1, X 12 “

c?
b
X1 `

?
bX2, we

conclude that H̃ is equivalent to

g00X2
0 `X

2
2 `

ˆ

ab´ c2

b

˙

X2
1

or, by using simpler notation,

AX2
0 `X

2
2 ` CX

2
1 , A,C ą 0.

In the sub-Riemannian case the last term in this expression has to automatically
disappear and we come to the following conclusion:

Proposition 1. Every left-invariant Riemannian metric on the 3-dimensional Lie group
GIV is defined up to equivalence by the quadratic form

H “ AX2
0 `X

2
2 ` CX

2
1 , for some A,C ą 0.

Every left-invariant sub-Riemannian metric on the 3-dimensional Lie group GIV is defined
up to equivalence by the quadratic form

H “ AX2
0 `X

2
2 , for some A ą 0.

Similar elementary computations for all the other 3-dimensional Lie algebras lead to
the following final result.

Let G be a simply connected three-dimensional group and X0, X1, X2 be a basis of
left-invariant vector fields. This basis can be treated as a basis of the corresponding Lie
algebra, one of those from Bianchi classification. In each case, we will assume that this
basis is canonical, i.e. coincides with the basis described above for each algebra from the
Bianchi list gI, . . . , gVII. As already discussed, it will be more convenient for us to define
left-invariant metrics by means of the corresponding Hamiltonians being quadratic forms
in X0, X1, X2 with constant coefficients. In this setting we have

Theorem 3. The canonical forms of left-invariant Riemannian and sub-Riemannian met-
rics on simply connected three dimensional Lie groups are

Riemannian sub-Riemannian

GI X2
0 `X

1
2 `X

2
2 none

GII X2
0 `BX

2
1 `X

2
2 X2

0 `X
2
2

GIII AX2
0 `X

2
1 `X

2
2 ` C X1X2 AX2

0 ` pX1 `X2q
2

GIV AX2
0 `BX

2
1 `X

2
2 AX2

0 `X
2
2

GV AX2
0 `X

2
1 `X

2
2 none

GVI and GVI0 AX2
0 `X

2
1 `X

2
2 ` C X1X2 AX2

0 ` pX1 `X2q
2

GVII and GVII0 AX2
0 `BX

2
1 `X

2
2 AX2

0 `X
2
2

GVIII AX2
0 `B pX

2
1 `X

2
2 q ` C X1X2 AX2

0 `B pX1 `X2q
2 or

B pX2
1 `X

2
2 q ` C X1X2

GIX AX2
0 `BX

2
1 ` C X

2
2 AX2

0 `BX
2
1
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Here A,B,C P R are arbitrary parameters satisfying the positive (semi-)definiteness as-
sumption (more precisely A ą 0 and B ą 0 in all the cases, |C| ă 2 for GIII, GVI and
GVI0, |C| ă 2B for GVIII, and C ą 0 for GIX).

The assumption that G is simply connected can sometimes be important for the follow-
ing reason. We consider the automorphism group Autpgq and then extend its action to the
group G. If G is simply connected, then such an extension always exists. Otherwise, there
might be some topological obstructions. In other words, the automorphism group of G
can be smaller than that of g. For example, if instead of the abelian group R3 we consider
the torus R3{Γ which is still an abelian Lie group with the same Lie algebra gI, then in
order for an automorphism φ : gI Ñ gI to induce an automorphism Φ : R3{Γ Ñ R3{Γ, we
need an additional condition that φ preserves the lattice Γ.

In the next section we give explicit formulas for left- and right-invariant vector fields on
solvable three-dimensional Lie groups in local coordinates. This will give us a possibility
to study the corresponding geodesic flows from the analytic viewpoint and, in particular,
to explicitly integrate them.

4 Explicit description of left-invariant geodesic flows on non-
semisimple 3-dimensional Lie groups

Without loss of generality we may assume that the corresponding Lie group G takes the
following matrix form:

G “ GA “

"ˆ

exppq0Aq q̄
0 . . . 0 1

˙

, where q̄ “ pq1, . . . , qn´1q
J P Rn´1

*

Ă GLpn,Rq. (2)

The parameters q0, q1, . . . , qn´1 are treated as global coordinates on the group. Topologi-
cally, this group is diffeomorphic to Rn. Then we can just consider the coordinates pq0, x̄q
to study this group.
It is easy to prove that the multiplication in G in these coordinates can be written as
follows:

pq0, q̄q ˚ py0, ȳq “ pq0 ` y0, exppq0Aqȳ ` q̄q. (3)

Each right- and left-invariant vector field is given by n “ dimG arbitrary parameters.
For right-invariant vector fields, we will denote them by η0, η1, . . . , ηn´1, for left-invariant
by ξ0, ξ1, . . . , ξn´1. We now prove

Proposition 2. A left-invariant vector field Xξ on G takes the form:

Xpξ0,ξ̄q “
`

ξ0, exppq0Aqξ̄
˘

“ ξ0 B

Bq0
`

n´1
ÿ

i,j“1

Bi
jpq0q ξ

j B

Bqi
, where ξ̄ “

¨

˚

˝

ξ1

...
ξn´1

˛

‹

‚

(4)
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and Bi
jpq0q are the components of the matrix exppq0Aq. A right-invariant vector field Yη

on G takes the form

Ypη0,η̄q “
`

η0, η0 ¨Aq̄` η̄
˘

“ η0 B

Bx0
`

n´1
ÿ

i,j“1

`

η0Aijqj ` η
i
˘ B

Bxi
, where η̄ “

¨

˚

˝

η1

...
ηn´1

˛

‹

‚

. (5)

Proof. For verification we will use the following standard method for constructing left- and
right-invariant vector fields on Lie groups. let γptq be an arbitrary curve in G such that
γp0q “ e (the identity of the group) and d

dtγp0q “ ξ P TeG » g. Then the left-invariant
vector field generated by ξ is defined by the formula

Xξpxq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

x ˚ γptq
˘

, x P G.

Similarly, for right-invariant vector fields: Yξ “
d
dt

ˇ

ˇ

t“0

`

γptq ˚ x
˘

.
In our case, we set γptq “ pξ0t, ξ̄tq. Hence, by using formula (3):

Xpξ0,ξ̄q “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

pq0, q̄q ˚ pξ
0t, ξ̄tq

˘

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pq0 ` ξ0t, exppq0Aqξ̄t` q̄q “ pξ0, exppq0Aqξ̄q.

Similarly, for γptq “ pη0t, η̄tq we have

Ypη0,η̄q “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

pη0t, η̄tq ˚ pq0, q̄q
˘

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pη0t` q0, exppη0Atqq̄ ` η̄tq “ pη0, η0Aq̄ ` η̄q,

as stated.

Remark 1. Notice that the vector fields B
Bq1

, . . . , B
Bqn´1

are right-invariant. One more

right-invariant vector field takes the form B
Bx0
`
řn´1
i,j“1A

i
jqj

B
Bxi

.

Remark 2. It is straightforward to check that left- and right-invariant vector fields given
by (4) and (5) commute, i.e., rXpξ0,ξ̄q, Xpη0,η̄qs “ 0 for any pξ0, ξ̄q and pη0, η̄q.

Now if we choose an arbitrary basis in the space of left-invariant vector fieldsX0, . . . , Xn´1

then by treating them as linear functions on the cotangent bundle T ˚G, we can have the
corresponding Hamiltonian in terms of canonical coordinates px, pq. Observe that the
Hamiltonian H does not contain variables q1, . . . , qn´1 so that p1, . . . , pn´1 are commuting
integrals of the corresponding geodesic flow (which, of course, correspond to right-invariant
vector fields B

Bq1
, . . . , B

Bqn´1
. In particular, we are led to the following conclusion:

Theorem 4. The geodesic flow of any left-invariant Rienannian or sub-Riemannian met-
ric on a Lie group G defined by (2) is Liouville integrable. As commuting integrals, one
can consider the momenta p1, . . . , pn´1 and the Hamiltonian H itself.

As we see, explicit formulas for left-invariant vector fields (as well as for left-invariant
metrics) depend on the matrixA that defines the groupG “ GA. For the three-dimensional
group of this type, these formulas are summarised in the following table (for each group
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we indicate the corresponding 2 ˆ 2 matrix A and its exponent exppq0Aq used in the
general formula (4) for left-invariant vector fields). Notice that the commutation relations
between the left-invariant X0, X1, X2 described below agree with those we used in Section
3 to introduce the list of non-semisimple Lie algebras gI, . . . , gVII.

Group A exppq0Aq Basis of left-invaraint
vector fields

GI:

ˆ

0 0
0 0

˙ ˆ

1 0
0 1

˙

$

’

&

’

%

X0 “ Bq0

X1 “ Bq1

X2 “ Bq2

GII:

ˆ

0 1
0 0

˙ ˆ

1 q0

0 1

˙

$

’

&

’

%

X0 “ Bq0

X1 “ Bq1

X2 “ q0Bq1 ` Bq2

GIII:

ˆ

1 0
0 0

˙ ˆ

eq0 0
0 1

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eq0Bq1
X2 “ Bq2

GIV:

ˆ

1 1
0 1

˙ ˆ

eq0 q0e
q0

0 eq0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eq0Bq1
X2 “ q0e

q0Bq1 ` e
q0Bq2

GV:

ˆ

1 0
0 1

˙ ˆ

eq0 0
0 eq0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eq0Bq1
X2 “ eq0Bq2

GVI0 :

ˆ

1 0
0 ´1

˙ ˆ

eq0 0
0 e´q0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eq0Bq1
X2 “ e´q0Bq2

GVI:

ˆ

1 0
0 a

˙ ˆ

eq0 0
0 eaq0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eq0Bq1
X2 “ eaq0Bq2

GVII0 :

ˆ

0 1
´1 0

˙ ˆ

cos q0 sin q0

´ sin q0 cos q0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ cos q0Bq1 ´ sin q0Bq2

X2 “ sin q0Bq1 ` cos q0Bq2

GVII:

ˆ

a 1
´1 a

˙ ˆ

eaq0 cos q0 eaq0 sin q0

´eaq0 sin q0 eaq0 cos q0

˙

$

’

&

’

%

X0 “ Bq0

X1 “ eaq0 cos q0Bq1 ´ e
aq0 sin q0Bq2

X2 “ eaq0 sin q0Bq1 ` e
aq0 cos q0Bq2

Combining these formulas with Theorem 3 we obtain

Theorem 5. The canonical forms of left-invariant Riemannian and sub-Riemannian met-
rics on solvable simply connected Lie groups of dimension 3 (in local coordinates q0, q1, q2

introduced in (2)) are presented in the following table:
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Riemannian case sub-Riemannian case

GI: p2
0 ` p

2
1 ` p

2
2 none

GII: p2
0 `Bp

2
1 ` pq0p1 ` p2q

2 p2
0 ` pq0p1 ` p2q

2

GIII: Ap2
0 ` e

2q0p2
1 ` p

2
2 ` Ce

q0p1p2 Ap2
0 ` pe

q0p1 ` p2q
2

GIV: Ap2
0 ` e

2q0
`

Bp2
1 ` pq0p1 ` p2q

2
˘

Ap2
0 ` e

2q0pq0p1 ` p2q
2

GV: Ap2
0 ` e

2q0pp2
1 ` p

2
2q none

GVI0: Ap2
0 ` e

2q0p2
1 ` e

´2q0p2
2 ` Cp1p2 Ap2

0 ` pe
q0p1 ` e

´q0p2q
2

GVI: Ap2
0 ` e

2q0p2
1 ` e

2aq0p2
2 ` Ce

pa`1qq0p1p2 Ap2
0 ` pe

q0p1 ` e
aq0p2q

2

GVII0: Ap2
0 `B pcos q0 ¨ p1 ´ sin q0 ¨ p2q

2 Ap2
0 ` psin q0 ¨ p1 ` cos q0 ¨ p2q

2

`psin q0 ¨ p1 ` cos q0 ¨ p2q
2

GVII: Ap2
0 ` e

2aq0
´

C pcos q0 ¨ p1 ´ sin q0 ¨ p2q
2 Ap2

0 ` e
2aq0psin q0 ¨ p1 ` cos q0 ¨ p2q

2

`psin q0 ¨ p1 ` cos q0 ¨ p2q
2
¯

Here A,B,C P R are arbitrary parameters satisfying the positive (semi-)definiteness
assumption (more precisely A ą 0, B ą 0 and C2 ă 4).

5 Example: the group GVII0 “
ĆEp2q

Let us consider the geodesic flow for a left-invariant sub-Riemannian metric on GVII0 in
more detail.

The Hamiltonian takes the form H “ 1
2

´

Ap2
0`psin q0 ¨ p1` cos q0 ¨ p2q

2
¯

and it admits

three non-commuting linear integrals (that represent basis right-invariant vector fields, see
Remark 1).

F0 “ p0 ` q2p1 ´ q1p2,

F1 “ p1,

F2 “ p2.

Together with H, all these integrals form a four-dimensional (non-commutative) algebra
of first integrals with two Casimir functions H and F “ F 2

1 ` F
2
2 .

The corresponding sub-Riemannian geodesics can be easily found in quadratures. We
are going to describe the geodesics through the identity of the group which is the origin
of our coordinate system, i.e., pq0, q1, q2q “ p0, 0, 0q.

Indeed, let us fix the values of F0, F1 and F2:

F0 “ p0 ` q2p1 ´ q1p2 “ c0, F1 “ p1 “ c1, F2 “ p2 “ c2.
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Then the Hamiltonian system with the Hamiltonian H can be rewritten in variables
q1, q2 and q3 only:

dq0

dt
“
BH

Bp0
“ Ap0 “ Apc0 ´ q2c1 ´ q1c2q,

dq1

dt
“
BH

Bp1
“ sin q0 pp1 sin q0 ` p2 cos q0q “ sin q0 pc1 sin q0 ` c2 cos q0q,

dq2

dt
“
BH

Bp2
“ cos q0 pp1 sin q0 ` p2 cos q0q “ cos q0 pc1 sin q0 ` c2 cos q0q.

(6)

This dynamical system in R3pq1, q2, q3q now depends on c0, c1, c2 as parameters and admits
a non-trivial energy integral that can now be written as

H “
1

2

´

Apc0 ´ c1q2 ` c2q1q
2 ` pc1 sin q0 ` c2 cos q0q

2
¯

. (7)

For simplicity, set c0 “ 1, c1 “ 1, c2 “ 0 (the general case is not essentially different).
Then (8) becomes

dq0

dt
“ Ap1´ q2q,

dq1

dt
“ sin2 q0,

dq2

dt
“ cos q0 sin q0,

(8)

and

H “
1

2

`

Ap1´ q2q
2 ` sin2 q0

˘

. (9)

It is interesting to notice that the first and third equations of this system form a one-
degree of freedom Hamiltonian system with the Hamiltonian (9). The level lines of this
Hamiltonian (i.e., in fact solutions of this subsystem) are shown in Figure 1.

This observation shows that sub-Riemannian geodesics can be of several different types:

• Type 1. Trivial geodesics, corresponding to the minima of H located at the points
q2 “ 1, q0 “ πk, k P Z. For these geodesics H “ 0 and hence therefore there is no
motion.

• Type 2. The geodesics corresponding to the saddle equilibria of H located at points
q2 “ 1, q0 “ π{2 ` πk, k P Z. For such geodesics, q0 and q2 remain constant, but
q1ptq “ t. Geometrically, these are straight lines.

• Type 3. Geodesics that are periodic in variables q0 and q2, whereas q1ptq is strictly
increasing. They correspond to closed level lines tH “ h ď 1{2u shown in Figure 1.
From the view point of the dynamics in R3pq0, q1, q2q, they are located on invariant
cylinders.
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Figure 1: Level lines of Hpq0, q2q

• Type 4. Geodesics that correspond to non-closed level lines of tH “ h ě 1{2u shown
in Figure 1.

• Type 5. Geodesics that corresponds to separatrices connecting two saddle equilib-
rium points in Figure 1. The are located at the critical level tH “ 1{2u. From
the view point of the dynamics in R3pq0, q1, q2q, they asymptotically approach two
“critical” geodesics of type 2 as tÑ ˘8.

Typical geodesics of types 3, 4 and 5 are shown in Figure 2 in projection to the
coordinate plane Rpq1, q2q.
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Figure 2: Three types of sub-Riemannian geodesics.
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Locally, system of ODEs (8) can be easily solved in quadratures. For instance, if we
consider τ “ q0 as a new parameter on geodesics (8), then we have q0pτq “ τ, q2pτq “

1 ˘
b

1
Ap2h´ sin2 τq, where h is a constant of integration. Here we simply use the fact

that in terms of q0 and q2, the solutions coincides with the levels of the Hamiltonian (9),
i.e., satisfy the relation 1

2

`

Ap1´ q2pτqq
2 ` sin2 q0pτq

˘

“ h. To recover q1pτq, it remains to
solve the equation

dq1

dτ
“
dq1

dt

dt

dτ
“
dq1

dt

ˆ

dq0

dt

˙´1

“
sin2 q0pτq

Ap1´ q2pτqq
“

sin2 τ
a

Ap2h´ sin2 τq

so that finally we get the following parametric equation for sub-Riemannian geodesics
(with the fixed values of integrals F0, F1 and F2)

q0pτq “ τ, q1pτq “

ż

sin2 τdτ
a

Ap2h´ sin2 τq
, q2pτq “ 1˘

c

1

A
p2h´ sin2 τq.
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