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ABSTRACT: , e human hand is a complex system, with a large number of degrees of freedom 
(DoFs), sensors embedded in its structure, actuators and tendons, and a complex hierarchical control. 
Despite this complexity, the eff orts required to the user to carry out the diff erent movements is quite 
small (albeit after an appropriate and lengthy training). On the contrary, prosthetic hands are just a 
pale replication of the natural hand, with signifi cantly reduced grasping capabilities and no sensory 
information delivered back to the user. Several attempts have been carried out to develop multifunctional 
prosthetic devices controlled by electromyographic (EMG) signals (myoelectric hands), harness (kine-
matic hands), dimensional changes in residual muscles, and so forth, but none of these methods permits 
the “natural” control of more than two DoFs. , is article presents a review of the traditional methods 
used to control artifi cial hands by means of EMG signal, in both the clinical and research contexts, 
and introduces what could be the future developments in the control strategy of these devices. 
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I. INTRODUCTION

A continuous challenge for scientists and engineers is to replicate the sensory-motor function 
of the human hand, a complex and adaptable system capable of both delicate and precise 
manipulation and power grasping of heavy objects.¹² , is result is achieved by a combination 
of a large number of degrees of freedom (DoFs), proprioceptive and exteroceptive sensors, 
and a complex hierarchical architecture control.³ However, despite this complexity, the eff orts 
required to the user during the daily activities are very small, even if this ability is achieved 
only after several years of unconscious and conscious training. 

On the contrary, current commercial prosthetic hands, aimed at replicating the natural 
system, are unable to provide enough grasping functionality or to deliver sensory-motor 
information to the user.⁴⁶ Commercially available prosthetic devices, such as Otto Bock 
SensorHand,⁷ (Otto Bock HealthCare GmbH,  Duderstadt, DE)as well as multifunctional 
hand designs are far from providing the manipulation capabilities of the human hand.⁸ More-
over, for many reasons, they require a great deal of training and concentration in order to be 
eff ectively used. For example, in prosthetic hands active bending is restricted to two or three 
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joints, actuated by a single motor drive acting simultaneously on the metacarpo-phalangeal 
(MP) joints of the thumb, index, and middle fi nger, while other joints are fi xed. 

Prosthetic hands, nowadays, have optimal reliability and robustness, but at present many 
limitations which can be summarized, as follows⁹: 

 • , e low grasping capabilities, because current prosthetic hands have no more than two 
active DoFs (and act like a simple gripper).

 • , e noncosmetic and unnatural appearance of the grasping movement resulting from the 
low number of DoFs. On the other hand, cosmetic devices have no active functionality 
and can be used only as a passive support.

 • , e lack of sensory information given to the user. , ere is no feedback except visual 
from the outside, so the user has to judge by sight when to stop moving the hand. Otto 
Bock recently introduced to the market the SUVA Hand, which uses a force sensor in 
order to optimize the grip strength, but there is still no sensory feedback besides direct 
visualization and such subtle clues as the sound of the speed changes of the motor and 
transmission.

 • , e lack of a “natural,” intuitive, nonfatiguing command interface, to enable practical 
long-term use of a multifunctional prosthetic hand.

According to the “mechatronic” design paradigm, the fi rst two limitations could be over-
come by a complete redesign of the hand prosthesis, for example using microactuators¹⁰¹¹ 
or underactuated mechanisms.¹²¹³ 

Fıgure 1 illustrates the schematic diagram of a multifunctional hand prosthesis. Even if 
we could increase the number of DoFs of the prosthesis, the main limitation would remain 
the control of the artifi cial device. In fact, many DoFs cannot be controlled directly by the 
subject except by using complicated coding of movements, which, in turn, requires a high 
level of training. , e user interface, on the other hand, should be as intuitive and nonfa-
tiguing as possible to enable practical long-term use of the device, because users cannot be 
productive if they must spend a large portion of their energy and concentration controlling 
the artifi cial hand.¹⁴ 

Several possibilities were exploited over the past years. For examples, hand prosthesis 
could be controlled by harness (body-powered ), by Tendon Activated Pneumatic (TAP) foam 

FIGURE 1. A multifunctional hand prosthesis is a mechatronic device composed by several modules: 

signal acquisition and processing; control; sensors; actuators; batteries.
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sensors,¹⁵¹⁶ or by Hall eff ect sensors.¹⁷ Another approach uses direct tunnel muscle cineplas-
ties,¹⁸¹⁹ in an extension of the extended physical proprioception (EPP) concept.²⁰ 

Electromyographic (EMG) signals, collected at the skin surface, have been used for 
the control of upper limb prosthetic devices since 1948,²¹ because they provide easy and 
noninvasive access to physiological processes that cause the contraction of the muscles. At 
present, the process of EMG signals is the most common approach used for the control of 
active prosthetic hands. In any case, the myoelectric signal permits the control of no more 
than one or two active DoFs (generally, one DoF for the gripper and one for the wrist). 
Limitations in the mechanics of the prosthetic device and in the processing of EMG data 
make it impossible to control more.²² 

I.B. Aim of This Article

In past decades, and especially during the last years, many eff orts have been carried out in 
order to implement eff ective control algorithms based on the processing of EMG signals. 
Starting from the fi rst attempts in the late 1940s,²¹ several EMG-based algorithms have 
been developed and used to enhance the functionality and usability of prosthetic hands. 

, e goal of this article is to review the state of the art of EMG-based control of 
artifi cial hands and attempt to defi ne the potentialities and limits of this approach. , e 
article is organized as follows: in Section II, the formal scheme of EMG acquisition and 
processing is presented, showing how EMG signal is acquired and processed in order to 
control traditional prostheses and paying particular attention to the analysis of the recent 
advanced techniques developed to control multifunctional prostheses. An overview of the 
clinical approach to the prosthetization of a user is also presented. , e acquisition and 
processing of the EMG signal is discussed in Section II.B; the extraction of EMG features, 
both in the time domain and in the frequency domain, in Section II.C. , e dimensional-
ity reduction is presented in Section II.D; some techniques of pattern classifi cation are 
illustrated in Section II.E; and a brief overview of online and offl  ine learning techniques 
is given in Section II.F. 

Fınally, in Section III the merits and the limitations of these algorithms are analyzed, 
and possible solutions to overcoming these limits are discussed in Section IV. 

II. ACQUISITION AND PROCESSING OF EMG SIGNAL—
FORMAL SCHEME

, e formal scheme for the acquisition and analysis of the EMG signal for the control of 
prosthetic devices is composed of several modules (Fıg. 2): 

 • signal conditioning and preprocessing

 • feature extraction

 • dimensionality reduction

 • pattern recognition

 • offl  ine and online learning 
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, e fi rst module preprocesses the EMG signal in order to reduce noise artifacts and/or en-
hance spectral components that contain important information for data analysis. Moreover, 
it detects the onset of the movement and activates all the following modules. 

During the feature extraction phase, the measured EMG signal x ∈ X ⊆ ℜN is processed 
in order to emphasize the relevant structures in the data, while rejecting noise and irrelevant 
data, producing the so-called “original feature set” v ∈ V ⊆ ℜM. Sometimes a reduction 
of the dimensionality is needed to simplify the task of the classifi er. In this case, a pattern 
recognition algorithm is used on the (reduced) feature set z ∈ Z ⊆ ℜL, and the measured 
signal is classifi ed into the output space y ∈ Y = {y₁,…,yk}. , e learning modules are used 
to adapt the device to the EMG signals generated by the users because of its time-variant 
characteristics. 

, e state of the art in each of these subtopics is briefl y summarized below. 

II.A. Preparation of Patient for Myoelectric Device

In clinical practice, several phases are usually implemented in order to maximize the effi  cacy 
of this rehabilitation problem.²³²⁵ 

 1. , e fi rst step is the patient evaluation, including observation of skin condition, tissue 
condition, skeletal anatomy, muscle strength, range of motion, EMG testing, and con-
tralateral side involvement. After this phase, the design of the socket–prosthesis interface 
and of the primary and secondary control schemes are investigated. Suspension and 
cosmesis can be formulated by combining data collected throughout the evaluation with 
knowledge of design theory. 

 2. , e diagnostic phase begins with obtaining a plaster impression of the patient’s residual 
limb, taking care to prepare the patient both physically and psychologically for the 
procedure. Some considerations about interface material, donning and doffi  ng, and 
suspension have to occur prior to modifi cation, because they will dictate modifi cation 
requirements. After this phase, defi nition of an eff ective interface from both the static 
and dynamic points of view must be considered. 

 3. During the static diagnostic analysis, auxiliary suspension is included if dictated by the 
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FIGURE 2. Formal scheme for acquisition and analysis of EMG for control of prosthetic devices. 
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initial strategy. , is is an important factor because the interface to skin contact can 
often change once auxiliary suspension is incorporated. Several modifi cations to the 
interface and auxiliary suspension may be required to obtain a static, total-contact, 
comfortable interface. Once an acceptable static interface has been achieved, dynamic 

diagnostic analysis follows, which insures maximum range of motion with minimal skin-
to-interface contact loss. 

If myoelectric control is selected as the primary control scheme, site identifi cation must 
consider EMG signal level, EMG separation, and skin condition. Marking an area on the 
skin surface that has acceptable EMG signal strength and separation and then donning the 
interface and transferring this site provides the best results. Once electrodes are mounted into 
the diagnostic interface, an EMG analyzer is attached to insure that the tissue containment 
strategy of the interface does not adversely eff ect EMG signal strength and separation, in 
both static and dynamic conditions. , en, when the interface is under load, reevaluation of the 
interface takes into account donning/doffi  ng eff ort, contralateral limb involvement, comfort, 
range of motion, stabilization, electrode site contact, suspension, alignment, and cosmesis. 

Initial prosthetic training includes basic operation instruction, care, and maintenance. 
Initial system optimization occurs during this phase. Evaluation of the patient’s function, 
comfort, and cosmesis have to be included in the postdelivery evaluation plan and com-
municated to the rehabilitation team to insure effi  cient transition. 

II.B. EMG Acquisition and Preprocessing

Precise detection of discrete motor events, such as the onset of voluntary muscle contrac-
tions, is a prerequisite for various psychophysiological approaches in sensorimotor system 
analysis.²⁶²⁷ EMG signal for prosthetic applications is generally acquired by placing one 
or more diff erential electrodes on the skin of the user, depending on his/her level of am-
putation and on the data that should be extracted from the signal. Recently, the Surface 
EMG for Non-Invasive Assessment of Muscles () project²⁸ defi ned guidelines 
for guaranteeing a useful exchange of knowledge and experience among scientists on the 
choice of electrodes, electrode placement procedures, and signal processing methods. A 
good acquisition of the EMG signal, in fact, is a prerequisite for good signal processing. In 
particular, the  consortium defi ned some recommendations about electrode shape 
and size, interelectrode distance, electrode material, and sensor construction (where sensor 

is defi ned as the ensemble of electrodes, electrode construction, and integrated preamplifi er, 
if any)., e use of one or more low-noise, high-input impedance amplifi ers to acquire the 
EMG signal is suggested. 

After the acquisition, the signal is fi ltered, generally using a band-pass fi lter with high 
CMRR and gain in order to reduce motion artifacts (high-pass fi lter) and noise (low-pass 
fi lter). Generally, about 95% of the power spectrum of the EMG is accounted for by harmon-
ics up to 400 Hz, and most of the remaining is electrode and equipment noise. A low-pass 
fi lter, or anti-aliasing, is usually applied to the signal. , e cut-off  frequency varies from 250 
to 2000 Hz, the most common choice being around 500 Hz.²⁹ A high-pass fi lter is also 
required to attenuate movement artifacts and the instability of the electrode–skin interface. 
In the literature, the lower cut-off  frequency varies from 0.1 to 100 Hz, but generally a 
value between 10 and 20 Hz is used. In simple on–off  devices a notch fi lter at 50 or 60 Hz 
(depending on the frequency of the electric power supply) could be added. However, it is 
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worth noting that this fi lter could also eliminate some important information present in the 
EMG signal and should not be used for multifunctional hands. 

At this stage the signal is sampled and converted into a digital stream of data. 

1. Detection of Onset of Movement

, e fi rst problem is the correct detection of the onset of the movement.²⁶³⁰³¹ In fact, because 
of the stochastic characteristic of the surface electromyogram, onset detection is a challeng-
ing task, especially when surface EMG response is weak. Several methods and algorithms 
have been proposed in the literature,²⁶ but little is known about the reliability and accuracy 
of these methods. , e formal detection scheme is divided into two parts: the fi rst roughly 
detects the presence of an event by applying a test function g(x₁,¼…,xk) to the conditioned 
signal; the second refi nes the estimation of the exact change time t0. Staude et al.³⁰ tested 
and compared the performance of diff erent onset detection methods. , e results were that 
some of the threshold-based signal-power estimation procedures were very sensitive to 
signal parameters, whereas statistically optimized algorithms were generally more robust. 
In particular, the generalized likelihood ratio (GLR)³⁰³¹ method seems to be more robust 
than the other methods. 

An example of a simple processing of EMG signal is given in Fıgure 3. , e signal 
acquired from electrodes (Fıg. 3a) is rectifi ed (Fıg. 3b) and low-pass fi ltered (Fıg. 3c). , is 
signal is then compared to a threshold (Fıg 3d). , e choice of the threshold clearly aff ects 
the performance of the detection: a lower threshold (dashed line) is more sensitive to noise, 
a higher one could be less precise in detecting fi ne movements. 

II.C. EMG Feature Extraction

Many EMG-based control systems are able to control a single DoF in a prosthetic limb 
(hand open/close, wrist or elbow fl exion/extension). , ese systems generally extract the EMG 
amplitude or rate of change by using two electrodes placed on two antagonist muscles (e.g., 
biceps and triceps brachii or fl exor and extensor of the forearm, depending on the level of 
the amputation).²² , is information is used to defi ne the state of the hand and to control 
its speed or strength in a constant or even proportional way. 

Starting from the late 1970s, the EMG signal was modeled as amplitude modulated 
Gaussian noise whose variance was related to the force developed by the muscle. As a con-
sequence, most commercial myoprocessors used in prosthetic control are now based only 
on one dimension of the EMG signal—the variance or mean absolute value.³² , e Otto 
Bock SUVA Hand,⁷ mentioned above, is designed so that the grip speed and grip force are 
controlled by the intensity of the muscle signal. Two independent measurements and control 
systems ensure that the hand switches to grip force mode when an object is gripped and the 
grip force is proportional to the muscle signal. 

Several authors successfully contributed in refi ning variance estimation from the myo-
electric signal, for example by applying a whitening fi lter³³³⁴ or changing the smoothing 
window length,³⁵ in order to increase the number of states available from surface EMG 
signal. , ese techniques require a diff erent muscle contraction for each controlled function, 
making the control of two or more joints very diffi  cult. Other researchers have attempted 
to increase the information from one or two channels by using a time-series model.³⁷³⁸ 
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Despite some promising results, this method turned out to be sensitive to changes in 
signal amplitude. 

All these systems have been successfully implemented, but they cannot provide suffi  cient 
information to eff ectively control more than one DoF. Generally, all commercial myoelectric 
control systems are based on the common assumption that the instantaneous value of the 
myoelectric signal contains no information. Users are trained to produce a constant level of 
activation of muscles, and the prostheses are tuned according to these values. , e steady-state 
EMG signal, however, has very little temporal structure because of the active modifi cation 

(a) Original EMG signal

(b) Rectified EMG signal

(c) Low pass filtered EMG signal

(d) Threshold-based detection of move-
ment

FIGURE 3. Example of simple processing of EMG signal taken from biceps brachii.
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of recruitment and fi ring patterns needed to sustain a contraction.³² , e parameters that 
could be extracted to quantify its amplitude (e.g., variance, mean absolute value) or its fre-
quency characteristics (e.g., Fourier spectrum, median frequency) are often not suffi  cient to 
distinguish between more than two classes of movement. 

Starting from the 1990s, researchers found that there is useful information in the 
transient burst of myoelectric signal. Hudgins and colleagues³⁹ showed that there is a con-
siderable structure in the myoelectric signal during the onset of a contraction. Furthermore, 
this structure seemed to be diff erent for diff erent kinds of contraction, and further works⁴⁰ 
demonstrated that transient EMG signals have a greater classifi cation capacity than do 
steady-state signals. For this reason several features are extracted. 

1. Time Domain Features

Features in the time domain are generally quickly calculated, because they do not need 
a transformation. Some or all of these features have been widely used in research and in 
clinical practice. 

Mean absolute value (MAV) is an estimate of the mean absolute value of the signal xi in a 
segment i that is N samples in length.³⁹⁴¹⁴²

                                     Xi =
1

N

N∑

k=1

|xk|, for i = 1, . . . , I − 1  (1)

Sometimes⁴³⁴⁴ the integrated absolute value (IAV) = MAV·N is used.

Mean absolute value slope ()³⁹ is simply the diff erence between sums in adjacent 
segments i and i + 1:

                                  ∆Xi = Xi+1 − Xi for i = 1, . . . , I − 1  (2)

Willison amplitude (WAMP)⁴⁵ is the number of counts for each change of the EMG signal 
amplitude that exceeds a predefi ned threshold. It is given by 

                                      WAMP =
N∑

k=1

f(|xk − xk+1|)  (3)

with f (x) = 1 if x > threshold, 0 otherwise. , is unit is an indicator of fi ring of motor unit 
action potentials (MUAP) and, therefore, an indication of muscle contraction level.
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Variance of the EMG. Starting in late 1970s, the EMG signal was modeled as amplitude 
modulated Gaussian noise whose variance is related to the force developed by the muscle.³² 
, e variance (or second-order moment) of the EMG is a measure of its power, and it is 
given by

                                              V AR = σ2 =
1

N − 1

N∑

k=1

x(k)2  (4)

Zero crossing (ZC)³⁹ is the number of times the waveform crosses zero. In order to reduce the 
noise-induced zero crossing, a threshold must be included. Given two consecutive samples 
xk and xk+1, ZC is incremented if

                                 sgn(−xk × xk+1) and (|xk − xk+1| ≥ threshold)  (5)

with sgn(x)=1, if x > 0, 0 otherwise. , is parameter provides a rough estimate of the proper-
ties in frequency domain.

Slope sign changes (SSC)¹⁴ is incremented if, given three consecutive samples xk-1, xk, and xk+1

                                         (xk − xk−1) × (xk − xk+1) ≥ threshold  (6)

for k = 1,¼…,N. , is parameter provides an additional piece of information about frequency 
properties of the measured signal.

Waveform length (WL)¹⁴ is the cumulative length of the waveform over the time segment. 
It is defi ned as

                                                           l0 =
N∑

k=1

|∆xk|  (7)

where D∆xk = xk – xk-1. , is parameter gives a measure of waveform amplitude, frequency, 
and duration all in one.

Frequency ratio (FR) was proposed in order to distinguish between contraction and relaxation 
of muscle in frequency domain.⁴³ By applying the FFT to the EMG in time domain, the 
frequency ratio FR of the –j  channel is: 

                                                  FRj =
|F (·)|j low freq

|F (·)|j high freq

 (8)
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, e threshold for dividing low frequencies from high is decided through experiments. A 
high FR means that the degree of contraction of the muscle is high, a low FR means the 
opposite.

AR model.³⁷³⁸⁴⁴⁴⁵ , e EMG signal is nonstationary and nonlinear. But, in a short time 
interval, it can be regarded as a stationary Gaussian process.³² , e EMG time series could 
be modeled as

                                                    xk =
n∑

i=1

aixk−1 + ek  (9)

where n is the order of the AR model, ai are the estimate of the AR coeffi  cients, and ek is the 
residual white noise. Graupe et al.³⁷ fi rst used the sequential least square (SLS) algorithm 
in order to minimize the diff erence ek between the estimate ̂ (xk) and the actual signal value 
xk at any sample time. A simple least square cost function can be formulated by taking the 
sum of squares of ek over a time window of the EMG, i.e., 

                                                      

N∑

k=1

(x̂k − xk)
2

 (10)

It can be shown⁴⁶ that this minimization problem is reduced to a set of two recursive equa-
tions:

                                             

a a P X X a

P P
P X X P

X P X

k k k k k k
T

k l

k k
k k k

T
k

k
T

k k

x= + −( )

= −
+




− −

−
− −

−

1

1
1 1

11







 (11)

where Xk = (xk–1,xk–2,¼…,xk–p) , ak is the vector of the present estimates of the time series 
coeffi  cients, ak–1 contains the previous estimates, and Pk is a p by p matrix. Initially a₀ is set 
to zero and P₀ is set to the identity matrix I. 

Other authors⁴⁶⁴⁷ have used a Hopfi eld neural network in order to extract the AR coef-
fi cients. , is method is faster than SLS or similar methods. , e outputs âk of the Hopfi eld 
network are calculated from the previous output weighted by the network weights Tkj and 
from the network inputs Ik according to

                                âk(r+1) = âkr + λk

(
n∑

j=1

Tkj âjr + Ik

)
 (12)

where âkr is the r  estimate of akr , λk is a gain parameter, and n is the AR model order. , e 
network converges to a value (â) that minimizes the prediction error if
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




0 < λk <

(
2

|Tkk|
)

Tkj = −
M∑

l=n

yl−k yl−j

Ij =
M∑

l=n

yl−k yk  (13)

where M is the number of data points considered.

Cepstrum Analysis. , e Cepstrum of a signal is defi ned as the inverse Fourier transform 
of the logarithm of the magnitude of the power spectrum of the signal data. , e system 
function H(z) for the AR process in the z-domain is

                                                     H(z) =
1

n∑

l=1

aiz−1

 (14)

n being the order of the AR model and ai the AR coeffi  cients. , en we can write

                                             ln (H(z)) = C(z) =
∞∑

l=1

ciz
−1 (15)

Diff erentiating both sides with respect to z–¹ and equating the coeffi  cients of like powers of 
z–¹, we derive the following recursive relation 

                                          

c1 = −a1

ci = −ai −
i−1∑
l=1

(
1 − l

i

)
anci−l  (16)

for 1 ≤ l ≤ n. For a transfer function with poles only, the fi rst P Cepstral coeffi  cients can 
be obtained directly from the P  order coeffi  cients of the AR model by using Eq. (16). In 
general, the use of cepstral method leads to a statistically signifi cant improvement in the 
recognition rate respect to the use of AR method. An example of the use of cepstral coef-
fi cients is given in Park and Lee.⁴⁸

2.Time–Frequency Representation

, e fundamental purpose of feature extraction is to emphasize the important information in 
the measured signal while rejecting noise and irrelevant data. Time–frequency representation 
can localize the energy of the signal both in time and in frequency, thus allowing a more 
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accurate description of the physical phenomenon.⁴⁹ On the other hand, time–frequency repre-
sentation (TFR) generally requires a transformation that could be computationally heavy. 

Among all diff erent types of TFR, discrete, linear TFRs—short -time Fourier transform 
(STFT), wavelet transform (WT), and wavelet packet transform (WPT)—are preferable 
to quadratic TFRs, which are too computationally intense for real-time application. , e 
fundamental diff erence between linear TFRs is in the manner in which they partition the 
time–frequency plane (Fıg. 4). , e STFT has a fi xed tiling; once specifi ed, each cell has an 
identical aspect ratio. , e tiling of the wavelet transform is variable—the aspect ratio of the 
cells varies such that the frequency resolution is proportional to the center frequency. , is 
tiling has been shown to be more appropriate for many physical signals, but the partition is 
nonetheless still fi xed. , e WPT provides an adaptive tiling—an overcomplete set of tilings 
are provided as alternatives, and the best for a given application is selected. 

Gabor transform or short-time Fourier transform (STFT). Most transforms, in their original 
form, assume that the signal under consideration is stationary. Generally this assumption fails 
in the case of EMG signal, except for short periods of time. Given a fi nite-length sequence 
xi, i ∈ {0,…,L − 1}, its discrete Fourier transform (DFT) is defi ned as

                                       X[mF ] ≡ X[m] =
L−1∑

i=0

x[i]e−j2π(mF )(iTs) (17)

where L is the length of the sequence, F = 1/LTs is the frequency sampling step size. , e 
STFT consists of a series of DTFs, indexed with respect to Ts and F 

                                        

STFT [k,m] ≡ STFT [kTs, mF ]

=
L−1∑

i=1

x[i]g[i − k]e−j2πmi/L  (18)

(a) STFT (b) WT (c) WP

FIGURE 4. Different tiling of STFT, WT, and WPT.
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where g[i] is the window function. , e temporal sampling step size is T = K · Ts ; if K = 1, 
the STFT is computed at every sample in time; if K = L, the successive analysis windows 
do not overlap. 

, e resolution in time and frequency is lower bounded by the time-bandwidth uncertainty 

principle or Heisenberg inequality.

                                                           ∆t · ∆f ≥ 1

4π
 (19)

A Gaussian window allows a balanced time resolution and frequency resolution. 
, e STFT has, among its other useful properties, a well-developed theory and can be 

computed very effi  ciently.³⁹⁵⁰⁵¹ , e main constraint is that each cell in the time–frequency 
plane must have identical shape (Fıg. 4a). In fact, as imposed by the temporal and frequency 
sampling steps, the time–frequency plane is divided into cells, each of which has a temporal 
width of T and a frequency height of F, and clearly the energy distribution of physical signals 
is not (in general) conveniently localized in region of fi xed aspect ratio. 

Wavelet transform (WT). , e WT overcomes the main drawback of the STFT by varying 
the time–frequency aspect ratio and by producing a good frequency resolution ∆f in long 
time windows (low frequencies) and a good time localization ∆t at high frequencies.⁴⁹⁵⁴ 
, is produces a tiling of the time–frequency plane that is appropriate for most physical 
signals (Fıg. 4b). 

, e continuous wavelet transform is defi ned as

                                        CWTx(τ , a) =
1√
a

∫
x(t)Ψ

(
t − τ

a

)
dt  (20)

where Ψ(t) is the mother wavelet, which has the property that the set {Ψa,b} forms an ortho-
normal basis in L²(ℜ) (a,b ∈ ℜ, a ≠ 0). 

In its discrete form, a = a0
j and τ = n · a0−j where n and j are integers (discrete wavelet 

transform, or DWT). A common choice is a0 = 2 (dyadic wavelet basis), which allows great 
computational effi  ciency. 

Wavelet Packet Transform (WPT). WPT is a generalized version of the CWT and the 
DWT. Because the CWT is redundant, the tiling of the time–frequency plane is confi gurable 
(Fıg. 5). , e basis for the WPT is chosen using an entropy-based cost function.⁵⁵ While 
the WT is extremely computationally effi  cient (it takes less than 2 ms to calculate the WT 
of a 256-ms stream of data), the WPT demands substantially greater computation, about 
200 ms on a record length of 256 ms. Both WT and WPT have been tested on EMG 
signals by Englehart and colleagues,⁴⁰⁴⁹⁵⁶ showing that time–frequency representation, 
together with a linear dimensionality reduction, is capable of a better description of the 
intended movement. For a detailed mathematical description of WT and WPT, see Vet-
terli and Kovacević.⁵⁴ 
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II.D Dimensionality Reduction

, e reduction of the dimensionality of the problem is generally fundamental to increasing the 
classifi cation performance. , is process should preserve as much of the relevant information 
as possible while reducing the number of dimensions. 

, e two main strategies of dimensionality reduction are feature selection and feature 

projection.⁴⁹ 

1. Feature Projection

, is method, instead of searching the best subset of features, tries to determine the best 
combination of the original features to form a new feature set, generally smaller than the 
original one. Moreover, if the map f : V → Z is linear, fi nding the coeffi  cients of this projec-
tion could be quite a fast and simple process. 

Principal component analysis, or PCA, also knows as Karhunen-Loéve transform or 
singular value decomposition (SVD), provides a linear map from the original set of variables 
v ∈ V ⊆ ℜM into a reduced-dimension set of uncorrelated variables z ∈ Z ⊆ ℜL (the 
principal components), minimizing the mean-square error (MSE) between the original 
feature set and the projected one.⁴⁰⁵⁷ , e transformed variables are ranked according to 
their variance, thereby refl ecting a decreasing eff ectiveness in representing the original set 
of variables. 

, is technique is eff ective in pattern recognition, reducing the complexity of the re-
sulting feature space and eliminating linear dependencies among data. , e minimum error 
is reached when the original feature set is projected onto the orthonormal basis ui so that 
∑vui = λiui ; ui are the eigenvectors and λi the eigenvalues of ∑v (the covariance matrix of 
the original set of vectors v). 

Sometimes there are features that are best represented by a nonlinear combination of 
the original variables. Multilayer neural networks⁵⁸ or self-organizing maps,⁵⁹ in these cases, 
can obtain a successful nonlinear dimensionality reduction. , is method is computationally 
heavy, and thus generally PCA or feature selection methods are preferred. 

2. Feature Selection

In this case, the best subset z ∈ Z ⊆ ℜL of the original feature set v ∈ V ⊆ ℜM is chosen 
according to some criteria for judging whether one subset is better than another. , e ideal 
criterion for classifi cation should be the minimization of the probability of misclassifi ca-
tion, but generally simpler criteria based on class separability are chosen. Furthermore, the 
exhaustive search among all possible subsets is often impractical, and some nonexhaustive 
and sequential methods are used. 

In general, feature selection methods use class membership to determine discriminant 
power. As the original identity of the features is maintained, the utility of each individual 
feature is known. On the other hand, some of the original features are completely discarded, 
and all the information they convey is completely lost. Feature selection methods behave 
well on well-structured and poorly redundant data. 

An example of feature selection is shown in Micera et al.⁵⁷ In order to reduce the number 
of muscles to those truly relevant to the movement under investigation, the coeffi  cient of 
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expressiveness (CoE) was introduced. For the l  muscle and the r  movement the follow-
ing expression was evaluated: 

                            kj,l,r =
n∑

i=1

|ci,l,r| λi∑p
m=1 λm

j = 1, . . . , J  (21)

where n is the number of principal components (PCs) that are “expressive”, ci,l,r is the cor-
relation coeffi  cient between the i  PC and the selected muscle for the r  movement, λi 

is the eigenvalue associated to the i  PC, p is the total number of eigenvalues, and J is the 
number of trials. , en

                                                         Kl,r =
J∑

j=1

kj,l,r  (22)

and, for the r  movement, we normalize the Kl,r coeffi  cients by their maximum value among 
the selected muscles, yielding the CoE. 

II.E. EMG Pattern Classifi cation

, ere are several possible classifi cation techniques.⁶⁰ Among them, the most used are Bayes-
ian pattern classifi ers and artifi cial neural networks. Recently, some authors have tried to use 
a fuzzy classifi er, but other authors reported that with the appropriate representation of the 
signal, a linear classifi er performs better than a nonlinear one.⁴⁰⁵⁶ 

1. Bayesian Pattern Classifi cation

One of the standard statistical classifi cation methods is the Bayes classifi er. , e measurement 
of the input vector x ∈ X ⊆ ℜN and of its response space y ∈ Y={y₁,…,yK} may be considered 
in a probabilistic framework, and viewed as single observation of the random variables X 
and Y. , e a posteriori probability that pattern x comes from class yk is given by 

                                                 P (yk|X) for k = 1, . . . , K  (23)

, ese probabilities, in general, are not known but may be calculated from the a priori prob-
abilities P(yk) and the conditional density function p(x|yk) using the Bayes’ theorem: 

                                            P(x,yk) = P(yk)p(x|yk) = p(x)P(yk|x) (24)

where 
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1

 (25)

Note that p(x) is the probability density function of the input space, and it remains con-
stant for all P(yk|X). Bayes’ decision rule minimizes the probability of classifi cation error. 

If it is possible to make some assumption about the form of the conditional probability 
density functions p(x|yj), then the Bayes classifi er could be dramatically simplifi ed.⁴⁹⁶⁰ 

2. Artifi cial Neural Networks

An artifi cial neural network (ANN)⁴⁷ is a computational system inspired by the learning 
characteristics and structure of biological neural networks. Graupe et al.³⁸ showed that con-
ventional pattern recognition techniques can be successfully used for classifying single-site 
ME signals, achieving a good discrimination among signals, but only after hours of subject 
training. , e application of ANN could reduce the amount of user training. Moreover, a 
simple feed-forward neural network can assure high recognition rates. 

ANNs possess several attractive features that make them suitable for diffi  cult signal 
processing problems: generalization and ability to learn from experience without requiring 
an a priori mathematical model of the underlying signal characteristics; adaptation to chang-
ing environmental conditions; and the ability to process degraded and incomplete data.⁶¹⁶³ 
However, they have the problem of learning from a limited number of examples.⁴⁷ 

One of the simplest and most widely used ANN is the multilayer perceptron (MPLP), 
which is characterized by a set of input units, a layer of output units, and a number of hidden 
layers (one or two, in general). Each input node is connected to each unit in the hidden layer. 
, e connections between units have an associated weight W; each unit of the hidden layer 
is connected to the neurons in the following layer, be it hidden or output, in a similar way. 
, e input units retain the analog value of each input. Hidden and output nodes, however, 
have a transfer function F(α), where α = ∑i=1

nwiai is the total input of the neuron, ai is the 
i  input, and wi is its weight. 

, e original perceptron conceived by Rosenblatt in 1958 used a hard-limiting non-
linearity: 

                                                    fHL(s) =

{
1, s > 0
0, s � 0

 (26)

Other commonly used functions are the logistic sigmoid nonlinearity, which is dif-
ferentiable, 

                                                    flog(s) =
1

1 + e−βs
 (27)

and the hyperbolic tangent sigmoid, whose output ranges from −1 to +1: 
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                                                   ftanh(s) =
eβs − e−βs

eβs + e−βs
 (28)

Many algorithms have been developed to train the network—i.e., to adapt the network 
weights. , ese algorithms can be divided into supervised, in which the desired response 
is available during the learning phase, and unsupervised, in which it is not. Generally, the 
connection weights and neuron threshold values are varied by using the back propagation 
(BP) algorithm.⁴⁷⁶⁰ 

3. Fuzzy Logic

Fuzzy inference systems (FISs), like ANNs, are excellent at developing human-made systems 
that can perform information processing in a manner similar to our brain.⁶⁴ Fuzzy logic sys-
tems can emulate human decision-making more closely than ANNs, because of the possibility 
of introducing the knowledge of an expert in the fuzzy rules in the form –. Fuzzy 
systems can be broadly categorized into two families. , e fi rst includes linguistic models 
bases on the collection of – rules, whose antecedents and consequents use fuzzy 
values. An example of this group is the Mamdani model. , e knowledge is represented as 

                                    

Ri = If x1 is Ai
1 and x2 is Ai

2 . . . and xn is Ai
n

then yi is Bi  (29)

where Ri(I = 1,2,…,l ) denotes the I  fuzzy rule, xj(j = 1,2,…,n) is the n input, yi is the 
output of the fuzzy rule Ri, and A₁i, A₂i,…, Am

i, Bi(I = 1,2,…,l ) are fuzzy membership func-
tions.⁶⁵ , e second category is based on the Tagagi–Sugeno-type systems and uses a rule 
structure that has fuzzy antecedent and functional consequent parts: 

                                  

Ri = If x1 is Ai
1 and x2 is Ai

2 . . . and xn is Ai
n

then yi = ai
0 + ai

1x1 + . . . + ai
nxn  (30)

, is approach approximates a nonlinear system with a combination of several linear 
systems by decomposing the whole input space into several partial fuzzy spaces and represent-
ing each output space with a linear equation. If one is interested in a more precise solution 
(and is not so interested in a precise linguistic interpretability) Sugeno-type systems are 
more suitable; on the other hand, Mamdami-type systems are best suited to obtain a good 
linguistic interpretability.  Some examples of fuzzy systems applied to EMG classifi cation 
are given in the literature.⁴²⁴³⁵⁷⁶⁶ 

4. Neuro-Fuzzy Systems

Fuzzy logic and neural systems have very contrasting application requirements. Fuzzy systems, 
one the one hand, are more appropriate when suffi  cient expert knowledge about the process 
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is available; neural networks, on the other, are more useful when suffi  cient data are available 
or measurable. Both these approaches build nonlinear systems, either numerical (ANNs) 
or symbolic (FIS). However, fuzzy systems exhibit both symbolic and numeric features. 
, erefore, the integration of neural and fuzzy systems leads to a “symbiotic” relationship in 
which fuzzy systems provide a powerful framework for expert knowledge representation, 
while neural networks provide learning capabilities and exceptional suitability for compu-
tationally effi  cient hardware implementations.⁶⁵⁶⁷ 

Neuro-fuzzy computing enables to us build more intelligent decision-making systems by 
combining the advantages of ANNs (massive parallelism, robustness, learning in a data-rich 
environment) with the fuzzy modeling of imprecise and qualitative knowledge. 

An example of neuro-fuzzy classifi er is the Abe–Lan network.⁵⁷⁶⁸ , e input space is 
subdivided into a number of activation hyperboxes, corresponding to regions in the feature 
space that contain all the training data available for each class. Hyperboxes may overlap, and 
in this case an inhibition hyperbox (corresponding to the overlapping region) is defi ned. Re-
cursively, a number of activation and inhibition hyperboxes at progressively higher levels can 
be defi ned for each class pair, until all overlaps are resolved. In the rule set, a corresponding 
fuzzy rule is associated to each hyperbox, be it activation or inhibition (Fıg. 5). 

, e second-layer units consist of fuzzy rules that calculate the degrees of membership 
for the rules that resolve the overlaps between activation hyperboxes. , e third-layer units 
for the I  class take the maximum value of inputs from the second layer; the fourth-layer 
units take the minimum value among the maximum values generated by the third layer. 
Fınally, an unknown feature vector is classifi ed as the class with the maximum membership 
assignments. 

Results⁵⁷ showed that the proposed classifi er is able to correctly identify all the EMG 
signals related to the diff erent movements. 

FIGURE 5. Architecture of Abe–Lan fuzzy classifi er. (Reprinted from Micera et al.57 with permission.)
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II.F Offl ine and Online Learning

EMG signal patterns diff er among individuals. Moreover, electrical impedance of the skin; 
electrode locations; time variations caused by fatigue, sweat, and so on diff er from user to 
user and from time to time. It is clear that the EMG processing unit should adapt itself to 
these changes in order to minimize ill-discriminations. , e device should “learn” how the user 
behaves and adjust its internal parameters relative to the operator’s variation in real time. 

Most current prostheses, however, are tuned only in the offl  ine phase. , e user learns 
to reproduce one or two diff erent signals, and the prosthesis is tuned to these signals. When 
the user cannot control the prosthesis properly, she/he should come back to the assistance 
center and retune the controller. It is easy to understand that with such a controller it is not 
possible to successfully control more than one active DoF, because the diff erences between 
tuned signals and actual ones tend to increase gradually with time. 

Nishikawa and his group⁶⁹⁷¹ proposed a real-time learning method that makes it possible 
to control up to ten diff erent motions of the forearm⁶⁹ from two channels of EMG with a 
success rate of up to 91.5%. , e controller is composed of three modules: the analysis unit, 
which generates a feature vector containing useful information for discriminating motions 
from measured EMG signal; the adaptation unit, which makes a mapping function from 
the feature vector; and the trainer unit, which generates training data from the teacher signal 
sent by the operator and the feature vector at the moment. When the trainer unit receives 
teacher signal T from the operator, it generates the teaching vector d by formulæ 

                                                  

d = (d1, d2, . . . , dnm)

di =

{
0.9 if i = T
0.1 otherwise

 (31)

where nm is the total number of the cells in the m layer of the feed-forward neural network 
of the adaptation unit. 

In the system proposed by Fukuda,⁷² the EMG pattern vectors x(n) for forearm mo-
tions of the operator are measured during motions and are used for offl  ine learning. , e 
entropy H(s) = −∑k=1

KYk(n)log₂Yk(n) of the output of the neural network is compared with 
the threshold of the online learning θ₀; if it is lower, a pair of x(n) and the output motion is 
added to the set of learning data, and the oldest stored set is deleted. , e entropy is also used 
for a motion suspension rule, because if it is over the determination threshold θd, it could 
indicate that the network output is ambiguous (for a detailed explanation of this method 
the reader is referred to Fukuda et al.⁷²). 

III. CONTROL OF MULTIFUNCTIONAL PROSTHETIC 
HANDS USING EMG

, e main objective of this article is to analyze critically diff erent methods for EMG signal 
processing that could be exploited to improve the controllability and thus the usability 
of current hand prostheses. , e motivation for this eff ort is the assumption that, even 
if current hand prostheses have many intrinsic limitations, their performance could be 
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improved signifi cantly by implementing better control techniques based on better EMG 
signal processing. 

Replicating the performance of the human hand is beyond current technical capabili-
ties. In fact, the human hand is extremely complex: it has 22 DoFs, controlled by about 38 
muscles in the hand (almost twice the number of DoFs³⁷³), and it incorporates about 17,000 
tactile units of 4 diff erent types⁷⁴⁷⁵ with diff erent receptive fi elds and diff erent sensitivity 
to static and dynamic events. 

Commercial hand prostheses have a limited number of DoFs (one or two for fi nger 
movements and thumb opposition), and thus they have low grasping functionality. In fact, 
they do not allow adequate encirclement of objects, compared to the adaptability of the hu-
man hand.⁸ Moreover, their low compliance leads to instability of the object in the presence 
of external perturbations.⁷⁶ , e main advantage of current prosthetic hand devices is that 
they can generate large grasping forces (>100 N)⁷⁷ and are simple to implement and control, 
in particular by using EMG signal. 

During the last two decades several robotic and anthropomorphic hands have been de-
veloped. All these hands have a high number of DoFs (up to 16), and a dexterity comparable 
to that of the human hand. Some examples of robotic hands are the Utah/MIT hand,⁷⁸ the 
Stanford/JPL hand,⁷⁹ the DLR hand,⁸⁰ and the Robonaut Hand.⁸¹ Unfortunately, none of 
these hands can be used as prostheses, because their actuation and control systems are quite 
heavy and bulky, and thus they cannot be embedded within the hand. Table 1 presents a 
comparison among the human hand, some hand prostheses, and some robotic hands. 

A design solution that could improve the dexterity of a prosthesis while maintaining 
intrinsic actuation (i.e., all the actuators embedded within the hand structure) is based on 
underactuated mechanisms (i.e., a mechanism that has fewer actuators than degrees of 
freedom¹³⁸²). Underactuated mechanisms allow grasping objects in a way that is closer to 
human grasping than independent actuation, but their main limitation is the control of this 
functionality. 

Electromyographic signal is a simple and easily obtained source of information on what 
the users of a prosthesis would like to do with their artifi cial hands. Surface electrodes are 
easy to use and manage, and they do not require surgery. Moreover, there are no harnesses 

Table 1. Comparison of Human Hand, Hand Prostheses, and Robotic Handsa 
# of 
DoFs

Size of the hand 
(normalized)

# of 
Fingers

# of 
Sensors

# of 
Actuators

Opposable 
Thumb

Human Hand3 22 1 5 17’000 38 yes

MARCUS Hand5 2 1.1 3 5 2 no

Ottobock/SUVA Hand7 1 + 1 1 3 1 1 no

Utah/MIT Hand78 16 2 + control 4 32 yes

Stanford/JPL Hand79 9 1.2 + control 3 12 no

DLR Hand II80 13 1.5 + control 4 64 13 no

Robonaut Hand81 12 + 2
Astronaut 

gloved hand + 
control

5 43 + 
tactile 14 yes

a The size of the artifi cial hands is normalized with respect to the size of the human hand
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that could limit the movement of the forearm. It is possible to control an active device with 
just one diff erential electrode placed on the residual limb, even in infants.⁸⁹ , e technology 
of EMG signal processing is making steady progress. , e evolution of the use of the EMG 
signal to actively control a prosthetic hand is showed in Fıgure 6. 

Reiter,²¹ in 1948, was the fi rst to use the EMG signal to control a simple prosthetic 
device. Nowadays, all prosthetic devices used in clinical practice have one ore two active 
DoFs, directly controlled by a couple of electrodes placed on two antagonist muscles, either 
in proportional or on/off  mode.²² , e use of a larger number of electrodes to control more 
active DoFs has several drawbacks, because the coding of movements and the number of 
electrodes would greatly increment the problems in fabricating and using the socket. 

Starting in 1975, some research groups³⁶³⁸ realized that a correct modeling of the EMG 
signal could make it possible to control a device with more than just one DoF. Unfortunately, 
the hardware and software resources available at that time were not suffi  cient to realize a 
device that could be used in clinical practice. In particular, Graupe et al.,³⁸ with AR model-
ing and Bayesian discrimination, were able to successfully discriminate among six diff erent 
classes of movement, with a success rate of up to 99%. Unfortunately, these results were 
obtained only after 12 hours of user training, and performance signifi cantly degraded with 
time, because of the modifi cation of EMG generated by the user. , e use of ANNs⁸⁴ could 
reduce the time needed for the user training, but the problems of the modifi cation related 
to signal variation with time and from person to person still remain. 

In all these works EMG signal was used in its stationary phase, and users were trained 
to contract their residual muscles in order to obtain constant levels of EMG. In this way the 
control of the prosthetic device was simplifi ed (it could be a simple proportional control, as 
showed in Dorcas and Scott⁸⁵) but a lot of information was ignored. 

In 1993 Hudgins et al.³⁹ fi rst proposed a new control strategy for artifi cial devices. In 
fact, they observed that there is considerable structure in the myoelectric signal during the 
onset of a contraction. , is structure is distinct for diff erent limb movements and could be 
used as source of information for classifying the EMG signal. , ey were able to discrimi-
nate between four diff erent movements with just one bipolar electrode by extracting MAV, 
MAVSLP, ZC, SSC, and WL from the measured signal, with a two-layer ANN. However, 
the discrimination error was still quite high (>10%). 

In recent years, EMG signal has been largely investigated both for the realization of 
multifunctional myoelectric prostheses⁴⁰⁶¹⁷¹ and for the improvement of teleoperation of 
robotic devices,¹⁴ but as yet all these systems are not capable of successfully controlling a 
multi functional hand. , e major problem is the time-variant characteristics of the EMG 

FIGURE 6. Evolution of use of EMG signal to actively control prosthetic hand.





.   .

signal, due to physiological changes in the muscles and to the changes in the coupling 
between skin and the electrodes. An equally important problem is the stochastic nature of 
the EMG, resulting in parameter estimation errors that, in turn, cause classifi cation and/or 
control diffi  culties. Moreover, some control errors are generally introduced by the inability of 
the patient to reliably generate and reproduce the target contraction signals (operator errors). 
A possible solution is the realization of an online learning module, either supervised⁷⁰⁷¹ or 
unsupervised,⁷² to continuously adapt the parameters of the classifi er. For example, Nishikawa 
and colleagues⁶⁹ were able to discriminate among ten diff erent movements of the forearm 
on three normal subjects with two-channel EMG signals by using Gabor Transform, MAV, 
and feed-forward ANN, but the success rate was lower than 90%. 

Some of the problems of myoelectric control could be overcome by automating some 
grasping functions.⁵⁸⁶⁸⁷ Some attempts to control multifunctional devices by using more 
than two electrodes⁸⁸ have been made, and the use of nerve–muscle grafts⁸⁹ have been pro-
posed, but increasing the number of electrodes is not useful in clinical practice, because it 
introduces additional discomfort in using the prosthesis. 

IV. CONCLUSIONS

In the last thirty years, many research eff orts have been carried out in the myoelectric control 
fi eld. Several techniques have been developed to control multifunctional prosthetic devices, 
and many of them showed promising results. Moreover, these techniques could be also applied 
in other fi elds, not only in the control of myoelectric prostheses. For example, algorithms 
for detecting the activation of muscles are quite useful in gait analysis.⁹⁰ However, despite 
all these eff orts, EMG signal analysis seems to be quite limited in the number of possible 
functions that can be restored by using a few electrodes. Moreover, the EMG signal cannot 
provide any feedback to the user. 

A possible solution to overcome the limits of the EMG-based approach could be the 
realization of an interface between the peripheral nervous system (PNS) and the artifi cial 
device (i.e., a “natural” neural interface [NI]) to record and stimulate the PNS in a selective 
way.⁹¹⁹⁴ Recent developments in the technology of electronic implants and in the under-
standing of nerve functions have made it possible to fabricate selective neural interfaces that 
work by interchanging information between the nervous system and computerized artifi cial 
instruments. A biocompatible neural interface can restore some sensory feedback to the user 
by stimulating in an appropriate way the aff erent nerves and can allow motor control of the 
prosthesis based on a “natural” ENG-based control. , is will be possible by focusing appro-
priate research eff orts on the technological development of the neural interface and on the 
characterization of the PNS aff erent signals in response to mechanical and proprioceptive 
stimuli. When the patient receives sensory feedback from the stimulation of the aff erent 
nerves, and the prosthetic device is controlled directly through the eff erent nerves, the user 
will again be able to “feel” the hand as part of the body. 

In conclusion, with these considerations in mind, two solutions for controlling hand 
prostheses could be envisaged. On the one hand, EMG-controlled prostheses could repre-
sent a “cheap” solution (i.e., low cost and noninvasive) for the restoration (even if partial) 
of some hand functions. On the other hand, a multifunctional “cybernetic” hand prosthesis 
with ENG-based control would be a more sophisticated solution. 

It is worth noting that this situation is already present in the fi eld of neuroprostheses, 
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where we can fi nd the “noninvasive” solution—e.g., the Handmaster system⁹⁵ which comprises 
a hand-forearm orthosis containing an array of electrodes connected to a portable electronic 
microprocessor-controlled unit, and which is designed for simple and independent position-
ing by the patient; and the “invasive” solution—e.g., the Freehand system,⁹⁸ which consists 
of a pacemaker-like stimulator implanted in the chest, which sends electrical impulses from 
an external control/power source through lead wires to eight electrodes implanted in the 
muscles of the forearm and hand. 
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