

Semi-Automatic Assessment of

Basic SQL Statements

Aisha Nasser Saif AL-Salmi

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy Degree of Loughborough University

August 2018

Page | i

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other university.

AISHA NASSER SAIF AL-SALMI
August 2018

Page | ii

Acknowledgments

I am Thanking Allah for everything has blessed me. (Alhamdulillah (All praise be to Allah))

I would like to give special thanks to; my supervisors, Professor Eran and Dr. Shaheen for their

continual support and encouragement throughout my Ph.D work. In addition, I would like to

thank both Dr. Firat Batmaz and Dr. Gerald Schaefer, for their support and supervision in my

last four years. I would also like to thank my second marker, Professor Ray Dawson, for

providing key insights into the project. My grateful thanks to Professor. Sergey Saveliev;

Associate Dean Research (Science); at Loughborough University for his kindness help to

overcome all difficulties during my studies. I would also like to thank the Computer Science

Department, IT Services, Mathematics Learning Support Centre and Library at Loughborough

University for all the facilities and support.

I express my sincere gratitude to; Ministry of Manpower and Ministry of Higher Education in

Sultanate of Oman for making the Ph.D. scholarship possible. I was thrilled to learn of my

selection for this honour and I am deeply grateful of continues support. In addition, I would

like to thank Mrs. Finoon Saleh, Academic Advisor from Cultural Attaché Office, Embassy of

the Sultanate of Oman; for her kindness help to overcome all difficulties during my studies.

I would like to thank also the people who assisted me in my research either by opinion or

undertaken the experiment in their Colleges. Dr. Huda AL-Shuily from Higher College of

Technology, Muscat, Oman. Dr. Smitha Sunil Kumaran Nair from Middle East College,

Muscat, Oman. Mr. Hamood AL-Hadhrami and Mr. Manish from Modern College for Business

and Science, Muscat, Oman. Mr. Noor Khan from Alraffd Company, Muscat, Oman.

Finally, I would like to thank all the members of my family as I would never finish this thesis

and I would never find the courage to overcome all difficulties during this work without them.

I would like to thank; my husband “Ali AL-Maani” and my dearest son “Qais AL-Maani” for

their support and motivation. Enormous thanks to my lovely family (Father, Brothers, Sisters,

Sister-in-laws, Brother-in-laws, Nieces and Nephews) for their understanding and supports. I

would like to thank my friends who have always given their full support throughout my time

spent at university.

https://www.google.com/url?q=http://mlsc.lboro.ac.uk/&sa=U&ved=0ahUKEwjUjcm4icfcAhUFDsAKHbVHDOgQFggEMAA&client=internal-uds-cse&cx=000431813997250749365:d4xalstqvno&usg=AOvVaw1yYl5i7UQZe3V0UBg1rQbT

Page | iii

Abstract

Learning and assessing the Structured Query Language (SQL) is an important step in

developing students' database skills. However, due to the increasing numbers of students

learning SQL, assessing and providing detailed feedback to students' work can be time

consuming and prone to errors. The main purpose of this research is to reduce or remove as

many of the repetitive tasks in any phase of the assessment process of SQL statements as

possible to achieve the consistency of marking and feedback on SQL answers.

This research examines existing SQL assessment tools and their limitations by testing them

on SQL questions, where the results reveal that students must attaint essential skills to be able

to formulate basic SQL queries. This is because formulating SQL statements requires practice

and effort by students. In addition, the standard steps adopted in many SQL assessment tools

were found to be insufficient in successfully assessing our sample of exam scripts. The analysis

of the outcomes identified several ways of solving the same query and the categories of errors

based on the common student mistakes in SQL statements.

Based on this, this research proposes a semi-automated assessment approach as a solution

to improve students’ SQL formulation process, ensure the consistency of SQL grading and the

feedback generated during the marking process. The semi-automatic marking method utilities

both the Case-Based Reasoning (CBR) system and Rule-Based Reasoning (RBR) system

methodologies. The approach aims to reduce the workload of marking tasks by reducing or

removing as many of the repetitive tasks in any phase of the marking process of SQL statements

as possible. It also targets the improvement of feedback dimensions that can be given to

students.

In addition, the research implemented a prototype of the SQL assessment framework which

supports the process of the semi-automated assessment approach. The prototype aims to

enhance the SQL formulation process for students and minimise the required human effort for

assessing and evaluating SQL statements. Furthermore, it aims to provide timely, individual

and detailed feedback to the students. The new prototype tool allows students to formulate SQL

statements using the point-and-click approach by using the SQL Formulation Editor

(SQL-FE). It also aims to minimise the required human effort for assessing and evaluating SQL

statements through the use of the SQL Marking Editor (SQL-ME).

Page | iv

To ensure the effectiveness of the SQL-FE tool, the research conducted two studies which

compared the newly implemented tool with the paper-based manual method in the first study

(pilot study), and with the SQL Management Studio tool in the second study (full experiment).

The results provided reasonable evidence that using SQL-FE can have a beneficial effect on

formulating SQL statements and improve students’ SQL learning. The results also showed that

students were able to solve and formulate the SQL query on time and their performance showed

significant improvement.

The research also carried out an experiment to examine the viability of the SQL Marking

Editor by testing the SQL partial marking, grouping of identical SQL statements, and the

resulting marking process after applying the generic marking rules. The experimental results

presented demonstrated that the newly implemented editor was able to provide consistent

marking and individual feedback for all SQL parts.

This means that the main aim of this research has been fulfilled, since the workload of the

lecturers has been reduced, and students’ performance in formulating SQL statements has been

improved.

Keywords: semi-automated, case-based reasoning systems, rule-based reasoning system,

partial marking, formative assessment, feedback, online, SQL.

Page | v

Dedication

To my father and my husband for their ongoing love and support

and to my mother who could not see this thesis completed.

Page | vi

List of Abbreviations

Abbreviation Full Form

CAA Computer Assisted Assessment

CBA Computer Based Assessment

ABC Access by Computer Approach

IOS International Organization for Standardization

DDL Data Definition Language

DML Data Manipulation Language

SSMS SQL Server Management Studio

RDBMS Relational Database Management System

SQL Structured Query Language

AI Artificial Intelligence

SQL-FE SQL Formulation Editor

SQL-ME SQL Marking Editor

 RBR Rule-Based Reasoning

CBR Case-Based Reasoning

Page | vii

Table of Content

DECLARATION ... I

ACKNOWLEDGMENTS .. II

ABSTRACT ...III

DEDICATION ... V

LIST OF ABBREVIATIONS .. VI

TABLE OF CONTENT .. VII

LIST OF TABLES .. XI

LIST OF FIGURES .. XII

CHAPTER 1. ... 1

INTRODUCTION ... 1

 OVERVIEW AND MOTIVATION ... 1

 AIM AND OBJECTIVES .. 3

 APPROACH .. 4

 OUTLINE OF THE THESIS ... 4

 CONTRIBUTIONS ... 7

 PUBLICATION ... 9

CHAPTER 2. BACKGROUND .. 10

ASSESSMENT IN EDUCATION: AN OVERVIEW.. 10

 INTRODUCTION .. 10

 ASSESSMENT IN EDUCATION ... 10

 COMPUTER-ASSISTED ASSESSMENT (CAA) .. 11

 Diagnostic Assessment.. 13

 Formative Assessment .. 14

 Summative Assessment .. 14

 COMPARISON BETWEEN ASSESSMENT TYPES .. 15

 MANUAL AND COMPUTER-ASSISTED ASSESSMENT .. 15

 SEMI-AUTOMATED AND FULLY-AUTOMATED ASSESSMENT ... 16

 TYPES OF AUTOMATED ASSESSMENT .. 17

 Diagram Assessment .. 17

 Programming Language Assessment .. 18

 SUMMARY... 19

CHAPTER 3. LITERATURE REVIEW... 21

AUTOMATIC ASSESSMENT OF SQL ... 21

 INTRODUCTION .. 21

 STRUCTURED QUERY LANGUAGE (SQL) .. 21

 SQL Assessment .. 24

 SQL Assessment Grading... 24

 DIFFICULTIES IN LEARNING AND ASSESSING SQL ... 25

 EXISTING SQL LEARNING AND ASSESSMENT TOOLS ... 26

Page | viii

 SQL Tester ... 26

 SQLg (SQL-Statement Grader) .. 27

 SQL-KnoT (Knowledge Tester) ... 29

 SQLify .. 30

 ActiveSQL .. 32

 SQLator ... 33

 AsseSQL ... 33

 SUMMARY OF EXISTING SQL TOOLS ... 35

 ARTIFICIAL INTELLIGENCE IN EDUCATION ... 38

 Case-Based Reasoning (CBR) .. 38

 Rule-Based Reasoning (RBR) ... 40

 Integration of Rule-based Reasoning and Case-based Reasoning .. 42

 SUMMARY... 43

CHAPTER 4. ... 44

RESEARCH METHODOLOGY ... 44

 INTRODUCTION .. 44

 RESEARCH APPROACHES .. 44

 RESEARCH DESIGNS .. 45

 DATA COLLECTION .. 47

 Surveys .. 48

 Questionnaires .. 49

 DATA ANALYSIS .. 50

 Existing Exam Scripts Analysis .. 50

 Data Analysis using t-test ... 51

 ETHICAL REQUIREMENTS .. 52

 SUMMARY... 53

CHAPTER 5. ... 54

ANALYSIS OF THE EXISTING SQL EXAMINATION SCRIPTS ... 54

 INTRODUCTION .. 54

 DATA COLLECTION .. 55

 Existing SQL Examination Scripts Data Collection ... 55

 Common Mistakes in SQL Exam Scripts .. 56
 Discussion of Common Mistakes .. 57

 Model Answers to Each Query .. 58
 Discussion of the Different Model Answers .. 59

 Errors Categories... 60
 Discussion of Error Categories .. 62
 Analysis of Each Error Category .. 63

 THE IDEAL SQL MARKING PROCESS ... 65

 SUMMARY... 65

CHAPTER 6. DESIGN, IMPLEMENTATION AND EVALUATION .. 67

SQL FORMULATION EDITOR (SQL-FE) .. 67

 INTRODUCTION .. 67

 THE SQL FORMULATION EDITOR (SQL-FE) ... 68

 Requirements .. 69

 Components .. 73

Page | ix

 Technologies used in the development ... 78
 Software Tools .. 78
 Software Source Code ... 80

 PILOT STUDY ... 84

 Participants ... 84

 Study Procedure .. 85

 SQL Questions ... 86

 Study Analysis and Discussion ... 86

 Results ... 88

 EXPERIMENT .. 94

 SQL Formulation Editor (SQL-FE) ... 95

 Participants ... 96

 SQL Questions ... 97

 Design of the Experiment .. 102

 Statistical Analysis .. 105

 Mean Time Hypotheses... 106

 Marks/Performance Hypotheses .. 106

 Results and Discussion .. 107

 SUMMARY... 112

CHAPTER 7. ... 114

A NEW SEMI-AUTOMATIC SQL ASSESSMENT FRAMEWORK ... 114

 INTRODUCTION .. 114

 APPROACH DESCRIPTION ... 115

 Pre-processing ... 117

 Normalisation Operation .. 117
 The Remove Normalisation Operation ... 118
 The Replace Normalisation Operation .. 120
 The Sort Normalisation Operation .. 121
 Normalisation operation applied in real data of SQL statements ... 126
 Analysis and Discussion ... 133

A. SQL statements retrieved from existing exam scripts (2014)... 133
B. SQL Statements Retrieved from SQL-FE (2016) .. 134
 Grouping Process .. 136

 MARKING PROCESS OF SQL STATEMENTS ... 137
 SQL Generic Marking Rules ... 138
 SQL Partial Marking ... 138
 Propagation of Marks and Feedback .. 140

 Generic Marking Rules of Semi-Automatic SQL Assessment... 141
 SQL Marking Rules Classifications ... 141
 Marking Rules Procedure .. 142

 SQL Marking Process and Marking Rules .. 143
 SELECT, FROM, (WHERE or/and ON) and ORDER BY Clauses .. 144
 SELECT, FROM, WHERE and GROUP BY (Aggregate Functions) .. 150
 SELECT, FROM, GROUP BY and HAVING ... 153

 SUMMARY... 155

CHAPTER 8. DESIGN, IMPLEMENTATION AND EVALUATION .. 157

SQL MARKING EDITOR (SQL-ME) ... 157

 INTRODUCTION .. 157

Page | x

 THE SQL MARKING EDITOR (SQL-ME) .. 157

 SQL-ME Requirements .. 158

 SQL-ME User Interface .. 158

 SQL MARKING PROCESS (GENERIC RULES).. 162

 THE MARKING PROCESS EXPERIMENT ... 163

 Participants ... 165

 Questions .. 165

 Measurements .. 167

 Data Collection .. 167

 Experimental Results and Discussion .. 168

 FINDINGS .. 172

 SUMMARY... 173

CHAPTER 9. ... 174

CONCLUSION AND FUTURE WORK ... 174

9.1 INTRODUCTION .. 174

9.2 SUMMARY OF EACH CHAPTER .. 174

9.3 CONTRIBUTIONS ... 175

9.4 LIMITATION AND FUTURE WORK ... 177

9.5 SUMMARY... 178

REFERENCES ... 179

APPENDICES... 189

Page | xi

List of Tables

TABLE 3-1: INSTRUCTOR PROCEDURE TO APPLY THE MARK SUGGESTED BY SQLIFY .. 30

TABLE 3-2: TWO CORRECT QUERY SOLUTIONS AND ONE INCORRECT IN CQ CLASS AND THEIR EVALUATION 31

TABLE 3-3: EXAMPLE OF ACTIVESQL MARKING GRADING SYSTEM .. 32

TABLE 3-4: FEATURES EVALUATION OF EXISTING SQL ASSESSMENT AND LEARNING TOOLS 36

TABLE 3-5: RULES CONDITIONS .. 41

TABLE 5-1: EXAMPLE OF COMMON SQL MISTAKES THAT STUDENT MADE IN THE DATABASE EXAM (JUNE 2013) 56

TABLE 6-1: SQL-FE USER INTERFACE DESIGN REQUIREMENTS ... 70

TABLE 6-2: PARTICIPATING STUDENTS SOLVING SQL QUESTIONS USING BOTH MODES .. 85

TABLE 6-3: LIST OF SQL QUIZ QUESTIONS .. 86

TABLE 6-4: SAMPLE DATA OF TIME SPENT BETWEEN PAPER PENCIL METHOD AND SQ-FE METHOD 89

TABLE 6-5: DESCRIPTIVE STATISTICS OF TIME .. 90

TABLE 6-6: DESCRIPTIVE STATISTICS FOR RESPONSE TO FEEDBACK QUESTIONS ... 92

TABLE 6-7: RESULTS OF T TEST FOR RESPONSE TO FEEDBACK QUESTIONS .. 93

TABLE 6-8: RESULTS OF THE T-TEST FOR THE RESPONSE TO THE FEEDBACK QUESTIONS 94

TABLE 6-9: THE LECTURER TABLE .. 97

TABLE 6-10: THE COURSE TABLE .. 98

TABLE 6-11: SQL QUESTIONS AND THEIR MODEL ANSWERS: SET A ... 99

TABLE 6-12: EMP TABLE .. 100

TABLE 6-13: DEPT TABLE .. 100

TABLE 6-14: SQL QUESTIONS WITH THEIR MODEL ANSWER: SET B ... 101

TABLE 6-15: THE CROSSOVER EXPERIMENTAL DESIGN DISTRIBUTION .. 103

TABLE 6-16: PAIRED SAMPLES TEST OF THE TWO TOOLS ... 109

TABLE 6-17: DESCRIPTIVE STATISTICS OF THE MEAN MARKS OBTAINED USING THE TWO TOOLS 109

TABLE 7-1: ORIGINAL SQL STATEMENTS .. 128

TABLE 7-2: NORMALISATION OPERATION APPLIED ON THE SELECT CLAUSES .. 129

TABLE 7-3: NORMALISATION OPERATION APPLIED ON THE FROM CLAUSES .. 130

TABLE 7-4: NORMALISATION OPERATION APPLIED ON THE WHERE CLAUSES ... 131

TABLE 7-5: NORMALISATION OPERATION APPLIED ON THE AND OPERATOR .. 132

TABLE 7-6: DIVISIONS OF SQL CLAUSE PARTS USING A SPREADSHEET ... 133

TABLE 7-7: NUMBER OF SQL STATEMENT OCCURRENCES IN EACH GROUP ... 136

TABLE 7-8: SQL STATEMENTS PARTS .. 139

TABLE 7-9: MARKING RULES CLASSIFICATION (SAMPLE) .. 141

TABLE 8-1: THE SQL QUESTIONS USED IN THE EXPERIMENT WITH THEIR MODEL ANSWERS................................ 166

TABLE 8-2: THE PARTICIPANTS’ RESPONSES ON Q1, 2 AND 3 .. 169

TABLE 8-3: THE PARTICIPANTS’ RESPONSES ON Q4 ... 169

TABLE 8-4: THE PARTICIPANTS’ RESPONSES ON FEEDBACK QUALITY (Q1, 2 & 3) ... 171

Page | xii

List of Figures

FIGURE 1-1: STRUCTURE OF THE THESIS ... 5

FIGURE 1-2: CONTRIBUTIONS AND SUB-CONTRIBUTION DIAGRAM ... 8

FIGURE 2-1: BLOOM'S TAXONOMY BY (BLOOM, 1956) ... 12

FIGURE 3-1: THE RELATIONSHIP BETWEEN EMP AND DEPT TABLES .. 22

FIGURE 3-2: THE CBR CYCLE ACCORDING TO (AAMODT AND PLAZA, 1994) .. 39

FIGURE 3-3: FORWARD-CHAINING WITH “FIRST COME, FIRST SERVED” (HOPGOOD, 2012) 41

FIGURE 4-1: SAMPLE OF SQL EXAM SCRIPTS USING SPREADSHEET .. 50

FIGURE 5-1: THE RELATIONSHIP BETWEEN A STUDENT AND ERRORS (ONE-TO-MANY) ... 63

FIGURE 5-2: THE RELATIONSHIP BETWEEN STUDENTS AND ERRORS (MANY-TO-ONE) .. 63

FIGURE 5-3: SQL ERRORS CATEGORIES BREAKDOWN FOR 2013 AND 2014 STUDENTS’ EXAM SCRIPTS................. 64

FIGURE 6-1: USE CASE DIAGRAM OF THE CORE FUNCTIONALITIES OF SQL-FE ... 68

FIGURE 6-2: SQL FORMULATION EDITOR (SQL-FE) .. 71

FIGURE 6-3: QUESTION PAN .. 74

FIGURE 6-4: LEFT NAVIGATION BAR (SQL COMMANDS AND FUNCTIONS) .. 74

FIGURE 6-5: LEFT NAVIGATION BAR (TABLE SCHEMA) ... 75

FIGURE 6-6: RIGHT NAVIGATION BAR (SQL KEYWORDS AND OPERATORS) .. 75

FIGURE 6-7: ENTERING THE SQL STATEMENT USING THE MOUSE POINTER IN SQL-FE ... 76

FIGURE 6-8: TEXT-AREA PANE (USED TO ENTER STRING AND NUMERIC DATA) .. 76

FIGURE 6-9: ENTERING DATE VALUES USING THE STRING DATA TYPE ... 77

FIGURE 6-10: THE TWO TYPES OF CONTROL BUTTONS ... 77

FIGURE 6-11: THE LIFECYCLE OF PHP REQUEST PROCESSING DIAGRAM .. 79

FIGURE 6-12: PRINT SCREEN OF PHPMYADMIN DATABASE ... 80

FIGURE 6-13: SQL-FE REGISTRATION FORM ... 80

FIGURE 6-14: AN EXAMPLE OF A SQL STATEMENT ANSWER ... 83

FIGURE 6-15: BOXPLOT OF TIME TAKEN TO COMPLETE THE TEST FOR TWO MODES ... 90

FIGURE 6-16: HISTOGRAM OF DISTRIBUTION OF TIME TAKEN TO COMPLETE THE TEST FOR PEN AND PENCIL MODE

 .. 91

FIGURE 6-17: HISTOGRAM OF DISTRIBUTION OF TIME TAKEN TO COMPLETE THE TEST FOR SQL-FE MODE 92

FIGURE 6-18: EXECUTED SQL STATEMENTS USING THE SSMS TOOL ... 95

FIGURE 6-19: THE RELATIONSHIP BETWEEN THE LECTURER AND COURSE TABLES .. 98

FIGURE 6-20: THE RELATIONSHIP BETWEEN THE DEPARTMENT AND EMPLOYEE TABLES 101

FIGURE 6-21: BOXPLOT OF THE TIME TAKEN TO COMPLETE THE TEST USING THE TWO TOOLS 107

FIGURE 6-22: HISTOGRAM OF THE DISTRIBUTION OF TIME TAKEN TO COMPLETE THE TEST USING SQL-FE 108

FIGURE 6-23: HISTOGRAM OF THE DISTRIBUTION OF TIME TAKEN TO COMPLETE THE TEST USING SSMS............ 108

FIGURE 6-24: BOXPLOT OF PERFORMANCE MARKS OF BOTH SQL-FE AND SSMS ... 110

FIGURE 6-25: HISTOGRAM OF THE DISTRIBUTION OF MARKS OBTAINED USING SQL-FE 111

FIGURE 6-26: HISTOGRAM OF THE DISTRIBUTION OF MARKS OBTAINED USING SSMS .. 111

Page | xiii

FIGURE 7-1: THE PROPOSED SEMI-AUTOMATIC APPROACH .. 116

FIGURE 7-2: NORMALISATION PROCESS APPLIED ON THE SQL STATEMENTS OF THE EXAM SCRIPTS 134

FIGURE 7-3: NORMALISATION PROCESS APPLIED TO SQL STATEMENTS OF SQL-FE ... 135

FIGURE 7-4: PROPAGATION OF SQL STATEMENT PARTS .. 140

FIGURE 7-5: AN ILLUSTRATION OF THE MARKING PROCESS AFTER APPLYING THE RULES 145

FIGURE 7-6: THE MARK PROPAGATION PROCESS WITH OTHER GROUPS .. 146

FIGURE 7-7: E.G. THE FROM CLAUSE IN G11 IS NOT IDENTICAL TO THAT IN G12 ... 147

FIGURE 7-8: THE FROM CLAUSE SHOULD BE MARKED AS A SEPARATE PART ... 147

FIGURE 7-9: AN SQL ANSWER CONTAINING ON AS A JOIN STATEMENT .. 148

FIGURE 7-10: AN SQL ANSWER USING WHERE AS JOIN ... 149

FIGURE 7-11: AN SQL ANSWER USING A GROUP BY CLAUSE ... 150

FIGURE 7-12: THE MARKING PROCESS OF A GROUP BY CLAUSE WITH MULTIPLE FIELDNAMES 151

FIGURE 7-13: THE WHERE CLAUSE MARKING PROCESS WITH A GROUP BY CLAUSE 152

FIGURE 7-14: MARKING GROUP BY AND HAVING CLAUSES AS A GROUP ... 153

FIGURE 7-15: AN SQL STATEMENT WITH A HAVING CLAUSE MARKED SEPARATELY .. 154

FIGURE 8-1: THE SQL MARKING PROCESS ARCHITECTURE ... 159

FIGURE 8-2: THE USER INTERFACE OF THE SQL-ME (PARTIAL MARKING INTERFACE) .. 161

FIGURE 8-3: SQL STATEMENTS IN GROUPS (GENERIC MARKING RULES) .. 164

FIGURE 8-4: THE PARTICIPANTS’ RESPONSES’ ON Q4 .. 170

FIGURE 8-5: THE PARTICIPANTS’ RESPONSES ON FEEDBACK QUALITY (Q4) .. 171

FIGURE 8-6: THE PARTICIPANTS’ RESPONSES ON USEFULNESS OF SQL-ME .. 172

Page | 1

Chapter 1.

Introduction

 Overview and Motivation

Computer-Assisted Assessment (CAA) has turned into an essential technique that can provide

a comprehensive formulation and marking environment (Adesina, 2016). Simultaneously, it

can be utilised to reduce the review and assessment load on lecturers (Pardo, 2002). Despite

assessment being critical to student learning and certification where several automatic

assessment frameworks have been developed, the adoption has been inconsistent (Bennett et

al., 2017). Fully-automatic assessment covers just a part of the general assessment

requirements in computer science courses (Adesina et al., 2015). According to Bloom (1956),

designing an assessment tool should match the learning objective along with the commonly

used question types. In this case, CAA can support different types of questions, where it is

categorised as either as fully-automatic assessment or semi-automatic assessment (O’Reilly

and Morgan, 1999). The fully-automatic assessment evaluates the submitted answers

automatically and lecturers do not have to grade each submission individually (Weinberger,

2011). This type of assessment can provide consistent feedback and reduce the lecturers’

workload. However, it often ignores the main parts of students’ answers when providing

feedback. On the other hand, semi-automated assessment approach is a partially automatic

evaluation of the submitted work. It provides each part of the assessed work with a final score

while lecturers do the final grading. This means that each part of the solution is marked and

provided with feedback through the help of human markers (Tremblay and Labonté, 2003).

 Lecturers and educators often resort to setting fewer assessment tasks or accepting the

significant increase in their manual marking load, which can affect the feedback quality

provided. The semi-automated assessment approach has thus become vital for coping with this

increased workload. Furthermore, for these reasons, this research considers the semi-automated

assessment approach for implementation since it is used in computer science class assessments,

where computer programs or source-codes are automatically evaluated and then manually

revised by lecturers (Ala-Mutka, 2005).

Page | 2

Structured Query Language (SQL) is the leading database language in teaching and

assessment environments. However, to formulate and assess useful SQL queries, various

difficulties and challenges are often faced, which requires more practice from students and

further assessment efforts from lecturers (Ahadi et al., 2016). Research by Tropashko and

Burleson (2007) stated that “SQL is a declarative language; with no mechanisms for flow

control, loops, variables and no methods for storing intermediate results”. Although SQL

contains simple syntax, marking and assessment of its coursework can be very difficult for

lecturers. The reason for that is that SQL statements need to be tested and evaluated

individually according to the syntax structure, style and datasets (output data). A large number

of studies have aimed to reduce the lecturers’ workloads and increase the efficiency of the

feedback submitted to the students (e.g. Brusilovsky et al., (2008); Sadiq et al., (2004); Prior

and Lister (2004); Kleiner et al., (2013); Raadt et al., (2007), and Mitrovic (1998)). However,

SQL offers many ways to solve the same query, and most of the aforementioned studies rely

on comparisons of datasets without checking the ways students tried to solve the query. In

order to solve these problems, a stronger analytical tool is needed to evaluate the structure of

the whole query and give consistent marks to the students. The proposed tool will not only look

at the structure of the SQL query, but will also mark different (i.e. alternative) ways of solving

the query without any restrictions on the lecturer’s solutions. In addition, the tool will provide

marks for every correct statement submitted by the student and provide students with visual

feedback on the errors they made.

This research is based on the Semi-Automatic Assessment approach, which utilities both

the Case-Based Reasoning (CBR) system and the Rule-Based Reasoning (RBR) system

techniques. The approach aims to improve SQL learning and assessment by enhancing the

learning approach of SQL queries for students, reducing the marking workload of lecturers,

enhancing the consistency of grades provided to students, and delivering an effective and

timely feedback to them. In addition, the research only focuses on solving problems of basic

SELECT clauses, which cover the following clauses;

SELECT < list of columns>

FROM <table list>

WHERE <row condition>

GROUP BY <group list>

HAVING <group condition>

ORDER BY <sort list>

Page | 3

This chapter begins with an overview of Computer-Assisted Assessment and the motivation

of this work. Following this, the aims and objectives of the research are outlined in Section 1.2.

The chapter then discusses the research approach and outline the structure of this thesis in

Section 1.3 and 1.4, respectively. The novel contribution and sub-contributions of the thesis

are listed in Section 1.5. Finally, the chapter concludes with publication details in Section 1.6.

 Aim and Objectives

This research proposes a semi-automated assessment framework that supports human markers.

The main purpose of this research is to reduce or remove as many of the repetitive tasks in any

phase of the marking process of SQL statements as possible. As identical tasks are performed

less frequently (possibly only once) by examiners, consistency of marking and feedback on

SQL answers can be achieved. In other words, the primary target of this research is to reduce

the time and effort associated with the SQL evaluation process.

There are several objectives, which the Semi-automated Assessment of SQL
Statements research aims to achieve, including:

1. Identifying the problems with existing SQL learning and marking systems. This includes

defining the problems and limitations caused by using manual marking, as well as

examining the existing SQL assessment tools and analysing them in terms of how they

work and what features are used to mark SQL statements.

2. Analysing different common errors made by students. This involves identifying the

common mistakes in students’ answers and analysing them to implement an accurate

marking environment that can help identify the similarities between SQL statements and

mark them automatically.

3. Providing a detailed rationale of the requirements and components of the developed SQL

Formulation Editor (SQL-FE), as well as performing an appropriate experimental study

to evaluate the time saving and the students’ performance using the SQL formulation

Editor (SQL-FE). Furthermore, a hypothesis of the fundamental relationship between the

experiments and surveys of the research methodology designs should also be tested.

4. Developing a novel framework that provides a platform where different intelligent

techniques work together to support the assessment process of SQL statements by

utilising the case-based and rule-based reasoning systems.

Page | 4

5. Developing techniques (such as normalisation operations and grouping of statements) to

reduce the repetitive tasks or eliminate them completely where possible. Furthermore, the

common repetitive tasks in the assessment process should also be identified.

6. Providing a detailed rationale of the requirements and components of the developed

SQL Marking Editor (SQL-ME) and perform an appropriate experimental study to

evaluate the feasibility of the Semi-automatic Assessment approach (SQL-ME) and

analysing its results.

 Approach

This research focuses on the semi-automated SQL assessment approach. The aim of

semi-automation is to reduce the number of SQL statement clauses marked by examiners. This

requires identifying and grouping identical clauses in students’ solutions by finding their

identical components using different SQL statements clauses attributes (e.g. commands,

functions, operators and keywords). At the same time, the marking process goes through four

main stages, which are the normalisation, partial marking, grouping the identical statements,

and applying the new formulated SQL marking rules which utilise both the Case-Based

Reasoning (CBR) and the Rule-Based Reasoning (RBR) systems.

The semi-automated assessment approach is a solution to ensuring the consistency of the

SQL marking and feedback generated during the marking process. It uses the string matching

method, which does not involve matching students’ answers with the model answers. Rather,

it groups the matching clauses of students' SQL statements and then asks the examiners to

approve the correctness of SQL clauses from each of the different groups. To evaluate the

proposed approach, this research implements a complete SQL learning and assessment

framework that supports the process of the semi-automated assessment approach.

 Outline of the Thesis

This thesis investigates the use of Semi-automated Assessment of SQL Statements as a solution

to reducing examiners’ marking workload. It describes previous work carried out in the field

of automated assessment and presents arguments for using a new framework environment for

practicing and assessing SQL statements. The thesis comprises of nine chapters as illustrated

in Figure 1-1, which provides an overview of the thesis structure.

Page | 5

Figure 1-1: Structure of the Thesis

The main body of this thesis is organised as follows:

Chapter 2: Presents a background on assessment approaches in education, an overview of the

computer and its use in education, and an introduction to computer-assisted assessment (CAA).

Furthermore, it discusses the difference between the fully-automatic and semi-automatic

assessment approaches and outlines the various types of automated assessment.

Chapter 3: Presents a literature review of the marking and grading of SQL statements. It

briefly discusses the main difficulties of SQL learning and assessment and presents a survey

of existing SQL learning and assessment tools and the related state-of-the-art approaches of

automated assessment. Moreover, it highlights multiple SQL learning and assessment tools that

have been developed for learning and assessing SQL statements. Finally, it proposes a new

solution to overcome the current challenges by integrating the Case-Based Reasoning (CBR)

and Rule-Based Reasoning (RBR) systems.

The novel marking process framework

includes; normalisation, grouping and

generic SQL marking rules

Enhance the exploratory of the

research with approach and methods

Chapter 1

Introduction

Chapter 7

A new semi-automatic

Assessment Framework

Chapter 4

Research Methodology

Chapter 8

Design and development of

SQL Marking Editor for

partial and group statements

Chapter 6

Design and development

of the new SQL

Formulation Editor and

evaluate it with

undergraduate students

Chapter 5

Analysis of SQL exams

Overall conclusion and future

work of the project

Overview of Assessment

in Education

Automatic Assessment of

Structured Query Language

(SQL)

Chapter 2

Background

Chapter 3

Literature Review
Chapter 9

Conclusion and Future Work

Analyse the existing SQL exam

scripts to define the SQL common

errors and common answers

Page | 6

Chapter 4: Describes the methodology of this research. The main objective of this chapter is

to enhance the exploration of the research. It discusses the research approaches, designs, data

collection and analysis methods and techniques used to simplify the research design

framework.

Chapter 5: Overviews the data collection process used to collect data from the exam scripts

of the Database module. In addition, it analyses the common errors in SQL exam scripts and

develops a simple grading scheme. This chapter’s intention is to explore the difficulties and

challenges, which students and examiners face in the manual assessment of SQL statements

and what errors students frequently make when they use the current system.

Chapter 6: Presents the design and implementation of the SQL Formulation Editor (SQL-FE),

which uses the point-and-click method. The objective of this chapter is to provide an overview

of the newly implemented system and explain how the system works. In addition, it introduces

two different studies to evaluate the new SQL-FE tool. The purpose of this evaluation is to test

the new specialised tool in terms of formulating SQL statements. The evaluation part is divided

into two sections, a pilot study and a full experiment, both of which involve students testing

the tool to evaluate the time spent in formulating SQL statements and the students’

performance. The chapter also presents the evaluation results and the students’ feedback after

formulating SQL statements with the implemented tool.

Chapter 7: Discusses the details of the semi-automated assessment framework that aims to

reduce the workload of examiners. In addition, the approach aims to enhance students’ SQL

learning experience and provide them with distinct and detailed feedback. The main purpose

of this chapter is to provide an overall explanation of the new approach and discuss how it can

solve the main challenges of the current learning and assessment systems highlighted in

Chapter 3. In addition, it explains the marking process of SQL statements by formulating new

generic marking rules for the SQL statements using both the case-based reasoning and rule-

based reasoning systems. The chapter then proceeds to discuss how to enhance the marking

propagation technique between SQL clauses and decrease the number of the SQL statements

that should be marked by examiners. Finally, it concludes the distribution of the SQL clauses

parts feedback by receiving a consistent feedback for all the identical parts.

Page | 7

Chapter 8: Presents the design and implementation of the SQL Marking Editor (SQL-ME)

using the semi-automatic assessment approach. The objective of this chapter is to provide an

overview of the newly implemented system and explain how the approach will reduce the SQL

statements marked by the examiners. The chapter then describes the evaluation of the newly

implemented editor, where examiners test the SQL-ME tool. In this context, two studies are

carried out; one to test the normalisation operation of SQL statements and how it can increase

the similarities across SQL statements, and the other to test the marking propagation of SQL

statements and how it can increase after applying the generic rules.

Chapter 9: Presents the conclusion of this research and recommendations for future work

directions. It highlights the reasoning and judgments on the findings of this research in terms

of the results and outcomes. In addition, in the future plan section, the chapter lists the

upcoming tasks that will take place in the coming years as an extension to this research.

 Contributions

The main novel contribution of this research is the development of a novel framework that

provides a platform to support the assessment process of SQL statements, which supports the

integration of both the Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR)

systems that use application of the Artificial Intelligence (AI) methodology. Such a framework

advantages are:

 Enables human and computer association during the assessment process.

 Analyse beginner students’ SQL statements in terms of SQL clauses to provide consistent

feedback,

 Reduce the overall SQL statement clauses marked by examiners. This means to reduce

the human intervention on marking and reuse the comments given for similar SQL parts.

 Enhances the accuracy of marking and provides students with immediate feedback.

This results in reducing or removing as many of the repetitive tasks in all phases of the marking

process of SQL statements as possible.

Page | 8

The following are the sub-contributions involved:

To achieve the objectives of this research, there are several sub-contributions involved, which

illustrated in Figure 1-2. The figure outlines the sub-contributions with arrows to show how

the contributions are connected, and leads to achieving the main novel contribution, which

represents “No. 4" in the following figure.

Figure 1-2: Contributions and Sub-contribution Diagram

1. To identify the common mistakes committed by students and find the alternative ways of

solving the same SQL query, the researcher has collected and analysed previous SQL exam

papers. The analysis has gone through different phases to identify them. Figure 1-2 shows

that this analysis became the foundation of this research, which is used as a tool for

supporting the design and implementation of the new editors;

1. a) Students: to formulate the SQL statements using the SQL Formulation Editor

(SQL-FE). This tool has been implemented to help students formulate their SQL

query using point-and-click approach. Using this approach assisted the student not

to attempt any spelling mistakes and add unnecessarily elements in the query.

1. b) Lecturers: to mark the SQL statements and submit feedback to students which

submitted by SQL-FE using the SQL Marking Editor (SQL-ME).

Page | 9

2. To formulate SQL statements that eliminate adding unnecessary elements to SQL

statements and prevent students from making minor and avoidable mistakes, the researcher

has designed and implemented a new SQL Formulation Editor named as SQL-FE.

3. To obtain the students feedback of the new implemented editor and to test the editor

performance that reduce the errors while solving SQL statements, the researcher has

evaluated the SQL-FE from several college students and collect their opinions of how to

enhance it.

4. To reduce the repetitive marking in duplicated SQL answers or remove them completely

where possible, the researcher has applied the normalisation operation, which is based on

the proposed semi-automatic SQL assessment framework. This lead to develop a new

technique for marking process using the SQL generic marking rules. The SQL marking

process is an integration of both Rule-based Reasoning (RBR) and Case-based Reasoning

(CBR) systems. This method shows how efficiency and savings in marking time may be

obtained by reducing repetitive activities.

5. The marking process of the SQL statement has proposed a new semi-automatic assessment

framework to mark the identical SQL statements using a new SQL Marking Editor named

as SQL-ME.

6. To obtain the lecturers feedback of the new implemented editor and to evaluate the

feasibility of the editor performance, the researcher has performed an appropriate

experimental study to evaluate the feasibility of the semi-automatic assessment approach

using the new implemented SQL-ME through several SQL experienced lecturers and

collect their opinions of how to enhance it.

 Publication

The above contributions have resulted in the following conference paper:

PNo Publication Relevant

Chapter

Appendix

1

AL-Salmi A. (2018). A Web-based Semi-Automatic

Assessment Tool for Formulating Basic SQL Statements:

Point-and-Click Interaction Method. In Proceedings of the 10th

International Conference on Computer Supported Education -

Volume 2: CSEDU, ISBN 978-989-758-291-2, pages 191-198.

DOI: 10.5220/0006671501910198.

4,5,6 1

Page | 10

Chapter 2. Background

Assessment in Education:
An Overview

 Introduction

Automated assessment of programming has become an important method for grading students'

work and providing effective feedback to an enormous number of students (Buyrukoglu,

Batmaz and Lock, 2016). Computer-Assisted Assessment (CAA) is a field of learning

technology that studies the use of computers (Higgins et al., 2002). CAA may be used for both

formative and summative assessments to deliver, analyse and mark student assessments (Bull

and Danson, 2004). This chapter defines Computer-Assisted Assessment (CAA) and describes

the techniques of CAA, providing detailed information on formative, summative and

diagnostic assessments. It illustrates Bloom's Taxonomy and the types of assessment, namely

diagram and programming language assessments.

The rest of this chapter is organised as follows. Section 2.2 discusses assessment in

education, while Section 2.3 describes the process of computer-assisted assessment and

introduces three different techniques of CAA, whose features are then compared in Section 2.4.

Section 2.5 provides the definitions of and specifies the difference between manual and

automated assessments. A comparison between semi-automated and fully-automated

assessments is presented in Section 2.6, while Section 2.7 discusses automated assessment in

fine detail. Finally, Section 2.8 concludes the chapter by providing a summary of its contents.

 Assessment in Education

Harlen et al. (1992) defines assessment as the process of gathering information about students’

answers in educational tasks. A study by Taras (2005) declared that there are a number of

reasons why lecturers assess their students. Among those reasons, assessment can shed light

on how students have developed and where they have progressed. Furthermore, it can help

lecturers to make modifications to their teaching practices to improve the learning experience

for their students.

Page | 11

In addition, it can provide lecturers with information about what they have taught to

students, and in what other areas they should assess them. According to the USA National

Institute of Education (1997, p.160):

“If assessment is to be a positive force in education, it must be implemented properly. It cannot

be used to merely sort students or to criticise education. Its goals must be to improve education.

Rather than 'teach to the test', we must 'test what we teach”.

Therefore, the main purpose of conducting assessments is to improve learning and teaching

quality by extracting the positive power of students’ knowledge (Harlen et al., 1992). In

addition, assessment provides lecturers with information on students' progress and

improvement, and helps them to enhance the teaching and learning experience for future and

present students (Taras, 2005). James et al., (2002, p.8) argued that assessment should be a

strategic tool to enhance teaching and learning due to the fact that students often "work

backwards through the curriculum, focusing first and foremost on how they will be assessed

and what they will be required to demonstrate they have learned".

 Computer-Assisted Assessment (CAA)

“CAA is a common term for the use of computers in the assessment of student learning. The

term encompasses the use of computers to deliver, mark and analyse assignments or

examinations.” (Bull and McKenna, 2004, p.8)

CAA refers to the process of assessing students’ progress using computers (Conole and

Warburton, 2005). CAA is used mainly for a range of activities such as delivering marks,

analysing assignments or examinations and providing effective feedback (Stephens et al.,

1998). Dalziel (2001) stated that computer-assisted assessment might significantly enhance the

overall learning outcomes by providing learners with efficient exams and useful feedback.

There are a number of benefits associated with the use of CAA (Bull and Mckenna, 2004).

These include motivating and encouraging students to practice skills by providing

opportunities for formative assessment, broadening the range of the knowledge assessed

(e.g. creating websites or complex diagrams) and offering opportunities for more immediate

feedback, as well as allowing feedback to be delivered in different ways. Bloom's Taxonomy

provides a framework that aids thinking about the purpose of assessment.

Page | 12

The taxonomy classifies six levels of learning objectives, which are Knowledge,

Comprehension, Application, Analysis, Synthesis and Evaluation (Bloom, 1956). Figure 2-1

shows Bloom's Taxonomy, which was created by Benjamin Bloom during the 1950s, and is a

way to categorise the levels of reasoning skills required in classroom situations.

Figure 2-1: Bloom's Taxonomy by (Bloom, 1956)

This hierarchical taxonomy structure lists six levels of thinking and learning skills that range

from basic learning objectives such as knowledge of content through higher-order learning

such as synthesis, evaluation, and creativity. The six levels as illustrated in Figure 2-1, each

requiring a higher level of abstraction from the students than the last.

 Levels 1-3: are sometimes described as relating to "shallow" or "surface" learning.

 Levels 4-6: are associated with "deep" learning.

From the figure above, assessment of level 1 is quite simple and can frequently be

accomplished by Multiple Choice Questions (MCQs) or questions requiring simple responses.

However, it becomes gradually more difficult to measure a student's competence as the higher-

level objectives are addressed. Carter et al. (2003) listed different types of questions that are

often used in CAA tools to test surface learning, which include:

A. Multiple Choice Questions (MCQ): a single choice of response is made. MCQs

potentially have high reliability, validity, and fast feedback submission to the students.

Page | 13

B. Multiple Response Questions (MRQ): similar to MCQs but with multiple selections

of response.

C. True/False Questions: a test consisting of a series of statements to be marked

as true or false.

D. Short Answer Questions: require a response in the form of text.

E. Essay Questions: test a wide range of abilities including the capacity to draw on a wide

range of knowledge. Marking (i.e. grading) is made relatively fast by providing marking

schemes before the lecturers start to mark and sharing them with students.

F. Numerical Questions: require a numerical response.

These classes help educators distinguish more closely what they teach and, by implication what

they should assess and provide feedback on. By providing the hierarchy of levels, this

taxonomy can assist teachers in designing performance tasks, crafting questions for engaging

with students, and providing feedback on student work.

It has been argued that such simple question types cannot be used to measure students’ deep

learning skills (Entwistle, 2000). Therefore, computer-assisted assessment software tools aim

to encourage newer question types which are not restricted only to MCQs and True/False

questions, but cover various other types, like computer programming and computer diagrams,

which constitute a growing interest area for many researchers (Rawles et al., 2002). Research

by O’Reilly and Morgan (1999) and Bull and McKenna (2004) stated that CAA can be

categorised into three types: Diagnostic Assessment, which is used by tutors to define their

students' knowledge, Formative Assessment, which provides feedback to assist the learning

process, and Summative Assessment, which is used for grading purposes. The three techniques

are explained in detail in the subsequent subsections.

 Diagnostic Assessment

According to the University of Northern Illinois (2004), diagnostic assessment (assessment as

learning) is used to learn about students’ strengths and weaknesses, which can help lecturers to

plan what to teach and how to teach it. It is used to define students’ knowledge, usually at the

beginning of the year (i.e. before the course starts), to assess the effectiveness of the teaching

(Sclater and Howie, 2003). Diagnostic assessment can analyse different features of difficulties

that students face, such as students with a lack of knowledge, students with difficulties in

understanding and students with weaknesses in skills (Conole and Warburton, 2005).

Page | 14

There are different types of diagnostic assessment, such as pre-tests, which highlight the

abilities of students, self-assessments, which identify skills and capabilities, and interviews,

which should be brief and private (University of Northern Illinois, 2004).

 Formative Assessment

Formative assessment refers to student involvement in the assessment and learning practice

which involves the collaboration between teacher and students aimed at improving the learning

process (López-Pastor and Sicilia-Camacho, 2017). It is the process by which teachers provide

information to students during the learning process to modify their understanding which also

named as (assessment for learning) (Pieterse, 2013).

It is a process in which lecturers use various tools to define what students know and the gaps

in their understanding, and plan future instructions accordingly to improve learning (Pinckok

and Brandt, 2009). The Council of Chief State School Officers (2008) stated that, based on

feedback about students' performance, formative assessment is used as a process to enhance

students' education. Formative feedback helps student to develop a deeper understanding of

their learning, since it is an essential component of the formative assessment process (Clark,

2011).

“Formative assessment refers to assessment that is specifically intended to provide feedback

on performance to improve and accelerate learning” (Sadler, 1998, p. 77).

Rowntree (1987) stated, "Feedback or 'knowledge of results' is the lifeblood of learning".

According to Bedford and Price (2007), successful feedback should focus on learning rather

than on marks and should be understandable. In other words, if students know exactly what

went wrong with their submissions and exactly what their mistakes were, they can use the

feedback information to learn and revise their answers. Clark (2011) stated that formative

feedback cannot involve simply telling a student to either "try again" or "reconsider your work",

since this does not guide the student with appropriate instructions. However, feedback becomes

formative when students are provided with supportive instructions which help them to improve

their thinking and enhance their learning process (Clark, 2011).

 Summative Assessment

Summative assessment (assessment of learning) usually occurs at the end of a course of study

(Taras, 2001). The main reasons for using summative assessment are to identify what has been

learned over a period of time and to summarise students’ performance by sending progress

reports to them (Harlen and James, 1997).

Page | 15

Research by Chalmers and McAusland (2002) indicated that summative assessment is

conducted as an official evaluation, where students are informed in advance and can prepare.

In addition, they specify that it should be held in a supervised location, with specific timing,

and the results should be either hidden from students or displayed at the end of their studies.

The evaluation techniques used in summative assessment include projects, interviews and

analysis of work samples (Chalmers and McAusland, 2002).

 Comparison between Assessment Types

Diagnostic assessment performs well in measuring students' performance before starting their

studies; however, it cannot fulfil the aim of students getting their annual grades and receiving

feedback, which is achieved using either formative or summative assessment (Sclater and

Howie, 2003). While formative assessment can allow students to be automatically directed,

through feedback, to follow-up references and resources, summative assessment needs to be

formal, structured and supervised, and therefore requires more effective co-ordination between

academic departments and central services than formative assessment (Clark, 2011). Generally,

summative assessment systems do not provide feedback or suggestions (Stephens et al., 1998).

Summative assessment refers to the assessment of participants and summarises their

development at a particular time. In contrast to formative assessment, the focus is on the

outcome of a programme.

 Manual and Computer-Assisted Assessment

Assessment in higher education can be either paper-based or automated system. Paper-based

assessment has shown a number of problems, especially when high numbers of students are

enrolled in one class, because it is conducted manually (Carter et al., 2003). Manual assessment

might affect lecturers’ time management, as the marking load is increased, which can lead to

them either setting the students fewer assessment tasks (e.g. mid-terms, quizzes and

assignments) or adding additional marking time to their schedules (Carter et al., 2003). As

such, large class sizes, limited time for marking assessments and non-effective feedback have

led educators to think about computerised assessment.

Automated assessment has recently become more useful for both students and staff since

network computer technology can now support teaching and learning in higher education. Peat

and Franklin (2002) stated that online assessment has become more popular for supporting the

improvement of both teaching and learning.

Page | 16

A study done by Woit and Mason (2003) showed that automated assessment may improve

students’ motivation and programming efficiency when it is implemented securely and

efficiently. In addition, online assessment provides students with appropriate feedback that can

help them enhance their learning progress (Ihantola et al., 2010). Manual assessment leads to

a less efficient learning process and a difficulty in assessing students’ work, whereas automated

assessment can achieve an improvement in the learning and teaching process, since it can

reduce marking workloads, enhance grading accuracy and encourage interaction between

lecturers and students via feedback.

 Semi-Automated and Fully-Automated Assessment

Computers can be used for assessment in two different ways. The first approach is the

semi-automated assessment, which is a partially automatic evaluation of the submitted work,

providing parts of the final score while lecturers do the final grading. Second approach is the

fully-automated assessment, which fully evaluates submissions so lecturers do not have to

grade each submission individually (Weinberger, 2011). Kakkonen et al. (2004) defined semi-

automated assessment as a system that takes responsibility for more powered aspects of

assessment to prepare submissions, compilation, testing, style analysis and report generation.

A semi-automated system needs to provide some kind of automation that is not completely

dependent on human interaction to assess each assignment, but leaves grading and feedback to

the lecturer (Weinberger, 2011). Saikkonen et al., (2001) has mentioned several benefits of the

fully-automated assessment such as;

 The fact that the assessment is carried out online so the students can get their grades

immediately and resubmit their wrong answers after considering their mistakes.

 Easy analysis of the structure of students' code.

 Avoiding the use of the comparison stage between the expected result and the output

from students’ codes.

While semi-automated assessment is often used in computer science class assessments,

where programs or source code are automatically evaluated and then manually reviewed by

lecturers; fully-automated assessment does not require human interaction to produce a final

grade for students’ work, although there is some necessary preparation involving setting up

and initiating the grading process (Tremblay and Labonté, 2003).

Page | 17

In addition, even though fully-automated assessment can be performed at the lower levels

of blooms’ taxonomy; (because these levels require at least one correct answer, e.g. multiple-

choice questions (Clark, 2011)); it cannot be applied on the higher levels because students’

solution are generally written answers including computer programming codes or essay

assessments (Wong et al., 2012).Semi-automatic assessment is used for evaluating students’

learning and submitting grades with meaningful feedback, such as those of a midterm exam,

final project or final exam (Douce et al., 2005). It generates immediate feedback on the validity

of students' solutions to guide them with regard to what corrections they need to make to their

answers.

Under these circumstances, semi-automatic assessment that supports a computer assessment

approach should be utilised to assess students’ answers that are based on any computer

programming code (e.g. JAVA or a declarative language such as Structured Query Language

(SQL)). Kakkonen et al. (2004) used a different distinction between fully- and semi-automated

assessments, where they stated that fully-automated assessment only provides a score

(summative assessment), whereas a semi-automated system provides a grade and more details

to support learning (formative assessment).

 Types of Automated Assessment

Many universities are currently aiming to enhance the student assessment process, especially

for first-year courses that include high numbers of enrolled students. Growing student numbers

in computer science courses have resulted in rising efforts to develop automated assessment

systems that can reduce the workload of lecturers and enhance student feedback. According to

Tshibalo (2007), academic workload is increased in higher education, and automated

assessment may help reduce this workload by helping lecturers manage the large volume of

marking. Several researchers have focused on the automatic assessment of diagrams and

programming languages. To follow, two types of automated assessment; diagram assessment

and programming language assessments.

 Diagram Assessment

Numerous researchers have demonstrated an intention of developing projects to assess database

diagrams. Tselonis et al. (2005), Batmaz and Hinde (2007), and Higgins et al. (2009) focused

on implementing a semi-automated approach, where a computer takes part in assessing

students’ diagrams using the CBR method.

Page | 18

CBR is a method of solving new problems by utilising the solution(s) of identical past

problems (Kolodner, 2014). It selects diagrams that are the same as the diagram being marked

by comparing them against each other. The target diagram is then given the same mark as the

identical diagrams found in the diagram body. If no similar diagrams are found, the target

diagram is passed to a human for marking. Higgins et al. (2009) presented a Computer-Based

Assessment (CBA) technology, which refers to the delivery of materials for teaching,

assessment, student solutions and feedback. They evaluated the feasibility and usefulness of

developing and deploying diagram-based exercises by using the DATsys and CourseMarker

approaches (Higgins et al., 2009).

Some automated assessment tools are designed mainly for summative assessment (e.g.

BOSS (Luck and Joy, 1999)), while others show the student the results of the automatic

assessment and allow resubmissions if the student is not satisfied with the results (e.g.

CourseMaker (Higgins et al., 2003)). At the University of Manchester, specifically in the

Computer Science department, they established the Access By Computer (ABC) approach,

which defines identical components by using those component’s attributes (e.g. label, type,

adjacent boxes) (Tselonis et al., 2005).

 Programming Language Assessment

Automated programming assessment has recently become an important method of assisting the

lecturers of programming courses in automatically marking and grading students' programming

exercises, as well as providing useful feedbacks on their programming solutions (Romli et al.,

2010). The majority of these systems have been developed to assess objected-oriented

programming languages, such as Java, C/C++ and Pascal (Pribela et al., 2014). Tremblay and

Labonté (2003) introduced a semi-automated marking system for Java programs using JUnit

(a public test suite specified by the lecturer for a given assignment that is used to provide

students with early feedback). It allows students to submit their solutions, after which the

system tests the submissions on the public test suite, and at the end, the appropriate results are

sent back to the students, indicating either success or failure. Benford et al. (1993) introduced

the Ceilidh system, which uses string matching to compare the output of students’ programs

with the model output set by the lecturer. String matching algorithms is to find all the

occurrences of strings (also called patterns) within a larger string or text (Shah and Oza, 2018).

Page | 19

Research by Saikkonen et al. (2001) used the Ceilidh system to assess exercises written in

C or Java for a basic programming course. On the other hand, marking using the ASSYST

system is done through automated testing (based on the context-free grammar specification of

the expected output). It allows students to submit their programs by email, after which the

lecturer tests and marks them and sends back an evaluation report (Jackson and Usher, 1997).

Another example of automated programming assessment is the BOSS system, presented by

Joy et al. (2000), which supports both the submission and the testing of the program code using

textual output comparison techniques.

In addition to the aforementioned examples, McQuain (2003) developed a web technology

called Curator, which allows students to submit different types of assignments (i.e. not only

programs), and which uses textual comparison as an automatic marking method.

 Summary

This chapter presented an overview of assessment in education and outlined the different

aspects of each assessment type. It provided an introduction to computer-assisted assessment

(CAA) and defined the various types of CAA, dedicating significant attention formative,

summative and diagnostic assessments. Furthermore, it illustrated the Bloom's taxonomy and

highlighted the different types of assessments, where it discussed diagram and programming

language assessments in some detail. It also examined the general strategy for automatic

marking based on meaningful components and further examined the construction of automated

marking assessments. Several research study focusing on diagrams and programming

languages assessments were highlighted, which aim to help reduce the workload of lecturers

and enhance the feedback delivery.

There are many opportunities offered by computer-assisted assessment for both formative

and summative assessments. The students benefits from timely and specific feedback on their

learning and get chances to practice skills. Lecturers can use CAA to enhance assessment

methods, whether a paper-based or automated approach is adopted. In this chapter, the

significance of semi-automatic assessment role was described, along with formative

assessment, which in basic term, is dependent on computer-assisted assessment. Although, the

semi-automatic assessment approach provides an improved individual and detailed feedback

on formative assessment comparable to fully-automatic assessment; the existing

semi-automatic assessment systems have suffered from poor feedback consistency.

Page | 20

This is because the large number of students in the classroom can often cause human

markers to generate inconsistent marking and feedback. Alternatively, the human marks should

target to reduce or remove as many of the repetitive tasks in any phase of the marking process

as possible to provide consistent and effective feedback to students. One of the repetitive tasks

is the re-use the same mark for identical parts of students’ solutions. The Structured Query

Language (SQL) shares common features with other programming languages that make it

acceptable to be marked automatically. In this research, SQL was selected as the basis of this

research, as described in detail in Chapter 3. The chapter provides a literature review on the

automated assessment of SQL and analyses the ideal SQL marking system.

Page | 21

Chapter 3. Literature Review

 Automatic Assessment of SQL

 Introduction

Numerous theories have been proposed to explain what motivates the SQL assessment process

for example, (Fehily, 2010; Kleiner, Tebbe and Heine, 2013; Kleerekoper and Schofield,

2018). This chapter reviews the literature on the manual SQL system process and analyses the

required SQL marking system that should be used in this research. In addition, a survey of

existing automated SQL assessment tools is presented, demonstrating the difficulties in

learning and assessing SQL queries. Review of existing SQL learning and assessment tools

and their features is also provided. Furthermore, this chapter also examines various types of

knowledge bases for more efficient problem solving methods. The methodologies used in these

knowledge-based systems include the Case-Based Reasoning (CBR) and Rule-Based

Reasoning (RBR) systems. The literature suggests that the integration of both systems results

in a suitable environment for the semi-automatic assessment of the SQL statements.

This chapter starts by providing an overview of the Structured Query Language (SQL) in

Section 3.2, where this section demonstrates the process of acceptable SQL assessment

marking and SQL grading techniques. Section 3.3 explains the various difficulties in learning

and assessing SQL queries, while Section 3.4 reviews the existing SQL learning and

assessment tools and their features in detail. Subsequently, a summary of the existing SQL

tools is presented in Section 3.5, before introducing the two types of Artificial Intelligent (AI)

systems used in education in Section 3.6. Finally, Section 3.7 provides a short summary of the

chapter.

 Structured Query Language (SQL)

A relational database management system (RDBMS) shifts and stores data into a database and

retrieves it so that applications can manipulate it (Bruno, 2003). According to Rob et al. (2008),

RDBMS is a set of both logical and physical operations. The logical operations are

applications, which specify the required content; for example, an application requests an

employee’s name from a table.

http://docs.oracle.com/database/121/CNCPT/glossary.htm#BGBCDCHB

Page | 22

However, the physical operations define how things should be performed and built in the

database. For instance, foreign aspects are used to identify relationships between tables. An

RDBMS allows users to specify queries through the use of high-level declarative languages,

such as “SQL” the abbreviation for Structured Query Language. The SQL is the standard

querying language for relational databases (Litoriya and Ranjan, 2010). According to

Kleerekoper and Schofield (2018) SQL is easier to learn than languages like Java or Python,

where it is syntactically smaller and more structured. Abelló et al. (2008) argued that SQL,

which is comprised of commands to define schema structures (i.e. tables), is the main database

(DB) language that is used to perform tasks such as update data on a database or retrieve data

from a database. A database mostly contains one or more tables, and each table is identified by

a name (e.g. "EMP" or "DEPT"). Furthermore, each table contain columns (fields) and records

(rows) of data relationships, as illustrated in Figure 3-1.

Figure 3-1: The relationship between EMP and DEPT tables

Figure 3-1 shows the primary key of the EMP table is the employee number (EMPNO), and

the primary key of the DEPT table is the department number (DEPTNO). In addition, the

department number (DEPTNO) in the EMP table is a foreign key that references the primary

key of the DEPT table (DEPTNO). The SQL statements for creating both tables are as follows:

 First, create Department “DEPT” table as:

CREATE TABLE DEPT

(DEPTNO NUMBER CONSTRAINT DEPT_DEPTNO_PK PRIMARY KEY,

DEPTNAME VARCHAR2(15),

LOC VARCHAR2(30));

Page | 23

 Second, create Employee “EMP” table as:

CREATE TABLE EMP

(EMPNO NUMBER CONSTRAINT EMP_EMPNO_PK PRIMARY KEY,

FNAME VARCHAR2(15),

LNAME VARCHAR2(15),

GENDER VARCHAR2(10),

JOB VARCHAR2(20),

MGR VARCHAR2(15),

SALARY DECIMAL(7,2),

COMM NUMBER,

DEPTNO NUMBER,

CONSTRAINT EMP_DEPTNO_FK FOREIGN KEY(DEPTNO)

REFERENCES DEPT(DEPTNO));

The SQL create statements illustrates that every foreign key value in the DEPTNO column of

the EMP table matches a primary key value in the DEPTNO column of the DEPT table. This

relationship can be explained as follows:

"Each employee works for utmost one department, but many employees may work for the

same department."

SQL is used to access and manipulate data in a database (Raadt et al., 2007) and has become

the most widely used relational database language (Melton, 1993). It was released in the early

1970s by (Codd, 1970), who proposed a new model for database systems called the “Relational

Model”. SQL was standardised by the American National Standards Institute (ANSI) and the

International Organization for Standardization (ISO) in the early 1980s. The standard SQL

syntax that is used to interact with relational databases contains different clauses, functions and

expressions. SQL clauses in relational databases are; CREATE, SELECT, INSERT, UPDATE,

DELETE and DROP. SELECT and FROM are essential components of SQL statements and

include WHERE, GROUP BY, HAVING and ORDER BY as optional clauses. Expression

produces scalar values or tables consisting of columns and rows of data. SQL statements can

retrieve data from different database tables using the following SQL syntax (Donahoo and

Speegle, 2010):

SELECT < list of columns> Mandatory

FROM <table list> Mandatory

(WHERE <row condition>) Optional

(GROUP BY <group list>) Optional

(HAVING <group condition>) Optional

(ORDER BY <sort list>) Optional

Page | 24

 SQL Assessment

Many researchers are trying to address the issue of the manual assessment process of SQL

queries. Ke et al. (2009) listed the different challenges of manual SQL assessment, which

include the fact that students cannot get the feedback on their work immediately. In addition,

Ke and other follow researchers stated that manual grading wastes a lot of time for lecturers

and might cause human mistakes. SQL marking process might share common features with

other programming languages, which can be utilised to make it acceptable and useful. These

features mainly support the function and performance of the SQL marking process.

Furthermore, these features include output comparison, which is the most popular feature and

is used in various systems. Ala-Mutka (2005) indicated that output comparison could include

running the model solution and students’ code. Checking SQL syntax is the most commonly

reported way to define tests, and is also the most important part of the process (e.g. compiling

the program, running the code and comparing the output with the expected (model) output)

(Tremblay and Labonté, 2003).

A feedback mechanism is used to provide individual students with information that is

focused on their SQL learning performance (Walker, 2011). There are many benefits of an

effective feedback, such as improving the students' progress, motivation and confidence, and

enhancing their achievements. In addition, consistent marking and grading can accurately

indicate the level of performance which has been achieved by a student (Thompson and Ahn,

2012). In addition, the use of grades might affect the students’ learning, since they can provide

a standardized measure of student’s performance, certify that a course of study has been

completed and particular standards have been achieved (Thompson and Ahn, 2012).

 SQL Assessment Grading

In computer science education, communication between the lecturer and the students is an

important component that should involve an effective feedback process and consistent grading

(Noonan, 2006). Frequently, students direct their efforts based on what is assessed and how it

affects the final grade (Ihantola et al., 2010). Multiple sclerosis researchers have implemented

an improved SQL grading process that could satisfy both students and lecturers. There are some

requirements that can enhance the SQL grading process, such as feedback quality, response

time, accuracy, consistency and flexibility (Bruno, 2003).

Page | 25

Feedback is an important component of formative assessment which helps students to

develop a deeper understanding of their learning (Clark, 2011). A model feedback process

allows students to receive an accurate score of their work shortly after submitting it, with

detailed breakdown of areas of improvement and non-functionalities (Bruno, 2003).

Accuracy and fairness in grading are other obvious requirements since they increase the

students' motivation once they receive accurate marks on their submissions (Karavirta et al.,

2007). Consistency in grading is another important factor in enhancing the SQL grading

process, since it can increase the consistency of marks allocation and help to reduce the marking

load of lecturers by granting them more effective teaching tasks (Dekeyser et al., 2007). The

flexibility of grading SQL-based exercises is an essential feature that allows students to

resubmit their work and provide them with the ability to check the correct solutions that are

stored in a database (Prior and Lister, 2004).

 Difficulties in Learning and Assessing SQL

Several researchers have recognised a number of difficulties involved in learning and assessing

SQL. Some of these difficulties can be summarised as follows. SQL is different from some

other query languages in that it is non-procedural (Dekeyser et al., 2007). This means that

students only have to specify what data they want to extract from the database, and do not have

to worry about how the data is stored, or how to go about retrieving it. Incorrect tables and

attributes lead students to memorise the full table schema, resulting in problems while

practicing SQL statements (Kearns et al., 1997). These problems can mislead the students to

focus on the SQL syntax, and guide them to a different direction that does not give them the

right answer. Understanding the basic of SQL syntax is of great significance, and is considered

to be the first step of learning SQL (Kenny & Pahl 2005).

However, students may misunderstand the basic elements of SQL. The reason behind that

could be that they have trouble in mastering the basic SQL concepts, such as joining functions,

aggregation and grouping, and operators (Mitrovic, 1998). To practice SQL statements,

students need to understand the requirements of the SQL questions. However, they may still

incorrectly express the final output of the queries. These difficulties have motivated several

researchers to develop numerous SQL tutoring and assessment systems, which are listed in the

next section. Tools that provide various forms of support for assessing SQL statements do exist,

some of which are subsequently discussed in detail. Such tools can help this research to find

the ideal automated marking process and provide better grading schemes for a new SQL

assessment environment.

Page | 26

 Existing SQL Learning and Assessment Tools

This section introduces various tools for learning and teaching SQL that have been

implemented to assess SQL statements. These tools have been classified into two categories

such as formative assessment that used to monitor student learning and summative assessment

which used to evaluate student learning and submit grading with feedback for example a

midterm exam, final projects and final exams. This research focuses on different types of tools

that might be used as learning or assessing the SQL. However, most of those tools focus on the

functionality of the tool itself not on the student common mistakes when they are writing the

SQL queries. The following are combination of summative and formative assessment SQL

tools; for instance:

1. SQL Tester "An online SQL assessment tool and its impact" by (Kleerekoper and

Schofield, 2018).

2. SQLg "Automated grading and tutoring of SQL statements to improve student learning"

by (Kleiner et al., 2013).

3. SQL-KnoT "An Open Integrated Exploratorium for Database Courses" by (Brusilovsky

et al., 2008).

4. SQLify "Do students SQLify? titled as "Improving learning outcomes with peer review

and enhanced computer assisted assessment of querying skills" (Raadt et al., 2006)

5. ActiveSQL "Automatic Checking of SQL: Computerised Grading" (Cumming and

Russell, 2005).

6. SQLator "SQLator: an online SQL learning workbench" (Sadiq et al., 2004).

7. AsseSQL "Online Assessment of SQL Query Formulation Skills" (Prior, 2003).

 SQL Tester

SQL Tester tool was introduced by Kleerekoper and Schofield (2018). It has been implemented

to reduce plagiarism, motivate deep learning and provide students with accurate tasks and

assess their performance in person to provide timely formative and summative feedback. The

SQL Tester marks an answer as correct if it exactly matches the desired output. The students

may make as many attempts as they wish in that time, and after every attempt they are shown

the output of their query.

Page | 27

The main strength of the SQL Tester is students have been engaged strongly with new tool

for learning and has motivated them to revise where it has affected their final marks. On the

other hand, there are two main drawbacks when using the SQL Tester; first, match exactly the

student answer with the reference answer which doesn’t give chance for student to think about

different way of solving same query. Second, when marking the SQL statements it gives only

error message from the Relational Database Management System (RDBMS) which no extra

feedback was given to students to understand the error message.

 SQLg (SQL-Statement Grader)

SQL-Statement Grader has been introduced by Kleiner et al. (2013). It is an automatic grading

and tutoring of SQL statements used to improve student learning. Based on the feedback

generated by the SQLg, the student can repeat the solution as much as they want until they get

satisfy with the resulted quires. After the completion of the grading process the reporter

generates an XML formatted report. This report can be converted by an XSLT style sheet. By

default the report is converted to XHTML, but the WebCAT plug-in package comes with a

specialised transformation file to embed the reports into the WebCAT user interface. The

following example demonstrates the process of SQL Grader evaluation which has been taken

from Loughborough University database module exam script specifically SQL questions.

Question: Display “Employee name of department earned commission comm” for

each salesman in reverse commission order and the year of the hire date as Hired.

Model Answer:

SELECT EMPNAME|| ' OF DEPARTMENT ' ||DEPTNO||' ERRAND COMMISSION

'|| COM, TO_NUMBER (TO_CHAR(HIREDATE, 'YYYY')) HIRED

FROM EMP

WHERE JOB= ‘SALESMAN’

ORDER BY COMM DESC;

Student Answer:

SELECT EMPNAME || ' OF DEPARTMENT ' || DEPTNO ||' ERRAND

COMMISSION '||COM,TO_CHAR(HIREDATE, YEAR) HIRED

WHERE JOB= ‘SALESMAN’

ORDER BY COMM;

Page | 28

The following are SQLg evaluation steps of individual solution:

A. The SQL statement will be loaded with the model answer.

B. The student solution does not have any forbidden elements however; it doesn't match

exactly the model answer.

C. From the above example, the student answer has different syntax and result set from

the model answer, therefore SQLg will count the syntax as it contains errors which

mean the statement will be discarded. The student will receive a message including the

original database Error: ORA-00904: "YEAR": invalid identifier.

 The student will be given another attempt to fix the syntax where she/he need to

change:

From: To_Char (Hiredate, Year) to: To_Char (Hiredate, 'YYYY')

D. Now the syntax check succeeded so the grader proceeded with the cost check. After

that, SQLg confirm that the column count and data type were corrected. Another error

is deducted when character value returned instead of numeric value.

 The following message was shown:

 Datatype of column 2 is wrong. Expected: Number, your solution: Varchar2

 The student will change the error to: To_Number(To_char(Hiredate, 'YYYY')

 The last error the SQLghas identified is the student didn’t sort the comm in

descending order, he/she sorted with ascending therefore, the student will be given

another chance to change from:

From: ORDER BY COMM to: ORDER BY COMM DESC

E. The student will receive full mark after he/she made the changes needed. In any case,

there were still other changes then that would be marked manually by the instructor.

A major strength of SQLg is that this system has high quality evaluation process which has

follow different steps to evaluate and analyse the solution and give accurate marks for the

student. In addition, the feedback concerning syntax was very clever to help student identify

their errors and give them chance to update them. On the other hand, it might have been helpful

to provide more details of manual marking (Part (E)) and update point since the system is

working as semi-automated marking. Also, the tool only focus on helping student practice the

SQL statements before the real assessment can be conducted. It doesn't help instructors to

conduct exams.

Page | 29

 SQL-KnoT (Knowledge Tester)

Knowledge Tester is an integrated tool for SQL learning that generates questions which require

a student to write an SQL query for a sample database which evaluates the correctness of

students' answer and provides a student with feedback. Every time a student accesses a SQL-

KnoT question, the actual question text is generated by corresponding template from the

predefined database (Brusilovsky et al. 2008). Brusilovsky et al. (2010) stated that to be

evaluated as correct, the student solution must always produce the same result as the model

solution. For that reason, SQL-KnoT compares the result produced by the student solution with

the result produced by the pre-stored correct model answer. If a student fails to answer an SQL-

KnoT question, he/she can open SQL-Lab to run and debug previous solution. The SQL-Lab

allows students to formulate and execute queries, observe their results, and test performance of

SQL scripts. The following example demonstrates the process of SQL-KnoT evaluation which

has been taken from Loughborough University database module exam script specifically SQL

questions.

Question: "Display the department number and total salary of employee in each

department that employs five or more people".

Model Answer:

SELECT DEPTNO, SUM(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT (EMPNO)>=5;

Student 1 Answer:

SELECT D.DEPTNO, SUM(E.SAL) AS “TOT SAL”

FROM DEPT AS D EMP AS E

ON D.DEPTNO= E.DEPTNO

GROUP BY D. DEPTNO

HAVING COUNT (EMPNO)>=5;

Comments:

 The SQL-KnoT grading system will show as: Correct

 Reason: result data set of the student 1 answer is exactly same as the model answer.

Page | 30

Student 2 Answer:

SELECT DEPTNO, TOTAL(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT (DEPTNO)>=5;

Comments:

 The SQL-KnoT grading system will show as: Incorrect

 Reason: The student 2 has added an incorrect function name (Total) on the SQL syntax

and all the answer has been counted as wrong.

From the above example, the SQL-KnoT has maintained the main aim of marking system

which stated as to be evaluated as correct, the student solution must always produce the same

result as the model solution and for that student 1 has graded as correct and student 2 as

incorrect. On the other hand, SQL-KnoT has shown fairly limited grading system since the

evaluation should contain the SQL syntax with the result dataset. The student 2 has tried to

answer the query but since the grading system is just constraining on the dataset the syntax has

not been checked and student 2 should repeat the full process to know his/her error.

 SQLify

It has been developed by Raadt, Dekeyser and Lee (2006) to enhance automatic assessment

and semantic feedback. The aims of introducing SQLify are deliver high quality learning

experience for students, consistent assessments grades and reduce instructors’ marking load.

The SQLify is evaluating the SQL queries by following the determining value of Conjunctive

queries. Table 3-1 describe the instructor procedure to apply the mark suggested by SQLify.

Table 3-1: Instructor procedure to apply the mark suggested by SQLify

Level Conjunctive Queries Description

L0 or L1 sys ≤ L1 The submission is incorrect

L2, L3, L4 sys = L2 ^ L2 ≤ std1 ≤ L4 ^ L2 ≤ std2 ≤ L4 The submission is largely incorrect

L2, L3, L4 or L5 sys = L2 ^ ¬(L2 ≤ std1 ≤ L4 ^ L2 ≤ std2 ≤ L4 There is a conflict between reviewers and the system

L0, L2, L6 and L7 sys = L6 ^ (std1 ≤ L4 ˅ std2 ≤ L4) The system suggests the answer is probably correct but

the reviewers disagree.

L7 sys = L6 ^ std1 ≥ L5 ^ std2 ≥L5 The system thinks the query is probably correct and

the reviewers agree

L7 sys = L7 The system indicates that the answer is certainly

correct

Page | 31

The following example demonstrates the process of SQLify evaluation which has been taken

from Loughborough University database module exam script specifically SQL questions.

Question:

Display the names and jobs of all Employees who have the same jobs as Employees in

the sales department and earning more than 800 Pounds.

Model Answer:

SELECT EMPNAME, JOB

FROM EMPE, DEPARTMENTD

WHERE E.DEPTNO = D.DEPTNO

AND DEPTNAME = ‘SALES’ AND SAL>800;

Table 3-2: Two correct query solutions and one incorrect in CQ class and their Evaluation

Student No Student Answer Grade Sys Std1 Std2

Student 1

SELECT EMPNAME, JOB

FROM EMP JOIN DEPT ON DEPTNO

WHERE DEPTNAME= ‘SALES’

AND SAL>800;

Correct L7 L6 L7

Student 2

SELECT EMPNAME, JOB

FROM EMPE

WHERE SAL>800 AND EXISTS

(SELECT * FROM DEPTD

WHERE E.DEPTNO= D.DEPTNOAND

DEPTNAME= ‘SALES’);

Correct L7 L7 L4

Student 3

SELECT EMPNAME, JOB

FROM EMPE

WHERE DEPTNAME= ‘SALES’

AND SAL> 300;

Incorrect L2 L6 L4

Table 3-2 shows that student 1 and student 2 have two different answers which are not exactly

like the model answer. However, both of them are semantically correct. The evaluation has

been performed using the conjunctive queries and three variables are declared per submitted

query for each student which they are sys, and two correctness marks from peers student 1 and

student 2. Whereas student 3 has got problem solving the query and his solution is incorrect to

the above query. These results are consistent with the aims of the SQLify research which

targeted as increase the quality of learning experience, consistent assessments grades and

reduce instructors’ marking load. The research example has discussed the professional criteria

of evaluating the SQL statements with high consistency between the students.

Page | 32

However, it might have been more accurate while marking the student answer since it should

go through different reviewers who are having different criteria in solving SQL queries.

Moreover, there is no explanation of evaluating the data set of the SQL queries and if the system

can do perform that task or not.

 ActiveSQL

Cumming and Russell (2005) introduced ActiveSQL as an integrated learning environment

that provides SQL tutorials, supports online assessment and offers immediate feedback after

analysing results. A percentage is used for measuring performance by the ActiveSQL grading

system. It starts at 0% if the student did not attempt an answer, and 100%, if the student

answered the question perfectly. To calculate the student performance, Russell and Cumming

(2004; 2005) compared the student’s output solution with the model output solution.

Subsequently, the rows and columns that specify additional data are highlighted, and the

percentage is calculated as; the proportion of correct cells (without including the header)

against the higher of either the total cell count of the sample solution of the total cell count of

the student answer. It can be measured by using the example in Table 3-3:

Table 3-3: Example of ActiveSQL Marking Grading System

StdNo StdName LectCode

100 ABC 1

924 CEW 1

325 JOL 2

123 ANY 3

Total cell count of correct student answer /
(Total cell count of the student answer * Total cell count of the model answer)

The accuracy measure: = 2/(3*4)
=0.1666*100

=16.6
=17%

The advantage of the percentage approach is that as more filtering is added to the student query,

the number in general will rise. However, ActiveSQL lacks additional grading criteria that

follow the syntax and find out the difference between the students and model solutions.

Page | 33

The percentage grading system does not identify the level of understanding of the student

since the feedback is given to the student is not enough and does not provide the correct answer

of the SQL query.

 SQLator

SQLator is a web-based interactive tool for learning SQL. It has been introduced by (Sadiq et

al. 2004).The evaluation process of the SQLator does not check or analyse the SQL syntax but

it will generate a direct estimation which is either a correct or incorrect statement. The student

will have the chance to do various attempts until finding the correct statement otherwise they

can access the correct solutions form the SQLator database. It reduces the marking time,

increases the efficiency since it’s marking them automatically and provides immediate binary

feedback to the learners. The learner selects a query to work on and writes an SQL statement

to solve the selected query. SQLator evaluates the SQL statement and provides the result; either

correct or incorrect (Sadiq et al. 2004). The feedback which has been given to student is only

says correct which means the syntax and data set are exactly like the model answer. If the

student made any different way of writing the syntax or the data set has slightly been changed

so the result will be as incorrect which leads to unknown feedback that will be sent to the

student. In addition, the student can choose the queries depend on their difficulties for instance

simple, advanced and hard. The system doesn’t mentioned what type of questions are classified

as simple or advanced or hard which makes the student try all of them to know what is suitable

for their abilities.

 AsseSQL

It has been introduced by Coleman and Lister (2004) to examine the effect of grading of queries

submitted by students. It generates immediate feedback on validity of the students' solution

that would guide them to what corrections they need to make to their query. The programme

marks the student’s answer using a pattern matching system where it compares the data set

produced by the execution of model answer to the data set that results from the execution of

student’s answer. If the data set are exactly the same, the student’s answer is flagged as correct

otherwise it is flagged as unsuccessful attempt. Also if the submitted answer is syntactically

incorrect, an error message is displayed. Coleman (2004) has detailed some of challenges and

issues using the AsseSQL such as; the marking of the test is binary which means either correct

or it’s incorrect.

Page | 34

If the student’s answer is partly correct then no marks are allocated. The RDBMS error

messages are unclear or undescriptive means doesn't give detailed feedback about what kind

of error they made. The following example demonstrates the process of SQLator and AsseSQL

evaluation which has been taken from Loughborough University database module exam script

specifically SQL questions.

Question: "Display the names of all employees who work in a department that

employs an analyst".

Model Answer:

SELECT EMPNAME

FROM EMP

WHERE DEPTNO IN (SELECT DISTINCT EMP.DEPTNO

 FROM EMP INNER JOIN DEPT

 ON EMP.DEPTNO=DEPT.DEPTNO

 WHERE JOB='ANALYST');

Student 1 Answer:

SELECT EMPNAME

FROM EMP

WHERE DEPTNO = (SELECT DEPTNO

 FROM EMP

 WHERE JOB='ANALYST');

Comments:

 The SQLator and AsseSQL grading system will show as: Correct

 Reason: result data set of the student 1 answer is exactly same as the model answer.

Student 2 Answer:

SELECT EMPNAME, DEPTNO

FROM EMP

WHERE DEPTNO = (SELECT DEPTNO

 FROM EMP

 WHERE JOB='ANALYST');

Comments:

 The SQLator and AsseSQL grading system will show as: incorrect

 Reason: the student 2 has data set same as the model answer however, additional data

will be displayed which means it doesn't match the original dataset therefore the

evaluation will be presented as incorrect.

Page | 35

The demonstrations of the above examples have shown that AssessSQL and SQLator tools

might affect the evaluation process since the system doesn't give fare marks distribution among

the students. That because the requirement of the question is asking for IN and INNER JOIN

and that student should be given different mark from others who didn’t add them. Furthermore,

only the difference between first answer and second answer is the data set will have more

additional data even if the original answer is there. The student will get incorrect answer

because his/her answer doesn't match exactly the model answer. They didn't give any detailed

feedback why it’s wrong which will lead the student to try different attempts till they know

what errors they attempt.

 Summary of Existing SQL Tools

It is clear from the above literature that most research papers have limited their descriptions of

the tools’ features. Therefore, the literature review only points out and compares the features

that have been highlighted by the authors. Table 3-4 demonstrate the summary of existing SQL

assessment and learning tools which divided into fully-automated and semi-automated marking

systems. It displays the evaluation of several tools with different features starting from 2018

going back to 2003.

Table 3-4 shows that matching reference solution features are common between most of the

systems except the SQLify system. It also shows that checking the forbidden element in the

SQL statement is an important feature, however; only the SQLg is implementing it. This would

help to identify unnecessary elements of the SQL query which can effect on the syntax or

dataset. On the output result feature only SQLg and SQL Tester which does not use it since

both of them are not considered only the last output answer; however, they care about the way

student answer the SQL statements. The grading process of each system differs, for example

the SQL-KnoT, AsseSQL and SQLator are using the binary technique which gives either

correct or incorrect final result. Checking the SQL syntax is major process in SQL grading

process since the query cannot be evaluated and tested without making sure that SQL syntax is

working perfectly.

 Page | 36

Table 3-4: Features Evaluation of Existing SQL Assessment and Learning Tools

 Features

Tools

Check

Forbidden

Elements

Check

SQL

Syntax

Matching

Reference

Solution

Output

Result

Grading/

Feedback
Advantages Disadvantages

1. SQL Tester

(Kleerekoper and Schofield, 2018)

 Correct

/Incorrect

 Engaged strongly with SQL Tester

tool.

 Motivated students to revise and

practice before the real assessment.

 Match exactly the student answer

with the reference answer.

 No extra feedback was given to

students.

2. SQLg

(Kleiner, Tebbe and Heine, 2013)

Score

 System has high quality evaluation

process.

 Give accurate marks for the student.

 Feedback concerning syntax to help

student identify their errors

 The SQLg tool focuses on helping

student practice before the real

assessment.

 Might be helpful to provide more

details of manual marking.

3. SQL-KnoT

(Brusilovsky et al., 2010)
 Correct

/Incorrect

 If a student fails to answer an SQL-

KnoT question, they can open SQL-

Lab to run and debug previous

solution

 Shown fairly limited grading

system.

 Constraining on the dataset the

syntax.

4. SQLify

(Raadt, Dekeyser and Lee, 2006)

 Conjunctive

Queries

 Deliver high quality learning

experience for students.

 Consistent assessments grades.

 Reduce instructors’ marking load

 Go through different reviewers who

are having different criteria.

 No explanation of evaluating the

data set of the SQL queries

5. ActiveSQL

(Cumming and Russell, 2005)

Percentage

 Percentage approach filtering is

added to the student query.

 Percentage grading system does not

identify the level of understanding.

Feedback given to the student is not

enough.

6. SQLator

(Sadiq et al., 2004)

 Correct

/Incorrect

 Reduces the marking time.

 Increases the efficiency of marking.

 Provides immediate binary feedback

to the learners.

 The system doesn’t mentioned what

type of questions.

 The feedback which has been given

to student is only says correct.

7. AsseSQL

(Prior, 2003)
 Correct

/Incorrect

 Generates immediate feedback

 The programme marks the student’s

answer using a pattern matching

system.

 Marking of the test is binary which

means either correct or incorrect.

 The RDBMS error messages are

unclear or undescriptive

 Page | 37

A review of some of existing SQL tools shows that SQL-KnoT, AsseSQL and SQLator have

the same main feature, which is that a student’s solution must always produce the same result

as the model solution. This feature is implemented as part of the grading process, where

students’ solutions can be graded either as correct or incorrect answers. ActiveSQL and

SQLator are more similar to one other, where both of them cannot check the syntax of the SQL

and do not check for forbidden elements. Dekeyser et al. (2007) stated that SQLator and

AsseSQL are apply only binary grading to queries submitted by students and do not provide

comments or suggestions for improvement. Also, they declared that both AsseSQL and

SQLator create only single channel of communication between the student and the instructor

via the system.

On the other hand, SQLg, SQLify and ActiveSQL tools exhibit more professional features

with higher quality of grading and student feedback. SQLg offers more features with much

enhanced qualities since the statements are checked starting from forbidden elements until

matching reference solutions. Furthermore, SQLator employs a manual check after finishing

the grading process to ensure consistency while marking. SQLify and ActiveSQL have some

similarities, however; SQLify offers higher standards in checking semantic SQL statements

before matching it with the reference model. However, the above systems focus on the final

submitted answers without providing any detailed feedback as to why it an answer is wrong.

This often leads the student to make different attempts until they know what errors they have

been making as with AsseSQL and SQL Tester students may address questions in any order

and makes as many attempts as they want within the time. The SQL Tester have many

similarities with AsseSQL tool for example choice of categories of SQL questions, number of

attempts and students’ solutions can be graded either as correct or incorrect answers. Despite

the SQL Tester is displaying the schema of the relevant database along with questions and

model answer output, the AsseSQL is not showing the schema. Prior (2003) stated that one of

the challenges of using AsseSQL is that marking of tests is binary, which means that solutions

are evaluated as either correct or incorrect. If the student’s answer is partly correct, then no

marks are allocated. As such, AsseSQL might affect the evaluation process since the system

does not distribute marks fairly among students.

 Page | 38

 Artificial Intelligence in Education

Artificial intelligence (AI) in education has attracted significant research attention, as it

promises to improve education quality and enhance traditional teaching and learning methods

(Luger and Stubblefield, 1998). AI programs, referred to as Intelligent Tutoring Systems (ITS),

can imitate the reasoning of human behaviour in solving a knowledge intensive problem of

teaching and learning (Mitrovic, 2003).

They therefore have the potential to make a significant effect on learning by performing

routine education tasks such as marking assessments and providing students with feedback

(Jackson, 1996). The two main AI-based education technologies included in this research are

the Case-Based Reasoning (CBR) and the Rule-Based Reasoning (RBR) systems. Bichindaritz

et al. (1998) argued that CBR and RBR have emerged as two important and complementary

reasoning methodologies in artificial intelligence (AI). CBR and RBR use knowledge and

problem solving skills along with previous design experience to solve design problems in

education. CBR and RBR are explained in detail in the following subsections.

 Case-Based Reasoning (CBR)

"A case-based reasoner solves new problems by adapting solutions that were used to solve old

problems." (Riesbeck and Schank, 1989)

Case-Based Reasoning (CBR) is one of the several computational models in the field of

artificial intelligence (AI) being considered for solving design problems (Aamodt and Plaza,

1994). The aim of this model is to find solutions for various design problems by exploring

databases that store similar design cases and models (Riesbeck and Schank, 1989). As a

technique to solve new problems based on previous successful cases, CBR represents

significant prospects for improving the accuracy and effectiveness of solving unstructured

decision-making problems. The reasoning process can be summarised using the following four

basic stages in the CBR cycle: Retrieve, Reuse, Revise, and Retain. In CBR, the handled

structures are known as cases that represent a problem situation. The four basic stages are

known as the CBR cycle, as illustrated in Figure 3-2.

 Page | 39

Figure 3-2: The CBR cycle according to (Aamodt and Plaza, 1994)

Aamodt and Plaza (1994) presented CBR using four stages; first, a new case (problem) is

executed in the system, before it proceeds to identify the matched cases and “retrieve” the most

similar cases from the knowledge base. As soon as the cases are obtained, the system may solve

the new problem by adapting their existing solutions to solve the current problem, in a stage

named as “reuse”. However, the differences between the two problems must be considered

before adapting the same solution. Subsequently, the “revise” stage can be proposed once the

reuse stage is done, to suggest a new solution on which a new case can be built. Finally, in the

“retain” stage, the new case can be retained for future problem solving.

 Page | 40

According to the CBR cycle, the reuse of similar problems from previous experiences can

be adopted in the marking process. This means that human markers can utilise the same

marking and feedback using similar previous problems and their solutions. Therefore, the

recent and previous problems are matched and compared to find similarities, and the most

suitable answer found is then adopted. CBR increases problem solving efficiency since it

compares the stored solutions with similar cases and stores them for future use (Kolodner,

2014). Some research studies have adopted the CBR approach in the marking process, resulting

in an increased system efficiency of the marked components and a reduction of lecturers’

workload as a result of avoiding marking identical components. For example, Batmaz (2011)

adopted the CBR method for a semi-automatic diagram marking process that focuses on partial

marking. Batmaz focused on semi-automated diagram marking, which can reduce the number

of diagrams marked by the examiner by identifying the identical components in different

student diagrams. Adesina et al. (2013) used a multi-touch drag-and-drop style tool to solve

basic arithmetic problems. In this research, CBR was used to compare the previous solutions

with the current problem to mark the student’s mathematical answers. Buyrukoglu (2018)

adopted CBR to utilise the similarities of Python programming scripts by adopting previous

student answers and comparing them to the current student script.

Overall, these research studies show that the CBR system has been adopted to allow a

consistent marking process for different types of assessments, such as diagrams, mathematics

and computer programming.

 Rule-Based Reasoning (RBR)

The Rule-Based Reasoning (RBR) represents knowledge in terms of a set of rules that provide

instructions to express what to do or how to conclude different situations (M. Cabrera and

Edye, 2010). It is a framework imitating human reasoning in solving different knowledge

intensive problems (Bichindaritz et al., 1998). Hopgood (2012) stated that RBR examines and

analyses a certain form of all rules, where it will be activated and executed at the same time.

This means “if a rule’s condition is met, then the rule will take place and be applied. If there

is any rule condition that did not receive any action, then other rules will be considered,

where a further check for more rules will commence”, as illustrated in Figure 3-3

 Page | 41

Figure 3-3: Forward-chaining with “first come, first served” (Hopgood, 2012)

A rule in artificial intelligent (AI) can be defined as an If/Then structure that provides some

description of how to solve a problem. Such a rule consists of two parts: the If part, which is

called the condition or antecedent, and the Then part, which is called conclusion or action.

Table 3-5 shows the general form of a rule (Sasikumar et al., 2007).

Table 3-5: Rules Conditions

AND OR Both AND/OR

If condition 1

AND condition 2

AND condition 3

………

THEN action 1, action 2, …

If condition 1

OR condition 2

OR condition 3

………

THEN action 1, action 2, …

If condition 1

AND condition 2

OR condition 3

………

THEN action 1, action 2, …

 Page | 42

This can be explained as “If a certain condition is true, then a particular result happens”. A

rule can have multiple conditions joined by the keywords AND (conjunction), OR

(disjunction), or a combination of both. The condition list (condition 1, condition 2, condition

3, etc.) is evaluated based on what is currently known about the problem that should be solved.

This means that each action of a rule typically checks if the particular problem occurrence

satisfies some condition.

 Integration of Rule-based Reasoning and Case-based Reasoning

There has been very little research in combining Rule-based Reasoning Systems and Case-

based Reasoning. The only researches in this area are either medical systems or problem

solving system which their approaches are very different from this research. However, some

of these researches can be explained as examples of different areas. For example, in medical

researches by (Berka, 2011; Cabrera and Edye, 2010; Bichindaritz et al., 1998) where they

have carried out on the development of a medical diagnostic system, using the Case-based

Reasoning methodology. There researches were focused on the implementation of the

adaptation stage, from the integration of Case-based Reasoning (CBR) and Rule-based

Reasoning (RBR) Systems that allows reutilizing rules, contexts, integrity constraints, and

cases and reasoning. Another research area is for problem solving in complex, real world

situations, it is useful to integrate RBR and CBR. This research presents an approach to achieve

a compact and seamless integration of RBR and CBR within the base architecture of rules

(Dutta and Bonissone, 2013). Since there are limited numbers of researches discussing the

integration between those two techniques (CBR and RBR), and most researches concentrating

on either CBR or RBR for that, the primary contribution of this research is to integrate both

Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems.

This can allow the adoption of a new marking technique that is based on reusing previous

solutions for similar cases and formulating new list of generic marking rules. This may

contribute towards providing students with consistent marks and feedback. Both RBR and CBR

are very important reasoning methodologies to identify the similarities in SQL statements parts

and enhance the marking consistency. The prototype of this thesis has the ability to identify

several types of SQL assessment.

 Page | 43

More specifically, it can distinguish the similarities between the SQL statements parts, allow

the adoption of a new marking technique that is based on reusing previous solutions for similar

cases using Case-based Reasoning, implement new marking rules for solving the query with

different ways without depending on reference model using the Rule-based Reasoning and

provide instant feedback for the students.

 Summary

This chapter introduced several features of advanced marking and grading systems to enhance

the SQL learning and teaching. Different features of existing SQL learning, assessing systems

were discussed and the ideal features of the proposed solution were defined. Furthermore, the

chapter examined the general strategy for automatic SQL marking based on formative

assessment, and how automated marking assessments are constructed. One of the objectives of

this research is to identify the problems with existing SQL learning and marking systems. This

includes highlighting the limitations caused by manual marking, as well as defining the new

proposed evaluation criteria.

The proposed solution is to integrate Case-Based Reasoning (CBR) and Rule-Based

Reasoning (RBR) systems, both of which need to be adopted in the new marking technique for

reusing previous SQL solutions for similar cases in order to contribute towards providing

students with consistent feedback. The chapter concludes with the results of applying SQL

assessment approaches to enhance student SQL learning, and illustrates how the consistency

afforded by automatic marking can overcome some of the drawback of human marking.

The following chapter describes the research methodology that was utilised to conduct the

investigations detailed in this research.

 Page | 44

Chapter 4.

Research Methodology

 Introduction

This chapter describes the research methodology of this research. The main objective of this

chapter is to define and enhance the scope of the research. Research methodology is an

important part of answering research questions (Bryman et al., 2011). The research

methodology supports researchers in understanding the reasons and motivation of the research

(Rowley, 2014). This chapter involves the selection of techniques used to gather and analyse

data. It presents different research approaches, designs and data analysis methods that could be

used in order to provide solutions for research objectives. In addition, the advantages and

disadvantages of these approaches and methods are briefly examined in order to choose the

ideal methodology for this research.

This chapter opens by discussing the three approaches to research in Section 4.2. Section 4.3

introduces the types of the research design; and which design was selected for this research.

The chapter then discusses the research data collection and data analysis methods and their

merits and drawbacks in Section 4.4 and 4.5, respectively. Section 4.6 discusses the ethical

requirements standards of the research. Finally, Section 4.7 provides a summary of the chapter.

 Research Approaches

Bryman et al. (2011) stressed the importance of selecting an appropriate research approach

when conducting a research. The research approach helps the research to develop ideas and

reasoning that can be adopted in the study and to simplify the research design framework

(Slevitch, 2011). The three common research approaches are briefly defined below to clarify

the selected approach of this research. The three research approaches are (a) deductive

approach, (b) inductive approach, and (c) abductive approach.

 Page | 45

a) Deductive approach: is the approach that searches for evidence to prove or disprove a

hypothesis. It begins by observing a pre-existing theory, from which the hypothesis, which

depends on that theory, should be produced. Finally, the processes proceeds to test that

theory (Greener, 2008).

b) Inductive approach: this approach is different from the deductive approach since it starts

from the specific to the general. This means that the inductive approach navigates the focus

of the research from the particular to the general by investigating various research methods

to generate a theory from the research (Slevitch, 2011).

c) Abduction approach: this approach involves both inductive and deductive reasoning, and

starts with an observation, before attempting to find the simplest and most likely

explanation to be adopted (Bryman et al., 2011).

 This thesis research approach:

This approach was chosen because it integrates between two reasoning approaches (inductive

and deductive). As such, this should increase the flexibility abductive for adjusting any

modifications needed and provide new ideas for the research (Cresswell, 2014). In addition,

selecting this approach can assist the research in achieving the objectives of designing and

testing the new formulation and marking SQL tools framework. As this research involve the

design, implementation and testing of SQL Formulation and Marking tools, then the inductive

approach will be adopted which initially develops the conceptual model to form the base for

SQL data collection and analysis as discussed in details in Chapter 5. In this case, both the

deductive and inductive approaches will be utilised for the implementation process of new tools

as mentioned in Chapter 6 and Chapter 8. At the same time, both chapters will establish a series

of hypotheses using the same approach so it can be tested and evaluated.

 Research Designs

Researchers need to decide which type of study to conduct before selecting either a qualitative,

quantitative, or mixed methods research to conduct (Bryman et al., 2011). This research is

based on two main research study designs; experimental research and survey research. The

three research methodology designs used in this research; namely (a) qualitative, (b)

quantitative, and (c) mixed methods research, are explained briefly below (Cresswell, 2014).

 Page | 46

a) Qualitative research is an approach of exploring the problem by relating it to individuals

or a social or human group. It is the method that uses observation to gather non-numerical

data (e.g. sound and images), which is usually obtained from case studies, interviews and

observations.

b) Quantitative research is the approach that emphasises the measurement of numerical data,

which is analysed using statistical procedures, before being able to generalise and replicate

the findings. The popular quantitative research methods include experiments and non-

experimental approaches (e.g. surveys).

c) Mixed methods research is an approach based on collecting data by using a combination

of quantitative and qualitative research designs. This approach starts by collecting

quantitative data from statistical data using a quantitative method (e.g. survey), and then

proceeding to gather qualitative data using a qualitative method (e.g. interview).

 This thesis research design:

The multiple method will be used in this research. This is because the multiple method utilises

the advantages of both the quantitative and qualitative methods, which offers the researcher a

chance to examine the research problem through a variety of ways. Furthermore, interpretation

is continual and influences all stages in the research process. This permits the provision of

detailed information on the examined study. The following explains the research methods

selected and how they affect the results of each research stage.

The quantitative method was used in the first SQL data collection survey based on existing

Loughborough University SQL exam scripts. The first survey attempted to explore the

difficulties and challenges when students manually formulate SQL statements. In addition, the

survey attempted to identify all types of common mistakes and the different ways of answering

the query. Furthermore, it also aimed to find a proper solution of learning and marking SQL

statements. As such, in this case, the survey study design provided a qualitative and a numerical

description by studying students’ SQL answers.

Data was then collected from the second set of SQL statements after testing the newly

implemented SQL Formulation Editor (SQL-FE), where the research used both qualitative and

quantitative approaches (mixed methods research). The qualitative research was used to

quantify the problem by generating numerical data that can be transformed into usable

statistics.

 Page | 47

This was used in the pilot study, which utilised an online feedback survey to obtain students’

feedback about the new SQL-FE tool and compared its features to paper-based methods. In the

experimental study of the SQL-FE and SSMS tools, the qualitative research method was used

to obtain the opinions of the participants by using a questionnaire. In this case, the experimental

research design evaluated the impact of the SQL-FE tool on students’ SQL solution outcomes

and how it improved their formulation performance by using the point-and-click method. The

third set of SQL data collected from new SQL-FE tool was normalised grouped and marked

using the Case-based Reasoning System (CBR) and the Rule-Based Reasoning System (RBR).

The normalisation process employed a survey research using the quantitative approach as a

first step to determine the impact of the data normalisation and the level of similarity between

SQL statement parts after applying the normalisation process. The experiment on the newly

implemented SQL Marking Editor (SQL-ME) employed a qualitative approach as a first step

to measure the lecturers’ individual satisfaction of the SQL-ME prototype interface. The third

step involved a study that followed a qualitative approach to collect observations with regards

to testing the SQL-ME by several participants. In this case, the survey and experimental

research design both scored the outcome of using the new semi-automatic assessment approach

by students and lecturers positively.

 Data Collection

Data collection is a procedure of gathering data from all related sources to find answers to the

research problem. Furthermore, data collection can help to check the validity of the research

method by encouraging various participants to get involved in surveys, questionnaires or

interviews (Greener, 2008). In this research, data were gathered by utilising both surveys and

questionnaire studies. These studies have carried out several advantages, which can be listed

as follows.

1. Questionnaires and surveys are the most affordable ways to gather quantitative data.

In addition, quick and easy to collect results with online and portable devices. This is

because the research has provided an online data collection through a hyperlink, which

linked to an online page (https://www.surveymonkey.co.uk/). It is a built-in online tool

which creates and posts questions to different participants. This has reduced time and

expenses of the research.

https://www.surveymonkey.co.uk/

 Page | 48

2. Questionnaires and surveys have allowed the research to numerous data from a large

number of participants. Those participants are either educators or students which the

research is interested to collect their feedback and opinions about new implemented

formulation and making editor.

3. Since most survey and questionnaire providers are quantitative in nature and allow

easy analysis of results, the research has used survey monkey tool which has provided

an easy to analysis of all data collected of the research experiments

In contrast, the research has faced two main disadvantages by using the survey and

questionnaire such as;

1. Since the research has used an online tool to gather information, the participants (mostly

students) have no time limits which they took their time to complete the questionnaire

at their own leisure. This has limited the time to retrieve and analyse the data and submit

them on time.

2. When the research has used an open-ended questions in the questionnaires, students has

left them unanswered. This has effected the results in case of enhancing the new

implemented editor.

 This thesis Data Collection:

To follow, each of these data collection methods are briefly described, along with an

explanation of how they were applied in this research.

 Surveys

Survey research is one of the most important data collection methods, and is produce a variety

of quantitative data. In this research, two main surveys took place as described below.

a) The first SQL survey from an existing SQL exam script attempted to explore the

difficulties and challenges encountered by students when they manually formulate SQL

statements, as well as identify all types of common mistakes and the different ways of

answering the query. The survey study design provided a qualitative and a numerical

description by studying the students’ SQL answers.

 Page | 49

b) The normalisation process employed a survey research using the quantitative approach

as a first step to determine the impact of the data normalisation and the level of

similarity between SQL statement parts after applying the normalisation process.

 Questionnaires

Questionnaires are typically used for collecting data related to the research in survey-type

situations. The main purpose of using a questionnaire in a research is to allow a relatively large

number of people to participate in a quantitative research study (Rowley, 2014). This can

support the researcher to obtain responses from a large number of participants, where the data

collected can generate advanced and accurate research findings. However, on the other hand,

a large number of participants would result in a huge amount of data that needs to be collected

and analysed (Adams and Cox, 2008). Questionnaires might be created as printed copies of

paper-based questions or distributed online where they can be sent though web media (e.g.

email or via any website or professional networks for researchers). In both media, the

participants are asked to answer the questions, and after completing them, send them back to

the researcher (Rowley, 2014). In this research, a questionnaire was designed and employed

for each study. This is because the questionnaire was deemed to be an appropriate technique to

collect data related to SQL learning and assessment from both student and lecturer participants.

The questionnaires used are described below.

a) Pilot study questionnaire: A pilot study was conducted to measure the performance of

students and the time they took while formulating SQL statements by using the new

SQL-FE tool and the paper-based methods. The questionnaire was provided to the

participants through a hyperlink, which linked to an online page

https://www.surveymonkey.co.uk/ on the same website of the SQL-FE interface. There

were ten different questions, including multiple-choice and fill blanks questions, to evaluate

the overall participants’ satisfaction by the new SQL-FE editor.

b) Experiment questionnaires: a questionnaire-based experiment was conducted on the

newly implemented SQL Marking Editor (SQL-ME). The questionnaire was designed as a

paper-based tool that contained three measurement categories; SQL-ME user interface and

time spent on marking statements, SQL-ME feedback quality, and usefulness of the SQL-

ME tool.

https://www.surveymonkey.co.uk/

 Page | 50

A number of different questions were asked, including multiple-choice and fill blanks

questions, to evaluate the overall satisfaction associated with the new SQL-ME editor with

different marking processes (fully or partially marking processes).

 Data Analysis

In this research two different data analysis has been applied which explained in details in

multiple chapters such as; chapter 5, chapter 6 and chapter 8. The following are summary of

different analysis methods which have been used and how they have been evaluated. The first

analysis is using manual analysis, which collected existing exam scripts and compares the

errors and different ways of solving same SQL statements by using the spreadsheet. The second

approach is using the t-test paired analysis method which has evaluated the full implemented

SQL formulation and marking environment.

 Existing Exam Scripts Analysis

Chapter 5 discuss the analysis of existing SQL examination scripts which has been collected

using a spreadsheet. It contains the SQL questions, model answers and different students’

answers with their grades. The sheet was used to filter the students’ answers and find the

common errors made by students. The study focuses on SQL questions; all the SQL answers

have been listed in a spreadsheet along with the grades which the students got as illustrated in

Figure 4-1.

Figure 4-1: Sample of SQL Exam Scripts using spreadsheet

 Page | 51

 Data Analysis using t-test

The data analysis using t-tests to check the viability of the new formulation and marking SQL

statements editors for students and examiners. In other words, they assessed if students could

formulate basic SQL using SQL-FE and if the examiners struggled to mark the SQL

statements; and how their feedback and marking experience can be improved.

“The t-test is a statistical test for the mean of a population and is used when the population is

normally or approximately normally distributed and σ is unknown” (Bluman, 2012, p.427).

Grange (2011) explained in his tutorial three different types of the t-test technique namely;

a) Paired t-test type: is used when data comes from the same participant, which means

that each participant took both conditions of the test. It is used to compare two

population means where participants have two samples in which observations in one

sample can be paired with observations in the other sample.

b) Two-sample equal variance: is used when the mean comes from different groups and

the variances associated with each group are the same. This means that the variance of

two groups is equal variance.

c) Two-sample unequal variance: is used when the mean comes from different groups.

In other words, if the variances of the two groups are not equal, the test will use the

third type.

 This thesis Data Analysis Type:

This research selected the paired t-test for all experiments data analysis either for student to

formulate the SQL queries or for the examiners to mark them.

A. Each participant (student) had to do the quiz using the paper-and-pencil and SQL-FE

editor modes. Therefore, a paired t-test for two related samples was used to test the

significance of the difference in the meantime taken to complete the experiment

between SQL-FE and the SSMS tool as explained in details in Section 6.4.

B. Each session involved one participant (examiner), who performed two tasks during a

one hour session. This experiment measured the feasibility of the semi-automatic

approach, focusing on the assessment aspects by using both marking system pages of

the SQL-ME.

 Page | 52

The objective was to gain insight into the quality of the two different environments by

measuring the number of students appearing on the list and the groups available as

explained in details in Section 8.4.

SPSS is an IBM open source software which offers advanced statistical analysis, text analysis

and open-source extensibility. Its ease of use, flexibility and scalability make SPSS accessible

to users with all skill levels and outfits projects of all sizes and complexity to help users find

new opportunities and improve efficiency. To achieve this, a one-sample t-test using SPSS

statistics was used to measure the variance of the statistical analysis procedures of three parts

using the following formula.

𝑡 =
∑ 𝑑

√
𝑛(∑ 𝑑2)−(∑ 𝑑2)

𝑛−1

d = difference per paired value

n: number of samples

Each part is associated with one or two explored measurements; satisfactory, qualitative and

quantitative. The first part reported the analysis of the examiners’ attitudes towards the use of

the SQL-ME tool, while the second part reported the relationships between the examiners’

marking and their qualitative feedback provided using the SQL-ME tool. The third part

analysed the quantitative feedback using the SQL-ME tool.

 Ethical Requirements

The following steps were taken to ensure that the study complied with the high ethical standards

required of such research study:

a) An approval was obtained from the Research Ethics Committee of Loughborough

University. In this research, all experiments have involved human participants (students

and examiners) to solve the SQL questions and mark the SQL statements in several

education institutes. For this reason, Loughborough University has maintained some

requirements to be used in case human participants are involved to ensure that the

researcher is meeting the required ethical standards.

 Page | 53

For both experiments, the researcher has fill-up a form named as “Ethical Clearance

Checklist (for student involving Human Participants)” as illustrated in Appendix 2.

Then submit it to the ethics approvals sub-committee to be approved and start the

experiment. Once the approval has been received, then the human participants have started

the experiment.

b) The informed permission of participants (examiners) was obtained before involving them

in the study as illustrated in Appendix 3.

c) Details of the instructions of the study were clearly explained to all participants

(Examiners) as illustrated in Appendix 4.

d) All participants were informed of their freedom to choose whether to participate in the

study without any consequence.

e) The privacy of the research participants was ensured so that no personal data was collected

from respondents. In this case, the research has not asked to use any of personal details of

the students or examiners. However, in SQL-FE experiment, student where asked to

register through the SQL formulation editor and write their preferred email address without

mentioning their name or any other details to ensure privacy of the participants.

f) The participants were briefed about the aims and objectives of the study before the primary

data collection process. This has encouraged the research to rich higher number of

participants and motivates to get accurate solutions from them.

 Summary

This chapter discussed the general research methodologies, designs and approaches used for

the work conducted by this research. First, it introduced the research approaches along with the

justification of choosing the selected approach. Subsequently, a comprehensive explanation of

the various research designs was provided. A discussion of the data collection and data analysis

processes was then presented. Finally, the chapter highlighted the main ethical requirements

and the rules that should be followed before and after conducting any research methodology

process.

 Page | 54

Chapter 5.

Analysis of the Existing SQL
Examination Scripts

 Introduction

Learning the Structured Query Language (SQL) is an important step in developing database

skills (Patel, 2012; Litoriya and Ranjan, 2010; Lans, 2007). This is verified by the fact that the

numbers of higher education students learning SQL are constantly increasing. Early tools were

only designed for teaching and offered increased feedback and personalised learning, but not

summative assessment (Kleerekoper and Schofield, 2018). In addition, most research studies

focus on marking and providing feedback on the final query output rather than the formulation

of the SQL statement clauses as discussed in details in both Sections 3.3 and 3.4. Focusing on

statement formulation can assist the examiners to diagnose the strengths and weaknesses and

provide detailed feedback on SQL statements after they have been submitted for marking.

This chapter aims to achieve one of the main objectives of this research which listed in

objectives list on section 1.2. It is to analyse different common errors made by students. This

involves identifying the common mistakes in students’ answers and analysing them to

implement an accurate SQL formulation and marking environment that can help identify the

similarities between SQL statements and mark them automatically. In addition, explore the

difficulties and challenges that examiners face in manual assessment of SQL, and how such

challenges can be addressed and solved.

The rest of this chapter is organised as follows. Section 5.2 explains the data collection

methodology, while Section 5.2.2 highlights the common mistakes in SQL scripts. The various

model answers for each query are discussed in Section 5.2.3. In Sections 5.2.4, error categories

are introduced, and each student’s error(s) is grouped under the appropriate error category.

Section 5.2.4.1 and 5.2.4.2 discuss the error categories and their analysis, while Section 5.3

discusses the ideal SQL learning and marking process. Finally, Section 5.4 provides a summary

of the chapter.

 Page | 55

 Data Collection

As discussed in Section 4.4, data collection has supported this research to check the validity of

the research method by encouraging various participants (students and educators) to get

involved in surveys and questionnaires or even by collecting previous year’s exam scripts. For

that, this chapter aims to provide a broad investigation and discussion of the research results.

It discusses the data collection method, which was used to collect data from the Database

module’s exam scripts, and highlights different aspects of common mistakes.

 Existing SQL Examination Scripts Data Collection

The conducted study consists of exam scripts for semester two (June 2013 and June 2014) of

the Database module. The study identifies the common errors in SQL statement questions

attempted by the undergraduate students of Loughborough University. The Database module

exam scripts had four different question types, and the students had the flexibility to choose

three questions. After filtering the exam scripts, 78 students attempted the SQL questions in

2013 and 72 students in 2014. These numbers correspond to 71% and 60% of the students

attempting to solve the SQL questions in 2013 and 2014, respectively. The data collected

contained the SQL questions, model answers and the students’ answers along with their grades.

The study focused on SQL questions only, and as such, all SQL answers were listed in a

spreadsheet along with the grades that the students obtained.

In this analysis, there were seven questions from year 2013 (see Appendix 5) and seven

questions from year 2014 (see Appendix 6). This means that 14 different questions were

retrieved from the existing exam scripts with their answers. Those questions were a

combination of DML (Data Manipulation Language) and DDL (Data Definition Language)

statements. This is because the research had an interest in knowing all types of common

mistakes and the different ways of answering a query. Furthermore, to find a proper solution

of learning and marking SQL statements, one must start by studying and analysing different

students’ SQL answers. Therefore, this chapter analyses different SQL statements related to

only solving the problems of the basic SELECT clauses, which cover SELECT, FROM,

WHERE, JOIN, GROUP BY, HAVING and ORDER BY.

 Page | 56

 Common Mistakes in SQL Exam Scripts

As mentioned above, 71% of the students tried to solve the SQL questions in 2013, whereas

only 60% tried to solve them in 2014. These figures show that not all students have the

confidence to solve SQL queries. This might be because of the difficulties students face while

solving SQL questions. Research by Renaud and van Biljon (2004) stated that the difficulties

of solving SQL questions are “…due to the nature of SQL, and the fact that it is fundamentally

different from the other skills students master during their course of study”.

Table 5-1 uses an example from Appendix 5 to provide a further explanation about the

analysis of the results of students’ exam scripts. It provides a description of the questions,

model answers and the common errors students made while attempting to solve the SQL

questions. In addition, it highlights different examples of students’ errors and shows how many

students made the same error. The tables in Appendix 5 and Appendix 6 show lists of exam

scripts for semester 2 of the Database module (June 2013 and June 2014). They indicate the

common errors in SQL statement questions attempted by undergraduate students of

Loughborough University. Each question on the exam script was analysed individually to find

the common errors and the number of students who made the same error.

Table 5-1: Example of common SQL mistakes that student made in the Database exam (June 2013)

QID Question

Description

Model Answer Common

Mistake

Examples of Students’ Mistake Common

Mistakes

Made / 78

1.

Display the

department

number

and total

salary of

employees

in each

department

that

employs

five or

more

people.

SELECT DEPTNO, SUM(SAL)

FROM EMPLOYEE

GROUP BY DEPTNO

HAVING COUNT(EMPNO)>=5;

a) Use of

WHERE

instead of

HAVING

clause.

SELECT DEPTNO, SUM(SAL)

FROM EMP

GROUP BY DEPTNO

WHERE COUNT(DEPTNO)>=5;

29

b) Missing

SQL

function

SUM()

SELECT DEPTNO, SAL

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(EMPNO)>5;

10

c) Use of

TOTAL

instead of

SUM

SELECT DEPTNO, TOTAL(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING

(COUNT(DEPTNO)>=5);

4

d) Use of

COUNT

instead of

SUM

SELECT DEPNO, COUNT(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(SAL)>=5;

3

 Page | 57

 Discussion of Common Mistakes

The number of common mistakes made by the students in both years suggests that students

may have found understanding the queries a challenge, because most of them made similar

mistakes. In common mistake “a” of Table 5-1, many students tried to solve the first question

using the WHERE clause instead of the HAVING clause, when there cannot be an aggregate

function in a WHERE clause.

In common mistake “b”, students attempted the query, however, they failed to add an

important component of an SQL query into their solution – the “SUM()” function. On the

other hand, common error “c” shows that some students could understand the requirement of

the query, that is, that they needed to use a function. However, they used “TOTAL” instead

of “SUM()”, which causes errors in the query. The last common mistake “d”, shows

another example of changing the keyword, whereby students attempted the query using

“COUNT” instead of the “SUM()” function. As is clear from Table 5-1, the last three

common mistakes are based on functions, which indicate that students might have had some

confusion or lack of awareness of functions and their use. In addition, these mistakes were

repeated in several questions in different years, as demonstrated by the answers to Questions 5

and 7 in Appendix 5 and Appendix 6.

The common mistake tables in Appendices 2 and 3 highlight further common mistakes and

contain a much larger sample of student attempts. In Appendix 5, 30 students attempted

Question 4 without adding “Data Type” or “Values” to their answers. For example:

CREATE TABLE EMP1

(EMPNO, EMPNAME, JOB, SAL, DEPTNO, MGR, HIREDATE);

The above statement indicates that students were able to create tables, since they provided most

of the requirements to do so, but missed significant sections (i.e. the data type of each field

name and values). Furthermore, Question 3 in Appendix 5 and Questions 10 and 14 in

Appendix 6 specify another common mistake made by many students. The mistake shows that

many students may have had difficulties when it came to using the GROUP BY and

HAVING clauses, as they either forgot to add them or added them incorrectly. An example

of this is:

 Page | 58

SELECT EMPNAME

FROM EMP

WHERE DEPNO = (SELECT DEPTNO

 FROM EMP

 WHERE JOB = ‘ANALYST’

 GROUP BY DEPTNO);

As the example shows, the GROUP BY clause was added inside the sub-query, which is a

misplacement that affected the students’ results.

 Model Answers to Each Query

The tables in Appendix 7 and Appendix 8 show the model answers for each SQL question of

the 2013 and 2014 exam scripts. The tables also present the number of students who were able

to correctly solve the query with a solution that was not one of the lecturers’ answers. The

models answers are split into different groups, where (i) and (ii) present the model answers by

lecturers and (iii) presents the answers by students. It is clear from the percentages that the

number of students who answered the SQL question varies from one question to another and

depends on the requirements of each SQL question. The students had the option solve the query

using either the lecturers’ solution or their own different but correct answer. For example, in

Question 3: “Display the names of all employees who work in a department that employs an

analyst”. Two different solutions result in the same correct answer for example:

(i) SUB-QUERY

(ii) JOIN

i)SUB-QUERY

SELECT EMPNAME

FROM EMP

WHERE DEPTNO IN (SELECT DISTINCT DEPTNO

 FROM EMP

 WHERE JOB ='ANALYST');

ii)JOIN

SELECT DISTINCT E1.EMPNAME

FROM EMP1 , EMP2

WHERE E1.DEPTNO = E2.DEPTNO

AND E2.JOB = 'ANALYST';

 Page | 59

On the other hand, there were number of students who failed to answer the query correctly

and caused different types of errors, which are explained in detail in Appendix 5 and

Appendix 6.

 Discussion of the Different Model Answers

Questions 1, 2 and 4 in Appendix 7 show that students understood the requirement of the

queries and tried to solve them with different kinds of solutions, and a large number of students

answered them correctly.

For example, in Question 2: “Display the name of each employee with his/her department

name”. There are two different correct solutions:

 The first correct answer (i) was given by 15 students, who used a JOIN statement:

SELECT DEPTNAME, EMPNAME

FROM DEPT INNER JOIN EMP

ON DEPT.DEPTNO = EMP.DEPTNO;

 The second correct answer (ii) was given by 38 students, who used a WHERE clause:

SELECT EMPNAME, DEPTNAME

FROM EMP, DEPT

WHERE DEPT.DEPTNO = EMP.DEPTNO;

However, Questions 3, 5, 6 and 7 were answered incorrectly by a higher number of students;

as although some of the students did manage to find a different way of answering the query

than that provided by the lecturer, most of them failed. Additionally, the number of students

attempting the SQL question decreased dramatically from Question 5 to Question 7. The reason

for this might be due to the fact that constraints and DML commands are more difficult for

students to master. For example, in Question 7: “Configure the EMP1 table such that if a

department is deleted from the DEPT table any associated employees are automatically

deleted from the EMP1 table”, even though there were 33 students who attempted this

question, only one provided a correct answer. The correct answer is:

ALTER TABLE EMP1 ADD CONSTRAINT FKEY FOREIGN KEY (DEPTNO)

REFERENCES DEPT (DEPTNO) ON DELETE CASCADE;

This answer shows that only one student understood the FORIGN KEY concept and how to

add it to SQL statements correctly.

 Page | 60

On the other hand, the 2014 exam scripts show a significant increase in the number of correct

answers compared to those from 2013, except for two questions (3 and 7), which had a very

low number of attempts. Those two questions raised the percentage of incorrect answers to

85%. For example, in Question 7 (Appendix 8): “Create a view called BOSS which has the

name and number of each employee with the name and number of his or her manager (with

blanks alongside any employee that has no manager”.

While there were eight students who answered this correctly in two different ways, many

students failed to attempt it and there were many mistakes. The two correct methods of

answering the question were identified by the lecturer as:

(i) using a JOIN statement

(ii) using a WHERE clause:

i) JOIN Statement

CREATE VIEW BOSS AS SELECT A.EMPNAME AS EMPNAME, A.EMPNO AS

EMPNO, B.EMPNAME AS BNAME, B.EMPNO AS BOSSNO

FROM EMPA LEFT OUTER JOIN EMPB

ON A.MGR = B.EMP;

ii) WHERE Clause

CREATE VIEW boss AS SELECT EMPNO, EMPNAME, JOB, MGR,HIREDATE,

DEPNAME

FROM EMP , DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO;

The rest of the questions show that the students managed to solve the query with different

solutions, and that the percentage of students who answered correctly was high.

 Errors Categories

After analysing all SQL script questions and their answers, this research initially categorised

the students’ common errors as synonyms, syntax errors, incorrect keywords/functions and

incomplete SQL statements. More details about these categories are presented below.

1. Synonyms Errors

SQL is an English-based programming language, a fact that causes some students to use words

or phrases that mean exactly or nearly the same as other words or phrases used in SQL, thinking

that they might provide the same results.

 Page | 61

Students sometime also forget the name of a clause or think that they could obtain the output

by using an incorrect but similar keyword/function of the clause. The example below shows a

student using “SORT BY”, which is a synonym of “ORDER BY”, but cannot be accepted in SQL

syntax.

SELECT EMPNAME, HIREDATE

FROM EMP

SORT BY HIREDATE;

2. Incorrect Keywords/Functions

Students might think that by using more complex commands or clauses in their

answers, they will come to a more accurate solution and gain more marks. This

example shows that a student used a “GROUP BY” clause, which is not required in

the solution and results in an incorrect answer.

SELECT EMPNAME

FROM EMP

WHERE DEPTNO = (SELECT DEPTNO

 FROM EMP

 WHERE JOB='ANALYST'

 GROUP BY DEPTNO);

3. Syntax Errors

SQL is a structured language, with rules and regulations that must be followed. Changing the

names of clauses or exchanging them with other functions’ names does not result in correct

answers. The following example shows a student who used a “WHERE” clause instead of a

“HAVING” clause. In such a case, the system will fail to run the query and an error will be

generated: “Can’t have aggregate function in ‘WHERE’ clause”.

SELECT DEPTNO, SUM (SAL)

FROM EMP

GROUP BY DEPTNO

WHERE COUNT (DEPTNO)>=5;

 Page | 62

4. Incomplete SQL Syntax

Students sometimes think that if they write short answers without mentioning all the required

SQL syntax, they will reach the right solution or approach the correct answer. The example

below shows a case in which a student forgot to add “Date Type” and “Values” to their answer,

which resulted in inaccurate table creation. This led to the loss of significant marks, since the

SQL statement was not effectively solved or completed.

CREATE TABLE EMP1

(EMPNO, EMPNAME, JOB, SAL, DEPTNO, MGR, HIREDATE);

 Discussion of Error Categories

The initial error categories were identified based on common student mistakes, where most

errors can be classified under one of these categories. However, it should be noted that this

research found a large number of empty answers – questions that students left without any

solutions. In the 2013 exam scripts, there were 81 empty answers, compared to 30 empty

answers in the 2014 scripts.

These cannot be classified under any of the error categories. However, they cannot be

ignored either, since they constitute a very serious problem that research should investigate in

detail in order to fully understand it and find ways by which it can be resolved. The tables in

Appendices 6 and 7 show the classification of students’ errors under each error category. The

tables also show how the different error categories were attached to each error made by a

student. It is clear from these tables that different categories of error could be found in the

answers of the same question. For example, in Question 1, four different error categories were

found in the students’ answers. In addition, some of these answers included an error that can

considered belonging to two different categories. For instance, one answer to Question 1 was:

SELECT DEPTNO, TOTAL(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING (COUNT(DEPTNO)>=5);

 Page | 63

This answer could be categorised as a wrong use of clauses or functions, since instead of

using “TOTAL ()”, it should use the “SUM ()” function. Additionally, the answer could be

categorised under an incorrect use of keyword/function, since “TOTAL ()” and “SUM ()” have

the same meaning. It can also be clearly seen from the tables that the number of committed

errors by students is greater than the number of students answering incorrectly. The reason

behind this is that one student can make many errors in the same question, and many

students can make the same error in different questions, as illustrated by Figure 5-1 and

Figure 5-2.

Figure 5-1: The relationship between a student and errors (One-to-Many)

Figure 5-2: The relationship between students and errors (Many-to-One)

 Analysis of Each Error Category

Figure 5-3 shows the breakdown of errors in terms of frequency from the 2013 and 2014 exam

scripts. From the figure, it is clear that the incomplete SQL syntax errors represented the highest

amount of errors in both years, since most of the students attempted the questions but failed to

complete them. The error category with the second largest number of students committing it in

2013 is the incorrect keyword function, with 70 students. However, the number of students

who made this type of error decreased in 2014 to 45 students.

Error 1

Student 1

Student 2

Student 3

Student 1

Error 1

Error 2

Error 3

 Page | 64

On the other hand, the synonyms and syntax errors categories represented the lowest amount

of errors committed by students. Generally, the statistics shows that the number of errors made

in each category were similar in 2013 and 2014.

Figure 5-3: SQL Errors Categories breakdown for 2013 and 2014 students’ exam

scripts

Figure 5-3 also shows that the incomplete SQL syntax errors increased between 2013 and 2014,

with a very high percentage of students committing such errors in both years: 49% in 2013 and

51% in 2014. In addition, a high percentage of students committed syntax errors or and

incomplete SQL syntax. The reason behind this might be due to the students’ weakness in

solving SQL syntax functions. The percentage of students making incorrect keyword or

function errors was 32% in 2013 and 29% in 2014. On the other hand, the percentage of

students making synonyms errors was only 6% in 2013 and 5% in 2014. This indicates that

only a minority of students struggled with synonym errors.

6%

32%

13%

49%

5%

29%

15%

51%

0%

10%

20%

30%

40%

50%

60%

S Y N O N Y M S E R R O R S I N C O R R E C T
K E Y W O R D / F U N C T I O N

S Y N T A X E R R O R I N C O M P L E T E S Q L
S Y N T A X

N
O

 O
F

ST
U

D
EN

TS
 %

ERROR CATEGORIES

2013 2014

 Page | 65

 The Ideal SQL Marking Process

The proposed methodology that research might use is Case-Based Reasoning (CBR), which

identifies how to solve research problems based on the solutions to similar previous problems

(Watson and Marir, 1994), and Rule-Based Reasoning (RBR), which is a framework that copy

the thinking of a human expert in solving a knowledge intensive problem (Grosan and

Abraham, 2011). To ensure marking consistency and a reduced workload for lecturers, the

proposed semi-automatic assessment system will incorporate the best features that have

already been used by most existing systems, as well as include new features. The features of

existing features of current systems include restriction of prohibited elements while

formulating the SQL statements by the students and applying partial marking to provide

immediate feedback. In addition, students will be allowed to solve the query in a different way

to that of the lecturers as long as it provides the same output. This will be realised by applying

fewer restrictions on students’ SQL statements. At the same time, SQL syntax will be checked,

which is the most commonly reported way to define tests, and also the most important part of

the process (e.g. compiling the program, running the code and comparing the output with the

expected output) (Tremblay and Labonté, 2003). Furthermore, feedback will be sent to provide

individual students with information that focuses on their SQL learning performance (Walker,

2011).

There are numerous benefits of effective feedback, such as improving students' progress,

boosting their achievements, enhancing their punctuality with which they hand in their work,

and improving motivation and confidence. Similarly, marking and grading can indicate the

level of performance that has been achieved by the student. The use of grades might affect

students’ learning, since they can provide a standardised measure of a student’s performance,

and certify that a course of study has been completed and particular standards of

accomplishment have been achieved (Thompson and Ahn, 2012).

 Summary

The main objective of this chapter was to identify the common mistakes in students’ SQL and

analyse them to implement an accurate marking environment that can help identify the

similarities between SQL statements and mark them automatically.

 Page | 66

This chapter summarised the different common SQL mistakes and the various model

answers that can be provided to solve the same SQL query. It also categorised errors in four

types such as synonyms errors, incorrect keywords/functions, syntax errors and incomplete

SQL statements. It presented a study that grouped SQL errors in terms of the mistakes made in

different SQL exam scripts. A new approach and framework was introduced to minimise or

remove the dissimilarities between the SQL answers, while at the same time, enhancing the

marking consistency and delivering context feedback. The new proposed semi-automated

approach and framework are explained in detail in Chapters 7 and 8 with specific examples.

The next chapter describes the implementation of a new SQL Formulation Editor (SQL-FE),

which is a specialised system that allows students to formulate SQL statements without any

prohibited elements or errors.

 Page | 67

Chapter 6. Design, Implementation

and Evaluation

SQL Formulation Editor

(SQL-FE)

 Introduction

Chapter 5 identified the different SQL syntax errors after analysing a number of manual SQL

scripts. Some syntax errors were classified as insignificant, while others were classified as

significant. The insignificant SQL errors, such as spelling errors, can be excluded while making

an SQL quiz. Spelling errors might occur as a result of wrong column names, wrong table

names, or wrong syntax in one or more clauses of the SQL statement (Ahadi et al., 2016).

Although spelling mistakes could be categorised as insignificant error, this research considers

it as one of the main issues to be addressed before implementing the new SQL-FE editor (Al-

Salmi, 2018). The research also identified other syntax errors that can be categorised under

significant errors that can affect the full SQL statement, such as reserved words errors (i.e.

name, and, of) and the wrong use of aggregation functions (i.e. Average instead of AVG) (see

Appendix 5 & 6). These errors might affect students’ SQL answers and reduce their

performance by wasting significant time, which leads to losing marks.

Learning the Structured Query Language (SQL) is an important step towards developing

advanced database skills. As such, recently, the number of higher education students learning

SQL has been constantly increasing. In this context, most researches focus on marking and

providing feedback on the final query output rather than on the formulation of the SQL

statement clauses as discussed in Chapter 3. Focusing on statement formulation can assist the

examiners in diagnosing the strengths and weaknesses of students’ answers and provide

detailed feedback on SQL statements that have been submitted for marking. This chapter

proposes a new semi-automatic assessment tool, called SQL-FE, for higher levels of education.

The tool allows students to formulate SQL statements using the point-and-click interaction

method.

 Page | 68

The results have provided reasonable evidence that using SQL-FE can have a beneficial

effect on formulating SQL query on time, and demonstrated a significant improvement in

students’ performance. The rest of this chapter is organised as follows. Section 6.2 describes

the SQL formulation editor’s requirements and components. It also provides a simple example

to illustrate the process of formulating SQL statements using the editor. The pilot study is

discussed in detail in Section 6.3. To ensure the effectiveness of the tool, the research conducted

an experiment that compares SQL-FE with the SQL Server Management Studio (SSMS) tool,

which is reported in Section 6.4. Finally, Section 6.5 concludes the chapter by presenting a

summary of its findings.

 The SQL Formulation Editor (SQL-FE)

SQL-FE was developed to enable students to formulate SQL statements, execute or run the

queries and submit the SQL statements for marking. The tool was designed for the web to

provide an effective avenue for testing students’ SQL statements, as well as to provide quick

feedback responses after marking students’ SQL statements using the automated system.

Figure 6-1 shows the use case diagram, which displays the core functionalities of the SQL-FE

tool.

Figure 6-1: Use case diagram of the core functionalities of SQL-FE

 Page | 69

The use case identifies the primary actors (users) of SQL-FE, along with the key use cases.

Two types of actors use the tool: lecturers and students. In order to enforce proper security,

each actor must first register into the editor before he/she can use any of the editor’s

functionalities. Registration ensures that a proper email address and password are created for

each new user. The two actors—lecturer and students— will have access to different

functionalities using the editor. The first step for the lecturer is to handle a given SQL

assignment by creating and managing the SQL questions. Subsequently, SQL answers are

assigned for each question, with multiple options (methods) of solving the same question. Once

the student logs in to the editor, the time count will start automatically for each submitted SQL

answer. The student will then solve the SQL questions and try to run them before submitting

them for marking.

 Requirements

SQL-FE needs to have a number of different functionalities, such as inserting, updating and

deleting SQL components. These functionalities have been added as buttons in the SQL-FE

tool, which allows students to modify SQL statements easily. SQL-FE uses a point-and-click

user interface. The point-and-click approach can be used with different input devices, such as

a computer mouse, touch pads and touch screens. However, there are two questions related to

the selection of the point-and-click user interface style, which are:

a) Why has this tool chosen to use point-and-click interaction style rather than drag-and-

drop interaction style or typing using the keyboard?

b) Does using this style lead to an enhanced student SQL assessment performance?

Several researchers have examined the differences in speed and accuracy between the two

styles— point-and-click and drag-and-drop — on various tasks (Boritz et al. 1991; Gillan et

al. 1990; MacKenzie, 1992). The MacKenzie (1992) study found that using the pointing

method was faster than the dragging method, while the dragging style led to more errors than

the pointing style. Another experiment for an educational game by Inkpen (2001) showed that

using the drag-and-drop style creates more errors compared to point-and-click, and that the

point-and-click was preferred by students. However, the decision to select either the drag-and-

drop style or point-and-click style depends mostly on the task to be completed. For example,

Adesina et al. (2013) used the multi-touch drag-and-drop style to solve basic arithmetic

problems.

 Page | 70

This allowed students to drag the numbers from the problem and drop them in the solution

pad. Subsequently, via using multiple gestures, the mathematical operation can be computed

using the arithmetic operators. The study of Adesina et al. showed improvements in the student

mathematical performance of solving problems and provided more functionality to the process.

In this research, the drag-and-drop style would not be useful in creating SQL statements since

SQL needs to have structured syntax and changing the order might create errors. For this

reason, the SQL-FE tool was designed to be compatible with the point-and-click interaction

style. Moreover, the difference between SQL-FE and previous editors (Raadt et al., 2006; Sadiq

et al., 2004; Abelló et al., 2008) is that SQL-FE will not allow keyboard typing. This means

that the editor restricts students from writing the SQL statements using the keyboard, except

for some special cases (as explained in the components subsection (6.2.2)). The reason for this

is to avoid any trivial mistakes such as spelling mistakes, unnecessary words and synonyms,

as described in detail in Chapter 5. Furthermore, the point-and-click interaction styles are

compatible with different touchscreen technology devices such as tablets. These technologies

have improved the effectiveness of student performance in different education aspects

(Bonastre et al., 2006; Murray & Olcese, 2011; Moran et al., 2010; Adesina et al., 2015). This

means the students might find it easier to utilise touchscreen interactions to complete the syntax

using tablet devices. The user interface design requirements of the SQL Formulation Editor are

listed in Table 6-1 and descried in details in Section 6.2.2:

Table 6-1: SQL-FE user interface design requirements

RNo.
Design

Requirements
Functionality Reason

1.
Point-and-Click

attraction method

This would allow student to click on the

links provided rather than writing using

keyboard.

 To avoid any spelling mistakes

 To avoid adding unnecessarily elements to the SQL

statements.

2.

Commands, Functions

and Table Schema,

Keywords and

Operators

This list of main components to

formulate the SQL statement.

 Table schema (to retrieve the table name and

fieldnames easily)

 To avoid using synonyms of functions.

 Commands should be in a correct order to be executed

and retrieve data.

3. Text area
To allow students search for numeric or

string data (text or date).

 If a query asks for numeric or text data to be searched

for, the text area is allowing student to write using the

keyboard and add it in the statement.

4.
Undo, Redo and Delete

buttons
To manipulate the SQL statement

 Student can’t use keyboard to go back and retrieve

what they added for that certain buttons have been

added to help them manipulate their statements.

5.

Run Query and Submit

buttons
To executed the query and submit it to

the examiner for marking

 After formulating the query, the run button allow

student to retrieve the data needed and then submit it to

the examiner to get mark and feedback.

 Page | 71

Figure 6-2: SQL Formulation Editor (SQL-FE)

a. Question pane

e. SQL Answer pane f. Text area pane

b
.

L
ef

t
N

a
v

ig
a

ti
o

n
 b

a
r

c.
T

a
b

le
 S

ch
e
m

a

g. Control buttons

d
.

R
ig

h
t N

a
v

ig
a

tio
n

 b
a

r

 Page | 72

(Source Code: studentexam.php): “SQL Formulation Editor User Interface”

<div class="col-md-8 form-group" style="padding:3px !important;">
 <div class="panel panel-default">
 <form name="frmx" method="post" id="frmx" autocomplete="off">
 <input type="hidden" id="qid" name="qid" value="<?PHP echo $results->qid; ?>">
 <input type="hidden" id="qaid" name="qaid" value="<?PHP echo $qaresult->qaid; ?>">
 <input type="hidden" id="submittime" name="submittime" />
 <div class="panel-body" style="padding:0px !important;">
 <div class="myQuestionBox"> <div class="col-md-12 myheading">Question:
 Marks (<?PHP echo $results->marks; ?>)</div>
 <div class="col-md-12 myquestion"><?PHP echo $results->questions; ?></div>
<div class="col-md-12 myquestion" style="text-align:right;"><?PHP echo($links); ?></div>
<br clear="all" /> </div>
 <div class="col-md-12" style="text-align:right;"></div>
 <div class="col-md-8"><label class="text-warning">SQL Statement</label>
<textarea name="QueryPanel" style="resize:none; color: #FFF !important;
height: 110px; font-size: 11px; letter-spacing: 1px;" rows="8"
class="form-control" id="QueryPanel"><?PHP //echo $qaresult->ans; ?></textarea>
 <br clear="all" /><div class="col-md-12 myquestion" style="text-align:right; padding:0px">
 <button type="button" id="mytime" style="border: 0px; font-size: 14px;
letter-spacing: 1px; display: none;" class="btn-outline btn-success"></button>
<button type="button" id="undo" class="btn btn-success margin undo">Undo</button>
<button type="button" id="redo" class="btn btn-primary margin redo">Redo</button>
<button type="button" id="reset" class="btn btn-danger margin">Reset</button>
<button type="button" id="runQuery" class="btn btn-warning margin">Execute
Query</button>
 <button type="button" id="submitbutton" class="btn btn-primary margin">Submit</button>
 <button type="button" id="showans" style="display:none !important;"
 class="btn btn-warning margin">Suggestion</button>
 <button type="button" style="display:none !important;" id="getallanswers"
 class="btn btn-warning margin">Answer Log</button> </div>
</div>
<div class="col-md-4" style="padding-top: 25px;">
<style>
.mybtn { font-size: 12px !important;
 font-weight: normal !important;
 letter-spacing: 1px !important; }
 .inputmargin { margin-top:5px !important; color:#FFF !important;
 font size:12px !important; }
 #notification { font-size:10px !important;
 letter- spacing:1px !important;color:#FFF !important; }
 </style>
<button class="btn btn-warning mybtn datatype" id="String" type="button">String</button>

 Page | 73

<button class="btn btn-warning mybtn datatype" id="Numeric"
type="button">Numeric</button>
<input type="text" class="form-control inputmargin" id="myvalueforbox" />
<button class="btn btn-danger mybtn inputmargin" id="confirmvalue"
type="button">Confirm</button>
<div class="col-md-12" style="padding:0px; margin:8px 0px;" id="notification"></div>
</div><div class="col-md-12 form-control" id="suggestionans"
style="resize:none; color: #FFF !important;"><div class="col-md-11 setcommand"
id="<?PHP echo $results->ans; ?>"><?PHP echo $results->ans; ?></div></div>
<div class="col-md-12 myquestion" id="queryresult">
</div> <div class="col-md-12" id="myDiagram" style="background-color:#FFF !important;
overflow:scroll; width:100%; height:300px; display:none; text-align:center;"></div>
 <textarea id="mySavedModel" style="display:none;">
 </textarea> </div>
 </form>
 <div class="col-md-2 form-group panel panel-default">
 <?PHP
foreach($this->home->get_enum_values('hd_sqlcommands','commandstype') as $command)
{ if($command=='Operators' || $command=='Keywords')
{
$childList = $this->home->getcommandsList($command);
if($childList['count'] > 0)
{echo '<div class="col-md-12 schema allpadding" id="'.$command.' ">'.$command.'</div>';
foreach($childList['data'] as $gcl)
{ echo '<li class="sfieldname setcommand" id="'.$gcl->commandtext.'
">'.$gcl->commandtext.'';}}}}?>
 <!--/.main-->
<?php $this->load->view('common/footer');?>
<script> $(function(){ var fiveSeconds = new Date().getTime() + 0000;
$('#mytime').countdown(fiveSeconds, {elapse: true}) .on('update.countdown',
function(event) { var $this = $(this); $this.html(event.strftime('%H:%M:%S'));
$('#submittime').val(event.strftime('%H:%M:%S'));
});
});
</script>

 Components

The SQL-FE tool is designed to achieve the requirements of SQL assessment using the semi-

automated approach. The editor is based on automatic SQL formulation. This section explains

the components of SQL-FE, as illustrated in Figure 6-2.

 Page | 74

The editor contains seven main components which identifies the core functionalities of the

tool. The main functionalities are the navigation bar, table schema, function buttons and SQL

question & answer pane.

a. Question pane: Figure 6-3 illustrates the question pane which serves to show the SQL

question scenario and identify the query requirements needed to solve the SQL

statements. Placing the SQL question in the same SQL-FE web page makes it more

convenient for students to solve the SQL statements. In addition, it saves on the printed-

paper otherwise needed for listing the SQL questions manually.

Figure 6-3: Question Pan

b. Left Navigation bar: The left navigation bar consists of two main parts, commands

and functions as illustrated in Figure 6-4. The commands list assists students while

solving the SQL statements, whereas functions have been added to allow performing

calculations on data. The commands and functions are placed on the left hand side,

where students can easily access them to solve the queries. The editor lists the basic

SELECT commands and functions; however, they can be modified and expanded

depending on the question’s requirements.

Figure 6-4: Left Navigation bar (SQL commands and Functions)

 Page | 75

c. Table Schema: The table schema displays the table name, field names and their data-

type to be used while solving the SQL questions as shows in Figure 6-5. This means

that there is no need for a printed-paper to display the table schema for the student as it

is already viewable on the web page.

Figure 6-5: Left Navigation bar (Table schema)

d. Right Navigation bar: The right navigation bar consists of reserved SQL keywords

used for defining, manipulating and accessing the database as shows in Figure 6-6. In

addition, it contains a set of operators used in the WHERE command to perform

operations such as comparisons and arithmetic calculations. Separating the navigation

bar to two separate left and right bars serves to provide more vertical space for the main

content such as the SQL question and the SQL statement answer bars.

Figure 6-6: Right Navigation bar (SQL keywords and operators)

 Page | 76

e. SQL Answer pane: The SQL answer pane is used to enter the SQL answer using the

left and right navigation bars. The point-and-click interaction style allows students to

point on the navigation bar and click using the mouse pointer to complete the SQL

answers without the need for using the keyboard, as illustrated in Figure 6-7.

Figure 6-7: Entering the SQL statement using the mouse pointer in SQL-FE

f. Text area pane: The text area pane helps students to add different numerical or string

values to limit the data retrieved, which cannot be done by using the available

navigation. The reasons for not using the keyboard were described in the requirement

section (6.2.1). The text area provides an exception to keyboard use by allowing

students to enter either string or numerical values depending on the question’s

requirements, as demonstrated in Figure 6-8. To insert any values, the student should

choose either string or numerical values, where the tool will present a clear message for

students about which data should be added. This message will appear under the confirm

button. Subsequently, using the keyboard, they can enter the desired value and then hit

the confirm button, where the value will be transferred to the SQL statement bar.

Figure 6-8: Text-area pane (used to enter string and numeric data)

 Page | 77

As the editor tests the basic SQL statements, only string and numerical values are allowed

to be entered as values to the SQL statements. Therefore, the date data-type values can be

retrieved using the string values as an initial step, as illustrated in Figure 6-9.

Figure 6-9: Entering date values using the string data type

g. Control buttons: The control buttons are divided into two categories, as shown in

Figure 6-10. The first category (1) is used to make any amendment in the SQL

statements, such as to redo, undo and reset the SQL statements. Since students are

prevented from using the keyboard, they are not able to use the backspace button to

delete or navigate inside the SQL statement bar. To solve this issue, different buttons

have been added to redo, undo and reset the SQL statements in order to help students

to navigate using the mouse easily.

Figure 6-10: The two types of control buttons

 Page | 78

The second set of control buttons (2) deal with running the SQL query to show the SQL

result output. In addition, a submit button is used to save students’ SQL answers for marking.

In SQL-FE, the answers are saved automatically in the created database after submitting (using

the submit button) each SQL statement. After the exam, the students' answers are easily

retrieved to be marked by the lecturer. In contrast, users of other existing SQL tools have to

save the SQL statement answers manually in a folder or an external device to be later marked

by the lecturers.

 Technologies used in the development

To achieve the design goals appropriate technologies were employed to implement the new

formulation tool, which are the software tools and software source code.

 Software Tools

The dynamic Web page and how PHP interacts with the other applications involved in the

process is illustrated in Figure 6-11. The figure shows the lifecycle of PHP request and the

main parts, scripting tools with other tools which are commonly used with them. It displays the

client (web browser) submits an HTTP request to the Apache web server to find the main page

that contains HTML, PHP, JavaScripts and Database; then the server returns a response to the

client. The HTTP works as a request-response protocol between a client and server. Each of

those parts is described in details as follows.

1. Client Side: It refers to everything in a web application that is displayed or takes place

on the client (end user device). A web browser may be the client, and an application on a

computer that hosts a web site may be the server. In this research, the SQL-FE is the client

side which illustrated previously in Figure 6-2.

2. Network: is a collection of computers, servers, mainframes, network devices, peripherals,

or other devices connected to one another to allow the sharing of data.

3. Apache Web Server: is the open source web server used to serve the pages from the

Marking Assistant.

4. PHP: is the server-side, scripting language used for the design with HTML. It provides

greater flexibility in the design of websites by enabling the creation of dynamic pages. Page

contents are changed based on interaction with the user or data stored in the database.

 Page | 79

PHP offers many advantages because it is open source and can be used across different

platforms.

 Cascading Style Sheets (CSS): used to format the layout of Web pages. They can

be used to define text styles, table sizes, and other aspects of Web pages that

previously could only be defined in a page's HTML

 JavaScript (JS): is the scripting language that is used to add interactivity to the

Web App; the codes are interpreted and run by the web server.

Figure 6-11: The lifecycle of PHP Request Processing Diagram

5. MYSQL: uses SQL (structured query language) to create, manage and retrieve information

from the database. It is relational database management system in which data is stored in

multiple tables by the sharing of keys. The database used to store all the SQL statements is

called phpMyAdmin. It is an open source tool written in PHP which proposed to handle the

administration of MySQL over the Web. The full SQL answers can be retrieved and

exported using the same database as reference for the examiner to be reviewed. It also

controls access to the stored data as illustrated in Figure 6-12. The figure illustrates some

of the submitted SQL statements that have been divided into clauses (parts) as they are

ready to be viewed by the examiner for marking. Each SQL clause is connected with

participant ID and question number.

https://www.mysql.com/

 Page | 80

Figure 6-12: Print screen of phpMyAdmin Database

 Software Source Code

This section describes how this is achieved in code when SQL-FE developed. The example

illustrates the functionalities of the components explained above.

1. Registration Form: All students should register for first-time access of the SQL-FE tool

using the registration form, as shown in Figure 6-13. The registration form allows the

lecturers to retrieve students' answers using their email addresses and send them the grades

and feedback of their SQL statements. Once a student logins to the SQL-FE tool, he/she

can start solving the queries as shows in Figure 6-14.

Figure 6-13: SQL-FE registration form

 Page | 81

Source Code: registration-form.php

 <form role="form" method="post" action="" autocomplete="off" id="formvalidateusers">
 <fieldset>
 <div class="form-group"> <label>Full Name:</label>
 <input class="form-control req" id="fullname" name="fullname"
 autocomplete="off" autofocus style="color:#FFF !important;"> </div>
 <div class="form-group"> <label>Email:</label>
 <input type="email" style="display:none;">
 <input type="text" class="form-control req" id="email" name="email"
 autocomplete="off" style="color:#FFF !important;"> </div>
 <div class="form-group col-md-6" style="padding:0px !important;">
 <label>Password:</label> <input type="text" style="display:none;">
 <input class="form-control req" type="password" id="password" name="password"
 autocomplete="off" style="color:#FFF !important;"> </div>
 <div class="form-group col-md-6" style="padding:0px !important;">
 <label>Confirm Password:</label> <input type="text" style="display:none;">
 <input class="form-control req" type="password" id="cpassword" name="cpassword"
 autocomplete="off" style="color:#FFF !important;"> </div>
 <input class="btn btn-primary" type="button" name="submit"
 onClick="gottopage(this);" data-url="<?PHP echo base_url(); ?>" value="Login" />
 <button type="submit" class="btn btn-success">Register </button>
 <?php $error = $this->session->flashdata('error');
 if(!empty($error)):?>
 <center style="color:#C00;">
 <?php echo $error;?>
 </center>
 <?php endif;?>
 </fieldset>
 </form>
<script>
 $('#HIREDATE').datepicker({ dateFormat:'yy-mm-dd'
 });
 $('#checkteachernstudent').click(function(){
 $('#formvalidateusers .req').removeClass('myerror');
 $('#formvalidateusers .req').each(function(index, element) {
 if($(this).val()=='')
 { $(this).addClass('myerror'); }
 });
 var errorlen = $('.myerror').length;
 if(errorlen<=0)
 {$('#formvalidateusers').submit(); }

 });});
</script>

 Page | 82

2. SQL Formulation Editor Example:

The question scenario mostly contains the field names and table that need to retrieve the data.

Some questions contain other SQL commands depending on the question’s requirements.

Figure 6-14 shows a fully explained example of an SQL question and how it is solved using

the SQL-FE tool. The SQL question asked to retrieve all female employees’ last names with

their department name. The left and right navigation bars allow students to enter the SQL

statement using the point-and-click technique. The text area enables students to retrieve the

employees' gender using the string data-type button, as shown in Figure 6-14. The resulting

output of the SQL statement shows the correction of the answer and helps students to check

their answers before submitting them to the lecturers for marking.

Figure 6-14 demonstrates the steps involved in solving SQL questions using the SQL-FE

tool. The figure shows an SQL answer that was attempted using the point-and-click interaction

technique. The first step is highlighted using the grey colour on both navigation bars. It shows

the commands, tables name, keywords and operators that have been used to complete the SQL

answer.

The second step is illustrated with blue colour and involves retrieving only the female

employees by clicking on the string data-type, using the keyboard to write the ‘Female'

keyword and then clicking on the confirm button to insert the keyword into the SQL statement.

The last step is to give the student the ability to check the correctness of their SQL statement

syntax and query output by clicking on the run query button, where the results of execution are

highlighted in the figure using the red rectangle.

 Page | 83

Figure 6-14: An example of a SQL statement answer

 Page | 84

 Time Efficiency Evaluation Measurement

To evaluate the new implemented tool, one of the main measurement should be included which

is time efficiency. Time efficiency is a measure of amount of time for an algorithm to execute

(Adesina, 2016). In this research, time efficiency has been measured in all studies that have

been conducted. For example;

1. Pilot study using (Paper-based and SQL-FE) methods as discussed in section 6.3.

 This is to measure if the students spend more time on doing the exam using the SQL-

FE editor than using the paper-and-pencil mode or the reverse.

2. Experiment using (SQL-FE and SSMS) methods as discussed in section 6.4.

This is to check the time spent after using two different methods and which of these

method has taken less time to finish SQL execution.

3. Experiment using (SQL-ME1 and SQL-ME2) editors as discussed in 8.4.

This is measure the time that participants needed to complete the marking and write their

feedback on the answers. The objective was to compare the time needed to complete the

marking across both editors, such as groups, marks and feedback.

 Pilot Study

A pilot study was conducted to evaluate the time efficiency and usability of the new SQL-FE

editor compared to paper-and-pencil formats (Chan & Schmitt, 1997; McDonald, 2002;

Koenings et al., 2015). The study observed undergraduate students using the SQL-FE tool and

the paper-and-pencil method to formulate SQL statements. The purpose of this experiment was

to compare the time efficiency of writing SQL statements using these two different methods.

 Participants

The participants were second year undergraduate students aged between 19 and 21. The total

numbers of participants were 40 students (23 females and 17 males). The participating students

studied two courses, Information System (IS) and Information Technology (IT) at the Modern

College of Business and Science, Oman. The study was carried out during the last week of July

2016. The students had some background on database use having studied the Database

module in their first-year course. In the second-year, they studied SQL concepts and syntax

as the main content of the Management Information System module.

 Page | 85

The module included two days of lab practice lasting 100 minutes each, and three days of

lectures for a total of 4 hours 30 minutes per week. The purpose of the lectures was to teach

and explain the concepts of SQL to students, so they can then apply such knowledge during

the lab sessions. For each lab practice, two sessions were run, with approximately 20 students

attending each session.

 Study Procedure

The students participated in solving an SQL quiz with five questions. A comparative crossover

experimental design was implemented to run this experiment. Quinn & Keough (2002) defined

the crossover as an experimental design that combines the attributes of Latin Squares and

repeated measurement design. It is normally used in experiments that apply multiple tests to

individual participants. In this study, it was used by randomly dividing students into two

groups. The first group consisted of 20 students (11 females and 9 males) solving SQL

questions first on paper-and-pencil and then on SQL-FE. The second group also consisted of

20 students (12 females and 8 males) solving similar questions using the SQL-FE editor first,

before attempting the quiz on paper-and-pencil, as explained in Table 6-2.

Table 6-2: Participating students solving SQL Questions using both modes

Group Total No. of Participants Mode 1 Mode 2

Group A
20 Students

(11 Female and 9 Male)
Paper-and-Pencil SQL-FE editor

Group B
20 Students

(12 Female and 8 Male)
SQL-FE editor Paper-and-Pencil

The table explains the groups division used in the experiment. Participants within Group (A)

(with 20 students) and Group (B) (with 20 students) were randomly selected to undertake the

two different quiz modes.

 Page | 86

 SQL Questions

The experiment used five SQL questions that required the participating students to write basic

SQL queries. The same questions were used in the paper-and-pencil and SQL-FE methods.

The research did not focus on the questions used in both modes since it aimed to test the basic

SQL commands that student can easily solve directly. A list of the SQL questions used is

shown in Table 6-3

Table 6-3: List of SQL quiz questions

Q. No. Questions

1. Display only the department name and location for each department

2. Display the names and salaries of all employees with a salary greater than 2000.

3. List the names and hire dates of all employees in the order they were hired.

4. Display the names of all employees with an 'A' as first letter in their name.

5. Display the hire date, name and job for all salesmen.

The requirements of the five questions covered the basic SQL commands (SELECT, FROM,

WHERE and ORDER BY). The paper-and-pencil quiz was supported by a table schema to

assist students while solving the SQL queries. The questions were randomly ordered in both

SQL-FE editor and paper-and-pencil modes. The first and fifth questions required only

(SELECT & FROM) commands, while the second and fourth questions required (SELECT,

FROM & WHERE) commands. The third question asked students to sort the data using the

(ORDER BY) command.

 Study Analysis and Discussion

Furthermore, students were asked to anonymously complete an online feedback survey to

gather information on their general opinions of the new SQL-FE tool. This section presents a

detailed data analysis of the experiment using the t-test and the responses of the online student

feedback after testing the new SQL-FE tool. The initial results show that the time spent on

paper-and-pencil mode was more than that spent on the semi-automated editor.

 Page | 87

Scenario Question:

Does the student spend more time on doing the experiment using the SQL-FE editor than using

the paper-and-pencil mode or the reverse by using a one sample paired t-test.

The main objectives of the evaluation were to measure the time efficiency, usability and

effectiveness of the SQL-FE Formulation Editor over the paper-and-pencil SQL assessments

that can provide helpful environment for learning and teaching SQL statements. This study

focuses on the SQL-FE method which uses an online environment to interact between students

and lecturers to capture students SQL answers.

Total of 40 students (second year undergraduate) have participated in this experiment. The

students were asked to participate in simple SQL quiz which involves five different SQL

questions using both media, SQL-FE tool and paper-and-pencil assessment. Furthermore,

students’ have been asked to complete an online feedback survey anonymously to gather

information about their acceptance and general opinion about the new SQL assessment tool.

The initial results revealed that using SQL-FE tool leads to an average of 39% saving time

compared to writing quiz using paper-and-pencil. This means that student has used to do lab

practice with SQL statements as learn-by-doing approach which gives them the ability to write

the statements and check the output easily. Simultaneously, it shows student performance

scores are better than manual writing answers from different aspects for example syntax errors,

using of reserved words and spelling mistakes.

The main variable of interest is the time needed to complete the quiz across two modes of

test administration. This essentially means that average time to complete the quiz must be

compared between two modes of test administration with lesser time indicating higher

efficiency. Statistically this translates to a comparison of two means across two groups. Since

the research design is paired as discussed in Section 4.5.2, where a sample of students take the

same test twice across two modes of administration, measurements across two modes are not

independent and hence, this becomes a related or paired group design. Therefore, paired t test

or t test for two related samples is used to test the significance of the difference in mean time

taken between pen and pencil and SQL-FE mode of test administration.

 Page | 88

In this test, null hypothesis Ho: There is no significant difference in mean time taken to

complete the test between two modes of test administration (µ1 = µ2) is tested against the

alternate hypothesis H1: There is a significant difference in mean time taken to complete the

test between two modes of test administration (µ1 ≠ µ2). That is, null hypothesis assumes no

difference in efficiency while the alternate proposes a difference in efficiency of modes of tests.

The test is performed at .05 level of significance. This means that upper limit for probability

of committing Type I error of rejecting the null hypothesis when it is actually true is kept at an

upper limit of 0.05. Actual level of significance for the data collected is indicated by p value

of the test. This is a measure of probability that difference in average time between two modes

of administration occurs due to chance. Null hypothesis is rejected if the p value of the test is

less than .05.

Feedback on several aspects of test administration is collected based on a response measured

on a scale of 1 to 5, where 5 represents most positive response and 1 represents the most

negative response towards different aspects of SQL-FE test as (See Appendix 12 - Section D).

Response is taken as an interval scale and is summarized using mean and standard deviation.

Also, t test for single mean is used to test whether the response on an average is positive. That

is, following statistical hypothesis is tested for response on each item.

Null hypothesis Ho: Response on an average is not favourable (µ ≤ 3.0)

Alternate hypothesis H1: Response on an average is favourable (µ > 3.0)

Rejection of the null hypothesis indicates that the response to a particular item is favourable

and respondents, in general, report a positive response towards that aspect of semi-automated

mode of administration.

 Results

In this research, data analysis and statistical results have been measured by using SPSS tool as

discussed previously in Section 4.5.2. However, to give an example of how the time spent has

been calculated, one example has been discussed in details using a spreadsheet with paired t-

test formula to be calculated. Table 6-4 lists the data which have been collected from two

methods, SQL-FE method and Paper and Pencil method. The sample data has only selected 15

participants for each method.

 Page | 89

This means each participant will do two different task, first will solve SQL quires using

paper and pencil then solve the same query using SQL-FE. Once the participants finished both

tasks then the time spent would be calculated as follows.

Table 6-4: Sample data of time spent between Paper pencil method and SQ-FE method

Std No.
M1/

Paper and Pencil
M2/

SQL-FE Difference (M1-M2) (Difference)^2

1 19.05 14.21 4.84 23.4256

2 17.22 14.12 3.10 9.6100

3 18.37 12.15 6.22 38.6884

4 16.30 11.16 5.14 26.4196

5 19.20 10.56 8.64 74.6496

6 11.30 10.27 1.03 1.0609

7 20.00 9.34 10.66 113.6356

8 12.30 9.08 3.22 10.3684

9 19.23 8.28 10.95 119.9025

10 15.20 7.40 7.80 60.8400

11 19.23 7.36 11.87 140.8969

12 16.45 7.27 9.18 84.2724

13 12.30 7.22 5.08 25.8064

14 15.36 10.47 4.89 23.9121

15 16 7.24 8.76 76.7376

Total Sum 247.51 146.13 101.38 830.23

Sample Mean 16.50 9.74 12.67 55.35

Example, Using the above table with n = 15 students, the following results were obtained:

1. Calculate the difference (di = M1 – M2) between the two observations on each pair, making

sure you distinguish between positive and negative differences.

2. Find the Difference between both methods by calculating = (M1-M2)

3. Get the square of the Difference between both methods by calculating = (Difference)^2

4. Calculate the sum and mean of M1, M2, Difference (M1-M2) and (Difference)^2

5. The last thing is to calculate the t test by using following formula:

𝑡 =
∑ 𝑑

√𝑛(∑ 𝑑2)−(∑ 𝑑2)

𝑛−1

 (1) 𝑡 =
101.38

√(15𝑥830.23)−(101.38)2

15−1

 (2)

 Page | 90

 𝑡 =
101.38

√(12,453.45)−(10,277.90)

14

 (3) 𝑡 =
101.38

√
2,175.55

14

 (4)

𝑡 =
101.38

12.47
 (5) 𝑡 = 8.13 (6)

Table 6-5 reports descriptive statistics of time taken to complete the test using two modes of

test. Paper and pencil model reports an average of M = 15.016 minutes (SD = 3.16) while SQL-

FE mode reports an average of M = 8.864 minutes (SD = 3.789). SQL-FE mode reports lesser

mean time to complete the test.

Table 6-5: Descriptive Statistics of Time

Group Mean Std. Deviation Std. Error Mean

Paper Pencil 15.016 3.1605 .4997

SQL-FE 8.864 3.7892 .6596

Figure 6-15: Boxplot of time taken to complete the test for two modes

 Page | 91

Figure 6-15 reports box plot of distribution of time taken to complete the test across two

modes. Box plot reports a difference in the distribution of time taken to complete the test.

However, for both the modes, it does not report any abnormal o outlier observation indicating

that the distribution does not report large departure from normality, which is an assumption for

the validity of results of t test. This is also supported by histogram of distribution of time taken

(Figure 6-16 and Figure 6-17) which report fairly symmetric distributions of time taken for pen

and pencil and semi-automated methods of test administration.

Figure 6-16: Histogram of distribution of time taken to complete the test for pen and

pencil mode

Paired t test is used to test the significance of the difference in mean time. SQL-FE method

reports a lesser mean time of magnitude µd = 6.538 minutes compared to pen and pencil mode

of administration (42.446% less time on an average). Results of the paired t test indicates that

the null hypothesis of no significant difference must be rejected at .05 level of significance (t

(32) = 8.635, p = <.001). This indicates that there is a significant difference in mean time taken

to complete the test or equivalently, there is a significant difference in efficiency. Even for one-

sided hypothesis (H1: µSQL-FE < µpen and pencil) results indicate significant difference.

 Page | 92

These results clearly provide strong evidence for statistical significance of difference

(reduction) in time taken to complete the test between pen and pencil and SQL-FE modes of

administration. That is SQL-FE test reports significantly higher efficiency compared to pen

and pencil mode as illustrated in Figure 6-17.

Figure 6-17: Histogram of distribution of time taken to complete the test for SQL-FE

mode

Table 6-6 reports descriptive statistics of response to different items (questions) related to semi-

automated mode of test. All the questions reported mean of the response more than 3.00.

Overall satisfaction with the system developed reported the highest mean (M = 4.0476)

followed by the overall quality of the system (M = 3.9048).

Table 6-6: Descriptive Statistics for Response to Feedback Questions

Question N Mean Std.

Deviation

Overall, how satisfied are you with our SQL-FE editor? 21 4.05 1.1

How well does the SQL-FE editor meet your needs? 21 3.4 1.1

How would you rate the quality of our SQL-FE editor? 21 3.9 .88

How helpful was the help video tutorial? 20 3.5 1.1

How easy was it to find what you were looking for in our SQL-FE editor? 21 3.5 .98

 Page | 93

Table 6-6 reports results of t test for single mean testing whether the mean response is

significantly more than 3.0. Rejection of the null hypothesis indicates that it is significantly

more than 3.0 and provides strong evidence in favour of the item. Two items related to overall

satisfaction and overall quality of the system developed, both report p value less than .05 (p

< .05). This indicates that mean response to these two statements is significantly more than 3.0.

That is, the response to these two questions is positive. Students are highly satisfied with the

system and quality of the system. Similarly, ease with which students are able to find what they

are looking for in the website also reported p value less than .05 (p = .038). This indicates that

it was easy for students to get whatever information they needed from the website. However,

the response to the question, “how well our system meets your needs” reports p value more

than .05. This means that mean score for the response to this item is not greater than 3.0. This

indicates that there is no evidence to infer that response is positive to the system meeting needs

of students. Similarly, the response cannot be termed as decisively positive for the helpfulness

of help video tutorial. Analysis of response to questions on feedback related to developed

system clearly indicates that overall satisfaction level is high, rating on overall quality of the

system is high, ease of finding information is also high but the help video tutorial is not

significantly useful and it cannot be inferred that the system meets all the needs of students.

Some more features can be incorporated as a part of the system to ensure that it covers all the

requirements of students.

Table 6-7: Results of T test for Response to Feedback Questions

Item t p 95% CI of

Difference

Overall, how satisfied are you with our SQL-FE editor? 4.481 <.001 (.5600 1.535)

How well does our SQL-FE editor meet your needs? 1.752 .095 (-.0818 .9389)

How would you rate the quality of our SQL-FE editor? 4.663 <.001 (.5001 1.3095)

How helpful was the help video tutorial? 2.032 .056 (-.0149 1.0149)

How easy was it to find what you were looking for in our SQL-FE editor? 2.225 .038 (.0298 .9226)

Table 6-8 reports results of the t-test for single mean testing on whether the mean response is

significantly more than 3.0. Rejection of the null hypothesis indicates that it is significantly

more than 3.0 and provides strong evidence in favour of the question. Two questions related to

overall satisfaction and overall quality of the SQL-FE editor report a p value of less than 0.05

(p < 0.05).

 Page | 94

This indicates that the mean response to these two statements is significantly more than 3.0,

which means that the responses to these two questions are positive and students were highly

satisfied with the SQL-FE and quality of the editor. Similarly, the ease with which students

were able to find what they were looking for in the editor also reported a p value of less than

0.05 (p = .038), thus indicating that it was easy for students to get whatever data they needed

from the editor.

However, the response to the question “how well does our SQL-FE editor meet your needs?”

reports a p value higher than (0.05). This means that the mean score for the response to this

question is not significantly greater than (3.0), which indicates that there is no evidence to infer

that the response is positive with regards to the editor meeting the needs of students. Similarly,

the response cannot be termed as decisively positive for the helpfulness of the help video

tutorial. In conclusion, analysis of the responses to feedback questions related to the developed

SQL-FE editor clearly indicates that the overall satisfaction level, rating of the overall quality

of the SQL-FE editor and ease of finding information are all high. In contrast, the help video

tutorial was not significantly useful. In addition, one cannot infer that the SQL-FE editor meets

all the needs of students. In response to this feedback, more features can be incorporated as

part of the SQL-FE editor to ensure that it covers all the requirements of students.

Table 6-8: Results of the t-test for the response to the feedback questions

Question t p

Overall, how satisfied are you with our SQL-FE editor? 4.5 <.001

How well does our SQL-FE editor meet your needs? 1.8 .095

How would you rate the quality of our SQL-FE editor? 4.7 <.001

How helpful was the help video tutorial? 2.0 .056

How easy was it to find what you were looking for in our SQL-FE editor? 2.2 .038

 Experiment

An experimental study was conducted with the objectives of measuring the mean time spent

and students’ performance by comparing two query formulation tools, SQL-FE and

SQL Server Management Studio (SSMS). In order to provide a better understanding of the

effect of using SQL-FE over the SSMS tool, the research identified two questions for the query

formulation experiment, which are:

 Page | 95

 RQ1: Does using SQL-FE during the experiment lead to spending more or less time

on solving SQL questions?

This question aimed to investigate the degree to which students spent more or less time to

answer the SQL questions.

 RQ2: Does using the SQL-FE enhance student grading performance?

This question aimed to investigate the degree to which students of the SQL-FE tool

managed to achieve more marks in solving SQL questions than solving them using the SQL

formulation tools.

 SQL Formulation Editor (SQL-FE)

In this experiment, two different SQL formulating tools were used, the newly implemented

SQL-FE tool and the SSMS tool. The SQL-FE tool is an SQL formulation tool that allows

students to solve SQL questions by formulating an SQL SELECT statement posed by the

examiners. SQL-FE then collects these SQL solution responses for marking and providing

feedback. The SSMS tool is the SQL Server Management Studio, whose user interface is

depicted in Figure 6-18.

 Figure 6-18: Executed SQL statements using the SSMS Tool

 Page | 96

Figure 6-18 shows the execution of SQL statements, submitted by participating students,

who were able to run one statement at a time or several statements simultaneously. The SSMS

tool enables users to enter and execute SQL statements to perform calculations and store and

retrieve query results. It was practised by a student in Middle East College, Sultanate of Oman,

where this experiment took place. The two tools that were compared during the experiment are

based on two different approaches, the keyboard typing approach and the point-and-click

approach. The SQL-FE tool does not allow students to write or type SQL statements using a

keyboard, whereas the SSMS tool only allows user to formulate statements using a keyboard.

Restricting the students from using the keyboard aims to minimise the errors of SQL statements

like spelling errors, synonyms and adding invalid identifiers.

There are some cases in which the student may need to use the keyboard in the SQL-FE

tool, but these have been addressed by adding a text area pane. This pane helps users to add

different numeric or string values to limit the data retrieved, which cannot be done using the

available navigation described in detail in subsection (5.2.1).

 Participants

The participants were 20-to-21-year-old second-year undergraduate students. The total number

of participants was 60 students. The participating students were registered under the Computer

Science Programme in the Middle East College, Oman. Furthermore, the students had

undertook the Introduction to Database module as a first-year module. In the second year, they

studied SQL concepts and syntax in the Fundamentals of Relational Database Management

System module. This module is taught twice a week in the college, where the first session is a

2-hour theory lecture and the second involves a 2-hour practical session in a lab. The purpose

of the lecture is to teach and explain the concepts of the relational database system and teach

students the SQL syntax, so they could apply their knowledge during the lab session. There

were two lab course groups that studied SQL, with 30 students in each group. The experiment

was implemented during a lab session. The two lab course groups were divided into two days,

Sunday and Tuesday.

 Page | 97

 SQL Questions

The task given to the participants of the experiment was to solve five different SQL questions.

The questions were obtained from two SQL practical text books [John, 1992; Bisland, 1989].

The questions contained the basic SQL commands which require participants to write basic

SQL queries (such as SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY,

JOIN and SUBQUERY). For each SQL question, the lecturer provided at least one SQL

model solution. This allowed for multiple acceptable solutions submitted by the students. These

five questions covered most of what students had learned in the SQL module. The SQL

questions were selected based on the following specific criteria:

 Each SQL question should have a clear and obvious purpose

 The question should be well asked and be provided with accurate answers with an

alternative way of answers if available.

 The question can challenge the participants’ SQL skills but should be simple and easy

to be formulated.

 All questions should be tested before the experiment takes place.

The experiment design created two question sets attached with two SQL formulating tools such

as, set “A” questions for the SSMS tool and set “B” for SQL-FE. For set “A” questions, there

were two tables used to retrieve information from: a lecturer table and a course table. The

lecturer table contained six columns and seven records, and the course table contained three

columns and seven records, as shown in Table 6-9 and Table 6-10.

Table 6-9: The lecturer table

LECT_ID F_NAME L_NAME DEPARTMENT GENDER SALARY

D01 Amy Dancer Computer Science Female 34500

J01 Ray Johnson Computer Science Male 40000

S01 Wendy Swimmer Computer Science Female 45000

J02 Bob Jones Accounting Male 35000

N01 Jack Nelson History Male 28000

D02 Jinee Jackson Accounting Female 34500

S02 William James Accounting Male 30500

 Page | 98

Table 6-10: The course table

COURSE_ID COURSE_TITLE LECT_ID

CSC100 Intro. to Computing J01

CSC101 Pascal Programming D01

CSC102 Database Management J01

ACC200 Principles of Accounting I J02

ACC201 Principles of Accounting II D02

The relationship between the lecturer and course tables is a one-to-many relationship since one

lecturer teaches many courses, as illustrated in Figure 6-19. The figure shows that the

relationship associated with the two tables is linked by the LECTID primary key in the lecturer

table and foreign key in the course table.

Figure 6-19: The relationship between the lecturer and course tables

The two sets of SQL questions, set “A” and set “B”, are illustrated in Table 6-11and Table 6-14,

respectively. As previously mentioned, each set of questions was run in a different tool, where

set “A” questions was run on the SSMS tool and set “B” questions were run on SQL-FE. Both

sets contained five similar question requirements, yet each group contained different tables and

field names. The similarities between the two question sets were measured using different

parameters such as the SQL commands needed for each question, the number of fields used,

the required conditions and joining tables, and the gradual complexity of the question. This

ensured that the two question sets were closely related, but did not contain identical questions.

This was done due to the fact that the aim of the experiment was to evaluate students’

performance using both tools, and as such, if students were to be given the same questions

twice, they would get similar grades each time, which would cause the evaluation of the two

tools to provide similar statistics and not show the difference between the tools.

 Page | 99

Table 6-11: SQL questions and their model answers: SET A

Question 1
Find the first names of all lecturers who work in the accounting

department with salaries greater than 30500.

Model Answer 1

SELECT F_NAME

FROM LECTURER

WHERE DEPARTMENT='Accounting'

AND SALARY > 30500;

Output 1

F_NAME

Bob

Jinee

Question 2
Retrieve the last names and the course titles of all female lecturers.

Sort the result in ascending order of the department.

Model Answer 2.1

SELECT L.L_NAME, C.COURSE_TITLE

FROM LECTURER L INNER JOIN COURSE C

ON L.LECT_ID = C.LECT_ID

WHERE L.GENDER = 'Female'

ORDER BY L.DEPARTMENT;

Model Answer 2.2

SELECT L.L_NAME, C.COURSE_TITLE

FROM LECTURER L, COURSE C

WHERE L.LECT_ID = C.LECT_ID

AND L.GENDER = 'FEMALE'

ORDER BY L.DEPARTMENT;

Output 2

L_NAME COURSE_TITLE

Jackson Principles of Accounting II

Dancer Pascal Programming

Question 3
Find the department and average salary of lecturers at each

department where the average salary is greater than 35000.

Model Answer 3

SELECT DEPARTMENT, AVG(SALARY)

FROM LECTURER

GROUP BY DEPARTMENT

HAVING AVG(SALARY)> 35000;

Output 3

DEPARTMENT AVG(SALARY)

Computer Science 39833.3333

Question 4
Find the title of all courses taught by lecturers in the history

department.

Model Answer 4

SELECT COURSE_TITLE

FROM COURSE

WHERE LECT_ID IN (SELECT LECT_ID

 FROM LECTURER

 WHERE DEPARTMENT = 'History');

 Page | 100

SELECT C.COURSE_TITLE

FROM COURSE C INNER JOIN LECTURER L

ON L.LECT_ID = C.LECT_ID

WHERE L.DEPARTMENT = 'History';

Output 4

COURSE_TITLE

England History

Europe History

Question 5
Identify the department with the highest average salary.

Model Answer 5

SELECT DEPARTMENT, AVG(SALARY)

FROM LECTURER

GROUP BY DEPARTMENT

HAVING AVG(SALARY) >= ALL (SELECT AVG(SALARY)

 FROM LECTURER

 GROUP BY DEPARTMENT);

Output 5

DEPARTMENT

Computer Science

For set “B” questions, there were two tables used to retrieve information from, named

Department (as DEPT) and Employee (as EMP). The EMP table contained seven columns and

seven records, and the DEPT table contained three columns and five records, as shown in

Table 6-12 and Table 6-13.

Table 6-12: EMP Table

EMPNO FNAME LNAME GENDER JOB SALARY DEPTNO

7369 Smith Jones Male Clerk 1500 20

7499 Allen Louis Female Salesman 1600 50

7521 Danny Dawson Male Salesman 1250 30

7566 Jones William Male Clerk 2975 20

7654 Martin Oliver Male Salesman 1250 30

7698 Laura Paul Female Manager 2850 40

7782 Clark Richard Male Manager 2450 10

Table 6-13: DEPT Table

DEPTNO DEPTNAME LOC

10 Accounting New York

20 Research New Jersey

30 Sales Chicago

40 Operation Boston

50 Management New York

https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+20&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+10&token=3f990e4c804a156906dc137707764a9f

 Page | 101

The relationship between the department and employee tables is a one-to-many relationship,

as in one department many employees work, as illustrated in Figure 6-20. The figure shows the

relationship associated with the two tables is based on the DEPTNO primary key in department

table and foreign key in the employee table.

Figure 6-20: The relationship between the department and employee tables

Table 6-14 presents the set “B” list of questions. It contains five SQL questions that ask to

retrieve data from the department and employee tables, along with their model answers.

Table 6-14: SQL questions with their model answer: SET B

Question 1
Find the first names of all employees who work as a clerk and earn

a salary of more than 2500

Model Answer 1

SELECT EMP.FNAME

FROM EMP

WHERE EMP.JOB= 'CLERK'

AND EMP.SALARY > 2500;

Output 1

FNAME

Jones

Question 2
Retrieve the last names and the department names of all female

employees. Sort the result in ascending order of the location.

Model Answer 2.1

SELECT EMP.LNAME, DEPT.DEPTNAME

FROM EMP INNER JOIN DEPT

ON EMP.DEPTNO = DEPT.DEPTNO

WHERE EMP.GENDER='FEMALE'

ORDER BY DEPT.LOC;

Model Answer 2.2 SELECT EMP.LNAME, DEPT.DEPTNAME

FROM EMP , DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

AND EMP.GENDER = 'FEMALE'

ORDER BY DEPT.LOC;

 Page | 102

Output 2

LNAME DEPTNAME

Paul Operation

Louis Management

Question 3
Display the various jobs and the average salary of employees in

each job, where the average salary is greater than 2000.

Model Answer 3

SELECT EMP.JOB, AVG(EMP.SALARY)

FROM EMP

GROUP BY EMP.JOB

HAVING AVG(EMP.SALARY)> 2000;

Output 3

JOB AVG(SALARY)

Manager 2650

Question 4 List all department names of all employees who work as a manager.

Model Answer 4.1

SELECT DEPTNAME

FROM DEPT

WHERE DEPTNO IN (SELECT DEPTNO

 FROM EMP

 WHERE JOB = 'MANAGER');

Model Answer 4.2 SELECT DEPTNAME

FROM DEPT INNER JOIN EMP

ON DEPT.DEPTNO = EMP.DEPTNO

WHERE EMP.JOB = 'MANAGER';

Output 4

DEPTNAME

Accounting

Operation

Question 5 Identify the job with the lowest average salary.

Model Answer 5

SELECT JOB, AVG(SALARY)

FROM EMP

GROUP BY JOB

HAVING AVG(SALARY) <= ALL (SELECT AVG(SALARY)

 FROM EMP

 GROUP BY JOB);

Output 5

JOB

Salesman

 Design of the Experiment

A crossover design (also called “change-over design”) study is a special form of a controlled

double randomised trial (Gardiner and Gettinby, 1998). Randomised means that every student

has an equal chance of being assigned to the experimental subject on a random basis.

 Page | 103

In the context of this experiment, this design is more efficient in establishing the highest

possible similarity among SQL questions exposed to different tools (Li, 1964). Therefore, to

achieve the purpose of the study, a crossover experimental design was employed. Another

reason for adopting a crossover design was to minimise failures from the control group. The

study was approved by Loughborough University’s Ethical Committee. Table 6-15 provides a

full description of the crossover experimental design implemented over two weeks' time.

In week one, two different sessions took place. The experiment involved a total of

60 students using the two tools (i.e. SQL-FE and SSMS). They were divided into two different

experiment days, where each experiment involved 30 students due to the limited number of

available PCs in each computer lab. The students were randomly assigned into two groups,

where an equal distribution of 15 students used SQL-FE and 15 others used the SSMS tool, as

shown below. Each tool used in the experiment was attached to a certain set of questions

(SET A & B). In addition, a rest period between the two tests was applied so that the effect of

one test does not carry over to the next test, as indicated by the period column in Table 6-15.

This means that there was one experiment in Session 1.1 involving 30 students, with

15 students using SQL-FE and 15 others were using SSMS. Subsequently, a week later, Session

1.2 took place, where the two groups of students swapped over the tool used. The same

procedure was adopted in Sessions 2.1 and 2.2, where the same process was repeated, involving

a total of 30 students using the two tools over two weeks.

Table 6-15: The Crossover Experimental Design Distribution

Group Tool Question SET No. of Participants Period Session No.

X SQL-FE SET A 15

Week I

Session 1.1
Y SSMS SET B 15

W SQL-FE SET A 15
Session 2.1

Z SSMS SET B 15

X SSMS SET A 15

Week II

Session 1.2
Y SQL-FE SET B 15

W SSMS SET A 15
Session 2.2

Z SQL-FE SET B 15

 Page | 104

The experiment preparation went through several activities such as preparing the SQL

questions and defining suitable answers for each of them, as well as preparing a set of

instructions for students and lecturers. These instructions were used for the lecturer to explain

the steps for the students before starting the experiment. The SSMS examiner’s instructions are

available in Appendix 12 - Section A, while the instructions for SQL-FE can be found in

Appendix 12 - Section C. In addition, for the students to understand the steps when they are

attempting the experiment, they needed to read the instructions that had been prepared for both

tools. Before the experiment day, the computer labs were checked to make sure that the

required number of students could be accommodated, and where students seating was set

randomly.

The examiner copied and pasted the SQL code to create the department and employee tables

to be used for the SQL Management Studio. This procedure saved time for students once they

started the experiment, as they only needed to write the SQL statement and retrieve the data.

Furthermore, in order to ensure the functionality of the student groups, the research provided a

brief introduction about how to use the newly implemented SQL-FE tool. The participants

participated in a simplified version of the experiment, which helped them to clarify the

functionality of the new tool and how the experiment would proceed. This was done to account

for the fact that the students had familiarity with running SQL statements using the SSMS tool

in their lab sessions, but not with the and using the new SQL-FE tool.

On the experiment day, the examiner took 20 minutes to set up the lab session, which

included the randomisation of the tools and checking the functionality of all PC's SSMS

program installation and internet connection. Each participant chose a PC freely upon arrival

to the computer lab. However, the examiner and the assistant lecturer made sure that every two

participants next to one another conducted the same test. To achieve this, they sat a random

tool for the students using number cards in the computer lab containing 30 PC's. Moreover, the

examiner and assistant lecturer checked all PCs for the preparation of the tools by giving the

participants’ time to copy the URL for the SQL-FE tool and to start the SSMS application.

They also distributed the printed instructions and question lists to the participants to assist them

while conducting the exam. Once the setting was ready and participants had taken their place,

the experiment started.

 Page | 105

Each participant performed one experiment a day involving either SQL-FE with five SQL

questions or SSMS with a list of five SQL questions printed in hardcopy. Each SQL question

involved writing an SQL statement with different commands and conditions then saving them

using the SSMS tool or submitting the answer using SQL-FE. The participants were allowed

to delete and rewrite the statements as long as that was done within the duration of the

experiment. The duration of each task was 45 minutes, which allowed the participants to go

through the questions and test them manually before deciding to write the answers. The time

spent on each SQL question submitted using the SQL-FE was saved automatically by the tool

itself. However, the examiner and the assistant made sure to remind the participants to write

the start time and submission time in a file, so that analysis can later conducted by the

examiner. This was done to help the examiner to record the time spent by each student, since

the SSMS tool does not offer a time saving function. The experiment went smoothly and the

participants were motivated to perform the tasks and attain experience on the newly

implemented tool.

 Statistical Analysis

Once the participants finished solving the SQL questions, they were asked to log off if using

SQL-FE to save all their answers. At the same time, the lecturer and assistants created a shared

folder to save all the created files retrieved from the SSMS tool. All participants were asked in

the instructions to save the file with their college email address to keep it anonymous. The

email address allowed the examiner to match between the participants in the first and second

day of the experiment.

The data collected from both tools was dated and saved in different folders to be analysed

and evaluated. The main objectives of the evaluation were to measure the time efficiency of

the SQL-FE tool over the SSMS tool, and to assess if the former can provide a more helpful

environment for learning and teaching SQL statements than the latter. The main variable of

interest was the time needed to complete the experiment across the two tools of test

administration. This essentially means that the average time to complete the experiment must

be compared between the two tools of test administration with shorter time indicating higher

efficiency. Statistically, this translates to a comparison of two means across two groups.

 Page | 106

Since the research design is paired, where a sample of students take the same test twice

across two tools of administration, measurements across two tools are not independent, and as

such, this becomes a related or paired group design. Therefore, a paired t-test for two related

samples was used to test the significance of the difference in the meantime taken to complete

the experiment between SQL-FE and the SSMS tool.

 Mean Time Hypotheses

Null hypothesis H0: There is no significant difference in the meantime taken to complete the

experiment between the two tools of test administration (µ1 = µ2).

Alternative hypothesis H1: There is a significant difference in the meantime taken to complete

the experiment between the two tools of test administration (µ1 ≠ µ2).

That is, the null hypothesis assumes no difference in the meantime while the alternative

hypothesis proposes a difference in the mean time between the two tools of the experiment.

The test is performed at 0.05 level of significance. This means that the upper limit for a

probability of committing Type I error of rejecting the null hypothesis when it is actually true

is kept at an upper limit of 0.05. The actual level of significance for the data collected is

indicated by the p-value of the test. This is a measure of the probability that a difference in

average time between two modes of administration occurs due to chance. The null hypothesis

is rejected if the p-value of the test is less than 0.05. The main objective of the evaluation was

to measure and compare the participants’ performance when using the SQL-FE tool over the

SSMS tool.

 Marks/Performance Hypotheses

Null hypothesis H0: There is no difference between the mean SQL-FE and SSMS marks

(µ1 = µ2)

Alternative hypothesis H1: There is a difference between the mean SQL-FE and SSMS marks

(µ1 ≠ µ2).

That is, the null hypothesis assumes no difference in the participants’ marks while the

alternative proposes a difference in participants’ marks when using the two tools. The test is

performed at 0.05 level of significance.

 Page | 107

 Results and Discussion

The descriptive statistics of the time taken to complete the test using two the tools of the

experiment are as follows. The SQL-FE tool reports an average of M = 20.40 minutes

(SD = 7.84) while SSMS reports an average of M = 24.67 minutes (SD = 7.31). In other words,

the SQL-FE tool reports a lower mean time to complete the test. Figure 6-21 depicts a box plot

of the distribution of time taken to complete the test using the two tools. The box plot reports

a difference in the distribution of time taken. However, for both tools, the box plot does not

report any abnormal outlier observation, which indicates that the distribution does not report a

large departure from normality, which is an assumption for the validity of the results of the

t-test.

Figure 6-21: Boxplot of the time taken to complete the test using the two tools

This is also supported by a histogram of the distribution of time taken to solve the tests using

the SQL-FE and SSMS tools of test administration (Figure 6-22 and Figure 6-23, respectively).

 Page | 108

Figure 6-22: Histogram of the distribution of time taken to complete the test using

SQL-FE

Figure 6-23: Histogram of the distribution of time taken to complete the test using

SSMS

 Page | 109

The paired t-test is used to test the significance of the difference in mean time. The SQL-FE

tool reports a smaller mean time value compared to the SSMS tool of the administration.

Results of the paired t-test indicate that the null hypothesis of no significant difference must be

rejected at 0.05 level of significance, as shown in Table 6-16. This indicates that there is a

significant difference in the meantime taken to complete the test, or equivalently, that there is

a significant difference in efficiency. Even for a one-sided hypothesis (H1: µSQL-FE < µSSMS), the

results indicate a significant difference.

Table 6-16: Paired samples test of the two tools

Paired Differences

t Df

Sig. (2-

tailed) Mean

Std.

Deviation

Std. Error

Mean

95% Confidence Interval

of the Difference

Lower Upper

Pair 1 SQL_FE -

SSMS
-7.533 12.082 3.120 -14.224 -0.842 -2.415 14 0.030

These results clearly provide strong evidence for the statistical significance of difference

(reduction) in the time taken to complete the test using the SQL-FE tool compared to the SSMS

tool. That is, the SQL-FE test reports significantly higher efficiency compared to the SSMS

tool. Table 6-17 reports the descriptive statistics of the mean marks obtained by students using

the two tools of the experiment. The SQL-FE tool reports an average of M = 10.5 marks

(SD = 3.1) while SSMS reports an average of M = 8.8 marks (SD = 3.7). In other words,

SQL-FE reports higher marks obtained by the participants than the SSMS tool.

Table 6-17: Descriptive statistics of the mean marks obtained using the two tools

Tool Mean Std. Deviation

SQL-FE 10.5 3.1

SSMS 8.8 3.7

Furthermore, the null hypothesis is rejected, since p < 0.05, as illustrated in Table 6-16. In

this context, there is strong evidence (t= 2.41, p= .030) that formulating SQL questions using

SQL-FE improves the participants’ marks.

 Page | 110

In this data set, it improved marks by an average of approximately two marks. If the

experiment takes other samples of marks, it could find a 'mean paired difference' in marks that

is different from the 1.76 value reported here. This is why it is important to look at the 95%

Confidence Interval (95% CI). In this case, the 95% CI ranges from 0.2 to 3.3. This confirms

that, although the difference in marks is statistically significant, it is actually relatively small.

Figure 6-24 depicts a box plot of the distribution of marks obtained by the participants using

the two tools. The box plot reports a difference in the distribution of performance marks that

shows an increase in the marks obtained using SQL-FE. For the SSMS tool, the figure shows

lower marks since the participants had to write complete SQL statements, which led them to

commit more mistakes.

Figure 6-24: Boxplot of Performance Marks of both SQL-FE and SSMS

This is also supported by a histogram of the marks distribution, illustrated in Figure 6-25

and Figure 6-26. The figures report symmetric distributions of the participants’ marks using

the SQL-FE and SSMS tools of test administration.

 Page | 111

Figure 6-25: Histogram of the distribution of marks obtained using SQL-FE

Figure 6-26: Histogram of the distribution of marks obtained using SSMS

 Page | 112

This indicates that there is a significant difference in mean marks obtained between the two

tests, or equivalently, there is a significant difference (improvement) in the participants’

performance after formulating the SQL statements using SQL-FE. These results clearly

provide strong evidence for a statistically significant difference in the participants’ marks after

using the SQL-FE tools.

 Summary

In this chapter, the design decisions regarding the software tool SQL-FE were outlined. The

requirements are based on research methodology, and the research approach presented in the

Chapter 4. Within the chapter, the implementation of the conceptual design of the new

Formulation Editor, as it relates to the solution steps capture part of the framework, was

illustrated using a practical example of full SQL-FE user interface and their testing and result

analysis.

This chapter investigated the use of a point-and-click method to solve basic SQL statements.

The experimental study demonstrated that students were able to use the newly implemented

SQL-FE tool with ease. Furthermore, the tool minimised the unnecessary elements that

students often add while formulating SQL statements. This resulted in removing the ambiguity

in SQL answers, which should support the examiners in understanding the students’ level of

SQL learning and enable them to provide accurate feedback. The SQL-FE editor answered the

two questions of this experiment and confirmed that by using the newly implemented tool, less

time is spent formulating SQL statements and students’ performance improves, leading to

fewer errors and higher grades.

At the same time, this chapter presented different evaluation studies (e.g. pilot study and

experiment) carried out to examine the functionalities of the SQL-FE in line with design

requirements within the semi-automatic CAA framework. The main significant result from

those evaluation is that it provided a proof of concept for the point-and-click approach

implemented on the SQL-FE which satisfied most of the participants (students). It showed that

approach to be usable and comparable to conventional test formats. It also demonstrated the

extended capability to be enhanced and maintain to except more SQL statements which

contains complicated SQL clauses such as (joins and subqueries).

 Page | 113

The newly implemented editor provided students with an easy method of solving SQL

statements. Further implementations will take place utilising a semi-automated assessment of

SQL statements to provide partial marking for the submitted statements from the SQL-FE tool.

This would be considered as the second stage of the research, which means that the examiners’

role will start once students submit their SQL answers by ensuring that the answers are ready

for marking and commenting by examiners.

 Page | 114

Chapter 7.

A New Semi-Automatic SQL
Assessment Framework

 Introduction

Automated assessment of SQL statements could be beneficial for many universities with large

numbers of students. For this reason, different approaches have been utilised to attempt to

minimise the need for human intervention in marking several programming languages and SQL

statements (Batmaz, 2011; Insa and Silva, 2015; Adesina, 2016; Buyrukoglu, 2018). However,

almost all existing approaches are based on output comparison. If a student’s output matches

the model output, the SQL statement is correct. Otherwise, it is reported as wrong, even if there

is only one mistake in the statement. In this case, the student cannot achieve even a medium

mark, since comparisons offer only two possible outputs: the whole SQL statement is marked

either as correct or wrong. Furthermore, during the SQL assessment process, much of the

examiners’ time is occupied with marking students’ SQL statements. They check students’

SQL answers against model SQL answers. In such scenarios, computer support can enhance

the quality of SQL marking. It can also shorten the assessment time and reduce the assessment

cost. Thus, any level of computer support to this process is useful. The intention of this work

is to not only provide computer assistance in the marking phase, but also in other phases of the

current manual SQL assessment process. As identical tasks are performed less frequently

(possibly only once) by examiners, the consistency of marks and feedback on SQL answers

can be significantly enhanced.

The main objective of this chapter is to develop a new automated-assessment based

framework that aims to reduce the workload of examiners, enhance students’ SQL learning

experience, and provide them with distinct and detailed feedback. This research presents an

approach based on using semi-automatic assessment, which utilities the integration of the Case-

Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems. In the proposed approach,

CBR is used as the main reasoning process, while RBR is used to improve parts of this process.

 Page | 115

Furthermore, this approach targets the reduction or removal of as many of the repetitive

tasks in any phase of the marking process as possible by applying a normalisation operation

and a grouping process. In addition, the proposed approach targets the provision of consistent

and effective feedback to students.

This chapter is organised as follows. Section 7.2 discusses the semi-automatic assessment

approach, which contains six different processes, and details their functionalities after applying

them on several SQL statements. The main topics discussed in this part of the chapter are the

normalisation operation, grouping process, marking and feedback. Section 7.2.2 discusses the

normalisation operation, which tests different SQL statements answers and checks the

decrement number of the statements after each level of normalisation operation, after which

the statements are divided into groups, as explained in Section 7.2.3. Next, Section 7.3 explains

the SQL marking process that utilises the semi-automatic assessment approach, where firstly,

the generic marking rules of SQL statements are explained in Section 7.3.1.1, where a

description of the rules’ procedure and the flow of written rules by using the RBR system are

provided. Secondly, Section 7.3.1.2 describes the partial marking of SQL clauses and

operator’s parts by applying CBR. Lastly, Section 7.3.1.3 lists the main rules for marking

duplicated SQL statements answers by utilising the propagation of marks and feedback by

applying RBR. In Section 7.3.2 and 7.3.3, an explanation of each of the rules using conditional

sentences and examples is provided, after which the application of the propagation process of

marks and feedback on several SQL statements is clarified. Section 7.4 concludes the chapter

by providing a summary of its content.

 Approach Description

The semi-automated assessment approach aims to enhance the SQL learning process and

provide students with individual and detailed feedback. Besides, it targets the reduction of the

lecturers’ workload by reducing the amount of the SQL statements they have to mark. The

framework develops and justifies the normalisation operations and a set of rules to support the

semi-automatic marking of SQL statements. Figure 7-1 illustrates the proposed semi-automatic

assessment approach cycle, which proposes a solution that is based on integrating the Case-

Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems, which need to be adopted

in the new marking technique in order to allow the reuse of previous SQL solutions for similar

cases, thus contributing towards providing students with consistent marks and feedback.

 Page | 116

Figure 7-1: The proposed Semi-Automatic Approach

 Page | 117

There are three main stages in the proposed semi-automatic SQL assessment approach as

demonstrated in Figure 7-1.

A. Pre-processing stage: collects the SQL statements from students’ answers, before the

‘normalisation operation’ takes place, which replaces and removes inconsistent data.

Subsequently, the ‘classification’ process is used to classify identical SQL statements

clauses into groups.

B. Generic Marking Rules stage: The marking rules of the semi-automatic assessment

approach are a set of minimum requirements and standards for marking and grading

reparative clauses of SQL statements.

C. Marking process stage: involves marking of the identical SQL parts and groups, as

well as the provision of feedback related to the marked groups.

 Each of these stages is explained in details as follows.

 Pre-processing

The first stage is the pre-processing stage, where the SQL statements are collected as described

in Section 4.4. The statements are retrieved after students submit their SQL answers of existing

SQL exam scripts using the SQL-FE editor. The SQL-FE editor was designed to allow students

to formulate SQL statements using the point-and-click method and submit them to the database.

The system was implemented with a database that collects all participants’ SQL answers for

different questions. The data collected is organised such as each clause appears separately to

allow the semi-automatic assessment of SQL statements as described in Section 6.2.3.1.

 Normalisation Operation

Once the data has been collected, the normalisation operation commences. The data

normalisation stage is the phase in which the data is organised and normalised to increase the

similarity between SQL statement parts. The primary goal of the SQL data normalisation phase

is to organise a variety of clauses and keywords (such as SELECT, FROM, WHERE,

GROUP BY, HAVING, ORDER BY, JOIN), table and field names, and aliases and

brackets, to increase the similarity among the SQL statements. The data normalisation phase

does not change the meaning of clauses and keywords.

 Page | 118

For instance, it does not change the meaning of a SELECT statement; rather, it generates

an equivalent SELECT statement that enables SQL parts to be grouped and converted to an

equivalent statement. This increases the similarity of strings between SQL statements. In other

words, string matching can be increased after making slight changes to SQL statements,

without affecting the final output. However, the original SQL statement can be presented to the

examiners in the marking process to compare between the answers and provide accurate

feedback to students’ statements. Matching does not depend on any SQL question, as it purely

depends on SQL statements. The normalisation stage mostly covers the SELECT (fieldnames),

FROM (JOIN, INNER JOIN, LEFT, RIGHT, FULL OUTER JOIN), WHERE (single and

multiple conditions), GROUP BY, HAVING (single and multiple conditions) and ORDER

BY clauses. It consists three different processes, which are the remove, replace and sort

processes.

 The Remove Normalisation Operation

The first step in the remove normalisation process is the elimination of unnecessary elements.

This process includes:

a. Field name using aliases: aliases can be used to temporarily assign readable names to

columns, which will exist in time of a query output without effecting the original columns

(Bisland, 1989). However, to increase the similarities between the SELECT clauses, all

aliases should be removed. An example of the application of this is the following:

 IF, the “AS” keyword is used with an alias name (AS FIRST_NAME in the example);

SELECT EMP.FNAME AS FIRST_NAME

 OR quotation marks are used as well as the quoted alias name (“FIRST NAME” in the

example);

SELECT EMP.FNAME “FIRST NAME”

 THEN, in both cases, the aliases should be removed as;

SELECT EMP.FNAME

 Page | 119

b. Removing extra spaces: the SQL-FE editor was designed to generate spaces on either side

of all SQL elements, including clauses, field names, tables, mathematical operators,

keywords and functions. However, by using the text-area to insert data, participants might

add more spaces, which should be removed in this process.

Therefore, all extra spaces between SQL clauses and elements that result in some

difference between SQL statements should be removed, and only one space should be

kept.

 For example:

SELECT EMP.FNAME , EMP.JOB

FROM EMP

 Should be changed to the following form after normalisation has been applied,

where the extra white space is removed:

SELECT EMP.FNAME , EMP.JOB

FROM EMP

c. Removing semi-colons: SQL-FE and other SQL statement formulation tools support

executing statements without adding the semi-colon at the end, which saves time when

marking.

 For example, the statement:

SELECT EMP.FNAME , EMP.JOB

FROM EMP ;

 Changes to the following after the normalisation process has been applied:

SELECT EMP.FNAME , EMP.JOB

FROM EMP

d. Removing ASC Keyword: the ascending keyword “ASC” is used to explicitly request

ascending order in the ORDER BY clause. However, it is not necessary, since the

ascending order is the default option in the ORDER BY clause. For that reason, all

instances of the ascending “ASC” keyword used in ORDER BY clauses should be

removed to increase the consistency across SQL answers.

 Page | 120

 For example, the statement:

ORDER BY EMP.SALARY DESC , EMP.LNAME ASC

 Has the “ASC” keyword removed after normalisation has been applied:

ORDER BY EMP.SALARY DESC , EMP.LNAME

 The Replace Normalisation Operation

The second process in the normalisation phase is the replace process. This process includes:

a. Replacing double quotation with single quotation: if string values were inserted with

double quotation marks, all should be replaced with single quotation marks to make the

SQL answers consistent. Although both provide the same results, ensuring consistency

results in increasing the similarity between SQL statements.

 For example, the statement:

WHERE EMP.JOB = “Manager”

 Should be changed to:

WHERE EMP.JOB = ‘Manager’

b. Replacing aliases: if all aliases have been removed from the SELECT clauses, and data

was sorted using the aliases’ names, then the column name used in ORDER BY should be

replaced with the original name.

 For example, the statement:

SELECT EMP.FNAME AS FIRST_NAME

FROM EMP

ORDER BY FIRST_NAME

 Should be changed to:

SELECT EMP.FNAME

FROM EMP

ORDER BY EMP.FNAME

 Page | 121

 The Sort Normalisation Operation

The third process in the normalisation phase is the sort process. This process includes:

a. Sorting field names in SELECT clauses

The basic format of the SELECT clause uses the SELECT keyword followed by a list of field

names separated by commas. These field names can be normal field names or other style

formats such as aggregate functions or mathematical expressions. If the field names in the

SELECT clause are not in order, they should be sorted alphabetically. First, the sorting process

should start with all simple fields, where the field names should be sorted alphabetically, and

aliases should be removed. Secondly, if the SELECT clause contains any aggregate functions,

they should be sorted alphabetically too. Finally, if the SELECT clause has any mathematical

expressions, they must be sorted in order of operation. The following examples demonstrate

the sorting process in SELECT clauses:

i. Simple field names: If a SELECT clause contains multiple field names, they should

be sorted in alphabetical order.

 For example, the statement:

SELECT EMP.SALARY , EMP.FNAME

 Should be changed to the following after sorting field names alphabetically:

SELECT EMP.FNAME , EMP.SALARY

ii. Aggregate functions (field names): If a SELECT clause contains multiple field names

and aggregate functions, the sorting order should start with the simple field names then

the aggregate functions, and the sorting should be done alphabetically.

 For example, the statement:

SELECT SUM(EMP.SALARY) , EMP.GENDER , EMP.FNAME

 Should be changed to:

SELECT EMP.FNAME , EMP.GENDER , SUM(EMP.SALARY)

 Page | 122

iii. Mathematical expressions: if a SELECT clause also contains mathematical

expressions, the sorting should be done as for normal strings, where the simple field

names should be sorted first, followed by field names containing the mathematical

expressions.

 For example, the statement:

SELECT EMP.SALARY + 100 , EMP.SALARY * 0.1 , EMP.FNAME

 Should change to the following form after sorting it alphabetically:

SELECT EMP.FNAME , EMP.SALARY * 0.1 , EMP.SALARY + 100

Note:

 The sort normalisation operation does not considered cases where the SELECT

clause contains string concatenation.

b. Sorting FROM clauses with (JOIN)

The sorting process in FROM clauses is only applicable for two tables that have been joined

together using JOIN and INNER JOIN, LEFT, RIGHT and FULL OUTER JOIN. The

following examples illustrate the cases where using the alphabetical order does not affect the

query output.

i. Natural join: when joining two tables using a simple JOIN keyword, the table names

should be sorted alphabetically.

 For example, the statement:

FROM EMP , DEPT

 Changes to the following form after sorting the table names alphabetically;

FROM DEPT , EMP

ii. Inner join: for INNER JOIN, the order of the table names does not matter. That is,

the query will return the same results regardless of the order of table names. Therefore,

when joining two tables using INNER JOIN, the table names should be sorted

alphabetically.

 For example, the statement:

FROM EMP INNER JOIN DEPT

 Page | 123

 Should be changed to:

FROM DEPT INNER JOIN EMP

iii. Full outer join: in FULL OUTER JOIN, the query returns identical results regardless

of the order of table names. Therefore, when joining two tables using FULL OUTER

JOIN, the table names should be sorted alphabetically. For example, the statement:

FROM EMP FULL OUTER JOIN DEPT

 Changes to the following after sorting the table names alphabetically:

FROM DEPT FULL OUTER JOIN EMP

iv. Left and Right join: For LEFT and RIGHT outer joins, the order of the tables is

critical. Therefore, when joining two tables using left or right outer join, the table names

should be sorted alphabetically, and the JOIN type should be reversed to make the

newly sorted statement equivalent to the unsorted one.

 For example, the statement:

FROM EMP LEFT OUTER JOIN DEPT

 Is not equivalent to:

FROM DEPT LEFT OUTER JOIN EMP

 However, sorting the table names alphabetically and changing the join type from

LEFT outer join to RIGHT outer join, will result in returning the same results as

the unsorted statement:

FROM DEPT RIGHT OUTER JOIN EMP

c. Sorting the WHERE clause

The sorting process in WHERE clauses are divided into two categories; WHERE clauses

with a single condition and WHERE clauses with multiple conditions:

i. Single Condition: If the order of the WHERE clause with a single condition is written

as:

WHERE 2000 > EMP.SALARY

 It can be changed (if necessary) to:

WHERE EMP.SALARY < 2000

 Page | 124

ii. Multiple Conditions: The SQL SELECT statements allow multiple conditions in

WHERE clauses to narrow the data retrieved from the database. This process considers

only one type of combining, where either (AND or OR) is used in each WHERE

clause. There are no restrictions in the number of conditions, since the same type of

operators (AND or OR) are used in multiple conditions.

 For example, if a WHERE clause contains multiple conditions with AND

operators:

WHERE EMP.LNAME >= "J"

AND EMP.JOB = "PRESIDENT"

AND EMP.LNAME <= "S"

Then, the alphabetical order should be as follows:

WHERE EMP.JOB = "PRESIDENT"

AND EMP.LNAME >= "J"

AND EMP.LNAME <= "S"

 Another example would be if a WHERE clause contains multiple conditions using

OR operators:

WHERE EMP.SALARY BETWEEN 1000 AND 2000

OR DEPT.DEPTNAME = "SALES"

OR EMP.FNAME = "ALLEN"

Then, the alphabetical order should be as follows:

WHERE DEPT.DEPTNAME = "SALES"

OR EMP.FNAME = "ALLEN"

OR EMP.SALARY BETWEEN 1000 AND 2000

Notes:

 This process does not consider the WHERE expressions that contain a calculating or

comparison expression.

 This process does not consider the combination of (AND & OR) in a WHERE

condition.

d. GROUP BY clause: field names of GROUP BY clauses cannot be sorted, as this would

change the output.

 Page | 125

e. Sorting HAVING clauses

The same process used for conditions in WHERE clauses can be applied for conditions in

HAVING clauses. The difference between the WHERE clause and HAVING clause, is that

the HAVING clause works primarily on aggregate function columns, whereas the WHERE

clause works on columns and other expressions without an aggregation operation.

i. Single Condition: if a query containing a HAVING clause is written in non-

alphanumeric order, it should be sorted alphanumerically.

 For example, the query:

HAVING 2000 <= SUM(EMP.SALARY)

 Should be reorder as:

HAVING SUM(EMP.SALARY) >= 2000

ii. Multiple Conditions: SQL SELECT statements allow multiple conditions in the

HAVING clause to narrow the data retrieved from the database.

This sorting process considers only one type of combining, where either (AND or OR)

are be used in each HAVING clause. There are no restrictions in the number of

conditions, since the same type of operators (AND or OR) are used in multiple

conditions.

 For example, if a HAVING clause contains multiple conditions with AND

operators:

HAVING SUM(EMP.SALARY) < 100000

AND COUNT(EMP.EMPNO) >= 1

AND EMP.DEPTNO BETWEEN 20 AND 40

Then, they should be sorted alphabetically as follows:

HAVING COUNT(EMP.EMPNO) >= 1

AND EMP.DEPTNO BETWEEN 20 AND 40

AND SUM(EMP.SALARY) < 100000

 Another example would be if a HAVING clause contains multiple conditions with

OR operators:

HAVING SUM(EMP.SALARY) < 100000

OR COUNT(EMP.EMPNO) >= 1

OR EMP.DEPTNO BETWEEN 20 AND 40

 Page | 126

In this case, the alphabetical order should be as follows:

HAVING COUNT(EMP.EMPNO) >= 1

OR EMP.DEPTNO BETWEEN 20 AND 40

OR SUM(EMP.SALARY) < 100000

Notes:

 This process does not consider the HAVING expressions that contain a calculating

or a comparison expression.

 This process does not consider the combination of (AND & OR) in a HAVING

condition.

f. Field names in ORDER BY Clauses: field names of ORDER BY clauses cannot be sorted,

as this would change the output.

 Normalisation operation applied in real data of SQL statements

D. SQL Data Collection

Two different set of SQL statements were used as data collection sources to test the

normalisation operation processes. One is the SQL statement answers retrieved from existing

exam scripts (described in detail in Chapter 5). There were five different questions retrieved

from the exam scripts with their answers, however, only three questions were selected along

with their answers since this research focuses only on SELECT clauses, whereas the other two

questions covered the CREATE table and VIEW clauses, which represent the Data Definition

Language (DDL).

The second data collection source is the SQL statement answers that were retrieved from

the SQL-FE experiment (described in detail in Chapter 6). The total numbers of questions were

five, all of which focused on the basic SQL SELECT statements. The questions were designed

to assess the basic SQL SELECT statements, which cover SELECT, FROM, WHERE,

JOIN, GROUP BY, HAVING and ORDER BY.

 Page | 127

E. SQL Data Normalisation

The normalisation operation increases the similarities between SQL statement clauses and

allows the CBR system to find the similarities between the previous and current answers for

certain queries. This can be explained in detailed steps by using one example from the data

collected, since all other questions go through the same steps. This means that each question

will go through different steps depending on the number of clauses required in the statement

answer.

The example used is Q1 along with 30 students’ SQL answers retrieved from the

SQL-FE editor, and can be described as follows.

“Find the first names of all employees who work as clerks and earn a salary of more than

2500”.

The question requires three main clauses, which are SELECT, FROM and WHERE. The

WHERE clause is divided into two parts, which contain the WHERE clause plus the AND

operator. This is done to increase the matching between the parts and enhance the consistency

between the statements. As the question is basic and direct, the numbers of clauses are mostly

similar, especially in the SELECT and FROM clauses. However, all clauses should be

checked and normalised as described in the following steps as illustrated in the following

diagram.

Step 1: Original SQL Statement

Initially, once the 30 SQL statement answers have been split into clause and operator parts, the

normalisation operation will manually start to function. However, in this step, only the original

data will be displayed without any normalisation operation. The reason for doing so is to carry

out a simple comparison of the total number of the matched SQL statements before and after

applying the normalisation operation, as displayed in Table 7-1. The table shows only the

division of the clauses and operators of students’ SQL answers. In addition, the count

represents how many duplicates of the same SQL statements have occurred. In this stage, a

total of 18 duplicate answers were found, which shows that many students wrote the same SQL

answer.

 Page | 128

Table 7-1: Original SQL statements

NO SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

8 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

9 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

10 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERK ' AND EMP.SALARY > 2500 1

11 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

12 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

13 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

14 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERKS ' AND EMP.SALARY > 2500 1

15 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

16 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

17 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

18 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

19 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

20 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 1

21 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

22 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

23 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

24 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

25 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

26 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

27 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

28 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 0

29 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

30 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

Total Number of answers 18

Step 2: SELECT clause

Table 7-2 shows the steps of the normalisation process taking place for the SELECT clause.

In this case, only the remove and sort normalisation process have been applied, which removing

aliases and white spaces and sort field names alphabetically.

 Page | 129

Table 7-2: Normalisation Operation applied on the SELECT clauses

NO SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

8 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

9 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

10 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERK ' AND EMP.SALARY > 2500 1

11 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

12 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

13 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

14 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERKS ' AND EMP.SALARY > 2500 1

15 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

16 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

17 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

18 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

19 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

20 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 1

21 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

22 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

23 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

24 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

25 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

26 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

27 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

28 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 0

29 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

30 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

Total Number of answers 17

After applying the remove and sort normalisation process, the number of the SQL statements

decreased from 30 students’ answers to 17 answers. This is because identical SQL statement

clauses have been gathered together, which count as one answer. As such, the similarities

between SQL statements can be increased even after only applying the normalisation on the

SELECT clause.

 Page | 130

Step 3: FROM clause

Using the same processes from Step 2, the number of SQL statements in Table 7-3 remained

the same as that of Table 7-3, totalling 17 SQL answers. Since Q1 requires one table to be

retrieved from “FROM EMP”, most of the students got the same answer, therefore no changes

were required. Only one student added a different table name, which results in a different group.

Table 7-3: Normalisation operation applied on the FROM clauses

NO SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

8 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

9 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

10 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERK ' AND EMP.SALARY > 2500 1

11 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

12 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

13 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

14 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = ' CLERKS ' AND EMP.SALARY > 2500 1

15 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

16 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

17 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

18 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

19 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

20 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 1

21 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

22 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

23 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

24 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

25 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

26 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

27 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

28 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 0

29 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

30 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

Total Number of answers 17

 Page | 131

Step 4: WHERE clause

Table 7-4 shows a decrease in the number of statements to 12 after applying the normalisation

process on the WHERE clause. The normalisation process steps of the WHERE clause are as

follows. First, the remove normalisation process involves removing white spaces and semi-

colons. Secondly, the replace normalisation process is applied by replacing double quotation

marks with single quotation marks. Finally, the sort normalisation process is applied on the

WHERE clause.

Table 7-4: Normalisation operation applied on the WHERE clauses
NO SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

8 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

9 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

10 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

11 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

12 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

13 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

14 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

15 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

16 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

17 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

18 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

19 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

20 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 1

21 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

22 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

23 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

24 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

25 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

26 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

27 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

28 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 0

29 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

30 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

Total Number of answers 12

 Page | 132

Step 5: AND operator

In this stage, the last part of the SQL statements is normalised, and the final number of unique

statements is determined. Table 7-5 shows the results of the normalisation process which has

been applied on the last part of the SQL statement. The process starts by removing the extra

spaces between the single quote and the value. Then, it proceeds by removing the single quote

from the numerical data retrieved in the AND operator.

Table 7-5: Normalisation Operation applied on the AND operator
NO SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

8 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

9 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

10 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

11 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

12 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

13 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

14 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

15 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

16 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

17 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

18 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

19 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

20 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 1

21 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

22 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

23 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

24 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

25 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

26 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

27 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 0

28 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 0

29 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

30 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 0

Total Number of answers 8

 Page | 133

 Analysis and Discussion

After applying the normalisation operation in each clause, the SQL statements can be compared

and calculations can be made within a range of data using a formula based on the “IF

(SUMPRODUCT)” function in a spreadsheet. This function counts how many times a specific

SQL statement appears inside a range of cells, as shown in Table 7-6. By using the spreadsheet,

the SQL answer statements are divided into clause parts.

Table 7-6: Divisions of SQL clause parts using a spreadsheet

No. SELECT FROM WHERE AND Count

1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 1

2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 1

3 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > '2500' 0

4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

This table has been divided into 4 columns, which represent each clause part of the full SQL

statement. This means that if the question requires 4 different clauses to be added to the answer,

then 4 columns will be generated. This division assists the normalisation operation of the

semi-automatic approach to be applied on all clause parts and be adaptable to different

normalisation processes. The counting of the SQL statements is conducted using two numbers,

which are Zero (0) and One (1). Number (1) represents the first instance of the SQL statement

(for example; No. 1) and (0) represents an identical statement (for example; No. 3) from the

above table. String matching between the SQL statements clause parts increased after applying

the normalisation operation as discussed in Chapter 2. These parts were later manually grouped

before the marking process (which will be described in detail in Section 7.2.6). The two

different sets of SQL statements are analysed and discussed below.

A. SQL statements retrieved from existing exam scripts (2014)

Figure 7-2 depicts the number of identical SQL statements provided as answers for three SQL

questions. The statements were randomly selected from the answers of the 30 students that

participated in solving the 2014 exam script. It can be clearly seen that the number of unique

statements declined after applying the normalisation operation.

 Page | 134

Furthermore, only few statements remained unchanged after going through the

normalisation stages of the different clauses. The variation of the SQL statements answers

affected the process of the normalisation, but still made significant changes that helped to keep

the similarities between the statements high. The figure shows a reduction from 17 SQL

statements to 13 SQL statements for Q1, whereas the number remained mostly unchanged in

Q2, with a reduction from 30 statements to 28 statements in most stages, and a final total of 26

statements after applying the normalisation operation on the HAVING clause.

Figure 7-2: Normalisation process applied on the SQL statements of the exam scripts

B. SQL Statements Retrieved from SQL-FE (2016)

Figure 7-3 indicates the number of the identical SQL statements provided as answers for five

SQL questions. A total of 30 students participated in solving the questions using SQL-FE in

2016. It can be clearly seen that the overall number of unique statements declined after applying

the normalisation operation. In addition, only few statements remained unchanged after going

through the normalisation stages of the different clauses. The number of SQL statements

decreased by around 10 statements in Q1 and Q4, while the number of statements in Q2

declined from 28 statements to 23 statements after applying the full normalisation stages.

Original
Statement

SELECT FROM WHERE GROUP BY HAVING

Q1 17 14 14 13 13

Q2 30 28 28 28 28 26

Q3 26 23 23 23 23

10

15

20

25

30

35

N
O

 O
F

SQ
L

ST
A

TE
M

EN
TS

 Page | 135

In both Q3 and Q5, the number of SQL statements decreased by 2-3 statements over the

different stages of the normalisation processes. Overall, it can be seen from both figures

(Figure 7-2 and Figure 7-3) that before the normalisation process, there were multiple identical

SQL answers for each question. However, after applying the normalisation process to the

different SQL clauses, the numbers of unique statements decreased and the similarities among

the statements slightly increased. This decrease in the number of SQL statements, however

small, still demonstrates that human marking time can be saved compared to manual marking

methods.

Figure 7-3: Normalisation process applied to SQL statements of SQL-FE

Figure 7-2 and Figure 7-3 show that Normalisation operation has increased the similarity

between SQL statement parts. Where the primary goal of the SQL data normalisation phase is

to organise a variety of clauses and keywords (such as SELECT, FROM, WHERE, GROUP

BY, HAVING, ORDER BY, JOIN), table and field names, and aliases and brackets, to

increase the similarity among the SQL statements. In the normalisation stages the SQL clauses

are filtered in sequence where every time one clause is selected to be normalised, then count

the final number of participants for each change happened. However, the data normalisation

phase does not change the meaning of clauses and keywords, only remove the unnecessarily

elements which makes the string unmatched.

Original
Statement

SELECT FROM WHERE AND GROUP BY HAVING ORDER BY

Q1 18 17 17 12 8

Q2 28 26 25 24 24 24 24 23

Q3 24 23 23 23 23 22 22

Q4 25 25 21 17 16

Q5 23 23 21 21 20

5

10

15

20

25

30

C
O

U
N

T
O

F
SQ

L
ST

A
TE

M
EN

TS

 Page | 136

 Grouping Process

The next stage of the semi-automated assessment approach is to check for and group similar

SQL statements. In this stage, all SQL statements are organised and ordered to identify their

similarities among all of their clauses. This assists in defining the identical parts in the

statements after the normalisation operation. Table 7-7 shows the grouping process, where the

similarities among SQL statements’ parts are defined and categorised into groups. This means

that the identical SQL parts are clustered as one group. As can be seen from Table 7-7, there

are eight groups of SQL statements created from the 30 students’ answers.

Each group shows a different way of formulating a SQL statement, as collected from the

students’ full answers. Furthermore, the table shows that each SQL statement clause or part

belongs in a different group of SQL statements, which makes it easier to categorise them while

marking. It is also clear from tale that there are some groups that contain a larger number of

identical SQL statements than others. For example, in Group 1, there are 16 identical answers,

while Group 2 contains only two identical statements that exactly match. This allows the

examiners to mark just one unique statement; with the rest of the identical groups being marked

automatically, and as a result, the students can be provided with the same marks and feedback.

Although there are some groups with fewer instances of repetition, they cannot be ignored

while marking, since marks and feedback should be given even for specific answers.

Table 7-7: Number of SQL statement occurrences in each group

GNO SQL Statements Count

G1 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 16

G2 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERKS' AND EMP.SALARY > 2500 7

G3 SELECT EMP.FNAME FROM EMP WHERE EMP.SALARY > 2500 2

G4 SELECT EMP.EMPNO FROM EMP WHERE EMP.SALARY > 2500 1

G5 SELECT EMP.EMPNO FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY > 2500 1

G6 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' AND EMP.SALARY < 2500 1

G7 SELECT EMP.FNAME FROM EMP WHERE EMP.JOB = 'CLERK' 1

G8 SELECT EMP.FNAME FROM EMP.EMPNO WHERE EMP.SALARY > 2500 1

 Total Number of SQL Answers 30

 Page | 137

 Marking Process of SQL Statements

The main novel contribution of this research is the development of a novel framework that

provides a platform to support the assessment process of SQL statements, which supports the

integration of both the Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR)

systems that use application of the Artificial Intelligence (AI) methodology. Such a framework

advantages enables human and computer association during the assessment process.

Reduce the overall SQL statement clauses marked by examiners. This means to reduce the

human intervention on marking and reuse the comments given for similar SQL parts and the

most important merit is enhances the accuracy of marking and provides students with

immediate feedback. To achieve this, once the normalisation and grouping processes are done,

a set of rules can be executed and checked (the SQL generic rules are listed in Section 7.3.2).

If a rule’s condition is met, then the rule will be enforced and applied, whereas if there is any

rule’s condition does not receive any action, then other rules will be enforced and the process

starts checking again for more rules, as illustrated in stage ‘B’ of Figure 7-1. This section

explains in detail the following three main topics:

1. The semi-automatic generic marking rules of SQL statements, which set the minimum

requirements and standards for marking and grading clauses of SQL statements. They also

identify the common repetitive tasks in the assessment process. This is discussed in detail

in Section 7.3.1.1.

2. The partial marking process of SQL parts, whereby finding the similarities and matching

between SQL statement parts takes place. Section 7.3.1.2 provides a discussion of this

topic, as well as a clarification of how SQL statement parts should be marked using CBR.

3. The process of propagating marks and feedback, which involves propagating the same

marks and feedback from the ideal solution that has been previously marked and using them

again for other students’ solution using the Case-based Reasoning (CBR) cycle (introduced

in Chapter 3). This means that the lecturers’ feedback can be copied to assess the rest of

the repetitive SQL statements parts based on the CBR cycle. This is discussed in detail in

Section 7.3.1.3.

 Page | 138

 SQL Generic Marking Rules

The Generic Marking Rules of basic SQL SELECT statements (GMR-SQLS) are proposed to

assess statements written in Structured Query Language (SQL). They aim to reduce the number

of SQL SELECT statements marked by the examiners by utilising the previous cases with

matched problems and adopt the same solution. GMR-SQLS have been identified using the

basic SQL SELECT statements. GMR-SQLS are used to explain the generic marking rules

of SQL statements. GMR-SQLS indicates several SQL SELECT statements with different

SQL question components. However, this analysis uses only the first five statements that

contain SELECT, FROM, WHERE and ORDER BY clauses, as a first study. In addition, if

the basic SQL testing works successfully, then GROUP BY and HAVING clauses will be

tested rapidly as its complexity does. In this research, GMR-SQLS were only tested on a

number of student SELECT queries, with the results obtained being analysed and compared

against manual marking. The semi-automatic SQL marking process can be considered as a

collaborative process between human and computer marking. The examiners must be aware of

this while marking to enhance the marking consistency, grading and feedback. The principal

purposes of semi-automatic SQL marking are to reduce examiners assessment workload and

to provide students with appropriate feedback on their performance as part of a formative

assessment process.

This research focuses on marking basic SQL clauses by applying different SQL marking

rules. The basic SQL clauses contain SELECT, FROM, WHERE, GROUP BY, HAVING

and ORDER BY clauses. The SQL marking rules support the semi-automatic marking

approach of SQL statements, whereby this approach involves commenting on the repetitive

clauses of students’ SQL statements by using certain marking rules. These rules are applied to

the SQL statements that have been normalised and classified into groups.

 SQL Partial Marking

As described in Chapter 5, each student has a different way of writing SQL statements, making

it more difficult to group identical answers. In this context, splitting the statement’s clauses

into parts facilitates the partial marking process. Partial marking is a marking process whereby

students’ SQL statements are marked once they have been divided into parts. The SQL parts

specify the main SQL clauses, such as SELECT, FROM, and WHERE clauses.

 Page | 139

The partial marking approach eliminates the repetitive task of marking since similarities among

the SQL statements are identified, and the same previous marking may be applied for new

statements. This allows lecturers to assign marks and feedback for each part of the statement.

At the same time, students get partial marks when they write SQL answers that are close to

being the correct answer, since the string matching method is used, which does not match

between a student’s answer and a model answer.

Instead, it groups matching parts of the students' SQL commands and then asks the

examiners to approve the correctness of the SQL part from each of the different groups. In

other words, once the examiner marks one student’s SQL answers, the same mark might be

applied to other students’ answers using the same criteria. This would help examiners to define

similar mistakes in students’ answers and provide consistent marks and feedback to all students

who make the same mistake. For example, using the groups of SQL statements of Table 7-7,

the SQL statements would be divided into parts as shown in Table 7-8. As we can see from

Table 7-8, the division of the SQL statements depends on the students’ answers, since each

statement has different number of parts. In G1, there are four parts, whereas in G3 there are

three parts. There are several reasons for dividing full SQL statements into parts and not

marking them as full SQL statements. Using partial marking can help markers to identify the

same mistakes in different student answers. This means that once the marker marks SQL

statements clauses, they can find the correct parts as well as the incorrect parts of students’

answers, and, depending on the similar clauses parts in the different students’ SQL statements,

and give them the same marks. However, the examiner must separately mark the dissimilar

parts and provide detailed feedback for the students SQL answers. Insa and Silva (2015) found

that partial marking could not automatically conduct assessment by only testing the code’s final

output. Rather, it does so by checking the requirements needed by the lecturer and whether they

are fulfilled or not. Once identical SQL statements parts have been found, the propagation of

the marks and feedback can take place using the CBR method.

Table 7-8: SQL statements parts

G1

SELECT EMP.FNAME Part 1

FROM EMP Part 2

WHERE EMP.JOB = 'CLERK' Part 3

AND EMP.SALARY > 2500 Part 4

G3

SELECT EMP.EMPNO Part 6

FROM EMP Part 2

WHERE EMP.SALARY > 2500 Part 7

 Page | 140

 Propagation of Marks and Feedback

The marks and feedback propagation process serves to broadcast the same marks and feedback

from the ideal solution that has been previously marked and use them again for another

student’s solution, as illustrated in Figure 7-4. The marking and grading of repetitive clauses

of SQL statements can identify the common repetitive tasks in the assessment process, where

similarities between matching SQL parts are found. The process then proceeds to propagate

the same marks and feedback from the ideal solution that has been previously marked and use

them again for other students’ solutions using the Case-based Reasoning (CBR) system. This

means that the lecturer’s feedback can be copied to assess the rest of the repetitive SQL parts

based on the CBR cycle.

Figure 7-4: Propagation of SQL statement parts

 Page | 141

 Generic Marking Rules of Semi-Automatic SQL Assessment

The marking rules of the semi-automatic assessment approach are a set of minimum

requirements and standards for marking and grading reparative clauses of SQL statements. The

aim of setting SQL marking rules is to assess the duplicated SQL statements clauses and

provide equivalent grading for all students. The key advantage of these marking rules is their

flexibility. This means that it is possible to add new rules or modify existing ones without any

side effects. In addition, they are expressed in an easy-to-understand language that is logical

and not complicated. As such, these rules should not cause any errors for the original SQL

statements or lead to any syntax errors.

 SQL Marking Rules Classifications

In this phase, generic rules are applied for grouping SQL elements. The rules are created by

analysing data for frequent If/Then patterns to identify the most important relationships

between the SQL statements. Clauses are therefore grouped together for the semi-automatic

marking process. The literature shows that one of the most important advantages of grouping

SQL clauses is marking them without the need for using any SQL model answers.

The classification of marking rules is used to decide which clauses will be marked together

and which clauses will be marked separately. The terms “together” and “separately” are used

in this context to classify (a) the clauses that should be marked as one group called (together),

and (b) a seprate caluse which can be marked sepeartly without joining it with ther clauses is

called (separately). These two terms are used in the action part of the If/Then SQL marking

rules. Table 7-9 illustrates an example of a SQL statement answer which contains three clauses

(SELECT, FROM and WHERE). The table shows that the SELECT and FROM clauses (in

some cases) can be marked together as one group after checking the field names and the table

used. Simultaneously, the WHERE clause can be marked separatly from the full statement

depending on the marking process of the examiner.

Table 7-9: Marking rules classification (Sample)

No SQL Statement Clauses Marking Type

1

2

SELECT EMP.FNAME

FROM EMP
Marking SELECT and FROM clauses in conjunction (Together)

3 WHERE EMP.JOB = ‘CLERK’ Marking WHERE clause (Separately)

https://www.macmillandictionary.com/dictionary/british/complicated

 Page | 142

 Marking Rules Procedure

The application of marking rules follows a particular procedure once the statements have been

checked by the examiner. The procedure has a series of actions that do not need to have specific

order. However, these actions should be interpreted and applicable without affecting the

execution of the SQL statements. The following are some questions and their answers to help

explain the procedure of the SQL marking rules.

 How are the marking rules processed?

This research used the RBR cycle to examine and analyse certain forms of the all-marking

rules, which can be activated and executed at the same time. This means that if a rule’s

condition is met, then the rule will be enforced and applied. On the other hand, if there is any

rule condition that is not met then other rules will take place and the process of checking for

more rules will commence. The reason of choosing this type of process is that by using semi-

automatic SQL marking approach, multiple SQL statement clauses can be marked

simultaneously. The marking rules cannot account for all possible SQL answers, nor can they

predict how SQL statements will be formulated by the students. However, as long as the

marking rules are formulated to accept new entries, any SQL statements that have not been

marked due to not being any possible rules that can be applied, can still be marked by making

new marking rules and adding them to the list.

 How are marking rules formulated?

The marking rules were formulated using a declarative language that is clear and easy to

understand to anyone who understands English. They do not follow any specific order and it is

possible to add new or modify existing rules without causing any side effects.

Moreover, to make the marking rules more reasonable and manageable, the SQL statement

clauses were formulated along with the rules to support the functionality of each rule. The

following is sample of one of the marking rules, which was written by using the If/Then

statement.

IF SELECT clause is having only one fieldname

AND Fieldname match with table used in FROM clause

THEN Mark the SELECT and FROM clauses together

 Page | 143

The rule is written in a clear and concise English language. Each of the marking rules can

have more or fewer conditions and actions depending on the different SQL statements cases.

The rules were written and formulated following the SQL statements’ style in order to enhance

clarity

 SQL Marking Process and Marking Rules

Identical SQL statement clauses can be categorised into groups. Each group might contain

either single or multiple SQL statements clauses. However, the more clauses the SQL statement

has, the less likely it is to be identical. Therefore, partial marking is important at this stage to

increase the similarity between identical clauses. This approach limits the markers’

involvement in the assessment process to only a number of SQL statements groups rather than

the total number of students’ statements. As such, it reduces the number of the SQL statements

assessed by the marker. The string matching technique does not match between students’

answers and the model answers. Rather, it groups the matching parts of the students' SQL

statements and then asks the marker to approve the correctness of SQL parts from each of the

different groups. In other words, once the marker marks one student’s SQL answers, the same

marking can be applied to other similar students’ answers. The marking rules are formulated

to dictate how students’ SQL answers can be split into several parts that can be marked

individually by the marker. Those parts can then be propagated to other mentioned parts in

other statements. As such, the marking rules serve to remove the repetitive parts, thus reducing

the number of statements that the marker have to mark, which contributes towards providing

students with consistent feedback.

This research focuses on the basic SQL SELECT statement clauses, because a typical SQL

statement can be made up of two or more of (SELECT, FROM) WHERE, GROUP BY,

HAVING and ORDER BY clauses, where the SELECT and FROM clauses are the only two

mandatory clauses in SQL statements. That is, an SQL statement can be minimally composed

of SELECT and FROM clauses (Bobak, 1996). Yet, the statement can be extended to more

clauses depending on the requirements of each query. To follow, the SQL marking rules have

been categorised into three main sections; (1) SELECT, FROM, (WHERE or/and ON) and

ORDER BY (2) SELECT, FROM, WHERE and GROUP BY (Aggregate Functions), (3)

SELECT, FROM, GROUP BY and HAVING.

 Page | 144

This means that each section considers the SELECT and FROM as the main clauses, while

the rest of clauses are based on the SQL questions given in the first SQL-FE experiment.

However, these sections are not restricted to limited number of SQL clauses. Each of these

sections lists one or more rules and explains them in detail utilising SQL statements examples.

These examples are coloured to illustrate the various marking status, where the white colour

indicates an unmarked clause, a green colour indicates a fully corrected clause, a yellow colour

indicates a partially correct clause, while the red colour symbolises a fully incorrect clause.

 SELECT, FROM, (WHERE or/and ON) and ORDER BY Clauses

The following rules cover four SQL statement clauses; namely SELECT, FROM, WHERE

and ORDER BY clauses. These rules differ from one other and depending on the context of a

given SQL statements. For instance, some statements might only have a WHERE clause,

others might only have an ON clause, while some may have both. In addition, the ORDER

BY clause can be applied in all statements and always appears at the end of the statement. For

this reason, the rules were applied to the SQL statements answers that had been collected by

the SQL-FE editor. This section explains the different rules by presenting samples of SQL

statements from Questions 1 and 2 as an explanation of the marking process.

Rule I. Fieldname/s match table with >= 1 condition/s

This rule is applicable for SQL statements that contain one or more fieldname, that are retrieved

from one table, and in which the WHERE clause contains one or more conditions. In such a

case, the rule is formulated as follows:

If SELECT has one or more Fieldnames

AND Fieldname/s match the table used

AND WHERE have condition

THEN mark the SELECT and FROM clauses together as a group

AND mark the WHERE clause as a separate part

In this case, the marker checks the table used to retrieve the fieldname from with the

fieldname in SELECT clause. Once the marker makes sure they match, the SELECT and

FROM clauses are marked as one group (together).

 Page | 145

Subsequently, the WHERE clause is split into two parts; one is the WHERE clause and

second is the AND operator, where each part is marked separately, and the marks are

propagated (i.e. applied) to other identical clauses. Figure 7-5 illustrates the description of the

rules by using G1 and G2 of SQL statements answers.

Figure 7-5: An illustration of the marking process after applying the rules

As one can see, Figure 7-5 illustrates two groups of SQL statements, where in both groups; the

students selected the EMP.FNAME by using the EMP table. The marker in this case will

match the table name “EMP” of the SELECT clause with the “EMP” of the FROM clause.

A. Once the table and fieldnames show that they match, the marker will mark the SELECT

and FROM clauses together as one group.

B. The marking is then propagated (i.e. applied) to other groups that have identical

SELECT and FROM clauses.

Subsequently, the marker can mark the WHERE conditions clause by clause. This means that

partial marking can be applied in this stage, where a single clause can be matched with another

single clause from another statement that is identical.

C. WHERE clause in G1 will be marked by the examiner as a separate clause.

D. The marks cannot be propagated to G2 (as illustrated with the X sign) since G1 and G2

are not identical in the value part of the WHERE clause. However, if there are any

other groups which have identical WHERE clauses, the marks may be propagated.

 Page | 146

This means that mark propagation does not only work with correct statements, as it can be

applied on statements that contain identical parts, as is the case in G9 shown in Figure 7-6. In

this case, the parts highlighted with yellow colour indicate that they are not identical with other

groups from previous marked groups. In this case, the marker can predict the correct answer

after marking the first groups, and makes sure that the cases that do not match should be marked

separately and be provided with detailed feedback.

Figure 7-6: The mark propagation process with other groups

E. The AND part in G1 will be marked by the examiner as a separate clause.

F. Propagate the marking with other groups that have identical AND parts.

Rule II. Fieldname/s un-match table with >= 1 condition/s

This rule is applicable for SQL statements, which contain one, or more columns are retrieved

from a table, but the fieldname does not match the table used. Furthermore, the WHERE clause

contains one or more conditions. The rule is formulated as follows:

If SELECT has a fieldname

AND Fieldname does not match the table used

AND WHERE contains a condition

THEN mark the SELECT clause as a separate part

AND mark the FROM clause as a separate part

AND mark the WHERE clause as a separate part

Once the examiner makes sure that the fieldname and table used do not match, he/she will

start marking the SELECT and FROM clauses separately, clause by clause. Subsequently, the

WHERE and (AND or OR) operators will be marked separately and the marks will be

propagated to other identical clauses. Figure 7-7 illustrates the description of this rules using

G11 and G12 of the SQL statements answers.

 Page | 147

Figure 7-7: E.g. the FROM clause in G11 is not identical to that in G12

A. By using Rule I, the SELECT and FROM clauses of G11 will have already been

marked using the same propagated marking used in G1.

B. However, in G12, the marking of the SELECT and FROM clauses cannot be

propagated with other groups, since the fieldname EMP.FNAME uses EMP.EMPNO

as a table name. The action which should be taken at this point is to mark the FROM

clause separately and provide feedback to the student.

Figure 7-8: The FROM clause should be marked as a separate part

C. As illustrated in Figure 7-8, the marking process for G12 will performed on a clause-

by-clause basis. This means that the SELECT, FROM and WHERE clauses are

marked separately.

D. The marking is then propagated to other clauses that consist of identical clauses.

 Page | 148

Rule III. Inner Join from multiple tables using JOIN...ON Clause

This rule is applicable for SQL statements that contain more than one column and are joining

two or more tables with fieldnames that match the multiple tables that they are retrieved from

by using JOIN…ON clause. The statement also contains ORDER BY clause, which is sorted

either in ascending or in descending order. In such cases, the applicable rule is formulated as

follows:

If SELECT has two or more fieldnames

AND fieldnames match the tables used

AND ON contains an INNER JOIN condition

AND data is sorted in ASC or DESC order

THEN mark the SELECT, FROM and ON clauses together as a group

AND mark the ORDER BY clause as a separate part

Since they match, the marker will mark the SELECT, FROM and ON clauses together as a

group. The ORDER BY clause will be marked separately and the marking will be propagated

to other identical clauses.

Figure 7-9: An SQL answer containing ON as a JOIN statement

As can be seen from Figure 7-9 and 7-10, both statements give the same output, as one is an

alternative solution for the same query. Therefore, the marking will be carried out as follows:

A. If the answer contains SELECT, FROM and ON clauses, they will be marked together

as a group, as shown in G4.

B. The WHERE clause will be marked as a separate clause as it follows Rule I.

C. Finally, the ORDER BY clause will be marked separately, and the marking will be

propagated to other identical ORDER BY clauses.

 Page | 149

If a WHERE clause was used instead of ON in INNER JOIN, then in this case, Rule III

will have a different concept to that of Rule I in the context of the WHERE clause. This is

because the WHERE clause in Rule III represents the join syntax which checks the primary

key and foreign key between two tables, whereas in Rule I, it is used to find the condition of

the statement. For example, if an answer contains SELECT, FROM and WHERE clauses in

a JOIN statement (as shown in G7 in Figure 7-10), these clauses should be marked in exactly

the same manner as that dictated by Rule III, since they have same output.

Figure 7-10: An SQL answer using WHERE as JOIN

As can be seen from Figure 7-9 and Figure 7-10, both statements give the same output, as one

is an alternative solution for the same query. Therefore, the marking for the SQL statement in

Figure 7-10 should be performed as follows:

A. If the answer contains SELECT, FROM and WHERE clauses, they should be marked

together as one group.

B. The AND keyword should be marked separately since the WHERE clause is used in

the JOIN syntax.

C. Finally, the ORDER BY clause should be marked separately and the marking

propagated to other identical ORDER BY clauses.

If a WHERE clause was used instead of ON in FULL, RIGHT and LEFT OUTER JOIN, then in

this case, using INNER JOIN, WHERE and ON can be acceptable, as both produce the same

output. However, for LEFT, RIGHT and FULL OUTER JOIN, the WHERE clause cannot

be used in the SQL statement’s JOIN syntax. In such a case, the statement should be

represented with ON and the rule should restrict the marking group to SELECT, FROM and

ON for the JOIN syntax.

 Page | 150

 SELECT, FROM, WHERE and GROUP BY (Aggregate Functions)

The following rules cover four SQL statement clauses, namely SELECT, FROM, WHERE

and GROUP BY (Aggregate Functions) clauses. The rules were formulated regarding SQL

statements answers that were collected using SQL-FE editor. This section explains the different

rules using sample SQL statement answers of Question 3 and 5 as an explanation of the marking

process.

Rule IV. SELECT includes Aggregate Functions and GROUP BY Clause

This rule is applicable for SQL statements that contain fieldnames and aggregated functions

that match the tables that they are retrieved from and the result-set is grouped by one or more

fieldnames. The rule is formulated as follows:

If SELECT fieldnames with aggregate functions

AND fieldnames match the tables used

AND the result-set is grouped by one fieldname

THEN mark the SELECT and FROM clauses together as a group

AND mark the GROUP BY clause as a separate part.

When a query asks to add a GROUP BY clause in the statement, this means putting all those

with the same value for certain field in one group. The example in Figure 7-11 shows that

GROUP BY EMP.JOB indicates putting all those with the same value for EMP.JOB in the one

group. As one can see from this SQL statement, the student selected EMP.JOB as a fieldname

and AVG(EMP.SALARY) as an aggregate function.

Figure 7-11: An SQL answer using a GROUP BY clause

 Page | 151

Since they match, the marker will mark the SELECT and FROM clauses together as group.

Once the matching is ensured, the availability of the fieldname of the GROUP BY clause is

checked and the clauses are then marked them as follows:

A. Mark the SELECT and FROM clauses together as one group.

B. Mark the GROUP BY clause separately and propagated the marking to other identical

GROUP BY clauses.

If more than one fieldname exists in a GROUP BY clause, the marking should start with the

GROUP BY clause with the first fieldname, then the GROUP BY clause with second fieldname

and so on, until all fieldnames are marked and the marking is propagated to other groups.

Furthermore, when a GROUP BY clause lists multiple fieldnames, the fieldnames will be

executed one by one, and then all aggregate functions (COUNT, SUM, AVG, MIN and MAX)

are calculated. For example, if a statement was grouped by two fieldnames such as GENDER

and JOB as shown in Figure 7-12, the marking process will be then performed such as each

fieldname is marked separately.

Figure 7-12: The marking process of a GROUP BY clause with multiple fieldnames

In other words, the marking process of this statement is done as follows:

1. The GROUP BY EMP.GENDER will be marked first.

2. Then GROUP BY EMP.JOB is marked after.

 Page | 152

Rule V. GROUP BY Clause with WHERE Condition

This rule shares a similar marking process as Rule IV, with the only difference being the

addition of a WHERE clause to the statement. This means that the marking process for

SELECT, FROM and GROUP BY will follow Rule IV. Subsequently, the WHERE clause can

be marked separately as an individual clause and marking can then be propagated to identical

answers.

If SELECT fieldnames with aggregate functions

AND fieldnames match with table used

AND the result-set is grouped by one or more fieldnames

AND WHERE contains a condition

THEN mark the SELECT and FROM clauses together as a group

AND mark the GROUP BY clause as a separate part

AND mark the WHERE clause as a separate part

The marking process of this rule is further described by Figure 7-13.

Figure 7-13: The WHERE clause marking process with a GROUP BY clause

As can be seen from this SQL statement, the student selected EMP.JOB as a fieldname and

AVG(EMP.SALARY) as an aggregate function. The marking process will check the matching

between the SELECT clause and the FROM clause’s table names. Once matching is ensured,

the availability of the fieldname of the GROUP BY clause is checked.

A. Mark the SELECT and FROM as a group.

B. Mark the GROUP BY clause as a separate clause.

C. Mark the WHERE clause as separate clause and check the similarity with other

statements following Rule I and Rule II for the WHERE clause.

 Page | 153

In this case, marking the SELECT, FROM and GROUP BY clauses together is unwanted since

it will increase the diversity of the SQL statements and reduce the similarities between them.

 SELECT, FROM, GROUP BY and HAVING

The following rules cover four SQL statement clauses; namely the SELECT, FROM, GROUP

BY and HAVING clauses. This section explains the rules by using sample of SQL statements

answers of Question 3 as an explanation of the marking process.

Rule VI.GROUP BY and HAVING Clauses

This rule is applicable for SQL statements that contain fieldnames and aggregated functions

that match the table that they are retrieved from, and the result-set is grouped by one or more

fieldnames. In addition, the statements in question contain a single or multiple HAVING

conditions.

If SELECT fieldnames are used with aggregate functions

AND fieldnames match the table used

AND the result-set is grouped by fieldname

AND having contains a condition

THEN mark the SELECT and FROM clauses together as a group

AND mark the GROUP BY and HAVING clauses together as a group

In the context of the HAVING clause, it cannot be separated from the group by a clause since

the HAVING clause requires GROUP BY to be present. This is because the HAVING clause

filters records that work on summarised GROUP BY clause results. As such, GROUP BY and

HAVING clauses should be marked as a group, as shown in Figure 7-14.

Figure 7-14: Marking GROUP BY and HAVING clauses as a group

 Page | 154

As one can see from Figure 7-14, the marking process will check the matching between the

SELECT clause and FROM clause’s table names. Once matching is ensured, the availability of

the fieldname of the GROUP BY clause is checked to be marked.

A. The SELECT and FROM clauses should be marked as a group.

B. The GROUP BY and HAVING clauses should be marked as a group.

There is one case in which the HAVING clause can be marked separately and it is addressed

by the following rule.

Rule VII. HAVING Clause without GROUP BY Clause

This rule is applicable to SQL statements that contain aggregate functions that match the table

that they are retrieved from without grouping the result-set by one or more fieldnames. In

addition, the statements in question contain a single or multiple HAVING conditions.

If SELECT has aggregate functions

AND SELECT matches the table used

AND HAVIG contains a condition

THEN mark the SELECT and FROM clauses together as a group

AND mark the HAVING clause as a separate part

In this case, the GROUP BY clause is omitted, which makes the aggregate function calculate a

value for the entire table. The HAVING clause excludes the non-matching rows from the result

group as shown in Figure 7-15.

Figure 7-15: An SQL statement with a HAVING clause marked separately

A

B

 Page | 155

As we can see from the SQL statement in Figure 7-15, the student selected

AVG(EMP.SALARY) as an aggregate function. Moreover, the HAVING clause was executed

without the GROUP BY clause, which makes it separate from the GROUP BY clause. The

marking process for this statement is conducted as follows:

A. Mark the SELECT and FROM clauses as a group.

B. Mark the HAVING clause as a separate part.

 Summary

This chapter has maintained the novelty of this research by integrating both Case-Based

Reasoning (CBR) and Rule-Based Reasoning (RBR) systems that use application of the

Artificial Intelligence (AI) methodology. It provides a platform to support the assessment

process of SQL statements, which supports the integration of both reasoning systems to enable

human and computer association during the assessment process. This has increased the the

accuracy of marking and provides students with immediate feedback. in addition, it reduce the

overall SQL statement clauses marked by examiners. This means to reduce the human

intervention on marking and reuse the comments given for similar SQL parts and the most

important merit is enhances

As summary, this chapter discussed three main topics; the generic marking rules of SQL

statements, the partial marking process of the SQL parts and propagation of marked SQL

statements parts to identical parts. The semi-automatic marking rules of SQL statements are a

set of minimum requirements and standards for marking and grading reparative clauses of SQL

statements. Furthermore, the semi-automatic marking process involves the identification of

common repetitive tasks in the assessment process.

The main objective of this chapter was to develop techniques to reduce the repetitive tasks

or eliminate them from the marking process where possible by applying a normalisation

operation. This objective has been achieved by proposing the semi-automatic assessment

approach. The approach produces many outcomes, which help examiners to increase the

similarities between SQL statements parts through removing any unnecessary elements from

the SQL parts. In addition, it replaces the parts with an original format and sorts the data to be

matched with other students’ answers. This process was explained and tested with two different

SQL statement data collection process.

 Page | 156

Furthermore, the process of grouping the identical SQL statements was demonstrated as a

means of saving marking time and providing consistent marks to students. This is because the

similarities between SQL statements parts increases as a result of the normalisation operation

and the number of statements that need to be marked reduces, which translates to less human

intervention in the marking of SQL statements.

The semi-automatic assessment approach was implemented by a specialised tool based on

the proposed approach. Using this tool, the process of finding the similarities between matching

SQL parts acts to increase the marking process propagation between SQL parts, where the same

marks and feedback from a solution that was previously marked can be used again for other

identical students’ solution. This assists the examiners in understanding the full process of

marking using the semi-automatic marking approach.

The marking process using the developed SQL Marking Editor (SQL-ME) will be explained

and tested in Chapter 8.

 Page | 157

Chapter 8. Design, Implementation

and Evaluation

SQL Marking Editor (SQL-ME)

 Introduction

The proposed semi-automated marking approach aims to reduce the workload associated with

the assessment task, and, more importantly, provide timely feedback for students. The proposed

semi-automated approach utilises a specialised tool that uses the new partial marking

techniques and propagation of marks and feedback. This chapter discusses the design and

implementation details of semi-automated SQL assessments using the newly implemented

SQL Marking Editor named as (SQL-ME), which follows the CBR and RBR approaches.

The rest of this chapter is organised as follows. Section 8.2 describes the different

requirements and components for designing and implementing the SQL-ME editor. It also

illustrates a simple example to illustrate the process of formulating SQL statements using the

editor. Section 8.3 describes the process of marking SQL statements using the implemented

SQL-ME editor. The full experiment on the marking process and a description of the study on

the SQL generic marking rules are detailed in Section 8.4. Section 8.5 outlines the findings of

the new system and the overall evaluation. Section 8.6 concludes the chapter by presenting a

summary of its findings.

 The SQL Marking Editor (SQL-ME)

The SQL Marking Editor (SQL-ME) is an online environment used to mark and evaluate

students’ SQL answers. The aim of the SQL-ME is to reduce the number of elements of SQL

statements marked by the examiner and to ensure the consistency of marking of SQL

statements the lecturers. In addition, it provides support for the submission of SQL statements.

SQL-ME was implemented to support the partial marking approach. Researchers have

generally used the partial marking approach for different tasks (Batmaz, 2011; Wong et al.,

2012; Adesina et al., 2015).

 Page | 158

This approach eliminates the repetitive marking task by exploiting the traits of human

behaviour during the marking process and finding the similarities between old and new

problems, then adopting the same marking. This is processed by identifying the identical

elements across SQL statements and classifying them into groups and parts in which each

clause is separated and marked. Subsequently, the identical properties of each student’s

answers are identified and marked automatically. This section describes the SQL-ME

requirements and the SQL-ME user interface.

 SQL-ME Requirements

There are three main requirements associated with designing the SQL-ME editor. The user

interface requirements are as follows:

1) The SQL-ME should contain two main user interfaces:

A. One dedicated for the marking process using partial marking.

B. One dedicated for the marking process using generic marking rules (grouped

statements).

2) The SQL-ME user interface must support the delivery of the commented SQL parts using

the partial marking technique.

3) The SQL-ME should allow the propagation of marks to identical answers by supporting the

reuse of comments for repetitive SQL parts based on the CBR cycle.

 SQL-ME User Interface

The main functionality of the new marking environment (SQL-ME) is matching SQL parts and

reusing comments for the repetitive SQL parts based on the CBR cycle. All students’ SQL

statements are represented partially. This means the lecturer will mark the SQL parts of the full

SQL statement by matching each part together. In this process, the similarities between the

parts are automatically marked by the editor, where the CBR system takes the SQL part and

compares and matches it (as a new case) with other solutions that has been marked, resulting

in adopting the same marking by reusing the existing marks and feedback. The idea behind

finding the similarities between the parts is to provide the same marks and feedback to students,

thus ensuring consistency and a reduced workload. For that, the new marking environment

needs to have textual marks and textual feedback generators to evaluate the students’ submitted

SQL statements.

 Page | 159

Once the SQL statement answers have been graded and feedback generated by the lecturer,

the marking environment will need to demonstrate the marking report of all answers submitted

by the students, or alternatively, the lecturer may want to check the output of the executed

query or delete any query. This will potentially save marking time and improve the consistency

of the marking process. The SQL marking editor was also designed to help the evaluation

experiment and to show which parts should be evaluated and why they are important to

evaluate. The architecture of the SQL marking editor is shown in Figure 8-1. The SQL marking

process architecture consists of four major engines: (1) the examination process, which is

explained in detail in Chapter 6, (2) the SQL marking engine, which consists of using partial

marking and the propagation of marks and feedback, (3) the SQL marking process, which

utilises the marking rules, and (4) feedback presentation. In each of these engines, there are

different processes whereby the system goes through different steps until the marking of all

SQL statements is concluded.

Figure 8-1: The SQL Marking process architecture

The SQL-ME is designed and implemented to clarify the requirements of the partial marking

approach. The editor marks several answers simultaneously and depends on the similarities

between the SQL parts. This section illustrates and explains how the SQL marking editor

(SQL-ME) uses the partial marking approach.

 Page | 160

Figure 8-2 illustrates the new SQL-ME environment that supports the partial marking approach

(before starting the marking of statements). The circled letters represent the functions of each

component in the new marking editor.

a) Represents the selection list of the SQL questions, which the examiner will use to

retrieve all students’ SQL answers related to the same question.

b) The marks have been categorised into three different colour categories: green, yellow

and red. Each of these colours represents the status of each SQL statement part, where

correct is represented by green, partially correct by yellow and incorrect by red. This

helps to provide students with detailed feedback, which in turn aids them in

understanding their mistakes and appreciating what they need to change in their

statements.

c) Shows the SQL statements answers that have been submitted by students using the

SQL-FE, listed after the model answer, so they can be matched and marked together.

d) There are three more components that the examiner will need to update the students’

grading reports: saving marks and feedback for all identical SQL parts, executing the

SQL query, and deleting data that is not needed.

The SQL-ME displays each question with a set of multiple student SQL answers. The examiner

will start marking the SQL answer by matching the SQL parts and giving the same grades and

feedback for matching answers. In other words, the same feedback for a specific part is used

for other identical parts in multiple student SQL statement answers. The lecturer will view all

the SQL answers for each question using the marking editor and start marking each part

separately. Once the first part has been marked and graded, then another group with different

answers will be assessed, where the similarities between the answers is noted. The editor

divides partial marking into three categorisations: where green colour denotes a fully correct

SQL part, yellow denotes a partially correct one, and red denotes a fully incorrect one. The

examiner will be able to mark part by part as illustrated in the following figure. In order to

identify the similarities in the divided-up parts of students’ SQL answers and give consistent

marks, the matching can be done either by individual division or by merging more than one

parts together. This reduces the number of SQL statements marked and results in equal and fair

marks to all students.

 Page | 161

Figure 8-2: The user interface of the SQL-ME (partial marking interface)

a

b
c

d

 Page | 162

 SQL Marking Process (Generic Rules)

There are many reasons for which this research considers implementing a new system for

learning and assessing SQL statements. First, by exploiting the similarities among SQL

statements, the new system could solve the problem of manually marking the same sets of SQL

statements submitted by hundreds of students’ time and again. The matching process involves

grouping statements into parts and groups and defining the similarities between them.

Secondly, the avoidance of trivial mistakes (i.e. spelling mistakes, unnecessary words and

synonyms). The new system would attempt to ignore irrelevant information by skipping those

words that do not match certain keywords, or even not add them at all, since the system could

prohibit writing anything inside the answer bar; and instead allow clicking on the navigation

bar and selecting what is needed. Thirdly, reducing the need for human intervention in the

marking process by reducing the number of SQL statements marked by lecturers. Finally, the

last reason is to provide students with effective and encouraging feedback. Lecturers can

provide personalised or generic feedback to their students depending on the student numbers.

If student numbers are high, the lecturers may give generic feedback, in which feedback can is

provided to a group of students who have made the same common mistakes. Alternatively,

lecturers may prefer to specify individual, personalised feedback for each exam paper.

The semi-automatic assessment approach provides detailed and consistent feedback for SQL

statements based on formative assessment. It focuses on commenting the repetitive clauses of

students’ SQL statements by using certain marking rules. This research focuses on the basic

SQL clauses to apply the rules on, such as the SELECT, FROM, WHERE, GROUP BY, HAVING and

ORDER BY clauses. These rules are implemented on the new SQL Marking Editor (SQL-ME) as

a back-end. This is because SQL-ME is a dynamic site that constantly changes and updates in

real-time. In addition, all marks and feedback should be stored in the database to be viewed by

the students. These rules are applied on SQL statements that have been normalised and

classified into groups, where each group may have either a single SQL statement or repetitive

(identical) SQL statements as illustrated in Figure 8-3. The figure shows the two main

components in the SQL-ME generic rules user interface;

a) The SQL student groups were combined in Section 7.2.3. In this case, all identical SQL

clauses of the students’ answers were checked and matched using the CBR approach.

 Page | 163

b) The number of identical SQL statements were matched and counted to show the number

of SQL statements that can be marked and commented at one time.

The semi-automatic marking rules use some conditional sentences containing a conditional

clause referred as (If-then statements). For example, “If a certain condition is true, then a

particular result happens”. It is represented as: If <condition> then <conclusion>. The key

advantage of semi-automatic marking rules is their flexibility. This means that it is possible to

add new rules or modify existing ones without any side effects. However, every rule should be

well written to attempt most of the SQL statements students’ answers. Following these rules

can generally support the marker during the marking of SQL statements. Each of these rules is

were explained with examples in Chapter 7 of SQL statements answers.

 The Marking Process Experiment

Initially, the SQL Formulation Editor (SQL-FE) was tested to evaluate the amount of time

spent to solve several SQL questions and the performance of students after using it. The second

experiment, presented in this section, was conducted by the examiners to test the usefulness

and usability of the semi-automatic SQL assessment approach by using the newly implemented

SQL Marking Editor (SQL-ME). The study was conducted with six (6) Ph.D. research students

in Loughborough University in January 2018. Each session involved one participant, who

performed two tasks during a one hour session. This experiment used only the SQL-ME editor

for evaluation and testing. The reason of not involving manual marking was due to the fact that

the focus was to enable the examiners to test the new semi-automatic marking approach and

how the marking process can be done using the partial marking technique. The study was

approved by the ethics committee of Loughborough University. Furthermore, the participants

were given simple introduction about the functionalities of the generic marking rules and were

instructed on what they needed to do after testing the rules. They were also asked to comment

on the proposed marking technique marking after using these rules. The main objectives are:

1. To evaluate the feasibility of the semi-automatic approach, focusing on the assessment

aspects.

2. To investigate the effects of SQL-ME on examiners and to know whether they consider

it to be a useful marking editor.

3. To examine the standard of feedback generated and whether SQL-ME provides better

feedback quality than other tools.

 Page | 164

Figure 8-3: SQL statements in groups (generic marking rules)

b

a

 Page | 165

 Participants

There were six participants who agreed to participate in this study. The study was presented to

Ph.D. students from the Computer Science Department in Loughborough University, who had

taught the Database module and had background on SQL formulation and marking techniques.

The participants were required to be qualified in teaching and assessing different modules of

the Database Program, with at least have 3-5 years of experience in teaching database modules,

so they could be able to provide an objective evaluation based on their experiences. They were

also required to be qualified in formulating and assessing SQL statements. The participants

were invited to participate in the experiment through an official email (a sample of the email

is presented in Appendix 10 – Section A). These requirements aimed to ensure the provision

of consistent results and feedback from the different participants using the questionnaire.

The experiment took place on mid-January 2018 at Loughborough University. A sample of

the printed list of instructions of the experiment was given to the examiners (see Appendix 10

– Section B). At the same time, a printed list of reference answers to the SQL questions and

alternative ways to solve them was distributed to the participants.

 Questions

The study used three SQL questions as shown in Table 8-1. Each question had a total of 30

students’ answers. This means that each answer showed up as group of identical answers. In

addition, each question represented one or multiple of the five generic marking rules. As there

were five different marking rules, the three chosen questions were able to fit these rules and

define the purposes of applying them. For these reasons, the questions used were not randomly

selected from those used in the SQL Formulation Editor (SQL-FE) study, but were specifically

chosen for this study. The SQL questions were categorised into three different requirements:

 SELECT, FROM and WHERE (Question 1)

 SELECT, FROM, JOIN and ORDER BY (Question 2)

 SELECT, FROM, GROUP BY and HAVING (Question 3)

 Page | 166

Table 8-1: The SQL questions used in the experiment with their model answers

Question 1
Find the first names of all employees who work as a clerk and earn a salary of

more than 2500

Model Answer 1

SELECT EMP.FNAME

FROM EMP

WHERE EMP.JOB= 'CLERK'

AND EMP.SALARY > 2500

Output 1

FNAME

Jones

Question 2
Retrieve the last names and the department names of all female employees.

Sort the result in ascending order of the location.

Model Answer 2.1

SELECT DEPT.DEPTNAME , EMP.LNAME

FROM DEPT INNER JOIN EMP

ON DEPT.DEPTNO = EMP.DEPTNO

WHERE EMP.GENDER='FEMALE'

ORDER BY DEPT.LOC

Model Answer 2.2

SELECT DEPT.DEPTNAME , EMP.LNAME

FROM DEPT , EMP

WHERE DEPT.DEPTNO = EMP.DEPTNO

AND EMP.GENDER = 'FEMALE'

ORDER BY DEPT.LOC

Output 2

LNAME DEPTNAME

Paul Operation

Louis Management

Question 3
Display the various jobs and the average salary of employees in each job,

where the average salary is greater than 2000.

Model Answer 3

(Group by & Having

Commands)

SELECT EMP.JOB, AVG(EMP.SALARY)

FROM EMP

GROUP BY EMP.JOB

HAVING AVG(EMP.SALARY)> 2000;

Output 3

JOB AVG(SALARY)

Manager 2650

 Page | 167

 Measurements

Each of the following measurements was represented with a list of questions that were

evaluated and answered by the participants after the experiment (see the Appendix 11). The

following characteristics were measured during the experiment:

a) The SQL-ME environment: the study measured the feasibility of the semi-automatic

approach, focusing on the assessment aspects by using both marking system pages. The

objective was to gain insight into the quality of the two different environments by measuring

the number of students appearing on the list and the groups available, and to gain insight into

the quality of the semi-automated marking process.

b) The time spend on the marking process: the time that participants needed to complete the

marking and write their feedback on the answers was measured. The objective was to compare

the time needed to complete the marking across different environments, such as groups, marks

and feedback.

c) Satisfaction: a questionnaire was filled by each participant after finishing the marking to

assess satisfaction. The questionnaire’s questions intended to measure the overall satisfaction

on the use of the SQL-ME environments. The objective was to collect additional qualitative

feedback from participants about the quality of the newly implemented editor, as well as the

perceived usefulness, main difficulties and drawbacks.

 Data Collection

The data collection and analysis of the marking rules were only used on the first SQL question

of the SQL-FE experiment. The data went through the normalisation and grouping processes,

and was subsequently retrieved to be tested with the new generic marking rules. The first

question contained a total of eight groups, as listed previously in Table 7-7. It was designed to

assess the basic SQL SELECT statements which cover the SELECT, FROM and WHERE

clauses, as described in detail in Section 8.2.4. According to the list of the questions, Q1 was

used since it is a direct question and has fewer clauses requirements (SELECT, FROM and

WHERE). This made the explanation of the making rules more efficient and simpler to

understand by the markers. The SQL marking rules classifications were categorised into three

main categories:

 Page | 168

(1) SELECT, FROM, (WHERE or/and ON) and ORDER BY

(2) SELECT, FROM and GROUP BY,

(3) SELECT, FROM, GROUP BY and HAVING.

All questions were tested with the generic marking rules. The main aim of the testing was to

check the reduction of the number of SQL statements after applying the new marking rules

technique and to observe the marking process before the implementation of a specialised editor

that is specifically developed to mark the SQL parts and groups.

 Experimental Results and Discussion

As described in Chapter 7, the CBR and RBR were applied on several SQL statements to

evaluate the marking process. The experiment was divided into three parts.

The first part involved testing the SQL marking using a comparison between single and

grouped SQL statements. The second part involved testing the propagation of marks and

feedback using the CBR cycle, and lastly, the third part tested the usefulness of SQL-ME using

all features.

Testing the marking process involved both the single and grouped statements using

both user interfaces, SQL-ME 1 and SQL-ME 2. In this experiment, the participants were given

three SQL questions (as mentioned in Section 8.4.2) along with the model answer. The task

they were asked to complete was to start marking these three questions using SQL-ME 1 first

(Figure 8-2), where they needed to mark the questions using the partial marking for single

students. Once they finished this process, the participants needed to go through the same

process but using SQL-ME 2 (Figure 8-3), in which they had to mark in a group. The objective

of this task was to compare the time spent and effort taken to perform both tasks, and which

one the participants had a preference the SQL marking tool to use. By using the questionnaire

(Appendix 11 – Section A), the participants had to answer according to what they experienced

during testing of both user interfaces.

In Questions 1, 2 and 3, the participants found that SQL-ME 2 was more effective and less

marking was involved for all participants. The participants’ responses on Question 2 differed

from one to another, however, most of them showed their satisfaction of the newly

implemented tool. The responses are shown in Table 8-2.

 Page | 169

Table 8-2: The participants’ responses on Q1, 2 and 3

PNo Q1: Is there any difference between the two

pages of the SQL-ME (marking system 1

and making system 2)?

Q2: If you answered 'yes' to the

question above, please provide

details

Q3: Which of these two

pages do you prefer?

1 Yes Provides identical marking SQL-ME 2

2 Yes Marking is identical SQL-ME 2

3 Yes Less time spent in marking system SQL-ME 2

4
Yes Students are grouped by the same

answers in marking system 2

SQL-ME 2

5
No Both of them provide identical

marks and feedback

Marking System 1

(partial marking)

6 Yes Saves time and workload Marking System 2

Question 4 measured the time spent on marking the SQL statements using the desired user

interface. As most participants chose SQL-ME 2, they needed to predict how much time they

had spent regarding on the task given to them.

Table 8-3: The participants’ responses on Q4

Questions

Participant

1

Participant

2

Participant

3

Participant

4

Participant

5

Participant

6

a. Do you think you saved time? Yes Yes Yes Yes Yes Yes

b. If yes, what is the proportion

of time do you think was saved?
5% 20% 20% 5% 20% 20%

c. Do you think this proportion

would increase as you get more

used to SQL-ME?

Yes Yes Yes Yes Yes Yes

d. If yes, what is the proportion

of time do you think you will

save?

20% 50% 5% 20% 20% 50%

In Q4, the participants had different thoughts about the time spent, but 100% of the participants

agreed in sections (a) and (c) that using the SQL-ME saved their time and that the amount of

time saved would increase if they were to keep practicing the use of the new tool. Furthermore,

according to the participants, the time saving was either 5% or 20%, however, most of the

participants (4) answered 20%, which shows that SQL-ME saves a non-negligible amount of

their marking time.

 Page | 170

The last part of Q4 (d) showed that with practice, the participants believed that the

proportion of marking time that could potentially be saved ranged 5% to 50%, as illustrated in

Figure 8-4.

Figure 8-4: The participants’ responses’ on Q4

The second part of the experiment evaluated the feedback quality and how students can obtain

similar feedback as a result of marking propagation. While doing the first test, the participants

had the opportunity to understand the use of CBR as an approach, which can assist the marker

in assessing and marking the similarities between the existing SQL part and the current SQL

part. Furthermore, the test allowed measuring the effect of propagation of both marks and

feedback. For Questions 1, 2 and 3, the responses of the participants is displayed in Table 8-2.

The overall answers of the participants show that they were well satisfied with the new SQL-

ME marking process and that the feedback produced using the editor is likely encourage the

examiners as well as the students once they use it. In Question 4 on the feedback quality,

multiple choices on some statements were presented to the participants about how they related

to the new system. The answers differed from one participants to another depending on their

understanding of the statement after they tested SQL-ME. For Question 4.a, three participants

selected ‘3’, whereas two participants selected ‘2’ and only one participant selected ‘1’ as an

answer.

0

0.5

1

1.5

2

2.5

3

3.5

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Q
es

ti
o

n
s

Participents

A B C D

 Page | 171

Table 8-4: The participants’ responses on feedback quality (Q1, 2 & 3)

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

1. Do you feel you gave

better feedback with

SQL-ME?

Yes

Yes Yes Yes Yes Yes

2. Can you estimate

whether you gave more

or less feedback with the

SQL-ME?

More feedback
More

feedback

More using of

the system

will lead to

more

feedback

With the

system more

can improve

the feedback

More

feedback

Consistent

feedback for all

students and

more feedback

3. Do you think you gave

better quality feedback

with SQL-ME? Explain.

Better quality because

you don’t waste time

on writing the same

feedback for all

students with the same

answer, so you can

spend time on writing

better and more

feedback.

Because it

give

specific

feedback

Yes, student

performance

will improve

by time with

using the

system

Yes, using

the partial

marking will

improve the

students’

performance

-

It can improve

feedback and

marks of the

students

In Q4.b, four participants selected answer number ‘1’ and two selected answer number ‘2’,

while In Q4.c, five participants chose number ‘3’ as their answer, and only one participant

selected answer number ‘1’, as illustrated in Figure 8-5.

Figure 8-5: The participants’ responses on feedback quality (Q4)

0

0.5

1

1.5

2

2.5

3

3.5

4

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Q
es

ti
o

n
s

Participents

a b c

 Page | 172

The last part of this experiment tested the usefulness of SQL-ME. The participants were

asked to test the rules on the SQL statements available on SQL-ME and give their predictions

of number of reductions of the SQL statements after applying the rules, as well as write their

feedback about these rules and how they can provide the examiners with an enhanced approach

of reducing the number of the SQL statements marked by the examiners. Figure 8-6 illustrates

the opinions of participants about the new marking system. The figure shows that all

participants were very satisfied with SQL-ME once they used it and experimented with its

features.

Figure 8-6: The participants’ responses on usefulness of SQL-ME

 Findings

The research presented in this chapter evaluated the semi-automatic assessment approach,

which is based on the integration of CBR and RBR systems. These systems need to be adopted

in the new marking technique for reusing previous SQL solutions for similar cases, which may

contribute towards providing students with consistent marks and feedback. Also, providing

timely feedback to students either individually or in groups would help students to improve

their SQL skills.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Q
u

es
ti

o
n

Participents

Part 1 Part 2 Part3 Part 4 Part5

 Page | 173

The same feedback can be used for different students if they make the same mistakes in the

same scenarios. Furthermore, using groups of SQL statements should help lecturers to send

either individualised feedback or detailed feedback to different students. This has encouraged

the standard of feedback generated and that SQL-ME has provided better feedback quality than

other tools since each clause will contain different feedback and it can be propagated. In

addition, the adoption of old solutions assists the marking process in identifying the unique

values of the statements that have not taken more time, as most of the statements would have

already been marked and highlighted. The CBR approach assists in saving markers valuable

marking time, and once the marking is accomplished, different students receive similar

feedback. The student may get a score for the partial answers, while the examiner needs all

students’ achievement info of the experiment for each question. This process is faster for the

examiner in terms of providing the same consistent feedback for all students. In addition, the

feedback part can have more specific features, where each student can receive more specific

detailed feedback about what exactly their mistakes were, which can help them to improve and

address their shortcomings.

 Summary

This chapter discussed three main topics; the generic marking rules of SQL statements, the

partial marking process of the SQL parts, and the propagation of marked SQL statements parts

using the SQL-ME tool. The partial marking and grouped SQL statements were tested and

evaluated. Most of the participants preferred the grouped SQL statements approach since it

saved more of their time and provided consistent feedback for all students. The integration of

the CBR and RBR systems have allowed the adoption of a new marking technique based on

reusing previous SQL solutions for similar cases, which has resulted in enhancing the marking

process of SQL statements and provided ideas on how to enhance the user interface to make it

more efficient. Furthermore, the human intervention can be further reduced by adding more

features through the integration of both systems. Overall, this research focused on improving

the learning and assessment of SQL statements by providing students with consistent and high

quality feedback. Furthermore, this research contributed towered saving marking time for all

examiners in the marking process using the CBR cycle. In addition, the use of RBR served to

enhance the marking of grouped statements and the evaluation of all answers equally.

 Page | 174

Chapter 9.

Conclusion and Future Work

9.1 Introduction

Manual grading of SQL exams is time consuming for most of the lecturers. This research

proposing a semi-automated assessment approach as a solution to ensure the consistency of the

SQL grades and feedback generated during the marking. It aims to minimise the required

human effort for assessing and evaluating SQL statements. Besides, it provides timely feedback

to the students, which can include individual and detailed feedback.

It summaries the work described in this thesis in section 9.2. The chapter list the main

contributions of the project in section 9.3. Section 9.4 discusses some of the limitations of the

work and how they might be overcome as a future work. Section 9.5 is the chapter summary.

9.2 Summary of each chapter

Chapter 1: an overview of computer assisted assessment and motivation. It discusses the aims

and objectives of the research. It discusses the research approach and contributions and lastly

it concludes by outlining the structure of this thesis.

Chapter 2: This chapter illustrates assessment in education and shows the process of computer-

assisted assessment and points out three different techniques of CAA and their features by

comparing them. In addition, it shows the definitions and specifies the difference between

manual and automated assessments.

Chapter 3: This chapter gives an overview of the Structured Query Language (SQL) in and

demonstrates the process of acceptable SQL assessment marking and SQL grading techniques.

In addition, the review of existing SQL learning and assessment tools and their features

explained in detail. It represents the two types of systems in AI used in education such as CBR

and RBR.

Chapter 4: This chapter discusses the three approaches to research and gives the types of

research designs and which design has been selected for this research. The chapter then

discusses the research data collection and data analysis methods.

 Page | 175

Chapter 5: describes the analysis of existing SQL statements exam scripts. It analysed the two

prospective areas of students and examiners. One is the common errors and different ways of

solving the queries of SQL statements done by students. Second, the time spent and consistency

difficulties to mark manual exams by examiners. It proposed specialised editor to enhance the

student query formulation and examiners marking process.

Chapter 6: It explains the design, implementation and evaluation of the specialised SQL

Formulation Editor (SQL-FE). It aimed to allow students to formulate the SQL statements

without adding any unnecessarily elements and make it more effective in case of spelling

mistakes done by students. Three different studies have taken place to test and evaluate the new

SQL-FE editor.

Chapter 7: explains the semi-automatic assessment approach stages. The approach stages in

this chapter are as follows pre-processing, normalisation and grouping, generic marking rules

and feedback propagation. The CBR and RBR systems are applied and tested in different

applications of the new marking techniques. The partial marking and generic rules marking

have given a consistent feedback and marks after using the marking process in the existing

SQL statements.

Chapter 8 explains the design, implementation and evaluation of the specialised SQL Marking

Editor (SQL-ME). It aimed to mark the students SQL answers of the grouped identical

statements. It shows the big contribution after adding the CBR approach on the system and test

the RBR to set up all the rules of the SQL statements.

Chapter 9 is the conclusion and future work of the semi- automatic assessment project.

The project has ensured the work of the semi-automatic approach.

9.3 Contributions

The novel contribution of this research is the development of a novel framework that provides

a platform to support the assessment process of SQL statements. Such a framework enables

human and computer association during assessment. Furthermore, this framework helps to

analyse beginner students’ SQL statements in terms of SQL clauses to provide consistent

feedback. The framework also reduces the overall SQL statement clauses marked by

examiners, enhances the accuracy of marking and provides students with immediate feedback.

 Page | 176

It utilises a semi-automated assessment approach, which supports the integration of both

case-based reasoning system and rule-based reasoning system to allow human markers. In

addition, it aims to reduce or remove as many of the repetitive tasks in all phases of the marking

process of SQL statements as possible. This contribution has led to several contributions to add

more effective SQL semi-automatic assessment project.

1. To identify the common mistakes committed by students and find the alternative ways of

solving the same SQL query, the researcher has collected and analysed previous SQL exam

papers. The analysis has gone through different phases to identify them.

2. To formulate SQL statements that eliminate adding unnecessary elements to SQL

statements and prevent students from making minor and avoidable mistakes, the researcher

has designed and implemented a new SQL Formulation Editor named as SQL-FE.

3. To obtain the students feedback of the new implemented editor and to test the editor

performance that reduce the errors while solving SQL statements, the researcher has

evaluated the SQL-FE from several college students and collect their opinions of how to

enhance it.

4. To reduce the repetitive marking in duplicated SQL answers or remove them completely

where possible, the researcher has applied the normalisation operation, which is based on

the proposed semi-automatic SQL assessment framework. This lead to develop a new

technique for marking process using the SQL generic marking rules. The SQL marking

process is an integration of both Rule-based Reasoning (RBR) and Case-based Reasoning

(CBR) systems. This method shows how efficiency and savings in marking time may be

obtained by reducing repetitive activities.

5. The marking process of the SQL statement has proposed a new semi-automatic assessment

framework to mark the identical SQL statements using a new SQL Marking Editor named

as SQL-ME.

6. To obtain the lecturers feedback of the new implemented editor and to evaluate the

feasibility of the editor performance, the researcher has performed an appropriate

experimental study to evaluate the feasibility of the semi-automatic assessment approach

using the new implemented SQL-ME through several SQL experienced lecturers and

collect their opinions of how to enhance it.

 Page | 177

9.4 Limitation and Future Work

This research has successfully achieved the main goals and objective. However, there are some

drawbacks, which are listed. In addition, each limitation listed can be considered as future work

and they way to solve it. For that, there are some limitations and their solutions, which can be

listed as follows.

1. Student is not allowed to use the Keyboard. This have made students confused as first time

use the editor, however, the main objective is not to add unnecessarily elements to the SQL

code.

Future work: This can be enhanced by converting the tool to be abdicable to work in touch

screens where some of them allow using touch pen. This would make the SQL-FE more

attractive and they will not need to use any typing since they need just to click-and-point

and get the results. In addition, Add the restricted programming language to restrict the

number of clauses appear for each SQL scenario. This would enhance the students SQL

practice skills and restricted the dissimilarities between the student answers.

2. The SQL-FE editor list of rows in each table that student can use to retrieve data from. This

is because of the design of the site has kept the table schema very limited with list of

columns and data types only.

Future work: This can be solved by adding a link to the other webpage that allow

maximising the table for students to retrieve all data they required and at the same time.

3. The SQL-FE is implemented to do simple work for first year of higher education.

Future work: Enhance the formulation editor to be more efficient for higher education

assessments. This means, make it more effective where it should contain more features to

be used by higher levels in education.

4. The generic rules have been formulated regarding to the existed SQL questions and used

limited number of SQL clauses to be tested. This has caused some drawback when testing

the rules on other statements.

Future work: Enhance the formulation of the generic marking rules to address the different

cases of SQL statements.

 Page | 178

5. As the SQL generic marking rules has taken long time to be formulated to make it generic

and can work with several types of syntax, the implementation has not been completed in

this section. On the other hand, the testing of rules in normal statements has given beneficial

results as mentioned in Chapter 8.

Future work: Implement the generic marking rules to enhance the grouping of each answer

and allow examiners to mark and give proper feedback. Simultaneously, this can be solved

by enhancing the usage of CBR and RBR for the marking purpose where more attributes

can be added and evaluated first. Then add the features on the user interface to make more

effective.

9.5 Summary

The novel contribution of this project was to develop the semi-automatic assessment of the

SQL statements. A novel framework that provides a platform to support the assessment process

of SQL statements has been implemented. It implement a new marking technique by

integrating the CBR and RBR systems by checking similarities between the old and new cases

or problems and find the matching parts to be adopted as solution. As well as, an SQL

Formulation Editor has been developed to enhance the learning of the SQL statements for

students.

Overall, participants (students and examiners) were satisfied with the performance of the

new SQL-FE and SQL-ME tools. This is because, it provides students with better environments

to formulate the SQL statements using SQL-FE. Also, it provides examiners with new marking

approach by using either partial marking by using SQL-ME1 or group identical SQL answer

by using SQL-ME2. Furthermore, they were also satisfied with the tools since they allowed

them to provide more consistent and personalised feedback in a short time period compared to

their traditional way of marking.

 Page | 179

References

Aamodt, A. and Plaza, E. (1994) Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications. IOS Press. Available at:

https://ibug.doc.ic.ac.uk/media/uploads/documents/courses/CBR-AamodtPlaza.pdf.

Abelló, A. et al. (2008) ‘LEARN-SQL: Automatic Assessment of SQL Based on IMS QTI

Specification.’, in ICALT. Citeseer, pp. 592–593.

Adams, A. and Cox, A. (2008) Questionnaires, in-depth interviews and focus groups.

Adesina, A. et al. (2013) ‘Use of multi-touch gestures for capturing solution steps in arithmetic

word problems’, pp. 6–8.

Adesina, A. et al. (2015) ‘A Semi-Automatic Computer-Aided Assessment Approach for

Marking and Providing Feedback Comments’, pp. 93–100.

Adesina, A. O. (2016) ‘A semi-automatic computer-aided assessment framework for primary

mathematics’, PQDT - UK & Ireland. Available at:

https://search.proquest.com/docview/1917320364?accountid=12063%0Ahttp://fg2fy8yh7d.se

arch.serialssolutions.com/directLink?&atitle=A+semi-automatic+computer-

aided+assessment+framework+for+primary+mathematics&author=Adesina%2C+Adewale+

O.&issn=&title=A+semi-.

Ahadi, A., Prior, J., et al. (2016) ‘Students’ Semantic Mistakes in Writing Seven Different

Types of SQL Queries’, in Proceedings of the 2016 ACM Conference on Innovation and

Technology in Computer Science Education - ITiCSE ’16. New York, New York, USA: ACM

Press, pp. 272–277. doi: 10.1145/2899415.2899464.

Ahadi, A., Behbood, V., et al. (2016) ‘Students’ Syntactic Mistakes in Writing Seven Different

Types of SQL Queries and its Application to Predicting Students’ Success’. doi:

10.1145/2839509.2844640.

Al-Salmi, A. (2018) A Web-based Semi-Automatic Assessment Tool for Formulating Basic

SQL Statements: Point-and-Click Interaction Method. Available at:

https://pdfs.semanticscholar.org/7afc/59a765b6641720566e261c464d91786bb09f.pdf.

Ala-Mutka, K. M. (2005) ‘A survey of automated assessment approaches for programming

assignments’, Computer Science Education, 15(2), pp. 83–102.

Batmaz, F. (2011) Semi-Automatic assessment of students’ graph-based diagrams. Available

at: https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/8431.

Batmaz, F. and Hinde, C. J. (2007) ‘A web-based semi-automatic assessment tool for

conceptual database diagram’, in Proceedings of the sixth Web-Based Education conference,

pp. 427–432.

 Page | 180

Bedford, S. and Price, G. (2007) ‘A study into the use of computer aided assessment to enhance

formative assessment during the early stages of undergraduate chemistry courses’.

Benford, S. D., Burke, E. K. and Foxley, E. (1993) Ceilidh: A course administration and

marking system. na.

Bennett, S. et al. (2017) ‘How technology shapes assessment design: Findings from a study of

university teachers’, British Journal of Educational Technology, 48(2), pp. 672–682. doi:

10.1111/bjet.12439.

Berka, P. (2011) ‘NEST: A Compositional Approach to Rule-Based and Case-Based

Reasoning’, Advances in Artificial Intelligence. Hindawi, 2011, pp. 1–15. doi:

10.1155/2011/374250.

Bichindaritz, I., Kansu, E. and Sullivan, K. M. (1998) Integrating Case-Based Reasoning,

Rule-Based Reasoning and Intelligent Information Retrieval for Medical Problem-Solving.

Available at: www.aaai.org.

Bisland, R. B. (1989) Database Management: Developing Application Systems Using

ORACLE. Prentice Hall (Works of Jonathan Edwards; 9).

Bloom, B. S. (1956) ‘Taxonomy of educational objectives. Vol. 1: Cognitive domain’, New

York: McKay.

Bluman, A. G. (2012) Elementary statistics - A step by step approach 8th edition (international

student edition). 8th edn. New York, USA: McGraw Hill Campanies.

Bobak, A. R. (1996) Distributed and Multi-Database Systems. 2nd edn. Artech House,INC

(Artech House computer science library).

Bonastre, O., Benavent, A. and Belmonte, F. (2006) ‘Pedagogical Use of Tablet PC for Active

and Collaborative Learning’, in 2006 IEEE International Professional Communication

Conference. IEEE, pp. 214–218. doi: 10.1109/IPCC.2006.320350.

Boritz, J., Booth, K. S. and Cowan, W. B. (1991) ‘Fitts’s Law Studies of Directional Mouse

Movement’, pp. 216–223.

Bruno, N. (2003) Statistics on Query Expressions in Relational Database Management

Systems.

Brusilovsky, P. et al. (2008) ‘An open integrated exploratorium for database courses’, ACM

SIGCSE Bulletin, 40(3), pp. 22–26.

Brusilovsky, P. et al. (2010) ‘Learning SQL programming with interactive tools: From

integration to personalization’, ACM Transactions on Computing Education (TOCE), 9(4), p.

19.

Bryman, A. et al. (2011) ‘Business Research Methods’, Oxford University Press, p. 220. doi:

0195430298.

 Page | 181

Bull, B. J. and Mckenna, C. (2004) ‘Blueprint for Computer-Assisted Assessment’,

2(November 2003).

Bull, J. and Danson, M. (2004) ‘Computer-assisted Assessment (CAA)’, 14(14), p. 26.

Available at:

https://www.heacademy.ac.uk/system/files/id350_computer_assisted_assessment_caa_.pdf.

Buyrukoglu, S. (2018) ‘Semi-automated assessment of programming languages for novice

programmers’.

Buyrukoglu, S., Batmaz, F. and Lock, R. (2016) Semi-automatic assessment approach to

programming code for novice students. Available at: https://dspace.lboro.ac.uk/2134/20477

(Accessed: 16 August 2018).

Cabrera, M. and Edye, E. (2010) ‘Integration of rule based expert systems and case based

reasoning in an acute bacterial meningitis clinical decision support system’, International

Journal of Computer Science and Information Security, 7(2), pp. 112–118.

Cabrera, M. M. M. and Edye, E. O. E. (2010) ‘Integration of Rule Based Expert Systems and

Case Based Reasoning in an Acute Bacterial Meningitis Clinical Decision Support System’,

International Journal of Computer Science and Information Security, 7(2), pp. 112–118.

Available at: http://arxiv.org/abs/1003.1493.

Carter, J. et al. (2003) ‘How shall we assess this?’, in ACM SIGCSE Bulletin. ACM, pp. 107–

123.

Chalmers, D. and McAusland, W. D. M. (2002) ‘Computer-assisted assessment’, The

Handbook for Economics Lecturers: Assessment. Edited by J. Houston and D. Whigham.

Economics LTSN, online at www. economics. ltsn. ac. uk/handbook.

Chan, D. and Schmitt, N. (1997) ‘Video-based versus paper-and-pencil method of assessment

in situational judgment tests: subgroup differences in test performance and face validity

perceptions.’, The Journal of applied psychology, 82(1), pp. 143–59. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/9119795 (Accessed: 3 September 2016).

Clark, I. (2011) ‘Formative Assessment: Policy, Perspectives and Practice’, Florida Journal of

Educational Administration & Policy, 4(2), pp. 158–180.

Codd, E. F. (1970) ‘A relational model of data for large shared data banks’, Communications

of the ACM, 13(6), pp. 377–387.

Conole, G. and Warburton, B. (2005) ‘A review of computer-assisted assessment’, Research

in learning technology, 13(1).

Cresswell, J. W. (2014) ‘The selection of a research approach’, in Research design: qualitative,

quantitative and mixed methods approaches, pp. 3–23. doi: 10.3917/rsi.100.0107.

Cumming, A. and Russell, G. (2005) ‘Automatic checking of SQL: Computerised grading.’,

International Journal of Learning, 12(3), pp. 127–134.

 Page | 182

Dalziel, J. (2001) ‘ENHANCING WEB-BASED LEARNING WITH COMPUTER

ASSISTED ASSESSMENT : PEDAGOGICAL AND TECHNICAL CONSIDERATIONS

considerations’. Available at: https://dspace.lboro.ac.uk/dspace-

jspui/bitstream/2134/1795/1/dalziel01.pdf.

Dekeyser, S., de Raadt, M. and Lee, T. Y. (2007) ‘Computer assisted assessment of SQL query

skills’, in Proceedings of the eighteenth conference on Australasian database-Volume 63.

Australian Computer Society, Inc., pp. 53–62.

Donahoo, M. J. and Speegle, G. D. (2010) SQL: Practical Guide for Developers. Elsevier

Science (The Practical Guides). Available at:

http://books.google.co.uk/books?id=19mS1g45fUEC.

Douce, C., Livingstone, D. and Orwell, J. (2005) ‘Automatic test-based assessment of

programming: A review’, Journal on Educational Resources in Computing (JERIC), 5(3), p.

4.

Dutta, S. and Bonissone, P. P. (2013) ‘Integrating Case-Based and Rule-Based Reasoning: the

Possibilistic Connection’. Available at: http://arxiv.org/abs/1304.1116 (Accessed: 19 August

2018).

Entwistle, N. (2000) ‘Promoting deep learning through teaching and assessment: conceptual

frameworks and educational contexts’, in TLRP conference, Leicester.

Fehily, C. (2010) SQL: Visual QuickStart Guide. Pearson Education. Available at:

http://books.google.co.uk/books?id=k9SE25v12I4C.

Gardiner, W. P. and Gettinby, G. (1998) Experimental Design Techniques in Statistical

Practice: A Practical Software-Based Approach. Elsevier Science (Horwood Series in

Mathematics & Applications).

Gillan, D. J. et al. (1990) ‘How does Fitts’ law fit pointing and dragging?’, in Proceedings of

the SIGCHI conference on Human factors in computing systems Empowering people - CHI ’90.

New York, New York, USA: ACM Press, pp. 227–234. doi: 10.1145/97243.97278.

Grange, J. (2011) T-test in Microsoft Excel,. Youtube. Available at:

https://www.youtube.com/watch?v=BlS11D2VL_U. (Accessed: 19 August 2016).

Greener, S. (2008) Business Research Methods. Ventus Publishing ApS.

Grosan, C. and Abraham, A. (2011) ‘Rule-Based Expert Systems’, in. Springer, Berlin,

Heidelberg, pp. 149–185. doi: 10.1007/978-3-642-21004-4_7.

Harlen, W. et al. (1992) ‘Assessment and the improvement of education∗’, The Curriculum

Journal, 3(3), pp. 215–230.

Harlen, W. and James, M. (1997) ‘Assessment and learning: differences and relationships

between formative and summative assessment’, Assessment in Education, 4(3), pp. 365–379.

Higgins, C. et al. (2003) ‘The coursemarker cba system: Improvements over ceilidh’,

Education and Information Technologies. Springer, 8(3), pp. 287–304.

 Page | 183

Higgins, C. A. et al. (2009) ‘Authoring diagram-based CBA with CourseMarker’, Computers

& Education, 52(4), pp. 749–761.

Higgins, C., Symeonidis, P. and Tsintsifas, A. (2002) ‘Diagram-based CBA using DATsys and

CourseMaster’, in Computers in Education, 2002. Proceedings. International Conference on.

IEEE, pp. 167–172.

Hopgood, A. a. (2012) Intelligent Systems for Engineers and Scientists. Third, Library. Third.

CRC Press.

Ihantola, P. et al. (2010) ‘Review of recent systems for automatic assessment of programming

assignments’, in Proceedings of the 10th Koli Calling International Conference on Computing

Education Research. ACM, pp. 86–93.

Inkpen, K. M. (2001) ‘Drag-and-Drop versus Point-and-Click Mouse Interaction Styles for

Children’, ACM Transactions on Computer-Human Interaction, 8(1), pp. 1–33.

Insa, D. and Silva, J. (2015) ‘Semi-Automatic Assessment of Unrestrained Java Code’, in

Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science

Education - ITiCSE ’15. New York, New York, USA: ACM Press, pp. 39–44. doi:

10.1145/2729094.2742615.

Jackson, D. (1996) ‘A software system for grading student computer programs’, Computers &

Education, 27(3–4), pp. 171–180. doi: 10.1016/S0360-1315(96)00025-5.

Jackson, D. and Usher, M. (1997) ‘Grading student programs using ASSYST’, in ACM

SIGCSE Bulletin. ACM, pp. 335–339.

James, R., McInnis, C. and Devlin, M. (2002) ‘Assessing learning in Australian universities’,

Melbourne: The University of Melbourne Centre for the Study of Higher Education.

John, C. (1992) Programming in SQL with ORACLE, Ingres and dBase IV. 1e edn. McGraw-

Hill Education - Europe.

Joy, M. S., Chan, P.-S. and Luck, M. (2000) ‘Networked submission and assessment’.

Kakkonen, T., Myller, N. and Sutinen, E. (2004) ‘Semi-Automatic Evaluation Features in

Computer-assisted Essay Assessment.’, in Cate, pp. 456–461.

Karavirta, V., Korhonen, A. and Malmi, L. (2007) ‘On the use of resubmissions in automatic

assessment systems’, Computer Science Education. Routledge, 16(3), pp. 229–240. doi:

10.1080/08993400600912426.

Ke, H., Zhang, G. and Yan, H. (2009) ‘Automatic grading system on sql programming’, in

Scalable Computing and Communications; Eighth International Conference on Embedded

Computing, 2009. SCALCOM-EMBEDDEDCOM’09. International Conference on. IEEE, pp.

537–540. doi: 10.1109/EmbeddedCom-ScalCom.2009.105.

Kearns, R., Shead, S. and Fekete, A. (1997) ‘A teaching system for SQL’, in Proceedings of

the 2nd Australasian conference on Computer science education. ACM, pp. 224–231.

 Page | 184

Kenny, C. and Pahl, C. (2005) ‘Automated tutoring for a database skills training environment’,

in ACM SIGCSE Bulletin. ACM, pp. 58–62.

Kleerekoper, A. and Schofield, A. (2018) ‘SQL tester: an online SQL assessment tool and its

impact’, in Proceedings of the 23rd Annual ACM Conference on Innovation and Technology

in Computer Science Education - ITiCSE 2018. New York, New York, USA: ACM Press, pp.

87–92. doi: 10.1145/3197091.3197124.

Kleiner, C., Tebbe, C. and Heine, F. (2013) ‘Automated grading and tutoring of SQL

statements to improve student learning’, in Proceedings of the 13th Koli Calling International

Conference on Computing Education Research. ACM, pp. 161–168.

Koenings, M. et al. (2015) ‘From Paper and Pencil to Tablet and Stylus: Automating the

Sneakers and Spokes Environmental Audit’, The FASEB Journal. Federation of American

Societies for Experimental Biology, 29(1 Supplement), p. 740.7.

Kolodner, J. (2014) Case-Based Reasoning. Elsevier Science.

Lans, R. F. (2007) Introduction to SQL: Mastering the Relational Database Language. 4th edn.

Addison-Wesley.

Li, C. C. (1964) Introduction to experimental statistics. McGraw-Hill (Probability and

Statistics Series).

Litoriya, R. and Ranjan, A. (2010) ‘Implementation of Relational Algebra Interpreter Using

Another Query Language’, in Data Storage and Data Engineering (DSDE), 2010 International

Conference on, pp. 24–28.

López-Pastor, V. and Sicilia-Camacho, A. (2017) ‘Formative and shared assessment in higher

education. Lessons learned and challenges for the future’, Assessment and Evaluation in

Higher Education, 42(1), pp. 77–97. doi: 10.1080/02602938.2015.1083535.

Luck, M. and Joy, M. (1999) ‘A secure on-line submission system’, Software-Practice and

Experience. London, New York, Wiley Interscience [etc.], 29(8), pp. 721–740.

Luger, G. and Stubblefield, W. A. (1998) ‘Artificial Intelligence: Strategies and Structures for

Complex Problem Solving’. Reading, MA: Addison-Wesley.

MacKenzie, I. S. (1992) ‘Fitts’ law as a research and design tool in human-computer

interaction’, 7, pp. 91–139.

McDonald, A. S. (2002) ‘The impact of individual differences on the equivalence of computer-

based and paper-and-pencil educational assessments’, Computers & Education, 39(3), pp. 299–

312. doi: 10.1016/S0360-1315(02)00032-5.

McQuain, W. (2003) ‘Curator: An electronic submission management environment’, Web page

last accessed July, 24, p. 2003.

Melton, J. (1993) Understanding the new SQL: a complete guide. Morgan Kaufmann.

 Page | 185

Mitrovic, A. (1998) ‘Learning SQL with a computerized tutor’, in ACM SIGCSE Bulletin.

ACM, pp. 307–311.

Mitrovic, A. (2003) ‘An intelligent SQL tutor on the web’, International Journal of Artificial

Intelligence in Education. IOS Press, 13(2), pp. 173–197.

Moran, M., Hawkes, M. and El Gayar, O. (2010) ‘Tablet Personal Computer Integration in

Higher Education: Applying the Unified Theory of Acceptance and Use Technology Model to

Understand Supporting Factors’, Journal of Educational Computing Research. SAGE

Publications, 42(1), pp. 79–101. doi: 10.2190/EC.42.1.d.

Murray, O. T. and Olcese, N. R. (2011) ‘Teaching and Learning with iPads, Ready or Not?’,

TechTrends. Springer US, 55(6), pp. 42–48. doi: 10.1007/s11528-011-0540-6.

National Institute of Education (1997) ERIC Resources in Education. D.H.E.W.,National

Institute of Education. Available at: http://books.google.co.uk/books?id=BEJwNJdHIs0C.

Noonan, R. E. (2006) ‘The back end of a grading system’, ACM SIGCSE Bulletin. ACM, 38(1),

p. 56. doi: 10.1145/1124706.1121360.

O’Reilly, M. and Morgan, C. (1999) ‘Online assessment: creating communities and

opportunities’. Kogan Page, SEDA.

Pardo, A. (2002) ‘A multi-agent platform for automatic assignment management’, in

Proceedings of the 7th annual conference on Innovation and technology in computer science

education - ITiCSE’02. New York, New York, USA: ACM Press, p. 60. doi:

10.1145/544414.544434.

Patel, J. (2012) SQL PL/SQL Programming. eBookIt. com.

Peat, M. and Franklin, S. (2002) ‘Use of online and offline formative and summative

assessment opportunities: have they had any impact on student learning?’, in ASCILITE, pp.

505–513.

Pieterse, V. (2013) ‘Automated Assessment of Programming Assignments’, Proceedings of the

3rd Computer Science Education Research Conference on Computer Science Education

Research. Open Universiteit, Heerlen, pp. 45–56. Available at:

http://dl.acm.org/citation.cfm?id=2541917.2541921 (Accessed: 10 May 2015).

Pinckok, N. and Brandt, W. C. (2009) ‘Connecting Formative Assessment RESEARCH to

PRACTICE An Introductory Guide for Educators’, p. 22. Available at:

http://files.eric.ed.gov/fulltext/ED509943.pdf.

Pribela, I. et al. (2014) ‘Tool for Testing Bad Student Programs’.

Prior, J. C. (2003) Online Assessment of SQL Query Formulation Skills, Proceedings of the

fifth Australasian conference on Computing education-Volume 20. Australian Computer

Society, Inc. Available at: http://dl.acm.org/citation.cfm?id=858403.858433 (Accessed: 10

March 2015).

 Page | 186

Prior, J. C. and Lister, R. (2004) ‘The backwash effect on SQL skills grading’, ACM SIGCSE

Bulletin, 36(3), pp. 32–36.

Quinn, G. P. and Keough, M. J. (2002) Experimental Design and Data Analysis for Biologists.

Cambridge University Press.

Raadt, M. De, Dekeyser, S. and Lee, T. Y. (2006) ‘Do students SQLify? improving learning

outcomes with peer review and enhanced computer assisted assessment of querying skills’, in

Proceedings of the 6th Baltic Sea conference on Computing education research: Koli Calling

2006. ACM, pp. 101–108.

Raadt, M. De, Dekeyser, S. and Lee, T. Y. (2007) ‘A system employing peer review and

enhanced computer assisted assessment of querying skills’, Informatics in education, 6(1), pp.

163–178.

Rawles, S., Joy, M. S. and Evans, M. (2002) ‘Computer-assisted assessment in computer

science: issues and software’. Department of Computer Science.

Renaud, K. and van Biljon, J. (2004) ‘Teaching SQL—Which Pedagogical Horse for This

Course?’, in. Springer (Key Technologies for Data Management), pp. 244–256.

Riesbeck, C. K. and Schank, R. C. (1989) Inside case-based reasoning. Lawrence Erlbaum

Associates, Pubs. Available at: https://dl.acm.org/citation.cfm?id=575859.

Rob, P., Coronel, C. and Crockett, K. (2008) Database systems: design, implementation &

management. Cengage Learning (Course technology). Available at:

https://books.google.co.uk/books?id=628ArHnYOR8C.

Romli, R., Sulaiman, S. and Zamli, K. Z. (2010) ‘Automatic programming assessment and test

data generation a review on its approaches’, in 2010 International Symposium on Information

Technology. IEEE, pp. 1186–1192. doi: 10.1109/ITSIM.2010.5561488.

Rowley, J. (2014) ‘Designing and using research questionnaires’, Management Research

Review, 37(3), pp. 308–330. doi: 10.1108/MRR-02-2013-0027.

Rowntree, D. (1987) Assessing students: How shall we know them? Taylor & Francis.

Russell, G. and Cumming, A. (2004) ‘Improving the student learning experience for SQL using

automatic marking.’, in CELDA, pp. 281–288.

Sadiq, S. et al. (2004) ‘SQLator: an online SQL learning workbench’, in ACM SIGCSE

Bulletin. Leeds, United Kingdom: ACM, pp. 223–227.

Sadler, D. R. (1998) ‘Formative assessment: Revisiting the territory’, Assessment in education.

Taylor & Francis, 5(1), pp. 77–84.

Saikkonen, R., Malmi, L. and Korhonen, A. (2001) ‘Fully automatic assessment of

programming exercises’, ACM SIGCSE Bulletin, 33(3), pp. 133–136. doi:

10.1145/507758.377666.

 Page | 187

Sasikumar, M. et al. (2007) ‘A Practical Introduction to Rule Based Expert Systems’,

(October), pp. 1–294.

Sclater, N. and Howie, K. (2003) ‘User requirements of the “ultimate” online assessment

engine’, Computers & Education, 40(3), pp. 285–306. doi: 10.1016/S0360-1315(02)00132-X.

Shah, P. and Oza, R. (2018) ‘Improved parallel Rabin-Karp algorithm using compute unified

device architecture’, in Smart Innovation, Systems and Technologies, pp. 236–244. doi:

10.1007/978-3-319-63645-0_26.

Slevitch, L. (2011) ‘Qualitative and Quantitative Methodologies Compared: Ontological and

Epistemological Perspectives’, Journal of Quality Assurance in Hospitality & Tourism, 12(1),

pp. 73–81. doi: 10.1080/1528008X.2011.541810.

Stephens, D., Bull, J. and Wade, W. (1998) ‘Computer‐assisted Assessment: suggested

guidelines for an institutional strategy’, Assessment & Evaluation in Higher Education.

Routledge, 23(3), pp. 283–294. doi: 10.1080/0260293980230305.

Taras, M. (2001) ‘The Use of Tutor Feedback and Student Self-assessment in Summative

Assessment Tasks: Towards transparency for students and for tutors’, Assessment &

Evaluation in Higher Education. Routledge, 26(6), pp. 605–614. doi:

10.1080/02602930120093922.

Taras, M. (2005) ‘Assessment–summative and formative–some theoretical reflections’, British

Journal of Educational Studies, 53(4), pp. 466–478.

The Council of Chief State School Officers (2008) ‘A TTRIBUTES OF E FFECTIVE F

ORMATIVE A SSESSMENT A WORK PRODUCT COORDINATED 1 BY S ARAH M C

M ANUS’, pp. 1–6.

Thompson, M. K. and Ahn, B. (2012) ‘The Development of an Online Grading System for

Distributed Grading in a Large First Year Project-Based Design Course’, in 119th ASEE

Annual Conference & Exposition.

Tremblay, G. and Labonté, É. (2003) ‘Semi-automatic marking of java programs using junit’,

in International Conference on Education and Information Systems: Technologies and

Applications (EISTA’03), pp. 42–47.

Tropashko, V. and Burleson, D. (2007) SQL Design Patterns: Expert Guide to SQL

Programming. Rampant Techpress.

Tselonis, C., Sargeant, J. and Wood, M. M. (2005) ‘Diagram matching for human-computer

collaborative assessment’.

Tshibalo, A. E. (2007) ‘The potential impact of computer-aided assessment technology in

higher education’, South African Journal of Higher Education: NADEOSA 2006: Special

Edition 6. Sabinet Online, 21, pp. 684–693.

University Northern Illinois (2004) Formative and Summative Assessment. Available at:

https://www.azwestern.edu/academic_services/instruction/assessment/resources/downloads/f

ormative and_summative_assessment.pdf.

 Page | 188

Walker, K. (2011) ‘Immediate Feedback to Students and Student Learning.’, Education

Partnerships, Inc.

Weinberger, A. (2011) Semi-Automatic Essay Assessment based on a flexible Rubric

Computer-unterst ¨ utzte Aufsatz Beurteilung basierend auf flexiblen Rubriken.

Woit, D. and Mason, D. (2003) ‘Effectiveness of online assessment’, ACM SIGCSE Bulletin.

ACM, 35(1), p. 137. doi: 10.1145/792548.611952.

Wong, K. Y. et al. (2012) ‘Linking IT-based semi-automatic marking of student mathematics

responses and meaningful feedback to pedagogical objectives’, Teaching Mathematics and its

Applications, 31(1), pp. 57–63. doi: 10.1093/teamat/hrr023.

 Page | 189

Appendices

Appendix 1: Conference Paper

 Page | 190

 Page | 191

 Page | 192

 Page | 193

 Page | 194

 Page | 195

 Page | 196

 Page | 197

Appendix 2: Ethical Clearance Checklist (for student involving Human Participants)

 Page | 198

 Page | 199

 Page | 200

 Page | 201

 Page | 202

Appendix 3: Permission to Conduct Research Study (SQL-ME Experiment)

Dear Sir/Madam

Director of Research Degree Programmes;

I am writing to request permission to conduct a research study at Loughborough University at

Computer Science Department. I am currently enrolled as a researcher in the Computer Science

Department at Loughborough University, UK. The study is entitled as Semi-Automatic

Assessments of basic SQL Statements.

I hope that the department administration will allow me to recruit at least 6 individuals

from the Computer Science Department to anonymously complete 4 pages questionnaire (Pdf

file attached). Due to the nature of the study, I hope to recruit examiners qualified in teaching

and assessing different modules of Database Program. They should at least have 3-5 years in

teaching database so they can be able to provide an objective evaluation based on their

experiences.

If approval is granted, examiner participants will complete the questionnaire after

conducting the marking experiment using the SQL Marking Editor (SQL-ME) in their offices

in their preferable timing. The questionnaire process should take no longer than 10 minutes

from the experiment time. The questionnaire results will be combined for the thesis project and

individual results of this study will remain absolutely confidential and anonymous. Should this

study be published, only pooled results will be documented. No costs will be incurred by either

your department or the individual participants.

Your approval to conduct this study will be greatly appreciated. I would be happy to

answer any questions or concerns that you may have at that time. If you agree, kindly contact

me at my email address: a.al-salmi@lboro.ac.uk

Sincerely,

Aisha AL Salmi

Computer Science Department, Loughborough University

Supervisors:

Professor. Eran Edirisinghe Email: E.A.Edirisinghe@lboro.ac.uk

Dr. Shaheen Fatima Email: S.S.Fatima@lboro.ac.uk

mailto:a.al-salmi@lboro.ac.uk
mailto:E.A.Edirisinghe@lboro.ac.uk
mailto:S.S.Fatima@lboro.ac.uk

 Page | 203

Appendix 4: Instructions and Rolls

A. Examiner Instructions

1. Open the following URL: https://co-project.lboro.ac.uk/coaa/student/

2. Login as: lct@gmail.com and password as: 1234

3. Click on the marking system on the left navigation bar.

4. From the list of three SQL question, select any question and start marking.

5. Write feedback for each clause for the student answer

6. Sign-out from the marking editor.

7. Fill up your questionnaire and submit them to the researcher.

B. Researcher Roll

1. Send email to the head of research programme, Loughborough University to get

permission to conduct study with Database experts.

2. Set date and time with advisor for the experiment setup.

3. Prepare instructions for the participants to be read and understood before the

experiment starts.

4. Distribute a list of three SQL questions along with SQL reference/model answers

and alternative answer for each question.

5. Briefly explain the objectives of the research experiment and what they need to do

while marking the SQL statements.

6. Give the proper time for the examiner to do the experiment and time to fill up the

questionnaire.

7. Combine the data retrieved from the experiment and start the analysis and

evaluation of the new implemented system.

https://co-project.lboro.ac.uk/coaa/student/
mailto:lct@gmail.com

 Page | 204

Appendix 5: Common errors made by the students in June 2013 of Database exam scripts

QID Question Description Model Answer Common Errors Examples of Students’ Errors Common Error/78

1.

Display the department

number and total salary

of employees in each

department that employs

five or more people.

SELECT DEPTNO, SUM(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING COUNT (EMPNO) >=5;

Use WHERE instead of

HAVING.

SELECT DEPTNO, SUM(SAL)
FROM EMP
GROUP BY DEPTNO
WHERE COUNT (DEPTNO)>=5;

29

Missing SQL function

SUM()

SELECT DEPTNO, (SAL)
FROM EMP
GROUP BY DEPTNO
HAVING COUNT (EMPNO)>5;

10

Use TOTAL instead of

SUM

SELECT DEPTNO, TOTAL(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING (COUNT (DEPTNO)>=5);

4

Use COUNT instead of

SUM

SELECT DEPTNO, COUNT(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING COUNT(SAL)>=5;

3

2.
Display the name of each

employee with his/her

department name.

SELECT DEPTNAME, EMPNAME
FROM DEPT INNER JOIN EMP
ON DEPT.DEPTNO = EMP.DEPTNO;

Use OUTER JOIN instead

of INNER JOIN

SELECT EMPNAME, DEPTNAME
FROM DEPT OUTER JOIN EMP
WHERE EMP.DEPTNO =DEPT.DEPTNO;

13

Didn't complete all SQL

Syntax

SELECT EMPNAME, DEPTNAME
FROM EMP, DEPT;

11

Add GROUP BY on the

statement

SELECT EMPNAME, DEPTNAME
FROM EMP, DEPT
GROUP BY DEPTNO;

7

3.

Display the names of all

employees who work in a

department that employs

an analyst.

SELECT EMPNAME
FROM EMP
WHERE DEPTNO IN (SELECT DISTINCT DEPTNO
 FROM EMP
 WHERE JOB ='ANALYST');

Add GROUP BY on the

statement

SELECT EMPNAME
FROM EMP WHERE DEPNO= (SELECT
DEPTNO FROM EMP
WHERE JOB='ANALYST'
GROUP BY DEPTNO);

20

Didn't complete all SQL

Syntax

SELECT EMPNAME FROM EMP WHERE
JOB= ‘ANALYST’;

35

 Page | 205

4.

Create a new empty

table called EMP1. This

table should have the

same field names and

types as the EMP table.

CREATE TABLE ''EMP1'' (''EMPNO'' INTEGER,
''EMPNAME'' VARCHAR(15), ''JOB''
VARCHAR(15), ''MGR'' INTEGER,''HIREDATE''
DATE, ''SAL'' INTEGER, ''COMM'' INTEGER,
''DEPTNO'' INTEGER, ''JOBNO'' INTEGER);

Create table without

adding data type

CREATE TABLE EMP1 (EMPNO,
EMPNAME, JOB, SAL, DEPTNO, MGR,
HIREDATE);

30

5.
Fill your new EMP1 table

with the data from the

EMP table.

INSERT INTO EMP1 SELECT EMP.*
FROM EMP;

Use COPY rather than

INSERT

COPY EMP INSERT EMP1 (EMPNO,
EMPNAME, JOB, SAL, DEPTNO, MGR,
HIREDATE);

2

Use UPDATE rather than

INSERT

UPDATE TABLE EMP1
VALUES (SELECT * FROM EMP);

5

Didn't complete all SQL

Syntax
SELECT INTO EMP1 FROM EMP;

7

Use ALTER rather than

INSERT

ALTER TABLE EMP1 (UPDATE EMPNO,
EMPNAME, JOB, SAL, DEPTNO, MGR,
HIREDATE WITH EMP);

1

Didn't complete all SQL

Syntax

INSERT EMP1 VALUE (SELECT * FROM
EMP);

25

6.

Change the DEPT table

so that the DEPTNO field

is specified as the

primary key.

ALTER TABLE DEPT ADD CONSTRAINT PKEY
PRIMARY KEY (DEPTNO);

Using MODIFY instead

of ALTER

MODIFY DEPTNO FROM DEPT;

6

Using UPDATE instead

of ALTER

UPDATE TABLE DEPT SET DEPTNO
PRIMARY KEY;

22

7.

Configure the EMP1

table such that if a

department is deleted

from the DEPT table any

associated employees are

automatically deleted

from the EMP1 table.

ALTER TABLE EMP1 ADD CONSTRAINT FKEY
FOREIGN KEY (DEPTNO) REFERENCES DEPT
(DEPTNO) ON DELETE CASCADE;

Missing Constraint

References for the

Foreign Key

ALTER TABLE EMP ADD (DEPTNO)
DEPT(DEPTNO) ON DELETE CASCADE; 24

Using UPDATE instead

of ALTER

UPDATE EMP1 (DEPTNO INTEGER
REFERENCES DEPARTMENT(DEPTNO)); 7

Using DELETE instead of

ALTER

DELETE CASCADE EMP1 INNER JOIN
DEPT;

4

Using DROP instead of

ALTER

DROP EMP1 ON SELECT DEPT.DEPTNO
FROM DEPT LEFT OUTER JOIN EMP ON
DEPT.DEPNO= EMP.DEPTNO IS NULL;

5

 Page | 206

Appendix 6: Common errors made by the students in June 2014 of Database exam scripts

QID Question Description Model Answer Common Errors Description Examples of Students’ Errors Common Error/72

1.
List the names and hire dates of

all employees in the order they

were hired.

SELECT EMPNAME, HIREDATE
FROM EMP
ORDER BY HIREDATE;

Use Group by instead of ORER BY

SELECT EMPNAME, HIREDATE
FROM EMP
GROUP BY HIREDATE;

10

Use sort by instead of ORDER BY

SELECT EMPNAME, HIREDATE
FROM EMP
SORT BY HIREDATEASC;

6

Use list by instead of ORDER BY

SELECT EMPNAME, HIREDATE
FROM EMP
LIST BY HIREDATEASC;

2

Didn't complete all SQL Syntax
SELECT EMPNAME
FROM EMP;

8

2.

List the department number and

total salary of employees in each

department that employs four or

more people.

SELECT DEPTNO, SUM(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING COUNT (EMPNO) >= 4;

Use WHERE instead of GROUP

BY and HAVING

SELECT DEPTNO, SUM(SAL)
FROM EMP
WHERE COUNT (EMPNO) >= 4;

27

Missing SQL function Sum()

SELECT DEPTNO, SAL
FROM EMP
GROUP BY DEPTNO
HAVING COUNT (DEPTNO) >3;

10

Use Total instead of SUM

SELECT DEPTNO, TOTAL(SAL)
FROM EMPGROUP BY DEPTNO
HAVING COUNT (EMPNO)>=4;

4

Didn't complete all SQL Syntax
SELECT DEPTNO,EMPNO, SUM(SAL)
FROM EMP GROUP BY DEPTNO >=4;

19

3.
Give a list of ALL department

names with the employees in

each department.

SELECT DEPTNAME, EMPNAME
FROM DEPT
LEFT OUTER JOIN EMP
ON DEPT.DEPTNO = EMP.DEPTNO;

Add Group by on the statement
SELECT EMPNAME, DEPTNAME
FROM EMP, DEPT GROUP BY DEPTNO; 15

Forgot to add JOIN
SELECT DEPTNAME, EMPNO FROM DEPT,
EMP WHERE EMP.DEPTNO= DEPT.DEPTNO;

22

Didn't complete all SQL Syntax

SELECT EMPNAME, DEPTNAME
FROM EMP WHERE
DEPT.DEPTNO=EMP.DEPTNO;

30

 Page | 207

4.

Produce a list the names of

salesmen together with their

department names. List only

those salesmen that work in an

existing department.

SELECT DEPTNAME, EMPNAME
FROM EMPINNER JOIN DEPT
ON EMP.EMPNO =DEPT.DEPTNO
WHERE JOB="SALESMAN"
AND DEPTNO IS NOT NULL;

Didn't complete all SQL Syntax

SELECT EMPNAME, DEPTNAME
FROM EMP
WHERE JOB=’SALESMAN’ AND;

28

SELECT EMPNAME, DEPTNAME
FROM EMP, DEPT
WHERE EMP. DEPTNO = DEPT. DEPTNO;

18

5.

Create an empty new table

called JOBS with two fields, an

integer field called JOBNO and

a 15-character text field called

JOB.

CREATE TABLE JOBS (JOBNO INTEGER,
JOB VARCHAR(15));

Use String or Text instead of

varchar or char

CREATE TABLE JOBS (JOBNO INT, JOB
TEXT(15));

7

Use Update or Create instead of

Create

UPDATE JOBS (JOBNO INTEGER (10), JOB
VARCHAR (15));

2

Didn't complete all SQL Syntax CREATE TABLE (JOBNO, JOB) 12

6.

Fill your new JOBS table with

null values for the JOBNO and

the job values from the EMP

table.

INSERT INTO JOBS(JOB)
SELECT DISTINCT JOB
FROM EMP;

Use Update or Create instead of

Insert

UPDATE JOBS AS (SELECT JOB FROM EMP)
WHERE JOBNO=NULL.

10

Didn't complete all SQL Syntax INSERT INTO JOBS (JOB) SELECT EMP(JOB) 40

7.

Create a view called BOSS

which has the name and number

of each employee with the name

and number of his or her

manager (with blanks alongside

any employee that has no

manager).

CREATE VIEW BOSS AS
SELECT A.EMPNAME AS
EMPLOYEENAME, A.EMPNOAS
EMPLOYEENO, B.EMPNAME AS
BNAME,B.EMPNO AS BOSSNO
FROM EMPA LEFT OUTER JOIN EMPB
ON A.MGR = B.EMPNO;

Use Insert instead of SELECT

CREATE VIEW BOSS INSERT EMPNAME,
MGR FROM EMP, DEPTDEPTNO.
DEPT=DEPTNO= EMP;

3

Add GROUP BY on the statement

CREATE VIEW BOSS(SELECT EMPNAME,
MGR, EMPNO
FROM EMP
GROUP BY EMPNAME);

4

Didn't complete all SQL Syntax

CREATE VIEW BOSS AS A.EMPNAME,
A.EMPNO, B.ENAME, B.EMPNO LEFT OUTER
JOIN ON A.MGR=B.EMPNO;

30

 Page | 208

Appendix 7: Different Model Answers for SQL Questions of 2013 Exam Scripts

QID Question Description Model Answers

i. Model Answer

ii. Instructor Model Answer

iii. Student Model Answer

No. of

Student

Answered

Correct

No. of Student

Attempted of

/78

% of Student

Answered Correct

No. of Student

Answered

Incorrect

% of Student

Answered

Incorrect

1.

Display the department number

and total salary of employees in

each department that employs

five or more people.

i. SELECT DEPTNO, SUM(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT (EMPNO) >=5;

41 78
(41/78)*100 =

53%

78-(41)

= 37

(37/78)*100

= 47%

2.

Display the name of each

employee with his/her

department name.

ii. SELECT DEPTNAME, EMPNAME

FROM DEPT

INNER JOIN EMP

ON DEPT.DEPTNO = EMP.DEPTNO;

15

78
(15+38/78)*100

= 68%

78-(53)

=25

(25/78)*100

= 32%
iii. SELECT EMPNAME, DEPTNAME

FROM EMP, DEPT

WHERE EMP.DEPTNO=DEPT.DEPTNO;

38

3.

Display the names of all

employees who work in a

department that employs an

analyst.

i. SELECT EMPNAME

FROM EMP

WHERE DEPTNO IN (SELECT DISTINCT DEPTNO

FROM EMP WHERE JOB

='ANALYST';

24

77
(24+2/77)*100

= 34%

77-(26)

=51

(51/77)*100

=66%

ii. SELECT DISTINCT E1.EMPNAME

FROM EMPE1, EMPE2

WHERE E1.DEPTNO= E2.DEPTNO

AND E2.JOB= 'ANALYST';

1

iii. SELECT EMPNAME

FROM EMPA, EMPB

WHERE A.DEPTNO=B.DEPTNO

AND B.JOB LIKE 'ANALYST';

1

 Page | 209

4.

Create a new empty table

called EMP1. This table should

have the same field names and

types as the EMP table.

i. CREATE TABLE ''EMP1'' (''EMPNO'' INTEGER,

''EMPNAME'' VARCHAR(15), ''JOB''

VARCHAR(15), ''MGR'' INTEGER,''HIREDATE''

DATE, ''SAL'' INTEGER, ''COMM'' INTEGER,

''DEPTNO'' INTEGER, ''JOBNO'' INTEGER);

48

75
(48/75)*100

= 64%

75-48

=27

(27/75)*100

=36%

ii. CREATE TABLE EMP1 AS SELECT EMPNO,

EMPNAME, MGR, HIREDATE, SAL, COMM,

DEPTNO, JOBNO FROM EMPLOYEE;

0

5.

Fill your new EMP1 table with

the data from the EMP table.

i. INSERT INTO EMP1 SELECT EMP.* FROM EMP;

22

70
(22+8/70)*100

= 43%

70-(30)

=40

(40/70)*100

=57%
ii. INSERT INTO EMP1 AS (SELECT EMPNO,

EMPNAME, JOB, SAL, DEPTNO, MGR,

HIREDATE FROM EMP);

8

6.

Change the DEPT table so that

the DEPTNO field is specified

as the primary key.

i. ALTER TABLE DEPT ADD CONSTRAINT PKEY

PRIMARY KEY (DEPTNO);

 2 53
(2/53)*100

= 4%

53-2

=51

(51/53)*100

=96%

7.

Configure the EMP1 table such

that if a department is deleted

from the DEPT table any

associated employees are

automatically deleted from the

EMP1 table.

i. ALTER TABLE EMP1 ADD CONSTRAINT FKEY

FOREIGN KEY (DEPTNO) REFERENCES

DEPT(DEPTNO) ON DELETE CASCADE;

1 33

(1/33)*100

= 3%

33-1

=32

(32/33)*100

=97%

 Page | 210

Appendix 8: Different Model Answers for SQL Questions of 2014 Exam Scripts

QID Question Description Model Answers

i. Instructor Model Answer

ii. Instructor Model Answer

iii. Student Model Answer

No. of Student

Answered

Correct

No. of Student

Attempted Out

of/ 72

% of Student

Answered

Correct

No. of

Student

Answered

Incorrect

% of Student

Answered

Incorrect

1.

List the names and hire dates

of all employees in the order

they were hired.

i. SELECT EMPNAME, HIREDATE
FROM EMP
ORDER BY HIREDATE;

48 72
(48/72)*100 =

53%

72-48

= 37

(37/72)*100

= 47%

2.

List the department number

and total salary of employees

in each department that

employs four or more people.

i. SELECT DEPTNO, SUM(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING COUNT (EMPNO) >= 4;

31 72
(31/72)*100

= 43%

72-31

= 41

(41/72)*100

= 57%

3.

Give a list of ALL

department names with the

employees in each

department.

i. SELECT DEPTNAME, EMPNAME
FROM DEPT LEFT OUTER JOIN EMP
ON DEPT.DEPT = EMP.DEPTNO;

8

71
(8+3/71)*100

= 15%

71-11

= 60

(60/71)*100

= 85% ii. SELECT DEPTNAME, EMPNAME
FROM DEPT LEFT OUTER JOIN EMP
WHERE DEPT.DEPT = EMP.DEPTNO;

3

4.

Produce a list the names of

salesmen together with their

department names. List only

those salesmen that work in

an existing department.

i. SELECT DEPTNAME, EMPNAME
FROM EMP INNER JOIN DEPT
ON EMP.DEPTNO =DEPT.DEPTNO
WHERE JOB="SALESMAN"
AND DEPTNO IS NOT NULL;

5

70
(5+23/70)*100

= 40%

70-28

= 42

(42/70)*100

= 60%
ii. SELECT EMPNAME, DEPTNAME

FROM EMP, DEPT
WHERE JOB='SALESMEN'
AND EMP.DEPTNO=DEPT.DEPTNO;

23

5.

Create an empty new table

called JOBS with two fields,

an integer field called

JOBNO and a 15 character

text field called JOB.

i. CREATE TABLE JOBS
(JOBNO INTEGER,JOB VARCHAR(15));

53 70
(53/70)*100

= 76%

70-53

= 17

(17/70)*100

= 24%

 Page | 211

6.

Fill your new JOBS table

with null values for the

JOBNO and the job values

from the EMP table.

i. INSERT INTO JOBS(JOB)
SELECT DISTINCT JOB
FROM EMP;

11 67
(11/67)*100

= 16%

67-11

= 56

(56/67)*100

= 84%

7.

Create a view called BOSS

which has the name and

number of each employee

with the name and number of

his or her manager (with

blanks alongside any

employee that has no

manager).

i. CREATE VIEW BOSS AS SELECT A.EMPNAME
AS EMPNAME, A.EMPNO AS EMPNO,
B.EMPNAME AS BNAME, B.EMPNO AS
BOSSNO FROM EMPA LEFT OUTER JOIN EMPB
ON A.MGR = B.EMPNO;

4

52
(4+4/52)*100

= 15%

52-8

= 44

(44/52)*100

= 85% ii. CREATE VIEW BOSS AS SELECT EMPNO,
EMPNAME, JOB, MGR,HIREDATE, DEPTNAME
FROM EMP, DEPT
WHERE EMP.DEPTNO=DEPT.DEPTNO;

4

 Page | 212

Appendix 9: Grouping the student error in 2013 under each error category

QID No. of

Student

Answered

Incorrect

Errors Category Examples of Students’ Common

Errors

No. of

Students

Committed

Errors

Total No. of

Students

Committed

Errors

1. 37

Syntax Error

SELECT DEPTNO, SUM(SAL)

FROM EMP

GROUP BY DEPTNO

WHERE COUNT (DEPTNO)>=5;

28

46

Incomplete SQL

Syntax

SELECT DEPTNO, ? SAL

FROM EMP

GROUP BY DEPTNO

HAVING COUNT (EMPNO)>5;

11

Synonyms Error

SELECT DEPTNO, TOTAL (SAL)

FROM EMP

GROUP BY DEPTNO

HAVING (COUNT (DEPTNO)>=5);

4

Incorrect

Keyword/Function

SELECT DEPTNO, COUNT(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(SAL)>=5;

3

2. 25

Incomplete SQL

Syntax

SELECT EMPNAME, DEPTNAME

FROM EMPLOYEE, DEPARTMENT?
11

18
Incorrect

Keyword/Function

SELECT EMPNAME, DEPTNAME

FROM EMP, DEPT

GROUP BY DEPTNO;

7

3. 51

Incorrect

Keyword/Function

SELECT EMPNAME

FROM EMP

WHERE DEPTNO = (SELECT DEPTNO

 FROM EMP

 WHERE JOB='ANALYST'

 GROUP BY DEPTNO);

20

55

Incomplete SQL

Syntax

SELECT EMPNAME

FROM EMP

WHERE JOB= ‘ANALYST’;

35

4. 27
Incomplete SQL

Syntax

CREATE TABLE EMP1 (DEPTNO,

EMPNAME, JOB, SAL, DEPTNO, MGR,

HIREDATE)?;

30 30

5. 40

Synonyms Error

COPY EMPINSERT EMP1 (EMPNO,

EMPNAME, JOB, SAL, DEPTNO, MGR,

HIREDATE);

2

40

Incorrect

Keyword/Function

UPDATE TABLE EMP1(EMP.EMPNO,

EMP.EMPNAME, EMP.EMPNAME,

EMP.JOB, EMP.SAL, EMP.DEPTNO,

EMP.MGR, EMP.HIREDATE)

5

 Page | 213

Incomplete SQL

Syntax

SELECT INTO EMP 1

FROM EMP;
7

Synonyms Error

ALTER TABLE EMP1(UPDATE EMPNO,

EMPNAME, JOB, SAL, DEPTNO, MGR,

HIREDATE WITH EMP);

1

Incomplete SQL

Syntax

INSERT EMP1 VALUE (SELECT * FROM

EMP)?;
25

6. 51

Incorrect

Keyword/Function

UPDATE TABLEDEPT SET DEPTNO

PRIMARY KEY;
22

28

Synonyms Error
MODIFY DEPTNO

FROM DEPT;
6

7. 32

Incorrect

Keyword/Function

UPDATE EMP1(DEPTNO INTEGER

REFERNES DEPT(DEPTNO));

UPDATE DEPT(DEPTNO DELETE

CASCADE);

7

16

DELETE CASCADE EMPLOYEE1 INNER

JOIN DEPARTMENT;
4

Syntax Error

DROP EMP1 ON SELECT

DEPT.DEPTNOFROM DEPT LEFT OUTER

JOIN EMPON DEPT.DEPTNO

=EMP.DEPTNOWHERE DEPT.DEPTNO IS

NUIL;

5

 Page | 214

Appendix 10: Grouping the student error in 2014 under each error category

QID No. of

Student

Answered

Incorrect

Errors Category Examples of Students' Common

Errors

No. of Students

Committed

Errors

Total No. of

Students

Committed

Errors

1. 37

Incorrect

Keyword/Function

SELECT EMPNAME, HIREDATE

FROM EMP

GROUP BY HIREDATE;

10

26
Synonyms Error

SELECT EMPNAME. HIREDATE

FROM EMP

SORT BY HIREDATE;

6

SELECT EMPNAME. HIREDATE

FROM EMP

LIST BY HIREDATE;

2

Incomplete SQL Syntax
SELECT EMPNAME

FROM EMP?;
8

2. 41

Syntax Error

SELECT DEPTNO, SUM(SAL)

FROM EMP

GROUP BY DEPTNO

WHERE COUNT(EMPNO)>=4;

27

60

Incomplete SQL Syntax

SELECT DEPTNO, SAL

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(DEPTNO)>3;

10

Synonyms Error

SELECT DEPTNO, TOTAL(SAL)

FROM EMP

GROUP BY DEPTNO

HAVING COUNT(EMPNO)>4;

4

Incomplete SQL Syntax

SELECT DEPTNO, EMPNO, SUM(SAL)

FROM EMP

GROUP BYDEPTNO =>4;

19

3. 60

Incorrect

Keyword/Function

SELECT EMPNAME, DEPTNAME

FROM EMP, DEPT

GROUP BY DEPTNO;

15

67 Incomplete SQL Syntax
SELECT EMPNAME, DEPTNAME

FROM EMP,DEPT?
22

Incorrect

Keyword/Function

SELECT EMPNAME, DEPTNAME

FROM EMP

WHERE DEPT.DEPTNO= EMP. DEPTNO;

30

4. 42 Incomplete SQL Syntax

SELECT EMPNAME, DEPTNAME

FROM EMP

WHERE JOB=’SALESMAN’ AND;

28

46

5. 17
Incorrect

Keyword/Function

UPDATE JOBS (JOBNO CHAR(10), JOB

VARCHAR(15));
2 21

 Page | 215

Syntax Error
CREATE TABLE (JOBNO INTEGER, JOB

TEXT(15));
7

CREATE TABLE (JOBNO, JOB)?

12

6. 56

Incorrect

Keyword/Function

UPDATE TABLE JOBSWHERE

JOBNO=NULL AND JOBS.JOB=EMP.JOB

FROM EMP;

10

50

Incomplete SQL Syntax
INSERT INTO JOBS (JOB)

SELECT EMP(JOB)?; 40

7. 44

Syntax Error

CREATE VIEW BOSS INSERT EMPNAME,

MGR FROM EMP, DEPTDEPTNO.

DEPT=DEPTNO= EMP;

3

37
Incorrect

Keyword/Function

CREATE VIEW BOSS (SELECT EMPNAME,

MGR, EMPNO

FROM EMP

GROUP BY EMPNAME);

4

Incomplete SQL Syntax

CREATE VIEW BOSS AS A.EMPNAME,

A.EMPNO, B.ENAME, B.EMPNO LEFT

OUTER JOIN ON A.MGR=B.EMPNO;

30

 Page | 216

Appendix 11: Student SQL errors in manual method

ENo Error Description Student Answer Samples

1.

Unwanted words e.g.

Schema

2.

Reserved SQL Keywords

e.g.

OF, START and NAME

3.
Incorrect SQL syntax

4.
Missing SQL command

 Page | 217

Appendix 12: SQL-FE Experiment and Feedback details

A. Instruction for Examiner: Microsoft SQL Server Tool

1. Run the following SQL:

1.1. Create Faculty Table:

CREATE TABLE FACULTY (FAC_ID VARCHAR (15), FAC_NAME VARCHAR (20), BIRTH_DATE

DATE, DEPARTMENT VARCHAR(20), GENDER VARCHAR(15), SALARY NUMBER(8,2),

CONSTRAINT PK_FAC_ID PRIMARY KEY (FAC_ID));

Faculty Table:

FAC_ID FAC_NAME BIRTH_DATE DEPARTMENT GENDER SALARY

D01 Amy Dancer 25-JUN-71 Computer Science Female 34500

J01 Ray Johnson 05-OCT-70 Computer Science Male 40000

S01 Wendy Swimmer 22-AUG-70 Computer Science Female 45000

J02 Bob Jones Accounting Male 35000

N01 Jack Nelson 10-JAN-71 History Male 28000

D02 Jinee Jackson Accounting Female 34500

S02 William James 11-NOV-67 Accounting Male 30500

1.2. Insert rows into Faculty table:

INSERT INTO FACULTY VALUES('D01', 'Amy Dancer', '25-JUN-71', 'Computer

Science', 'Female',34500);

INSERT INTO FACULTY VALUES('J01','Ray Johnson', '05-OCT-70', 'Computer

Science', 'Male',40000);

INSERT INTO FACULTY VALUES('S01', 'Wendy Swimmer', '22-AUG-70', 'Computer

Science', 'Female',45000);

INSERT INTO FACULTY VALUES('J02', 'Bob Jones', NULL, 'Accounting',

'Male',35000);

INSERT INTO FACULTY VALUES('N01', 'Jack Nelson', '10-JAN-71', 'History',

'Male',28000);

INSERT INTO FACULTY VALUES('D02', 'Jinee Jackson', NULL, 'Accounting',

'Female',34500);

INSERT INTO FACULTY VALUES('S02', 'William James', '11-NOV-67',

'Accounting', 'Male',30500);

1.3. Create Course Table:

CREATE TABLE COURSE (COURSE_ID VARCHAR(15), COURSE_TITLE VARCHAR(30),

SECTION NUMBER, FAC_ID VARCHAR(15), PRIMARY KEY(COURSE_ID), FOREIGN KEY

(FAC_ID) REFERENCES FACULTY(FAC_ID));

Course Table:

COURSE_ID COURSE_TITLE SECTION FAC_ID

CSC100 Intro. to Computing 1 J01

CSC101 Pascal Programming 1 D01

CSC102 Database Management 2 J01

ACC200 Principles Of Accounting I 2 J02

ACC201 Principles Of Accounting II D02

HIS200 England History 1 N01

HIS201 Europe History N01

 Page | 218

1.4. Insert rows into course table:

INSERT INTO COURSE VALUES('CSC100','Intro. To Computing', 1, 'J01');

INSERT INTO COURSE VALUES('CSC101','Pascal Programming', 1, 'D01');

INSERT INTO COURSE VALUES('CSC102','Database Management', 2, 'J01');

INSERT INTO COURSE VALUES('ACC200','Principles Of Accounting I', 2, 'J02');

INSERT INTO COURSE VALUES('ACC201','Principles Of Accounting II',NULL, 'D02');

INSERT INTO COURSE VALUES('HIS200', 'England History', 1, 'N01');

INSERT INTO COURSE VALUES('HIS201', 'Europe History', NULL, 'N01');

2. Make sure student save the answer by creating new SQL file and name it as:
StudentEmailAddress_SETA

3. Check student Microsoft SQL Server Tool tables by run:

 SELECT * FROM FACULTY;

FAC_ID FAC_NAME BIRTH_DATE DEPARTMENT GENDER SALARY

D01 Amy Dancer 25-JUN-71 Computer Science Female 34500

J01 Ray Johnson 05-OCT-70 Computer Science Male 40000

S01 Wendy Swimmer 22-AUG-70 Computer Science Female 45000

J02 Bob Jones Accounting Male 35000

N01 Jack Nelson 10-JAN-71 History Male 28000

D02 Jinee Jackson Accounting Female 34500

S02 William James 11-NOV-67 Accounting Male 30500

 SELECT * FROM COURSE;

COURSE_ID COURSE_TITLE SECTION FAC_ID

CSC100 Intro. to Computing 1 J01

CSC101 Pascal Programming 1 D01

CSC102 Database Management 2 J01

ACC200 Principles Of Accounting I 2 J02

ACC201 Principles Of Accounting II D02

HIS200 England History 1 N01

HIS201 Europe History N01

4. Give students copy of exam questions which contains 5 questions as showing in Table 1:

Table 1: SQL Questions (SET A)

QNo. Question

1.
Find the names of all faculties who work at the accounting department with salary amounts

greater than 34500.

2.
List the faculty names and departments of all faculties which their birth date is recorded

and have at least one section. Sort the result in ascending order of the departments.

3.
Write a SQL statement that retrieves only those departments having average salary more

than 30500.

4. Find out all the course titles of faculties work in accounting department.

5.
Find those departments for which the average salary is greater than or equal to all average

salaries.

 Page | 219

4. Check student saving file.

5. Collect all files in one folder.

B. Instruction for Student: Microsoft SQL Server Tool

1. Create file as: StduentEmailAddress_SETA

 Check Microsoft SQL Server Tool tables by run: SELECT * FROM FACULTY;

FAC_ID FAC_NAME BIRTH_DATE DEPARTMENT GENDER SALARY

D01 Amy Dancer 25-JUN-71 Computer Science Female 34500

J01 Ray Johnson 05-OCT-70 Computer Science Male 40000

S01 Wendy Swimmer 22-AUG-70 Computer Science Female 45000

J02 Bob Jones Accounting Male 35000

N01 Jack Nelson 10-JAN-71 History Male 28000

D02 Jinee Jackson Accounting Female 34500

S02 William James 11-NOV-67 Accounting Male 30500

 SELECT * FROM COURSE;

COURSE_ID COURSE_TITLE SECTION FAC_ID

CSC100 Intro. to Computing 1 J01

CSC101 Pascal Programming 1 D01

CSC102 Database Management 2 J01

ACC200 Principles Of Accounting I 2 J02

ACC201 Principles Of Accounting II D02

HIS200 England History 1 N01

HIS201 Europe History N01

2. Copy of exam questions which contains 5 questions as showing in Table 2:

Table 2: SQL Questions (GA)

QNo. Question

1.
Find the names of all faculties who work at the accounting department with salary amounts greater

than 34500.

2.
List the faculty names and departments of all faculties which their birth date is recorded and have at

least one section. Sort the result in ascending order of the departments.

3. Write a SQL statement that retrieves only those departments having average salary more than 30500.

4. Find out all the course titles of faculties work in accounting department.

5. Find those departments for which the average salary is greater than or equal to all average salaries.

 Page | 220

3. You need to save all commands and log off.

C. Instruction for Examiner and Students: SQL-FE Tool

1. Ask student to follow the URL: https://co-project.lboro.ac.uk/coaa/student/

2. All students should register with any active email and write their full name.

3. Check SQL-FE tool tables as following:

 SELECT * FROM EMP;

EMPNO EMPNAME HIREDATE GENDER JOB SALARY DEPTNO

7369 Smith 1980-12-17 Male Clerk 1500 20

7499 Allen 1981-02-20 Female Salesman 1600

7521 Jennifer Female Salesman 1250 30

7566 Jones 1984-04-02 Male Clerk 2975

7654 Martin 1981-09-28 Male Salesman 1250 30

7698 Laura 1981-05-01 Female Manager 2850 20

7782 Clark

Male Manager 2450 10

 SELECT * FROM DEPT;

DEPTNO DEPTNAME NO_OF_EMP LOC

10 Accounting 12 New York

20 Research 10

30 Sales 5 Chicago

40 Operation 3 Boston

50 Management New York

4. The test will start directly once the page is load and the time would be counted for

each question.

5. There are 5 questions in the test as showing in table 3.

Table 3: SQL Questions (SET B)

QNo. Question

1.
Display the names of all the employees who are working as clerks and earning a salary more

than 2500.

2.
List the employee names and job of all employees who are having hire date records and have

6 and more employees working in same department. Sort the result in the order of the job.

3. Display the various jobs for each of the jobs where average salary is greater than 1500.

4. List all department names of all employees who work as a manager.

5. List all jobs which the average salary is less than or equal to all average salaries.

https://co-project.lboro.ac.uk/coaa/student/
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+20&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+30&token=3f990e4c804a156906dc137707764a9f
https://co-project.lboro.ac.uk/phpMyAdmin/sql.php?db=coaa&table=DEPT&pos=0&sql_query=SELECT+%2A+FROM+%60coaa%60.%60DEPT%60+WHERE+%60DEPTNO%60+%3D+10&token=3f990e4c804a156906dc137707764a9f

 Page | 221

6. Use the text area to retrieve specific data by using the keyboard.

7. Once the question has been solved, the student should click on submit for each answer

so it can be saved for marking.

8. If student used previous or next button in the question bar, the previous answer will

be overwritten which they can’t see their previous answer.

9. Run button is available for checking the answer before moving to next question.

10. If the student face any difficulties on entering values they can use the help link on the

top right of the navigation bar.

11. Once the student finishes their exam ask them to log off.

D. Student feedback of SQL-FE

 Page | 222

 Page | 223

 Page | 224

 Page | 225

Appendix 13: SQL-ME Experiment Questionnaire

 Page | 226

 Page | 227

