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ABSTRACT 

As obesity rates continue to rise worldwide, scientific interest in the area of appetite regulation 

has increased in an attempt to identify strategies that can prevent energy overconsumption and 

body weight gain. Appetite regulation is complex and involves many different physiological 

and psychological factors, allowing for great interindividual variability. Recently, some studies 

assessing appetite and energy intake responses to meal or exercise interventions have shifted 

the focus on presenting findings exclusively as group means to assessing individual responses 

and exploring interindividual variability. However, important methodological limitations may 

have impaired the detection of true interindividual variability, and gold standard study design 

and statistical approaches that address these limitations have been recently suggested. 

Therefore, this thesis aimed to assess the reproducibility and quantify the interindividual 

variability in appetite responses to acute exercise and to a standardised meal, and to explore 

the influence of genetic, physiological and behavioural characteristics on fasting and 

postprandial appetite-related outcomes. To achieve this, a total of 145 healthy men and women 

were recruited into four experimental studies. 

The first experimental study (Chapter 4) demonstrated, using a replicated crossover design, 

that young men exhibited reproducible appetite responses after 60-min of fasted treadmill 

running at 70% peak oxygen uptake. True interindividual variability was observed in acylated 

ghrelin, total peptide YY (PYY) and perceived appetite responses over and above any random 

within-subject variability and measurement error, even after adjustment for individual baseline 

measurements. In the second experimental study (Chapter 5), the fat mass and obesity-

associated gene (FTO) was not significantly associated with fasting or postprandial perceived 

appetite, acylated ghrelin, total PYY, insulin, glucose and leptin in healthy men and women, 

with or without the addition of physiological and behavioural covariates in the statistical 

models. While fasting leptin, glucose and insulin and postprandial insulin concentrations were 

associated with adiposity outcomes, the associations between fasting and postprandial acylated 

ghrelin, total PYY and general or abdominal adiposity were small. The third experimental 

study (Chapter 6) employed a replicated crossover design to demonstrate that the 

reproducibility of appetite responses to a standardised meal (5025 kJ) is generally good in 

healthy men. True interindividual variability was present in perceived appetite, acylated 

ghrelin, total PYY, insulin and glucose responses to the meal beyond any random within-
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subject variation over time, but the magnitude of change in postprandial appetite responses was 

not influenced by the FTO gene. The final experimental study (Chapter 7) consisted of a pilot 

study which showed no significant association between brown adipose tissue activity assessed 

with thermal imaging, FTO genotype and fasting and postprandial acylated ghrelin, total PYY, 

insulin and glucose in healthy males. 

Collectively, these studies demonstrate that appetite responses to acute exercise and to eating 

are reproducible in healthy men, and true interindividual variability exist in these responses. 

However, the FTO genotype was not significantly associated with fasting and postprandial 

perceived appetite and appetite-related hormones, and further studies are warranted to 

investigate other individual characteristics that may moderate the observed interindividual 

variability. These findings highlight the importance of exploring individual differences in 

appetite responses in the context of the prevention and/or management of obesity.  

Keywords: Acute exercise, acylated ghrelin, appetite, brown adipose tissue, FTO, glucose, 

hormones, insulin, interindividual variability, leptin, peptide YY, replicated crossover design, 

reproducibility. 
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CHAPTER 1 

Introduction 

The rapid increase in the prevalence of obesity has been a major concern worldwide, given the 

well-known association of high levels of body fat mass with metabolic complications such as 

type 2 diabetes, hypertension, dyslipidaemia, and coronary artery disease (Kopelman, 2007).  

Such medical conditions have a meaningful negative impact both on people's quality of life 

and on healthcare costs. In 2016, 39% of adults in the world were overweight and 13% were 

obese, meaning that worldwide obesity has nearly tripled since 1975 (World Health 

Organization, 2018). In England, 40% of men and 30% of women are overweight, and a further 

26% of men and 27% of women are obese (National Health Service, 2018). The annual cost of 

obesity and overweight for the National Health Service (NHS) is estimated to be approximately 

£6.1 billion (Public Health England, 2017), and 617,000 admissions in NHS hospitals have 

obesity as a primary or secondary diagnosis per year (NHS, 2018). Predictions show that 

England could be a mainly obese nation by 2050 (Foresight Report, 2007). 

Major efforts have been made in an attempt to understand the causes of the 'obesity epidemic' 

in order to propose effective interventions capable of changing the current scenario. People 

with obesity are often blamed for their own condition, as obesity is considered mainly an issue 

of lack of individual willpower, where people are eating too much food and doing too little 

exercise (Foresight Report, 2007). It should be noted, however, that it is unlikely that people 

today have less willpower than previous generations, and it is clear that our current society and 

living environments present major changes when compared to previous decades. The ‘obesity 

epidemic’ coincides with the increasing availability of highly palatable food with high energy 

density (Wren and Bloom, 2007), and part of the blame could be directed to the obesogenic 

environment, where food consumption is continuously promoted and physical activity is 

decreasing significantly (Blundell, 2011).  

Obesity is a result of a continuous excess of energy intake over energy expenditure, and 

research investigating the mechanisms involved in the regulation of energy balance has gained 

increasing attention. Of note, the number of scientific publications on ‘appetite’ in the United 

States National Library of Medicine from the National Institutes of Health (PubMed.gov) has 

increased from 142 publications per year in 1979 to 1840 publications per year in 2018. Energy 
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homeostasis is a complex process, in which organs such as the stomach, intestine, pancreas, 

and adipose tissue send and receive information from the brain (Wren and Bloom, 2007). These 

organs are responsible for sending hormone signalling from the periphery via vagal afferents 

to the hindbrain and the hypothalamus, where signals are integrated with information from 

other brain regions (Murphy and Bloom, 2006; MacLean et al. 2017). An increasing number 

of studies have been investigating the peptide hormone signals originating from the gut and 

their role in appetite regulation, nutrient intake and metabolism, in an attempt to develop 

strategies to help in weight control (MacLean et al. 2017).  

Physical activity and exercise are associated with a variety of health benefits and play an 

integral part in energy balance (i.e. via increasing energy expenditure). Furthermore, exercise 

can influence appetite-related hormones to some extent (Deighton and Stensel, 2014), and 

therefore, possibly impact on eating behaviour. Public health strategies to combat the global 

rise in obesity typically encourage higher physical activity levels or structured exercise 

programs in order to increase energy expenditure and achieve weight loss (Pontzer et al. 2016). 

However, increasing physical activity or exercise levels may not always lead to a negative 

energy balance and weight loss, due to possible compensatory responses which can be 

behavioural, such as increased energy intake, or metabolic, such as reduced resting metabolic 

rate (King et al. 2007; Pontzer et al. 2016). 

It is important to highlight that any intervention targeting weight loss is likely to show 

variability among individuals and the success of an intervention is dependent upon individual 

appetite physiology, motivation and previous experiences (Senior et al. 2016). This individual 

variability should be taken into consideration and the average response of a group must be 

interpreted with caution as it may mask the true variation in the results observed in intervention 

studies (Blundell, 2011). Assessing biological and behavioural responses to interventions at 

the individual level can help to understand why some individuals are successful in achieving 

the expected results from varied interventions while others are not. Likewise, not everyone 

gains weight living in a strongly obesogenic environment, which raises the hypothesis of the 

existence of susceptible and resistant phenotypes. Certain individuals may possess 

predispositions that make them vulnerable to overeating (Blundell, 2011). In this regard, it has 

been suggested that interindividual variability exists in appetite and energy intake responses to 

a session of exercise, suggesting some individuals are more likely to increase energy intake 

after exercising than others (Finlayson et al. 2009; Hopkins et al. 2014). However, other studies 
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found that energy intake after a bout of exercise varies across occasions (Unick et al. 2015) 

and, in most cases, the interindividual variability in appetite and energy intake responses to 

acute exercise can be explained by normal day-to-day variation in measurements (King et al. 

2017). 

Before interindividual variability and any influencing factors are investigated in the responses 

to an intervention, it is crucial to examine whether the observed responses are reproducible 

across separate occasions, and to quantify the impact of normal day-to-day variation and 

measurement errors on the assessment of the outcomes of interest. The use of a replicated 

crossover study design, where all study participants perform at least two intervention and two 

control conditions, together with appropriate statistical analyses quantifying participant-by-

response interactions, has been suggested as a gold-standard for the quantification of 

interindividual variability (Senn et al. 2011; Senn, 2016; Atkinson et al. 2018). If true 

interindividual variability can be detected, one important objective is to determine the factors 

that contribute to the variability seen between individuals. 

Genetic approaches are a valuable tool that can help to understand possible causes of obesity 

and the large variability observed between individuals regarding food intake and weight 

control, as well as differences seen in the success of various interventions. The role of genetics 

in the aetiology of obesity has been recognized for a long time, but the identification of genes 

contributing to body weight gain has been relatively slow (Rankinen et al. 2010). It is evident 

that 'common obesity' is not caused by rare loss of function mutations previously revealed to 

be the responsible for severe obesity cases, but rather through the interaction between 

environmental factors and the individual susceptibility to these factors determined by genetics 

(Hess and Brüning, 2014). Genetic variants have been identified having a much smaller effect 

on weight, considering their individual effects, when compared with the aforementioned 

mutations. The 12 genes most strongly associated with obesity are estimated to account for 

only 1–2% of the variance in body weight, and each additional active allele from these genes 

contributes about 440 g of extra body weight (Blundell, 2011). However, summing of their 

effects, these variations define an individual's predisposition to gain weight in the face of 

environmental changes, involving multiple physiological and behavioural mechanistic 

pathways affected by each of the active alleles (Blundell, 2011; Hess and Brüning, 2014). 

Understanding how each of these genes contributes to weight gain is crucial to decipher the 

exact role of genetics in the causes of 'common obesity' (Hess and Brüning, 2014). 
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The fat mass and obesity-associated (FTO) gene is the strongest common genetic determinant 

of body weight identified so far; however, the mechanistic pathways and the contribution of 

the polymorphisms to the success of weight loss after an intervention are still controversial and 

require further study (Sailer et al. 2016). Available evidence suggests individuals with the at-

risk FTO genotype possess an attenuated postprandial suppression of appetite (Karra et al. 

2013), which may predispose to chronic energy overconsumption and lead to fat mass 

accumulation in the long term. Additionally, studies in rodents suggest brown adipose tissue 

may contribute to the obesity risk associated with the FTO genotype (Tews et al. 2013; 

Ronkainen et al. 2016), possibly through alterations in both energy expenditure and appetite 

regulation (Chondronikola et al. 2017; Li et al. 2018). A question with major public health 

relevance now is how the FTO genotype influences weight gain and responses to weight loss 

therapy. Given the alarming increase in obesity rates, it is crucial to understand whether true 

interindividual variability exists in appetite regulation and to identify potential influencing 

factors, so that the feasibility of targeted interventions with increased efficacy for weight loss 

or prevention of weight gain can be assessed. 

Therefore, the aims of the experimental studies described in this thesis were three-fold: 

1. To assess the reproducibility and quantify the interindividual variability in appetite 

responses to acute exercise; 

2. To assess the reproducibility and quantify the interindividual variability in appetite 

responses to a standardised meal; 

3. To explore the association between genetic, physiological, behavioural (i.e. physical 

activity and sedentary behaviour) characteristics and fasting and postprandial appetite-

related outcomes.  

It was hypothesized that true variability exists between individuals, over and above any random 

variability, in their appetite responses to acute exercise and to a standardised meal. 

Furthermore, it was hypothesized that FTO genotype, adiposity level and brown adipose tissue 

contribute to the variability observed between individuals in appetite-related outcomes.  

A comprehensive review of the literature to date on the topics explored in the subsequent 

experimental chapters is presented in Chapter 2. The general methods employed in the 

experimental studies presented in this thesis are described in Chapter 3. The first experimental 

study is presented in Chapter 4, which employed a replicated crossover study design in order 
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to assess the reproducibility and interindividual variability in appetite responses to acute 

aerobic exercise in healthy young males. Chapter 5 presents the second experimental study, 

which consisted of a cross-sectional study investigating the associations between the FTO 

genotype, fasting and postprandial appetite-related hormones and perceived appetite in healthy 

men and women. The third experimental study is presented in Chapter 6 and consisted of a 

replicated crossover study assessing the reproducibility and interindividual variability in 

appetite responses to a standardised meal, as well as any moderating influence of the FTO 

genotype, in healthy males. Chapter 7 presents the fourth and final experimental study, 

consisting of a pilot study to explore the association between brown adipose tissue activity, 

FTO genotype and appetite-related blood parameters in healthy males. Finally, a general 

discussion is presented in Chapter 8, where the main findings from the research presented in 

this thesis are reflected upon and future research directions are highlighted. 
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CHAPTER 2 

Literature review 

2.1 Introduction 

This chapter initially summarises the key mechanisms involved in the maintenance of energy 

balance, with special attention given to the regulation of appetite. Evidence relating to both 

physiological and psychological factors influencing appetite and energy intake is reviewed. 

This review then explores the effect of exercise on appetite and the potential influence exercise 

exerts on energy balance. This is followed by a detailed review of methodological approaches 

to examine reproducibility and to quantify interindividual variability in responses to an 

intervention, with a summary of the available evidence on reproducibility and interindividual 

variability of appetite and energy intake responses to exercise and to eating. The review ends 

by exploring the potential role played by the fat mass and obesity-associated (FTO) gene on 

appetite regulation, eating behaviour and energy balance. 

2.2 Energy balance 

Energy balance is defined as the status in which no substantial difference exists between energy 

intake and energy expenditure, where body weight remains stable. Energy intake entails the 

consumption of foods and drinks containing carbohydrates, protein, fat and alcohol, which will 

be digested in order to provide energy which can be utilised by the body. Energy expenditure 

combines the energy needed for the vital body functions i.e. resting metabolic rate, the energy 

used to digest food, and the energy expended when performing any type of physical activity. 

In a simplistic summary, when energy intake exceeds energy expenditure, the excess energy is 

stored by the body in the form of adipose tissue, which in the long term, can lead to overweight 

and obesity. When the opposite occurs, i.e. energy expenditure exceeds energy intake, body 

energy depots are mobilized in order to provide energy, which typically results in body weight 

loss.  

However, maintaining energy balance is more complex in practice. Energy balance is a 

dynamic, non-linear process, rather than a static process (Manore et al. 2017). Energy balance, 

and consequently body weight, is regulated by genetic, metabolic, environmental, social, and 

behavioural factors, influencing both energy intake and expenditure in varied proportions 
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according to the individual and the circumstances (Manore et al. 2014). Additionally, energy 

expenditure is influenced by energy intake, diet macronutrient composition and energy density, 

as well as the timing of food intake (Manore et al. 2017). The effect of physical activity and 

exercise on energy expenditure and type of fuel used can also vary significantly, depending on 

the type, intensity and duration of the activity (Manore et al. 2017). When energy balance is 

disturbed, hormonal and neuroendocrine systems act together via central and peripheral signals 

to restore homeostasis (Moreno and Lanni, 2016).  

The human body is equipped with various physiological mechanisms to protect energy stores, 

which were essential for preserving life in the past when humans experienced starvation for 

longer periods as a result of the challenges faced to acquire food on a daily basis. While the 

environment in which most humans live today has changed dramatically, with high-energy 

foods readily available at any time, the physiological mechanisms to protect energy stores seem 

to be preserved. In addition, major changes in lifestyle are observed, leading to drastic 

reductions in physical activity energy expenditure. As a result, it is not surprising that obesity 

rates continue to rise worldwide (World Health Organization, 2018), and the currently available 

strategies for the prevention and treatment of obesity do not seem effective enough to combat 

the obesity epidemic.  

Weight loss resultant of strategies focusing on reducing energy intake, increasing energy 

expenditure, or a combination of both, is often less than expected, with some individuals 

showing more success than others (Manore et al. 2014). It is often expected that a deficit of 500 

kcal per day will result in weight loss of 1 lb (or 0.45 kg) per week. This estimation originated 

from a calculation assuming exclusive loss of adipose tissue, which is not realistic (Hall, 2008). 

Furthermore, when one component of energy balance is altered, it is likely that co-ordinated 

responses in other factors influencing energy balance will happen in an unpredictable way, 

reducing the gap between energy intake and expenditure (Manore et al. 2014; Casanova et al. 

2019). Compensatory metabolic and behavioural responses to energy deficit are likely to occur, 

such as reduced resting metabolic rate, increased muscular efficiency and increases in energy 

intake, which may undermine weight loss and also stimulate weight regain (Pontzer et al. 2016; 

Casanova et al. 2019).  

Understanding the mechanisms that regulate energy balance, and consequently body weight, 

and how they are affected by individual and environmental factors is essential for the 

development of strategies aiming to prevent weight gain and to treat overweight and obesity. 
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2.3 Appetite regulation 

Appetite is influenced by both physiological and psychological factors. The physiological 

regulation of appetite involves many neuroendocrine inputs that have an impact on hunger and 

satiety, with a number of tissues, organs and hormones sending and receiving signals to and 

from the brain (MacLean et al. 2017). The gastrointestinal tract is the largest endocrine organ 

in the body of lean individuals, and gut hormones have a prime role in signalling nutrient intake 

according to the pattern of eating (Neary and Batterham, 2009). Many gut peptides are believed 

to play unique roles in hunger and satiety signalling. Satiation, or meal termination, is likely 

initiated by neural input from the stomach to the brain signalling gastric distension after food 

intake, followed by the release of gut hormones able to sense absorption of nutrients and signal 

satiety i.e. post-meal inhibition of eating (Stensel, 2010). These hormones include 

cholecystokinin (secreted from the duodenum and jejunum), glucagon-like peptide 1, 

oxyntomodulin and peptide YY (PYY) (secreted from the small and large intestines) and 

pancreatic polypeptide (secreted from the pancreas). Gut hormones act as episodic signals 

because they are released in harmony with episodes of eating. They can signal satiation and 

satiety to the brain via the vagus nerve or via blood perfusing the hypothalamus (Stensel, 2010). 

A brief summary of the main gut hormones and their effects on appetite on a meal-to-meal 

basis is presented in Table 2.1.  

Table 2.1 Peripheral effects of selected appetite-regulating gut hormones (adapted from Perry 

and Wang, 2012). 

Gut hormone Site of synthesis Peripheral effect on food intake 

Cholecystokinin Intestinal L-cells Decrease 

Ghrelin Stomach Increase 

Glucagon-like peptide 1 Intestinal L-cells Decrease 

Oxyntomodulin Intestinal L-cells Decrease 

Pancreatic polypeptide Pancreas/colon Decrease 

Peptide YY Intestinal L-cells Decrease 
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Tonic hormonal signals, on the other hand, regulate energy balance over the long term, 

indicating the level of energy storage in the body i.e. the degree of adiposity, such as insulin 

(released from the pancreas) and leptin (released from adipose tissue) (Stensel, 2010; Perry and 

Wang, 2012). Fat-free mass also modulates appetite, as it is the primary determinant of resting 

metabolic rate, which consists of 60 to 70% of total energy expenditure. The exact mechanism 

through which fat-free mass communicates energy requirements to the brain in order to 

influence food intake is still unknown. Additionally, an increasing body of evidence points to 

the important role played by the gut microbiome and bile acids, in a complex interplay with 

gut hormones, to regulate appetite (MacLean et al. 2017).  

2.3.1 Ghrelin 

In contrast to all the remaining appetite-related gut hormones identified to date, which act as 

satiety signals, ghrelin is the only known appetite-stimulating peptide hormone. Ghrelin was 

first discovered in 1999 (Kojima et al. 1999) and its important role in the regulation of appetite 

and food intake was discovered shortly after (Tschöp et al. 2000). Over the years, ghrelin has 

been suggested to have many other physiological actions such as stimulation of gut motility 

and gastric acid secretion, modulation of sleep, taste sensation and reward seeking behaviour, 

regulation of glucose metabolism, suppression of brown fat thermogenesis, modulation of 

stress and anxiety, protection against muscle atrophy, and improvement of cardiovascular 

functions such as vasodilatation and cardiac contractility (Müller et al. 2015). 

Ghrelin is the natural ligand of growth hormone (GH) secretagogue receptor released 

predominately from the gastric cells within the stomach. Its blood levels are increased with 

hunger sensations and its receptor is located in the hypothalamic neurons responsible for 

regulating food intake (Müller et al. 2015). Two different forms of the hormone have been 

described in the circulation: acylated and non-acylated. Acylated ghrelin results from the 

addition of an acyl group to serine-3 and makes up only 10 to 20% of total ghrelin but seems 

to be the responsible to increase appetite and feeding, as it is able to bind to the GH 

secretagogue receptor, cross the blood-brain barrier, and therefore exert its effects at the 

hypothalamic level (Adams et al. 2011). Ghrelin is often called “hunger hormone” as it acts as 

a meal initiation signal, informing the gastrointestinal energy status to the central nervous 

system in order to regulate food intake and energy expenditure (Müller et al. 2015). Peripheral 

ghrelin administration induces hunger and food intake in humans (Wren et al. 2001), and 

postprandial changes in ghrelin are well correlated to changes in perceived hunger under 
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natural feeding circumstances (Gibbons et al. 2013). Additionally, ghrelin concentrations 

before an ad libitum meal have been positively associated with energy intake during the meal 

(Gibbons et al. 2013). 

The regulation of ghrelin release is a complex process involving both the sympathetic nervous 

system and the gastrointestinal tract (Wren et al. 2001). Food intake is the main factor 

influencing circulating ghrelin levels, which increase shortly before meal initiation and fall 

back to baseline levels within the first hour after eating (Cummings et al. 2001; Müller et al. 

2015). Ghrelin increases hunger and energy intake in the short- and long-term and has an effect 

in both homeostatic and reward-related feeding, shifting food preference toward diets rich in 

fat (Cummings, 2006; Karra et al. 2013). Additionally, studies in rodents indicate ghrelin 

increases adiposity through the stimulation of enzymes promoting fatty acid storage and 

decreasing fat oxidation, which occurs independently from changes in food intake or energy 

expenditure (Müller et al. 2015). The magnitude of ghrelin postprandial suppression is 

proportional to the energy and macronutrient content of the meal (Müller et al. 2015). When 

meals composed primarily of carbohydrates, proteins or lipids were ingested, lipids were 

shown to be the least effective suppressors of ghrelin (Monteleone et al. 2003; Foster-Schubert 

et al. 2008).  

Available evidence suggests ghrelin acts against prolonged energy deficiency to maintain long-

term energy balance (Müller et al. 2015). Circulating ghrelin levels have been shown to 

increase after diet-induced weight loss (Kotidis et al. 2006; Iepsen et al. 2016); however, recent 

evidence shows that ghrelin concentrations gradually return to baseline values after 1 year of 

weight-loss maintenance (Iepsen et al. 2016). Fasting plasma ghrelin concentrations are 

inversely correlated with body mass index (BMI) (Tschöp et al. 2001; Lindeman et al. 2002; 

Katsuki et al. 2004; Sondergaard et al. 2009). Ghrelin levels are low in obesity, which suggests 

high levels of adipose tissue affect ghrelin concentrations, rather than ghrelin causing 

overeating which led to obesity (Shiiya et al. 2002). Conversely, ghrelin levels are high in 

individuals with cachexia or anorexia nervosa, suggesting a link between adiposity and ghrelin 

regulation, although the exact mechanisms involved are still to be determined (Müller et al. 

2015). Additionally, it has been suggested that visceral fat might influence circulating ghrelin 

levels more than total body fat, and this is likely to be caused indirectly via altered levels of 

metabolites or hormones, but further evidence is needed to confirm this hypothesis 

(Sondergaard et al. 2009).  
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2.3.2 Peptide YY 

Peptide tyrosine-tyrosine (peptide YY or PYY) was first discovered in porcine intestine in 1982 

(Tatemoto, 1982), but its role in energy homeostasis was only revealed in 2002 (Batterham et 

al. 2002). PYY is the most studied gut peptide hormone known to induce satiety, as it has a 

potent anorectic effect and influences the overall intake of food during a meal predominantly 

by influencing central appetite-regulating circuits and brain regions involved in food reward 

(Batterham et al. 2007; Kullmann et al. 2016). The key areas where PYY acts in order to 

mediate its anorectic effects are the hypothalamic arcuate nucleus and brainstem regions 

(Manning and Batterham, 2014). PYY and ghrelin are likely to have complementary effects in 

modulating appetite through both homeostatic and reward centres (Manning and Batterham, 

2014). 

PYY is synthesized and released from L-cells found predominantly within the distal gastro-

intestinal tract and is released into the circulation in a nutrient-dependent manner (Karra et al. 

2009). Meals with higher fat content promote higher circulating PYY levels, in comparison 

with meals high in carbohydrates (Essah et al. 2007; Gibbons et al. 2013). PYY levels are low 

in the fasting state and rapidly increase in response to meal ingestion, in proportion to the 

energy content, reaching a peak 1–2 h after a meal and remaining elevated for several hours 

(Karra et al. 2009; Manning and Batterham, 2014). PYY exists in human blood in two forms, 

PYY1-36 and PYY3-36, the latter being the predominant circulating form which preferentially 

binds to the inhibitory presynaptic Y2 receptors expressed in the appetite regulatory centre of 

the arcuate nucleus within the hypothalamus (Kanaley et al. 2014). Increases in PYY 

concentration were shown to be correlated with increased perceived feelings of satiety in some 

studies (Guo et al. 2006; Le Roux et al. 2006), but not others (Gibbons et al. 2013). It has been 

suggested that PYY is involved in energy balance regulation by a combination of two actions 

i.e. reducing food intake and increasing energy expenditure, although the mechanisms 

underlying the latter remain to be elucidated (Guo et al. 2006; Karra et al. 2009). 

Circulating PYY has shown to be negatively associated with adiposity levels (Batterham et al. 

2003; Guo et al. 2006). Individuals with obesity show lower levels of circulating PYY, and 

exogenous administration of PYY reduces food intake in both healthy people and in people 

with obesity, indicating that individuals with obesity remain sensitive to the anorectic actions 

of the hormone (Batterham et al. 2003). The mechanisms involved in the reduced PYY levels 

observed in people with obesity remain to be elucidated. Perturbations in energy balance 
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caused, for example, by very low energy diets, have been shown to reduce both fasting and 

postprandial circulating PYY levels, which persists for long periods (Sumithran et al. 2011), 

suggesting a role of PYY in the relapse often observed among people who lose weight. 

However, recent evidence shows that successful weight maintenance after 1 year of diet-

induced weight loss is accompanied by increased postprandial responses of PYY3-36, indicating 

that an increase in appetite-inhibiting mechanisms may contribute to the success of a weight 

loss intervention (Iepsen et al. 2016). 

2.3.3 Glucose and insulin 

Glucose is the most important fuel for the brain and its availability is sensed by neurons mainly 

located in the hypothalamus and brainstem. Neurons modulate the release of anorexigenic and 

orexigenic neuropeptides according to glucose availability. Similarly, circulating glucose 

concentrations are sensed in the body periphery and reported to the brain (Schultes et al. 2016). 

While many studies suggest appetite is directly influenced by circulating glucose 

concentrations, with meal initiation and satiation being influenced by glucose availability, a 

meta-analysis of test meal studies failed to find any association between blood glucose and 

perceived appetite in individuals of normal weight and individuals who were overweight (Flint 

et al. 2007). The precise role of neuronal glucose sensing in the regulation of appetite and 

eating behaviour in humans under normal physiological conditions is still controversial. 

Fluctuations in circulating glucose might influence appetite regulation by concomitant changes 

in the secretion of insulin, which itself affects appetite regulation (Schultes et al. 2016).  

Insulin was discovered in 1922 as a potential therapeutic option to reverse type 1 diabetes and 

its role in non-diabetic individuals was determined subsequently (Flier and Maratos-Flier, 

2017). Insulin is produced in the b-cells of the pancreas and is the primary factor responsible 

for glucose uptake in most peripheral tissues and for the suppression of glucose secretion by 

the liver, lowering glucose in the blood (Woods et al. 2006). Plasma insulin is low during 

fasting and increases during and immediately after meal consumption or glucose 

administration, as a result of blood glucose increases. Insulin enters the brain where it reacts 

with insulin receptors on neurons, triggering diverse effects on energy homeostasis, such as 

reduction in food intake and body weight (Woods et al. 2006; Filippi et al. 2013). Insulin 

receptors are expressed in many areas of the brain, especially in the arcuate nucleus in the 

mediobasal hypothalamus (Woods et al. 2006; Filippi et al. 2013).  
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Administration of intranasal insulin has been shown to decrease food intake and increase 

satiety in humans (Benedict et al. 2008; Hallschmid et al. 2012), and insulin increases the brain 

sensitivity to short-term satiety signals such as gut appetite-related hormones (Woods et al. 

2006). Additionally, the postprandial increase in insulin has been consistently negatively 

associated with perceived hunger and positively associated with perceived satiety in normal 

weight individuals (Flint et al. 2007). Nevertheless, when dynamic fluctuations in blood 

glucose and insulin were induced by intravenous glucose infusion, no effect on perceived 

hunger, satiety or fullness was observed, challenging the role played by circulating glucose and 

insulin in the short-term regulation of appetite (Borer et al. 2009; Schultes et al. 2016). 

The amount of insulin secreted into the blood changes in parallel with body weight changes, 

as an adiposity signal to the brain, with lean individuals having lower levels than individuals 

with obesity. Additionally, insulin is directly correlated with visceral fat, consisting of a risk 

factor for metabolic syndrome (Woods et al. 2006). Higher insulin levels are perceived by brain 

regions in order to adjust key neural circuits of energy balance, interacting with many other 

factors to increase the sensation of satiety (Woods et al. 2006; MacLean et al. 2017). However, 

under chronic conditions of positive energy balance, the central and peripheral resistance to the 

action of insulin reduce its influence on appetite regulation (MacLean et al. 2017). The insulin 

receptor-facilitated transport through which insulin enters the brain is reduced in obesity 

(Woods et al. 2006), and postprandial changes in insulin are not associated with perceived 

appetite in individuals with overweight (Flint et al. 2007). After acute and long-term fat mass 

loss, circulating levels of insulin are reduced and insulin sensitivity is improved (Iepsen et al. 

2016). 

Apart from signalling in the hypothalamus in order to regulate energy homeostasis, central 

insulin mediates non-homeostatic feeding, i.e. eating for pleasure, by signalling within 

mesolimbic reward circuits, which mediate different aspects of reward (Tiedemann et al. 2017). 

The palatability of foods is decreased in the fed state and this effect seems to be resultant of 

the increased insulin release after food intake, possibly in an attempt to prevent 

overconsumption of palatable foods (Tiedemann et al. 2017). Additionally, increases in insulin 

concentration after meal ingestion suppress the motivation to eat and the motivation for 

physical activity, and may be related to the display of somnolence after the meal (Borer, 2010). 
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2.3.4 Leptin 

The identification of the obese gene in 1994, named ‘ob’ in rodents and ‘lep’ in humans, led to 

the characterization of the key actions of its encoded protein leptin in energy balance and 

metabolism (Zhang et al. 1994). Leptin is a well-characterized peptide hormone synthetized 

and secreted into the blood mainly from adipocytes, reflecting long-term body energy reserves. 

Leptin is one of the major adipokines and its circulating levels are positively correlated to the 

level of body adiposity (MacLean et al. 2017; Rostás et al. 2017). The gastric mucosa also 

secrets large amounts of leptin into the gastric juice, independently from the regulation of the 

secretion from the adipose tissue (Cammisotto et al. 2010). After secretion by the gastric 

mucosa, leptin connects to receptors on the intestinal epithelial cells and reach the central 

nervous system to control food intake and nutrient absorption on a meal-to-meal basis, in 

combination with the action of other appetite-related hormones. The secretion of adipose and 

gastric leptin is coordinated in order to manage food processing and energy storage 

(Cammisotto et al. 2010). 

Higher leptin concentrations convey messages to brain regions such as the hypothalamic 

arcuate nucleus in order to reduce food intake and increase energy expenditure (Borer et al. 

2009; MacLean et al. 2017). Of note, leptin has been shown to increase energy expenditure 

through the activation of non-shivering thermogenesis in brown adipose tissue (Fruhwürth et 

al. 2018). However, the tonic influence on energy homeostasis has a stronger influence under 

conditions of adipose tissue depletion, where leptin acts as a signal in order to protect the 

organism from critical reductions in fat mass that threaten reproductive capacity and survival 

(Rosenbaum and Leibel, 2014). On the contrary, when energy overconsumption is sustained 

for longer periods, central and peripheral resistance to the action of leptin reduces its influence 

on appetite regulation and food intake (MacLean et al. 2017; Fruhwürth et al. 2018), meaning 

that the major function of leptin in humans is to signal inadequate energy stores rather than to 

prevent the storage of excessive body fat mass (Rosenbaum and Leibel, 2014; Flier and 

Maratos-Flier, 2017). In addition to its homeostatic actions, leptin also modulates neural 

circuits of motivation and reward via the mesolimbic dopaminergic system to control the 

motivation to seek and consume food (Fruhwürth et al. 2018). 

Congenital absence of leptin leads to hyperphagia and morbid obesity very early in childhood, 

which is reversed by leptin administration (Borer et al. 2009; Cammisotto et al. 2010). High 

levels of leptin are also an important etiological factor of cardiometabolic syndrome and 
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inflammatory disorders, and exercise training has been suggested to be able to reduce 

circulating leptin levels even when only small changes in body weight occur (less than 5%) 

(Rostás et al. 2017). Additionally, lean body mass has been suggested to be negatively 

associated with leptin concentrations, independently of fat mass (Marshall et al. 2000). The 

administration of leptin can promote a modest reduction in energy intake in weight-reduced 

individuals but is less effective in promoting weight loss on its own. Nevertheless, the efficacy 

of leptin in reducing energy intake during weight loss is much less than the effects of leptin 

repletion in individuals aiming to sustain a reduced body weight (Rosenbaum and Leibel, 

2014). 

2.3.5 Hedonic aspects of appetite 

Energy overconsumption and weight gain cannot be explained solely by the failure of 

homeostatic mechanisms to maintain a healthy body weight, as food intake is also influenced 

by psychological and behavioural aspects. It is clear that humans do not eat only when feeling 

physiological hunger, and the current obesity epidemic proves that homeostatic body weight 

regulatory mechanisms can be overridden by other factors (Borer, 2010; Berthoud, 2011). 

Appetite is rather controlled by a psychobiological system that signals hunger, satiation and 

satiety, which are translated into food intake (Simon et al. 2017; Beaulieu et al. 2018). Hedonic 

eating refers to all factors which affect eating behaviour but are not considered to be part of the 

homeostatic control of appetite, including cognitive, reward and emotional factors (Berthoud, 

2011). Psychological aspects such as cognitive restraint and disinhibition are robust predictors 

of energy intake, alongside physiological factors (Beaulieu et al. 2018; Hopkins et al. 2019). 

Food hedonics reflect the process of liking, i.e. the degree of sensory pleasure obtained from 

foods, and wanting, i.e. the motivation and attraction for foods (Beaulieu et al. 2018). 

Environmental factors such as food availability, portion sizes, energy density, palatability, 

variety, and presence of food cues also play a big role in influencing eating behaviour. Equally, 

agricultural policies, pricing strategies, socioeconomic status, level of education, and stress 

vulnerability can influence food choices (Zheng et al. 2009). Environmental circumstances 

enhance the motivation for food seeking when energy deprived and after body fat loss but also 

facilitate overeating of highly palatable and energy dense foods in normal conditions (Borer, 

2010). A combination of physiological and psychological factors is likely to determine 

individuals who become obese and individuals who can maintain a healthy body weight in the 
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modern environment with constant access to energy dense foods and little energy expenditure 

through physical activity.  

As opposed to metabolic feedback signals and neural systems, which are located mainly in the 

brainstem and hypothalamus, the neural pathways and functions responsible for hedonic eating 

are located mostly in corticolimbic structures, and have similarities to addiction mechanisms 

(Berthoud, 2011; Simon et al. 2017). As occurs with other behaviours, the feelings of 

satisfaction and well-being generated by eating certain foods result in strong motivation to 

repeat the same pattern of behaviour (Zheng et al. 2009). People with obesity often report 

higher preference for high-fat and high-sugar foods, which may indicate a decreased sensitivity 

to sweet and fatty tastes, but whether this is the cause or consequence of obesity remains 

unclear (Andriessen et al. 2018). It has been suggested that exercise-induced changes in the 

hedonic response to food is associated with compensations in energy intake after exercise and 

may partially explain why some individuals fail in losing weight through exercise interventions 

(Finlayson et al. 2009). On the other hand, it was recently shown that substantial weight loss 

induced by low-calorie dieting can change postprandial appetite and food preferences in favour 

of a decreased food intake (Andriessen et al. 2018).  

Importantly, a considerable functional overlap between homeostatic and hedonic mechanisms 

of appetite control and energy balance has been reported, as appetite-related hormones such as 

leptin, insulin, PYY and ghrelin also act to modulate the wanting of food and reward processing 

(Zheng et al. 2009; Simon et al. 2017; Beaulieu et al. 2018). Thus, the measurement of 

perceived appetite and desire for food, together with measurements of appetite-related 

physiological factors, such as appetite-related hormones, is crucial for the holistic 

understanding of the effect of any intervention on the regulation of appetite and/or energy 

intake. Recently, a randomised-controlled double-blinded experiment revealed that healthy 

individuals receiving placebo treatments showed altered subjective feelings of appetite and 

satiety in the suggested direction, and the appetite-enhancing placebo intervention was able to 

increase circulating ghrelin levels in women (Hoffmann et al. 2018). These findings highlight 

the important interplay between psychological and physiological mechanisms in the regulation 

of appetite which should be considered in research and clinical settings. 

2.4 Effects of exercise on appetite 

Exercise can be a powerful tool in weight management interventions as it typically increases 
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daily energy expenditure both by the energy needed to perform the exercise and by increasing 

muscle mass and, as a consequence, increasing resting metabolic rate. Therefore, exercise can 

contribute to creating the negative energy balance needed to achieve weight loss. Indeed, the 

combination of diet and exercise was shown to provide significantly greater weight loss 

compared to diet only interventions (Wu et al. 2009). However, if an increase in energy intake 

occurs as a response to exercise, which has been termed ‘compensatory eating’, the energy 

balance might not be challenged (Hopkins et al. 2014). Depending on the magnitude of the 

compensatory response, it can even lead to a positive energy balance which, in turn, will 

generate weight gain. Thus, in order to have a meaningful impact on energy balance, exercise 

depends on its ability to increase energy expenditure, but also on its effect on appetite and 

energy intake (Manore et al. 2017). Therefore, understanding the effect of exercise on appetite 

regulation and energy intake is crucial for planning effective strategies targeting weight loss or 

preventing weight gain.  

The first observation that exercise is able to suppress appetite, with the suggestion of the term 

‘exercise-induced anorexia’, was made 25 years ago (King et al. 1994), although the first 

evidence showing an effect of exercise on appetite-related gut hormones is more recent 

(Martins et al. 2007). It has been shown that when individuals face acute energy deficits by 

food restriction, compensatory responses in plasma acylated ghrelin, PYY3-36, perceived 

appetite and ad libitum energy intake occur. However, an equivalent energy deficit produced 

by exercise did not produce such compensatory responses, suggesting exercise-induced 

anorexia may blunt increases in appetite produced by energy deficits (King et al. 2011).  

Results from a meta-analysis investigating the acute effects of exercise on subsequent energy 

intake suggest that exercise does not affect energy intake, and consequently, is likely to induce 

an acute negative energy balance (Schubert et al. 2013). Another meta-analysis published more 

recently by the same research group concluded that acute exercise leads to a small to moderate 

suppression of appetite, stimulating three of the known anorexigenic hormones (PYY, 

glucagon-like peptide 1 and pancreatic polypeptide) and suppressing acylated ghrelin 

(Schubert et al. 2014). This suppression of appetite is temporary, with the hormonal 

concentrations tending to return to normal levels within 30 minutes. This has been observed 

during a variety of exercise modes, mainly with strenuous intensities (Deighton and Stensel, 

2014). Running, jumping rope and other high-intensity exercises seem to have the greatest 

negative impact on appetite, and although producing a transient effect, these activities can 
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potentially delay initiation of the next meal (Manore et al. 2017). Although the precise 

mechanisms involved in exercise-induced anorexia remain unknown, delayed gastric emptying 

observed during high-intensity exercise, resulting in prolonged gastric distention, is likely to 

contribute to the appetite suppression (Horner et al. 2015). While many studies support the 

short-term suppressive effect of acute exercise on appetite, the effect of chronic exercise on 

appetite is less clear and further studies are warranted.  

Similar to the findings from acute exercise studies, a systematic review found limited evidence 

of exercise training having an effect on energy intake (Donnelly et al. 2014). It is unlikely, 

however, that individuals will maintain a negative energy balance and continue to lose weight 

over prolonged periods when the daily energy expenditure is increased by exercise. It seems 

obvious, therefore, that either energy intake will increase, tracking energy expenditure, or 

energy expenditure will be reduced via other compensatory mechanisms, i.e. reduced daily 

physical activity or basal metabolism (Whybrow et al. 2008; Pontzer et al. 2016). However, 

the mechanisms involved and the exact manner that energy homeostasis is maintained over 

long periods with exercise training is still unknown. A small compensatory response is 

observed in energy intake when exercise is continued for several days; however, it only 

partially balances the energy expenditure from exercise, and it is greatly variable between 

individuals (Whybrow et al. 2008).  

Of note, recent evidence shows that activity energy expenditure, which includes daily physical 

activity plus any planned exercise, is an independent predictor of daily energy intake in healthy 

weight-stable individuals, alongside with resting metabolic rate and fat mass (Hopkins et al. 

2019). Most exercise training studies report reductions in leptin concentrations, although the 

findings for insulin, acylated ghrelin and PYY are not consistent. Insulin concentrations have 

been reported to be reduced or unchanged, whereas acylated ghrelin and PYY concentrations 

were increased or unchanged (Dorling et al. 2018). The effect of exercise training on appetite 

regulation seems to involve an increase in the overall drive to eat and a concomitant increase 

in post-prandial satiety (King et al. 2009). These two processes do not operate with the same 

strength in all individuals, and the relative strength of them may determine whether individuals 

lose weight with exercise or whether compensatory eating responses will undermine the weight 

loss (King et al. 2009). 

A recent systematic review suggests that habitually active individuals have increased 

sensitivity to the energy density of foods, in comparison with inactive individuals (Beaulieu et 
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al. 2016). Additionally, a higher energy flux, i.e. maintained higher energy expenditure and 

matching energy intake, may be key to successful weight maintenance as it allows for more 

appropriate energy intake control (Manore et al. 2017). On the contrary, physical inactivity 

may lead to a dysregulation of appetite and subsequent overconsumption, with energy intake 

not reflecting energy expenditure. It has been suggested that the relationship between physical 

activity level and energy intake follow a J-shaped curve, where the lowest levels of physical 

activity show an unexpected high energy intake (Beaulieu et al. 2016). The mechanisms 

responsible for this effect are not yet known, although differences in body composition, gastric 

emptying, insulin sensitivity, appetite-related hormones and resting metabolic rate might be 

involved (Beaulieu et al. 2016). Interestingly, when previously active people become sedentary 

and therefore reduce their daily energy expenditure, the energy intake is not proportionally 

reduced, suggesting a lack of automatic regulation and leading to a positive energy balance 

(Stubbs et al. 2004). Becoming or remaining sedentary may expose people to eating behaviours 

more strongly influenced by sensory and environmental factors (Blundell, 2011). 

Exercise may influence appetite through its impact on biological inputs, but its overall impact 

is variable and complicated by compensatory eating behaviours. A greater understanding of 

the mechanisms involved in exercise-induced compensatory eating, and why it only appears to 

affect some individuals and not others, is still needed. The lack of conclusive evidence for 

behavioural adjustments in response to a negative energy balance caused by exercise can be 

partially attributed to the focus on average group values in most studies published to date, 

which ignores the large individual variability in responses reported in some studies 

(Drenowatz, 2015). The substantial variability in appetite, appetite-related hormone and energy 

intake responses to exercise likely reflects the many factors involved in appetite regulation and 

deserves further investigation (Dorling et al. 2018). 

2.5 Reproducibility and interindividual variability of appetite-related outcomes 

Most studies conducting interventions targeting changes in appetite, food intake or body weight 

report their results using the group mean or any measure of central tendency, which by its 

nature, does not represent the true effect of the intervention as the variability in responses 

observed at the individual level within the study sample is not reported (MacLean et al. 2017). 

In fact, interindividual variability has been commonly treated as statistical noise without the 

recognition of its biological significance. For example, if the mean result of a weight loss 

intervention shows successful weight reduction, but the intervention consistently caused 
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weight gain in some individuals within the study sample, the mean result should not be 

interpreted and communicated as indicative of the effectiveness of the intervention for the 

whole population (Senior et al. 2016). It is possible that this traditional research methodology 

has led the scientific community to miss many important factors in understanding human 

appetite and eating behaviour. The diversity of responses to an intervention should be taken 

into consideration and the exploration of underlying reasons for such variability should be 

encouraged (Senior et al. 2016; MacLean et al. 2017). 

In the obesogenic environment that most people live currently, the observation that not 

everyone becomes overweight or obese leads to the hypothesis of susceptible and resistant 

phenotypes and the interest for interindividual variability in appetite regulation has increased 

considerably (MacLean et al. 2017). Personalised medicine approaches continue to gain 

attention and, concomitantly, more studies aiming to assess and report interindividual 

variability in response to a certain intervention are being published. Appetite regulation 

involves a complex interaction between factors such as epigenetic, genetic variability, overall 

health and disease processes, environmental and behavioural stressors. Additionally, the great 

number of nutrients sensed along the gastrointestinal tract generate a wide variety of signals, 

activating areas in the brain involved in both homeostatic and hedonic eating behaviours. Thus, 

it is not surprising that great interindividual variability is observed in the self-regulation of 

eating behaviour (MacLean et al. 2017).  

The assessment of variability across different interventions can result in targeting phenotypes 

with specific weight loss interventions (Senior et al. 2016). Of note, marked variability has 

been observed in response to every form of treatment of obesity, which is an unexplained 

observation to this point (Bray et al. 2018). It is clear that the success of any weight loss 

intervention depends on appetite physiology, motivation and previous experiences, and the 

variability of these factors between individuals should be assessed (Senior et al. 2016). 

Likewise, it is commonly acknowledged that the magnitude of the effect of an exercise 

intervention can vary significantly among individuals, regardless of the outcome of interest. 

Multiple factors are associated with this variation, including the characteristics of the training 

regimen, environmental conditions, habitual physical activity, fitness levels, physiological, 

genetic, social and psychological factors (Garber et al. 2011). The variability in appetite and 

food intake produced by exercise reflects a dynamic regulatory system in which physiological 

mediators can act as drivers of behaviour (Hopkins et al. 2014).  
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Interindividual variability has been suggested to exist in perceived appetite and energy intake 

responses to acute exercise in healthy individuals (Finlayson et al. 2009) and in individuals 

who are overweight and obese (Hopkins et al. 2014). While the publication of studies focusing 

on assessing interindividual variability on appetite-related topics, rather than merely looking 

at group means, is of great relevance, some concerns about the true significance of the findings 

exist. The two aforementioned studies estimated the interindividual variability using a single 

pair of trials, i.e. one control and one exercise condition. Such study design makes it possible 

to calculate the difference between outcomes in the control and intervention conditions at a 

single point of time; however, there is no guarantee that the observed effect of the intervention 

will be seen when the outcomes are assessed on a second occasion. The repetition of similar 

conditions to enable the assessment of the reproducibility of the observed findings is key as a 

first step in determining whether true interindividual variability exists in responses to an 

intervention (Senn, 2016). The reproducible individual responses can be defined as those that 

can be explained by differences between subjects due to stable characteristics or traits, whereas 

the random responses can be attributed to changes in subject characteristics or any external 

factor between the repeated assessments (Hopkins, 2015). 

In regard to the reproducibility of findings in appetite and energy intake outcomes, available 

evidence has shown good reproducibility of ad libitum energy intake, cholecystokinin, glucose, 

insulin (Nair et al. 2009; Horner et al. 2014), and appetite perceptions after test meals (Flint et 

al. 2000; Gonzalez et al. 2012; Horner et al. 2014). On the other hand, poor reproducibility was 

recently reported at the individual level in perceived appetite after the consumption of liquid 

meals (Gonzalez et al. 2017). When exercise interventions were performed, good 

reproducibility of ad libitum energy intake after aerobic exercise, resistance exercise and 

resting control conditions in young, active adults was reported (Laan et al. 2010). However, 

when the difference between energy intake between exercise and control interventions was 

calculated, the reproducibility of findings was rather low (Unick et al. 2015; Brown et al. 2012).  

Two key methodological issues can be highlighted in some of the aforementioned studies. First, 

when no control condition was included in the study design (Gonzalez et al. 2017), it becomes 

impossible to differentiate the true effect of the intervention from other sources of variability 

such as measurement errors and random day-to-day variability (Atkinson and Batterham, 2015; 

Senn, 2016). Second, where a control condition was included but the difference between the 

results from the intervention and the control conditions was not calculated (Laan et al. 2010), 
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the variability occurring in the control condition is equally not being taken into consideration 

when assessing the effect of the intervention. Of note, when the same study reported the 

reproducibility of energy intake after exercise in an isolated manner and also the reproducibility 

of the difference between energy intake in the exercise and the control condition, good 

reproducibility was reported on the former but not on the latter (Unick et al. 2015). 

Published studies to date have often employed statistical approaches such as confidence 

intervals or Bland-Altman analyses in order to assess the reproducibility of responses to an 

intervention (Bland and Altman, 1986). While these methods can be appropriate choices for 

such purpose, they only serve as good tools to quantify the agreement of findings between two 

observations; however, the subject-by-condition interaction cannot be quantified. The 

employment of a replicated crossover study design has been suggested as the gold-standard for 

the determination of interindividual variability, as it makes it possible to assess reproducibility 

in the first place due to its replicated nature (Atkinson and Batterham, 2015; Senn, 2016). 

Additionally, appropriate statistical models should be employed for the assessment of the 

subject-by-condition interaction, where the extent to which the effects of treatments vary from 

subject to subject can be appropriately quantified (Senn, 2016). Replication is key in 

identifying this interaction and the difference between measurements taken on the intervention 

and control conditions should be calculated for the determination of the true effect of the 

intervention (Senn, 2016). The standard deviation of change scores should also be compared 

between intervention and control conditions, where a significantly larger standard deviation of 

change scores in the intervention condition is indicative of interindividual variability caused 

by the intervention per se (Hopkins et al. 2015). 

No previous studies have examined the interindividual variability in perceived appetite or 

appetite-regulatory hormone responses to eating or exercising including the quantification of 

subject-by-condition interaction in a replicated crossover design. Before any attempt of 

classifying subjects as ‘responders’ and ‘non-responders’ to a given intervention, and the 

consequent implied call for investigation of the underlying causes of such variation in 

responses, one should ensure the employment of a robust study design and statistical analyses 

in order to determine the existence or not of true interindividual variability of responses.  

2.6 Fat mass and obesity-associated gene 

Individual susceptibility to gain weight is thought to be determined by interactions between an 
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individual’s genetics, behaviour and the environment (Scuteri et al. 2007). The genetic factors 

predisposing to weight gain and obesity are still poorly understood and attempts to identify 

gene variants predisposing to common obesity often show controversial results (Frayling et al. 

2007). In 2007, genome-wide association studies identified single-nucleotide polymorphisms 

(SNPs) in the FTO gene region on chromosome 16 strongly associated with BMI (Frayling et 

al. 2007; Scuteri et al. 2007).  The FTO gene is the first common variant identified that 

influences obesity risk, being widely expressed in human tissues, with the highest expression 

in the hypothalamus within the brain, which is known to play a key role in the control of energy 

homeostasis (Gerken et al. 2007).  

The most studied SNP in the FTO gene is rs9939609 and each additional copy of the risk A 

allele is associated with an increase of ∼0.4 kg/m2 on BMI. This association was present in 

adults of all ages, with no difference between males and females (Frayling et al. 2007). The 

FTO risk allele is common, with 74% of Europeans, 76% of African-Americans and 28-44% 

of Asians carrying at least one copy of it (Kilpelainen et al. 2011). Individuals homozygous for 

the A allele represent 16% of the population and have a 1.4-fold increased risk for overweight 

and a 1.7-fold increased risk for obesity, compared with those homozygous for the low-risk T 

allele, which represent 37% of the population (Frayling et al. 2007).  

The association with body weight seems to be mainly due to higher food intake, with increased 

intake of dietary fat, increased appetite and reduced satiety (Loos and Yeo, 2014). On the 

contrary, FTO genotype does not seem to affect energy expenditure through resting metabolic 

rate or physical activity levels (West et al. 2018). Even though FTO genotype does not exert 

an effect on physical activity levels, the association of the FTO rs9939609 risk variant with 

BMI and with the odds of obesity was shown to be reduced by ~30% in physically active 

compared with inactive adults (Kilpelainen et al. 2011). Furthermore, while the risk variant of 

FTO has been associated with lower cognitive restraint and higher disinhibition and hunger, 

suggestive of poorer eating behaviours, this was not observed in a sample of physically active 

individuals, where AA individuals showed higher cognitive restraint and similar disinhibition 

and hunger scores to TT individuals, suggesting a protective effect of physical activity (West 

et al. 2018). 

Despite increasing evidence that the FTO gene is associated with increased BMI, the 

mechanisms by which it may lead to higher energy intake are not yet known. Karra et al. 

performed studies in normal-weight, adiposity-matched individuals with FTO rs9939609 
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obesity-risk AA or low-risk TT genotype. Interestingly, the results suggest that AA subjects 

may have attenuated postprandial suppression of hunger and circulating acylated ghrelin levels 

(Karra et al. 2013). Furthermore, significant differences in neural responsivity to food cues in 

brain regions linked to reward and behavioural control, as well as in neural responsivity to 

circulating acylated ghrelin, were observed between AA and TT subjects (Karra et al. 2013). 

This was the first evidence suggesting possible mechanisms involved in the association 

between FTO genotype and eating behaviour. Further evidence is needed to understand how 

the gene modulates appetite, energy balance and body weight. Additionally, studies assessing 

the effect of FTO genotype within exercise interventions targeting weight loss have shown 

mixed results (Sailer et al. 2016) and there is still no evidence to elucidate if FTO genotype 

influences the effect of exercise on appetite regulation.  

Recently, brown adipose tissue (BAT) has been suggested to be involved in the link between 

FTO genotype and obesity risk. BAT is a highly metabolically active tissue which uses glucose 

and free fatty acids to produce heat when activated by cold exposure, resulting in increased 

energy expenditure independently from shivering (Cannon and Nedergaard, 2004; Nedergaard 

et al. 2007). BAT is typically found in infants, where it exerts the important function of 

preserving body temperature, but there is now evidence of its presence in most human adults 

(Chechi et al. 2014; Sidossis and Kajimura, 2015). The volume and activity of BAT is inversely 

related to BMI and body fat mass (Cypess et al. 2009; van Marken Lichtenbelt et al. 2009; 

Vijgen et al. 2011). White adipose tissue can also be induced to produce similar thermogenesis 

as BAT, a process that is typically called ‘browning’, and evidence shows that this process is 

enhanced in FTO knockout mice, resulting in increased energy expenditure (Tews et al. 2013; 

Ronkainen et al. 2016). In face of such evidence, it has been hypothesized that individuals with 

the at-risk FTO genotype present impaired browning of white adipocytes and reduced energy 

expenditure, which could lead to an increased risk of fat mass accumulation over the course of 

life (Tews et al. 2013). However, to date, this hypothesis has not been tested in humans. 

2.7 Summary 

Energy balance is a dynamic process and is influenced by a wide range of physiological and 

psychological factors. Physiological factors include hormones secreted by the gut and by 

adipose tissue, which act both on a meal-to-meal basis and over the long-term to regulate 

appetite and energy intake. The current obesity epidemic poses a great challenge worldwide, 

where the current available lifestyle interventions for weight loss do not seem effective in much 
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of the population. Personalised medicine and targeted interventions for specific phenotypes 

arise as a promise for more effective strategies to achieve a healthy body weight, where the 

identification of individual factors which may determine the success or failure of an 

intervention is the priority. In this respect, major methodological challenges exist for the 

identification of true interindividual variability and these should be considered in future 

studies. The fat mass and obesity-associated gene is the first genetic common variant identified 

that is associated with obesity risk and further evidence is needed to elucidate the mechanisms 

involved. Therefore, this thesis aims to expand the evidence on the existence of interindividual 

variability in perceived appetite and appetite-related hormone responses to eating and to 

exercising in humans, as well as on the potential factors underlying such variability.  
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CHAPTER 3 

General methods 

This chapter describes the general methods employed in the experimental studies presented 

within this thesis. All studies were conducted in the laboratories at Loughborough University 

and were approved by the University Ethics Approvals Sub-Committee. Written consent was 

obtained from all participants before any aspect of the research experiments was conducted. 

3.1 Participant recruitment 

Participants were recruited from Loughborough University and the local area by word of 

mouth, poster, e-mail and social media advertising. Volunteers attended the laboratory for a 

preliminary visit to confirm eligibility, where they received information sheets explaining the 

purpose, protocol and demands of the study, as well as any potential risks and discomforts. 

After a verbal explanation and the opportunity to ask any questions about the study, volunteers 

completed an informed consent form (Appendix A) and a health screen questionnaire 

(Appendix B) before the start of any experimental procedures. Participants also completed 

questionnaires assessing habitual physical activity (Appendix C; Craig et al. 2003), food 

preferences to ensure adherence to standardised meals (Appendix D) and dietary habits 

(Appendix E; Stunkard and Messick, 1985) to identify any atypical eating tendencies. 

The inclusion criteria for participation were:  

• Aged 18 - 50 years; 

• Non-smoker;  

• Body mass stable (≤ 3 kg change in the previous 3 months); 

• Not dieting; 

• No history of cardiovascular or metabolic disease;  

• Not taking any medications (except for oral contraceptives); 

• No severe dislike or intolerance of any study food. 

3.2 Anthropometry 

Participants wore light clothing and removed shoes and all items from pockets for 

anthropometric measurements. Height was measured to the nearest 0.1 cm and body mass was 
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measured to the nearest 0.1 kg using an electronic measuring station (Seca, Hamburg, 

Germany). Body mass index was subsequently calculated as body mass (kg) divided by stature 

squared (m2). Waist circumference was measured with an inelastic polyfibre tape measure 

(Seca, Hamburg, Germany) at the end of expiration at the narrowest point of the torso between 

the lower rib margin and the iliac crest.  

Measurements of subcutaneous fat were taken to estimate total body fatness. Skinfold thickness 

was measured by the same investigator to the nearest 0.2 mm on the right-hand side of the body 

using Harpenden callipers (Baty International, West Sussex, UK), with the participant standing 

in a relaxed position. Skinfolds from seven sites (chest, triceps, subscapular, mid-axilla, 

supraspinale, abdominal and thigh) were assessed in Chapter 4, and from three sites (chest, 

abdominal and thigh in males, and triceps, supraspinale and thigh in females) in Chapters 5 

and 6. Each measurement was taken within two seconds of calliper pressure while maintaining 

the pinch of the skinfold. Measurements were made by rotating through the anatomical sites to 

allow time for the skin to regain normal texture and thickness. The median of three 

measurements at each site was used to estimate body density (Jackson and Pollock, 1978, 1980) 

and percentage of body fat (Siri, 1961).  

3.3 Environmental temperature and humidity 

Environmental temperature and humidity were kept constant and assessed periodically 

throughout all study visits using a wireless weather station (Opes, London, UK).  

3.4 Heart rate and rating of perceived exertion 

Heart rate was monitored continuously during all exercise tests and interventions using short-

range telemetry (Polar A3, Kempele, Finland). The Borg scale was used to record participants’ 

perceived level of exertion at pre-determined intervals during all exercise tests and 

interventions (Appendix F; Borg, 1973). The scale ranges from 6 indicating no exertion to 20 

indicating maximal exertion.  

3.5 Expired gas sampling and analysis 

3.5.1 Douglas bags 

Expired air samples were collected during exercise into 100 L Douglas bags in Chapter 4. 

Oxygen consumption and carbon dioxide production were determined using a paramagnetic 
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oxygen analyser and an infrared carbon dioxide analyser (Servomex 1400, East Sussex, UK). 

Prior to sample analysis, the analysers were calibrated with certified reference gases. The 

volume of expired air was quantified using a dry gas meter (Harvard Apparatus Ltd., Kent, 

UK) and the temperature of expired air was measured using a thermometer housed in the dry 

gas meter during evacuation (Edale Instruments Ltd., Cambridge, UK). All expired air 

measurements were corrected to standard room temperature and pressure for a dry gas. 

3.5.2 Portable metabolic cart with facemask 

Expired air samples were monitored continuously during exercise using an online breath-by- 

breath gas analysis system (Cortex Metalyzer 3B, Leipzig, Germany) in Chapter 5. The 

analyser was calibrated before each measurement using a bottled gas mixture containing 5.01% 

carbon dioxide, 16.98% oxygen, and nitrogen (Cranlea Human Performance, Birmingham, 

UK) and a 3 L syringe (Hans Rudolph, Shawnee, USA). Participants wore a facemask (Hans 

Rudolph, Shawnee, USA) connected to the online system via a flowmeter before the expired 

air measurement began. The size of the facemask was selected for each participant as checks 

for leaks were performed.  

3.5.3 Portable metabolic cart with ventilated hood 

In Chapter 5, resting metabolic rate was measured using an open circuit indirect calorimetry 

system (GEM Nutrition Ltd., Cheshire, England). The analyser was calibrated with certified 

reference gases before each measurement. Participants were asked to lie in a comfortable 

supine position and were instructed not to talk or sleep, and to move as little as possible during 

the measurement. The clear hood canopy was placed over the head area, and plastic sheeting 

attached to the hood was placed around the body to form a seal between the air inside and 

outside the hood. Oxygen uptake, carbon dioxide production, respiratory exchange ratio and 

energy expenditure were determined at 30 s intervals over a 30 min period. The first 10 min of 

data was discarded to account for any initial short-term respiratory artefact.  

3.6 Preliminary exercise test 

All exercise tests and interventions were conducted on a treadmill (Technogym Excite Med, 

Cesena, Italy). Participants were familiarised with walking, running and dismounting the 

treadmill before the exercise tests commenced.  
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In Chapter 4, participants completed two preliminary exercise tests. The first test involved a 

16-min submaximal incremental treadmill protocol divided into 4 x 4 min stages to determine 

the relationship between treadmill speed and oxygen consumption. The initial running speed 

was set between 8 and 12 km·h-1 depending on each participant’s fitness level, and the treadmill 

speed was increased by 1–1.5 km·h-1 at the start of each subsequent stage. Heart rate was 

monitored continuously, and ratings of perceived exertion were assessed at the end of each 

stage. Expired air samples were collected into Douglas bags in the final minute of each 4-min 

stage. After a 20-min standardised rest period, a peak oxygen uptake test was conducted using 

an incremental uphill treadmill protocol at a constant speed until the participants reached 

volitional fatigue. The initial incline of the treadmill was set at 3.5% and this was increased by 

2.5% every 3 min (Taylor et al. 1955). Peak oxygen uptake was determined from an expired 

air sample collected in the final minute when participants indicated that they could only 

continue for an additional 1 min. Heart rate and ratings of perceived exertion were monitored, 

and verbal encouragement was provided throughout the test. Data from the 16-min submaximal 

incremental and peak oxygen uptake tests were used to determine the running speed required 

to elicit 70% of peak oxygen uptake during the experimental exercise conditions. Participants 

began the treadmill exercise at this speed during the main study visits (Chapter 4) but the 

treadmill speed was adjusted to account for cardiovascular drift when necessary.  

In Chapter 5, during the peak oxygen uptake test, participants ran at a fixed individualised 

speed chosen as a speed at which each participant felt ‘comfortable exercising’ (4.5 to 14 km·h-

1), with the initial gradient of the treadmill set to 0%. Treadmill gradient was increased by 1% 

every minute until volitional exhaustion. Verbal encouragement was provided throughout the 

test. Heart rate was monitored continuously, and ratings of perceived exertion were recorded 

at the end of each minute. Expired air samples were monitored continuously using a breath-by-

breath gas analysis system (Cortex Metalyser 3B, Leipzig, Germany). An average of the breath-

by-breath oxygen uptake data was taken every 10 s, and peak oxygen uptake was defined as 

the highest 30 s rolling average.  

3.7 Calculation of energy expenditure 

For expired gas samples collected during rest and exercise, oxygen consumption and carbon 

dioxide production values were used to determine substrate oxidation and energy expenditure 

using the equations of Frayn (1983): 
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Fat oxidation (g·min-1) = 1.67 x VO2 (L·min-1) – 1.67 x VCO2 (L·min-1) 

Carbohydrate oxidation (g·min-1) = 4.55 x VCO2 (L·min-1) – 3.21 x VO2 (L·min-1) 

EE (kJ·min-1) = 4.1855 x ((fat (g·min-1) x 9) + (carbohydrate (g·min-1) x 4)) 

3.8 Physical activity and dietary control 

Participants refrained from alcohol, caffeine, and strenuous physical activity during the 24 h 

preceding main study visits. In Chapters 4 and 6, participants completed a weighed food record 

(Appendix G) in the 24 h preceding the first main study visit and were instructed to replicate 

this feeding pattern before each subsequent visit. In Chapters 4, 5 and 6, participants were given 

a standardised evening meal and were instructed to consume it between 19:00 and 20:00. 

Participants were instructed to consume the whole meal without any additional food or drink 

items except plain water, and compliance was confirmed from the food record completed prior 

to the first visit (Chapters 4 and 6), and verbally on the remaining visits. After this meal, 

participants consumed no food or drink except plain water before arriving at the laboratory the 

next day.  

3.9 Standardised meals 

3.9.1 Standardised evening meal 

In Chapters 4, 5, and 6, participants were given a pizza as a standardised evening meal to 

consume on the evening preceding each main study visit. The energy and macronutrient intake 

during standardised evening meals is presented in Table 3.1.  

Table 3.1 Energy and macronutrient intake during standardised evening meals. 

 Energy 

(kJ) 

Carbohydrates 

(%) 

Protein 

(%) 

Fat 

(%) 

Chapter 4: Sainsbury’s pepperoni pizza 4891 48 18 34 

Chapter 5: Tesco cheese and tomato pizza 3297 39 21 40 

Chapter 6: Tesco margherita pizza 3054 44 22 34 
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3.9.2 Standardised test meal 

In Chapters 5 and 6, participants were given a standardised test meal to consume during specific 

study visits. The meal consisted of a ham and cheese sandwich, milkshake and chocolate biscuit 

in Chapter 5 and croissants, butter, chocolate spread, cereal biscuits and milkshake in Chapter 

6. The energy and macronutrient intake during standardised test meals is presented in Table 

3.2.  

Table 3.2 Energy and macronutrient intake during standardised test meals. 

 Energy (kJ) Carbohydrates (%) Protein (%) Fat (%) 

Chapter 5 4435 41 18 41 

Chapter 6 5025 47 9 44 

 

3.10 Assessment of perceived appetite 

Ratings of perceived appetite (hunger, satisfaction, fullness and prospective food consumption) 

were assessed periodically throughout experiments in Chapters 4, 5, and 6 using previously 

validated 100 mm visual analogue scales (Appendix H; Flint et al. 2000). The scales were 

anchored by a descriptor at each end defining the extremes of the appetite perception being 

measured. Participants rated each perceived appetite perception by placing a mark along the 

horizontal line corresponding to the degree of each perception. These were then quantified by 

measuring the distance from the left-hand side of the scale to the point on the line indicated by 

the participant. 

3.11 Blood sample collection 

Approximately 1 hour before commencing all main conditions including blood samples in 

Chapters 4, 5 and 6, participants rested in a semi-supine position and a cannula (Becton 

Dickinson, Helsinborg, Sweden) was inserted into an antecubital vein, from which blood 

samples were collected periodically. Patency of the cannula was maintained by flushing with 

10 mL non-heparinised saline (0.9% sodium chloride, L. E. West International, Barking, UK) 

after each blood sample. To avoid dilution of subsequent samples, residual saline was drawn 
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off immediately prior to collection using a 2 mL syringe. To control for postural changes in 

plasma volume, participants rested in a semi-supine position for the five min prior to each 

blood sample and remained in this position during the collection.  

Venous blood samples were collected into pre-cooled 4.9 or 9 mL ethylenediaminetetraacetic 

acid (EDTA)-coated monovettes (Sarstedt, Leicester, UK) via a multi-adapter (Sarstedt, 

Leicester, UK). Samples for the quantification of plasma acylated ghrelin concentrations were 

collected into pre-chilled 4.9 mL EDTA monovettes containing p-hydroxymercuribenzoic acid 

to prevent the degradation of acylated ghrelin by protease and were centrifuged at 2,383 g for 

10 min at 4°C (Burkard, Hertfordhire, UK). The plasma supernatant was aliquoted into a 

storage tube and 100 µL of 1 M hydrochloric acid was added per mL of plasma. Samples were 

re-centrifuged at 2,383 g for 5 min at 4°C before being transferred into Eppendorf tubes and 

stored at -80°C for later analysis. Samples for the quantification of plasma total PYY, leptin, 

insulin and glucose were collected in 9 mL monovettes and centrifuged immediately at 2,383 

g for 10 min at 4°C prior to storage at -80°C. In Chapter 5, an additional fasting venous blood 

sample was collected into a 2 mL EDTA monovette and the whole blood sample was stored at 

4°C to undergo deoxyribonucleic acid (DNA) extraction and genotyping at a later date.  

At the first and last sampling points in each study visit, duplicate 20 μL blood samples were 

collected into micropipettes for the determination of blood haemoglobin, and duplicate blood 

samples were collected into heparinised micro haematocrit tubes for the determination 

haematocrit concentration. 

3.12 Blood sample analysis 

3.12.1 Estimation of changes in plasma volume 

Haemoglobin concentration was measured in duplicate by the cyanmethaemoglobin method 

using a spectrophotometer (Shimadzu, Milton Keynes, UK), and haematocrit was measured in 

duplicate using a microcentrifuge (Hawksley, Sussex, UK). Haematocrit and haemoglobin 

concentrations were used to estimate plasma volume change relative to baseline (Dill and 

Costill, 1974), enabling plasma concentration of hormones to be adjusted to account for 

changes in plasma volume if necessary.  
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3.12.2 Glucose 

Plasma glucose concentrations were determined by enzymatic, colorimetric methods using a 

benchtop analyser (Horiba Medical Pentra 400, Montpellier, France). To ensure precision of 

analysis, quality controls of known concentrations were analysed prior to study sample 

analyses.  

3.12.3 Insulin 

Commercially available enzyme-linked immunosorbent assays (ELISA) were used to 

determine the concentrations of plasma insulin (Mercodia, Uppsala, Sweden). To ensure 

precision of analysis, quality controls (Mercodia diabetic antigen control) with low and high 

concentrations were analysed in duplicate in each assay plate.  

3.12.4 Total PYY 

Commercially available ELISAs were used to determine the concentrations of plasma total 

PYY (Millipore, Billerica, USA). Precision of analysis was ensured by the quantification of 

quality controls with low and high concentrations, in duplicate, in each assay plate. 

3.12.5 Acylated ghrelin 

Commercially available ELISAs were used to determine the concentrations of plasma acylated 

ghrelin (Bertin Technologies, Montigney le Bretonneux, France). Precision of analysis was 

ensured by the quantification of a quality control of known concentration, in duplicate, in each 

assay plate. 

3.12.6 Leptin 

In Chapter 5, commercially available ELISAs were used to determine the concentrations of 

plasma leptin (R&D Systems, Minneapolis, USA). Precision of analysis was ensured by the 

quantification of quality controls of low, medium and high concentrations, in duplicate, in each 

assay plate. 

3.12.7 Precision of analysis 

To eliminate inter-assay variation, the plasma samples for each participant were analysed in 

the same run. Additionally, in Chapters 4 and 6, all samples were analysed in duplicate. The 
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within-batch coefficients of variation for each assay were calculated by repeated measurements 

of a single plasma sample from 4 to 10 times, depending on the space available in each assay 

plate in order to optimise ELISA kit utilization. Values of within-batch coefficient of variation 

for each assay are presented within the methods section of Chapters 4, 5 and 6.  

3.12.8 Genotyping 

In Chapter 5, genomic DNA was extracted from the whole blood samples using the QIAamp 

DNA Mini kit (QIAGEN, Hilden, Germany). The samples were genotyped for the rs9939609 

allele within the FTO gene using the Applied Biosystems TaqMan® (Roche Molecular 

Systems, Pleasanton, USA) genotyping assay and real-time polymerase chain reaction system. 

Participants were assigned to one of three groups according to their genotype: homozygous 

major allele, TT; heterozygous allele, AT; or homozygous minor allele, AA.  

3.13 Habitual physical activity and sedentary time 

In Chapter 5, physical activity and sedentary time of participants were assessed over a 7-day 

period. Participants wore an ActiGraph GT3X+ accelerometer (ActiGraph, Pensacola, USA) 

on an elasticated belt on the waist above the mid-line of the thigh on their non-dominant side 

of the body. The device was initialised at a frequency of 100 HZ and downloaded using 

ActiLife software v6.11.8 and firmware v2.0.0 (ActiGraph, Pensacola, USA). ActiGraph data 

were downloaded in 60-second epochs and physical activity was classified as low, light and 

moderate-to-vigorous. Participants also wore an activPAL3 accelerometer. The activPAL3 was 

attached directly to the skin on the midline of the anterior aspect of the thigh in line with the 

ActiGraph GT3X+ accelerometer. The activPAL3 determines posture using information 

derived from accelerations of the thigh, including the gravitational component, using a triaxial 

accelerometer (Atkin et al. 2012). The activPAL3 is a valid measure of time spent sitting/lying, 

standing, and walking in adults (Kozey-Keadle et al. 2011). ActivPAL sitting time data were 

retrieved and clustered in 60-second epochs using a customized spreadsheet. Participants were 

advised to wear both devices concurrently and continuously over 7 days. Moderate-to-vigorous 

physical activity and sitting time data were averaged from the seven-day period, and non-wear 

time and sleep time were removed from the analysis.  
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3.14 Magnetic resonance imaging scan 

All participants recruited for the study presented in Chapter 4 were invited and agreed to 

participate in a pilot study which consisted of one magnetic resonance imaging (MRI) scan 

visit in order to assess visceral adipose tissue, abdominal subcutaneous adipose tissue and liver 

fat fraction. This pilot study aimed to test the protocol needed for the assessment of the 

outcomes of interest using the semi-automated tool for the quantification of body fat (AMRATM 

Profiler) developed by Advanced MR Analytics (AMRA, Linköping, Sweden) in order to 

analyse the images acquired from the body scans. This tool has been previously validated 

against manual quantification methods (Borga et al. 2015). 

Each participant underwent an MRI scan in the supine position using a dual-echo Dixon fat 

and water sequence on a 3-T MRI scanner (GE Healthcare MR750w, Chicago, USA). Seven 

overlapping image stacks were acquired from the neck to knee with stacks covering the 

abdomen (stacks 2 to 5) acquired during breath hold of seventeen seconds. Additional 

abdominal slices were acquired with the IDEAL-IQ sequence to assess proton density fat 

fraction in the liver. Scans were analysed to quantify visceral adipose tissue, abdominal 

subcutaneous adipose tissue and liver fat fraction using the AMRA Profiler (AMRA Medical 

AB, Linköping, Sweden) (Borga et al. 2015; West et al. 2016). The identification of visceral 

adipose tissue on a single abdominal MRI image slice using the AMRATM Profiler is 

demonstrated in Figure 3.1. The exact same protocol was employed in the study presented in 

Chapter 5. 

 

Figure 3.1 Abdominal cross-sectional image slice obtained using magnetic resonance imaging: 

A) image slice acquired directly from the scan; B) corresponding image slice analysed using 

the AMRATM Profiler to identify visceral adipose tissue (in pink) and abdominal subcutaneous 

adipose tissue (in blue). 
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3.15 Statistical analysis 

Specific statistical analysis employed for each study are described in detail in Chapters 4 to 7. 

Data were analysed using the IBM SPSS Statistics software for Windows version 23.0 (IBM 

Corporation, New York, USA) and SAS OnDemand for Academics 

(https://www.sas.com/en_us/software/on-demand-for-academics.html). Pearson’s product-

moment correlation coefficients were calculated to explore associations between outcomes of 

interest. Thresholds of 0.1, 0.3 and 0.5 were used to define small, moderate and large 

correlation coefficients, respectively (Cohen, 1988). In Chapter 5, multivariable general linear 

models were used to quantify the differences between genotype groups for each appetite 

outcome. In Chapters 4, 6 and 7 within-participant linear mixed models were formulated to 

quantify participant-by-condition interactions for each outcome and/or genotype-by-condition 

interactions.  

In the absence of a robust and precise prognostic anchor for an important difference in appetite-

related outcomes, standardised effect sizes (ES) were calculated to support significant findings. 

An ES of 0.2 denoted the minimum important mean difference for all outcomes, with an ES of 

0.5 being moderate and an ES of 0.8 being large (Cohen, 1988). Data are described as mean  

and standard deviation. Mean differences and correlation coefficients are presented along with 

respective 95% confidence intervals. P values are expressed in exact terms apart from very low 

values, which are expressed as P < 0.001, and statistical significance was accepted as P < 0.050. 
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CHAPTER 4  

Interindividual responses of appetite to acute exercise: a replicated 

crossover study 

4.1 Abstract  

Background: Acute exercise transiently suppresses appetite, which coincides with alterations 

in appetite-regulatory hormone concentrations. Individual variability in these responses is 

suspected, but replicated trials are needed to quantify them robustly. Objectives: To examine 

the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and 

to quantify the individual differences in responses. Methods: Fifteen healthy, recreationally-

active men completed two control (60-min resting) and two exercise (60-min fasted treadmill 

running at 70% peak oxygen uptake) conditions in randomised sequences. Perceived appetite 

and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured 

immediately before and after the interventions. Interindividual differences were explored by 

correlating the two sets of response differences between exercise and control conditions. 

Within-participant covariate-adjusted linear mixed models were used to quantify participant-

by-condition interactions. Results: Compared with control, exercise suppressed mean acylated 

ghrelin concentrations and appetite perceptions (all ES = 0.62 to 1.47, P < 0.001), and elevated 

total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation (SD) 

of the change scores was substantially greater in the exercise versus control conditions. 

Moderate-to-large positive correlations were observed between the two sets of control-adjusted 

exercise responses for all variables (r = 0.54 to 0.82, P ≤ 0.036). After adjusting for baseline 

measurements, participant-by-condition interactions were present for all variables (P ≤ 0.012), 

with exception of prospective food consumption (P = 0.053). Conclusion: Our replicated 

crossover study allowed, for the first time, the interaction between participant and acute 

exercise response in appetite parameters to be quantified. Even after adjustment for individual 

baseline measurements, participants demonstrated individual differences in perceived appetite 

and hormone responses to acute exercise bouts beyond any random within-subject variability 

over time. 
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4.2 Introduction 

Understanding the relationship between exercise and appetite control has direct implications 

regarding the role of exercise in regulating energy homeostasis and weight control (Stensel, 

2010; Beaulieu et al. 2016). It is well-documented that circulating concentrations of acylated 

ghrelin are suppressed and satiety hormones, most notably PYY, are elevated in response to 

acute bouts of moderate- to high-intensity exercise (Schubert et al. 2014). These hormonal 

fluctuations coincide with a transient reduction in appetite during and immediately after 

exercise without stimulating compensatory increases in appetite and ad libitum energy intake 

in the short term (Schubert et al. 2013; Deighton and Stensel, 2014).  

The notion of interindividual variability in response to an intervention, within the context of 

‘personalised’ or ‘precision’ medicine, continues to attract significant scientific attention 

(Atkinson and Batterham, 2015; Betts and Gonzalez, 2016; King et al. 2017). Whilst the 

majority of researchers have focussed on main effects and mean group changes, some 

investigators have attempted to quantify the individual variability in appetite and energy intake 

responses to acute (Finlayson et al. 2009; Hopkins et al. 2014; Unick et al. 2015) and chronic 

(Barwell et al. 2009; King et al. 2009) exercise interventions. Some researchers have classified 

individuals as ‘compensators’ or ‘non-compensators’ according to the individual magnitude 

and direction of change in energy intake they observed after exercise (Finlayson et al. 2009; 

Hopkins et al. 2014). Although the important issue of interindividual variability has been 

considered in exercise and appetite regulation studies, recent evidence has recognised that the 

methodological and statistical approaches for such investigations are challenging and often 

lacking in some cases (Atkinson and Batterham, 2015; Hecksteden et al. 2015; Hopkins, 2015).  

One approach to quantifying “true” individual responses is via the participant-by-response 

interaction term in a statistical model, which requires replicated intervention and comparator 

arms with sufficient washout (Senn et al. 2011; Senn, 2016). Previous researchers have 

reported intra-class coefficients to support claims that pre-to-post changes in ad libitum energy 

intake in response to acute exercise are not consistent within an individual over time (Unick et 

al. 2015). Interindividual variability in appetite and appetite-regulatory hormone responses to 

repeated acute exercise exposures are suspected; however, no published studies have confirmed 

this notion using robust designs (the replicated crossover) and appropriate statistical models.  
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Therefore, the aims of the present study were to examine the reproducibility of appetite, 

acylated ghrelin and total PYY responses to acute exercise bouts, and to quantify the magnitude 

of individual differences in responses using a replicated crossover design. Recent insights have 

provided a framework for the accurate statistical analyses to quantify true interindividual 

variability in exercise responses using the SD of the change scores and participant-by-response 

interaction (Senn et al. 2011; Atkinson and Batterham, 2015; Hecksteden et al. 2015; Hopkins, 

2015; Senn, 2016). Using these approaches, it was hypothesised that exercise-induced changes 

in subjective and hormonal appetite parameters would be reproducible on repeated occasions 

and true interindividual variability in appetite responses to acute exercise bouts would be 

observed in healthy, recreationally active men.   

4.3 Methods 

4.3.1 Ethical approval 

This study was conducted in accordance with the Declaration of Helsinki (2013) and all 

procedures were approved by the local ethics advisory committee. All participants provided 

written informed consent before taking part in any aspect of the study. 

4.3.2 Participants 

Fifteen healthy, recreationally active men (mean (SD): age 23 (3) years, body mass 81.9 (11.4) 

kg, body mass index 24.8 (3.0) kg·m-2, waist circumference 84.3 (6.9) cm, body fat percentage 

13.1 (5.9)%, peak oxygen uptake (V̇O2 peak) 54.9 (6.5) mL·kg-1·min-1) participated in the 

study. The participants’ body mass was stable; ≤ 3 kg change in the previous 3 months. 

Participants were non-smokers, had no history of cardiovascular or metabolic disease, and were 

not dieting or taking any medications.  

4.3.3 Preliminary measurements 

Before the main experimental conditions, participants attended the laboratory for a preliminary 

visit to complete screening questionnaires, and to undergo familiarisation, anthropometric 

measurements and exercise testing. Specifically, participants completed questionnaires 

assessing health status, food preferences, habitual physical activity (International Physical 

Activity Questionnaire) (Craig et al. 2003) and psychological eating tendencies (Three-Factor 

Eating Questionnaire) (Stunkard and Messick, 1985). Height and body mass were quantified 
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using an electronic measuring station (Seca, Hamburg, Germany). Waist circumference was 

measured at the narrowest point of the torso between the lower rib margin and the iliac crest. 

The sum of seven skinfolds was used to estimate body density (Jackson and Pollock, 1978) and 

body fat percentage (Siri, 1961). 

After familiarisation with walking and running on the treadmill (Technogym Excite Med, 

Cesena, Italy), participants completed two preliminary exercise tests, as described in detail in 

Chapter 3. Data from exercise tests were used to determine the running speed required to elicit 

70% of peak oxygen uptake during the experimental exercise conditions. 

4.3.4 Experimental design 

In a replicated, crossover experimental design, participants were randomised to different 

sequences of four experimental conditions: two control and two exercise (Senn, 2016). Each 

condition was separated by an interval of at least five days. Participants completed a weighed 

food record in the 24 h preceding the first experimental condition and were instructed to 

replicate this feeding pattern before each subsequent condition. Participants refrained from 

alcohol, caffeine, and strenuous physical activity during the same period. A standardised meal 

was consumed in the evening before the experimental conditions consisting of a pepperoni 

pizza (4891 kJ, 48% carbohydrate, 18% protein, 34% fat). Participants were instructed to 

consume the meal between 19:00 and 20:00, after which they consumed no food or drink except 

plain water until arriving at the laboratory the next morning. 

4.3.5 Main trials 

Participants arrived at the laboratory at 08:00 having fasted overnight for a minimum of 12 h. 

A cannula (Becton Dickinson Venflon, Helsingborg, Sweden) was inserted into an antecubital 

vein for venous blood sampling, and participants rested for 1 h (~08:00–09:00) to acclimatise 

to the study environment (Chandarana et al. 2009). During both exercise conditions, 

participants then completed 60 min of fasted treadmill running at a speed predicted to elicit 

70% of peak V̇O2. One-minute expired air samples were collected and analysed every 15 

minutes, and the treadmill speed was adjusted if necessary during both exercise conditions to 

ensure the target exercise intensity was achieved. Heart rate was monitored continuously and 

rating of perceived exertion was determined after each expired air sample was collected. The 

exercise energy expenditure and substrate utilisation were subsequently estimated using the 
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equations of Frayn (Frayn, 1983). Identical procedures were completed during both control 

conditions except participants rested within the laboratory for the equivalent duration.  

4.3.6 Appetite perceptions 

Ratings of perceived appetite (hunger, satisfaction, fullness and prospective food consumption 

(PFC)) were assessed immediately before (0 h) and after (1 h) the exercise and control 

interventions using 100 mm visual analogue scales (Flint et al. 2000). The scales were anchored 

by a descriptor at each end defining the extremes of the appetite perception being measured. 

4.3.7 Blood sampling and biochemical analysis 

Blood samples were collected in the semi-supine position immediately before (0 h) and after 

(1 h) the exercise and control interventions for the assessment of plasma acylated ghrelin and 

total PYY concentrations. Plasma acylated ghrelin and total PYY concentrations were 

quantified from venous blood samples collected following the procedures described in detail 

in Chapter 3. Measurements of haemoglobin and haematocrit were determined in duplicate at 

0 and 1 h in all conditions to calculate the acute change in plasma volume (Dill and Costill, 

1974).  

Commercially available enzyme immunoassays were used to determine the plasma 

concentrations of acylated ghrelin (Bertin Technologies, Montigney le Bretonneux, France) 

and total PYY (Millipore, Watford, UK). All samples were analysed in duplicate. To eliminate 

inter-assay variation, samples for each participant were analysed in the same run. The within-

batch coefficients of variation for acylated ghrelin and total PYY concentrations were 4.1% 

and 3.6%, respectively. 

4.3.8 Statistical analyses 

Data were analysed using the IBM SPSS Statistics software for Windows version 23.0 (IBM 

Corporation, New York, USA) and the PROC MIXED procedure in SAS OnDemand for 

Academics (https://www.sas.com/en_us/software/on-demand-for-academics.html). The 

presence of interindividual differences in acylated ghrelin, total PYY and perceived appetite 

responses to acute exercise bouts were examined according to three recently-reported 

analytical approaches (Senn et al. 2011; Atkinson and Batterham, 2015; Senn, 2016): 

(i) Pearson’s correlation coefficients were quantified between the exercise and control pre-to-
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post (0 to 1 h) change scores for each appetite parameter on the two occasions (Senn, 2016). 

The first exercise bout in any participant’s sequence was paired to the first control bout in the 

same individual’s sequence. Differences between these trials were correlated with the second 

exercise-control condition differences in the participant’s trial sequence. Thresholds of 0.1, 0.3 

and 0.5 were used to define small, moderate and large correlation coefficients, respectively 

(Cohen, 1988).  

(ii) The difference in SDs of the pre-to-post changes between the exercise and control 

conditions was calculated to represent the true individual response SD using the following 

equation: 

SD$ = 	'SD() − SD+)  

where SDR is the SD of the true individual response to the exercise conditions and SDE and 

SDC are the SDs of the pre-to-post change scores for the exercise and control conditions, 

respectively (Atkinson and Batterham, 2015; Hopkins, 2015). This estimation of the true SD 

for individual differences in response should be considered a “naïve estimation”, since 

important aspects of the experimental design, e.g. period effects, are not included. Therefore, 

a modelling approach to this estimation was also adopted (see iii below). 

(iii) A within-participant linear mixed model was formulated to quantify any participant-by-

condition interaction for each appetite parameter. Condition and period (sequence) were 

initially modelled as fixed effects. Senn et al. raised the question of whether the participant and 

participant-by-condition interaction terms should be modelled as fixed or random effects (Senn 

et al. 2011). Differences between these modelling approaches may exist depending on the 

distribution of the participant factor and the magnitude of the treatment (exercise effect). Our 

sample was, in clinical trial terms, relatively small and we expected the general effects of 

exercise to be substantial. Therefore, we modelled our data with participant and participant-

by-condition terms as both fixed and random effects and compared these results as a sensitivity 

analysis. When the participant-by-condition interaction was considered as a random effect, we 

used the SAS code supplied by Senn et al. with a modification designed to derive the true 

individual response variance (also estimated by approach ii) (Senn et al. 2011). This 

modification involved the adding of a covariate “dummy” variable we called “XVARE” (refer 

to the SAS code supplied in Appendix I). 
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It is also relevant to explore the extent to which an individual’s response depends on their status 

at baseline (Atkinson and Batterham, 2015). Therefore, baseline status of the dependent 

variable was added to the various linear mixed models as a covariate. The mean differences 

between conditions were also quantified with this same statistical model. 

We found that correction of appetite hormone concentrations for acute changes in plasma 

volume had a negligible influence on our findings. Therefore, the unadjusted plasma 

concentrations are displayed for simplicity. Absolute standardised effect sizes (ES) were 

calculated, with a standardised ES of 0.2 denoting the minimum important mean difference for 

all outcomes, 0.5 - moderate and 0.8 - large (Cohen, 1988). To calculate the minimal clinically 

important difference (MCID) for individual responses, the threshold of 0.2 for interpreting 

standardised mean changes (Cohen, 1988) was halved, i.e. 0.1, and multiplied by the baseline 

between-subject SD (Atkinson and Batterham, 2015; Hopkins, 2015). Pearson’s correlation 

coefficients were quantified between the pooled mean pre-to-post change in appetite-regulatory 

hormone concentrations and the pooled mean pre-to-post change in appetite perceptions across 

the four conditions.  

Data are described as mean (SD). Mean differences and correlation coefficients are presented 

along with respective 95% confidence intervals (95% CI). P values are expressed in exact terms 

apart for very low values, which are expressed as P < 0.001, and statistical significance was 

accepted as P < 0.050. 

4.4 Results 

4.4.1 Treadmill exercise responses 

Treadmill exercise responses are displayed in Table 4.1. No statistically significant nor 

practically important differences were observed in any of the treadmill exercise responses 

between the two exercise sessions (P ≥ 0.130).  
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Table 4.1 The various responses during the treadmill exercise for the two exercise conditions. 

Variable 
Exercise 

condition 1 

Exercise 

condition 2 
95% CI* ES 

Oxygen uptake (mL·kg-1·min-1) 38.9 (5.1) 38.5 (4.9) -4.2 to 3.3 0.09 

% peak oxygen uptake 71 (3) 70 (3) -2 to 0.3 0.31 

Heart rate (beats·min-1) 176 (10) 176 (13) -5 to 4 0.04 

Rating of perceived exertion 15 (2) 15 (2) -1 to 0.2 0.13 

Respiratory exchange ratio 0.91 (0.03) 0.92 (0.04) -0.01 to 0.02 0.21 

Fat oxidation (g) 29 (12) 26 (14) -7 to 2 0.22 

Carbohydrate oxidation (g) 159 (29) 164 (36) -6 to 15 0.13 

Net energy expenditure (kJ) 3473 (551) 3433 (532) -104 to 23 0.08 

Values are mean (SD). *95% confidence interval for the mean absolute difference between 

exercise conditions. ES: standardised (to between-subjects SD) effect size.  

 

4.4.2 Acylated ghrelin 

A moderate positive correlation of 0.57 (95% CI 0.08 to 0.84, P = 0.025) was observed between 

the two sets of control-adjusted exercise responses for acylated ghrelin (Figure 4.1A). The 

within-trial SD for acylated ghrelin was substantially greater for the exercise than control 

conditions (Table 4.2). Baseline-adjusted linear mixed models for acylated ghrelin 

concentrations revealed a significant main effect of condition (P < 0.001) and a significant 

participant-by-condition interaction (P < 0.001). The mean acylated ghrelin concentration was 

51 pg·mL-1 lower (95% CI -59 to -43 pg·mL-1, ES = 0.62) in the exercise versus control 

conditions. The magnitude of change in individual replicated mean responses after exercise for 

acylated ghrelin ranged from -141 to -9 pg·mL-1, with 100% (n = 15) of participants 

demonstrating a suppression beyond the MCID (±8.20 pg·mL-1) (Figure 4.1B).  
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4.4.3 Total PYY 

A small positive correlation of 0.27 (95% CI -0.28 to 0.69, P = 0.339) was observed between 

the two sets of control-adjusted exercise responses for total PYY (Figure 4.2A). Based on the 

recommendations of Hopkins et al. (2009), an outlier was identified who exhibited a PYY 

response greater than 3.5 residual SDs from the mean predicted value (Hopkins et al. 2009). 

After removal of the outlier, the correlation for total PYY increased to 0.71 and became 

significant (95% CI 0.31 to 0.90, P = 0.003) (Figure 4.2B). The within-trial SD for total PYY 

was substantially greater for the exercise than control conditions (Table 4.2). Baseline-adjusted 

linear mixed models for total PYY concentrations revealed a significant main effect of 

condition (P < 0.001) and a significant participant-by-condition interaction (P = 0.012). The 

mean total PYY concentration was 56 pg·mL-1 higher (95% CI 44 to 68 pg·mL-1, ES = 1.49) 

in the exercise versus control conditions. The magnitude of change in individual replicated 

mean responses after exercise for total PYY ranged from 3 to 112 pg·mL-1, with 93% (n = 14) 

of participants demonstrating an increase beyond the MCID (±3.75 pg·mL-1) (Figure 4.2C). 

4.4.4 Appetite ratings 

Moderate-to-large positive correlations were observed between the two sets of control-adjusted 

exercise responses for hunger (r = 0.82, 95% CI 0.53 to 0.94, P < 0.001), satisfaction (r = 0.74, 

95% CI 0.37 to 0.91, P = 0.002), fullness (r = 0.55, 95% CI 0.05 to 0.83, P = 0.035) and PFC 

(r = 0.54, 95% CI 0.04 to 0.82, P = 0.036) (Figure 4.3). The within-trial SD was substantially 

greater for the exercise than control conditions for hunger, satisfaction, fullness and PFC (Table 

4.2).  

Baseline-adjusted linear mixed models for all ratings of perceived appetite revealed a main 

effect of condition (P < 0.001). Participant-by-condition interactions were observed for ratings 

of hunger, satisfaction and fullness (P < 0.001), but not PFC (P = 0.053). The main effect of 

condition identified suppressed appetite in the exercise compared with control conditions. The 

mean ratings of hunger and PFC were 26 mm (95% CI -29 to -22 mm, ES = 1.47) and 19 mm 

(95% CI -25 to -13 mm, ES = 1.05) lower in the exercise versus control conditions, 

respectively. The mean ratings of satisfaction and fullness were 15 mm (95% CI 11 to 20 mm, 

ES = 0.95) and 14 mm (95% CI 8 to 21 mm, ES = 0.88) higher in the exercise versus control 

conditions, respectively. The magnitude of change in individual replicated mean responses 

after exercise ranged from -65 to 10 mm for hunger, -13 to 72 mm for satisfaction, -23 to 89 
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mm for fullness and -96 to 7 mm for PFC. Ninety-three percent (n = 14) of participants 

demonstrated a response beyond the MCID for hunger (±1.76 mm; 13% above, 80% below) 

and satisfaction (±1.62 mm; 60% above, 33% below), 87% (n = 13) for fullness (±1.64 mm; 

53% above, 33% below) and 100% (n = 15) for PFC (±1.82 mm; 33% above, 67% below) 

(Figure 4.4). 

A sensitivity analysis with the participant factor entered into the statistical model as a random, 

rather than a fixed, effect also resulted in participant-by-condition interactions for all appetite 

parameters (Table 4.2, P = 0.013–0.077).  

4.4.5 Correlations 

A large positive correlation was observed between the pre-to-post change in acylated ghrelin 

and the change in both hunger (r = 0.72, 95% CI 0.33 to 0.90, P = 0.002) and PFC (r = 0.63, 

95% CI 0.17 to 0.86, P = 0.011). There were no significant correlations between the pre-to-

post change in PYY and appetite perceptions (P ≥ 0.129) (Table 4.3). 
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Table 4.2 Unadjusted mean and standard deviations (SD) of the pre-to-post change scores for the exercise and control conditions and the true 

individual differences SD. 

Variable 
Exercise change 

Mean (SD) 

Control change 

Mean (SD) 

Estimate 1a Estimate 2b 

Individual 
differences SD 

Individual differences 
SD (SE) 

P value 

Acylated ghrelin (pg·mL-1)  -41.9 (33.1) 4.8 (13.0) 30.4 30.9 (19.7) 0.014 

Total PYY (pg·mL-1) 40.7 (35.5) -10.7 (23.1) 27.0 25.7 (19.3) 0.077 

Hunger (mm) -13.6 (26.8) 10.5 (7.5) 25.7 24.5 (15.5) 0.013 

Satisfaction (mm) 6.5 (25.1) -7.7 (8.9) 23.5 23.2 (14.8) 0.015 

Fullness (mm) 3.6 (34.8) -8.3 (9.8) 33.4 31.6 (20.1) 0.013 

Prospective food consumption (mm) -9.9 (27.7) 7.7 (9.6) 26.0 23.7 (15.5) 0.019 

a Estimate 1: Individual differences SD estimated using SD# = 	&SD'( − SD*(  where SDR is the SD of the true individual response, and SDE and 

SDC are the SDs of the pre-to-post change scores for the exercise and control conditions, respectively (Atkinson and Batterham, 2015; Hopkins, 

2015). 

b Estimate 2: Individual differences SD estimated using a random effects statistical model based on Senn et al. (2011). The SD was derived from 

the SAS model participant-by-condition interaction term (as a random effect). The P value shown is also for this interaction term. 

SE, standard error. 
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Figure 4.1 (A) Relationship between exercise and control pre-to-post (0 to 1 h) change scores on the 

two occasions for acylated ghrelin. 'Response 1' corresponds to the first pair of conditions (exercise 1 

minus control 1) and 'Response 2' to the second pair of conditions (exercise 2 minus control 2). Dashed 

lines represent the mean responses. (B) Individual changes in acylated ghrelin between the exercise and 

control conditions (exercise minus control). Black circles (●) indicate pre-to-post change scores for 

‘response 1’ and ‘response 2’ for each participant. Grey lines (▬) represent each participants’ replicated 

mean response. Dashed lines indicate the standardised minimal clinically important difference 

calculated as 0.1 multiplied by the baseline between-subject SD (Atkinson and Batterham, 2015). 
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Figure 4.2 Relationship between exercise and control pre-to-post (0 to 1 h) change scores on the two 

occasions for total PYY before (A) and after (B) the removal of a substantial outlier. 'Response 1' 

corresponds to the first pair of conditions (exercise 1 minus control 1) and 'Response 2' to the second 

pair of conditions (exercise 2 minus control 2). Dashed lines represent the mean responses. (C) 

Individual changes in total PYY between the exercise and control conditions (exercise minus control). 

Black circles (●) indicate pre-to-post change scores for ‘response 1’ and ‘response 2’ for each 

participant. Grey lines (▬) represent each participants’ replicated mean response. Dashed lines indicate 

the standardised minimal clinically important difference calculated as 0.1 multiplied by the baseline 

between-subject SD (Atkinson and Batterham, 2015). 
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Figure 4.3 Relationship between exercise and control pre-to-post (0 to 1 h) change scores on the two occasions for (A) hunger, (B) satisfaction, (C) fullness, 

and (D) prospective food consumption (PFC). 'Response 1' corresponds to the first pair of conditions (exercise 1 minus control 1) and 'Response 2' to the second 

pair of conditions (exercise 2 minus control 2). Dashed lines represent the mean responses. 



 
51 

 

Figure 4.4 Individual changes in each perceived appetite ratings between the exercise and control conditions (exercise minus control): (A) hunger, (B) 

satisfaction, (C) fullness, (D) prospective food consumption (PFC). Black circles (●) indicate pre-to-post change scores for ‘response 1’ and ‘response 2’ for 

each participant. Grey lines (▬) represent each participants’ replicated mean response. Dashed lines indicate the standardised minimal clinically important 

difference calculated as 0.1 multiplied by the baseline between-subject SD (Atkinson and Batterham, 2015).  
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Table 4.3 Pearson’s correlation coefficients between the pooled mean pre-to-post change in appetite-regulatory hormone concentrations and 

the pooled mean pre-to-post change in appetite perceptions across the four conditions (two exercise and two control). 

 Total PYY (pg·mL-1) Hunger (mm) Satisfaction (mm) Fullness (mm) Prospective food 
consumption (mm) 

Acylated ghrelin 
(pg·mL-1) 

r = -0.55 
P = 0.033 

95% CI* = -0.83 to - 0.05 

r = 0.72 
P = 0.002 

95% CI* = 0.33 to 0.90 

r = -0.46 
P = 0.084 

95% CI* = -0.79 to 0.07 

r = -0.39 
P = 0.151 

95% CI* = -0.75 to 0.15 

r = 0.63 
P = 0.011 

95% CI* = 0.17 to 0.86 

Total PYY (pg·mL-1)  
r = -0.41 
P = 0.129 

95% CI* = -0.76 to 0.13 

r = 0.33 
P = 0.229 

95% CI* = -0.22 to 0.72 

r = 0.20 
P = 0.475 

95% CI* = -0.35 to 0.65 

r = -0.37 
P = 0.175 

95% CI* = -0.74 to 0.17 

Hunger (mm)   
r = -0.80 
P < 0.001 

95% CI* = -0.93 to -0.49 

r = -0.71 
P = 0.003 

95% CI* = -0.90 to -0.31 

r = 0.85 
P < 0.001 

95% CI* = 0.60 to 0.95 

Satisfaction (mm)    
r = 0.83 

P < 0.001 
95% CI* = 0.55 to 0.94 

r = -0.66 
P = 0.007 

95% CI* = -0.88 to -0.22 

Fullness (mm)     
r = -0.57 
P = 0.026 

95% CI* = -0.84 to -0.08 

* 95% confidence interval.  

PYY, peptide YY.  
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4.5 Discussion 

The primary finding from our replicated crossover trial of appetite responses to exercise was 

that true interindividual variability exists in the appetite, acylated ghrelin and total PYY 

responses to acute exercise bouts beyond any measurement error and random within-subject 

variability over time. A further finding was the moderate-to-large positive correlations 

observed between the exercise and control pre-to-post change scores on two occasions, 

indicating good reproducibility for exercise-induced changes in appetite parameters. 

Our study supports previous literature by confirming the appetite suppressing effect of acute 

exercise (Schubert et al. 2014; Deighton and Stensel, 2014). In this regard, the grand mean 

changes at the sample level indicated a suppression of acylated ghrelin and perceived appetite, 

and an increase in total PYY after the exercise session. The correlation coefficients quantified 

between the exercise and control pre-to-post change scores on the two pairs of conditions were 

positive, significant and moderate-to-large for perceived appetite and acylated ghrelin. 

Although the correlation for total PYY was small and non-significant, closer examination of 

the change scores revealed that one participant presented two very opposite responses to 

exercise. Specifically, the change score between the first pair of trials indicated a suppression 

in total PYY (-34 pg·mL-1) and the second pair of trials showed a very strong increase in total 

PYY levels (146 pg·mL-1) (Figure 4.2A, 4.2C). The reason for this disparity is unclear and 

removal of this apparent outlier resulted in a larger correlation of similar magnitude to the other 

appetite-related outcomes measured in our study. Overall, responses to exercise were similar 

on repeated occasions, providing evidence to support the reproducibility of changes in appetite 

parameters after acute exercise. 

While no previous researchers have quantified the reproducibility of perceived appetite or 

appetite-regulatory hormone responses to acute exercise, the reproducibility of post-exercise 

energy intake has received more attention (Laan et al. 2010; Brown et al. 2012; Unick et al. 

2015). Specifically, Laan et al. reported good reproducibility for ad libitum energy intake after 

duplicate aerobic exercise, resistance exercise and resting control conditions in young, active 

adults (Laan et al. 2010). However, the difference in ad libitum energy intake between the 

exercise and control conditions was not calculated (Laan et al. 2010). Therefore, it can be said 

that within-subject variations were not taken into account and the possibility of the observed 

responses to exercise being exclusively due to measurement errors and random variability 

cannot be excluded (Atkinson and Batterham, 2015; Hopkins, 2015). Although energy intake 
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appears reproducible when considering repeated resting and exercise conditions in isolation 

(Laan et al. 2010; Unick et al. 2015), the reproducibility of the difference in ad libitum energy 

intake between exercise and control interventions appears low when assessed with the use of 

intra-class coefficients (Brown et al. 2012; Unick et al. 2015).  

Alongside the good reproducibility of appetite responses to acute exercise, our data show that 

individuals differ in the general magnitude of this response (the mean of the replicated trials, 

Figures 4.1B, 4.2C and 4.4). A statistically significant participant-by-condition interaction was 

observed for all appetite parameters, even after adjusting for baseline values. Although 

previous studies have reported individual variability in perceived appetite and energy intake 

responses to acute exercise in healthy (Finlayson et al. 2009) and overweight and obese women 

(Hopkins et al. 2014), this variability was estimated using a single pair of trials, i.e. one control 

and one exercise condition. Repeated administrations of treatment in a crossover fashion with 

a comparator arm (control condition) are required to assess individual variability in response 

to short-term or acute interventions from the participant-by-condition interaction term 

(Hopkins, 2015). We are not aware of previous studies assessing individual variability in 

appetite and appetite-regulatory hormone responses to acute exercise using a replicated 

crossover design and the statistical methods employed in the present study. 

The SD of the change scores is a good indication of individual variability in the responses to 

an intervention. If the SD of the change scores does not differ substantially between control 

and intervention conditions, the change originated by the intervention could be explained by 

random within-subject variation and measurement error (Atkinson and Batterham, 2015; 

Hopkins, 2015). The true individual response SD (using both estimates 1 and 2) was relatively 

large compared with the mean response for all appetite-related variables measured in this study 

(Table 4.2). For example, while the mean unadjusted exercise response (versus control change) 

for acylated ghrelin was approximately 47 pg·mL-1, the true individual response SD was 

approximately ± 30 pg·mL-1 (Table 4.2). This SD indicates the presence of substantial true 

interindividual differences in the acylated ghrelin response to exercise; this interpretation also 

applies to the other appetite parameters we assessed.  

Furthermore, we also highlight that the vast majority of participants showed appetite responses 

that exceeded the MCID we selected. Therefore, very few participants were identified as “non-

responders”, but some were “very large responders” while others were “small responders” 

according to the magnitude of change in acylated ghrelin, total PYY and appetite perceptions 
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after single bouts of exercise (Figures 4.1B, 4.2C, 4.4). Specifically, all participants 

demonstrated replicated mean responses beyond the MCID for circulating acylated ghrelin 

indicating an exercise-induced suppression of this hormone, and 93% of participants 

experienced an increase in circulating total PYY beyond the MCID. The direction of the 

replicated mean responses was more variable for the perceived appetite ratings. Of the 

participants that demonstrated replicated mean responses beyond the MCID, 53–80% of 

participants reported suppressed appetite after exercise (i.e., lower hunger and PFC, higher 

satisfaction and fullness), whereas 13–33% of participants reported higher perceived appetite 

after exercise (i.e., higher hunger and PFC, lower satisfaction and fullness).  

Although some studies report concomitant changes in appetite-regulatory hormones and 

appetite perceptions in response to acute exercise at the group level (Broom et al. 2007; King 

et al. 2010), exercise-induced changes in these parameters do not always occur simultaneously 

(Deighton et al. 2013; Sim et al. 2014; Martins et al. 2015). The present study extends these 

findings by demonstrating that the majority of participants exhibited corresponding exercise-

induced changes in acylated ghrelin, total PYY and appetite perceptions, and is further 

supported by the meaningful positive relationships observed between the pre-to-post change in 

acylated ghrelin and the change in hunger and PFC. However, some participants demonstrated 

divergent subjective and hormonal appetite responses to exercise. It is well established that 

appetite regulation is a complex process involving the interaction of many physiological and 

psychological factors (Stensel, 2010). Therefore, perceived appetite in some participants could 

have been more strongly affected by other variables not assessed in the present study. In this 

regard, several other anorexigenic gut peptides are involved in the acute regulation of appetite 

including cholecystokinin, oxyntomodulin, pancreatic polypeptide and glucagon-like peptide-

1. Indeed, the absence of significant correlations between the pre-to-post change in total PYY 

and appetite perceptions may reflect the notion that PYY acts synergistically with these other 

satiety signals to suppress appetite. Furthermore, appetite control is influenced by a variety of 

non-homeostatic factors such as neuronal responses, hedonic processes and 

cognitive/behavioural cues (Blundell et al. 2010). Future studies should consider the 

aforementioned appetite parameters to provide a more holistic scientific understanding of the 

variability in appetite responses after acute exercise.  

A potential source of variability in this study concerns the measurement of acylated ghrelin 

and total PYY concentrations from venous blood samples collected from an antecubital vein. 
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Recent studies suggest that compared to arterialised blood, venous blood provides lower 

concentrations of glucagon-like peptide-1 (Asmar et al. 2017) as well as lower glucose 

concentrations and higher insulin sensitivity (Edinburgh et al. 2017). Although limited 

evidence in patient populations suggests that fasting ghrelin concentrations are comparable 

between venous and arterialised blood (Goodyear et al. 2010; Martin et al. 2011), direct 

comparisons of acylated ghrelin and total PYY between arterialised and venous blood after 

exercise have not been investigated. Nevertheless, the findings of the present study are relevant 

to the wider exercise and appetite regulation literature where blood sampling from an 

antecubital vein is commonplace for quantifying appetite-regulatory hormone concentrations. 

The strengths of our study include the replicated crossover design and the use of recently 

published robust statistical analyses for individual variability quantification. Moreover, the 

detailed standardisation protocol followed by all participants during the 24 h preceding each 

laboratory visit and the precise replication of the exercise sessions add credibility to our results. 

However, it should be highlighted that our results cannot be generalized to other populations 

such as females, overweight or obese, and older individuals who may present different results 

(Alajmi et al. 2016; Douglas et al. 2017). It is also possible that different exercise modes, 

intensities, or session durations would elicit different responses (Deighton et al. 2013; Deighton 

and Stensel, 2014; Broom et al. 2017). Therefore, further research is needed to assess the 

reproducibility and individual variability of exercise-induced changes in appetite-regulatory 

hormones and appetite perceptions in other populations and with different exercise protocols. 

The publication of more studies investigating individual variability in appetite responses to 

exercise may stimulate the development of more efficient weight management strategies by 

determining whether an exercise intervention is likely to be beneficial, ineffective or 

detrimental for different individuals. This information would help to identify individuals who 

may achieve more favourable appetite responses through alternative exercise and/or nutritional 

interventions, but further work is required to examine this chronically. 

In conclusion, healthy, young men exhibited reproducible appetite responses to acute exercise, 

and true individual variability exists in acylated ghrelin, total PYY and perceived appetite 

responses over and above any random within-subject variability and measurement error. 

Individual variability in appetite responses to acute exercise needs to be considered when 

interpreting study results so that misleading conclusions can be avoided. 
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CHAPTER 5 

Exploration of associations between the FTO genotype, fasting and 

postprandial appetite-related hormones and perceived appetite in healthy 

men and women 

5.1 Abstract 

Background: The fat mass and obesity-associated gene (FTO) has been associated with 

obesity risk. Although the exact mechanisms involved remain unknown, it has been reported 

that the at-risk AA genotype is associated with an impaired postprandial suppression of 

appetite. Objectives: To explore the association between the FTO genotype, fasting and 

postprandial appetite-related hormones and perceived appetite in a heterogeneous sample of 

men and women. Methods: 112 healthy men and women completed three laboratory visits for 

the assessment of FTO genotype, body composition, aerobic fitness, resting metabolic rate, 

visceral adipose tissue, liver fat, fasting leptin, and fasting and postprandial acylated ghrelin, 

total PYY, insulin, glucose and perceived appetite. Participants wore accelerometers for seven 

consecutive days for the assessment of physical activity and sedentary behaviour. Multivariable 

general linear models quantified differences between FTO genotype groups for fasting and 

postprandial appetite outcomes, with and without the addition of a priori selected physiological 

and behavioural covariates. Sex-specific univariable Pearson’s correlation coefficients were 

quantified between the appetite-related outcomes and individual characteristics. Results: 95% 

confidence intervals for mean differences between FTO groups overlapped zero in the 

unadjusted and adjusted general linear models for all the fasting (P ≥ 0.278) and postprandial 

(P ≥ 0.186) appetite-related outcomes. Eta2 values for explained variance attributable to FTO 

group were < 5% for all outcomes. An exploratory correlation matrix indicated that 

associations between fasting and postprandial acylated ghrelin, total PYY and general or 

abdominal adiposity were also small (r = -0.23 to 0.15, P ≥ 0.090). Fasting leptin, glucose and 

insulin and postprandial insulin concentrations were associated with adiposity outcomes (r = 

0.29 to 0.81, P ≤ 0.033). Conclusions: Associations between the FTO genotype and fasting or 

postprandial appetite-related outcomes were weak in healthy men and women.  
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5.2 Introduction 

The scientific understanding of appetite control has increased considerably in recent decades, 

which has been helpful in elucidating the complex nature of energy balance and weight control. 

Central components of the homeostatic control of appetite comprise signals from adipose tissue 

and peptide hormones secreted from the digestive tract, which act acutely and/or chronically 

on central neural pathways to influence hunger, satiety and subsequent energy intake (MacLean 

et al. 2017). These signals and hormones include the tonic signals leptin and insulin that 

regulate long-term changes in energy balance and adiposity status, as well as a variety of 

episodic gut signals, which mediate hunger and satiety on a meal-by-meal basis (Blundell et 

al. 2008, 2015a; MacLean et al. 2017). Notable among the episodic mediators of appetite and 

energy intake are acylated ghrelin and peptide YY (PYY) which exert orexigenic and 

anorexigenic effects, respectively, to facilitate meal initiation and termination (Neary and 

Batterham, 2009).  

Over the last 16 years, our laboratory has measured circulating concentrations of appetite-

related hormones in response to meal ingestion in many studies. A consistent observation from 

this body of work is the degree of variability in responses observed between participants 

studied under identical conditions. Furthermore, using the gold standard replicated crossover 

study design (Atkinson and Batterham, 2015; Senn, 2016), we have demonstrated recently the 

presence of true interindividual heterogeneity in appetite perceptions and circulating 

concentrations of acylated ghrelin, total PYY, insulin and glucose in response to a standardised 

meal, over and above any random within-subject variability and measurement error (Goltz et 

al. 2019; Chapter 6). Similar findings were also observed in acylated ghrelin, total PYY and 

perceived appetite responses to replicated single bouts of aerobic exercise (Goltz et al. 2018; 

Chapter 4).  

The factors responsible for interindividual variability in appetite-related hormone 

concentrations are not fully understood, but it is plausible that differences in individual 

characteristics and behaviours may contribute to the variability observed. In this regard, the fat 

mass and obesity-associated gene (FTO) has been associated with obesity risk, with individuals 

homozygous for the A allele (AA) of FTO rs9939609 having a 1.7-fold higher obesity risk than 

individuals homozygous for the T allele (TT) (Frayling et al. 2007). Although the exact 

mechanisms through which FTO influences fat mass accumulation remain unknown, it has 

been suggested that FTO exerts its effect on food intake rather than on energy expenditure 
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(Speakman et al. 2008). Furthermore, AA individuals have been shown to exhibit an attenuated 

postprandial suppression of hunger and acylated ghrelin compared with TT individuals, which 

may predispose AA individuals to higher energy intake and, consequently, higher fat mass 

(Karra et al. 2013). However, the study by Karra and colleagues was performed in young 

healthy weight males and it is not known whether this influence of the FTO gene on 

postprandial appetite regulation is observed in a heterogenous sample of men and women. 

Beyond genetic influence, it has been speculated that other individual factors may affect 

appetite regulation. Data from previous studies have indicated that women exhibit higher 

fasting concentrations of acylated ghrelin than men (Alajmi et al. 2016; Douglas et al. 2017). 

Furthermore, an inverse relationship between general adiposity levels and fasting ghrelin levels 

has been suggested, possibly because of elevated insulin or leptin levels (Tschöp et al. 2001; 

Shiiya et al. 2002; Sondergaard et al. 2009). Individuals who are obese also exhibit a reduced 

postprandial suppression of ghrelin (Le Roux et al. 2005) and blunted postprandial increases 

in PYY (Le Roux et al. 2006). Limited evidence has also suggested an inverse association 

between visceral adipose tissue and fasting ghrelin levels, likely caused by substances secreted 

by visceral adipocytes, such as tumour necrosis factor a and leptin (Sondergaard et al. 2009). 

Moreover, fat-free mass, as the largest contributor to resting metabolic rate, has been identified 

as a key driver of appetite and energy intake (Blundell et al. 2015b). Physical activity has also 

been suggested to alter the sensitivity of the appetite control system by enhancing meal-induced 

satiety which may facilitate energy balance over the long term (Beaulieu et al. 2016). Together, 

these findings highlight the importance of investigating the effect of the FTO gene on appetite 

parameters in a sample of males and females with a wide range of age, adiposity and physical 

activity levels, including physiological and behavioural characteristics as covariates in the 

analyses. 

The primary aim of this study was to use objective assessment methods in order to explore the 

association of the FTO genotype with fasting and postprandial appetite-related hormones and 

perceived appetite in a sample of healthy men and women. The secondary aim was to explore 

potential associations between fasting and postprandial appetite outcomes and physiological 

and behavioural characteristics. 
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5.3 Methods 

5.3.1 Participants 

With the approval of the University Ethics Advisory Sub-Committee, a total of 121 participants 

(57 men, 64 women) aged 18 to 50 years provided written informed consent before taking part 

in the study. All participants were deemed to be stable in their body mass (≤ 3 kg change in the 

previous 3 months), non-smokers, habitual breakfast eaters, had no history of cardiovascular 

or metabolic disease, and were not dieting or taking any medications known to influence the 

outcome measures. Female participants were premenopausal and postmenopausal and not 

pregnant. Nine participants withdrew from the study before completing all study measurements 

due to time constraints. Therefore, data are presented for 112 participants (56 men, 56 women). 

The study sample self-reported ethnicity distribution was as follows: 93% white Europeans, 

6% Asians and 1% black.  

5.3.2 Visit 1: Preliminary testing 

Participants attended the laboratory for a preliminary visit to confirm eligibility, and to undergo 

familiarisation, anthropometric measurements and determination of peak oxygen uptake (V̇O2 

peak). The eligibility assessment included screening questionnaires to assess health status and 

food preferences and/or restrictions. Stature was measured to the nearest 0.1 cm and body mass 

to the nearest 0.1 kg using an electronic measuring station (Seca, Hamburg, Germany), and 

body mass index (BMI) was calculated. The sum of three skinfolds (chest, abdomen and thigh 

for men, and triceps, suprailiac and thigh for women) was used to estimate body density 

(Jackson and Pollock 1978, 1980) and body fat percentage (Siri, 1961). Waist circumference 

was measured as the narrowest point between the lower rib margin and the iliac crest.  

Participants were familiarised with walking and running on the treadmill (Technogym Excite 

Med, Cesena, Italy) before completing an incremental uphill treadmill protocol to determine 

V̇O2 peak, as described in detail in Chapter 3. 

5.3.3 Visit 2: Magnetic resonance imaging (MRI) scan 

Each participant underwent an MRI scan in the supine position using a dual-echo Dixon fat 

and water sequence on a 3-T MRI scanner (GE Healthcare MR750w, Chicago, USA). A 
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detailed description of the protocol has been reported previously (Borga et al. 2015; West et al. 

2016) and a summary of the procedures is provided in Chapter 3. 

5.3.4 Visit 3: Resting metabolic rate and test meal 

All premenopausal female participants completed the test meal during the follicular phase of 

the menstrual cycle (days 6-12) to avoid potential hormonal influences on appetite parameters. 

Participants were asked to refrain from caffeine, alcohol, and strenuous exercise during the 24 

h before the visit. A standardised evening meal (3297 kJ, 40% fat, 39% carbohydrate, 21% 

protein) was consumed the evening before the visit and only plain water was permitted after 

the meal until participants arrived at the laboratory the next day. 

Participants reported to the laboratory at 08:00 after fasting overnight for 12 h. A cannula 

(Becton Dickinson Venflon, Helsingborg, Sweden) was inserted into an antecubital vein for 

venous blood sampling, and participants rested for 60 min to eliminate any stress effects in 

response to the cannula (Chandarana et al. 2009). During this time, resting metabolic rate was 

measured using an open circuit indirect calorimetry system (GEM Nutrition, Cheshire, 

England). Participants were asked to lie in a comfortable supine position and were instructed 

not to talk or sleep, and to move as little as possible during the measurement, which was 

described in detail in Chapter 3. 

A fasting venous blood sample and rating of perceived appetite were taken 60 min after the 

insertion of the cannula. Participants then consumed a standardised breakfast within 15 min 

marking the start of the postprandial assessment period (09:00; 0 h). Breakfast consisted of a 

ham and cheese sandwich, milkshake and chocolate biscuit which provided 4435 kJ of energy 

(41% carbohydrate, 18% protein, 41% fat). Subsequent venous blood samples and ratings of 

perceived appetite were taken at 0.5, 1 and 2 h after the start of the breakfast whilst the 

participants rested in a semi-supine position.  

5.3.4.1 Appetite perceptions 

Appetite perceptions (hunger, satisfaction, fullness, prospective food consumption) were 

assessed using 100 mm visual analogue scales (Flint et al. 2000). An overall appetite rating 

was calculated as the mean value of the four appetite ratings once satisfaction and fullness were 

reverse-scored (Stubbs et al. 2000).  
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5.3.4.2 Blood sampling and biochemical analysis 

Venous blood samples were collected into pre-chilled ethylenediaminetetraacetic acid (EDTA) 

monovettes (Sarstedt, Leicester, UK) for the determination of plasma acylated ghrelin, total 

PYY, leptin, insulin and glucose concentrations, as described in detail in Chapter 3. 

Haemoglobin concentration and haematocrit were quantified in duplicate at 0 and 2 h to 

estimate the acute change in plasma volume (Dill and Costill, 1974). 

Commercially available enzyme-linked immunosorbent assays were used to determine the 

concentrations of plasma acylated ghrelin (Bertin Technologies, Montigney le Bretonneux, 

France), total PYY (Millipore, Billerica, USA), leptin (R&D Systems, Minneapolis, USA) and 

insulin (Mercodia, Uppsala, Sweden). Plasma glucose concentrations were determined by 

enzymatic, colorimetric methods using a benchtop analyser (Horiba Medical Pentra 400, 

Montpellier, France). The within-batch coefficient of variation for acylated ghrelin, total PYY, 

leptin, insulin and glucose concentrations were 4.3%, 5.1%, 8.3%, 4.7%, 0.4%, respectively.   

An additional fasting venous blood sample was collected into a 2.7-mL EDTA monovette 

(Sarstedt, Leicester, UK) and the whole blood sample was stored at 4°C to undergo 

deoxyribonucleic acid (DNA) extraction and genotyping for the rs9939609 allele within the 

FTO gene, as described in Chapter 3. Participants were assigned to one of three groups 

according to their genotype: homozygous major allele, TT (36%; males n = 23, females n = 

17); heterozygous allele, AT (45%; males n = 22, females n = 29); or homozygous minor allele, 

AA (19%; males n = 11, females n = 10).  

5.3.4.3 Habitual physical activity and sedentary time 

Participants wore an ActiGraph GT3X+ accelerometer (ActiGraph, Pensacola, USA) on an 

elasticated belt on the waist above the mid-line of the thigh on their non-dominant side of the 

body and an activPAL3 accelerometer (PAL Technologies Ltd., Glasgow, UK), attached 

directly to the skin on the midline of the anterior aspect of the thigh in line with the ActiGraph 

GT3X+ accelerometer. Moderate-to-vigorous physical activity (MVPA) and sitting time data 

were collected as described in detail in Chapter 3.  



 
63 

5.3.5 Statistical analyses 

We estimated the effect size detection sensitivity given our sample size using NQuery (version 

3, Statistical Solutions, Cork, Ireland). For a total sample size of 110 and three study groups, 

we estimated that a “medium” (Cohen, 1998) Eta2 value of 0.18 would be detected in a 

univariable model as statistically significant (P < 0.050) with power of 90%. 

Postprandial overall appetite and plasma concentrations of acylated ghrelin, total PYY, insulin 

and glucose are presented relative to baseline concentrations (delta) to minimise the potential 

influence of day-to-day biological variability (Deighton et al. 2013, 2014). Total area under the 

curve (AUC) values were calculated using the trapezoidal method. Correction of blood 

parameter concentrations for acute changes in plasma volume had a negligible influence on our 

findings and, therefore, the unadjusted plasma concentrations are displayed for simplicity. 

Multivariable general linear models were used to quantify the mean differences (and 95% 

confidence intervals) between FTO genotype groups for each fasting and postprandial appetite 

outcome. The Eta2 statistic (with associated 90% confidence interval) was also estimated for 

each model and each outcome (Kline, 2004; Steiger, 2004). This statistic is interpreted in a 

similar way as the coefficient of determination, where 100 x Eta2 gives the explained variance 

attributable to the FTO groups. A 90% rather than a 95% confidence interval is reported 

because the Eta2 statistic can only be positive in sign. The model residuals of the appetite 

outcome variables were explored for parity to a Gaussian distribution using histograms. The 

model residuals for fasting acylated ghrelin and insulin concentrations were observed to show 

a positively skewed distribution so these data were logarithmically-transformed prior to 

analysis (Bland and Altman, 1996). Three models were used for each of the fasting and 

postprandial appetite outcomes, as follows: 

1. Model I: Univariable models with FTO genotype as single fixed effect; 

2. Model II: A multivariable model based on the selection of matched covariates 

studied by Karra et al. (2013), i.e. age, fat mass and visceral adipose tissue. FTO 

genotype was entered as a fixed effect and sex, age, fat mass and visceral adipose 

tissue were entered as covariates; 

3. Model III: A multivariable model, where FTO genotype was entered as a fixed 

effect and sex, age, BMI, V̇O2 peak, resting metabolic rate, visceral adipose tissue, 
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abdominal subcutaneous adipose tissue, liver fat, sitting time and MVPA were 

entered as covariates. Rather than the now discouraged use of stepwise selection 

procedures, these covariates were included based on their hypothesised influence 

on the outcome variables, while considering the potential that some predictors were 

mathematically coupled (Flom and Cassell, 2007; Wittingham et al. 2006). For 

example, total fat mass was excluded from this model because multiple specific 

adiposity parameters were considered. 

The covariates in models II and III were each standardised prior to analysis by dividing each 

datum by twice the respective SD (Gelman and Pardoe, 2007). In sensitivity analyses, model 

III was also run with (i) waist circumference replacing BMI; (ii) percentage body fat replacing 

BMI; and (iii) with a sex-by-genotype interaction term. 

Univariable general linear models with FTO genotype as a single fixed effect were used to 

quantify differences between genotype groups for body mass, BMI and fat mass. Between-sex 

differences in participant characteristics and appetite-related outcomes in the fasting and 

postprandial states were assessed using univariable general linear models with sex as a single 

fixed effect. Sex-specific univariable Pearson’s correlation coefficients were quantified 

between appetite-related outcomes and individual characteristics, and between appetite-related 

blood parameters and perceived appetite. 

95% confidence intervals (95% CI) were quantified for correlation coefficients. P values are 

expressed in exact terms apart from very low values, which are expressed as P < 0.001. A 

threshold of statistical significance was accepted as P < 0.050, although we deemed a P value 

of < 0.005 as a stronger indication of potentially more reproducible results in line with recent 

advice (Benjamin et al. 2017). All statistical analyses were performed in SPSS (v.23, IBM 

Corporation, New York, USA).  

5.4 Results 

5.4.1 Missing data 

Due to technical issues with the equipment, resting metabolic rate is presented for 107 

participants (53 males), sitting time for 96 participants (47 males) and MVPA for 100 

participants (49 males). Eleven participants were unable to undertake the MRI scan for safety 

reasons and, therefore, visceral adipose tissue and abdominal subcutaneous adipose tissue are 
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presented for 101 participants (50 males). Liver fat could not be quantified from some images 

due to motion artefacts and, therefore, data is presented for 97 participants (48 males).  

5.4.2 Participant characteristics and appetite-related outcomes 

Participant characteristics, perceived appetite and appetite-related blood parameters in the 

fasting and postprandial states are presented in Table 5.1. In summary, statistically significant 

differences were observed between men and women in stature, body mass, BMI, waist 

circumference, fat-free mass, V̇O2 peak, resting metabolic rate, visceral adipose tissue, 

abdominal subcutaneous adipose tissue, liver fat, fasting leptin, fasting glucose, postprandial 

acylated ghrelin and postprandial overall appetite (P ≤ 0.016, Eta2 = 0.051 to 0.644). 

Postprandial delta values for acylated ghrelin, total PYY, insulin and glucose concentrations 

and perceived overall appetite are presented in Figure 5.1. 
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Table 5.1 Participant characteristics and appetite outcomes in the fasting and postprandial states. 

 All  

(n = 112) 

Range  

(min to max) 

Men  

(n = 56) 

Women 

(n = 56) 

 

P  

Mean difference 

95% CI  

Age (years) 34 (9) 18 to 50 35.3 (9.7) 33.5 (9.1) 0.303 -5.4 to 1.7 

Stature (cm) 171.0 (9.2) 149.1 to 200.4 178.5 (6.6) 165.3 (6.2) < 0.001* -15.6 to -10.8 

Body mass (kg) 74.9 (14.7) 48.5 to 140.4 83.3 (12.9) 66.5 (11.1) < 0.001* -21.2 to -12.2 

Body mass index (kg·m-2) 25.2 (3.9) 18.4 to 40.3 26.1 (3.7) 24.4 (4.0) 0.016 -3.2 to -0.3 

Waist circumference (cm) 82.7 (10.8) 62.4 to 125.0 88.4 (9.8) 77.0 (8.7) < 0.001* -14.9 to -8.0 

Fat mass (kg) 16.9 (8.4) 3.5 to 47.8 15.5 (9.1) 18.2 (7.4) 0.078 -0.3 to 5.9 

Fat-free mass (kg) 58.1 (12.2) 36.8 to 92.6 67.8 (8.8) 48.3 (5.5) < 0.001* -22.2 to -16.8 

V̇O2 peak (mL·kg·min-1) 44.0 (9.3) 21.0 to 81.0 49.0 (9.3) 39.0 (6.1) < 0.001* -13.0 to -7.1 

Resting metabolic rate (kcal) a 1617 (322) 889 to 2567 1808 (290) 1430 (232) < 0.001* -478 to -277 

Visceral adipose tissue (L) a 1.70 (1.26) 0.11 to 6.22 2.27 (1.41) 1.14 (0.75) < 0.001* -1.58 to -0.69 

Abdominal subcutaneous 

adipose tissue (L) a 

5.39 (3.02) 1.45 to 16.86 4.49 (2.39) 6.27 (3.33) 0.003* 0.64 to 2.93 

Liver fat (%) a 2.12 (1.81) 0.46 to 10.45 2.62 (2.19) 1.63 (1.16) 0.006 -1.69 to -0.28 

Sitting time (min·day-1) a 509 (85) 256 to 737 513 (73) 504 (95) 0.630 -43 to 26 

MVPA (min·day-1) a 55 (31) 11 to 163 57 (30) 54 (33) 0.706 -15 to 10 

Fasting leptin (ng·mL-1) 8.62 (8.63) 1.34 to 43.85 4.07 (3.08) 13.16 (9.95) < 0.001* 6.33 to 11.84 

Fasting acylated ghrelin 

(pg·mL-1) 

173.6 (491.8) 12.0 to 4410.6 103.3 (108.8) 243.8 (682.9) 0.131 -42.6 to 323.6 

Fasting total PYY (pg·mL-1) 117.5 (50.5) 13.6 to 270.0 121.9 (47.9) 113.0 (53.1) 0.353 -27.8 to 10.0 

Fasting insulin (pmol·L-1) 23.3 (15.0) 2.9 to 97.1 22.9 (14.3) 23.6 (15.8) 0.825 -5.0 to 6.3 

Fasting glucose (mmol·L-1) 5.24 (0.43) 4.29 to 6.56 5.37 (0.43) 5.12 (0.39) 0.001* -0.41 to -0.10 

Fasting overall appetite (mm) 70.8 (15.3) 19 to 95 71.2 (13.4) 70.4 (17.1) 0.787 -6.5 to 5.0 

Acylated ghrelin delta AUC  

(2 h, pg·mL-1) 

-87.9 (126.6) -1183.5 to 165.8 -51.3 (56.3) -124.6 (162.6) 0.002* -118.9 to -27.8 

Total PYY delta AUC  

(2 h, pg·mL-1) 

101.6 (61.0) -26.4 to 340.7 99.0 (62.4) 104.2 (59.9) 0.653 -17.7 to 28.1 

Insulin delta AUC  

(2 h, pg·mL-1) 

420.6 (236.8) 121.3 to 1485.8 403.9 (256.6) 437.3 (216.3) 0.458 -55.5 to 122.2 

Glucose delta AUC  

(2 h, pg·mL-1) 

0.77 (1.59) -2.20 to 5.79 0.54 (1.37) 1.00 (1.77) 0.125 -0.13 to 1.05 

Overall appetite delta AUC  

(2 h, pg·mL-1) 

-77.4 (34.4) -150.0 to -14.0 -65.7 (30.9) -89.1 (34.0) < 0.001* -35.5 to -11.1 

Values are mean (SD). P values and 95% CI are from univariable general linear models with sex as a single fixed 

effect. 

a n = 107 (53 males) for resting metabolic rate, 96 (47 males) for sitting time, 100 (49 males) for MVPA, 101 (50 

males) for visceral adipose tissue and abdominal subcutaneous adipose tissue, and 97 (48 males) for liver fat. 

AUC, area under the curve; CI, confidence interval; MVPA, moderate-to-vigorous physical activity, PYY, peptide 

YY; V̇O2 peak, peak oxygen uptake. 

* P < 0.005.
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Figure 5.1 Delta postprandial values for acylated ghrelin (A), total peptide YY (PYY) (B), insulin (C), glucose (D) and overall perceived appetite 

(E) in 56 males and 56 females. Grey rectangles indicate meal consumed within 15 min. Values are presented as mean (SD). Linear mixed 

models identified main effects of sex for delta acylated ghrelin, delta glucose and delta overall appetite (P ≤ 0.045), main effects of time for all 

outcomes (P < 0.001) and a sex-by-time interaction for delta appetite (P = 0.004).  

* P < 0.001 for post-hoc analysis of sex-by-time interaction between males and females. 
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5.4.3 Univariable and multivariable general linear models 

No statistically significant influence of the FTO genotype was identified for body mass (Eta2 

= 0.027, P = 0.234), BMI (Eta2 = 0.003, P = 0.688) or fat mass (Eta2 = 0.025, P = 0.259). 

5.4.3.1 Fasting appetite-related outcomes 

Separate univariate modelling (model I) did not reveal any statistically significant influence of 

the FTO genotype on fasting acylated ghrelin, total PYY, insulin, glucose, leptin or overall 

appetite (P ≥ 0.501) (Table 5.2). Similarly, no significant effect of the FTO genotype was 

detected on fasting appetite-related outcomes in model II (P ≥ 0.098) or model III (P ≥ 0.453) 

(Table 5.2). All Eta2 values were very low (< 0.05). Replacing BMI with waist circumference, 

replacing BMI with body fat percentage, and including a sex-by-genotype interaction term in 

the sensitivity analyses did not result in a significant effect of the FTO genotype on any of the 

fasting appetite-related outcomes (P ≥ 0.470, P ≥ 0.437, P ≥ 0.455, respectively). 

5.4.3.2 Postprandial appetite-related outcomes 

Separate univariate modelling (model I) did not reveal any statistically significant influence of 

the FTO genotype on delta AUC for acylated ghrelin, total PYY, insulin, glucose, leptin or 

overall appetite (P ≥ 0.322) (Table 5.3). Similarly, no significant effect of the FTO genotype 

was detected on delta AUC for any of the appetite-related outcomes in model II (P ≥ 0.271) or 

model III (P ≥ 0.186) (Table 5.3). Again, all Eta2 values were very low (< 0.05). Replacing 

BMI with waist circumference, replacing BMI with body fat percentage, and including a sex-

by-genotype interaction term in the sensitivity analyses did not result in a significant effect of 

the FTO genotype on any of the postprandial appetite-related outcomes (P ≥ 0.133, P ≥ 0.102, 

P ≥ 0.206, respectively). 
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Table 5.2 Estimated marginal means from the multivariable general linear models used to quantify the differences between FTO genotype groups in each 

fasting appetite outcome.  

 Model I Model II Model III 

 AT  
(n = 49) 

AA 
(n = 21) 

TT 
(n = 40) 

AT  
(n = 45) 

AA  
(n = 18) 

TT  
(n = 37) 

AT  
(n = 34) 

AA  
(n = 17) 

TT  
(n = 28) 

Fasting acylated 
ghrelin  
(log pg·mL-1) 

4.47   
(4.25 to 4.69) 

4.59   
(4.26 to 4.92) 

4.51  
(4.27 to 4.75) 

4.42  
(4.18 to 4.65) 

4.57  
(4.20 to 4.94) 

4.57  
(4.30 to 4.83) 

4.42  
(4.20 to 4.64) 

4.56  
(4.23 to 4.88) 

4.29  
(4.03 to 4.54) 

Eta2 = 0.003 (90% CI: 0.000-0.023), P = 0.835 Eta2 = 0.009 (90% CI: 0.000-0.047), P = 0.660 Eta2 = 0.024 (90% CI: 0.000-0.091), P = 0.453 

Fasting total 
PYY (pg·mL-1) 

110.3  
(96.1 to 124.5) 

123.5  
(101.8 to 145.2) 

120.4  
(104.7 to 136.2) 

109.2  
(94.0 to 124.4) 

123.6  
(100.2 to 147.0) 

122.4  
(105.7 to 139.1) 

114.3  
(97.6 to 130.9) 

117.2  
(93.3 to 141.0) 

114.1  
(95.0 to 133.2) 

Eta2 = 0.013 (90% CI: 0.000-0.055), P = 0.501 Eta2 = 0.018 (90% CI: 0.000-0.069), P = 0.434 Eta2 = 0.001 (90% CI: 0.000-0.014), P = 0.977 

Fasting insulin 
(log pmol·L-1) 

3.00  
(2.83 to 3.16) 

2.87  
(2.61 to 3.12) 

2.97  
(2.79 to 3.16) 

3.03  
(2.88 to 3.19) 

2.93  
(2.70 to 3.17) 

2.96  
(2.79 to 3.13) 

3.01  
(2.81 to 3.20) 

2.98  
(2.70 to 3.27) 

2.95  
(2.72 to 3.18) 

Eta2 = 0.007 (90% CI: 0.000-0.038), P = 0.699 Eta2 = 0.007 (90% CI: 0.000-0.041), P = 0.716 Eta2 = 0.002 (90% CI: 0.000-0.028), P = 0.935 

Fasting glucose 
(mmol·L-1) 

5.23  
(5.11 to 5.36) 

5.28  
(5.09 to 5.47) 

5.22  
(5.09 to 5.36) 

5.27  
(5.15 to 5.38) 

5.28  
(5.11 to 5.46) 

5.14  
(5.02 to 5.27) 

5.24  
(5.10 to 5.38) 

5.30  
(5.10 to 5.51) 

5.16  
(5.00 to 5.32) 

Eta2 = 0.002 (90% CI: 0.000-0.016), P = 0.882 Eta2 = 0.027 (90% CI: 0.000-0.087), P = 0.278 Eta2 = 0.018 (90% CI: 0.000-0.078), P = 0.553 

Fasting leptin 
(ng·mL-1) 

9.17  
(6.70 to 11.65) 

8.06  
(4.27 to 11.84) 

7.95  
(5.21 to 10.69) 

9.77  
(8.15 to 11.39) 

6.67  
(4.17 to 9.17) 

7.93  
(6.15 to 9.71) 

9.76  
(7.91 to 11.62) 

8.71 
(6.05 to 11.37) 

8.72  
(6.59 to 10.85) 

Eta2 = 0.005 (90% CI: 0.000-0.030), P = 0.779 Eta2 = 0.049 (90% CI: 0.000-0.122), P = 0.098 Eta2 = 0.010 (90% CI: 0.000-0.057), P = 0.713 

Fasting overall 
appetite (mm) 

70.0  
(65.7 to 74.4) 

69.6  
(63.0 to 76.2) 

72.2  
(67.4 to 77.0) 

67.6  
(63.0 to 72.3) 

70.2  
(63.0 to 77.4) 

72.4  
(67.3 to 77.6) 

66.8  
(60.9 to 72.7) 

68.9  
(60.4 to 77.3) 

69.3  
(62.5 to 76.0) 

Eta2 = 0.005 (90% CI: 0.000-0.033), P = 0.748 Eta2 = 0.019 (90% CI: 0.000-0.072), P = 0.402 Eta2 = 0.005 (90% CI: 0.000-0.034), P = 0.850 

Model I: Univariable model with FTO genotype as single fixed effect. Model II: Multivariable model with FTO genotype as a fixed effect and sex, age, fat mass and visceral 
adipose tissue as covariates. Model III: Multivariable model with FTO genotype as a fixed effect and sex, age, body mass index, peak oxygen uptake, resting metabolic rate, 
visceral adipose tissue, abdominal subcutaneous adipose tissue, liver fat, sitting time and moderate-to-vigorous physical activity as covariates.  

Values are mean (95% confidence interval (CI)). Eta2, 90% CI and P values are from the fixed effect of the FTO genotype group.  
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Table 5.3 Estimated marginal means from the multivariable general linear models used to quantify the differences between FTO genotype groups in each postprandial 

appetite outcome.  

 Model I Model II Model III 

 AT  
(n = 49) 

AA 
(n = 21) 

TT 
(n = 40) 

AT  
(n = 45) 

AA  
(n = 18) 

TT  
(n = 37) 

AT  
(n = 34) 

AA  
(n = 17) 

TT  
(n = 28) 

Acylated ghrelin 
delta AUC  
(2 h pg·mL-1) 

-76.0  
(-110.8 to -41.2) 

-86.3  
(-139.5 to -33.1) 

-96.3  
(-134.9 to -57.8) 

-69.5  
(-107.1 to -32.0) 

-93.1  
(-151.1 to -35.0) 

-103.2  
(-144.5 to -61.8) 

-87.4  
(-106.9 to -67.9) 

-87.0  
(-114.9 to -59.0) 

-67.8  
(-90.2 to -45.4) 

Eta2 = 0.006 (90% CI: 0.000-0.034), P = 0.740 Eta2 = 0.015 (90% CI: 0.000-0.063), P = 0.494 Eta2 = 0.026 (90% CI: 0.000-0.097), P = 0.414 

Total PYY delta 
AUC  
(2 h pg·mL-1) 

101.1  
(84.2 to 118.1) 

89.7  
(63.8 to 115.6) 

113.4  
(94.7 to 132.2) 

98.5  
(80.2 to 116.8) 

86.5  
(58.2 to 114.8) 

113.7  
(93.5 to 133.8) 

103.5  
(81.2 to 125.8) 

80.4  
(48.4 to 112.4) 

120.1  
(94.4 to 145.7) 

Eta2 = 0.021 (90% CI: 0.000-0.072), P = 0.322 Eta2 = 0.028 (90% CI: 0.000-0.088), P = 0.271 Eta2 = 0.050 (90% CI: 0.000-0.137), P = 0.186 

Insulin delta 
AUC (2 h 
pmol·L-1) 

411  
(345 to 476) 

404  
(303 to 503) 

432  
(359 to 504) 

409  
(342 to 477) 

415  
(311 to 519) 

430  
(356 to 504) 

411  
(330 to 492) 

429  
(313 to 545) 

463  
(370 to 556) 

Eta2 = 0.002 (90% CI: 0.000-0.017), P = 0.875 Eta2 = 0.002 (90% CI: 0.000-0.022), P = 0.921 Eta2 = 0.010 (90% CI: 0.000-0.055), P = 0.728 

Glucose delta 
AUC  
(2 h mmol·L-1) 

0.66  
(0.21 to 1.12) 

0.60  
(-0.10 to 1.30) 

1.01  
(0.51 to 1.52) 

0.60  
(0.19 to 1.02) 

0.54  
(-0.09 to 1.18) 

0.79  
(0.34 to 1.25) 

0.68  
(0.19 to 1.17) 

0.44  
(-0.26 to 1.14) 

0.88  
(0.32 to 1.44) 

Eta2 = 0.012 (90% CI: 0.000-0.054), P = 0.511 Eta2 = 0.006 (90% CI: 0.000-0.036), P = 0.766 Eta2 = 0.013 (90% CI: 0.000-0.066), P = 0.642 

Overall appetite 
delta AUC  
(2 h mm) 

-79.3  
(-89.1 to -69.5) 

-72.4  
(-87.4 to -57.5) 

-79.2 
(-90.1 to -68.4) 

-75.3  
(-85.2 to -65.4) 

-73.6  
(-88.8 to -58.3) 

-82.1  
(-93.0 to -71.2) 

-73.4  
(-85.4 to -61.4) 

-75.6  
(-92.7 to -58.4) 

-75.6  
(-89.3 to -61.8) 

Eta2 = 0.006 (90% CI: 0.000-0.036), P = 0.718 Eta2 = 0.012 (90% CI: 0.000-0.056), P = 0.568 Eta2 = 0.001 (90% CI: 0.000-0.021), P = 0.965 

Model I: Univariable model with FTO genotype as single fixed effect. Model II: Multivariable model with FTO genotype as a fixed effect and sex, age, fat mass and visceral 
adipose tissue as covariates. Model III: Multivariable model with FTO genotype as a fixed effect and sex, age, body mass index, peak oxygen uptake, resting metabolic rate, 
visceral adipose tissue, abdominal subcutaneous adipose tissue, liver fat, sitting time and moderate-to-vigorous physical activity as covariates.  

Values are mean (95% confidence interval (CI)). Eta2, 90% CI and P values are from the fixed effect of the FTO genotype group.  
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5.4.4 Sex-specific Pearson’s correlation coefficients 

5.4.4.1 Appetite-related outcomes and individual characteristics 

No significant correlations were observed between fasting acylated ghrelin and age, BMI, fat 

mass, V̇O2 peak, resting metabolic rate, visceral fat, abdominal subcutaneous adipose tissue, 

liver fat, average sitting or average MVPA in men (r = -0.18 to 0.07, P ≥ 0.185) or women (r 

= -0.19 to 0.06, P ≥ 0.175). Similarly, no significant correlations were observed between fasting 

total PYY and any of the individual characteristics in men (r = -0.13 to 0.14, P ≥ 0.330) or 

women (r = -0.14 to 0.10, P ≥ 0.323). Pearson’s correlation coefficients between individual 

characteristics and fasting insulin, glucose and leptin are presented in Table 5.4. In summary, 

fasting insulin was positively correlated with general and abdominal adiposity parameters in 

both sexes and with liver fat in men (r = 0.32 to 0.53, P ≤ 0.010). Fasting insulin was negatively 

correlated with V̇O2 peak in both sexes and with MVPA in men (r = -0.35 to -0.47, P ≤ 0.004). 

Fasting glucose was positively correlated with total and abdominal adiposity parameters in 

both sexes, with age and liver fat in men, and with resting metabolic rate in women (r = 0.28 

to 0.44, P ≤ 0.017). Fasting glucose was negatively correlated with V̇O2 peak in both sexes (r 

= -0.29 to -0.28, P ≤ 0.020). Fasting leptin was positively correlated with general and 

abdominal adiposity parameters in both sexes, and with age and liver fat in men (r = 0.24 to 

0.83, P ≤ 0.040). Fasting leptin was negatively correlated with V̇O2 peak in both sexes and 

with MVPA in men (r = -0.35 to -0.64, P ≤ 0.006). In men, fasting overall appetite was 

negatively associated with fat mass (r = -0.31, P = 0.022, 95% CI = -0.53 to -0.05) and 

abdominal subcutaneous adipose tissue (r = -0.30, P = 0.032, 95% CI = -0.53 to -0.02). No 

significant correlations between fasting overall appetite and individual characteristics were 

observed in women (r = -0.12 to 0.09, P ≥ 0.391).  

Delta AUC for acylated ghrelin was positively associated with sitting time (r = 0.29, P = 0.048, 

95% CI = 0.00 to 0.53) and negatively associated with age (r = -0.32, P = 0.017, 95% CI = -

0.54 to -0.06) in men. Insulin AUC was positively associated with visceral adipose tissue in 

men (r = 0.38, P = 0.007, 95% CI = 0.11 to 0.59) and women (r = 0.32, P = 0.021, 95% CI = 

0.05 to 0.55), and with fat mass (r = 0.39, P = 0.003, 95% CI = 0.14 to 0.59), abdominal 

subcutaneous adipose tissue (r = 0.31, P = 0.026, 95% CI = 0.03 to 0.54) and liver fat (r = 0.47, 

P = 0.001, 95% CI = 0.21 to 0.66) in men. Insulin AUC was negatively associated with V̇O2 

peak (r = -0.44, P = 0.001, 95% CI = -0.63 to -0.20) and MVPA (r = -0.38, P = 0.007, 95% CI 
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= -0.60 to -0.11) in men. None of the correlations between AUC for total PYY, glucose and 

overall appetite and individual characteristics were statistically significant (r = -0.23 to 0.24, P 

≥ 0.061). 

5.4.4.2 Perceived appetite and appetite-related blood parameters 

Fasting overall appetite was negatively associated with fasting insulin (r = -0.32, P = 0.015, 

95% CI = -0.54 to -0.06) and fasting leptin (r = -0.35, P = 0.008, 95% CI = -0.56 to -0.10) in 

men. Delta AUC for overall appetite was positively associated with insulin AUC (r = 0.35, P 

= 0.009, 95% CI = 0.10 to 0.56) in women. No other significant correlations between overall 

appetite and appetite-related blood parameters were evident in the fasted or postprandial state 

(r = -0.20 to 0.26, P ≥ 0.052).  
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Table 5.4 Sex-specific Pearson’s correlation coefficients between fasting appetite-related blood markers and individual characteristics.   

 Fasting insulin (pmol·L-1) Fasting glucose (mmol·L-1) Fasting leptin (ng·mL-1) 

Age (years) Men: r = -0.01, P = 0.457, 95% CI = -0.27 to 0.25 

Women: r = -0.16, P = 0.123, 95% CI = -0.40 to 0.11 

Men: r = 0.34, P = 0.005, 95% CI = 0.08 to 0.55 

Women: r = 0.08, P = 0.270, 95% CI = -0.19 to 0.33 

Men: r = 0.24, P = 0.040, 95% CI = -0.02 to 0.47 

Women: r = -0.07, P = 0.298, 95% CI = -0.33 to 0.20 

Body mass index 
(kg·m-2) 

Men: r = 0.39, P = 0.003*, 95% CI = 0.14 to 0.59 

Women: r = 0.53, P < 0.001*, 95% CI = 0.31 to 0.69 

Men: r = 0.33, P = 0.013, 95% CI = 0.07 to 0.54 

Women: r = 0.35, P = 0.004*, 95% CI = 0.10 to 0.56 

Men: r = 0.62, P < 0.001*, 95% CI = 0.43 to 0.76 

Women: r = 0.77, P < 0.001*, 95% CI = 0.64 to 0.86 

Fat mass (kg) Men: r = 0.49, P < 0.001*, 95% CI = 0.26 to 0.67 

Women: r = 0.32, P = 0.008, 95% CI = 0.06 to 0.54 

Men: r = 0.44, P < 0.001*, 95% CI = 0.20 to 0.63 

Women: r = 0.28, P = 0.017, 95% CI = 0.02 to 0.50 

Men: r = 0.83, P < 0.001*, 95% CI = 0.73 to 0.90 

Women: r = 0.75, P < 0.001*, 95% CI = 0.61 to 0.85 

V̇O2 peak 
(mL·kg·min-1) 

Men: r = -0.47, P < 0.001*, 95% CI = -0.65 to -0.24 

Women: r = -0.35, P = 0.004*, 95% CI = -0.56 to -0.10 

Men: r = -0.29, P = 0.015, 95% CI = -0.51 to -0.03 

Women: r = -0.28, P = 0.020, 95% CI = -0.50 to -0.02 

Men: r = -0.64, P < 0.001*, 95% CI = -0.77 to -0.45 

Women: r = -0.58, P < 0.001*, 95% CI = -0.73 to -0.37 

Resting metabolic 
rate (kcal) 

Men: r = -0.04, P = 0.381, 95% CI = -0.31 to 0.23 

Women: r = 0.03, P = 0.402, 95% CI = -0.24 to 0.29 

Men: r = -0.12, P = 0.205, 95% CI = -0.38 to 0.15 

Women: r = 0.35, P = 0.005, 95% CI = 0.09 to 0.56 

Men: r = 0.05, P = 0.369, 95% CI = -0.22 to 0.32 

Women: r = 0.05, P = 0.359, 95% CI = -0.22 to 0.31 

Visceral adipose 
tissue (L) 

Men: r = 0.41, P = 0.002*, 95% CI = 0.15 to 0.62 

Women: r = 0.33, P = 0.010, 95% CI = 0.06 to 0.55 

Men: r = 0.42, P = 0.001*, 95% CI = 0.15 to 0.63 

Women: r = 0.36, P = 0.005, 95% CI = 0.09 to 0.58 

Men: r = 0.65, P < 0.001*, 95% CI = 0.45 to 0.79 

Women: r = 0.62, P < 0.001*, 95% CI = 0.42 to 0.76 

Abdominal 
subcutaneous 
adipose tissue (L) 

Men: r = 0.43, P = 0.002*, 95% CI = 0.17 to 0.63 

Women: r = 0.44, P = 0.001*, 95% CI = 0.19 to 0.64 

Men: r = 0.39, P = 0.005, 95% CI = 0.13 to 0.60 

Women: r = 0.34, P = 0.013, 95% CI = 0.07 to 0.56 

Men: r = 0.79, P < 0.001*, 95% CI = 0.66 to 0.87 

Women: r = 0.79, P < 0.001*, 95% CI = 0.66 to 0.87 

Liver fat (%) Men: r = 0.49, P < 0.001*, 95% CI = 0.24 to 0.68 

Women: r = 0.06, P = 0.338, 95% CI = -0.22 to 0.33 

Men: r = 0.33, P = 0.010, 95% CI = 0.05 to 0.56 

Women: r = 0.07, P = 0.305, 95% CI = -0.21 to 0.34 

Men: r = 0.44, P = 0.001*, 95% CI = 0.18 to 0.64 

Women: r = 0.18, P = 0.112, 95% CI = -0.11 to 0.44 

Average sitting time 
(min·day-1) 

Men: r = -0.06, P = 0.340, 95% CI = -0.34 to 0.23 

Women: r = 0.12, P = 0.196, 95% CI = -0.17 to 0.39 

Men: r = -0.12, P = 0.210, 95% CI = -0.39 to 0.17 

Women: r = 0.13, P = 0.190, 95% CI = -0.16 to 0.40 

Men: r = -0.12, P = 0.207, 95% CI = -0.39 to 0.17 

Women: r = 0.05, P = 0.353, 95% CI = -0.23 to 0.33 

Average MVPA 
time (min·day-1) 

Men: r = -0.44, P = 0.001*, 95% CI = -0.64 to -0.18 

Women: r = -0.01, P = 0.493, 95% CI = -0.28 to 0.27 

Men: r = -0.03, P = 0.420, 95% CI = -0.31 to 0.25 

Women: r = 0.09, P = 0.274, 95% CI = -0.19 to 0.36 

Men: r = -0.35, P = 0.006, 95% CI = -0.57 to -0.08 

Women: r = -0.10, P = 0.241, 95% CI = -0.36 to 0.18 

AUC, area under the curve; FTO, fat mass and obesity-associated gene; MVPA, moderate-to-vigorous physical activity, PYY, peptide YY; V̇O2 peak, peak oxygen 
uptake.    
* P < 0.005.
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5.5 Discussion 

The primary finding of this study is that the association between the FTO genotype, fasting and 

postprandial perceived appetite and appetite-related blood outcomes was weak in healthy men 

and women. Explained variance for FTO group on all outcomes was small (< 5%) according 

to the thresholds suggested by Cohen (1998). Even the upper 90% confidence limits of the 

explained variance were low for each outcome (< 15%). In the context of precision medicine, 

we maintain that explained variance would need to be much larger than our observed values 

for the FTO gene to be a useful predictor of appetite-related outcomes. We also found that 

fasting and postprandial acylated ghrelin and total PYY were not associated with general or 

abdominal adiposity, while leptin, glucose and insulin concentrations were consistently 

associated with adiposity variables. Our study is the first to employ an integrative approach to 

investigate associations between a variety of genetic, physiological and lifestyle characteristics 

with appetite-related outcomes. Previous research has provided limited evidence on the 

influence of specific individual characteristics on appetite-related blood parameters and 

appetite perceptions. 

The FTO gene represents the most extensively-studied gene that has been associated with a 

higher risk of obesity (Frayling et al. 2007), yet evidence on the physiological mechanisms 

involved is limited. The study undertaken by Karra et al. (2013) supported the hypothesis that 

satiety control differs between FTO genotype groups. Specifically, the group with higher 

obesity risk (AA) presented attenuated suppression of acylated ghrelin and perceived hunger 

after consumption of a meal, which can naturally lead to increased energy intake and, 

consequently, higher body mass (Karra et al. 2013). However, our results do not support this 

hypothesis as we found weak associations between genotype group, acylated ghrelin 

concentrations and perceived appetite ratings. Differences between study samples can possibly 

explain discrepancies between findings, as Karra et al. (2013) recruited healthy young males, 

while our sample was composed of a heterogeneous group of males and females. Additionally, 

Karra et al. selectively sampled their participants in order to match groups for certain variables, 

whereas we adopted a multivariate-adjusted approach to our data analysis. Interestingly, recent 

studies have reported lower postprandial total ghrelin concentrations in AA compared to AT 

and TT individuals (Magno et al. 2018; Melhorn et al. 2018), and postprandial hunger ratings 

were either similar between genotype groups (Melhorn et al. 2018) or were lower in AA 

individuals (Magno et al. 2018). These findings were observed despite the AA individuals 
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exhibiting higher energy intake during an ad libitum buffet (Melhorn et al. 2018). Of note, the 

active part of ghrelin (acylated ghrelin) only represents approximately 10% of total ghrelin 

(Hosoda et al. 2000; Yoshimoto et al. 2002) and, therefore, the assessment of total ghrelin in 

these studies could potentially explain the variability in findings.  

Our research group has recently conducted a replicated crossover study to examine individual 

appetite responses to meal intake in healthy men recruited according to their FTO rs9939609 

genotype (AA or TT) (Goltz et al. 2019; Chapter 6). The findings from this study highlighted 

the existence of interindividual variability in perceived appetite and acylated ghrelin, total PYY, 

insulin and glucose responses to a standardised meal over and above any measurement errors 

and/or natural variance of the outcomes. However, the magnitude of postprandial appetite 

parameter responses after meal intake was not associated with the FTO genotype (Goltz et al. 

2019; Chapter 6). In line with our findings, previous studies have reported no differences 

between FTO genotype groups for fasting glucose and insulin (Speakman et al. 2008), fasting 

leptin (Speakman et al. 2008; Karra et al. 2013; Melhorn et al. 2018), fasting and postprandial 

PYY3-36 (Karra et al. 2013) and fasting and postprandial glucagon-like peptide 1 (Melhorn et 

al. 2018). Beyond the subjective appetite and appetite-related blood outcomes assessed in this 

study, AA and TT individuals have been shown to exhibit divergent neural responsiveness to 

food cues within homeostatic and reward brain regions in both fasted and postprandial states 

(Karra et al. 2013). Specifically, AA individuals rated high-energy food images as more 

appealing than TT individuals, and positive associations between circulating acylated ghrelin 

and central neural system responsiveness to food cues were observed only in TT individuals 

(Karra et al. 2013). Additional studies are needed to elucidate the precise role that FTO plays 

in moderating appetite control and energy intake which include both central and peripheral 

factors implicated in appetite regulation. 

Although evidence to date suggests a negligible impact of FTO genotype on energy 

expenditure, higher levels of physical activity seem to exert a protective effect on the obesity 

risk associated with FTO (Sonestedt et al. 2009; Speakman, 2015). On the contrary, diets with 

higher fat content can exacerbate the susceptibility to obesity linked to the FTO high-risk 

genotype (Sonestedt et al. 2009; Speakman, 2015). Our study included objectively assessed 

sitting time, MVPA and cardiorespiratory fitness as covariates in the statistical analyses. 

However, only 20% of our participants accumulated, on average, less than 30 min of MVPA 

per day, indicating that most participants in our sample had relatively high levels of physical 
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activity. Therefore, we cannot rule out the possibility of this hindering our ability to detect 

differences in appetite-related outcomes between the genotype groups (Speakman et al. 2008). 

Our study did not include any assessment of habitual dietary intake and, therefore, fat intake 

was not taken into consideration in our analyses. Nevertheless, it is well known that the 

currently available dietary intake assessment tools do not provide reliable data, and this 

currently represents a major challenge for those involved in nutrition-related research, clinical 

practice or policy development (Dhurandhar et al. 2015; Archer et al. 2018).  

In contrast to previous studies (Alajmi et al. 2016; Douglas et al. 2017), we did not observe a 

statistically significant difference in fasting concentrations of acylated ghrelin between men 

and women. The reason for this disparity is unclear but it is worth noting that two female 

participants were identified as clear outliers within our sample, with fasting acylated ghrelin 

concentrations of 2,899 and 4,411 pg·mL-1. These extremely high concentrations of acylated 

ghrelin were observed consistently in all four samples collected for each participant, indicating 

these values represented physiological characteristics of these two individuals rather than 

merely one-off measurement errors. Further studies are needed to investigate potential causes 

and consequences of such extreme concentrations of acylated ghrelin, and care should be taken 

when interpreting group mean results, as group means can be greatly impacted by such outliers. 

Nevertheless, exclusion of the outliers did not influence any of the statistical models in this 

study and, therefore, data are presented with the outliers included. Higher concentrations of 

fasting glucose were observed in men than women in the current study, which may be indicative 

of a greater degree of insulin resistance resulting from the higher visceral adipose tissue and 

liver fat levels observed in men (Marchesini et al. 2001; Ibrahim, 2010). Higher levels of fasting 

leptin were observed in women, likely because of the higher fat mass values in relation to total 

body mass in women, compared to men (Marshall et al. 2000; Rosenbaum and Leibel, 2014). 

After meal consumption, greater changes in acylated ghrelin and overall appetite were observed 

in women than men. It should be noted that all participants received an identical standardised 

meal and, as women had significantly lower body mass and fat-free mass, and consequently 

lower resting metabolic rate, it was expected that the postprandial suppression of appetite would 

be stronger in women. However, it is interesting to observe that, apart from acylated ghrelin, 

no other statistically significant differences were observed between men and women in any of 

the remaining postprandial appetite-related blood parameters. Previous evidence has 

demonstrated a stronger suppression of acylated ghrelin in women than men after acute exercise 
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and standardised meals (Douglas et al. 2017), but not after the consumption of a standardised 

liquid meal (Carroll et al. 2007).  

Our exploratory analyses did not identify any statistically significant or meaningful association 

between adiposity parameters and fasting or postprandial concentrations of acylated ghrelin 

and total PYY. This is in contrast with findings from previous studies which demonstrated a 

lower postprandial suppression of total and acylated ghrelin (Le Roux et al. 2005; Carrol et al. 

2007) and a blunted postprandial elevation in PYY (Le Roux et al. 2006) in individuals with 

obesity. However, as expected, fasting insulin, glucose and leptin and postprandial insulin were 

all positively associated with general and visceral adiposity, demonstrated by moderate to very 

large correlation coefficients, which is consistent with the well-established role of leptin in 

signalling adiposity levels (Rosenbaum and Leibel, 2014) and the impact of adiposity on insulin 

resistance (Ibrahim, 2010). Additionally, fat-free mass, which represents the largest 

determinant of resting metabolic rate, has been identified as a primary determinant of appetite 

and energy intake (Blundell et al. 2015b). However, our findings did not reveal any significant 

associations of appetite-related hormones or perceived appetite with resting metabolic rate. 

While acute bouts of exercise have been shown consistently to transiently suppress appetite 

(King et al. 2017), chronic exercise and high levels of physical activity have been suggested to 

increase the overall drive to eat and, concomitantly, to increase the satiating effect of a 

standardised meal (King et al. 2009; Beaulieu et al. 2016). We did not identify any significant 

associations between habitual physical activity levels and fasting or postprandial acylated 

ghrelin, total PYY, glucose or perceived appetite. However, a negative association was 

observed between MVPA and fasting leptin and insulin, and postprandial insulin in men. It is 

well established that acute and chronic exercise augments insulin sensitivity (Borghouts and 

Keizer, 2000), and a recent meta-analysis showed that leptin concentrations can be reduced by 

exercise in individuals who are overweight even in the absence of dietary interventions or major 

weight loss (BMI reduction of > 2.5%) (Rostás et al. 2017). Postprandial acylated ghrelin was 

positively associated with sitting time in men, but this correlation was small in magnitude and 

would not be considered significant if the stricter threshold of P < 0.005 was applied in line 

with recent recommendations (Benjamin et al. 2017).  

Perceived fasting overall appetite was negatively associated with total fat mass in men, 

supporting previous evidence suggesting the existence of negative feedback signals originating 

from fat mass in order to regulate appetite and maintain body weight (Weise et al. 2014; 
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Blundell et al. 2015a). However, no association was observed between postprandial perceived 

appetite and any adiposity parameter in our study. Interestingly, no statistically significant 

associations between fasting or postprandial perceived overall appetite and acylated ghrelin or 

total PYY were identified. Even though circulating concentrations of acylated ghrelin and PYY 

vary on a meal-to-meal basis, concomitantly with perceived appetite, the magnitude and 

direction of the changes in hormone concentrations are not always mirrored by changes in 

perceived appetite (Goltz et al. 2018; Chapter 4). In contrast, postprandial overall appetite AUC 

was positively associated with postprandial insulin AUC in women, which is consistent with 

previous findings showing that postprandial insulin concentrations are positively associated 

with postprandial satiety and negatively associated with postprandial hunger (Flint et al. 2007). 

The strengths of our study include the use of an integrative approach and objective assessment 

methods to explore the associations of the FTO genotype with fasting and postprandial appetite-

related hormones and perceived appetite, taking into consideration a variety of individual 

characteristics that have been previously suggested to influence appetite parameters. 

Furthermore, the recruitment of a highly heterogeneous sample for parameters such as age, 

adiposity and cardiorespiratory fitness levels adds strength to our analyses. Finally, the careful 

standardisation of diet and physical activity in the 24 h preceding the laboratory visit, as well 

as the inclusion of a cannula acclimatisation period, also contributed to the quality of the study 

outcome measurements obtained. However, it should be highlighted that our study employed 

an exploratory approach and the cross-sectional design makes it impossible to imply any 

causation in our results. In addition, our results may have been compromised by the reduced 

sample size and by the loss of power in some of the statistical models due to missing data.  

In conclusion, the FTO genotype was not significantly associated with fasting and postprandial 

perceived appetite and appetite-related blood parameters in healthy men and women. Further 

research is needed to clarify the precise role of the FTO gene in moderating appetite control 

and energy intake. Specifically, well-controlled long-term studies are needed to improve 

understanding of the effect of the FTO genotype on appetite and energy intake during and after 

interventions targeting weight loss and/or prevention of weight gain. Understanding the 

complex interaction between genetics and other individual characteristics, physiological 

appetite parameters and perceived appetite is of crucial importance for planning targeted 

strategies for weight control. 
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CHAPTER 6 

True interindividual variability exists in postprandial appetite responses in 

healthy men but is not moderated by the FTO genotype 

6.1 Abstract 

Background: After meal ingestion, a series of coordinated hormone responses occur 

concomitantly with changes in perceived appetite. It is not known whether interindividual 

variability in appetite exists in response to a meal. Objectives: This study aimed to 1) assess 

the reproducibility of appetite responses to a meal; 2) quantify individual differences in 

responses; and 3) explore any moderating influence of the fat mass and obesity-associated 

(FTO) gene. Methods: Using a replicated crossover design, 18 healthy men (mean ± SD: age 

= 28.5 ± 9.8 years; body mass index = 27.0 ± 5.0 kg·m-2) recruited according to FTO genotype 

(9 AA, 9 TT) completed two identical control and two identical standardised meal conditions 

(5025 kJ) in randomised sequences. Perceived appetite and plasma acylated ghrelin, total 

peptide YY (PYY), insulin and glucose concentrations were measured before and after 

interventions as primary outcomes. Interindividual differences were explored using Pearson’s 

product-moment correlations between the first and second replicate of the control-adjusted 

meal response. Within-participant covariate-adjusted linear mixed models were used to 

quantify participant-by-condition and genotype-by-condition interactions. Results: The meal 

suppressed acylated ghrelin and appetite perceptions (standardised effect sizes (ES): 0.18 - 

4.26) and elevated total PYY, insulin and glucose (ES: 1.96 - 21.60). For all variables, SD of 

change scores was greater in the meal versus control conditions. Moderate-to-large positive 

correlations were observed between the two replicates of control-adjusted meal responses for 

all variables (r = 0.44 - 0.86, P ≤ 0.070). Significant participant-by-condition interactions were 

present for most variables (P ≤ 0.031), while the interactions for acylated ghrelin and fullness 

were just above the threshold for statistical significance (P ≤ 0.056). FTO genotype-by-

condition interactions were not significant (P ≥ 0.19) and treatment effect differences between 

genotype groups were small (ES ≤ 0.27) for all appetite parameters. Conclusions: 

Reproducibility of postprandial appetite responses is generally good. True interindividual 

variability is present beyond any random within-subject variation in healthy men but is not 
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moderated by the FTO genotype. These findings highlight the importance of exploring 

individual differences in appetite for the prevention and/or treatment of obesity.  

6.2 Introduction 

Interindividual variability in response to an intervention, including manipulations of dietary 

intake and exercise energy expenditure, has received considerable interest from the scientific 

community in recent years (Atkinson and Batterham, 2015; Hecksteden et al. 2015; Senn, 

2016). The notion that individuals may differ in the magnitude of response to an identical 

stimulus has widespread implications and the potential to engender tailored strategies that 

optimise health outcomes for individuals is undoubtedly appealing (Betts and Gonzalez, 2016). 

Within this sphere, an increasing number of studies have been undertaken to quantify 

individual differences in appetite and energy intake responses to an intervention (Hopkins et 

al. 2014; King et al. 2017). Specifically, marked individual variability in ad libitum energy 

intake has been reported in response to a single bout of cycling (Hopkins et al. 2014); however, 

recent evidence from a large pooled data set suggests that such variability can be explained by 

normal day-to-day variation in most cases (King et al. 2017). This line of enquiry has direct 

implications for energy balance and weight control. 

The consumption of a meal suppresses the gut hormone acylated ghrelin and perceived hunger, 

and increases peptide YY and perceived satisfaction (Neary and Batterham, 2009). 

Standardised meals, as opposed to ad libitum buffet meals, provide a fixed amount of pre-

selected food items, and can be used to compare meal-related outcomes when the exact same 

stimulus is given. Previous studies have suggested that individuals exhibit reproducible ad 

libitum energy intake, as well as changes in subjective appetite perceptions, glucose and 

appetite-related hormones in response to a standardised meal provided on separate occasions 

(Flint et al. 2000; Nair et al. 2009; Gonzalez et al. 2012; Horner et al. 2014). Whilst such efforts 

to explore reproducibility and individual responses alongside the mean effects of an 

intervention should be encouraged, there are significant methodological and analytical 

challenges to adequately quantifying interindividual variability (Atkinson and Batterham, 

2015). In the context of a crossover study, these challenges include replicating each 

intervention and control condition and partitioning true response heterogeneity from within-

subjects random measurement variability with an appropriate statistical model (Atkinson and 

Batterham, 2015). 
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Current evidence is often limited by the absence of a control group or condition which has been 

highlighted as an imperative study design feature to account for random within-subject 

variability over time (Atkinson and Batterham, 2015; Senn, 2016; Williamson et al. 2017). A 

recent approach proposed to quantify individual differences in the intervention response 

involves quantifying the participant-by-response interaction from replicated intervention and 

control groups or conditions (Senn et al. 2011; Senn, 2016; Atkinson et al. 2018). We have 

recently adopted this framework to highlight the presence of individual variability in subjective 

and hormonal appetite responses to acute exercise (Goltz et al. 2018; Chapter 4); however, it 

is not known whether such variability in appetite responses exists in response to a standardised 

meal. 

A further consideration, if true individual differences are present, involves identifying potential 

moderators that could explain the individual variability (Atkinson and Batterham, 2015). The 

FTO gene represents the most extensively studied gene associated with obesity, with 

individuals homozygous for the obesity risk A allele (AA) of FTO rs9939609 weighing, on 

average, 3 kg more and having a 1.7-fold higher obesity risk than those homozygous for the 

low-risk T allele (TT) (Frayling et al. 2007). Whilst the physiological mechanisms underlying 

this heightened risk are not fully understood, it has been demonstrated that AA individuals 

exhibit a blunted postprandial suppression of acylated ghrelin and hunger compared with 

adiposity-matched TT individuals (Karra et al. 2013). Given that interindividual variability in 

the responses of appetite to repeated meal intake is suspected, it is possible that groups with 

different risk variants of the FTO gene may moderate these responses.  

Therefore, the aims of this study were (1) to investigate whether the perceived appetite and 

appetite-related hormone responses to a standardised meal are reproducible on repeated 

occasions; (2) to examine whether there is true individual variability in appetite responses to a 

standardised meal; and (3) to determine whether the FTO genotype moderates the magnitude 

of appetite responses to a standardised meal. 

6.3 Methods 

6.3.1 Ethical approval 

All procedures included in this study were approved by Loughborough University Ethics 

Advisory Committee. All participants provided written informed consent before taking part in 

any aspect of the study. 
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6.3.2 Participants 

Participants were selected from two previous study databases where participants were 

genotyped for the rs9939609 allele of the FTO gene. Genomic deoxyribonucleic acid (DNA) 

was extracted from the whole blood samples using the QIAamp DNA Mini kit (QIAGEN, 

Hilden, Germany). The samples were genotyped using the Applied Biosystems TaqMan® 

(Roche Molecular Systems, Pleasanton, USA) genotyping assay and real-time polymerase 

chain reaction system. Eighteen healthy white European men were recruited for this study 

between January and April 2018 according to their FTO genotype: 9 homozygous minor allele 

(AA) and 9 homozygous major allele (TT). Participants were informed about the study 

purpose; however, their genotype was not disclosed until the end of the study in order to avoid 

any potential effect on the outcomes of interest. Participants were body mass stable (≤ 3 kg 

change in the previous 3 months), non-smokers, had no history of cardiovascular or metabolic 

disease, and were not dieting or taking any medications. Participants were habitual breakfast 

eaters and ‘moderately active’ according to the International Physical Activity Questionnaire 

(Craig et al. 2003), which was used to ensure homogeneity in physical activity levels across 

the study sample.  

6.3.3 Anthropometry 

Height was measured to the nearest 0.1 cm and body mass to the nearest 0.1 kg using an 

electronic measuring station (Seca, Hamburg, Germany). Body mass index (BMI) was 

calculated as body mass in kilograms divided by the square of height in meters. Skinfold 

thickness was measured at three sites (chest, abdomen and thigh) and body fat percentage was 

estimated using the equations of Jackson and Pollock (Jackson and Pollock, 1978) and Siri 

(Siri, 1961). 

6.3.4 Experimental design 

Using a replicated crossover experimental design (Senn, 2016), participants completed four 

visits in a randomised order, each separated by an interval of at least three days: two identical 

fasting control and two identical standardised meal conditions. The block randomization plan 

was obtained from www.randomization.com by the main investigator, who also enrolled 

participants and assigned participants to interventions. Participants completed a weighed food 

record in the 24 h preceding the first visit and were instructed to replicate this feeding pattern 
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before each subsequent visit. Participants refrained from alcohol, caffeine, and strenuous 

physical activity during the same period. A standardised meal was consumed in the evening 

before the laboratory visits consisting of a pizza (3054 kJ, 44% carbohydrate, 22% protein, 

34% fat). Participants were instructed to consume the whole meal without any additional food 

or drink items except plain water, and compliance was confirmed from the food record 

completed prior to the first visit, and verbally on the remaining visits. After this meal, 

participants consumed no food or drink except plain water before arriving at the laboratory the 

next day.  

6.3.5 Main conditions 

Participants arrived at the laboratory at 09:00 after a 13 h overnight fast. A cannula (Becton 

Dickinson Venflon, Helsingborg, Sweden) was inserted into an antecubital vein 60 min before 

the collection of venous blood samples to eliminate any stress effects associated with cannula 

insertion (Chandarana et al. 2009). A fasting venous blood sample and rating of perceived 

appetite was taken at ~10:00 (0 h). Participants rested throughout all four conditions but were 

provided with a standardised breakfast meal after the fasting measurements during the two 

meal conditions. Breakfast was consumed within 15 min and consisted of croissants, butter, 

chocolate spread, cereal biscuits and milkshake which provided 5025 kJ energy (47% 

carbohydrate, 9% protein, 44% fat). Subsequent venous blood samples were taken at 0.5 and 1 

h, and appetite perceptions were assessed at 1 h. Environmental temperature and humidity were 

monitored and kept constant throughout all main experimental conditions using a wireless 

weather station (Opes, London, UK).  

6.3.6 Subjective appetite ratings  

Subjective appetite ratings (hunger, satisfaction, fullness and prospective food consumption 

(PFC)) were assessed at 0 and 1 h using 100 mm visual analogue scales (Flint et al. 2000) as 

primary study outcomes. The scales were anchored by a descriptor at each end defining the 

extremes of the appetite perception being measured.  

6.3.7 Blood sampling and biochemical analysis  

Venous blood samples were collected in the semi-supine position for the measurement of 

plasma acylated ghrelin, total PYY, insulin and glucose concentrations as primary study 

outcomes. Plasma acylated ghrelin and total PYY concentrations were quantified from samples 
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at 0 and 1 h, and plasma insulin and glucose concentrations were measured at 0 and 0.5 h to 

capture the peak change in concentration after the meal. 

Blood sample collection and processing methods were described in detail in Chapter 3. 

Duplicate haemoglobin and haematocrit measurements were taken at each blood sampling time 

point to calculate the acute change in plasma volume (Dill and Costill, 1974). Commercially 

available enzyme immunoassays were used to determine the plasma concentrations of acylated 

ghrelin (Bertin Technologies, Montigney le Bretonneux, France), total PYY (Millipore, 

Watford, UK) and insulin (Mercodia, Uppsala, Sweden). Plasma glucose concentrations were 

analysed by enzymatic, colorimetric methods using a benchtop analyser (Horiba Medical 

Pentra 400, Montpellier, France). All samples were analysed in duplicate and, in order to 

eliminate inter-assay variation, samples for each participant were analysed in the same run. 

The within-batch coefficient of variation values for acylated ghrelin, total PYY, insulin and 

glucose concentrations were 4.0%, 4.6%, 5.9% and 0.4%, respectively.  

6.3.8 Statistical analyses  

In our previous replicated crossover study (Goltz et al. 2018; Chapter 4), we detected 

statistically significant participant-by-treatment interactions with a sample size of 15 

participants. Based on information from this study, we assumed a correlation between trials of 

0.7. Using G*Power version 3.1.9.2 (University of Kiel, Kiel, Germany), it was estimated that 

a total sample size of 16 participants would provide 80% statistical power to detect a 

statistically significant interaction between our 2-level between-subjects factor of genotype and 

within-subjects factor of treatment effect when this interaction amounted to a standardised 

effect size of 0.2 (alpha = 0.05). The four measurements of each outcome associated with our 

replicated crossover design increases statistical power over a conventional 2-level crossover 

study for detection of this group-by-treatment interaction. 

Between-genotype differences in participant characteristics were quantified using linear mixed 

models with group (AA vs TT) modelled as a fixed factor. The presence of interindividual 

differences in appetite-related blood parameters and perceived appetite responses to a 

standardised meal were examined according to three analytical approaches (Senn et al. 2011; 

Atkinson and Batterham, 2015; Senn, 2016). The three approaches, detailed recently by Goltz 

et al. (Goltz et al. 2018; Chapter 4), were as follows: 
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(i) The association between the first and second replicate of control-adjusted treatment effect 

was quantified for each outcome using Pearson’s product-moment correlation coefficients 

(Senn, 2016). The first meal condition in any participant’s sequence was paired to the first 

control condition in the same individual’s sequence. Thresholds of 0.1, 0.3 and 0.5 were used 

to label correlation coefficients as small, moderate and large, respectively (Cohen, 1988). This 

correlation coefficient quantifies the consistency of meal effect across the replicated 

experimental conditions. 

(ii) The following equation (Atkinson and Batterham, 2015) was used to provide an overall 

estimate of the true (control condition adjusted) between-subject differences in treatment 

response: 

SD#$ = 	'SD() − SD+)  

SDIR represents the true interindividual variation in treatment effect. SDM and SDC are the 

standard deviations of the pre-to-post change scores for the meal and fasting control conditions 

(averaged over the two replicates using the relevant equation for pooling SDs (Higgins and 

Green, 2018)).  

(iii) While the equation in (ii) estimates response variance adjusted for control condition 

change variance, the associated standard errors and confidence intervals (CI) are not 

appropriate for our within-subjects crossover study design, hence our adjunct approach of 

within-subjects general linear modelling. Using the MIXED procedure in SAS OnDemand for 

Academics, a within-participant linear mixed model was formulated to quantify any 

participant-by-condition interaction for each outcome. Condition and period (sequence), and 

their interaction effects, were modelled as fixed effects, and participant and participant-by-

condition terms were modelled as random effects (refer to the SAS code supplied in Appendix 

J). Standard residual diagnostics were undertaken to assess the “influence diagnostics” of a 

potential set of observations on the adequacy and the stability of the modelled covariance 

parameter estimates (Oman, 1995; Schabenberger, 2004; West and Galecki, 2012). 

The grand mean differences between conditions and associated 95% CI were quantified with a 

within-subjects linear mixed model run in version 23 of SPSS (IBM Corporation, New York, 

USA) without the participant-by-condition random effect, but with a covariate of baseline 
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values. The FTO genotype was included in this model as a fixed between-subjects effect, and 

the genotype-by-condition interaction was quantified. 

Correction of hormone and glucose concentrations for acute changes in plasma volume had a 

negligible influence on our findings and, therefore, the unadjusted plasma concentrations are 

displayed for simplicity. In the absence of a robust and precise prognostic anchor for an 

important difference in our appetite-related outcomes, we calculated distribution-based 

standardised effect sizes (ES) (Cook et al. 2018). An ES of 0.2 denoted the minimum important 

mean difference for all outcomes, with an ES of 0.5 being moderate and an ES of 0.8 being 

large (Cohen, 1988). To calculate the minimal clinically important difference (MCID) for 

individual responses, the threshold of 0.2 for interpreting standardised mean changes (Cohen, 

1988) was halved, i.e. 0.1, and multiplied by the baseline between-subject standard deviation 

(SD) (Atkinson and Batterham, 2015; Williamson et al. 2018). Pearson’s product-moment 

correlation coefficients were quantified between the mean control-adjusted meal response for 

each of the appetite measures and body adiposity measurements. Correlation coefficients were 

also quantified between the pooled mean pre-to-post change in concentrations of plasma 

constituents and the pooled mean pre-to-post change in appetite perceptions across the four 

conditions.  

Data are presented as mean ± SD. Mean differences or changes and correlation coefficients are 

presented along with respective 95% CI. Statistical significance was accepted as P < 0.050 and 

P values are expressed in exact terms apart for very low values, which are expressed as P < 

0.001.  

6.4 Results 

6.4.1 Participant characteristics 

Participant characteristics are presented in Table 6.1. All 95% CI for the difference between 

AAs and TTs overlapped zero (P ≥ 0.411), although these 95% CIs were relatively wide. All 

standardised effects sizes were very small, except for the small-to-moderate effect sizes found 

for body fat percentage and fat-free mass. 
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Table 6.1. Participant characteristics. 

  
All 

(n = 18) 

FTO homozygous 
minor allele (AA) 

(n = 9) 

FTO homozygous 
major allele (TT) 

(n = 9) 

AA vs TT mean 
difference  
(95% CI) 

 

ES 

Age (years) 28.5 ± 9.8 28.5 ± 9.6 28.4 ± 10.5 0.1 (-9.9, 10.2) 0.01 

Height (m) 1.78 ± 0.06 1.78 ± 0.07 1.78 ± 0.05 -0.002 (-0.06, 0.06) 0.03 

Body mass (kg) 85.5 ± 16.0 85.7 ± 14.2 85.3 ± 18.5 0.4 (-16.1, 16.9) 0.03 

Body mass index (kg·m-2) 27.0 ± 5.0 27.1 ± 4.7 26.8 ± 5.6 0.2 (-4.9, 5.4) 0.05 

Body fat percentage (%) 20.2 ± 9.1 18.9 ± 9.1 21.4 ± 9.5 -2.6 (-11.8, 6.7) 0.27 

Fat-free mass (kg) 67.1 ± 7.8 68.7 ± 8.8 65.5 ± 6.8 3.1 (-4.7, 11.0) 0.40 

Values are means ± SDs, n = 18 healthy men (9 AA, 9 TT).  

ES, standardised effect size (mean difference); FTO, fat mass and obesity-associated gene. 

 

6.4.2 Plasma hormone and metabolite concentrations 

6.4.2.1 Acylated ghrelin 

No significant correlation was observed between the two replicates of control-adjusted meal 

responses for acylated ghrelin (r = 0.22, 95% CI -0.27 to 0.62, P = 0.384, Figure 6.1A). In 

agreement with our post-estimation residuals diagnostics, two distinct outliers can be seen in 

Figure 6.1A, which were more than three times higher or lower than the sample SD. Although 

we explored several data transformations, these were not successful in improving the non-

normal distribution of the ghrelin data. We could not identify any systematic protocol variation 

or measurement issues that would explain these two outliers. The removal of the two outliers 

in a sensitivity analysis improved the correlation coefficient of treatment effect between 

replicates to 0.86 (95% CI 0.64 to 0.95, P < 0.001). The SD of within-trial change was 

substantially greater for the meal than control conditions, which remained after removal of the 

two outliers (Table 6.2). After adjustment for period (sequence) influences, the estimated 

marginal mean acylated ghrelin concentration was 62 pg·mL-1 lower (95% CI -69 to -54 pg·mL-

1, P < 0.001, ES = 0.18) in the meal versus control conditions. The P value for the participant-

by-condition interaction was just above the threshold for statistical significance after the 
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removal of the two outliers (Table 6.2). The magnitude of change in individual replicated mean 

responses after the meal for acylated ghrelin ranged from -128 to -38 pg·mL-1, with all 

participants demonstrating a meal-mediated suppression of ghrelin beyond the MCID (± 34.8 

pg·mL-1) (Figure 6.2A).  

6.4.2.2 Total PYY 

A large positive correlation of 0.50 (95% CI 0.04 to 0.78, P = 0.034) was observed between 

the two replicates of control-adjusted meal responses for total PYY (Figure 6.1B). The within-

trial SD for total PYY was substantially greater for the meal than control conditions (Table 

6.2). The period-adjusted mean total PYY concentration was 78 pg·mL-1 higher (95% CI 70 to 

87 pg·mL-1, P < 0.001, ES = 1.96) in the meal versus control conditions. A statistically 

significant participant-by-condition interaction was found (Table 6.2). The magnitude of 

change in individual replicated mean responses after the meal for total PYY ranged from 15 to 

115 pg·mL-1, with all participants demonstrating an increase beyond the MCID (± 3.99 pg·mL-

1) (Figure 6.2B).  

6.4.2.3 Insulin 

A large positive correlation of 0.64 (95% CI 0.25 to 0.85, P = 0.004) was observed between 

the two replicates of control-adjusted meal responses for insulin (Figure 6.1C). Following our 

residuals diagnostics, we undertook a sensitivity analysis where we removed one outlier, which 

was more than 4 times higher than the sample SD. This improved the correlation to 0.82 (95% 

CI 0.56 to 0.93, P < 0.001). The within-trial SD for insulin was substantially greater for the 

meal than control conditions (Table 6.2). The period-adjusted mean insulin concentration was 

526 pmol·L-1 higher (95% CI 442 to 610 pmol·L-1, P < 0.001, ES = 21.60) in the meal versus 

control conditions. The participant-by-condition interaction was statistically significant both 

with and without inclusion of the outlier (Table 6.2). The magnitude of change in individual 

replicated mean responses after the meal for insulin ranged from 123 to 1130 pmol·L-1, with 

all participants demonstrating an increase beyond the MCID (± 2.43 pmol·L-1) (Figure 6.2C).  

6.4.2.4 Glucose 

A moderate positive correlation of 0.44 (95% CI -0.03 to 0.75, P = 0.070) was observed 

between the two sets of control-adjusted meal responses for glucose (Figure 6.1D). The within-

trial SD for glucose was substantially greater for the meal than control conditions (Table 6.2). 
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The period-adjusted mean glucose concentration was 1.30 mmol·L-1 higher (95% CI 1.14 to 

1.46 mmol·L-1, P < 0.001, ES = 3.61) in the meal versus control conditions. The participant-

by-condition interaction was statistically significant (Table 6.2). The magnitude of change in 

individual replicated mean responses after the meal for glucose ranged from 0.52 to 2.39 

mmol·L-1, with all participants demonstrating an increase beyond the MCID (± 0.04 mmol·L-

1) (Figure 6.2D).  

6.4.3 Subjective appetite ratings 

Moderate-to-large positive correlations were observed between the two sets of control-adjusted 

meal responses for hunger (r = 0.59, 95% CI 0.17 to 0.83, P = 0.010), satisfaction (r = 0.74, 

95% CI 0.42 to 0.90, P < 0.001), fullness (r = 0.41, 95% CI -0.07 to 0.73, P = 0.091) and PFC 

(r = 0.65, 95% CI 0.26 to 0.86, P = 0.003) (Figure 6.3). Removal of one outlier for fullness 

improved the correlation coefficient to 0.62 (95% CI 0.22 to 0.84, P = 0.008). The within-trial 

SD was substantially greater for the meal than control conditions for hunger, satisfaction, 

fullness and PFC (Table 6.2).  

The participant-by-condition interaction was statistically significant for hunger, satisfaction 

and PFC, while it was just above the threshold for statistical significance for fullness (Table 

6.2). Exclusion of the previously mentioned outlier for fullness did not affect the significance 

of the participant-by-condition interaction or the estimated individual differences SD and 

therefore data for fullness is presented with the outlier. The period-adjusted mean ratings of 

hunger and PFC were 49 mm (95% CI -53 to -44 mm, P < 0.001, ES = 2.16) and 43 mm (95% 

CI -48 to -38 mm, P < 0.001, ES = 4.26) lower in the meal versus control conditions, 

respectively. The period-adjusted mean ratings of satisfaction and fullness were 52 mm (95% 

CI 47 to 56 mm, P < 0.001, ES = 3.46) and 51 mm (95% CI 45 to 57 mm, P < 0.001, ES = 

3.23) higher in the meal versus control conditions, respectively. The magnitude of change in 

individual replicated mean responses after the meal ranged from -97 to 14 mm for hunger, 11 

to 88 mm for satisfaction, 13 to 89 mm for fullness and -96 to -4 mm for PFC. All participants 

demonstrated a response beyond the MCID for hunger (± 2.27 mm), satisfaction (± 1.49 mm), 

fullness (± 1.59 mm) and PFC (± 1.59 mm) (Figure 6.4).  
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6.4.4 Moderating effect of FTO genotype on individual variability 

The FTO genotype-by-condition interaction was not statistically significant for acylated 

ghrelin (P = 0.423), total PYY (P = 0.192), insulin (P = 0.540), glucose (P = 0.698) or any of 

the perceived appetite ratings (P ≥ 0.474). The differences in the mean treatment effects 

observed for all appetite parameters between genotype groups were small and not statistically 

significant (ES ≤ 0.27, P ≥ 0.174).  

6.4.5 Correlations between appetite outcomes and individual characteristics 

Large positive correlations were observed between mean acylated ghrelin control-adjusted 

meal responses and body mass (r = 0.55, P = 0.019), BMI (r = 0.56, P = 0.015) and body fat 

percentage (r = 0.56, P = 0.016). Large positive correlations were also observed between 

hunger mean responses and BMI (r = 0.53, P = 0.023) and body fat percentage (r = 0.55, P = 

0.018). None of the remaining appetite parameters mean responses were significantly 

correlated with the adiposity parameters assessed in this study (r = -0.46 to 0.41, P ≥ 0.055). 

No significant correlations were observed between fat-free mass and any of the mean appetite 

parameter responses to the meal (r = -0.14 to 0.36; P ≥ 0.147). 

6.4.6 Correlations between changes in study outcome variables 

A large positive correlation was observed between the pre-to-post change in acylated ghrelin 

and the change in both hunger and PFC, whereas a large negative correlation was observed 

between the pre-to-post change in acylated ghrelin and the change in both satisfaction and 

fullness. A large negative correlation was observed between the pre-to-post change in total 

PYY and the change in both hunger and PFC, whereas a large positive correlation was observed 

between the pre-to-post change in total PYY and the change in both satisfaction and fullness. 

A moderate negative correlation was observed between the pre-to-post change in insulin and 

the change in both hunger and PFC, whereas moderate-to-large positive correlations were 

observed between the pre-to-post change in insulin and the change in both satisfaction and 

fullness. A large negative correlation was observed between the pre-to-post change in glucose 

and the change in both hunger and PFC, whereas, a large positive correlation was observed 

between the pre-to-post change in glucose and the change in both satisfaction and fullness 

(Table 6.3). 
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Figure 6.1 Correlation between meal (standardised meal providing 5025 kJ) and control (no 

intervention) pre-to-post change scores on the two occasions for (A) plasma acylated ghrelin, 

(B) plasma total PYY, (C) plasma insulin, and (D) plasma glucose in 18 healthy men genotyped 

for FTO rs9939609 (n = 9 AA, n = 9 TT). ‘‘Response 1’’ corresponds to the first pair of 

conditions (meal 1 minus control 1) and ‘‘response 2’’ to the second pair of conditions (meal 

2 minus control 2). Dashed lines represent the mean responses.  

FTO, fat mass and obesity-associated gene; PYY, peptide YY. 
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Figure 6.2 Individual changes in hormone and glucose concentrations between the meal 

(standardised meal providing 5025 kJ) and control (no intervention) conditions (meal minus 

control): (A) plasma acylated ghrelin, (B) plasma total PYY, (C) plasma insulin, and (D) 

plasma glucose in 18 healthy men genotyped for FTO rs9939609 (n = 9 AA, n = 9 TT). Pre-

to-post change scores for ‘‘response 1’’ and ‘‘response 2’’ are indicated by white and black 

circles. Grey lines (▬) represent each participant’s replicated mean response. Dashed lines 

indicate the standardised minimal clinically important difference calculated as 0.1 multiplied 

by the baseline between-subject SD.  

FTO, fat mass and obesity-associated gene; PYY, peptide YY. 
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Figure 6.3 Correlation between meal (standardised meal providing 5025 kJ) and control (no 

intervention) pre-to-post change scores on the two occasions for (A) hunger, (B) satisfaction, 

(C) fullness, and (D) prospective food consumption in 18 healthy men genotyped for FTO 

rs9939609 (n = 9 AA, n = 9 TT). ‘‘Response 1’’ corresponds to the first pair of conditions 

(meal 1 minus control 1) and ‘‘response 2’’ to the second pair of conditions (meal 2 minus 

control 2). Dashed lines represent the mean responses.  

FTO, fat mass and obesity-associated gene; PFC, prospective food consumption. 
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Figure 6.4 Individual changes in each appetite perception between the meal (standardised meal 

providing 5025 kJ) and control (no intervention) conditions (meal minus control): (A) hunger, 

(B) satisfaction, (C) fullness, and (D) prospective food consumption in 18 healthy men 

genotyped for FTO rs9939609 (n = 9 AA, n = 9 TT). Pre-to-post change scores for ‘‘response 

1’’ and ‘‘response 2’’ are indicated by white and black circles. Grey lines (▬) represent each 

participant’s replicated mean response. Dashed lines indicate the standardised minimal 

clinically important difference calculated as 0.1 multiplied by the baseline between-subject SD.  

FTO, fat mass and obesity-associated gene; PFC, prospective food consumption. 
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Table 6.2 Means and standard deviations (SD) of the pre-to-post change scores for the meal (standardised 

meal providing 5025 kJ) and control (no intervention) conditions and the true individual differences SD.  

Variable Meal change 
Mean ± SD 

Control change    
Mean ± SD 

Estimate 1a Estimate 2b 

Individual 
differences SD 

Individual 
differences SD (SE) P value 

Plasma acylated 
ghrelin (pg·mL-1) 

-61.1 ± 36.2 

-57.0 ± 20.4c 

6.2 ± 27.7 

7.4 ± 12.5c 

23.3 

16.2c 

4.9 (16.1) 

18.0 (13.0)c 

0.930 

0.056c 

Plasma total PYY 
(pg·mL-1) 61.6 ± 35.1 -13.9 ± 11.1 33.3 31.8 (20.6) 0.020 

Plasma insulin  
(pmol·L-1) 

545 ± 324 

515 ± 287c 

0.1 ± 11.5 

0.0 ± 11.8c 

324 

286c 

502 (300) 

349 (208)c 

0.005 

0.005c 

Plasma glucose  
(mmol·L-1) 1.22 ± 0.62 -0.09 ± 0.17 0.60 0.58 (0.37) 0.012 

Hunger (mm) -40.4 ± 30.0 8.7 ± 15.2 25.9 22.7 (15.4) 0.031 

Satisfaction (mm) 48.3 ± 24.0 -3.0 ± 9.4 22.0 19.5 (12.7) 0.018 

Fullness (mm) 52.8 ± 20.2 1.4 ± 12.3 16.0 13.6 (9.8) 0.054 

Prospective food 

consumption (mm) 
-44.1 ± 27.8 2.2 ± 9.8 26.0 23.9 (15.3) 0.015 

Data are presented for n = 18 healthy men.  

a Estimate 1: Individual differences SD estimated using SD#$ = 	,SD() − SD+)  where SDIR is the SD of 

the true individual response, and SDM and SDC are the SDs of the pre-to-post change scores for the meal 

and control conditions (averaged over both replicates), respectively (Atkinson and Batterham, 2015). 

b Estimate 2: Period-adjusted individual differences SD estimated using a random effects statistical model 

(Senn et al. 2011). The SD was derived from the SAS model participant-by-condition interaction term (as 

a random effect) (refer to the SAS code supplied in Appendix J). The P value shown is also for this 

interaction term. 

c After the removal of outliers. 

SE, standard error; PYY, peptide YY. 
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Table 6.3 Pearson’s correlation coefficients between the pooled mean pre-to-post change in plasma hormone and glucose concentrations and the pooled 

mean pre-to-post change in appetite perceptions across the two meal (standardised meal providing 5025 kJ) and two control (no intervention) conditions. 

 Plasma total PYY  
(pg·mL

-1
) 

Plasma insulin  

(pmol·L
-1

) 

Plasma glucose  

(mmol·L
-1

) 

Hunger  

(mm) 
Satisfaction  

(mm) 
Fullness  

(mm) 
Prospective food 

consumption (mm) 

 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 
r  

(95% CI) 
P  

value 

Plasma acylated ghrelin  

(pg·mL
-1

) 

-0.66  

(-0.86, -0.28) 

 

0.003 

-0.49  

(-0.78, -0.03) 

 

0.039 

-0.61  

(–0.84, -0.20) 

 

0.007 

0.53  

(0.08, 0.80) 

 

0.024 

-0.68  

(-0.87, -0.31) 

 

0.002 

-0.66  

(-0.86, -0.28) 

 

0.003 

0.53 

(0.08, 0.80) 

 

0.024 

Plasma total PYY  

(pg·mL
-1

) 
  

0.67  

(0.30, 0.87) 

 

0.002 

0.63  

(0.23, 0.85) 

 

0.005 

-0.60 

(-0.83, -0.19) 

 

0.008 

0.69  

(0.33, 0.87) 

 

0.002 

0.71  

(0.36, 0.88) 

 

<0.001 

-0.62  

(-0.84, -0.22) 

 

0.006 

Plasma insulin (pmol·L
-1

)  
 

 
  

0.85  

(0.64, 0.94) 

 

<0.001 

-0.40  

(-0.73, 0.08) 

 

0.100 

0.45  

(-0.02, 0.76) 

 

0.060 

0.56  

(0.13, 0.81) 

 

0.016 

-0.45  

(-0.76, 0.02) 

 

0.060 

Plasma glucose (mmol·L
-1

)  
 

 
 

 

 
  

-0.50  

(-0.78, -0.04) 

 

0.035 

0.62  

(0.22, 0.84) 

 

0.006 

0.64  

(0.25, 0.85) 

 

0.004 

-0.53  

(-0.80, -0.08) 

 

0.024 

Hunger (mm)  
 

 
 

 

 
 

 

 
 

 

 

-0.82  

(-0.93, -0.57) 

 

<0.001 

-0.80  

(-0.92, -0.53) 

 
<0.001 

0.89  

(0.72, 0.96) 

 

<0.001 

Satisfaction (mm)  
 

 
 

 

 
 

 

 
 

 

 
  

0.90  

(0.75, 0.96) 

 

<0.001 

-0.88  

(-0.95, -0.70) 

 

<0.001 

Fullness (mm)  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

-0.86  

(-0.95, -0.66) 

 

<0.001 

Statistical analyses conducted on n = 18 healthy men. PYY, peptide YY; 95% CI, 95% confidence interval. 
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6.5 Discussion 

The main findings from our study are that control-adjusted appetite-related blood parameters 

and perceived appetite responses to a standardised meal are reproducible when measured on 

two separate occasions. True interindividual variability exists in the post-meal responses of all 

studied outcomes, but we did not detect any worthwhile or statistically significant moderating 

influence of the FTO genotype on the magnitude of post-meal responses.  

As expected, meal intake after an overnight fast resulted in mean suppressions of acylated 

ghrelin, hunger and PFC, concomitantly with increases in total PYY, insulin, glucose, fullness 

and satisfaction. Correlation coefficients between the two replicates of control-condition-

adjusted responses were positive, significant and large for total PYY, insulin, hunger, 

satisfaction and PFC. The correlation for acylated ghrelin was positive, but small and not 

significant. However, the exclusion of two outliers improved the correlation markedly and we 

could not identify any methodological factors that could explain the one-off large or small 

values. Correlation coefficients for glucose and fullness were positive and moderate, although 

not significant. Removal of one outlier for fullness improved the correlation. Overall, the 

postprandial changes in appetite parameters were similar between the two experiment 

replicates suggesting good reproducibility of appetite responses to meal intake. 

Previous studies have also reported good reproducibility of ad libitum energy intake, 

cholecystokinin, glucose and insulin (Nair et al. 2009; Horner et al. 2014), and appetite 

perceptions after repeated fixed test meals (Flint et al. 2000; Gonzalez et al. 2012; Horner et 

al. 2014). Although Nair et al. observed good reproducibility of blood glucose area under the 

curve after a glucose preload on three occasions, the time taken for glucose to peak varied 

between visits (Nair et al. 2009). In our study, the pre-to-post change score was calculated 

between the fasting state and a single postprandial time point when the peak post-meal change 

was expected. It is possible that the relatively small correlation for pre-to-post changes in 

glucose on two occasions reflects inconsistency in the time taken for glucose to peak after a 

meal for some participants, rather than a lack of reproducibility of the response magnitude per 

se.   

Recently, Gonzalez et al. observed poor reproducibility at the individual level in perceived 

appetite after the consumption of liquid meals (Gonzalez et al. 2017). Data were pooled from 

two previous studies comparing low and high energy liquid meals, but no control condition 
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was included. The inclusion of a condition where no intervention takes place is essential so 

that the natural oscillation in the outcomes can be quantified and, therefore, the “true” effect of 

the intervention can be assessed (Atkinson and Batterham, 2015; Senn, 2016). Our results 

indicate that, besides the good reproducibility of appetite responses to meal intake, the 

magnitude of change varied considerably between individuals, supported by the participant-

by-condition interactions. No previous studies have examined the interindividual variability in 

appetite responses to a meal including control conditions in a replicated crossover design. 

Therefore, our study adds to the literature by using a novel and appropriate study design and 

statistical analysis approach (Atkinson and Batterham, 2015; Senn, 2016). 

The SD of the pre-to-post change scores was substantially larger in the meal compared to 

control conditions, indicating that the individual differences could not be explained by random 

within-subject variation or measurement errors (Atkinson and Batterham, 2015). All 

participants exhibited perceived appetite and appetite-related blood parameter responses 

beyond our defined MCID, but a few participants were ‘‘small responders’’ whereas others 

were ‘‘very large responders’’ according to the degree of change in the appetite parameters 

after meal intake. Of note, there are no clinically relevant target differences established for 

appetite parameters and the MCID thresholds chosen were based on the statistical threshold of 

0.1 SD for judging clinical importance of individual differences. Clinically relevant differences 

are most appropriately defined using “hard” anchors to changes in morbidity and/or mortality 

(Cook et al. 2018), but information is lacking on this at present. All participants exhibited the 

expected direction of meal-induced change in the various outcomes i.e. suppression of acylated 

ghrelin, hunger and PFC, and increase in total PYY, insulin, glucose, fullness and satisfaction, 

except for one participant who exhibited an increase in hunger after meal intake on both 

occasions.  

The FTO genotype-by-condition interaction was not statistically significant for any of the 

appetite parameters. While statistical power can be lower for the detection of sub-group by 

treatment interactions versus the overall treatment effect, effect sizes were low for all FTO 

gene sub-group interaction terms. It is well established that the homozygous AA variant of the 

FTO genotype is associated with higher obesity risk (Frayling et al. 2007). Although the 

mechanisms are not fully elucidated, it has been suggested that AAs demonstrate attenuated 

postprandial suppression of acylated ghrelin and hunger (Karra et al. 2013). In contrast, a recent 

study did not identify differences in hunger or total ghrelin between FTO genotype groups in 
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individuals with overweight or obesity after standardised and buffet meals, even though AAs 

had higher energy intake at the buffet meal (Melhorn et al. 2018). Of note, the assessment of 

total ghrelin in this study could have influenced the results as the active part of the hormone 

only represents ~10% of total ghrelin (Hosoda et al. 2000; Yoshimoto et al. 2002). Longer term 

studies are needed to confirm whether differences in appetite-related outcomes are observed 

between FTO genotype groups which may culminate in continuous differences in energy 

intake, and consequently, body mass alterations.  

Exploratory analyses of our data indicated that higher adiposity was associated with smaller 

changes in the mean postprandial acylated ghrelin and hunger responses, supporting previous 

evidence suggesting that individuals with obesity exhibit a reduced postprandial suppression 

of ghrelin (Le Roux et al. 2005). However, our study was not designed to answer this question 

and participant recruitment aimed to match the two FTO-genotype groups for age and 

adiposity. Besides adiposity levels, individual differences in rates of stomach distention and 

gastric emptying (Janssen et al. 2011), as well as differences in gut microbiota, could 

potentially explain the interindividual variability in postprandial appetite responses (van de 

Wouw et al. 2017). Indeed, direct associations between insulin and glucose responses to a 

glucose preload and rates of gastric emptying have been observed (Nair et al. 2009), and a 

growing body of evidence points to the important role of gut microbiota in nutrient sensing and 

appetite regulation (Lam et al. 2017; van de Wouw et al. 2017). Future research is required to 

determine moderators of appetite responses to meal intake that may explain the individual 

variability.  

All the correlations between the changes in perceived appetite and appetite-related blood 

parameters were significant apart from the correlations between insulin and hunger, satisfaction 

and PFC. Although the exact pathways are unclear, insulin has been associated previously with 

short-term appetite control in healthy individuals, as increased postprandial insulin 

concentrations were associated with increased satiety and decreased hunger (Flint et al. 2007). 

Overall, our results provide evidence of very strong associations between perturbations in 

appetite-related blood parameters and perceived sensations of hunger, satisfaction, fullness and 

PFC. This supports previous evidence showing that changes in glucose, insulin, acylated 

ghrelin, PYY3-36 and glucagon-like peptide-1 concentrations occur synchronously with 

changes in perceived appetite after the consumption of test meals (Lemmens et al. 2011). 
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The strengths of our study include the novel study design and statistical approaches employed, 

which have been advocated to quantify interindividual variability in responses to an 

intervention appropriately (Atkinson and Batterham, 2015; Senn, 2016). Furthermore, the 

combination of circulating blood parameters with perceived appetite ratings known to respond 

episodically to meal intake represents a further strength. Care should be taken when 

generalizing the findings as alternative blood processing or analysis methods, as well as 

inclusion of females, older individuals and individuals with obesity, may result in different 

findings. 

In conclusion, the reproducibility of appetite responses to standardised meals is generally good. 

True interindividual variability is present in appetite-related blood parameters and perceived 

appetite responses to meal intake beyond any random within-subject variation over time in 

healthy men, but the magnitude of change in postprandial appetite responses was not influenced 

by the FTO gene. Our study supports the existence of true interindividual variability in 

postprandial appetite changes between individuals, which should be considered in future 

research as well as for interpreting group mean results from intervention studies. Furthermore, 

these findings highlight the importance of exploring individual differences in appetite response 

in the context of the prevention and/or treatment of obesity. Further studies with longer-term 

interventions using appropriate study designs and statistical analyses are needed to identify 

potential moderators responsible for the individual variability in postprandial appetite 

responses and to confirm the exact clinical relevance of our findings. 
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Chapter 7 

A pilot study to explore the association between brown adipose tissue 

activity, FTO genotype and appetite-related blood parameters in healthy 

males 

7.1 Abstract 

Background: The ability of brown adipose tissue (BAT) to increase energy expenditure and 

its potential impact on appetite regulation has stimulated great research interest. Limited 

evidence in rodents suggest a possible role of BAT on the obesity risk associated to the fat 

mass and obesity-associated gene (FTO), although this is yet to be investigated in humans. 

Objective: To explore any potential associations between BAT activity, FTO genotype and 

fasting and postprandial appetite-related blood parameters in healthy males. Methods: 

Eighteen healthy men recruited according to FTO rs9939609 genotype were divided into two 

groups matched for age and adiposity: 9 homozygous minor allele (AA) and 9 homozygous 

major allele (TT). Measurements of fasting and postprandial acylated ghrelin, total PYY, 

insulin and glucose were obtained during two fasting trials and two meal trials (as described in 

Chapter 6), and BAT activity was assessed after an overnight fast. A thermal imaging camera 

was used to measure the temperature of the skin overlying the supraclavicular (SCV) area 

during 10 min of acclimatisation and 10 min of a forearm cooling protocol at 15°C. The 

observed change in SCV temperature (delta) during the cooling protocol was used as indication 

of BAT activity. Within-participant linear mixed models were used to assess the effect of the 

cooling protocol and the FTO genotype on SCV temperature, as well as the genotype-by-

condition interaction. Pearson’s correlation coefficients were calculated between BAT activity 

and fasting and postprandial appetite-related blood parameters. Results: Positive delta SCV 

temperature values, indicative of BAT activation as a result of the cooling protocol, were 

observed in 8 participants. However, no significant effect of cooling on SCV temperature was 

identified at the group level (P = 0.240). Additionally, no significant effect of FTO genotype 

(P = 0.861) or genotype-by-condition interaction (P = 0.916) was detected on SCV 

temperature. Pearson’s correlation coefficients were trivial to moderate and not statistically 

significant between BAT activity and fasting and postprandial appetite-related blood 

parameters (r = -0.38 to 0.30, P ≥ 0.115). Conclusions: Results from this pilot study do not 
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support the existence of a significant association between BAT activity, FTO genotype and 

appetite-related blood parameters. The cooling protocol employed may not have been sufficient 

to activate BAT in all study participants. Additionally, larger study samples may be needed to 

elucidate the potential effect of FTO genotype on BAT in humans, and to investigate whether 

appetite-regulatory hormones are involved. 

7.2 Introduction 

BAT is a specialised and highly metabolically active form of adipose tissue containing 

uncoupling protein 1 (UCP-1) in the mitochondria, which uses glucose and free fatty acids to 

produce heat when activated (Cannon and Nedergaard, 2004; Nedergaard et al. 2007). For a 

long time, the main function of BAT was believed to be the maintenance of body temperature 

during infancy, although the identification of BAT depots mainly in the cervical and SCV areas 

of adults, together with its ability to increase energy expenditure and improve glucose and 

blood lipid profiles, has stimulated increasing interest on BAT as a potential target tissue for 

the treatment of obesity and associated metabolic complications (Chechi et al. 2014; Sidossis 

and Kajimura, 2015). The volume of BAT present in adults and its exact contribution to total 

energy expenditure remain unknown due to the heterogeneity in the conditions and assessment 

methods employed in studies published to date (Law et al. 2018a). 

BAT activity is controlled by the action of norepinephrine, from the sympathetic nervous 

system, and its activation can be acute or chronic, resulting from continuous enhanced BAT 

recruitment to maintain body temperature (Law et al. 2018a). Acute activation can be a result 

of either meal ingestion or cold exposure, although the latter seems to exert a stronger effect 

(Orava et al. 2011). During extreme cold exposure, shivering is the main mechanism 

responsible for temperature homeostasis maintenance. However, BAT is the main source of 

heat production during less intense cold exposure i.e. above shivering threshold (Law et al. 

2018a). Current evidence suggests that, besides the classical brown adipocytes, inducible 

brown adipocytes, often called beige adipocytes, are also found in adults, mainly within 

subcutaneous white adipose tissue (Sidossis and Kajimura, 2015). Beige adipocytes differ from 

brown adipocytes in developmental and anatomical characteristics, and the development of 

beige adipocytes within white adipose tissue, a process known as ‘browning’, seems to be 

induced by factors such as chronic cold exposure and exercise (Sidossis and Kajimura, 2015). 
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The assessment of BAT activity can be made directly, with biopsy samples, or indirectly, with 

imaging techniques. The location of BAT depots in adults make biopsies impractical due to the 

proximity to great vessels, and the current gold standard for measuring BAT activity in vivo, 
18F-fluorodeoxyglucose (18F-FDG) uptake assessed by positron emission tomography – 

computed tomography scanning (PET-CT), has its application limited due to radiation 

exposure, high cost and long time needed for the assessment (Law et al. 2018a). Recently, the 

use of infrared thermography (IRT) has been suggested as a safe and non-invasive alternative 

to measure temperature changes on the skin overlying BAT depots, which occur as a result of 

thermogenesis together with increased blood flow during tissue activation. This method has 

shown good reproducibility and comparable results to the glucose uptake of activated BAT 

measured by PET-CT (Haq et al. 2017; Law et al. 2018a).  

While the association between variants in the fat mass and obesity-associated gene (FTO) and 

obesity risk is well established, evidence on the mechanisms involved are still scarce and study 

results are often controversial. Interestingly, studies in FTO knockout mice have shown that 

FTO deficiency leads to enhanced browning in white adipose cells, resulting in increased 

energy expenditure (Tews et al. 2013; Ronkainen et al. 2016). Together with previous evidence 

showing that the volume and activity of BAT is inversely related to body mass index and body 

fat mass (Cypess et al. 2009; van Marken Lichtenbelt et al. 2009; Vijgen et al. 2011), these 

findings led to speculations about the involvement of BAT on the increased obesity risk 

associated with FTO. It was hypothesized that individuals with the FTO high-risk allele present 

reduced expression of UCP-1 and thermogenesis in white adipose tissue, i.e. diminished 

browning of white adipocytes, leading to chronically reduced energy expenditure and, as a 

consequence, increased risk of fat mass accumulation (Tews et al. 2013). Whether classical 

brown adipocytes are equally involved remains to be elucidated. 

Of note, previous evidence suggested that the mechanisms through which FTO increases 

obesity risk are associated with increased energy intake, rather than lower energy expenditure 

(Speakman et al. 2008). Recent studies have shown a potential link between BAT and 

hormones associated with appetite regulation and energy homeostasis, such as leptin, ghrelin 

and secretin (Chondronikola et al. 2017; Li et al. 2018), which may indicate a combined effect 

of BAT on both energy intake and energy expenditure. Whether the obesity risk associated 

with FTO is influenced by these dual mechanism is still to be determined. Therefore, the exact 
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involvement of BAT in the physiological mechanisms affected by the FTO gene in humans 

deserves further investigation. 

Considering these findings, this pilot study aimed to explore any potential associations between 

BAT activity and fasting and postprandial appetite-related blood parameters in healthy males 

with the high-risk (AA) and low-risk (TT) variants of the FTO genotype. 

7.3 Methods 

7.3.1 Ethical approval 

All procedures included in this study were approved by Loughborough University Ethics 

Advisory Committee and written informed consent was obtained from all study participants 

before any aspect of the study was conducted. 

7.3.2 Participants 

All participants from the study described in Chapter 6 were invited and agreed to participate in 

this pilot study. Eighteen healthy white European men were recruited according to the 

rs9939609 allele of the FTO gene and divided into two groups matched for age and adiposity: 

9 homozygous minor allele (AA) and 9 homozygous major allele (TT). Inclusion criteria and 

anthropometric measurements are described in detail in Chapter 6. Participants’ physical 

activity level was assessed with the International Physical Activity Questionnaire (Craig et al. 

2003). 

7.3.3 Experimental design 

All participants attended four laboratory visits (two control and two meal conditions) where 

circulating levels of fasting and postprandial appetite-related blood parameters were assessed. 

These visits have been described in detail in Chapter 6. In summary, participants arrived at the 

laboratory at 9:00 after an overnight fast and a cannula (Venflon; Becton Dickinson, 

Helsingborg, Sweden) was inserted into an antecubital vein 60 min before the collection of 

venous blood samples. After the fasting venous blood sample was taken, participants rested 

throughout all four conditions but consumed a standardised breakfast meal (5025 kJ energy) 

during the two meal conditions. Subsequent venous blood samples were taken at 0.5 and 1 h. 
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After completing the four visits, participants attended one single laboratory visit for the 

assessment of BAT activity. Participants refrained from alcohol, caffeine and strenuous 

physical activity during the 24 h preceding the visit. Participants arrived at the laboratory 

between 8:00 and 9:00 after a 12 h overnight fast (no food or drink except plain water) and 

were asked to wear standardised cotton clothes (shorts and vest) before being positioned sitting 

on a chair facing a thermal imaging camera (FLIR Systems T620, West Malling, UK). The 

distance between the participant’s chair and the camera tripod was standardised as 1 m. A 

cooling blanket connected to a cooling unit was placed around the participant’s right forearm 

and six reflective markers were placed on the neck and shoulders region in order to determine 

the apices of the region of interest for posterior analyses of the images (Figure 7.1). 

Temperature wireless data loggers (Maxim iButton DS1219H-F50, Sunnyvale, USA) were 

placed at seven body sites (forehead, trunk, arm, hand, lower leg, thigh and foot), a heart rate 

monitor strap (Garmin 920XT, Olathe, USA) was positioned under the chest, and a blood 

pressure arm cuff (Omron HEM-FL31, Kyoto, Japan) was positioned on the participant’s left 

arm. Environmental temperature and humidity were monitored and kept constant using a 

wireless weather station (Opes, London, UK).  

 

Figure 7.1 Thermal image with reflective markers determining the apices of the region of 

interest for the assessment of brown adipose tissue activity.  
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7.3.4 Brown adipose tissue activity 

 Participants were asked to stay as still as possible while thermal images were automatically 

captured every 15 seconds during 10 minutes of acclimatisation (with the cooling blanket 

switched off) and 10 minutes of forearm cooling at 15°C (stimulation period). This short 

cooling protocol has been previously shown to be sufficient for the stimulation of BAT activity 

(Haq et al. 2017; Law et al. 2018b). Skin temperature at seven body sites and heart rate were 

recorded every minute. Blood pressure and tympanic temperature (Braun ThermoScan PRO 

4000, Kronberg, Germany) were recorded before and after the acclimatisation period, and after 

the stimulation period. Mean skin temperature was calculated using the data obtained from the 

seven data loggers and the following formula (Hardy and Oppel, 1938):  

Mean skin temperature = (0.07 x temperature head) + (0.14 x temperature arm) + (0.05 x 

temperature hand) + (0.07 x temperature foot) + (0.13 x temperature leg) + (0.19 x 

temperature thigh) + (0.35 x temperature trunk) 

The temperature of the skin overlying the SCV region was measured using infrared 

thermography and used as an indicator of BAT activity during cooling stimulation. The region 

of interest was defined as that bounded by the right sternocleidomastoid muscle, clavicle and 

lateral contour of the neck using Matlab 2017b software (The Mathworks Inc., Natick, USA). 

The hottest ten percent of points within the region of interest were identified and the median 

of the temperature in these points was calculated in each captured image (Figure 7.2).  
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Figure 7.2 Thermal image with the region of interest for the assessment of brown adipose 

tissue activity marked by the blue lines and the hottest ten percent of points shown in red. 

 

Baseline SCV temperature was defined as the mean temperature on the images acquired during 

the last minute of the acclimatisation period to ensure participants had achieved a steady state. 

The same criterium was used to determine baseline mean skin temperature, and the difference 

between baseline SCV temperature and baseline mean skin temperature was calculated in order 

to obtain the relative baseline SCV temperature, taking into account the natural difference 

between both measurements. A moving average for every minute of the stimulation period was 

applied to reduce the effect of natural variation in measurements, and the highest average value 

was selected as the stimulation SCV temperature, representing the peak BAT activity. The 

same criterium was used to determine the stimulation period mean skin temperature, and the 

difference between stimulation SCV temperature and stimulation mean skin temperature was 

calculated in order to obtain the relative stimulation SCV temperature, taking into 

consideration the changes in skin temperature due to factors other than BAT activation, e.g. 

any potential effect of ambient temperature. Finally, delta SCV temperature was calculated as 

the difference between relative stimulation SCV temperature and relative baseline SCV 

temperature in order to assess BAT activity, using each participant as their own control, where 

positive values indicated BAT activation as a result of the acute cold stimulus. 
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At the end of the session, a final thermal image of both participant’s forearms was acquired in 

order to confirm the effectiveness of the cooling protocol (Figure 7.3).  

 

Figure 7.3 Thermal image comparing participant’s right forearm after cooling period with 

cooling blanket set at 15°C for 10 minutes and left forearm used as control. 

 

7.3.5 Fasting and postprandial appetite-related blood parameters 

Acylated ghrelin, total PYY, insulin and glucose concentrations in the fasted state and after 

consumption of a standardised meal were obtained in four separate visits, explained in detail 

in Chapter 6. In summary, plasma acylated ghrelin and total PYY concentrations were 

quantified from samples at 0 and 1 h, and insulin and glucose concentrations were measured at 

0 and 0.5 h to capture the peak change in concentration after the meal. The average between 

fasting concentrations obtained for each blood parameter in the four visits was calculated and 

used in the analyses. The average between two control-adjusted meal responses (i.e. change in 

blood concentration during meal condition – change in blood concentration during control 

condition) for each appetite-related blood parameter was calculated and used in the analyses.  

7.3.6 Statistical analysis 

Univariable general linear models with FTO genotype as a single fixed effect were used to 
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quantify differences between genotype groups for physiological parameters, mean skin 

temperature and SCV temperature between both FTO genotype groups. Within-participant 

linear mixed models were used to quantify the effect of the cooling protocol and the FTO 

genotype on SCV temperature, and the genotype-by-condition interaction was quantified. 

Pearson’s correlation coefficients were calculated to investigate any potential associations 

between BAT activity, fasting and postprandial appetite-related blood parameters (acylated 

ghrelin, total PYY, insulin and glucose), and individual characteristics. Thresholds of 0.0, 0.1, 

0.3 and 0.5 were used to define trivial, small, moderate and large correlation coefficients, 

respectively (Cohen, 1988). Data are presented as mean (SD). Statistical significance was 

accepted as P < 0.050. Data were analysed using SPSS version 23 (IBM Corporation, New 

York, USA). 

7.4 Results 

Positive delta SCV temperature values, indicative of BAT activation as a result of the cooling 

protocol, were observed in 8 participants. Individual delta SCV temperature values are 

presented in Figure 7.4.  

 
Figure 7.4 Individual delta values of supraclavicular (SCV) temperature relative to changes in 

mean skin temperature following a 10-min cooling stimulation of the forearm at 15°C. White 

circles indicate individuals homozygous for the minor allele (AA) and black circles indicate 

individuals homozygous for the major allele (TT) of FTO rs9939609. 
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Physiological parameters, mean skin temperature and SCV temperature measured at baseline 

and after cooling stimulation are presented in Table 7.1. 

 

Table 7.1 Physiological parameters, mean skin temperature and supraclavicular temperature 

measured before and after cooling stimulation. Mean (SD). 

 Baseline Cooling stimulation 

 AA  

(n = 9) 

TT 

(n = 9) 

 

P value* 

AA 

(n = 9) 

TT 

(n = 9) 

 

P value* 

Heart rate (bpm) 66 (8) 73 (9) 0.087 66 (8) 74 (10) 0.059 

Systolic blood 

pressure (mmHg) 
130 (19) 122 (14) 0.320 127 (15) 121 (12) 0.412 

Diastolic blood 

pressure (mmHg) 
85 (13) 88 (16) 0.674 86 (11) 88 (12) 0.810 

Tympanic temperature 

(°C) 
36.4 (0.4) 36.3 (0.4) 0.716 36.4 (0.4) 36.5 (0.5) 0.682 

SCV temperature (°C) 34.6 (0.4) 34.1 (0.8) 0.107 34.9 (0.4) 34.3 (0.7) 0.060 

Mean skin temperature 

(°C) 
31.3 (0.7) 30.8 (0.7) 0.148 31.6 (0.8) 31.1 (0.7) 0.178 

Relative SCV 

temperature (°C) 
3.3 (0.4) 3.3 (0.5) 0.874 3.2 (0.6) 3.2 (0.7) 0.859 

Delta relative SCV 

temperature (°C) 
   -0.08 (0.35) -0.10 (0.30) 0.905 

* P values are from univariable general linear models with FTO genotype as a single fixed effect. 

SCV, supraclavicular. 

 

The effect of the cooling protocol was not statistically significant at the group level (P = 0.240) 

and no effect of FTO genotype was identified on SCV temperature (P = 0.861). Similarly, no 

statistically significant genotype-by-condition interaction could be identified (P = 0.916). 
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Pearson’s correlation coefficients were trivial to moderate and not statistically significant 

between BAT activity and fasting acylated ghrelin (r = 0.13, P = 0.611), fasting total PYY (r 

= 0.20, P = 0.414), fasting insulin (r = 0.00, P = 0.990) or fasting glucose (r = -0.38, P = 0.115). 

Similarly, correlation coefficients were small to moderate and not statistically significant 

between BAT activity and control-adjusted meal responses for acylated ghrelin, total PYY, 

insulin and glucose (r = -0.26 to 0.30, P ≥ 0.221). Exploratory analyses of the data showed that 

correlation coefficients were trivial to moderate and not statistically significant between BAT 

activity and body mass index (r = -0.25, P = 0.311), body fat mass (r = -0.31, P = 0.213), fat-

free mass (r = 0.04, P = 0.870) and self-reported physical activity level (r = -0.12, P = 0.622).  

7.5 Discussion 

The main finding from this pilot study was that no significant association between FTO 

rs9939609 genotype and BAT activity, indicated by changes in SCV skin temperature, could 

be identified following a short cooling protocol. Even though BAT activation was identified in 

8 out of eighteen study participants, the effect of the cooling protocol on SCV temperature was 

not significant at the group level. Further findings were that BAT activity was not associated 

with fasting or postprandial appetite-related blood parameters, body composition or self-

reported physical activity level.  

While previous studies have shown a clear link between FTO, beige adipocytes and energy 

expenditure in mice, to date, this association has not been explored in humans. In mice, the 

absence of the FTO protein has a protective effect against obesity due to increased energy 

expenditure resultant from an up-regulation of UCP-1 in adipocytes (Tews et al. 2013; 

Ronkainen et al. 2016). Similar findings were observed in isolated human adipocytes, leading 

to the hypothesis that lower browning of white adipose tissue is a contributing factor to the 

obesity risk associated to FTO gene (Tews et al. 2013). Whether the volume and activity of 

classical brown adipocytes are also affected by FTO is currently unknown, and we could not 

identify a significant difference in BAT activity measured by IRT after a short cooling 

stimulation protocol between FTO rs9939609 homozygous genotype groups in healthy males. 

We speculate that larger study samples are needed to elucidate any potential effect of FTO 

genotype on BAT activity. In addition, previous studies in rodents indicated an inverse 

association between genetic susceptibility to obesity and browning propensity in white adipose 

tissue, indicated by UCP-1 expression (Xue et al. 2007; Kozak, 2011; Sidossis and Kajimura, 
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2015). However, this association may not be seen with classical BAT depots. Finally, in light 

of previous evidence suggesting FTO increases obesity risk through impaired appetite control 

and, as a result, increased energy intake (Speakman et al. 2008), it is possible that a difference 

in BAT activity following food intake, rather than cold exposure, exists between FTO genotype 

groups and exerts an impact on appetite regulation.  

BAT is known to contribute to both acute meal thermogenesis and long-term diet-induced 

thermogenesis, however, the mediators and the magnitude of the associated energy expenditure 

remain to be elucidated. The mechanisms involved in BAT activity following meal 

consumption seem to differ from those responsible for cold-activated BAT activity (Orava et 

al. 2011; Peterson et al. 2016). It has been shown that BAT is stimulated by insulin (Orava et 

al. 2011; Trayhurn, 2017), and the meal-associated thermogenesis induces satiation via brain 

signalling (Li et al. 2018). Following observations that ghrelin inhibits norepinephrine release 

in BAT of rodents (Mano-Otagiri et al. 2009), BAT volume was recently associated with a 

greater suppression in acylated ghrelin concentration during cold exposure in humans 

(Chondronikola et al. 2017). In addition, BAT volume was associated with lower fasting leptin, 

gastric inhibitory peptide and glucagon concentrations during thermoneutrality, and leptin and 

glucagon concentrations were significantly reduced following five hours of cold exposure 

(Chondronikola et al. 2017). Whether such links between BAT and appetite-related hormone 

concentrations are seen during meal-related thermogenesis is still unclear. Interestingly, recent 

evidence identified secretin, a gut hormone released during meal consumption, as a non-

sympathetic activator of BAT thermogenesis which induces satiation (Li et al. 2018). 

Therefore, further studies are needed to elucidate other potential mechanisms through which 

BAT may influence appetite regulation. 

Even though concentrations of appetite-related hormones typically change on a meal-to-meal 

basis, and often reflect perceived appetite ratings, this is not observed in every study (Goltz et 

al. 2018; Chapter 4). This observation reflects the notion that appetite regulatory mechanisms 

are still not fully understood and other physiological factors influencing appetite are still to be 

identified. The potential effect of BAT on appetite regulation is undoubtedly appealing and 

could help to explain many inconsistencies seen in appetite research, as well as being a 

potential contributor to the well documented interindividual variability in appetite responses to 

a meal (Goltz et al. 2019; Chapter 6) and to exercise (Goltz et al. 2018; Chapter 4). We could 

not identify any significant associations between BAT activity and fasting or postprandial 
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acylated ghrelin, total PYY, insulin and glucose in our pilot study. This is in contrast with 

previous findings showing an inverse association between BAT activity and blood glucose 

(Lee et al. 2010). Indeed, BAT is believed to be a major organ in glucose utilization, playing a 

role in insulin sensitivity and glucose homeostasis (Lee et al. 2014; Sidossis and Kajimura, 

2015; Trayhurn, 2017). Of note, circulating concentrations of appetite-related blood parameters 

were assessed in a separate visit from the cold-stimulation protocol, and BAT activity was not 

measured during or after meal intake in this pilot study. Future studies should investigate 

whether BAT is activated following meal consumption concomitantly and proportionally to 

observed changes in appetite-related blood parameter concentrations. 

Previous studies have classified individuals as BAT-positive and BAT-negative depending on 

whether tissue activity could be identified following cold exposure (Yoneshiro et al. 2011b). 

We identified BAT activation following an acute cold stimulus in 8 out of eighteen study 

participants. The remaining participants showed greater temperature increases in the mean skin 

temperature compared to the change in the temperature of the skin overlaying BAT depots in 

the SCV area. This observation is similar to findings from a previous study using IRT 

measurements, and it is possibly a result of whole-body vasoconstriction induced by cold 

exposure, leading to increased skin temperature in body areas other than SCV (Boon et al. 

2014; Peterson et al. 2017). Interestingly, the two individuals (participant 3 and participant 9 

in Figure 7.4) presenting the lowest delta SCV temperature within our sample, -0.96 and -0.84, 

indicating that the change in mean skin temperature after cold stimulation was nearly 1°C larger 

than the change in temperature at the SCV area, were 48 and 50 years old, respectively, while 

the remaining study participants ranged from 18 to 37 years old. This observation is consistent 

with previous findings showing that the incidence of cold-activated BAT decreases with age 

(Yoneshiro et al. 2011b).  

Besides age, adiposity has also been negatively associated with the volume and activity of BAT 

(Cypess et al. 2009; Lee et al. 2010; van Marken Lichtenbelt et al. 2009; Vijgen et al. 2011; 

Trayhurn, 2017). While cold stimulation was shown to increase energy expenditure and SCV 

temperature measured with IRT in lean subjects, this was not observed in obese subjects (El 

Hadi et al. 2016). This observation may be due to lower BAT activity in obese and/or resultant 

of the presence of a thicker layer of subcutaneous adipose tissue in the SCV area, which would 

provide higher thermal insulation to these subjects (El Hadi et al. 2016). The majority of our 

study participants had a BMI higher than 25 kg·m-2 and it is possible that higher fat mass 
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affected our ability to identify BAT activity in this study sample. However, no significant 

correlations between BAT activity and body mass index or body fat mass were observed. 

Additionally, a previous study showed that BAT activity assessed by IRT was not associated 

to neck adiposity in healthy men with BMI ranging from 19.3–32.3 kg/m2 (Haq et al. 2017). 

Exercise has been previously suggested as a contributing factor to white adipose tissue 

browning, leading to a chronic increase in energy expenditure (Sidossis and Kajimura, 2015; 

Aldiss et al. 2018). The impact of exercise on BAT is still not fully understood, although it is 

suggested that lactate and the myokines irisin, meteorin-like and interleukin-6, all upregulated 

by exercise, may stimulate white adipose tissue browning (Sidossis and Kajimura, 2015). 

Whether classical BAT can be affected by acute or chronic exercise and/or daily physical 

activity is still unclear and no association between BAT activity and self-reported physical 

activity levels could be identified in our pilot study. Our results support the findings of a recent 

cross-sectional study showing no association between objectively assessed physical activity 

levels and BAT volume and activity assessed by PET-CT in healthy sedentary young adults 

(Acosta et al. 2019). However, studies with larger and more heterogeneous samples are still 

needed in order to further investigate the impact of physical activity and/or exercise on BAT 

activity. 

We cannot rule out the possibility that our short cooling protocol may not have been sufficient 

to activate BAT in all study participants, as no statistically significant effect of the cooling 

protocol could be seen at the group level. In that respect, we did not observe a decrease in mean 

skin temperature as reported in previous studies (Yoneshiro et al. 2011a; Boon et al. 2014), but 

rather a small increase in mean skin temperature, possibly indicating inefficiency of the cold 

stimulus. However, the decrease in the participants’ forearm skin temperature was evident as 

shown by the IRT images obtained following 10 min of cooling. Previous studies have also 

reported increases in heart rate and blood pressure after cold stimulation, indicative of 

activation of the adrenergic system (Boon et al. 2014; El Hadi et al. 2016), although we could 

not identify any significant changes in heart rate or blood pressure during our cooling protocol. 

Utilizing individualised cooling protocols, which take into consideration the temperature in 

which each individual starts shivering, is an option to guarantee the delivery of an effective 

stimulus for each study subject. However, this is impractical when using IRT as the temperature 

needed for someone to start shivering can vary day-by-day, and achieving shivering on the day 
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of IRT measurements could affect the assessment of skin temperature at rest which should be 

used as a control for each individual (Law et al. 2018a). 

Some limitations are inherent to the method we used to assess BAT activity. The efficacy of 

IRT can be limited by factors such as increased blood flow in the carotid arteries and the 

presence of high amounts of subcutaneous fat, although the extent of the impact of these factors 

is yet to be quantified (Law et al. 2018a). Furthermore, previous studies have shown that some 

subjects do not show any BAT activity, whereas others present very active BAT, even at 

thermoneutrality (Lee et al. 2010; Yoneshiro et al. 2011b; Jang et al. 2014). The latter may not 

increase thermogenesis by much when stimulated by cold and thus temperature changes 

measured by IRT would not be a reliable assessment of BAT activity in such cases (Law et al. 

2018a). The inability of IRT to measure or estimate BAT volume is a further limitation, as the 

impact of BAT on energy homeostasis and body weight balance could be more impacted by 

the quantity rather than by the level of activation observed in a small pre-determined area. 

However, SCV skin temperature has been previously shown to be correlated with BAT volume 

and activity measured by PET-CT (Boon et al. 2014; Law et al. 2018a). Furthermore, the 

identification of BAT with PET-CT has shown poor reproducibility (Lee et al. 2010). Of note, 

besides glucose, free fatty acids and triglycerides are also utilized by BAT, and therefore 

glucose uptake measured in 18F-FDG PET may not always be a reliable measure of BAT 

activity (Haq et al. 2017). Nevertheless, measurements of BAT with IRT have shown highly 

reproducible results (Haq et al. 2017), with a probability greater than 80% in predicting BAT 

(Jang et al. 2014). 

In conclusion, we could not identify any significant association between FTO genotype, BAT 

activity and appetite-related blood parameters in our pilot study with a small sample of healthy 

men. We highlight the need of further studies investigating the potential link between FTO and 

BAT in larger and more heterogeneous samples. The effect of FTO genotype on BAT activity 

associated to meal-induced thermogenesis, and the associated effect on appetite, should be 

assessed where possible. As most evidence on BAT activity is derived from studies in mice, 

the understanding of BAT physiology in humans is still in its infancy and it is still unclear 

whether energy expenditure and/or the impact on energy intake derived from BAT make a 

significant contribution to energy homeostasis in human adults (Trayhurn, 2017). BAT might 

be a good candidate for the treatment of obesity and associated complications not only due to 

its ability to increase energy expenditure, but also because of its involvement in glucose 
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homeostasis and appetite regulation (Sidossis and Kajimura, 2015; Li et al. 2018). Identifying 

the physiological mechanisms involved in the activation of BAT is of great importance to the 

understanding of whether BAT can be a potent therapeutic option for preventing and/or treating 

obesity (Trayhurn, 2017).  
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CHAPTER 8 

General discussion 

8.1 Introduction 

While the prevalence of overweight and obesity continues to rise worldwide, the success of 

currently available interventions to prevent weight gain and/or promote weight loss remains 

very limited. The focus on interindividual variability in responses to such interventions has 

increased considerably in recent years, as personalised medicine strategies arise as a valuable 

and potentially more effective alternative to ‘one-size-fits-all’ interventions. A few studies 

have suggested individuals differ in their appetite and energy intake responses to an exact same 

intervention (Finlayson et al. 2009; King et al. 2009; Hopkins et al. 2014), indicating that 

tailored individual approaches may be needed for the achievement of satisfactory results. 

However, important methodological limitations are present in these studies, such as the lack of 

a control condition, no replication of conditions, and/or no appropriate statistical model 

employed in order to differentiate true response heterogeneity from within-subjects random 

variability. Therefore, the affirmation of the existence of interindividual variability in 

responses to an intervention must be interpreted taking these limitations into consideration.  

The studies within this thesis were designed to extend the knowledge on interindividual 

variability in perceived appetite and appetite-related blood parameter responses to acute 

exercise and to a standardised meal, as well as on potential factors influencing such variability. 

The purpose of this chapter is to discuss the main outcomes of the experimental studies 

presented here and to highlight directions for future research needed to build on this area of 

knowledge. Table 8.1 provides a summary of the characteristics of the protocols, subjects and 

variables assessed in each experimental study.
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Table 8.1 Summary of the experimental studies presented in this thesis.  

Chapter n Sex Mean age 
(years) 

Mean BMI 
(kg·m-2) Study design Conditions Measurements 

4 15 M 23 24.8 
Replicated 
crossover 

Control: 60-min resting 

Exercise: 60-min treadmill running 
at 70% peak V̇O2 

Perceived appetite, acylated ghrelin 
and total peptide YY 

5 112 M/F 34 25.2 Cross-sectional Meal test 

Resting metabolic rate, visceral 
adipose tissue, abdominal 

subcutaneous adipose tissue, liver 
fat, perceived appetite, acylated 
ghrelin, total peptide YY, leptin, 

insulin, glucose, moderate-to-
vigorous physical activity, sitting 

time and FTO genotype 

6 18 M 28 27.0 Replicated 
crossover 

Control: 60-min resting 

Meal: 5025 kJ consumed within 15 
min and 45-min resting 

Perceived appetite, acylated 
ghrelin, total peptide YY, insulin, 

glucose and FTO genotype 

7 18 M 28 27.0 Cross-sectional Cooling protocol Brown adipose tissue activity, and 
FTO genotype 

F, females; FTO, fat mass and obesity-associated gene; M, males; V̇O2, oxygen uptake.



 
119 

8.2 Interindividual variability in appetite responses to exercise  

One aim of the experimental studies presented within this thesis was to examine the 

reproducibility and interindividual variability in perceived appetite and appetite-related 

hormone responses to acute exercise. The study presented in Chapter 4 extends the existing 

knowledge by being the first study to use a replicated crossover design to assess the 

reproducibility and quantify the interindividual variability in appetite responses to exercise. 

The statistical analyses employed have been indicated to appropriately quantify interindividual 

variability in responses to an intervention (Atkinson and Batterham, 2015; Senn, 2016). Our 

methodological approach was able to detect good reproducibility and true interindividual 

variability in appetite responses to exercise, over and beyond any random variability, in a small 

sample of 15 healthy men. The true interindividual variability was demonstrated by a 

significant participant-by-condition interaction for acylated ghrelin, total PYY and perceived 

appetite, together with substantially greater SD of change scores in the exercise condition, 

compared to the control condition, for all the outcomes. 

Our study confirms previous findings indicating an immediate suppression of appetite 

produced by exercise performed at moderate intensity, previously termed ‘exercise-induced 

anorexia’ (Stensel, 2010; Schubert et al. 2014), as shown by the suppression in acylated ghrelin 

and perceived appetite, and the increase in peptide YY observed after 60 min of treadmill 

running. While no previous studies have assessed the reproducibility of the changes in appetite-

related hormones after acute exercise, previous studies have shown poor reproducibility of 

energy intake after acute exercise (Brown et al. 2012; Unick et al. 2015). Interindividual 

variability has been suggested to exist in perceived appetite and energy intake responses to 

acute exercise in healthy subjects and those who are overweight; however, these studies only 

included one control and one exercise condition (Finlayson et al. 2009; Hopkins et al. 2014). 

Without the repetition of the study conditions, it is impossible to determine whether the 

variability in the observed responses is a result of interindividual variability per se or is only 

reflecting the random variability and measurements errors naturally occurring in any study. 

Our findings are in agreement with previous evidence suggesting exercise-induced changes in 

perceived appetite do not always reflect the changes observed in appetite-related hormones 

(Deighton et al. 2013; Sim et al. 2014; Martins et al. 2015). While the changes in acylated 

ghrelin and total PYY were consistent with the changes in perceived appetite in most 

participants, this was not true for the whole study sample and further investigation is needed to 
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understand what other physiological and/or psychological factors may be influencing 

perceived appetite, in conjunction with the two hormones measured in our study. Future studies 

should include measurements of other hormones known to influence appetite, as well as 

psychological measurements such as the influence of hedonic processes and 

cognitive/behavioural cues. Our study did not explore potential factors which could explain the 

interindividual variability in appetite responses to exercise, and future studies should aim to 

determine what individual characteristics influence the magnitude of appetite suppression after 

a session of exercise.  

8.3 Interindividual variability in appetite responses to a standardised meal 

The second aim of this thesis was to assess the reproducibility and interindividual variability 

in perceived appetite and appetite-related blood parameter responses to the consumption of a 

standardised meal. Using a replicated crossover design and novel statistical analyses, the study 

presented in Chapter 6 adds to the literature by showing good reproducibility of appetite 

responses to a meal and the existence of true interindividual variability, over and above any 

random variability and measurement errors, in a small sample of 18 healthy men.  

Both studies presented in Chapters 5 and 6 confirm previous findings by showing a suppression 

of perceived appetite and acylated ghrelin, concomitantly with increases in total PYY, insulin 

and glucose immediately after meal consumption (Flint et al. 2007; MacLean et al. 2017). 

Additionally, the findings presented in Chapter 6 are also in agreement with previous studies 

showing good reproducibility of glucose and insulin (Nair et al. 2009), as well as perceived 

appetite (Flint et al. 2000; Gonzalez et al. 2012; Horner et al. 2015) responses to a meal. One 

recent study suggested reproducibility of perceived appetite responses to liquid meals is poor 

at the individual level (Gonzalez et al. 2017); however, no control trial where no intervention 

takes place was included in this study. Therefore, the presence of random variability and 

measurement errors could not be quantified and could have affected the results, possibly 

explaining the discrepancy between findings. Our study is the first to show true interindividual 

variability in appetite responses to a meal using a replicated crossover design and robust 

statistical analyses, evidenced by a significant participant-by-condition interaction and 

substantially greater SD of change scores in the meal condition, compared to the control 

condition, for acylated ghrelin, total PYY, insulin, glucose and perceived appetite. 
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Exploratory analyses of the results presented in Chapter 6 supported previous findings by 

showing significant correlations between the changes in perceived appetite and appetite-related 

blood parameters after consumption of a meal (Lemmens et al. 2011). Additionally, higher 

adiposity was correlated with smaller postprandial suppression of acylated ghrelin and hunger, 

supporting previous findings showing attenuated postprandial changes in acylated ghrelin in 

individuals with obesity (Le Roux et al. 2005). However, the results presented in Chapter 5 

showed no association between fasting and postprandial acylated ghrelin and total PYY with 

general or abdominal adiposity, while leptin, glucose and insulin concentrations were 

consistently associated with adiposity variables in a heterogeneous sample of healthy men and 

women. Results from the pilot study presented in Chapter 7 did not support an association 

between brown adipose tissue activity and fasting and postprandial perceived appetite and 

appetite-related blood parameters, in contrast with previous suggestions that brown adipose 

tissue volume and activity may be associated with appetite-related hormones (Chondronikola 

et al. 2017; Li et al. 2018). Therefore, the conflicting results highlighted here provide evidence 

of the need of further investigation in order to determine the exact role of adiposity in the 

regulation of appetite. 

8.4 Effect of the FTO gene on appetite regulation 

The third aim of the studies presented in this thesis was to explore the influence of genetic, 

physiological and behavioural characteristics on fasting and postprandial appetite-related 

outcomes. In light of the consistently reported effect of the FTO gene on obesity risk (Frayling 

et al. 2007; Hess and Brüning, 2014), the study presented in Chapter 5 employed an integrative 

approach where the association between FTO genotype, perceived appetite and appetite-related 

blood parameter responses to a meal was assessed in a heterogeneous sample of healthy men 

and women, taking into consideration the effect of a variety of physiological and lifestyle 

characteristics. Our findings showed no differences between the three FTO genotype groups in 

fasting and postprandial perceived appetite and appetite-related blood parameters, assessed 

using multivariable general linear models with and without the inclusion of sex, age, body mass 

index, peak oxygen uptake, resting metabolic rate, visceral adipose tissue, abdominal 

subcutaneous adipose tissue, liver fat, sitting time and moderate-to-vigorous physical activity 

as covariates. Additionally, the study presented in Chapter 6 found little moderating influence 

of the FTO genotype on the magnitude of postprandial appetite responses in healthy males 

when comparing age and adiposity-matched AA and TT individuals. 
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The findings from Chapters 5 and 6 do not support previous evidence suggesting individuals 

with the higher obesity risk FTO genotype (AA) show smaller postprandial suppression of 

acylated ghrelin and perceived hunger compared to TT subjects after consumption of a 

standardised meal (Karra et al. 2013). Differences in study samples can potentially explain the 

discrepancies between findings. A heterogeneous sample of men and women was recruited in 

the study presented in Chapter 5, while Karra et al. recruited young males with AA or TT 

genotype, matching both groups for age and adiposity. However, in the study presented in 

Chapter 6, participants had similar characteristics to the study sample selected by Karra et al. 

Our results support recent findings where postprandial hunger was similar between FTO 

genotype groups, despite the higher energy intake during an ad libitum buffet observed in AA 

individuals (Melhorn et al. 2018). Furthermore, the findings presented in Chapters 5 and 6 are 

in agreement with previous studies showing no differences between FTO genotype groups for 

fasting glucose and insulin (Speakman et al. 2008), fasting leptin (Speakman et al. 2008; Karra 

et al. 2013; Melhorn et al. 2018), fasting and postprandial PYY3-36 (Karra et al. 2013) and 

fasting and postprandial glucagon-like peptide 1 (Melhorn et al. 2018). Additional studies with 

longer-term interventions are needed to elucidate the precise role that FTO plays in moderating 

appetite control and energy intake. 

Besides potentially influencing perceived appetite and appetite-related blood parameters, the 

FTO gene has also been suggested to play a role in brown adipose tissue metabolism (Tews et 

al. 2013; Ronkainen et al. 2016). While the association between FTO genotype and brown 

adipose tissue activity has not been previously explored in humans, evidence from studies in 

mice and in isolated human adipocytes led to the hypothesis that lower browning of white 

adipose tissue is a contributing factor to the obesity risk associated to the FTO gene (Tews et 

al. 2013; Ronkainen et al. 2016). However, the results presented in Chapter 7 do not support 

the existence of a significant association between FTO genotype and brown adipose tissue 

activity measured by infrared thermography during a short cooling protocol. Our pilot study 

assessed the change in temperature in the neck area, where classical brown adipose tissue is 

usually found in adults; however, we were not able to assess any outcomes related specifically 

to the browning of white adipose tissue, and future studies should attempt to do so in order to 

determine whether FTO genotype has a similar effect in humans as previously observed in 

mice.  
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8.5 Practical implications 

It is hoped that the findings presented in Chapters 4 and 6 will bring attention to the need for 

well-planned study designs and statistical analyses when the quantification of interindividual 

variability in appetite responses to an intervention is intended. These studies provide important 

novel evidence of true interindividual variability in appetite responses to acute exercise and 

eating, which have great value for interpreting study results and also for planning future 

research. The findings from these studies also provide sound evidence to justify the 

investigation of individual characteristics which may explain the observed interindividual 

variability. Furthermore, these findings highlight the importance of exploring individual 

differences in appetite regulation in the context of the prevention and/or treatment of obesity. 

Specifically, it is speculated that individuals who show a smaller suppression in perceived 

appetite and smaller changes in appetite-related blood parameters, such as acylated ghrelin and 

total PYY, after acute exercise are less likely to show successful results in losing weight 

through exercise interventions. On the other hand, individuals with greater suppressions in 

perceived appetite and more expressive changes in acylated ghrelin and total PYY may show 

more promising results in weight loss interventions including exercise. The stronger appetite 

suppression after exercising can potentially counteract any increase in appetite resultant of 

significant weight loss. This hypothesis needs to be tested in future studies and, if proven to be 

true, the assessment of appetite responses to acute exercise could be used as a predictor for the 

success of exercise weight loss interventions, which can be easily employed in both research 

and clinical settings.  

Similar applications are possible for dietary interventions. While the study presented in Chapter 

6 used a mixed macronutrient meal with high energy content in order to evaluate the effect of 

the FTO genotype on postprandial meal responses, the same study design and statistical 

analyses could be employed to test different meal compositions which may elicit similar 

findings. For example, if true interindividual variability is observed in appetite responses to a 

high-protein meal, the hypothesis of these acute responses being useful predictors of the 

success of weight loss interventions through high-protein diets should be tested in future 

studies. This is valid for any other research areas such as the effect of exercise or meal 

composition on blood lipids or blood pressure, for example.  

The findings presented in Chapters 5 and 6 challenge previous research findings and 

hypotheses in which FTO genotype was suggested to influence appetite regulation via gut 
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hormones and highlight the need for additional studies in order to understand the mechanisms 

involved in the increased obesity risk associated with FTO genotype. Additionally, the study 

presented in Chapter 5 provides a comprehensive analysis of the association of perceived 

appetite, appetite-related blood markers and a variety of physiological and lifestyle factors 

previously indicated to influence appetite regulation, which can be helpful in future research 

planning. In Chapter 7, a very novel topic was explored in a small pilot study and it is hoped 

that these preliminary findings can help in designing future studies exploring the association 

between FTO genotype, brown adipose tissue and appetite regulation.  

8.6 Limitations and future directions 

Some important limitations have been identified within each experimental chapter of this thesis 

and some common limitations are highlighted here, together with directions for future research. 

While the controlled laboratory settings and detailed standardisation protocol followed by all 

participants preceding laboratory visits in all the studies add credibility to the data presented, 

it is not known whether these findings reflect what would be observed during individuals’ daily 

lives. Additionally, all studies included healthy young (18 to 50 years old) subjects and the 

results reported cannot be generalized to other populations such as individuals who are obese, 

older or present any medical conditions.  

The results presented in Chapters 4 and 6 may be restricted to the exact conditions employed 

in the studies, meaning that different exercise modes, intensities and session durations, as well 

as different meal compositions could elicit differences in reproducibility and interindividual 

variability. Of note, exercise was performed after an overnight fast in the study presented in 

Chapter 4, in order to isolate the effect of exercise per se on appetite parameters. However, 

future studies should investigate whether the findings are similar when exercise is performed 

in the postprandial state, which may be more representative of the condition in which most 

people exercise in their daily lives. Therefore, further research is needed to assess the 

reproducibility and interindividual variability of appetite responses to exercise and meal intake 

employing different interventions. The need for longer-term intervention studies using a 

replicated crossover design and appropriate statistical analyses is especially relevant in order 

to provide valuable evidence on the clinical meaning of the findings reported here, as well as 

to improve the understanding of the effect of the FTO genotype on appetite and energy intake 

during and after interventions targeting weight loss and/or prevention of weight gain. It is, 
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however, acknowledged that the complex logistics, as well as the time and resources needed to 

plan and perform such studies, represent great challenges. 

When the reproducibility and true interindividual variability of responses to an intervention are 

confirmed, other sources of variability beyond the ones explored in the studies presented in 

this thesis should be investigated in future studies, such as differences in the gut microbiota 

and gastric distension, as well as hedonic and psychological factors. Furthermore, the studies 

presented in Chapters 4 and 6 explored minimal clinically important differences in appetite 

parameters using a statistical approach as there are no clinically relevant target differences 

established for appetite parameters. Future studies should aim to determine minimal clinically 

important differences in appetite parameters that can be applied in research and clinical 

practice.  

The studies presented in Chapters 5 and 7 employed an exploratory approach with cross-

sectional design, and therefore, no causation relationship can be implied in the results. 

Specifically, in Chapter 7, the limitations highlighted by the pilot study should be considered 

when planning future research. Future studies should first test the efficacy of the brown adipose 

tissue stimulation protocol within the study sample, as well as determining the reproducibility 

and interindividual variability of brown adipose tissue measurements, in order to investigate 

potential factors influencing such variability, if it exists.  

The publication of more studies investigating interindividual variability in appetite responses 

to varied interventions, and potential contributing factors, may stimulate the development of 

more efficient weight management strategies by determining whether an intervention is likely 

to be beneficial, ineffective or detrimental for different individuals. Particular attention should 

be given to the assessment of whether appetite responses to acute interventions, such as a single 

exercise session or the consumption of a specific meal, can be useful predictors of weight loss 

interventions. Future studies should first ensure true interindividual variability is present in 

acute responses to a specific intervention, and then test whether such responses show a clear 

link with individual results from weight loss interventions. This information will help to 

identify individuals who may achieve more favourable appetite responses through alternative 

exercise and/or nutritional interventions.  
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8.7 Conclusion 

The experimental studies presented in this thesis provide new evidence showing generally good 

reproducibility and the existence of true interindividual variability in perceived appetite and 

appetite-related blood parameter responses to acute exercise and to a standardised meal in 

healthy men. Additionally, the results indicate that the effect of the FTO genotype was weak 

and not statistically significant or worthwhile in influencing fasting and postprandial perceived 

appetite and appetite-related blood parameters, as well as brown adipose tissue activity. This 

work contributes to the literature by highlighting, for the first time, true interindividual 

variability in appetite regulation using gold standard study design and statistical analyses. It is 

hoped that the evidence presented here helps in directing and developing future research studies 

aiming to build on existing knowledge by conducting longer-term interventions with larger 

samples in order to clarify the clinical relevance of the findings. 
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APPENDIX A 

INFORMED CONSENT FORM 

(to be completed after Participant Information Sheet has been read) 

 

Taking Part                                                                                                                        Please initial box 

The purpose and details of this study have been explained to me.  I understand that this 
study is designed to further scientific knowledge and that all procedures have been 
approved by the Loughborough University Ethics Approvals (Human Participants) 
Sub-Committee. 

I have read and understood the information sheet and this consent form. I understand 
that taking part in the project will include being photographed using a thermal imaging 
camera. 

I have had an opportunity to ask questions about my participation.  

I understand that I am under no obligation to take part in the study, have the right to 
withdraw from this study at any stage for any reason, and will not be required to explain 
my reasons for withdrawing.  

I agree to take part in this study.  

Use of Information 

I understand that all the personal information I provide will be treated in strict 
confidence and will be kept anonymous and confidential to the researchers unless 
(under the statutory obligations of the agencies which the researchers are working 
with), it is judged that confidentiality will have to be breached for the safety of the 
participant or others or for audit by regulatory authorities.  

Bodily Samples (please choose one of the options below)   

I agree that the bodily samples taken during this study can be stored until 
November/2022 for future research in the same research theme as this project. 

OR  

I agree that the bodily samples taken during this study can only be used for this study 
and will be disposed of upon completion of the research [June 2018].  

 

________________________ _____________________ ________  

Name of participant [printed] Signature      Date 

__________________________ _______________________ _________  

Researcher  [printed] Signature         Date
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APPENDIX B 
 

Name/Number ...............……. 

Date of Birth ...............……. 

BMI  ...............……. 

Health Screen Questionnaire for Study Volunteers 

As a volunteer participating in a research study, it is important that you are currently in good 
health and have had no significant medical problems in the past. This is (i) to ensure your own 
continuing well-being and (ii) to avoid the possibility of individual health issues confounding 
study outcomes. 

If you have a blood-borne virus, or think that you may have one, please do not take part in this 
research.  

Please complete this brief questionnaire to confirm your fitness to participate: 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise .............  Yes  No  

(b) attending your general practitioner ....................  Yes  No  

(c) on a hospital waiting list ....................................  Yes  No  

2. In the past two years, have you had any illness or injury which required you to: 

(a) consult your GP .................................................  Yes  No  

(b) attend a hospital outpatient department .............  Yes  No  

(c) be admitted to hospital  ......................................  Yes  No  

3. Have you ever had any of the following: 

(a) Convulsions/epilepsy  ........................................  Yes  No  

(b) Asthma  ..............................................................  Yes  No  

(c) Eczema  ..............................................................  Yes  No  

(d) Diabetes  ............................................................  Yes  No  
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(e) A blood disorder  ...............................................  Yes  No  

(f) Head injury  .......................................................  Yes  No  

(g) Digestive problems  ...........................................  Yes  No  

(h) Heart problems/chest pains ………………… Yes  No  

(i) Problems with muscles, bones or joints .............  Yes  No  

(j) Disturbance of balance/coordination  ................  Yes  No  

(k) Numbness in hands or feet  ................................  Yes  No  

(l) Disturbance of vision  ........................................  Yes  No  

(m) Ear/hearing problems  ........................................  Yes  No  

(n) Thyroid problems  ..............................................  Yes  No  

(o) Kidney or liver problems  ..................................  Yes  No  

(p) Problems with blood pressure  ...........................  Yes  No  

If YES to any question, please describe briefly if you wish (eg to confirm problem was/is 
short-lived, insignificant or well controlled.) 

...................................................................................................................................................... 

4. Smoking, physical activity and family history 

(a) 
Are you a current or recent (within the last six 
months) smoker? 

Yes  No  

(b) 
Are you physically active (30 minutes of 
moderate intensity, physical activity on at least 3 
days each week for at least 3 months)?   

Yes  No  

(c) 
Has any, otherwise healthy, member of your 
family under the age of 35 died suddenly during 
or soon after exercise? 

Yes  No  

5. Allergy Information 

(a) Are you allergic to any food products? Yes  No  
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(b) Are you allergic to any medicines? Yes  No  

(c) Are you allergic to plasters? Yes  No  

(d)   Are you allergic to latex? Yes  No  

If YES to any of the above, please provide additional information on the allergy 

………………………………………………………………………………………………… 

6. Are you currently involved in any other research studies at the University or 
elsewhere? 

 Yes  No  

If yes, please provide details.  

………………………………………………………………………………………………… 

7. Have you recently given blood or been involved with research involving blood 
samples? 

 Yes  No  

If yes, please provide details.  

………………………………………………………………………………………………… 

8. Please provide contact details of a suitable person for us to contact in the event of 
any incident or emergency. 

Name 
……………………………………………………………………………………………… 

Telephone Number 
……………………………………………………………………………………………… 

 Work  Home  Mobile  

Relationship to Participant 
…………………………………………………………………............................................ 

 

9. Height: ……………… cm 
 

10. Weight: ……………… kg 
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APPENDIX C 
 

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

We are interested in finding out about the kinds of physical activities you do as part of your 
everyday lives. The following questions will ask you about the time you have spent being 
physically active in the last 7 days. Please answer each question even if you do not consider 
yourself to be an active person. Please think about the activities you do at work, as part of your 
house and garden work, to get from place to place, and in your spare time for recreation, 
exercise or sport. 

 

Think about all the vigorous activities that you did in the last 7 days.  Vigorous physical 
activities refer to activities that take hard physical effort and make you breathe much harder 
than normal.  Think only about those physical activities that you did for at least 10 minutes at 
a time. 

1. During the last 7 days, on how many days did you do vigorous physical activities 
like heavy lifting, digging, aerobics, or fast bicycling?  

_____ days per week  

   No vigorous physical activities  Skip to question 3 

 

2. How much time did you usually spend doing vigorous physical activities on one of 
those days? 

_____ hours per day  

_____ minutes per day  

  Don’t know/Not sure  

 

Think about all the moderate activities that you did in the last 7 days.  Moderate activities 
refer to activities that take moderate physical effort and make you breathe somewhat harder 
than normal.  Think only about those physical activities that you did for at least 10 minutes at 
a time. 

3. During the last 7 days, on how many days did you do moderate physical activities 
like carrying light loads, bicycling at a regular pace, or doubles tennis?  Do not 
include walking. 

_____ days per week 

   No moderate physical activities  Skip to question 5 
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4. How much time did you usually spend doing moderate physical activities on one of 
those days? 

_____ hours per day 

_____ minutes per day 

  Don’t know/Not sure  

 

Think about the time you spent walking in the last 7 days.  This includes at work and at home, 
walking to travel from place to place, and any other walking that you have done solely for 
recreation, sport, exercise, or leisure. 

5. During the last 7 days, on how many days did you walk for at least 10 minutes at a 
time?   

_____ days per week  

   No walking     Skip to question 7 

 

6. How much time did you usually spend walking on one of those days? 

_____ hours per day 

_____ minutes per day  

  Don’t know/Not sure  

 

The last question is about the time you spent sitting on weekdays during the last 7 days.  
Include time spent at work, at home, while doing course work and during leisure time.  This 
may include time spent sitting at a desk, visiting friends, reading, or sitting or lying down to 
watch television. 

7. During the last 7 days, how much time did you spend sitting on a week day? 

_____ hours per day  

_____ minutes per day  

  Don’t know/Not sure  
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APPENDIX D 
 

Food Preferences 

Please circle the number which best describes your liking of the following foods. Focus on how 
much you like the foods/drinks rather than how frequently you consume them: 

 

White bread 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

 □ Unsure 

Brown bread 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Cheddar cheese 

 (Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Ham 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Chicken 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Margarine 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Butter 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 
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Vanilla milkshake 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Strawberry milkshake 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Chocolate milkshake 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Milk 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Kit Kat chocolate 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Snickers chocolate 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Strawberry yoghurt 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Chocolate chip muffin 

 (Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Double chocolate muffin 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 
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Chocolate chip cookies 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Banana 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Cheese and tomato pizza 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 

Pepperoni pizza 

(Dislike extremely)    1    2    3    4    5    6    7    8    9    10     (Like extremely) 

□ Unsure 
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APPENDIX E 
 

Three Factor Eating Questionnaire 

 

Part 1: please answer true/false 

1. When I smell a sizzling steak or see a juicy piece of meat, I find it very difficult to 
keep from eating, even if I have just finished a meal 

True □  False □ 

2. I usually eat too much at social occasions, like parties and picnics 

True □  False □ 

3. I am usually so hungry that I eat more than three times a day 

True □  False □ 

4. When I have eaten my quota of calories, I am usually good about not eating any 
more 

True □  False □ 

5. Dieting is too hard for me because I just get too hungry 

True □  False □ 

6. I deliberately take small helpings as a means of controlling my weight 

True □  False □ 

7. Sometimes things just taste so good that I keep on eating even when I am no 
longer hungry 

True □  False □ 

8. Since I am often hungry, I sometimes wish that while I am eating, an expert 
would tell me that I have had enough or that I can have something more to eat 

True □  False □ 

9. When I am anxious, I find myself eating 

True □  False □ 

10. Life is too short to worry about dieting 

True □  False □ 
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11. Since my weight goes up and down, I have been on weight reducing diets more 
than once 

True □  False □ 

12. I often feel so hungry that I just have to eat something 

True □  False □ 

13. When I am with someone who is overeating, I usually overeat too 

True □  False □ 

14. I have a pretty good idea of the number of calories in common food 

True □  False □ 

15. Sometimes when I start eating, I just can’t seem to stop 

True □  False □ 

16. It is not difficult for me to leave something on my plate 

True □  False □ 

17. At certain times of the day, I get hungry because I have gotten used to eating 
then 

True □  False □ 

18. While on a diet, if I eat food that is not allowed, I consciously eat less for a period 
of time to make up for it 

True □  False □ 

19. Being with someone who is eating often makes me hungry enough to eat also  

True □  False □ 

20. When I feel blue, I often overeat 

True □  False □ 

21. I enjoy eating too much to spoil it by counting calories or watching my weight 

True □  False □ 

22. When I see a real delicacy I often get so hungry that I have to eat it right away 

True □  False □ 
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23. I often stop eating when I am not really full as a conscious means of limiting 
what I eat 

True □  False □ 

24. I get so hungry that my stomach often feels like a bottomless pit 

True □  False □ 

25. My weight has hardly changed at all in the last ten years 

True □  False □ 

26. I am always hungry so it is hard for me to stop eating before I finish all the food 
on my plate 

True □  False □ 

27. When I feel lonely, I console myself by eating 

True □  False □ 

28. I consciously hold back at meals in order not to gain weight 

True □  False □ 

29. I sometimes get very hungry late in the evening or at night 

True □  False □ 

30. I eat anything I want, anytime I want 

True □  False □ 

31. Without even thinking about it, I take a long time to eat 

True □  False □ 

32. I count calories as a conscious means of controlling my weight 

True □  False □ 

33. I do not eat some foods because they make me fat 

True □  False □ 

34. I am always hungry enough to eat at any time 

True □  False □ 

35. I pay a great deal of attention to changes in my figure 

True □  False □ 
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36. While on a diet, if I eat a food that is not allowed, I often then splurge and eat 
other high calorie foods 

True □  False □ 

 

Part 2: 

37. How often are you dieting in a conscious effort to control your weight? 

1 (rarely)   2(sometimes)   3(Usually)   4(always) 

38. Would a weight fluctuation of 5 lbs affect the way you live your life? 

1(not at all)   2(slightly)   3(moderately)   4(very much) 

39. How often do you feel hungry? 

1(only at meal times)   2(sometimes between meals)   3(often between meals)   4(almost 
always) 

40. Do your feelings of guilt about overeating help you to control your food intake? 

1(never)   2(rarely)   3(often)   4(always) 

41. How difficult would it be for you to stop eating half way through dinner and not 
eat again for four hours? 

1(easy)   2(slightly difficult)   3( moderately difficult)  4(very difficult) 

42. How conscious are you of what you are eating? 

1(not at all)   2(slightly)   3(moderately)   4(extremely) 

43. How frequently do you avoid ‘stocking up’ on tempting foods? 

1 (almost never)   2(seldom)   3(usually)   4(almost always) 

44. How likely are you to shop for low calorie foods? 

1(unlikely)   2(slightly unlikely)  3(moderately likely)   4(very likely) 

45. Do you eat sensibly in front of others and splurge alone? 

1(never)   2(rarely)   3(often)   4(always) 

46. How likely are you to consciously eat slowly in order to cut down on how much 
you eat? 

1(unlikely)   2(slightly likely)   3(moderately likely)   4(very likely) 
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47. How frequently do you skip desert because you are no longer hungry? 

1(almost never)   2(seldom)   3(at least once a week)   4(almost every day) 

48. How likely are you to consciously eat less than you want? 

1(unlikely)   2(slightly likely)   3(moderately likely)   4(very likely) 

49. Do you go on eating binges though you are not hungry? 

1(never)   2(rarely)   3(sometimes)   4(at least once a week) 

50. On a scale of 0-5, where 0 means no restraint in eating (eating whatever you 
want, whenever you want it) and 5 means total restraint (constantly limiting food 
intake and never ‘giving in’), what number would you give yourself? 

0 

Eat whatever you want, whenever you want it 
 

1 
Usually eat whatever you want, whenever you want it 

 
2 

Often eat whatever you want, whenever you want it 
 

3 
Often limit food intake, but often ‘give in’ 

 
4 

Usually limit food intake, rarely ‘give in’ 
 

5 
Constantly limiting food intake, never ‘give in’ 

 

51. To what extent does this statement describe your eating behaviour? ‘I start 
dieting in the morning, but because of a number of things that happen during 
the day, by evening I have given up and eat what I want, promising myself to 
start dieting again tomorrow.’ 

1(not like me)   2(little like me)   3(pretty good description of me)   4( describes me perfectly) 
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APPENDIX F 
 

Rating of Perceived Exertion 
 

Rating Perceived Exertion 

6  

7 Very, very light 

8  

9 Very light 

10  

11 Fairly light 

12  

13 Somewhat hard 

14  

15 Hard 

16  

17 Very hard 

18  

19 Very, very hard 

20 Maximum 
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APPENDIX G 
 

CONFIDENTIAL     � �                

 

FOOD RECORD DIARY 

 

The most important contribution you can make as a participant in this study is to 

accurately record your dietary intake and replicate it precisely between trials. 

 

Please record everything you eat and drink the day before your first main trial. You will need 

to consume identical amounts of the same food and drink prior to the following three main 

trials. Instructions and examples are given inside. You will be provided with your evening 

meal the day before and are instructed to eat this from 7:00 pm – 8:00 pm. Please consume 

only water following the evening meal and arrive to the lab fasted on the morning of the 

trial. Please also refrain from any structured physical activity and alcohol consumption the day 

before each main trial. We understand that some physical activity may not be preventable, and 

therefore we ask that you record any physical activity undertaken the day before your first main 

trial and repeat this prior to the following three main trials.  

 

Information will be treated in confidence. 

 

If you have any problems, please contact: Miss Fernanda Reistenbach Goltz: 

F.Reistenbach-Goltz@lboro.ac.uk  

School of Sport and Exercise Sciences 

Loughborough University 

Loughborough 

Leicestershire 

LE11 3TU 
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INSTRUCTION FOR USING THE FOOD DIARY 
 
For solid foods, the food should be placed on the scale on a plate or container. The plate or 
container must be weighed empty first and the scales can then be zeroed. Each item of food 
can then be added to the plate and weighed individually, returning the scales to zero between 
each item. 

  
e.g.  Plate              150g zero scale 

Bread         80g zero scale 
Ham             50g zero scale 

Lettuce           30g zero scale 
 
For drinks, a cup or glass must first be weighed and then the scale can be returned to zero and 
the drink added. Please remember to record separately the different components of your drink, 
for example, weigh the squash concentrate, zero the scale, and weigh the water. 
 

Do not forget to weigh and record second helpings and between meal snacks. 
Any leftovers (eg. apple cores) should also be weighted and recorded in the leftovers column. 

 
Eating Out – Most people eat foods away from home each day; please do not forget to record 
these. Take your diary and scales with you where ever it is possible. If this is too inconvenient 
just record the types of food eaten with an estimated weight, although please say when a weight 
has been estimated. 
 
Most snack foods will have the weight of the food on the packet so they do no need weighing 
if you eat the whole packet yourself. 

 
Names and descriptions of foods should be as detailed as possible, including the brand name 
and any other information available.  
e.g. Cheese – is insufficient information. 

 Cheese, cheddar (Shape reduced fat) – is sufficient information. 
 

Record each item on a separate line and include the time of day in the first column of each line. 
e.g. 10:30 am  McVities  Digestive Biscuits (2)  50g 

            
The space provided at the foot of each page for general comments is for you to give any further 
information about your diet and your activity for that day. 
e.g. Slow walk to work, morning 10 minutes. Missed lunch due to stomach pains 
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DAY 1        

Date:        /              /  

 

Please use a separate line for each item eaten; write in weight of plate; leave a line between different ‘plate’ entries. 

A B C D E F Office Use   

Time Food eaten Brand name of 
each item 
(except fresh 
food) 

Full description of each item including: 

-whether fresh, frozen, dried, canned 

-cooked: boiled, grilled, fried, roasted. 

-what type of fat food fried in 

Weight 

Served 

Weight of 

Leftovers 

Actual 

Weight 

am/pm home away  

(gms) 

 

(gms) 

 

(gms) 

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

        

GENERAL COMMENTS and ACTIVITY UNDERTAKEN: 
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APPENDIX H 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Visual Analogue Scale 

Time: 
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APPENDIX I 
 

SAS OnDemand for Academics code used in Chapter 4 

SAS PROC MIXED CODES for mixed linear model with participant and the participant-by-

condition interaction terms as random effects. This code is based on that reported by Senn et 

al. (2011) with the addition of a “dummy variable” (XVARE) designed to represent the true 

interindividual response variance for the exercise condition (adjusted for the within-subjects 

random variance in the control condition (Senn et al. 2011)). The resulting estimate of the 

participant-by- condition interaction term consequently approximates to the true individual 

response SD calculated using the equation reported by Atkinson & Batterham (2015) and 

Hopkins (2015). 

“Loughborough” is the data file. “period” are the coding data for which condition was 

undertaken in which order (codes of 1-4). “treat” is the condition codes, exercise (1) or control 

(0). “Subject” are the codes for each participant (1-15). “Score” is the stacked column of data 

(ghrelin, etc.,). XVARE is coded in the same way as “treat” but added to the model as a random 

effects covariate. 

proc mixed data=Loughborough method=reml covtest;  

class period treat subject; 

model score=period treat XVARE/ddfm=kr solution CL; 

random subject subject*XVARE/solution; 

parms/nobound; 

run. 

------------------------------------------------------------------------------------------ 

ADJUSTED FOR BASELINE VALUES 

proc mixed data=Loughborough method=reml covtest;  

class period treat subject; 

model score=period treat XVARE baseline/ddfm=kr solution CL; 

random subject subject*XVARE/solution; 

parms/nobound; 

run. 
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APPENDIX J 
 

SAS OnDemand for Academics code used in Chapter 6 

The following code was used in SAS OnDemand for Academics in order to quantify any 

participant-by-condition interaction for each study outcome: 

 

proc mixed data=Loughborough covtest ic cl alpha=0.05 nobound plots=residualpanel;  

class period condition subject;  

model Score=period condition period*condition/ddfm=kr outp=pred cl alpha=0.05 cl vciry 

residual solution;  

random subject subject*XVART;  

lsmeans Condition Period Condition*Period/diff cl alpha=0.05;  

lsmestimate Condition*Period "Meal versus Control" 1 -1 -1 1/ cl alpha=0.05;  

run. 

 

 

 


