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Nonlinearity Estimator-Based Control of A Class of
Uncertain Nonlinear Systems

Jun Yang, Ting Li, Cunjia Liu, Shihua Li, Wen-Hua Chen

Abstract—The robust control problem of a class of nonlinear
systems subject to external disturbances, control gain uncertainty
and nonlinear uncertainties is investigated in this paper using a
nonlinearity estimator-based control approach. Different from
the existing results, the crucial but highly restrictive hypothesis
on the boundedness of nonlinear uncertainties is removed from
this paper by means of the tools of semi-global stabilization. By
delicately constructing a specific composite Lyapunov function
for the closed-loop system as well as several useful level sets,
the rigorous qualitative robustness performance is presented
for the closed-loop system. Finally, an example of a single-
link manipulator is utilized to demonstrate the performance
specification claimed by the theoretical analysis.

Index Terms—Nonlinearity estimator, control gain uncertainty,
qualitative robustness, uncertain nonlinear systems, semi-global
stability.

I. INTRODUCTION

A fundamental and crucial task of control systems is to
deal with external disturbances and uncertainties [1], [2],
[3]. The traditional robust control using high control gains
is recognized as a major design tool to suppress distur-
bances/uncertainties in nonlinear control theory [4]. Neverthe-
less, robust control is mostly achieved at a price of sacrificing
the nominal control performance since the control performance
in the nominal case is usually not directly taken into account
[15]. Such a design philosophy may cause unsatisfactory over-
all performance since most practical systems usually operate
around their nominal operation point, and rarely operate far
away from their nominal operation point [5].

As an alternative approach to traditional robust control,
various disturbance/uncertainty estimation and attenuation
(DUEA) approaches have been proposed for disturbance re-
jection and uncertainty attenuation [6], [7], [8], [9], [10], [11].
In the context of DUEA, the total uncertainties including
external disturbances and plant-model mismatch are usually
estimated and compensated online within the closed-loop
system [12], [13]. A remarkable merit of DUEA against
the traditional robust control is the essential nature of non-
worst-case-oriented design. Within the framework of DUEA,
an estimator acting as a patch is utilized to online ob-
serve the disturbances/uncertainties. In the absence of distur-
bances/uncertainties, the patch estimator would be inactivated

J. Yang, T. Li and S. Li are with the School of Automation, Southeast
University, Key Laboratory of Measurement and Control of CSE, Ministry
of Education, Nanjing 210096, China. Corresponding author: Shihua Li,
lsh@seu.edu.cn.

C. Liu and W.-H. Chen are with the Department of Aeronautical and
Automotive Engineering, Loughborough University, Leicestershire LE11 3TU,
UK.

and a baseline controller is able to preserve the nominal
control performances. Otherwise, the estimator is activated
for uncertainty estimation and compensation, which improves
robustness without involving excessive control energy. To
conclude, the DUEA framework provides a good balance
between the robustness and nominal performance [14], [15].

Note that the DUEA was initially put forward to purely
estimate and compensate external disturbances. Later, it has
been discovered that DUEA approaches exhibiting promising
and powerful ability in estimating and compensating uncertain-
ties caused by plant-model mismatch. Closed-loop stability of
DUEA has been thoroughly developed for nonlinear systems
subject to various external disturbances [16]. In [12], [13], the
total uncertainties including control gain uncertainty and non-
linear uncertainties have been estimated by DUEA, however,
few rigorous stability is available when DUEA is used as a
robust control method to deal with model uncertainties. Unlike
the external disturbance case, the influence of the model uncer-
tainties is actually a function of system states. It is unrealistic
to suppose that the uncertainties are bounded for stability
analysis. The coupling between the system dynamics and the
estimator error dynamics poses great challenges for rigorous
robustness stability analysis. In [14], an extended high-gain
observer-based control approach was proposed to establish
rigorous stability of DUEA with performance recovery. In the
field of active disturbance rejection control (ADRC) known
as a kind of DUEA approaches, the robustness stability of
the closed-loop system under uncertainties is developed by
using an observer bandwidth factor evaluation approach [17],
[18]. Recently, the work in [19] further established a semi-
global practical stability of ADRC approach for systems with
unknown control gain b by using adaptive estimators.

In this paper, a nonlinearity estimator-based control ap-
proach is developed for robust control of a class of uncertain
nonlinear systems. What is more, we attempt to establish rig-
orous robustness stability of the resultant closed-loop system.
The nominal dynamics of the uncertain nonlinear systems
under consideration are nonlinear, which differs from [17],
[18], [19]. A preliminary result of this paper has been pub-
lished in [5], which provides a simple local result. However, to
surmount the limitation of local result, it is quite challenging
to conduct stability analysis as it is hard to evaluate the
bounds of coupling terms between the system dynamics and
the estimator error dynamics outside a local region. This issue
will be addressed in this paper by means of modifying the tools
of semi-global stabilization. To this end, we first construct
several interesting level sets which depend on the set of the
initial values of both system and observer states. The delicate
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construction of the useful level sets admits their separation
from the observer gain factor to be assigned, which opens the
door to semi-global stabilization of the closed-loop system in
question. It has been shown that the proposed control method
guarantees that the system with arbitrary large initial states
converges to a prescribed arbitrary small set by assigning
large enough observer gain factor. It has been further proved
that in the absence of external disturbances, the closed-loop
system is semi-global asymptotical stable in the sense that with
arbitrary large initial values, the system states will converge to
zero by the proposed controller. Finally, a practical example
of a single-link manipulator is investigated to demonstrate
the theoretical claims presented in the paper. The results
show that with certain quantity of uncertainties it is able to
tune the observer gain factor such that the stability of the
closed-loop systems is guaranteed. The relationship between
the observer gain factor and the amount of uncertainties is
explicitly demonstrated by the simulation results.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Problem Formulation

We consider a class of nonlinear systems subject to external
disturbances and nonlinear uncertainties, given by

ẋ = f(x) +G(x)[d1(x)u+ d2(x, ω)], (1)

which can be rewritten as follows

ẋ = f(x) +G(x)[d0u+ d(x, ω, u)], (2)

where x ∈ Rn is the system state vector, u ∈ R is the control
input, d(x, ω, u) = (d1(x)− d0)u+ d2(x, ω) ∈ R denotes the
lumped uncertainty including both external disturbances and
model uncertainties, d1(x) is an unknown control coefficient
whose known nominal part is d0 ̸= 0 that is a constant,
d2(x, ω) is an unknown function denoting the uncertain effects
caused by nonlinear uncertainties and external disturbances, ω
is the external disturbance satisfying that ω and ω̇ are defined
on the compact set D ⊂ Rq . f(x) and G(x) are known smooth
nonlinear functions with ∥G(x)∥ ̸= 0 for any x ∈ Rn where
∥ · ∥ denotes the Euclidean norm. Suppose that the lumped
uncertainty d(x, ω, u) satisfies the following assumption.

Assumption 1: The lumped uncertainty d(x, ω, u) is partial-
ly continuously differentiable in terms of the arguments x and
ω, and |d1(x)| ̸= 0 for any x ∈ Rn. Moreover, there exists
a known positive constant δ0 < 1 and known nonnegative
continuous scalar functions δ̄1(x) and δ̄2(x) such that∣∣∣∣d1(x)− d0

d0

∣∣∣∣ ≤ δ0,∥∥∥∂d2
∂x

∥∥∥ ≤ δ̄1(x),
∥∥∥∂d2
∂ω

∥∥∥ ≤ δ̄2(x),

(3)

for any x ∈ Rn and ω ∈ D.
Remark 1: The lumped uncertainty d(x, ω, u) is unknown

which could include control coefficient uncertainty, external
disturbances and model uncertainties including unmodelled
nonlinear dynamics, parametric perturbations, as well as other
static structured/unstructured modeling errors. The assump-
tions on the lumped uncertainties are quite different between

that in this paper and the existing ones. In most of exist-
ing works on DUEA, it is generally required that both the
lumped uncertainty and its derivative with respect to time are
bounded by some constants, that is, |d(x, ω, u)| < c1 and
|ḋ(x, ω, u)| < c2. This is quite restrictive because d(x, ω, u)
and ḋ(x, ω, u), which are functions in terms of their arguments
x, ω and u, may violate the restrictions |d(x, ω, u)| < c1 and
|ḋ(x, ω, u)| < c2 as x and u go toward infinity. For a simple
example that d(x, ω, u) = x, the condition |d(x, ω, u)| < c1
means that x < c1, which implies that the state x is always
bounded and stable regardless of the control. Based on this
statement, the existing works can only obtain local stability
result. However, in this paper, the assumption on the lumped
uncertainties is supposed to be bounded by some nonlinear
functions, that is, ∥∂d2

∂x ∥ ≤ δ̄1(x) and ∥∂d2

∂ω
∥ ≤ δ̄2(x). Under

the framework of semi-global stabilization, we only require
that the initial values of the states are within a compact set,
while the real states can go beyond this compact set. Since the
lumped uncertainty are functions in terms of system states,
they generally can not be bounded by a fixed compact set.
This imposes great challenges for the design and analysis of
the closed-loop system under the proposed control approach in
the context of semi-global stabilization rather than local one.

Remark 2: The hypothesis |(d1(x) − d0)/d0| ≤ δ0 in
Assumption 1 (which indicates that d1(x) and d0 must have
the same signs) should be taken into account for theoretical
proof of the paper. However, the nominal value of d0 generally
can be chosen in a wide range such that the hypothesis
holds. Actually, for any unknown control gain satisfying
C1 < d1(x) < C2 (or −C2 < d1(x) < −C1), where C1 and
C2 are arbitrary positive constants. By selecting d0 > C2/2
(or d0 < −C2/2), the condition |(d1(x) − d0)/d0| ≤ δ0 is
satisfied.

Assumption 2: Suppose that the equilibrium x = 0 of the
nominal system of (2), i.e., ẋ = f(x) + d0G(x)u is globally
asymptotically stabilized by a static state feedback controller
ū(x) = α(x), where α(x) is continuously differentiable and
can be designed by some nonlinear control method. That is,
the closed-loop nominal system under the baseline controller
ū(x), governed by ẋ = fc(x) is globally asymptotically stable
with fc(x) = f(x) + d0G(x)α(x).

The objective of this paper is to develop a nonlinearity
estimator-based control approach for nonlinear system (2) such
that the equilibrium of the closed-loop system is semi-globally
stable even in the presence of nonlinear uncertainties and
external disturbances.

B. Preliminaries

We list some crucial definitions and lemmas for synthesis
and analysis of the main result of the paper.

Definition 1: [20] A point x = 0 of system ẋ = f(x, u) is
said to be semi-globally practically stabilizable by dynamic
state feedback if, for each pair of compact sets (Xs, Xl)
that are the neighborhoods of (0, 0) and satisfy Xs ⊂ Xl,
there exists a locally Lipschitz dynamic state feedback u =
h1(x, ξ), ξ̇ = h2(x, ξ) and a pair of compact sets (Xξ,s, Xξ,l)
such that all the solutions of the closed-loop system starting
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from the set Xl ×Xξ,l are captured by the set Xs ×Xξ,s. If
the set Xs × Xξ,s = {(0, 0)}, the point x = 0 is said to be
semi-globally stabilizable by dynamic state feedback.

Lemma 1[21] For given real numbers m > 0, n > 0 and
a, there exists c > 0 such that

|axmyn|≤c|x|m+n+
n

m+ n

( m

(m+ n)c

)m
n |a|

m+n
n |y|m+n,

for all x ∈ R and y ∈ R.
Lemma 2[13] Suppose that a continuously differentiable

function F (x, y, z) ∈ Rp satisfies

|h|
∥∥∥∥∂F∂z

∥∥∥∥ ≤ ϵ, ∀(x, y, z) ∈ Rn × Rm × Rp, (4)

where 0 < ϵ < 1 is a positive constant, h is a constant. Then
for any function sat(·) whose derivative is dominated by one,
i.e. ∥∥∥∥∂sat

∂s
(s)

∥∥∥∥ ≤ 1, ∀s ∈ Rp,

there exists a unique continuously differentiable function
Φsat(θ, ϱ, x, y) solving the equation

z = θ − hsat(F (x, y, z)− ϱ),

where θ ∈ Rp and ϱ ∈ Rp.

Lemma 3[1] Suppose that the equilibrium x = 0 of the
system

ẋ = H(x) (5)

is globally asymptotically stable. Then there exists a C1

function V : Rn → R≥0 such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥),
∂V

∂x
H(x) ≤ −Φ(x),

(6)

where α1, α2 and Φ are continuous positive definite and class
K∞ functions.

Lemma 4[1] Let x = 0 be an equilibrium point for the
nonlinear system ẋ = f(x), where f : D0 → Rn is
continuously differentiable, D0 = {x ∈ Rn

∣∣ ∥x∥ < r0}, and
∂f(x)
∂x is bounded on D0. If the equilibrium x = 0 is locally

exponentially stable; that is, the trajectories of the system
satisfy

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0), ∀x(t0) ∈ D1, ∀t ≥ t0 ≥ 0,

where λ is a positive constant, D1 = {x ∈ Rn
∣∣ ∥x∥ < r1},

and r1 is a positive constant satisfying r1 ≤ r0/k with k > 0.
Then, there is a C1 function V : D1 → R such that

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2,
∂V

∂x
f(x) ≤ −c3∥x∥2,∥∥∥∂V
∂x

∥∥∥ ≤ c4∥x∥,

(7)

for some positive constants c1, c2, c3, and c4.

III. MAIN RESULTS

A. Nonlinearity Estimator-Based Control Design

To begin with, a nonlinearity estimator is designed below
to estimate the lumped uncertainties d(x, u, ω) in system (2),
which is depicted by

ξ̇ =− Lh(x) [f(x) +G(x)(d0u+ ξ + p(x))] ,

d̂ =ξ + p(x),
∂p(x)

∂x
= Lh(x),

(8)

where ξ ∈ R is the internal state of the observer, d̂ ∈ R is the
estimate of the lumped uncertainty d(x, ω, u), L is a positive
observer gain factor to be designed, and h(x) is the continuous
observer gain which is regardless of the scalar L. The error
vector of the nonlinearity estimator (8) is defined as follows

ζ = d− d̂. (9)

With the condition given in Assumption 2, one can obtain
from Lemma 3 that there exist continuous positive definite and
K∞ functions α, ᾱ, and ϕ, and a C1 function V : Rn → R≥0

satisfying

α(∥x∥) ≤ V (x) ≤ ᾱ(∥x∥),
∂V

∂x
fc(x) ≤ −ϕ(x).

(10)

Define a n-dimensional super cube set as Γn
r , [−r, r]n. Let

C = max{V (x)
∣∣x ∈ Γn

r }. We then define the level sets ∆C

and ∆ as follows

∆C = {x ∈ Rn : V (x) ≤ C},
∆={(x,ζ,ω)∈Rn×R×Rq: V(x)≤C+1, |ζ|≤1, ω∈D}. (11)

Similarly we can construct a level set ∆C+1. By construction
we have Γn

r ⊂ ∆C ⊂ ∆C+1. As per the above construction,
the nonlinearity estimator-based control law is designed as
follows

u = α(x)− SATM (d̂)/d0, (12)

where M = sup(x,ζ,ω)∈∆ |((d1(x) − d0)α(x) + d2(x, ω) −
ζ)d0/d1|, SATM (·) is an odd function defined by

SATM (s) =


s, if 0 ≤ s ≤M,

(s−M)(1+M−s)+M, if M<s<M+0.5,

M + 0.25, if s ≥ 0.5 +M.
(13)

The function SATM (·) is nondecreasing, continuously differ-
entiable with a locally Lipschitz derivative, bounded uniformly
in M , and its derivative satisfies 0 ≤ dSATM

ds
≤ 1.

B. Stability Analysis

Thanks to Lemma 2, the control law (12) can be rewritten
as

u = Ξ(α(x), ζ, x, ω), (14)

and Ξ(·) is a continuously differentiable function. Denote
dΞ(x, ω, ζ) , d(x, ω,Ξ(α(x), ζ, x, ω)). Substituting the pro-
posed control law (14) with the nonlinearity estimator (8) into
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the nonlinear system (2), one obtains the closed-loop system
below
ẋ =fc(x) +G(x)(dΞ(x, ω, ζ)− SATM (dΞ(x, ω, ζ)− ζ)),

ζ̇ =− Lh(x)G(x)ζ + ḋΞ(x, ω, ζ),
(15)

where

ḋΞ =
∂dΞ
∂x

ẋ+
∂dΞ
∂ζ

ζ̇ +
∂dΞ
∂ω

ω̇. (16)

Note that

∂dΞ
∂x

=

(
1 +

1

d0

∂d

∂u

∂SATM

∂s

)−1 (
∂d

∂x
+
∂d

∂u

∂α

∂x

)
,

∂dΞ
∂ζ

=

(
1 +

1

d0

∂d

∂u

∂SATM

∂s

)−1
1

d0

∂d

∂u

∂SATM

∂s
,

∂dΞ
∂ω

=
∂d2
∂ω

.

(17)

Inserting (17) into (15), one obtains the closed-loop system
having the following form

ẋ =fc(x) +G(x)(dΞ(x, ω, ζ)− SATM (dΞ(x, ω, ζ)− ζ)),

ζ̇ =− L

(
1 +

1

d0

∂d

∂u

∂SATM

∂s

)
h(x)G(x)ζ + ψ1(x, ζ, ω)

+ ψ2(x, ζ, ω, ω̇) + ψ3(x, ζ, ω)(dΞ(x, ω, ζ)

− SATM (dΞ(x, ω, ζ)− ζ)).
(18)

with

ψ1(x, ζ, ω) =

(
∂d

∂x
+
∂d

∂u

∂α

∂x

)
fc(x),

ψ2(x, ζ, ω, ω̇) =

(
1 +

1

d0

∂d

∂u

∂SATM

∂s

)
∂d2
∂ω

ω̇,

ψ3(x, ζ, ω) =

(
∂d

∂x
+
∂d

∂u

∂α

∂x

)
G(x).

(19)

For convenient of expression, we further define a super cube
set Πx and a super compact set Πξ as Πx , Γn

r = [−r, r]n
and Πξ , Γr = [−r, r], respectively. The semi-global
practical stability of the closed-loop system (18) is given by
the following theorem.

Theorem 1: Suppose that Assumptions 1 and 2 are satisfied
for the nonlinear system (2). Given any arbitrarily large
number r > 0 and any arbitrarily small number ε > 0, there
exist a positive scalar L and a finite time Tf > 0, such that,
for ∀t ≥ Tf , all the solutions of the closed-loop system (2)-
(8)-(12), with initial states in Πx × Πξ, are captured by the
set Q̄n

ε × Q̄ε , {x ∈ Rn : ∥x∥ ≤ ε} × {ζ ∈ R : |ζ| ≤ ε}
if the observer gain h(x) is selected such that h(x)G(x) > 0
for any x ∈ Rn.

Proof. The proof of the theorem is divided into two steps.
For the first one, we prove that the solution of the closed-loop
system is well defined on [0,∞) and furthermore the system
states will enter the set ∆ in finite time and never escape once
enter. Then, it is proved that the trajectories of the closed-loop
system will be captured by an arbitrarily small set Q̄n

ε × Q̄ε.
Step 1. There exist a positive scalar L and a finite time

T > 0 such that the trajectories of the closed-loop system (8)-
(12)-(18) enter the set ∆ and remain therein for all t ≥ T.

Keeping the estimator (8) and error definition (9) in mind, it
follows from (x(0), ξ(0)) ∈ Πx×Πξ that the initial condition
satisfies

V (x(0)) ≤ C and |ζ(0)| ≤ b(1 + L), (20)

where b is a positive constant depending on r.
Now consider any solution of (18) defined on the open

set Λ , {(x, ζ) : V (x) ≤ C + 1, ζ ∈ R} with the initial
condition satisfying (20). Then, we conclude that there exists
a positive scalar L such that a solution of (18) is well defined
on a right maximal interval [0, Tc) with Tc = ∞. We prove
the above conclusion by contradiction. Toward that end, we
suppose that for ∀L ∈ R, Tc were finite. As the fact that
ζ ∈ R for ∀L ∈ R and ∀t ∈ [0, Tc) whether Tc is finite or ∞,
we know limt→Tc V (x(t)) = C+1. Then, from (10), (18) and
the boundedness of SATM (·), we know that the functions Ξ(·)
and dΞ(·) are bounded functions. Hence, there exists a positive
constant η1 (independent of L) such that, for ∀(x, ζ) ∈ Λ,

V̇≤−ϕ(x)+
∣∣∣∣∂V∂x (G(x)(dΞ(x, ω, ζ)−SATM (dΞ(x, ω, ζ)−ζ)))

∣∣∣∣
≤ η1.

(21)

Denote T1 = 1
2η1

. From (20) and (21), we know that

V (x(t)) ≤ V (x(0)) + η1t ≤ C +
1

2
, ∀t ∈ [0, T1], (22)

which implies that Tc > T1. It follows from Assumption 1
that, for ∀(x, ζ) ∈ Λ,

1 +
1

d0

∂d

∂u

∂SATM

∂s
≥ 1−

∣∣∣∣d1(x)− d0
d0

∣∣∣∣ ≥ 1− δ0. (23)

Therefore, by Lemma 1 and (18), one obtains that there are
three positive real numbers η0, η2 and η3 (independent of L)
such that

dζ2

dt
≤ −2(L− η2)η0ζ

2 + η3, ∀(x, ζ) ∈ Λ. (24)

Then it follows from (20) and (24) that, for ∀t ∈ [0, Tc),

|ζ(t)|≤b(1 + L)e−(L−η2)η0t+

√
η3

2(L− η2)η0
. (25)

To this end, there exists a positive constant L1 such that, for
L ≥ L1,

|ζ(t)| ≤ min

{
1,

1

2η4Tc

}
, ∀t ∈ [T1, Tc), (26)

where η4 is a positive constant ensuring

V̇ ≤ −ϕ(x) + η4|ζ|, ∀(x, ζ, ω) ∈ ∆. (27)

It follows from (20), (26) and (27) that

V (x(t)) ≤ V (x(0)) + η4|ζ|Tc ≤ C +
1

2
, ∀t ∈ [T1, Tc),

(28)

which is a contradiction. Thus, we can find a positive scalar L
to ensure that Tc = ∞ and the closed-loop solution is bounded
and remains in the set Λ. Then, by (24) and (25), we obtain
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that there exist a positive constant L2 and a finite time T such
that, for L ≥ L2,

|ζ(t)| ≤ 1, ∀t ∈ [T,∞), (29)

which implies that the trajectories of the closed-loop system
enter the set ∆ and remain therein for all t ≥ T.

Step 2. The trajectories of the closed-loop system will finally
enter an arbitrarily small set Q̄n

ε × Q̄ε. By the previous
argument in Step 1, we know that when L ≥ L2, the
trajectories of the closed-loop system enter the set ∆ and
remain therein for all t ≥ T. Therefore, we only need to
consider the case that (x, ζ, ω) ∈ ∆ for t ≥ T and L ≥ L2.

Define a Lyapunov function for the closed-loop system as
W (x, ζ) = V (x) + U(ζ) with U(ζ) = 1

2ζ
2. For any given

ε > 0, there exists a constant ρ ∈ (0, 1) such that

Ωρ ⊂ Q̄n
ε × Q̄ε, (30)

where Ωρ is a compact level set defined by Ωρ ,
{(x, ζ) ∈ Λ :W (x, ζ) ≤ ρ}. To facilitate the following analy-
sis, we further define two sets as follows

S1 = {(x, ζ) ∈ Λ : ρ ≤W (x, ζ)} ,
S2 ={(x, ζ) : V (x) ≤ C + 1, U(ζ) ≤ 1} ∩ S1.

Define a compact set S0 = S2 ∩ {(x, ζ) : ζ = 0}. It then
can be derived from the construction of S2 and ζ = 0 for
(x, ζ) ∈ S0 that x ̸= 0 for (x, ζ) ∈ S0. As such, it follows
from Assumption 2 and Lemma 3 that

Ẇ (x, ζ) ≤ −ϕ(x) < 0, ∀(x, ζ) ∈ S0. (31)

By continuity, Ẇ (x, ζ) is negative at each point of some open
set S−

0 ⊃ S0. We then consider the compact set S̄0 = S2\S−
0 .

Since ζ ̸= 0 at each point of S̄0, there exist two constants
ē > e > 0 such that e ≤ |ζ| ≤ ē for (x, ζ) ∈ S̄0.

Then for all (x, ζ) ∈ S̄0, Ẇ (x, ζ) can be estimated from
(18) and given by

Ẇ (x, ζ) ≤ −ϕ(x) + η4ē− (L− η2)e
2 +

η3
2
. (32)

By (32), one can get a constant L3 > 0 such that, for L >
L∗ = max{L2, L3}, Ẇ (x, ζ) < 0 at each point of S2.

Invoking the statements in both Step 1 and Step 2, it can
be concluded that there exists the time Tf > 0 such that, for
t ≥ Tf and L > L∗, the trajectories of the closed-loop will
enter the set Ωρ ⊂ Q̄n

ε × Q̄ε. 2

In the following, we further establish the semi-global
asymptotical stability of the closed-loop systems without the
external disturbances.

Theorem 2: Suppose that Assumptions 1 and 2 are satisfied
for the nonlinear system (2) without the external disturbances
(e.g., ω = 0), d(x, u) is twice partially continuously differen-
tiable on x, and the equilibrium x = 0 for ẋ = fc(x) is locally
exponentially stable. Given any arbitrarily large number r > 0,
there exists a positive scalar L such that all the solutions of the
closed-loop system (2)-(8)-(12), with initial states in Πx×Πξ,
will converge to the origin if the observer gain h(x) is selected
such that h(x)G(x) > 0 for any x ∈ Rn.

Proof. The proof of this theorem can be proved by firstly
addressing the semi-global practical stability, and thereafter

the locally asymptotical stability of the closed-loop system.
Note that the semi-global practical stability of the problem in
question is a special case of that in Theorem 1. As such, we
mainly focus on the development of the locally asymptotical
stability.

Let σ1 = max
{∥∥∥[xT , ζT ]T∥∥∥ ∣∣∣(x, ζ)∈Ωρ

}
and σ =

min {σ1, ε}. It follows from Assumption 2 and Lemma 4 that
there exist some positive numbers b0, k0, and a C1 function
Vσ(x) satisfies

∂Vσ
∂x

fc(x) ≤ −b0∥x∥2,
∥∥∥∂Vσ
∂x

∥∥∥ ≤ k0∥x∥, (33)

for all x ∈ Q̄n
σ , {x ∈ Rn : ∥x∥ ≤ σ}.

Since ω(t) = 0, by Assumptions 1 and 2, we can con-
clude that ψ1(x, ζ) is continuously differentiable and satisfies
ψ1(0, 0) = 0. Thus there exist positive constants k1 > 0 and
k2 > 0 such that

∥ψ1(x, ζ)∥ =
∥∥∥∫ x

0

∂ψ1(s, ζ)

∂s
ds
∥∥∥ ≤ k1∥x∥,

ψ3(x, ζ)(dΞ(x, ζ)− SATM (dΞ(x, ζ)− ζ)) ≤ k2|ζ|.
(34)

for (x, ζ) ∈ Q̄n
σ × Q̄σ and ω ∈ D. By inequalities (20), (33),

(34) and Lemma 1, for (x, ζ) ∈ Q̄n
σ × Q̄σ, one can obtain the

derivatives of Vσ(x) and U(ζ) along the closed-loop system
(18) as

V̇σ(x) ≤− b0∥x∥2 + 2k0ν1∥x∥|ζ|

≤ − b0
2
∥x∥2 + 2k20ν

2
1

b0
|ζ|2,

(35)

and

U̇(ζ) ≤− L|ζ|2 + k1∥x∥|ζ|+ k2|ζ|2

≤− L|ζ|2 + b0
4
∥x∥2 +

(k21
b0

+ k2

)
|ζ|2,

(36)

where ν1 is a positive constant. Define a composite Lyapunov
function Wσ(x, ζ) = Vσ(x) + U(x, ζ) for the closed-loop
system (18), whose derivative is obtained from (35) and (36),
and given by

Ẇσ(x, ζ) ≤ −b0
4
∥x∥2 −

(
L− k2 −

k21
b0

− 2k20ν
2
1

b0

)
|ζ|2,

for (x, ζ) ∈ Q̄n
σ × Q̄σ. Clearly, by selecting L >

max
{
L∗, (k2b0 + k21 + 2k20ν

2
1)/b0

}
, the locally asymptotical

stability of the closed-loop system is guaranteed in the local
region (x, ζ) ∈ Q̄n

σ × Q̄σ.

To conclude, in the presence of nonlinear uncertainties, the
proposed control approach renders the asymptotical stability
of the closed-loop system with a basin of attraction that could
be arbitrarily large. 2

Remark 3: It is worthy noting that the asymptotic stability
for the nonlinear systems with constant disturbances in Theo-
rem 2 can also be achieved in a similar way, where the detailed
proof is omitted for space.



0018-9286 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2940567, IEEE
Transactions on Automatic Control

6

-40 -20 0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

unstable point
stable point
critical point

Fig. 1. Diagram of stability region in terms of the observer gain factor L
and parameter perturbation coefficient δ.

IV. A SINGLE-LINK MANIPULATOR EXAMPLE

To validate the statements claimed previously, the control
problem for a single-link manipulator systems is considered in
this section. The dynamic model is described, which is given
by [22]

Mq̈ + Bq̇ +N sin(q) = I

Dİ +HI = V − kmq̇,
(37)

where q, q̇ and q̈ denote the link angular position, velocity,
and acceleration, respectively. I denotes the motor armature
current, and V is the voltage. D = D0 + δD0 is the uncertain
parameter, where D0 denotes the nominal value of D and δ
is a parameter perturbation coefficient sketching the uncer-
tainty of parameter D. The value of parameters are given as
M = 1,D0 = 0.5,B = 1, km = 10,H = 0.5, and N = 10.
Let x1 = q, x2 = q̇, x3 = I , and u = V. A single-link
manipulator system is expressed as

ẋ1 = x2,

ẋ2 =
1

M
x3 + f2(x),

ẋ3 =
1

D0
u+ f3(x, u),

(38)

where f2(x) = − N
M sin(x1) − B

Mx2, f3(x, u) = −km

D0
x2 −

H
D0
x3 − D−D0

D0

(
1
Du− km

D x2 − H
Dx3

)
.

To this end, the lumped uncertainty of the system (38) is
collected and given by

d(x, u) = −D −D0

D0

( 1
D
u− km

D
x2 −

H
D
x3

)
.

Assume that the measurable states of the system with mea-
surement noises are expressed as:

y1 = x1 + ς1,

y2 = x2 + ς2,

y3 = x3 + ς3,

Fig. 2. System state x for different observer gain factor L.

Fig. 3. System state x for different parameter perturbation coefficient δ.
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where ςi(i = 1, 2, 3) are measurement noises and obey norm
distribution in 3σ rules

(
i.e. ςi ∼ N

(
0, 19

))
. By applying

the proposed control method in this paper, the disturbance
estimation and the control law are designed as

ξ̇ = −L
(
−km
D0

y2 −
H
D0

y3 +
1

D0
u+ d̂

)
,

u = D0

(
−k1y1 − k2y2 − k3y3 − SATM (d̂)

)
,

(39)

where k1, k2 and k3 are the feedback control gains, and d̂
is the estimate of the lumped uncertainty generated by the
nonlinearity estimator (8).

For simulation studies, the controller gains in (39) are
chosen as k1 = 2, k2 = 1.5, k3 = 1. The initial state values
are taken as x = [2, 2, 1]T . Since this paper mainly focuses
on uncertainty estimation and compensation, we assume that
there is no external disturbance during the simulation. The
threshold of the saturation function is designed as M = 50.

To evaluate the qualitative robustness of the propose
method, we focus on investigating the relationship between the
observer gain factor L and parameter perturbation coefficient
δ on the stability of the system (37). In the simulation, δ is
supposed to range from -25 to 125, whereas the observer
gain L is assumed to range from 0 to 6. The diagram of
stability region of the system in terms of the observer gain
factor L and parameter perturbation coefficient δ is shown in
Fig. 1. It has been clearly shown by Fig. 1 that the observer
gain factor L should be substantially increased to render
stability as the increase of uncertainty parameter perturbation
coefficient δ. We further conduct two cases of simulations to
qualitatively demonstrate the robust stability of the presented
control approach. For the first one, the parameter perturbation
coefficient δ is fixed as δ = 120, and the tracking control
performance under different observer gain is investigated. The
results in this case are shown in Fig. 2, which shows that the
closed-loop system tends to be unstable as the observer gain L
decreases to about 5. For the second one, the robust stability of
the controller with fixed observer gain L = 2 is investigated,
where the result is shown by Fig. 3. It can be observed from
the figure that the stability as well as control performance is
getting worse with the increase of the parameter perturbation
coefficient δ.

V. CONCLUSION

A nonlinearity estimator-based control approach has been
proposed in this paper to address the robust control problem
of a class of nonlinear systems subject to both disturbances
and uncertainties. The qualitative robustness stability has been
established for the closed-loop system in the sense of semi-
global practical and asymptotical stabilization. The results
obtained have provided theoretical justifications for DUEA
approaches to estimate and compensate nonlinearities for non-
linear systems in practice. The simulation results on a single-
link manipulator have demonstrated the qualitative relationship
between observer gain factor and quantity of nonlinearities.
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APPENDIX: PROOF OF LEMMA 2
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