
Vol.:(0123456789)1 3

ZDM 
https://doi.org/10.1007/s11858-019-01091-3

ORIGINAL ARTICLE

Simple pictorial mathematics problems for children: locating sources 
of cognitive load and how to reduce it

Ernest C. D. M. van Lieshout1   · Iro Xenidou‑Dervou2 

Accepted: 6 September 2019 
© The Author(s) 2019

Abstract
Pictorial representations are often used to help children understand the situation described in a given number-sentence 
scheme. These static pictorial problems essentially attempt to depict a dynamic situation (e.g., one bird flies away while there 
are three birds still sitting on the fence). Previous research suggested that such pictorial decrease problems impose higher 
cognitive load on children than the corresponding increase problems, even though both are solved with addition. However, 
the source of this cognitive load is unclear. It could be the direction of the depicted change or the position of the unknown 
(start vs. end set). To address this question and disentangle the sources of the load, we presented the problems in two dif-
ferent formats: (1) the conventional static one-picture problems and, (2) an adapted three-picture problem-format, which 
depicted the dynamic change in sequential steps. We also examined whether the three-picture problem-format makes the 
decrease problems easier. Seventy-nine first-graders participated in this study. Results showed that, overall, problems with 
the position of the unknown at the end were easier to solve than the ones in which the unknown was at the start. Furthermore, 
three-picture decrease problems with the unknown in the last position were easier than the one-picture decrease problems, 
and therefore appear to be a meaningful way to make such problems easier for children to understand.
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1  Introduction

Word problems are widely used in mathematics educa-
tion. Research during the past decades has shed light on 
the factors that influence children’s performance in these 
problems (e.g., De Corte and Verschaffel 1981, 1987; Hie-
bert 1982). In the meantime, the use of such problems has 
also encountered much criticism, especially from adherents 
of the Realistic Mathematics Education movement which 
originated in the Netherlands (Gravermeijer 1997). Although 
word problems were intended to be descriptive representa-
tions of real-life situations, they often were not. This situa-
tion led many to believe that perhaps they were not optimal 
for mathematics education because the answers produced in 

such problems were unrealistic or were not useful for real-
life (e.g., Dewolf et al. 2016; Greer 1997; Verschaffel et al. 
1994, 2000). So, the construction of more authentic real-life 
problems was deemed necessary. One way of achieving this 
goal was to use pictures instead of (only) words; these are 
known as pictorial problems.

Recently, Hoogland and colleagues (2018) addressed 
the question of whether pictorial problems are more ben-
eficial compared to traditional word problems in primary 
and secondary education. Their results were in favour of the 
pictorial problems; however, the effect size was very small 
(d = .02). Large sample sizes, such as the one in their study 
(N = 31,842; Hoogland et al. 2018), increase the chances of 
a relatively weak effect being statistically significant. This 
low impact of pictorial problems on students’ performance 
is not surprising. Pictures in problems can indeed be helpful, 
but they can also be confusing, depending on the way the 
information is presented. Berends and van Lieshout (2009) 
found that pictorial problems can impose high cognitive 
load (Sweller 1988) on primary school children. There-
fore, we need more theory-driven fine-grained research on 
how the characteristics of pictorial information contained 
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in mathematics problems affect children’s performance. In 
other words, we need to identify the characteristics of the 
optimal representation of mathematical problems, which 
could foster and enhance children’s mathematics learning. 
The present study focused on a particular type of static picto-
rial mathematics problem used in Dutch curricula, which is 
used to depict increase and decrease situations (Fig. 1). Our 
overarching goal was to identify elements in these problems 
that impose difficulties on children’s learning and perfor-
mance, and optimal ways of alleviating this load.

2 � Theoretical background

Problems can cause difficulties when they impose cognitive 
(over)load. Cognitive load theory (Sweller 2010) describes 
several types of cognitive load depending on the type of 
effort imposed on a learner. One of these is intrinsic load, 
which refers to the degree of element interactivity involved 
in a problem. Element interactivity can be seen as the degree 
to which the elements of a task are connected in a compli-
cated way.

Certain types of pictorial mathematics problems involve 
high element interactivity and can therefore impose unneces-
sary intrinsic cognitive load on young learners (Van Lieshout 
and Xenidou-Dervou 2018). Figure 1 depicts two types of 
pictorial problems that are often found in Dutch mathemat-
ics curricula. One of them depicts an increase of an amount 
whereas the other one depicts a decrease. Each problem is 
accompanied by an empty number-sentence scheme, which 
the child has to fill in. In the increase problems the scheme 

contains a plus sign, whereas in the decrease there is a minus 
sign. Van Lieshout and Xenidou-Dervou (2018) showed that 
the decrease problems were harder to solve than the increase 
problems even though both problems had to be solved with 
a simple addition.

This difference in difficulty was attributed to the higher 
cognitive load that the decrease problems imposed on the 
child. This conclusion derived from the finding that chil-
dren’s performance in the decrease problems improved when 
they were accompanied by the corresponding word prob-
lem presented auditorily. The beneficial effect of combining 
pictorial and auditory information is commonly known as 
the “modality effect”, which concerns the reduction of cog-
nitive load when information is simultaneously processed 
in—and thus shared across—two different modalities (e.g., 
vision and hearing) instead of just one (Sweller et al. 1998). 
Combining the pictorial decrease problems with auditory 
support demonstrated a bigger modality effect, resulting in 
larger reduction in errors, than in the case of the increase 
problems. But the source of the cognitive load in this type 
of problems was as yet unclear. Specifically, which elements 
involved in these decrease problems lead to the increased 
intrinsic cognitive load?

To unravel the sources of cognitive load, it is important 
to clarify the elements involved: Looking at Fig. 1, it is clear 
that the increase situation shows an addend (the incoming 
birds) that is about to be joined with the augend (the birds 
on the fence). The elements of these static pictures trying to 
depict a dynamic situation correspond one-to-one with the 
computational actions needed to fill in the empty number-
sentence scheme: 3 + 1 = 4. In contrast, the picture of the 

a Increase problem, end unknown
Correctly filled in scheme: 3, 1, 4

b Decrease problem, start unknown
Correctly filled in scheme: 4, 1, 3

Three birds are sitting on a fence. Then one bird flies in. 
How many birds are sitting on the fence now?

One bird flies away. There are three birds still sitting on 
the fence. How many birds were sitting on the fence in the 

beginning?

+ -

Fig. 1   Examples of the experimental problems: a pictorial increase 
with an unknown end situation (a) and a decrease problem with an 
unknown start situation (b). The examples also contain the required 
numbers with the correct solution in bold. The text, which the experi-

menter read to the child in the auditory support condition, is given 
below the dashed line (translation from Dutch). The child never saw 
this text—only heard it
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decrease situation shows a subtrahend (the outgoing bird) 
and the resulting difference of a subtraction (three birds). 
This dynamic change now does not directly correspond with 
the computational action needed to fill in the empty num-
ber-sentence scheme (again 3 + 1 = 4) in the same direction 
as the pictorially suggested change (decrease). Instead, the 
child had to reconstruct the unknown minuend, which can 
cost more cognitive effort than solving the increase prob-
lem. In other words, the child has to mentally ‘play back’, 
the situation until the flying away bird is back on the fence. 
Meanwhile, the minus sign in the scheme below the decrease 
problem can be misleading; the child has to realise that an 
addition is needed, not a subtraction. Thus, the direction of 
change is clearly a potential source of the observed cogni-
tive load.

Another source of cognitive load that arises from the 
aforementioned description is the position of the unknown. 
In the increase problems the unknown is at the end (the 
sum), whereas in the decrease it’s at the start (the minuend). 
Past research has demonstrated that in bare problems, i.e., 
when there are no pictures or text (e.g., 3 + 2 = ? or ? + 2 = 5), 
the problems with the unknown at the start are harder to 
solve than the ones with the unknown at the end (De Corte 
and Verschaffel 1981; Hiebert 1982). The same holds for 
word problems (De Corte and Verschaffel 1987; García et al. 
2006; Hiebert 1982). But it is unclear whether this result 
holds for pictorial problems too.

Van Lieshout and Xenidou-Dervou’s (2018) design did 
not allow them to pinpoint the source of the cognitive load, 
as the effect of the position of the unknown could not be sep-
arated from the effect of the direction of change. Naturally, 
these are intertwined in a static representation of a situation 
that is, in fact, dynamic: The entire flow of actions is com-
pressed into only one snapshot, which leaves no room for 
more than two combinations of the position of the unknown 
and the change, i.e., either increase with an unknown end, 
or decrease with an unknown start.

To disentangle the effects of the direction of change 
from the position of the unknown, in the present study we 
replaced the static pictures with dynamic representations 
of the change in quantities. This dynamic representation 
included three pictures: (1) a picture of the start situation, 
(2) the change and, (3) the end situation. Combining the 
two possibilities for the location of the unknown (start vs. 
end) and the two possibilities for the direction of the change 
(increase vs. decrease) led to four conditions (see Fig. 2 
for an example): (a) increase with an unknown end situa-
tion (a + b = ?), (b) decrease with an unknown end situa-
tion (a – b = ?), (c) increase with an unknown start situation 
(? + a = b) and, finally, (d) decrease with an unknown start 
situation (? – a = b). In these four conditions, the pictorial 
problem was presented in three sequential steps depicting 
the start situation, the change and the end situation one by 

one, thereby forming a kind of animated sequence. To make 
a distinction between the different problems that we used in 
our study, in what follows we call the original problems used 
by van Lieshout and Xenidou-Dervou (2018), with only one 
picture, 1-picture problems (Fig. 1); in contrast, the prob-
lems consisting of a sequence of three problems are called 
3-picture problems (Fig. 2).

The 3-picture problems, besides being useful from the 
perspective of the aforementioned experimental design, 
could also constitute a condition that reduces the element 
interactivity of the problem, and thus the cognitive load 
imposed on young learners. It could be argued that if one 
wants young children to practice understanding and writing 
subtraction number sentences (a − b = c), it may perhaps be 
better not to use the relatively difficult 1-picture decrease 
problems (x − a = b) but rather semi-animated 3-picture 
decrease problems with the unknown at the end (a − b = x, 
Fig. 2b). In this problem the child can follow the consecutive 
steps of a real subtraction (i.e., the online separation) and 
map them onto the number-sentence scheme. Such 3-pic-
ture subtraction problems could reduce the intrinsic cogni-
tive load by putting more explicit focus on the narrative of 
subsequent events. Research has shown that breaking up a 
task into successive parts can decrease its intrinsic load (de 
Jong 2010). Furthermore, multimedia research has shown 
that animations give rise to better understanding than static 
pictures (Höffler and Leutner 2007; Yung and Paas 2015).

3 � Research questions and hypotheses

The aims of the present study were three-fold. Firstly, we 
aimed to replicate van Lieshout and Xenidou-Dervou’s 
(2018) findings regarding the 1-picture problems. Simi-
larly to our goals in that study, we wanted to examine (a) if 
1-picture decrease problems are harder than their increase 
counterparts, (b) if auditory support increases performance 
because of the modality effect and, (c) if the modality effect 
is more pronounced for the decrease rather than the increase 
problems.

Secondly, we addressed the following questions: Is it the 
location of the unknown and not, or to a lesser degree, the 
direction of the change or the modality (with or without 
auditory support) that which affects performance? Because 
of the aforementioned theoretical reasoning, we expected 
that performance in the 3-picture problems with an unknown 
start situation would be lower than in the case of 3-picture 
problems with an unknown end situation and auditory sup-
port. Although 1-picture decrease problems are harder to 
solve than 1-picture increase problems, we had no predic-
tion concerning the effect of the direction of change in the 
case of the 3-picture problems. That is because in the case 
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a Increase – end unknown 
Correctly filled in scheme: 3, 1, 4

Three birds are sitting on the fence. Then one bird flies in. How many birds are sitting on the 
fence now?

b Decrease – end unknown 
Correctly filled in scheme: 4, 1, 3

Four birds are sitting on the fence. One bird flies away. How many birds are sitting on the 
fence now?

c Increase – start unknown
Correctly filled in scheme: 3, 1, 4

A number of birds are sitting on the 
fence.

Then one bird flies in. You see four birds sitting on the 
fence. How many birds were sitting 

on the fence in the beginning?

d Decrease – start unknown
Correctly filled in scheme: 4, 1, 3

A number of birds are sitting on the 
fence.

One bird flies away. You see three birds sitting on the 
fence. How many birds were sitting 

on the fence in the beginning?
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of 1-picture problems, the effect of the direction of change 
was confounded by the effect of the position of the unknown.

Lastly, we aimed at examining whether we could improve 
performance on the relatively ambiguous and difficult 1-pic-
ture decrease problems by presenting the problems in a form 
of animation (Fig. 2b) or by providing auditory support 
(modality effect). In the 1-picture static decrease problems 
(Fig. 1b), the children could find it difficult to understand 
the relationship between what is depicted in the dynamic 
problem and the three-term number scheme, because all 
information was presented simultaneously. Therefore, we 
hypothesized that the 3-picture sequential presentation with 
auditory support of the decrease problem with the unknown 
at the end would make it easier to map the numerical infor-
mation given in the pictures on the empty number scheme, 
compared to the static 1-picture problems.

4 � Method

4.1 � Participants

Eighty-first-grade children (41 boys and 39 girls) from three 
Dutch rural primary schools participated in the study after 
their parents had given written informed consent. Two chil-
dren with ADHD (as informed by their teachers) were not 
included in this group. The participating children had to 
score at least 75% on an addition and subtraction speed test 
(see Sect. 4.2.1), which all of them did, except for one child, 
who was thus excluded. The final number of children whose 
data were used was 79. The mean ages in years of the boys 
(n = 40) and girls (n = 39) were respectively 6.64 (SD = .30) 
and 6.78 (SD = .34).

4.2 � Material

4.2.1 � Arithmetic speed tests

The present study focused on the children’s ability to under-
stand the meaning of mathematics problems depicted in the 
form of pictures; not their arithmetic skills. Thus, we aimed 

at including participants who had good simple arithmetic 
skills. To achieve this aim, we selected our participants on 
the basis of their performance on an addition and a sub-
traction speed test. Each consisted of 60 problems and each 
problem consisted of a one one-digit number below 10 and 
an addend or subtrahend that was either 1 or 2. The sum of 
the addition problems ranged from 2 up to 10. The difference 
between minuend and subtrahend was at least 0 and at the 
most 7. The order of presentation of problems within each 
test was randomized. Both tests were presented in paper and 
pencil format. The children had to solve as many problems 
as possible within 1 min. On average, the children completed 
13.73 (SD = 3.45) addition problems, out of which 13.58 
(SD = 3.43) were solved correctly. Also, they completed 
on average 10.39 (SD = 3.02) subtraction problems, out of 
which 9.65 (SD = 3.00) were solved correctly. Only one par-
ticipant was excluded based on our exclusion criterion.

4.2.2 � Experimental problems

The experimental problems depicted either increase or 
decrease situations and were presented either as 1-picture 
or 3-picture problems. There were 16 one-picture and 32 
three-picture problems. All problems were presented with 
or without auditory support. All experimental problems con-
sisted of a picture or pictures representing birds sitting on 
or flying to or away from a fence. They also contained an 
empty number-sentence scheme below the picture (Fig. 1). 
All problems are available in (https​://osf.io/e28tm​/). The 
problems were modelled after the examples we encountered 
in Dutch practice booklets, which meant that we used the 
same elements, such as the square, circle, operation symbol 
and arrow presented in the same way as in those booklets.

In the case of the 1-picture problems these pictures rep-
resented either an increase situation with a known start set 
of a number of birds on the fence, a known increase and 
an unknown end situation (Fig. 1a), or a decrease situation 
with an unknown start set, a known decrease and a known 
set size in the end situation (Fig. 1b). Note that, as explained 
in the introduction, an increase problem always entailed an 
unknown end set whereas the decrease set always entailed 
an unknown start set. We used some of the pictures from van 
Lieshout and Xenidou-Dervou’s (2018) study, which were 
based on Dutch mathematics curricula.

The 3-picture problems were a kind of animated ver-
sion of the 1-picture problems. This condition separated the 
direction of the change, i.e., increase or decrease, from the 
position of the unknown, i.e., at the start or at the end, which 
leads to four conditions (Fig. 2). The child saw one picture 
at a time. All problems were accompanied with an empty 
number-sentence scheme such as the one depicted in Fig. 1. 
In the case of the two versions in which the unknown was 
at the start (Fig. 2c, d), the first picture could not give any 

Fig. 2   Examples of the experimental problems of each of the four 
combinations of the direction of change (increase or decrease) and 
the location of the unknown (end or start): a increase, end unknown, 
b decrease, end unknown, c increase, start unknown, and d decrease, 
start unknown. The examples also contain the required number-sen-
tence scheme with the correct solution in bold and the text in the case 
of the auditory support condition (translation from Dutch). The child 
never saw this text only heard it in the auditory support condition. 
As in the 1-picture problems, the figure contained empty number-
sentences schemes (not shown here). These empty number-sentence 
schemes were placed below each of the 12 pictures. On the computer 
screen, the real size of the pictures was the same as the pictures in 
Fig. 1

◂

https://osf.io/e28tm/
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information to the child about what number it should fill in 
in the empty number-sentence scheme, conveying the fact 
that there was an unknown quantity in the number-sentence 
scheme. To be consistent, we did the same for the unknown 
quantity also when it was at the end of the number-sentence 
scheme.

In all the decrease problems, the number of birds that 
were left on the fence was always larger than the number of 
birds that flew away. The reverse situation (e.g., five birds 
fly away while two remain) could hint to the child that fill-
ing in the number-sentence scheme with, e.g., 2–5 would be 
incorrect. In these types of pictures, the child is expected 
to infer the direction of the change by the direction of the 
movement of the birds.

We used four triplets of numbers to construct the prob-
lems: (3, 4, 1), (5, 6, 1), (5, 7, 2) and (6, 8, 2). The last num-
ber of each triplet represented the change (either increase or 
decrease) in the problem. The triplet (3, 4, 1), for example, 
formed the addition 3 + 1 = 4 or the subtraction 4 − 1 = 3. 
Only the first or the second number in the triplet could be 
the unknown. The number triplets were pseudo randomly 
allocated to the conditions within a session. We used only 
these small addends and subtrahends because we were not 
interested in the arithmetical accuracy of the calculations 
themselves. Instead, we were interested in examining the 
children’s understanding of the relationship between the 
quantities in the pictorial problem and the corresponding 
number-sentence scheme; not their arithmetic skills. Also, 
perhaps one could think that a realistic answer to our bird 
problem would consist of saying that when a bird flies to a 
group of sitting birds, one or more birds could perhaps fly 
away, or the landing bird could change its course. It was, 
however, not our intention to study the occurrence of such 
answers.

4.3 � Procedure

The children participated in four sessions. Table 1 shows 
the complete experimental design. Half of the participants 
started with two sessions with 3-picture problems and then 
received two sessions with 1-picture problems. The other 
half received the reversed order. Within each of these two 
orders of presentation, half of the problems were accompa-
nied with auditory support and half without support, and 
this alternated between the sessions. A session of 3-picture 
problems consisted of the four combinations (conditions) of 
the place of the unknown and the direction of the change. In 
order to counterbalance order effects, these four conditions, 
consisting of one problem each, were rotated four times in 
a Latin square design (e.g., ABCD—BCDA—CDAB—
DABC) for each participant, which amounted to 16 prob-
lems per participant. The same kind of rotation design was 
used across all participants. This rotation meant that the next 

participant started with BCDA and so on, until all conditions 
were rotated with each fourth participant. During the sec-
ond session with 3-picture problems, the counterbalancing 
design was repeated, but the order of each set of four condi-
tions for each participant was reversed (e.g., ABCD became 
DCBA) and rotated again. By reversing the orders, all pairs 
of successive conditions (for example AB and BA) occurred 
just as often in the complete counterbalancing design. In 
sum, the factors direction of change and location of the 
unknown were counterbalanced both in a between-subjects 
and a within-subjects design. The factor auditory support 
was counterbalanced only in a between-subjects design.

This counterbalancing design has a limitation: It cannot 
control for possible carry-over effects, e.g., that the partici-
pant learns something from being exposed to a certain con-
dition and applies what has been learnt to the subsequent 
condition. Using a between-subjects design with a separate 
group of participants for each combination of factor levels 
would avoid this problem. We did not opt for this possibil-
ity because a within-subjects design is more economical in 
terms of the number of participants than a between-subjects 
design.

As mentioned above, half of the participants started with 
two sessions with 3-picture problems, whereas the other half 
started with two sessions with 1-picture problems in order 
to control for order effects of the sessions. Therefore, the 
whole design required a multiple of eight participants. The 
data of one participant in such a group of eight had to be 
excluded from the analyses as described in the Sect. 4.1. We 
decided not to exclude the data of the other seven partici-
pants because the counterbalancing design was quite robust 
in relation to the hypotheses and therefore such an exclusion 
would not lead to noticeably biased results.

The counterbalancing design for the 1-picture prob-
lems was simpler because there were only two conditions: 
increase versus decrease. The same within-participants 
counterbalancing design was used as in the case of the 3-pic-
ture problems. This amounted to four 1-picture problems per 
condition and eight problems per session.

Each session started with two practice trials in Power-
Point during which the experimenter gave general informa-
tion about the pictorial problems (birds that were flying to 
and away from the fence) and explained the relation between 
the picture(s) and the number-sentence scheme. The first 
practice trial concerned an increase problem and the sec-
ond a decrease problem. Both practice problems contained 
the number triplet (2, 3, 1) (the last number being the size 
of the increase or decrease); this triplet was not used in the 
experimental problems. During this instructional stage of the 
practice trials the experimenter showed the child the correct 
number-sentence scheme and explained its relation to the 
picture(s). In the case of the 1-picture problems, by pressing 
the spacebar, the experimenter could show each stage of the 
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development of the number-sentence scheme, i.e., the appear-
ance of a number in the scheme, but the picture of the fence 
with the birds did not change. In the case of the 3-picture 
problems, also the picture itself changed. For example, dur-
ing the first stage of an increase problem, the picture showed 
only the start set (e.g., two birds on the fence). By pressing 
the spacebar again, the number two appeared in the left most 
empty place of the number-sentence scheme. With the next 
press, a bird seemed to be heading towards the fence. The 
subsequent press showed the number one behind the plus sign 
in the second empty place. Then the next press highlighted 
the third empty place and the back of a head that seemed to 
hide the result of the addition. Next, the number three was 
filled in in the third empty place and finally the head disap-
peared and the three birds on the fence were visible.

The experimenter sat next to the child, both looking at the 
pictorial problem presented in PowerPoint on a computer 
screen. A cross in the middle of the screen indicated the 
start of a new problem. The presentation of the problems 
was self-paced: By pressing the spacebar, the child could 
start a new problem. In the case of the 3-picture problems, 
pressing the spacebar showed also the next one of the three 
pictures. As mentioned before, in the 3-picture conditions, 
the child could never see all three pictures at the same time 
on the screen. This method of self-paced presenting, i.e., that 
the participants decided themselves when they wanted to see 
the next picture, leads to higher performance than computer-
paced animations, i.e., when the computer determines the 
appearance of the next picture (Leahy and Sweller 2011).

In the auditory support conditions, the experimenter gave 
oral support by reading out the corresponding word prob-
lems1 during the presentation of a pictorial problem. This 
support consisted of describing to the child what kind of 
event the picture(s) represented (Figs. 1 and 2).

The children had to fill in the numbers in the right places 
on an answer sheet with the same empty number-sentence 
schemes as the ones presented on the computer screen. The 
right place meant that, depending on whether it concerned 
an addition or subtraction number-sentence scheme, the 
augend or minuend were filled in in the leftmost position, 
the addend or subtrahend in the square and the sum or the 
difference in the rightmost location.

4.4 � Analysis

We used two outcome variables: The proportion of correctly 
solved unknowns (x) and the proportion of correctly filled in 
complete number-sentence schemes (x ± a = b or a ± b = x). 

For example, children got a score of 1 if they found correctly 
the unknown in a problem and 1 when they had also filled 
in correctly the entire number-sentence scheme. Mathemati-
cally, the order of the two addends in an increase problem 
is irrelevant. However, we wanted to see whether the child 
used the sequence of the events in the problem situation as 
the basis for filling in the number scheme from left to right. 
Therefore, a response was recorded as correct only if the 
child filled in the first circle the first addend, and the second 
in the box (Fig. 1). The children were free to choose the 
moment when they wanted to write down the numbers. So, 
they could do this during the presentation of the problem or 
afterwards.

Although one can often see the application of ANOVAs 
for such dichotomous responses, the comparison of mean 
proportions that differ in their distance to the extremes of the 
distribution (0 or 1) can invalidate the outcome of ANOVAs. 
The reason is that the variance of the scores is smaller the 
closer the mean is to one of the extremes. This violates the 
assumption of homogeneous variances, especially when the 
to be compared means are smaller than .3 or higher than .7 
(Agresti 2002, p. 120). Indeed, several mean proportions 
in our study were larger than .7. An alternative way to ana-
lyse these proportions is to use a Generalized Estimating 
Equations (GEE) procedure (Jaeger 2008) with a logit link. 
Whereas the original proportion score varies by definition 
between 0 and 1, the transformed logit function allows the 
transformed score to vary between minus infinity and plus 
infinity (with zero as midpoint). All analyses concerned 
GEEs with repeated measures on all factors.

We used the odds ratio (OR) as our measure of effect size. 
We labelled these effect sizes according to the categories pro-
posed by Cohen (1988) and Sawilowsky (2009) by first con-
verting the OR-values into d-values2 (Borenstein et al. 2009). 
The OR gives the ratio between the odds of one treatment con-
dition compared to the odds of another. In order to calculate 
ORs that are not confounded by an interaction between the 
constituting factors, we reran the analyses without the interac-
tion term when the interaction effect was not significant. In 
the case that the interaction was significant, we would have 
tested the simple effects and calculated the corresponding 
ORs. However, significant interactions did not occur.

5 � Results

5.1 � One‑picture problems: replication

The first research question was intended to investigate whether 
we could replicate the findings of our previous study (van 

1  A mathematical word or story problem is a verbal description of 
a quantitative problem. The two texts in the lower part of Fig. 1 are 
examples of standard word problems. 2  d = loge OR × √3/π.
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Lieshout and Xenidou-Dervou 2018). We found that 1-pic-
ture decrease problems with the unknown start position 
(“? − b = ?”) were more difficult than 1-picture increase prob-
lem with an unknown at the end position (“a + b = ?”). For 
ease of reading, we shorten the name of the combination to 
just Direction. Furthermore, we found a positive effect of audi-
tory support. We used a 2 (direction: decrease vs. increase) 
by 2 (auditory support: with vs. without) GEE analysis of the 
proportion of correctly filled in number-sentence schemes. 
Contrary to our expectations, there was no significant interac-
tion effect, Wald χ2(1, N = 79) = .16, p = .689. As described 
in the analysis section, we then ran the analysis without the 
interaction term. Similarly to our previous findings (van 
Lieshout and Xenidou-Dervou 2018), the effects of the direc-
tion of change were significant with, as expected, a higher 
proportion correctly filled in number-sentence schemes in the 
increase problems than in the decrease problems, Wald χ2(1, 
N = 79) = 36.15, p < .001, OR = 11.70, 95% CI [5.25, 26.07], 
Mincrease = .99 (SE = .01), Mdecrease = .86 (SE = .02). Also, con-
trary to our prediction the effect of auditory support was not 
significant, Wald χ2(1, N = 79) = 1.97, p = .160, OR = 1.45, 
95% CI [.86, 2.44], Mwith = .96 (SE = .01), Mwithout = .94 
(SE = .01). In terms of Cohen’s (1988) d and Sawilowsky’s 
(2009) effect size categories, the effects were, respectively, 
ddirection = 1.36 (very large), dauditory support = .21 (small). As 
described in Sect. 4.4, we scored the filled-in number-sentence 
schemes as correct only when the position of the numbers 
from left to right corresponded with the course of events. If we 
had relaxed this criterion in the case of the increase problems, 
the significant performance difference between the increase 
and decrease problems would perhaps have been bigger, but 
without a change in the statistical significance. Thus, in the 
present study we could replicate van Lieshout and Xenidou-
Dervou’s (2018) finding regarding the decrease problems 
being more difficult than the increase problems. However, we 
could not replicate the finding regarding the auditory support 
being helpful and that it would especially be more helpful for 
the decrease problems with the unknown in the start position 
than for to the increase problem with the unknown at the end.

5.2 � Three‑picture problems: Finding the source 
of cognitive load

The second research question addressed the issue of whether 
the direction of the change of the set or the position of the 
unknown could explain the findings concerning the 1-pic-
ture problems. In contrast to the earlier reported analyses 
with the 1-picture problems, in this analysis the effect of the 
factor direction of the change and position of the unknown 
could be estimated independently from each other due to the 
3-picture experimental design. We give an overview of the 
means and standard errors in Table 2. To analyse the effects 
on the accuracy of filling-in number-sentence schemes with 

3-picture problems, we ran a 2 (Auditory Support: with vs. 
without) × 2 (Position of the Unknown: end vs. start) × 2 
(Size Change direction: increase versus decrease) GEE. 
However, it turned out that this analysis design was not fea-
sible due to a singular Hessian matrix, caused by a zero SE 
(and the maximum score of 1) in one of the factor combina-
tions (Table 2). Because this analysis was not feasible, we 
decided to remove the three-way interaction of the analysis 
design. Removing this interaction did not limit the possibil-
ity of testing our predictions because we had no hypothesis 
concerning this particular interaction.

The adapted analysis demonstrated that none of the 
two-way interaction effects were significant, Position of 
the Unknown by Direction of the Change, Wald χ2(1, 
N = 79) = .49, p = .484; Position of the Unknown by Oral 
Support, Wald χ2(1, N = 79) = .18, p = .892; and lastly, 
Auditory Support by Direction of the Change, Wald χ2(1, 
N = 79) = 1.40, p = .237. To calculate the odds ratios of 
the main effects, we ran an analysis in which also the 
two-way interaction terms were removed. The main effect 
of the position of the unknown had a significant effect, 
Wald χ2(1, N = 79) = 156.95, p < .001, OR = 27.72, 95% 
CI [16.48, 46.61]. The mean proportions of accurately 
completed number-sentence schemes were, respectively 
Mend = .99 (SE = .00), Mbegin = .74 (SE = .03) and as pre-
dicted they were in favour of the end position of the 
unknown. The main effect of auditory support appeared to 
be significant too, Wald χ2(1, N = 79) = 13.23, p < .001, 
OR = 1.80, 95% CI [1.31, 2.46], Mwith = .95 (SE = .01), 
Mwithout = .92 (SE = .01). Finally, also the main effect of 
the direction of the change, Wald χ2(1, N = 79) = 11.12, 
p = .001, OR = 1.80, 95% CI [1.27, 2.53], Mincrease = .95 
(SE = .01), Mdecrease = .92 (SE = .01) was significant. In 
sum, all main effects were significant, whereby the strong-
est effect (OR) occurred with the position of the unknown, 
followed by the smaller effect sizes of auditory support 
and the direction of the size change. In terms of Cohen’s 
(1988) d and Sawilowsky’s (2009) categories, the effects 
were, respectively, dposition unknown = 1.83 (very large), 
dauditory support = .32 (small) and ddirection of the change = .32 
(small).

Table 2   Means, standard 
errors of the factors location 
of the unknown (end vs. start), 
direction of the change (increase 
vs. decrease), and oral support 
(with vs. without)

End Start

M SE M SE

With auditory support
 Increase 1.00 .00 .84 .03
 Decrease .98 .01 .74 .04

Without auditory support
 Increase .98 .01 .73 .04
 Decrease .98 .01 .62 .04
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Note that in the two 3-picture problem analyses, audi-
tory support did lead to higher performance, whereas we 
could not show this effect in the analysis with the 1-pic-
ture problems.

5.3 � Improving performance in the decrease 
problems: one vs. three‑picture problems

Finally, the third research question concerned whether 
decrease problems with three sequentially presented pic-
tures (the 3-picture problems) and an unknown end set 
(Fig. 2b) would make it easier for the children to fill in 
the empty number-sentence scheme than in the case of 
1-picture decrease problems, which necessarily have at the 
same time the unknown in the start position. We compared 
the effects of both factors within a 2 (Number of Pictures: 
three versus one) × 2 (Auditory Support: with vs. with-
out) GEE analysis. The Number of Pictures by 2 Audi-
tory Support interaction did not show a significant effect, 
Wald χ2(1, N = 79) = .24, p = .623. We again repeated 
the analysis without interaction term. As expected, the 
children completed more number-sentence schemes cor-
rectly while solving 3-picture decrease problems with the 
unknown at the end than in the case of 1-picture decrease 
problems, Wald χ2(1, N = 79) = 39.68, p < .001, OR = 8.71, 
95% CI [4.47, 17.08], (very large effect), M3-pict/end = .98 
(SE = .01), M1-pict/begin = .86 (SE = .02). The factor audi-
tory support had no significant effect on the performance 
this time, Wald χ2(1, N = 79) = 1.07, p = .301, OR = 1.34, 
95% CI [.77, 2.32], (small effect), Mwith = .95 (SE = .01), 
Mwithout = .94 (SE = .01). In terms of Cohen’s (1988) d and 
Sawilowsky’s (2009) categories, the effects were, respec-
tively, dno of pictures = 1.19 (large) and dauditory support = .16 
(very small).

As mentioned earlier, we had two outcome variables. 
We analysed the proportion of correct solutions of the 
unknown in the same way as the proportion correctly filled 
in number-sentence schemes. The scores on the former 
variable were somewhat higher than the scores on the lat-
ter. That is because a correctly filled in number-sentence 
scheme meant that all numbers had to be filled in correctly 
but also in the right place; thus, this variable was more 
stringent compared to just reporting the unknown cor-
rectly. Importantly, analyses with both outcome variables 
demonstrated similar results.

6 � Discussion

Developers of mathematics curricula have been construct-
ing realistic pictorial problems in the hope of overcoming 
difficulties occurring from abstract word problems (e.g., 

Hoogland et al. 2018). However, research has suggested 
that such pictorial problems can also sometimes carry 
their own shortcomings (Berends and van Lieshout 2009; 
Dewolf et  al. 2015, 2016; van Lieshout and Xenidou-
Dervou 2018). Van Lieshout and Xenidou-Dervou (2018) 
demonstrated that simple decrease pictorial problems 
impose high cognitive load on primary school children. 
The purpose of the present study was to replicate and 
extend this study by uncovering the sources of this cogni-
tive load and exploring ways of reducing it.

Firstly, our results partially replicated past findings. As 
expected, writing a number-sentence scheme as a repre-
sentation for pictorial decrease problems was harder than 
for increase problems (van Lieshout and Xenidou-Dervou 
2018). However, in the present study auditory support 
did not improve children’s performance in the difficult 
decrease problems. Secondly, we found that, as hypoth-
esised, the source of the evident difficulty in the picto-
rial decrease problems appeared to be the position of the 
unknown: The unknown at the start of the depicted situ-
ation made the child’s task more difficult than in the case 
of the unknown at the end of the situation. Evidently, the 
position of the unknown had a larger impact compared 
to the direction of the depicted change (increase versus 
decrease). Finally, we showed that sequentially presented 
pictures of a decrease problem with the unknown at the 
end position, made it easier for the child to fill in the cor-
responding number-sentence scheme compared to the tra-
ditional static representation of the decrease problem in 
just a single picture. In the next paragraphs we elaborate 
on these findings on the basis of each research question.

Our first research question was whether we were able 
to replicate key past findings in this domain (van Lieshout 
and Xenidou-Dervou 2018). The focus of our previous 
study (van Lieshout and Xenidou-Dervou 2018) was on 
a specific type of pictorial problems that represented in 
a static picture a dynamic situation where a change of an 
amount takes place. These problems can be found in com-
mon Dutch exercise and testing booklets. However, it is 
not easy to clearly represent a dynamic subtraction situa-
tion in a single static representation, because it is difficult 
to simultaneously picture the start situation (the minu-
end) as well as the decrease (the subtrahend). Ekeblad 
(1993) also recognized this representational difficulty in 
the case of subtraction. If one shows the decrease (e.g., 
birds flying away from a group of birds), then the only 
option left is to show the result of the subtraction (Fig. 1b). 
This means that the child has to counterintuitively add 
the subtrahend and the difference in order to reconstruct 
the minuend. Because an addition is needed to solve such 
problems, van Lieshout and Xenidou-Dervou (2018) did 
not use the term “subtraction problems” but instead named 
them “decrease problems” to avoid giving the impression 
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that these problems should be solved with a subtraction. 
Following the reasoning above, the authors expected and 
found that the decrease problems were harder than the 
increase problems for 7-year-old children. The difficulty 
of the decrease problem is probably aggravated by the 
presence of an empty number-sentence scheme with a 
minus sign, even though performing a subtraction would 
be incorrect. Our present study replicated van Lieshout 
and Xenidou-Dervou’s (2018) original finding: a differ-
ent group of 7-year-old children performed worse in the 
decrease problems compared to the increase ones (Fig. 1).

We also tried to replicate the finding that auditory support 
in these difficult decrease problems improves performance 
by causing a modality effect, which led van Lieshout and 
Xenidou-Dervou (2018) to conclude that the decrease prob-
lems impose higher cognitive load than the increase ones. 
Their conclusion was based on both accuracy and reaction 
time. The present study used only accuracy as dependent 
variable. We were not able to replicate the effect on this vari-
able, most probably because of the ceiling effects evidenced 
in both the increase as well as the decrease problems. It 
would have been optimal if we had also collected RT data. 
Moreover, van Lieshout and Xenidou-Dervou’s (2018) study 
included 36 one-picture problems, whereas the present study 
included only 16 one-picture problems due to its design. 
Psychometrically, a larger test length increases reliability 
(Gulliksen 1950) and therefore the chance of finding a sig-
nificant result. Additionally, the number of participants may 
have been too small to confirm the earlier findings of van 
Lieshout and Xenidou-Dervou, although they were able to 
demonstrate this effect with 60 instead of the present study’s 
sample of 80 children.

The second research question concerned locating the 
source of the cognitive load imposed by the 1-picture 
decrease problems: Was it the direction of the change 
(increase or decrease) or the location of the unknown (start 
vs. end)? To address this question, we developed 3-picture 
problems where we could vary the place of the unknown 
and the direction of the change. This resulted in four types 
of problems where the three pictures were presented sequen-
tially (see Fig. 2a–d). Our results showed that the position 
of the unknown was the most influential factor. When the 
unknown was in the first position, the child’s task of filling 
in the number-sentence scheme was clearly more difficult 
than when the unknown was in the last position. Therefore, 
we can conclude that the 1-picture decrease problems are 
more difficult than the 1-picture increase problems primar-
ily because of the location of the unknown. So, our study 
demonstrated once again that 1-picture decrease problems 
with their noncanonical mathematical structure (x − a = b) 
are more difficult than their increase counterparts (a + b = x). 
Therefore, our findings verify and extend the literature on the 
importance of the position of the unknown. Past research has 

demonstrated that bare or word problems with the unknown 
at the start are harder than corresponding problems with 
the unknown at the end (De Corte and Verschaffel 1981, 
1987; García et al. 2006; Hiebert 1982). Our results show 
that the same occurs in pictorial problems. The position of 
the unknown appears to play a fundamental role irrespective 
of the mode of presentation of the problem.

The importance of the position of the unknown in arith-
metic problems reflects the well-known fact that children’s 
arithmetic errors—especially in Western countries—are 
often attributed to their tendency to think of arithmetic 
problems in an operational manner, i.e., a prompt to carry 
out the operation and fill in the unknown result at the end. 
That is because arithmetic problems are mostly taught in the 
form of a + b = c (McNeil and Alibali 2005), which leads to 
a superficial understanding of the meaning of the equal sign: 
Rather than viewing it as a relational symbol, i.e., that both 
sides of the equal sign should be equal, students mostly see 
it as an operational symbol, i.e., an impetus to carry out an 
operation with the result at the right side of the equation 
(e.g., Jones et al. 2012; Powell et al. 2016; Simsek et al. 
2019). This literature highlights the importance of teaching 
the relational meaning of the equal sign (e.g., Chesney et al. 
2018). Our problems did not entail the equal sign per se, 
nevertheless we evidenced children’s preference for view-
ing also the pictorial problems in an operational manner: 
problems were easier when the unknown was at the end.

One could think that perhaps the developers of the picto-
rial decrease problems such as the one depicted in Fig. 1b 
aimed at devising pre-algebra exercises in which the child 
would realise the need to mentally rearrange the equation 
to be able to fill in a number-sentence scheme where the 
unknown is at the start. This is a meaningful aim. However, 
many children have difficulty understanding this rearrange-
ment because unfortunately most material that they encoun-
ter has the unknown at the end of the arithmetic problems. 
As described earlier, the fact that we found that pictorial 
problems with the unknown at the start are more difficult 
than the ones with the unknown at the end, is in line with 
the assumption that children are driven by an operational 
conception of the equal sign, which negatively affects their 
algebraic performance (McNeil et al. 2010). However, it 
should be noted we nevertheless believe that arithmetic 
problems with the unknown at the start should still be used 
in mathematics curricula. Material should be challenging for 
meaningful learning to take place. Thus, arithmetic prob-
lems should not be presented only in the (pictorial) form 
of ‘a ± b = c’ because that promotes operational thinking 
(Chesney et al. 2018 add also McNeil and Alibali 2005).

Our third research question concerned whether children’s 
performance in the decrease situation would improve in the 
semi-animated 3-picture presentation with the unknown at 
the end compared to the 1-picture static condition. As argued 
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earlier, such a condition would be more realistic than the 
static 1-picture problems, which cannot really depict the 
sequence of events. As expected, the 3-picture condition led 
to a higher proportion of correctly filled in number schemes. 
The fact that the 3-picture problems included a more explicit 
focus on the narrative of the subsequent events could have 
lowered the learners’ intrinsic cognitive load, i.e., the level 
of difficulty derived from the element interactivity included 
in the problem (Sweller 2010; Sweller et al. 1998).

Notably, the 3-picture problems had the unknown at the 
end; contrary to the 1-picture decrease problems. In light of 
our findings for our second research question, it is highly 
possible that the reason why the 3-picture problems were 
easier was also because of the position of the unknown. 
The position of the unknown (start or end) and the format 
(1-picture and 3-picture) are in fact confounded in this case 
and this should be taken into account when considering our 
present findings. Future research should separate and dif-
ferentiate the potential effect of these factors. Lastly, we are 
not saying that the kind of 1-picture pictorial problems that 
we studied should not be used in mathematics education. 
Rather, we think that these problems should be used in the 
light of the goals that the developer has and the phase of 
mathematical development in which the children are.

It should also be noted that in the present study we 
found a positive effect of auditory support for the 3-picture 
decrease problems, but not for the 1-picture problems, con-
trary to our previous findings (van Lieshout and Xenidou-
Dervou 2018). The positive effect of auditory support could 
be attributed to the modality effect: splitting the information 
across the two modalities—vision and hearing—reduced the 
cognitive load. However, the fact that this was observed only 
for the 3-picture problems and not the 1-picture problems 
could have been due to the fact that in our study there were 
double the number of problems in the 3-picture compared 
to the 1-picture condition. Future research should address 
this limitation.

6.1 � Concluding remarks

Studies concerning the role of pictorial problems in the 
lower grades of primary school are quite scarce. As we put 
forward in the introduction, we need theory-driven fine-
grained experiments to find out more about which charac-
teristics of pictorial problems are profitable and which are 
not. For example, recently Bennet and colleagues (2019) 
showed that teaching children in the lower primary school 
grades to connect representations of numerosities to number 
symbols was more successful when the elements of the set 
were abstract (e.g., dots) than when they were represented 
with concrete objects (e.g., drawings of fish). The authors 
discuss that perhaps the use of abstract objects reduces the 

working memory load involved. More research is rendered 
necessary to examine whether children have difficulties in 
solving pictorial mathematics problems because of (age-
related) cognitive limitations or because of the used educa-
tion material, for example the one-picture problems in our 
study, which are used for children who have not yet had 
the relevant experience or the instruction to understand the 
tasks. This consideration would also be important for devel-
opers of educational material. The present study’s findings 
suggest that using a semi-animated presentation of realistic 
mathematics problems could be a useful tool for overcoming 
difficulties inherent in presenting dynamic situations in static 
pictures. One may argue that three-step semi-animated prob-
lems such as the ones depicted in Fig. 2 cannot be used in 
paper and pencil mathematics curricula. Perhaps one could 
consider a sequential illustration in comic-strip fashion (Elia 
et al. 2007; although see Berends and Van Lieshout 2009). 
Also, in this day and age where even young children use 
smartphones, computers, and tablets even for educational 
purposes, animated mathematics problems should be feasi-
ble and could provide a good platform for improving chil-
dren’s early arithmetic learning.
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