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Abstract

Cell culture technology developed at the turn of 20th century using Petri dish, which is not able

to consider the microenvironment that the cells experience in vessels, has remained virtually

unchanged for almost a century. However, such microenvironment associated with cell culture

which usually consists of soluble factors, extracellular matrix cues, and cellular networks is difficult

to reproduce experimentally with the traditional approach. In order to further elaborate complex

mechanisms of cell biology through mimicking such microenvironment in vivo, the technical

approaches together with developed microdevices are highly demanded within such a context.

Microfluidic devices have been extensively developed and used for cell culture in the last two

decades, which offer numerous advantages and a great potential for accurate and efficient control

of the complex culturing microenvironment at cellular length scale. However, these devices are

relatively complex in their fabrication and integration to fulfil multifunctional tasks for cell culture and

drug testing simultaneously, which for example requires a membrane between the culture chamber

and drug delivery reservoir to control microenvironment at cellular scale. This thesis is to primarily

focus on the feasibility and reliability in the attempt of using poly(2-hydroxyethyl methacrylate)

(PHEMA) hydrogel as an inserted membrane, based on its permeable and flexible tissue-like

properties. PHEMA membrane is able to serve dual purposes in the microfluidic systems in cell

culture: i) exchanging nutrients between culture chamber and drug delivery reservoir; and ii) sealing

the microchannel circuits. To understand the characteristics of PHEMA hydrogel, this research

particularly considered the following interconnected aspects which are likely to be encountered in

the manufacturing and uses of PHEMA hydrogel as a multifunctional membrane:

1) Material properties: The cytotoxicity and adhesion strength of PHEMA to cells as well as

diffusion characteristics of solvable molecules (e.g. glucose) inside PHEMA must be

experimentally examined to evaluate its bio-related properties, thereby to assess the suitability

of PHEMA hydrogel as a membrane. On the other hand, an investigation on mechanical-related

properties of PHEMA hydrogel, in particular its responses to uniaxial compression conditions, is

also important, for instance of using numerical simulations based on hyperelastic theories,

which have to be subsequently verified by experimental study.
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2) Packaging and assembly: This considered the practical aspects in the uses of PHEMA

hydrogel as a multifunctional membrane being incorporated into a microfluidic device to

evaluate its feasibility and reliability through mechanical fastening assembly process. It has

been particularly concerned that the strains induced in the hydrogel membrane due to

compression can be critical, and the stress concentrations in PHEMA membrane which is

inevitable can cause potential failure in contact with microchannels or culture chamber under

the compression.

3) Optimum device design: A systematic study on the PHEMA hydrogel in the use as a

membrane is necessary to determine the various factors that may be applied on cells in the

microfluidic device, e.g. nutrient supply and hydrodynamic shear, which can allow identification

of optimum parameters in the design and fabrication of microfluidic devices. Numerical

modelling as a useful approach is able to assist the determination of various dimensional

parameters associated with culture chamber and microchannel in the consideration of optimum

design of such devices, where the PHEMA hydrogel can be inserted as a multifunctional

membrane.

In this thesis, both experimental studies and numerical simulations have been undertaken to

evaluate the characteristics of PHEMA hydrogel as a multifunctional membrane which can be

potentially incorporated in the microfluidic cell culture device. From simulations, an appropriate

model based primarily on Mooney-Rivlin hyperelastic theory has been established and utilised to

understand the mechanical behaviour of PHEMA hydrogel when it is subject to a compressive

stress. From both modelling and experimental work, the packaging and integration of microfluidic

devices through mechanical fastening technique have been investigated in connection with the use

of PHEMA hydrogel as a membrane. The optimum design of the microfluidic device for cell culture

has therefore been proposed based on the intensive simulations and experimental validation. It is

envisaged that the results from this thesis can ultimately facilitate an applicable tool set to enable

bespoke microfluidic devices through optimum design and manufacturing.

Keywords: Cell culture, Microfluidic device, PHEMA hydrogel, Membrane, Hyperelastic deformation,

Mechanical fastening.
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Chapter 1. Introduction 

1.1 Background, Research Motivation and Considerations 

Cell culture techniques, developed at the turn of the 20th century, are still today a fundamental 

tool in the study of cell function, tissue engineering and pharmacology. However, for almost a 

century, the traditional cell culture technology, consisting of plating cells in vessels with a 

homogeneous substrate, media and reagents, has remained virtually unchanged [1]. To further 

investigate the complex mechanisms of cell biology, a better technique, which is able to mimic the 

cell microenvironment in vivo, is needed. This microenvironment consists of soluble factors, 

extracellular matrix cues, and cellular networks that have proven difficult to reproduce 

experimentally using conventional techniques [2]. This level of control of microenvironment is 

potentially achievable by exploiting micro-technology, such as microfluidics. Microfluidics is a 

technology of fluid control at micro- or nano- volumes in fluidic networks or channels, which are 

fabricated onto glass, silicon or polymer substrates. Generally, microfluidic system can provide the 

microenvironment at cellular scale with closely mimicked in vivo environment through spatial and 

temporal control of solution flow and concentration distributions [3]. In the past ten years, more and 

more literature about cell culture device, which is fabricated using microtechnology, are reported. 

Despite these successful developments, culturing cell on microdevice remains a major challenge. 

For instance, the operation of devices integrating multi-functions is complex to use, thus it restricts 

the fully access of end-users to the microdevice performance. To address such kind of challenges, 

the vision of this work is to design and develop a highly integrated multi-material microfabricated 

platform of highly functional but simple to be operated by a biologist who has no background or 

expertise of microfabrication. This has to be involved with handling of multi-materials to enable 

integration of different fabrication strategies and technologies by utilising different types of materials.  

Hydrogels possess many characteristics that mimic biological systems and microenvironments, 

such as the cross-linked nature of the extracellular matrix (ECM), and tissue-like properties, such as 

water content and permeability to oxygen and metabolites. Using hydrogel as one of the 

components of the microdevice, allows the cell adhesion and proliferation occur on the hydrogels. 

Thus, the microdevice that uses hydrogels as a functional interface can take many advantages both 
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from optimum design of microfluidic structure (polymer, e.g. PMMA) and hydrogel materials, where 

material properties of hydrogel such as cellular scale network topography and mimicked 

microenvironment for cells may be exploited.  

This study also considers the needs of a microfluidic device for automatic culturing cell at long-

term period, inputting testing drugs simply and individually and being reused through disassembly 

and reassembly routines. By using this device, it will highly reduce the difficulties and complexities 

that may be preset to the end-users who is investigating the effects of various drugs on living cells. 

Requirements from the biological end-users, which are based on the desire of people from the 

biomedical group of University of Milan, were collected and listed in Table 1-1. Thus, the design of 

microfluidic culture platform in this study has to meet the requirements such as simple and easy to 

operate, low fabrication cost and high capability.  

Table 1-1. Requirements of microfluidic devices according to biological users 

Biological User Requirements Importance 

1. Reduced inspection labour (around 1.5  hours for 96 standard procedure) High 

2. Long-term culture possible up to 30 days High 

3. Space for 50,000 cells/well (Approximately at least 3mm diameter) High 

4. Simple to use, e.g. only operation for user is pipetting steps High 

5. If not self contained, it has to be fit into an incubator High 

6. Disposable, low cost or reusable Medium 

7. No use of extra equipment unfamiliar to biologists Medium 

8. Reduced culture fluid replenishment labour over 96 well plate Medium 

9. Can handle non-adherent and adherent cells Low 

10. Allow optical observation Low 

According to these requirements listed in Table 1-1, a multi-layer structured hydrogel-based 

microfluidic platform for cell culture is proposed and shown in Fig.1-1. Two microfluidic chips with 

culture chamber and drug delivery reservoir, which are made of thermoplastic (Poly(methyl 

methacrylate) (PMMA)), are assembled with an inserted hydrogel membrane (Poly(2-hydroxyethyl 

methacrylate) (PHEMA)). The packaging technology is required to hold the assembly together and 

provide a reliable fluid seal.  

Such designed device is able to fulfil the following tasks: 1) cells will be kept and cultured in the 

culture chamber (upper chamber) at the thermoplastic top layer, surrounded with dynamic culture 
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medium which is carrying oxygen, glucose and other necessary nutrients. 2) The culturing of cells 

will be achieved by controlling and adjusting the fluid flow or perfusion time of the culture system in 

upper chamber, independent to the aqueous environment chamber (lower chamber) in bottom layer. 

3) Solution containing drug or other small molecules, for the purposes of testing the reaction of cells 

to these molecules, is perfused into the drug delivery reservoir through microchannels. 4) These 

drugs will be delivered into the culture chamber through the hydrogel membrane thanking to the 

diffusion characteristics of hydrogel materials.  

Therefore, the characteristics of such device design can be summarised as follows: 

 System can treat culturing of cells and testing of cells individually, without any interruption, 

which is offering a single variable environment for research on cells. 

 Based on microfluidic structure, the usage of solutions is at small amount, thus highly 

reduced the consumption of culture medium and other expensive growing factors for cells. 

 Using the diffusion properties of hydrogels to delivery drugs into the culture chamber and 

deliver the excreta of cells out of the culture chamber. 

 Using hydrogels’ rubber-like mechanical property for sealing the device to achieve a 

reliable bonding and closed microfluidic environment when system operating. 

 The novel packaging method, e.g. through mechanical fastening, enables disassembly and 

reassembly bonding in room temperature, without the assistance of heating source or 

adhesives. 

 

Fig.1‐1.  Schematic  diagram  of  the microdevice  used  to  culture  cells.  Three  layers,  two  thermoplastic  layer  and  one 

hydrogel membrane, make up  the device as  two closed microfluidic system, culture chamber at  top and drug delivery 

reservoir at bottom. Cells are cultured  in the culture chamber. The molecules exchange between culture chamber and 

drug delivery reservoir are taking place all the time, through diffusion in hydrogel membrane material.  
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1.2 Aims and Objectives of the Thesis 

The primary aim of this thesis is to design and develop a multi-material microfluidic platform, 

which is made of thermoplastic polymers (e.g. PMMA) and hydrogels, in order to establish a 

fabrication approach and applicable device for complex hybrid microplatforms for cell culture and 

incubation. Combining the different materials and processing methods, to develop a complex 

microdevice which can break the barriers between microfabrication and biological application, is the 

major challenge in this work that has to be addressed.  

Based on the concept design of the device as described in Fig.1-1, the work has inevitably to 

deal with the determination of the parameters of the hydrogel-based microfluidic device, such as 

device dimensional parameters (e.g. dimensions of culture chamber or microchannels) and 

performance determining parameters (e.g. inflow velocity, nutrient concentration and fluidic shear 

stress). Thus, the fundamental issues, including material property of hydrogel, suitable packaging 

method for hydrogel-based device, and characteristics or set-ups of perfusion culture device, have 

to be properly addressed in advance in the course of development of the hydrogel-based 

microfluidic device. Accordingly, the research in this thesis is divided into following aspects: 

 Research on material: To investigate the possibility of utilising hydrogel to integrate 

into microfluidic device for biological purpose, e.g. cell culture. This is primarily focusing 

on the research of the biocompatibility of hydrogels, including diffusion characteristics , 

cytotoxicity and cell adhesion. 

 Research on packaging: To study the feasibility and reliability of the novel packaging 

method which enables disassembly and re-assembly for the hydrogel-based 

microfluidic device. It consists of fundamental research on the behaviour of hydrogel 

membrane in microfluidic channels, in order to achieve a reliable packaging method 

through optimising the microchannel and selecting the appropriate packaging 

conditions, e.g. fastening strain.  

 Research on the parameters of device/system: To determine the parameters for the 

hydrogel-based microfluidic device to enable suitable conditions for cell culture and to 

achieve better functional capability for culturing cells. This applies a systematic 

research on the influence of the dimensional parameters of culture chamber and the 

environmental conditions on cells during the culturing process in the microfluidic device. 
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Both experiments and numerical simulations are implemented as research methods or tools to 

develop the hydrogel-based microfluidic device in this study. The objectives that have been 

identified for the specific tasks described above can thus be given as follows: 

1. Basic property research or verification of PHEMA hydrogel materials, including 

synthesis, swelling and diffusion characteristics . 

2. Designs and experiments to investigate the effect of PHEMA hydrogel on cells, such as 

experimental approaches to study of the cytotoxicity and cell adhesion on PHEMA. 

3. Modelling of PHEMA hydrogel materials on its mechanical deformation, in order to 

achieve a proper theoretical model to describe and predict the mechanical behaviour of 

this hydrogel. 

4. Experimental approaches to determine the bounds or limits of the microfluidic system, 

such as ultimate fluidic pressure to guarantee a reliable sealing of the device or the 

ultimate fastening strain on the hydrogel membrane which can achieve proper sealing 

without inducing any material failure. 

5. Optimum design of microchannels’ geometry and the packaging conditions (e.g. 

compressive strain), aiming to obtain a feasible and reliable packaging for the 

assembly of multi-material microfluidic device. 

6. Research on the capacity of the microfluidic device as a whole system, including the 

range inflow rate, inflow nutrient concentration and the perfusion time. 

7. Optimum design of the culture chamber (bioreactor), through varying the dimensional 

parameters of the chamber to determine suitable geometry of bioreactor for incubating 

and testing cells. 

Due to the unique interdisciplinary nature, the current work was collaboratively carried out at 

three locations in UK, Italy and China during the three years of the PhD research life of the author. 

This has been achieved through strategically taking advantages of the technical capability of each 

collaborated research team and facilities. Owing to the expertise based on the Wolfson School of 

Mechanical and Manufacturing Engineering of Loughborough University, most numerical simulated 

designs, optimizations and predictions were built and developed at the Loughborough University in 

UK. Within the Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) in 
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Italy, the materials preparation was conducted, where the hydrogels used in this research were 

synthesised based on the standard procedures thanking to their expertise on hydrogel used as cell 

culture substrates [4,5]. The experimental study including the manufacturing of PMMA substrate for 

the hydrogel-based microfluidic device and the testing of the sealing reliability of fluidic system were 

mostly undertaken at the College of Materials Science and Engineering of Huazhong University of 

Science and Technology (HUST) in China, using their experimental equipment and the high 

efficiency of the testing or measuring process. In addition, the experiments related to cell culture 

were conducted at the biomedical department of HUST, through a strong mutual collaboration with 

the WUHAN Union Hospital (Wuhan, China) and Peking Union Medical College Hospital (Beijing, 

China), as such the cell lines can be gained from their source and the incubation/testing of cells can 

be successfully implemented. 

 

1.3 Structure of the Thesis 

This thesis contains eight chapters. The introduction to the current research for the definition of 

the problems and identification of research objectives is presented in Chapter 1: this includes 

background of study, research motivation, and initial conceptual design of the device, aims and 

objectives of thesis, plus this section giving the structure of the thesis. It has briefly articulated the 

challenges of microtechnology which is used in the biological field, and explains why the current 

research is important. 

In Chapter 2, a literature review is undertaken to gain firm knowledge of microfluidic technology, 

hydrogel materials, as well as a number of successful examples of microfluidic device embedded 

with hydrogel materials. The advantages and disadvantages of the common techniques of 

fabrication or bonding of microfluidic devices are summarised, in order to emerge the strengths and 

novel features of the technique developed in this thesis. Also, the foundational backgrounds for the 

material, theory and techniques for the following chapters are reviewed in detail. 

Chapter 3 describes the main methodology which has been employed to address the 

theoretical models used for simulations, and the equipment and testing method used for 

experiments in this thesis. COMSOL Multiphysics which is the simulating tool used for the 

simulation work has also been briefly introduced. This chapter also reviews the models that 

developed by researchers and defines the reason that hyperelastic model and Fickian diffusion 
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model are chosen to simulate the mechanical behaviour and diffusion mechanism of hydrogels 

respectively. In addition, the apparatus and manufacturing and testing procedures, including the 

synthesis, preparation and swelling/drying of PHEMA hydrogel, are depicted in details. 

 

 
Fig.1‐2. Overview of the thesis structure. The relationships between chapters are illustrated in the flow chart, especially 

the  inter‐correlations between  the original  research  chapters  (Chapter 4, 5, 6 and 7).  It depicts  that  the  results  from 

Chapter 4, 5 and 6 are contributing to the simulation work in Chapter 7. 

 

Chapter 4 details the experimental research on the PHEMA hydrogel material, including the 

diffusion behaviour of glucose in PHEMA, cytotoxicity of PHEMA to common cell models (i.e. 

HUVECs and fibroblasts), and adhesion strength of cells to PHEMA substrate. The objectives 1 and 

2 listed in Section 1.2 (at page 5) are focused and elaborated in this chapter. The results presented 
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in this Chapter 4 will be inter-related with, thereby utilised in the system performance simulation 

included in Chapter 7. 

The theoretical basis of the mechanical deformation of PHEMA hydrogel is reported and 

verified by experimental work in Chapter 5, initially through establishment of the deformation models 

of PHEMA hydrogel based on two theories: Mooney-Rivlin and neo-Hookean model. The two 

models are selected to estimate the dependence of the compressive strain and stress applied on 

the PHEMA specimen. The model, which can better show the consistence between experimental 

data and numerical simulation data based on such model, is selected to represent and to predict the 

mechanical behaviour for both fully swollen and partially swollen PHEMA hydrogel. The results from 

this chapter will be used in predicting the stress distribution of hydrogel membrane in culture 

chamber under the compression, and stress concentration or deformation of hydrogel membrane in 

microchannel in Chapter 6. This chapter presents the results to address the objective number 3. 

In Chapter 6, both the experimental and numerical investigations are conducted to understand 

feasibility and reliability of the mechanical fastening process for the assembly of the microfluidic 

system, including the determination of maximum pressure in the system, protrusion of membrane in 

the cavity of microchannel, ultimate compressive strain of the fastening process and stress 

concentration of hydrogel membrane in the culture chamber. The combination of simulation and 

experimental work is another validation of numerical simulation, although the theory of modelling 

has been verified by the uniaxial compressive experiment in Chapter 5. Also, a feasible and reliable 

packaging method which enables disassembly and reassembly routines of the multi-material 

microfluidic device is described. In this chapter, the objectives 4 and 5 are attained. 

After the research on the material and packaging method presented in Chapter 4, 5, 6, the 

work presented in Chapter 7 is focusing on the function of the microfluidic system, the cell culture 

and ECM control. The parameters of this perfusion culture microfluidic device, such as inflow rate, 

inflow nutrient concentration and perfusion time, are determined according to the requirement of 

cells culture. The dimensional parameters of the culture chamber, including diameter, height and 

location of the inflow entrance, are determined by selecting the values which can obtain the best 

performance of this microfluidic device, e.g. being capable of incubate various kinds of cells which 

require different ECM microenvironment. The numerical simulation in this chapter is established 

based on the experimental results obtained from the previous chapters, including adhesion strength 
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of cell to PHEMA substrate (in Chapter 4), the diffusion behaviour of glucose molecules in PHEMA 

hydrogel (in Chapter 4), the structural design of the multi-material microfluidic device (in Chapter 

5&6). The objectives 6 and 7 are the main focuses and have been achieved in this chapter. 

Finally, the Chapter 8 summarises the main findings of the work presented in this thesis and 

the recommendations for optimum design of microchannels, culture chambers, parameters of 

packaging and perfusion process of the microfluidic device. An outlook on further developments is 

also provided. The outcomes and the recommendations are expected to serve as a guideline for the 

researchers who may continue to consider further optimization or development of the hydrogel-

based perfusion cell culture microfluidic system.  
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Chapter 2. Context and Literature Review:

Hydrogel-based Microfluidic 

systems 

 

2.1 Microfluidic Technology for Lab-on-Chip Applications 

2.1.1 Microfluidic Systems and Their Applications 

Microfluidics represents a series of science and technology of systems that manipulate or deal 

with small amounts of fluids (10-3~10-6 mL), through microchannels at the dimensions ranging 

from 1 μm to 10 mm [3]. The microfluidic devices are capable of using very small quantities of 

samples or reagents to carry out reactions or detections with high sensitivity. The obvious 

advantages of microfluidics are attributed to their small size, low cost, rapid analysis, and 

convenience to produce the device, etc. [6]. 

According to the applications of microfluidics, they can be divided into four categories: 

conditions screening, manipulation of multiphase flow, microanalytical system and cell biology. 

Firstly, the highly developed microfluidic applications are utilised to screen conditions, including pH, 

concentration, composition [3]. For examples, large numbers of conditions are compared and 

analysed to select the best growth of protein crystals [7,8,9]; and high-throughput screening 

systems are established in drug development [10,11]. Secondly, its application of manipulation of 

multiphase flow are capable of precisely handling the bubbles [12,13] or droplets [14,15,16] in a 

continuous liquid stream. For example, in the microfluidic device developed by Garstecki et al. [12], 

streams of liquid and gas are mixed in monodisperse, and the device enables the controlling of the 

size of the bubbles by controlling the inflow rate or pressure of gas. Thirdly, owing to the small size 

of microfluidics, the practical microanalytical systems [17,18] which can enable rapid bio-analysis 

are another focus of the application of microfluidics, such as blood analyse in a portable device 

within a limit time (e.g. several minutes) [19]. Finally, cell biology is an essential area of research 

which can be investigated using microfluidic systems. Microfluidic systems enable the fundamental 

studies of spatial and temporal control of molecules or cells in micrometre scale (0.1~100 μm), in 

order to investigate the living condition or survival criteria of cells.  
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2.1.2 Materials for Microfluidic Devices 

Microfluidic devices would not be developed so quickly without the significant development of 

polymer technology. The polymers are suitable materials for fabrication of microfluidic devices 

including thermosets, thermoplastics and elastomers.  

Thermoset polymers consist of numerous crosslinked monomers forming a giant molecule, 

which are usually hard and fragile. They are usually in a form of liquid with high viscosity before 

curing. After a chemical reaction or suitable irradiation within an environment over 200 ̊C, the 

irreversible curing can take place, which makes the thermoset polymer become solid state being 

stronger than thermoplastics. Once curing is completed, the thermoset polymers cannot be 

reheated and melted to be re-shaped. Due to this property, very few thermoset has been used as 

substrate for microfluidic device.  

Thermoplastic is a plastic material with relatively weak crosslink of monomers, such as 

polystyrene, polycarbonates (PC) or poly(methyl methacrylate) (PMMA). At the temperature above 

their Glass Transition Temperature (Tg), thermoplastic polymers become plastic which can be 

moulded into specific shapes. When cooling them below Tg, it causes the curing of thermoplastic 

material. There are a large number of microfluidic devices which are built using thermoplastic as 

their substrates. For example, Hupert et al. [20] manufactured spiral channels 50 μm wide and 

150 μm deep on polycarbonates using hot embossing technique. And Ueda et al. [21] produced 

microchannel with 1 mm diameter and 100 μm deep on poly(methyl methacrylate) using lithography. 

Significant research on microfluidic systems have been established based on elastomer, 

poly(dimethylsiloxane) (PDMS), which possesses the properties of soft, transparent, elastic 

deformation behaviour and convenient to be synthesised. It is one of the most common polymer 

materials for making microfluidic devices in lab nowadays [22]. Many microfluidic devices made by 

PDMS can be found in literature, for instance, 25 nL of chamber has been manufactured on PDMS 

by Yu et al. [23], which was prepared using injection moulding technique; 100 μm deep and wide 

microchannels were fabricated on PDMS using soft lithography, which is done by Fukuba et al. [24]. 

However, PDMS tends to have problems when it is used as substrate for microfluidic system. 

Because PDMS is still a polymer which is formed by crosslinked chains, the small molecules in 

microchannels or chambers may be sank to the PDMS material which may fundamentally affect the 

biological results. This absorbance of small molecules into PDMS is dependent of the pH value of 
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the solution which is in contact with PDMS directly [25]. 

 

2.1.3 Fabrication of Microfluidic Devices 

According to the literature about manufacture of microfluidic devices, the technologies which 

are frequently used to fabricate microfluidic devices can be summarised into five classes in terms of 

their manufacturing processes: micro-milling, hot embossing, injection moulding, lithography and 

laser ablation. 

Micro-milling. Milling is a traditional fabrication process in macro-world. The micro-milling 

technology is developed in the last 15 years, which was applied in watch making, optics apparatus 

and MEMS manufacturing fields. It is a machining process using micro-machine-tools equipped with 

tiny cutters. The key components of the micro-milling machine are the cutter and motion controller. 

Currently, the size of the cutter for a micro-milling machine is ranging from 10 μm to 10 mm [26]. 

The speed of the spindle is ranging from 2000 rpm to 160000 rpm. High speed of spindle will lead to 

high temperature induced around the cutting area on the material during manufacturing. Thus, high 

speed manufacturing using micro-milling technique is not suitable for thermoplastic materials 

because the high temperature induced by high speed spindle may heat the surrounding material 

over their glass transition temperature Tg and cause damage of the designed geometry. For the 

motion controller, CNC (Computer Numerical Control) technology makes the micro-machine tools 

becoming a fast and powerful controlling system, which enables the accurate and efficient 

fabrication of the samples in small scale. 

Using micro-milling technology for the fabrication of devices such as MEMS or microfluidics is 

convenient, portable and easily maintained, and reconfigured [26]. However, the vibration of the 

spindle during manufacturing, which is one of the major problems for this technology, can affect the 

fabrication accuracy or even destroy the microstructures. Moreover, it is only suitable for unit 

production which requires several pieces (1~100) of sample only, because it is a time-consuming 

process. 

Hot Embossing. Hot embossing is one of the widely used methods for fabricating polymeric 

microstructures in academic research and industry [27,28,29,30]. The process of hot embossing 

can be summarised into following steps: 
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1) Heat the thermoplastic material substrate that are used to make the components over its 

glass transition temperature Tg, in vacuum environment. 

2) Heat the master (as mould) with structured patterns on the surface to the temperature of Tg 

at the same time. 

3) Press the master onto the thermoplastic substrate by applying a pressure over 500 N/cm2 

[31] generally. 

4) Cool both for master and thermoplastic substrate below Tg temperature and then extract 

the sample from mould. 

The primary merit of hot embossing is that their high replication accuracy enables the reliable 

fabrication of structures in the range of 1~1000 μm [32,33]. The challenges of this kind of fabrication 

process are that it is difficult to induce the uniform temperature distribution across the master 

structure and it is not easy to prevent trapped air from forming bubbles during the compress step 

(step 3). 

Injection Moulding. Another commonly used fabrication process for microfluidic device with 

high efficiency is injection moulding. The injection moulding process, in general, consists of filling, 

packing, cooling and releasing polymer into a mould. As a preparation step, a microstructure is pre-

machined on the surface of a metal mould which has the reverse image of object to be moulded. At 

the filling and packing step, the thermoplastic material is heated and melted into liquid with high 

viscosity, then the melted thermoplastic is injected and pressurized to fill the cavity in the mould. 

Then the injection moulded thermoplastic with designated shape and surface patterns is released 

from the mould after being cooled and solidified. The primary advantage of injection moulding is that 

it is capable of building 3D objects in one step. For instance on microfluidic devices, the integration 

of fluidic interconnects or through-holes can be fabricated in one-step moulding [27,28]. However, 

the manufacturing of the mould for injection moulding is a high-cost process, so that it will be very 

costly when only a small amount of samples are to be produced. Owing to its convenience of 

replication, injection moulding is usually used in industry extensively for high throughput productions. 

Lithography. In the micro-fabrication processes, lithography includes photolithography and 

stereolithography for fabricating 2D and 3D structure respectively. The material used in this 

technique is called SU-8 as its monomer contains eight epoxy groups. If the material is exposed 
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under UV light or X-Ray radiation, strong crosslinking will take place between the monomers in the 

process of cationic polymerisation. This leads to the production of small parts or patterns with main 

advantages of SU-8, e.g. high mechanical, thermal and chemical stability. However, SU-8 can be 

difficult to process, because it generates large internal stresses in the film during the polymerisation, 

which may cause unexpected structural deformation or fracture of the specimen. In addition, due to 

its strong adhesive property, cured SU-8 can be difficult to remove from a substrate, particularly 

from a three-dimensional structure with large contact surface to its substrate [34]. 

Laser Ablation. Another method for the rapid prototyping of microfluidic structures is laser 

ablation. A high-intensity laser beam can be focused onto the material surface, and the 

concentrated energy of the beam evaporates the material at the focal point simultaneously. The 

geometry can be fabricated by using a mask to protect the area which is designed to not be 

evaporated, or by moving the laser beam to generate the desired structures. Normally, laser 

ablation is used to fabricate structures on thermoset polymers [35,36]. One of the critical features of 

laser ablation is that the interaction of the material with the intense laser light may change the 

chemical properties of the material [37,38]. This effect is difficult to be controlled or avoided. It may 

cause variations of surface properties especially in some surface sensitive applications, thereby 

care should be taken to ensure the performance of the device. 

 

2.1.4 Packaging of Microfluidic Devices 

As introduced in last section, the microfluidic chips after the fabrication process are not yet a 

closed fluidic structure which is ready for initiating fluid flow. To complete the device as a functional 

microfluidic system, the packaging process is equally essential to the fabrication process. The 

techniques for packaging or bonding to form a functional microfluidic device can be summarised 

into five groups from the basis of literatures: adhesives and solvent bonding, adhesion and surface 

modification, thermal pressure bonding, ultrasonic welding and laser welding. 

Adhesives and Solvent Bonding. The most common bonding methods to join the polymer 

parts together are the adhesives bonding [39,40] and solvent bonding [41,42]. The similarity of the 

principles of these two methods is generally seen by placing adhesives or glues between the two 

polymer parts followed by urging the solidification of adhesives or glues by heating or pressing, thus 
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form the chemical bond within the interface of polymer parts. A critical aspect of these two bonding 

methods is the difficulties to prevent the microstructure from being damaged or blocked by the 

adhesives. For instance, the adhesives or solvent materials may fill the cavity of microchannels or 

other microstructures during the forming of chemical bonding at the interface, thus causes the 

blockage of the microchannel or damage of the microstructure after packaging process and leads to 

malfunction of the device.  

Adhesion and Surface Modification. The surface adhesion for most polymers (e.g. PDMS) is 

sufficient to create a tight seal, if the bonding process takes place in a very clean environment. For 

the polymers which have less adhesion properties on their surface, the adhesion can be improved 

by plasma exposure or surface coating, e.g. with hydrophobic ink  43]. The applications based on 

this kind of surface chemical modification can be found at literatures [44,45]. However, it is not a 

stable bonding for long-term packaging solution [45]. 

Thermal pressure bonding. Chips made of thermoplastic can be bonded together by applying 

the heating and pressure [46,47,48]. If the two parts are individually made of thermoplastic 

materials with different Tg, the thermal pressure bonding can be the best choice of packaging, 

because only one of the chip plate can be melted during the bonding process. For example, the 

microfluidic chips can be both made of PMMA but different polymer molecular weight [49]. It has to 

be noted that the ‘melting’ plate is better to be the chip without surface microstructures, in order to 

avoid or reduce the possibility of damage of the microstructures. 

Ultrasonic welding. Similar as the thermal pressure bonding, the chips made of thermoplastic 

materials can be bonded by melting them to form a reliable bonding through input of ultrasonic 

energy. The ultrasonic welding differs from the thermal pressure bonding in that the thermal energy 

in ultrasonic welding is ultrasonically induced and applied only at the interface of two polymer chips 

[ 50 , 51 ]. This bonding method is valuable in many cases where solvents or other kind of 

contaminations are not allowed at the interface due to the integration of biomedical materials. 

However, the ultrasonic welding is limited by the resolution of ultrasonic welding machine. For 

instance, ultrasonic energy may not be entirely concentrated on the designated region thereby 

cause damage of the microstructure on the polymer substrates, if using low resolution machine for 

ultrasonic welding. 
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Laser welding. As it is understood from its name, the thermal energy which presents at the 

interface between the polymer chips in this case is induced by laser radiation [52,53,54]. This 

bonding technique requires the two target polymer plate possess different absorption coefficients 

towards laser radiation, thus it can melt only one plate during the bonding process. This technique 

enables rapid bonding, such as high quality bonding can be achieved within 3 seconds, reported by 

Kim et al. [55]. 

 

2.2 Hydrogel-based Microfluidic System for Cell Culture 

2.2.1 Hydrogels and Its Classifications 

Hydrogels represent a series of three-dimensional crosslinked polymer, with rubber-like 

mechanical properties. They are similar to natural tissues when hydrated [56]. Hydrated hydrogels 

contain mostly water, because the crosslinked networks absorb substantial amounts of aqueous 

solutions. Accordingly, hydrogels are also defined as a colloidal gel in which water is the dispersion 

medium [57]. At microscale, hydrogel is like a three-dimensional network, constructed by carbon 

chains which are tangled with each other and connected by chemical permanent junctions. The 

gaps between chains are filled with water molecules thanks to the hydrophilic property of the carbon 

chains, when hydrogel at its swollen state [58]. In contrast, the gaps between carbon chains 

become hollow space, when hydrogel under drying conditions. 

To understand the fundamental structure of hydrogels, PHEMA (poly (2-hydroxyethyl 

methacrylate)), which plays an important role in this thesis, is chosen as an example for clarification. 

Fig.2-1 illustrates the process of synthesis of PHEMA hydrogel at molecular scale. PHEMA hydrogel 

is constructed through repetition of a same units, monomer of HEMA. The molecular structure of the 

monomer of HEMA is shown in Fig.2-1a in chemical structural expression, e.g. Skeletal formula [59]. 

In these chemical structural expressions, every bond between different atoms is made of two 

electrons, a single bond (single dash) is made of 2 electrons which are tightly bound together and 

difficult to be broken. Moreover, a double bond (double dash) is formed of one simple bond and one 

bond which is not so resistant. Therefore, a double bond is very active that it gives origin to 2 single 

electron when it is break down (pink points in Fig.2-1b represent electrons). For the monomer of 

HEMA, the double dash (green) of the molecule is the active part of the monomer which is able to 

construct carbon chains to form the network structure of PHEMA. The blue region of the HEMA 
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monomer keeps stable during the polymerisation, thus can be simplified as ‘R’ group. Different ‘R’ 

group leads to various hydrophilic behaviours or other physical properties of polymerised polymer. 

There is only a hydroxyl in the ‘R’ group of the HEMA monomer, which makes the polymer 

hydrophilic similar to alcohol (ethanol or methanol). As it is shown in Fig.2-1b, two similar monomers 

with two electrons are merged together to form a new single bond (pink dash) by sharing one of 

their own electrons during polymerising reaction. In reality, such polymerising reaction takes place 

radically and results in a long chain-like molecule made by the repetition of single monomer (see 

Fig.2-1c) because there is large number of HEMA monomers in the solution which are available for 

reaction. This chain-like molecule is named polymer chain. 

 

Fig.2‐1. (a) Molecule of HEMA in chemical formula, and simplification of its chemical formula. (b) The schematic diagram 

of  the  process  of  two  HEMA molecules merged  together  through  reaction.  (c)  The  structure  of  polymer  chain.  (d) 

Molecule  of  EGDMA  in  chemical  formula.  (e)  Structure  of  polymer  chains  connected  by  crosslinker  EGDMA.  (f)  2D 

schematic diagram of the network structure of the polymers/hydrogels. 
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The molecules which are used to link the polymer chains with each other and form inter-

crossed junctions are named reticulating agent or crosslinker. The crosslinker used to form 

reticulated structure of PHEMA in this study, is Ethylene Glycole Di Methyl Acrylate (EGDMA). The 

molecular structure of EGDMA and its simplified molecular structure are described in Fig.2-1d in red. 

During the polymerisation of PHEMA, two double bonds of the crosslinker are activated and merged 

together with the polymer chains. The schematic process is illustrated in Fig.2-1e, two individual 

polymer chains are bonded together by inserting the activated double bonds of crosslinker (red) into 

the middle of polymer chains. A large number of such reactions are undertaken enabling a reticulate 

structure constructed by the polymer chains and the crosslinker molecules, such as the two-

dimensional schematic diagram shown in Fig.2-1f.  

Generally speaking, hydrogels can be categorized in two groups based on their natural or 

synthetic origins. Natural hydrogels are expensive because they are derived from animals or other 

natural source. For the purpose of culturing cells, there is a risk of using natural hydrogels as a 

substrate/scaffold that may carry unknown disease from animal source because they are from 

natural source. However, the cells grow well on/in them also because they are from natural source. 

Conversely, artificial hydrogels are cheap, and the components to construct artificial hydrogels are 

easy to be controlled. Meanwhile, the major disadvantage of artificial hydrogels is that their 

biocompatibility is not as good as the natural hydrogels when they are used in biological 

applications, such as cell culture. 

Natural hydrogels. Natural hydrogels are good candidate materials for biomedical engineering 

applications. One of the most popular applications for hydrogels in biomedical engineering is 

culturing cells in microfluidic devices which are made of or embedded with hydrogels [60]. Due to 

the characteristics of cells, they are highly sensitive to their micro-environment in their original body, 

which is known as in vivo environment. Under in vivo environment, cells grow in a complex 

bioactive scaffold which provides mechanical support for cell adhesion, differentiation and gene 

expression. This environment around cells is called extracellular matrix (ECM) [61]. The ECM for 

incubating cells outside their original body, which is called in vitro environment, should reproduce 

the in vivo environment as closely as possible. For the purpose of incubating cells, natural 

hydrogels can act as suitable substrate for the device, such as collagen [62], fibrin [63], hyaluronic 

acid [64] from animal source, and chitosan [65], alginate [66], or silk fibrils [67,68] from botanic 



 

~	19	~	
 

sources. These hydrogels have excellent biocompatibility and bioactivity because they are derived 

from natural sources [69].  

However, the growth of internal structures of such cell for promoting hydrogels are complex, 

which causes difficulties for researchers in determining correlations of communication signals and 

cellular function [70]. Also, the natural hydrogel can be degraded quickly when extracted from their 

original natural source, and form a risk of contamination, possibly carrying disease from the natural 

source to another. Thus, the advantages of artificial hydrogels can be obviously in these aspects. 

Artificial hydrogels. Hydrogels can be synthesised from purely artificial molecules such as 

poly (ethylene glycol) (PEG) [ 71 ], poly (vinyl alcohol) (PVA) [ 72 ], and poly (2-hydroxyethyl 

methacrylate) (PHEMA) [73]. The viability of cells has been evaluated when cells are cultured on 

PEG [74]. The work demonstrated that synthetic hydrogels are similar to the ECM in the in vivo 

environment, so that they can be an incubating platform for cells. Besides, using artificial hydrogels 

for culturing cells is much cheaper than using natural hydrogels, as such artificial hydrogels are 

highly reproducible. Moreover, it is possible to modify their specific physical properties through 

changing the type or amount of the monomer which artificial hydrogels are constructed. These 

controllable properties contribute to the advantages of artificial hydrogels upon natural hydrogels.  

Noticeably, artificial hydrogels have a serious flaw for biological applications as they are lack of 

bioactivity to promote cell behaviour, such as allowing cells to act as a template to permit cell 

function [69]. Fortunately, the bioactivity of artificial hydrogels can be improved by further modifying 

their surfaces or their inner properties, such as coating with a layer of gelatin. For this reason, the 

artificial hydrogels are still widely used in applications of biological engineering, tissue engineering 

or regenerative medicine.  

 

2.2.2 Properties of Hydrogels 

Young’s modulus is always utilised to indicate the initial resistance to stresses, which are 

induced by compression or tension. Most of hydrogels have small Young’s modulus, leading to their 

rubber-like mechanical characteristics. If using hydrogel to produce a device, soft is obviously a 

merit that the device will not break easily like that devices which are made of glass or plastic, e.g. 

polystyrene or PMMA.  

The densities of hydrogels are mostly smaller than or close to that of water, because the 
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hydrogel is partially filled with water molecules at its swollen state [75]. Generally speaking, the 

amount of water in hydrogel is at least 20 wt%. But for superabsorbent hydrogels, the percentage of 

water can reach up to 95 wt% [76]. Owing to the large number of water molecules, hydrogels can 

be utilised as a semi-permeable membrane for separation processes [77], or as biomaterials for 

transporting bioactive agents within tissues [78,79]. Such applications experimentally examined the 

ability of hydrogel to restrict or allow the movement of a solute. The molecular structure of hydrogels 

is usually described as a three-dimensional mesh with a random distribution of water-filled 

nanopores allowing permeation of molecules between polymer chains [80]. The movements through 

which the solute molecules can be transported through hydrogel take place mostly via the water-

filled nanopores. The permeability of hydrogel is dependent on the size of the pores, the size of the 

solute molecules, and the diffusion coefficient of the solute molecules in water [80]. The size of 

nanopores is determined by the variety of hydrogels, which can be as large as Ø100 nm that allows 

protein molecules pass through, or can be small enough to restrict the passage of inorganic 

molecules. 

Hydrogels usually works in room temperature (20 ̊C) or body temperature (37 ̊C), which are 

lower than their Glass Transition Temperature (Tg). Under these environmental conditions, there are 

two temperature-depending physical states of a hydrogel: hydrophilic when dehydrated (dried state) 

and hydrophobic when hydrated (swollen state). These two states are interchangeable from each 

other, such as swelling automatically when hydrogels are sank into water, or drying by heating over 

the Volume Phase Transition Temperature (VPTT) [81]. Accordingly, the state of hydrogel (Dried or 

Swollen) can be determined by controlling the temperature near hydrogel. For instance, it is 

reported that a self-cleaning behaviour to growing and releasing cells from their substrate is 

achieved by utilising the thermoresponsive property of PNIPAAm (poly(N-isopropylacrylamide)) 

hydrogel [82]. Generally, the VPTT of thermoresponsive hydrogels is ranging from 32 ̊C to 34 ̊C, 

which is below the temperature in vivo, 37 ̊C. Thus, when hydrogel is implanted into in vivo 

environment, they are under its dehydrated state but behave as hydrophobic all the time [83].  

In this study, the PHEMA hydrogel which is used as a membrane is not a thermoresponsive 

hydrogel. Hence, the swelling state of PHEMA hydrogel is not dependent on the temperature, 

though the working temperature of the device embedded with PHEMA membrane is body 

temperature in this case because of the requirements of cell culture.  
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2.2.3 Applications of Hydrogels for Bio-purposes 

Hydrogels possess many characteristics that potentially make them ideal biomaterials. The 

major striking advantages of hydrogels are their high water content and the good biocompatibility 

when compared with plastic or silicon [84]. Successful examples include contact lenses [85,86], 

wound dressings [87,88], super absorbents [89,90,91], and drug delivery systems [92,93]. The high 

impact applications of hydrogels are cell-based therapeutics [94,95] and soft tissue engineering 

[67,96]. For instance, the most common used biomaterial for growing skin product is collagen 

hydrogel [97]; Bertagnoli et al. performed a mechanical test of a novel hydrogel which can be 

implanted as the replacement of nucleus pulposus [98]. These bio-purpose applications are on the 

foundation of the similarity of hydrogels and real tissues: they both are hydrophilic, resistant to 

fatigue, and possess similar density. 

 

2.2.3.1 2D or 3D Cell Culture in Microfluidic System 

Microfluidic system is able to handle or perform the reaction or detection of very small samples 

(e.g. germ or cells) and rapidly induce the results with high resolution. Hydrogels possess the 

properties of biocompatible, molecules diffusible (especially for small molecules, e.g. oxygen or 

glucose) and easy to be synthesised. Therefore, microfluidic system and hydrogels are a perfect 

couple to cope with cellular biology or other bio-related investigation, such as cells culture. 

Culture of cells in vitro provides a defined platform for investigating the physical behaviour of 

cells and tissue outside the organism. Traditionally, the culturing of single cell group is achieved by 

using two dimensional (2D) substrates, such as tissue culture polystyrene (TCPS). In the 2D culture, 

cells experience the equivalent concentrations of nutrients, growing factors from the culture medium 

to the in vivo environment to simulate the ECM environment in their original body. For instance, with 

the technology of microfluidic systems, culturing of mammalian cells (such as liver [99], kidney [100] 

and other common cells [101,102,103]), stem cells [104], for tissue engineering [105,106] have 

been reported. When hydrogels are integrated into microfluidic system, e.g. act as a culturing 

substrate, a number of advantages emerged and better biocompatibility of such system can be 

achieved. For example, Engler et al. demonstrated that the differentiation of human mesenchymal 

stem cells (hMSCs) is dependent of the mechanical stiffness of substrate of the system [107,108]. 

In this perspective, hydrogels which have good biocompatibility and flexible property are the best 
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choice for mimicking the ECM for culturing cells. However, the communication among cells is quite 

different between the culture of cells in vitro or in vivo, because the microenvironments (especially 

the structure) at these two conditions are diverse [109]. The typical example to evaluate such 

differences can be found in the contrast experiments that culturing neural cells in 2D platform 

(coated surface) and 3D scaffold (PEG hydrogel) [110]. With the integration of hydrogels, 3D cell 

culture becomes possible and convenient over the past few decades. For instance, Liu et al. 

produced 3D hepatic tissues by photopatterning of poly(ethylene glycol) (PEG) hydrogels containing 

cells [111]. They incorporated cell-adhesive peptides, representing specific ECM proteins, in the 

hydrogels to support hepatocyte survival. 

 

2.2.3.2 Perfusion Cell Culture 

Not only can 2D/3D cell culture platform be built through hydrogel-based microfluidic technique, 

but also the process of cell culture, such as perfusion culture, can be achieved using hydrogel-

based microfluidic device. Microfluidic perfusion culture enables the controlling of delivery or 

removal of the molecules (i.e. drug/solute) in the extracellular microenvironment, and it is also able 

to offer the controlling of the hydrodynamic stress which is applied on cells by modifying the fluid 

flow rate. All these controls can be done with the assistance of numerical control (NC) system, thus 

enable the fully automatic microfluidic perfusion culture as a long-term process. For such long-term 

automatic culture, there are some successful examples that Tourovskaia et al. developed a long-

term (>2 weeks) perfusion culture system to incubate muscle cells, and observed that the 

differentiation process from myoblasts to myotubes [112]; Korin et al. developed a periodic ‘flow-

stop’ perfusion culture system for incubating human embryonic stem cell in long term (a week) [113]. 

Moreover, with the advantages being the low cost and low culture medium consumption, using 

microfluidic systems to culture cells also provides an opportunity to incubate mammalian cells in a 

chip with small size and make cells to be operated fully automatically [114]. To achieve such 

automatic perfusion culture system, two key conditions have to be carefully designed: 

hydrodynamic shear stress on cells and nutrient supply for cells. 

Hydrodynamic shear. Fluid flow in perfusion culture systems leads to the transport of 

molecules and also results in uneven distribution of hydrodynamic shear stress in the system. The 

maximum shear stress in the culture system has to be limited, because large shear stress may 
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cause the cells to detach from their substrate. In human body, a wide range of fluid velocities exist. 

For instance, the velocity in large blood vessels may measure up to 300 mm/s [115], but the speed 

slows down immensely since the vascular network expands over the entire volume of the body at 

the capillary level. Interstitial flow from the vascular system to the lymphatic system is normally in 

the range of 0.1-1 μm/s [116]. 

Nutrient supply. Nutrients, such as glucose, oxygen and carbon dioxide, are all necessary 

growing factors for culturing cells. Glucose is the primary nutrient as well as energy for growth, 

differentiation and proliferation of cells. Oxygen and carbon dioxide are the necessary nutrient and 

metabolite for cells, respectively. To mimic the ECM environment for the perfusion culture system, 

the concentrations of these nutrients have to be individually controlled in a certain range suitable for 

the cells, and to dynamically adjust the increasing density of cells in the culture chamber, in order to 

meet the consumption requirements of cells which are growing all the time [117]. 

 

2.3 Summary and Thesis Tasks 

The state of the art and the definitions of the scientific terms, which are correlated to the topic 

or work of this thesis, are addressed in this chapter. A number of literatures have been referenced 

and briefly introduced, in order to lay clear and solid foundations for the materials and technologies 

which are related to the simulations and experiments in the following chapters, including mechanical 

properties of hydrogels, fabrication and packaging techniques of microfluidic devices and principle 

of hydrogel-based microfluidic system. Although there have been extensive works studying on both 

hydrogel and microfluidic system, as are reviewed in this section, successful examples of 

applications of hydrogel-based microfluidic system for cell culture are still very problematic. This has 

presented the challenges for the development of a feasible and reliable packaging process to 

integrate the hydrogel and microfluidic system forming a multifunctional cell culture device.  

To address the challenges, the factors which are not fully understood based on literatures but 

essential to enable future applications turns to the tasks for this thesis: 

(1) Mechanism of diffusion of glucose in PHEMA hydrogel 

(2) The cytotoxicity of PHEMA hydrogel to cells 

(3) The adhesion strength of cells to PHEMA hydrogel substrate 

(4) The theoretical model to represent the mechanical behaviour of PHEMA hydrogel 
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(5) Packaging method which enables assembly and disassembly routines  

(6) Investigation of the dynamic performance of the perfusion culture device 

The first three factors are related to the bio-properties of PHEMA hydrogel, which have been 

experimentally evaluated and described in the Chapter 4 of this thesis: i) The characteristics of 

diffusion of glucose defines the molecule transportation between culture chamber and the drug 

delivery reservoir. ii) The cytotoxicity of PHEMA hydrogel has big impact on cells because of the 

direct contact of PHEMA hydrogel and cells. iii) The adhesion strength of cells to PHEMA substrate 

indicates the maximum fluidic shear stress on cells, thereby determines the maximum fluid flow rate 

within the perfusion culture device.  

The following two factors (4 and 5) are utilised to develop a novel packaging method, as it has 

yet to find a commonly used packaging method that enables assembly and disassembly routines. In 

this thesis, the mechanical fastening process is investigated to provide such reliable packaging 

method for microfluidic device. Mechanical fastening is a conventional assembly technique, which 

has been extensively utilised in various industrial applications, in particular for large components 

construction (e.g. aircrafts). It has presented a number of advantages over other assembly/bonding 

methods, such as low processing (e.g. ambient) temperature, easy-to-repair or replacement, low 

costs and possibilities of multiple disassembly. Using mechanical fastening process to bond 

microfluidic device offers a number of merits, such as room temperature bonding, recycle enabled, 

no glue or heating needed, and low cost for whole process. This challenge has been elaborated in 

the Chapter 5 and Chapter 6 in the thesis.  

After the Chapter 4, 5 and 6, the hydrogel-based microfluidic device is thereby constructed as a 

perfusion cell culture system. The parameters of such microfluidic device are determined using CFD 

(Computational Fluid Dynamics) simulations to study the characteristics of transportation of nutrient 

molecules or fluid molecules during the operation of the system. Guidelines for optimising the 

dimensions of culture chamber can then be proposed. These systematic simulations, in 

correspondence with the investigation of the dynamic performance of the perfusion culture device, 

have been implemented in the Chapter 7 of the thesis.  



 

~	25	~	
 

Chapter 3. Research Methodology 

3.1 Theories and Tools for Modelling 

3.1.1 Material Characteristics and Simulation Theories 

3.1.1.1 Mechanical Deformation Models 

Hydrogel materials may be stressed when they are embedded in a microfluidic device. 

Potential failure of such hydrogel component is likely to occur if the stress is high enough, due to its 

soft and rubber-like property. Therefore, it is important to understand and simulate the mechanical 

behaviour of hydrogels in the device, since mechanical properties of hydrogels are sensitive to 

devices in some specific applications, e.g. perfusion culture. For instance, the wall of microchannels 

of a perfusion culture device which is made of hydrogel must endure forces imposed by the flow of 

an aqueous solution, their responses to the liquid pressure and to the hydrodynamic stress are the 

key factors to determine the dimensions of device [118]. According to the literatures, the mechanical 

behaviour of hydrogels can be well described using the theories of rubber elasticity and 

viscoelasticity, which is based on time-independent and time-dependent recovery of the polymer 

chains, respectively. 

According to the behaviour of hydrogel specimens from mechanical tensile or compressive test, 

it demonstrates that the response of hydrogel to stress is nearly instantaneous and the deformation 

induced by stress is fully reversible unless material failure occurs. It is easy to notice that the 

mechanical response of hydrogel to stress is similar to that of rubbers, as hydrogels and rubbers 

have similar structure at molecular scale. The microstructure of hydrogels at swollen state is 

crosslinked networks with free volume between chains. This structure allows the deformation 

undertaken when external stress is applied and deformation recovered rapidly if external stress is 

removed. Such response to external stress can be characterised by three theories: elastic-plasticity, 

hyperelasticity and viscoelasticity. The stress-strain curves for the materials in terms of these 

theories are schematically shown in Fig.3-1.  

Elastic-plasticity. Elastic-plasticity is widely used to depict the mechanical behaviour of 

common materials in daily life, e.g. metals. In this theory, strain ascends linearly with the increasing 

of stress at the beginning (see Fig.3-1a). Within the linear region, the deformation is fully reversible 

if the external stress is released, which describes the elasticity of the material. When the stress 
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keeps increasing beyond the elastic region of the material, the irreversible deformation is caused 

even if the external stress is removed (see dash line in Fig.3-1a). The slope of the linearity 

quantitatively depicts the relationship between stress and strain, and the value of such slope is 

known as Young’s modulus or initial tangent modulus. Young’s moduli of different hydrogels are 

experimentally examined by several research groups [85,119,120]. However, in room temperature 

or body temperature, most of hydrogels exhibits mechanical behaviour similar to rubbers [121], 

which is understood as hyperelasticity [122,123] (see Fig.3-1b). If the temperature is low enough, 

hydrogel can lose their rubber elastic properties but exhibit characteristics of viscoelasticity (Fig.3-

1c). Obviously, using the Young’s modulus, elasticity can only approximately describe the initial part 

of deformation behaviour (stress-strain relationship) based on hyperelasticity or viscoelasticity, 

which cannot satisfy the needs to elaborate the deformation of hydrogels at all range of strains. 

 

Fig.3‐1.  (a) Stress‐strain  correlation  for elastic‐plastic material, e.g. metal.  (b) Stress‐strain  correlation  for hyperelastic 

material,  e.g.  hydrogel  or  rubber.  (c)  Stress‐strain  correlation  for  viscoelastic  material,  e.g.  amorphous  polymers, 

semicrystalline polymers. 

 

Hyperelasticity. As is illustrated in Fig.3-1b, the deformation of hyperelastic materials is fully 

reversible at all range of strains before reaching the failure point of material. Theoretically, there are 

two types of descriptions for hyperelastic deformation behaviour: phenomenological descriptions 

and mechanistic descriptions [ 124 ]. Phenomenological description of hyperelastic behaviour 

includes three main models, Mooney-Rivlin model, Beda model and Ogden model. Mooney-Rivlin 

model is the first hyperelastic model which is developed by Ronald Rivlin [125] and Melvin Mooney 

[126]. This model can predict the deformation of material under strain of 100%. Ogden model, a 

model that is suitable for the prediction of large deformation of rubber-like material (larger than 700% 

strain), is developed by R.W. Ogden in 1972 [122]. A unique model has also been proposed by 

Beda and Chevalier [127] who linked the Gent and Thomas model [128] with Ogden model to 

achieve the theoretical prediction in both small and large strain range, e.g. 0~700% strain. For 
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mechanistic description, neo-Hookean model [129] and Arruda-Boyce model [130] are the most 

common models accepted. Neo-Hookean model is able to predict the deformation under 100% 

strain. Beyond this strain point, the disagreement between the stress-strain curves from theoretical 

simulation and experimental testing becomes obvious. Unlike others, there is no range limit of the 

strain for Arruda-Boyce model.  

According to the ultimate strain that PHEMA hydrogel can resists (60% strain), the Mooney-

Rivlin model and neo-Hookean model are capable of describing and predicting the deformation 

behaviour of PHEMA hydrogel in this study. By utilising PHEMA hydrogel as a sealing membrane 

for microfluidic device packaging using mechanical fastening technique, compressive load is the 

external stress that hydrogel membrane has to withstand. Hence, the response of PHEMA hydrogel 

to compressive load is investigated in Chapter 5 on the basis of Mooney-Rivlin model and neo-

Hookean model. 

Viscoelasticity. If an external stress is applied to the viscoelastic material, a time-dependent 

response can take place [131], as such several unique phenomena during the load or unload 

process are observed which can be depicted as follow [132]: 

 If a constant stress is applied on the material, the response of strain will gradually increase 

with time. 

 If a constant strain is applied on the material, the response of stress will gradually decrease 

with time. 

 If periodic load is applied on the material, hysteresis (a phase lag) occurs. The grey area in 

Fig.3-1c is the hysteresis loop and shows the amount of energy lost in a loading and 

unloading cycle.  

In this case, the working temperature of the PHEMA hydrogel is body temperature (37 ̊C), the 

required temperature for cell culture. Thus, deformation behaviour of PHEMA hydrogel can be 

regarded as hyperelasticity instead of viscoelasticity, because the recovery of the deformation is 

undertaken and completed straight away under such temperature. Furthermore, PHEMA hydrogel 

membrane is designed to be compressed at all the working time within the microfluidic system, in 

order to offer a reliable sealing for the microchannels. Hence, there is no movement for PHEMA 

membrane when it is sealed and bonded in the microfluidic system under its working conditions. 

Thus, there is no impact of viscoelasticity on the use of the PHEMA hydrogel membrane.  

As a brief summary, the investigation of PHEMA hydrogel mechanical properties should only be 

considered as hyperelastic behaviour, e.g. Mooney-Rivlin model and neo-Hookean model. The 
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feasibility of using hyperelastic theory to represent the mechanical behaviour of PHEMA hydrogel is 

examined in detail at Section 5.3.3. 

 

3.1.1.2 Diffusion Mechanism Models 

The diffusion of solute molecules in hydrogels is an essential physical phenomenon in many 

biotechnology fields. Generally speaking, the behaviour of diffusion in hydrogels can be defined as 

three models: hydrogel free volume, enhanced hydrodynamic drag on the solute, and increased 

path length due to obstruction. These models are suitable for two types of hydrogels: flexible 

polymer chains (i.e. homogeneous hydrogels) and rigid polymer chains (i.e. heterogeneous 

hydrogels). The diffusion behaviour in homogeneous hydrogels can be precisely described using 

several diffusion theories, but the behaviour in heterogeneous hydrogels is usually examined by 

experimental testing. 

Table 3‐1. Summary of diffusion models and their corresponding hydrogels 

Model  Expression  Reference  Hydrogel Class 

Free volume 
theory 

1 .

1
 Lustig et al. [135]  homogeneous 

Hydrodynamic  .  Cukier [136]  homogeneous 

Hydrodynamic  1
.

3
 Phillips et al. [137]  heterogeneous 

Obstruction  /  Ogston et al. [138]  heterogeneous 

Obstruction  0.84 .  Johansson et al. [139]  heterogeneous 

D is diffusion coefficient, k is constants, r is radius of solutes or fibres, φ is the volume fraction of polymer in gel. 

Free Volume Theory. The model for free volume theory is based on the diffusion process of 

solute in liquid. The solute in the medium moves into the hollow space between polymer chains in 

hydrogel due to random thermal motion, and this movement causes the redistribution of the 

concentration of the solute in both medium and hydrogel. The diffusion will be stopped if the 

equilibrium reached [133]. Yasuda et al. [134] were the first ones to apply this theory to describe the 

solute diffusion in hydrogels. Another version of diffusion behaviour description based on this theory 

is developed by Lustig and Peppas [135]. They proposed the concept of the scaling correlation 

length between crosslinkers. However, these models (shown in Table 3-1) are based on the 
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assumption that the sieving is independent of polymer volume fraction which limits that the 

assumption is only applicable under the low polymer volume factions. 

Hydrodynamic Theory. The Strokes-Einstein equation for diffusion process of solute is the 

theoretical key of transport behaviour of solute molecules for hydrodynamic theory. It assumes the 

solute molecules as large rigid spheres which contain all the possible locations of the molecule due 

to their thermal motion. These ‘large sphere molecules’ moves only by the friction drag force due to 

the movement of the solvent. According to this assumption, Cukier et al. [136] has proposed an 

equation for investigating the diffusion behaviour in homogeneous hydrogels. Meanwhile, Phillips et 

al. [137] calculated the frictional coefficient to predict the diffusion behaviour in heterogeneous 

hydrogels (Table 3-1).  

Obstruction Theory. This theory is based on the assumption that the polymer chains act as 

obstructions in the transport of solute molecules, thereby cause the increase in the distance of 

diffusion transport. Ogston et al. [138] assumed that the crosslinked polymer exists as a random 

network formed with straight long fibres which are crossed with each other, while the solute 

molecule is considered to be a hard sphere. Although this assumption is phenomenological 

reasonable, their prediction results based on this assumption can only provide a qualitative 

agreement to the experimental observation. Johansson et al. [139] developed an obstruction model 

regarding hydrogels as separated cylindrical meshes, and each single mesh consists of infinite 

polymer rod of solvent. The average diffusivity of the solute in the mesh obeys the Fickian theory. 

This hypothesis is similar to the finite element analyse method (FEA) which is widely used in 

numerical simulation.  

According to the work done by Brian Amsden [80] who summarised most of the solute diffusion 

mechanisms and models for hydrogels, one can conclude i) the free volume theory is strictly valid 

only for hydrogel in the diluted solute system because it regards both water and polymer as a same 

function that contributes to transport behaviour of solute. ii) In concentrated solute system, the 

hydrodynamic model by Cukier [136] is reasonable to describe homogeneous hydrogels than the 

free volume models. iii) The obstruction models and hydrodynamic models used to predict the 

behaviour of heterogeneous hydrogels is less accurate and can only give a qualitative description of 

the diffusion properties of hydrogel. 

In this study, free volume theory has been utilised to explain the diffusion mechanism of 
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glucose in PHEMA hydrogel, because they form a diluted solute system. The accuracy of such 

explanation is verified by the free volume theory which is elaborated by Peppas et al. [140]. On the 

basis of these fundamental validations, diffusivity of glucose molecules in PHEMA hydrogel has 

been experimentally examined, which obeys the Fickian diffusion mechanism. These results are 

presented in Chapter 4.  

 

3.1.2 COMSOL Multiphysics  

Finite Element Analysis (FEA), also known as Finite Element Method (FEM), is a numerical 

technique for finding approximate solutions of partial differential equations (PDE) and integral 

equations [141]. On the foundation of FEA technique, it is capable of simulating the behaviour of a 

structure, electromagnetic fields, fluid flow or thermal flow. The modelling has a high accuracy in 

description of the systems by reducing the governing partial differential equations for the system to 

groups of linear algebraic equations [142,143]. 

COMSOL Multiphysics is typical solver software based on FEA technique, which is able to 

simulate various physics and engineering applications, in particular, multiphysics phenomena. This 

software consists of modules to cover different application fields, including electrical, mechanical, 

fluid chemical and interfacing etc. Moreover, the number of available modules is increasing with the 

periodic updates made by the company [144]. The modules of COMSOL, which are used to obtain 

the simulations results in this thesis, include structural mechanics (to validate and predict the 

mechanical deformation of hydrogel), CFD (to study the behaviour of fluid flow) and chemical 

reactions (to investigate the mechanism of diffusion and reaction). 

 

3.2 Equipment and Experiments 

3.2.1 Equipment and Testing Techniques 

Various types of equipment were used in the experimental studies of this thesis. According to 

their uses and applications, they are briefly described in this section. 

For investigating the diffusion property of PHEMA hydrogel, the molecules of glucose diffuse 

out from the PHEMA hydrogel and spread into the PBS (Phosphate Buffered Saline) buffer solution 

which acts as the receptor of the glucose. To determine the amount of the glucose within the PBS 

buffer solution at a certain time point, ICB SBA-90 laboratory glucose meter was used. The glucose 
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meter is capable of detecting the concentration of glucose as low as 0.01 g/L. 

For the purpose of examining the cytotoxicity of the PHEMA to cells, microplate reader (Tecan 

infinite F50), fluorescence microscope (Olympus DP71, TH4-200), optical microscope (Olympus 

IX71) and field emission scanning electron microscope (SEM JEOL JSM-7600F) were employed. 

They were employed based on three different methods used to evaluate the cytotoxicity of PHEMA 

to cells. Microplate reader (Tecan infinite F50) was utilised to evaluate the optical density of testing 

assay which can quantitatively measure the colour of formazan product from CCK-8 assay. The 

fluorescence microscope (Olympus DP71, TH4-200) and optical microscope (Olympus IX71) were 

able to detect the living cells and all the cells (both live and dead) respectively. The SEM (JEOL 

JSM-7600F) was applied to reveal the shape and status of cells which were cultured on PHEMA 

substrate for a long period. 

In the investigation of adhesion strength of cells to PHEMA hydrogel, a self-built agitator was 

specially designed and assembled (details see Section 4.4.2, Page 57-59). It can achieve steady 

rotating speed (±0.1 r/min) at the range of 100~150 r/min. This self-built agitator was able to offer a 

steady rotation to the ECM of the cells which can facilitate a designed hydrodynamic stress field.  

To produce the partially swollen PHEMA specimen, GENLAB laboratory oven MINO/50 was 

used to dry the fully swollen PHEMA specimen to achieve specimens with various degree of 

swelling (DOS, defined by Eqn.3-1 at page 38). 

All the mechanical compressive tests on PHEMA specimens were induced by the Instron 

Series 3366 Model universal testing machine, equipped with i) 10 kN load cell which was used for 

measuring the mechanical responses of PHEMA hydrogel under compression, including the failure 

of material; and ii) 50 N load cell which was used to employ the cycling compressive loads. 

As for fabrication of microfluidic structure on the PMMA substrate, a circuit board engraving 

machine (Create-DCM3030) with a 30°/0.1 mm cutter (Fig.6-6b) was employed. The accuracy of 

the engraving machine was approximate 5 μm of the depth of microchannel, and the speed of 

spindle during manufacturing was set to be 1500 rpm. 

Keyence VHX1000 Series digital confocal microscopy system equipped with 100X-1000X 

universal zoom lens was used to examine the cross-section of the multi-layered microfluidic 

structure, in order to visualise the membrane protrusion in the cavity of microchannels which 

induced by mechanical fastening technique. 
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3.2.2 Synthesis and Preparation of PHEMA Hydrogel 

The polymerisation of hydrogels is a free radical induced catalysis which has been reported in 

literatures [145,146,147 ]. It is synthesised through the polymerisation using a homogeneous 

aqueous solution of the monomer HEMA (70 wt%), water solvent (30 wt%), crosslinker EGDMA (0.1 

mol% of HEMA), catalyser TEMED (1.4% weight of HEMA) and initiator of the reaction ammonium 

persulphate APS (20% weight of water). The reaction of polymerisation is completed by 60% within 

1 hour after mixing the chemicals in the mould [148]. The catalyser TEMED and the initiator of the 

reaction APS are fully consumed during the formation of the chains of PHEMA network, while the 

crosslinker EGDMA can provide the structural interconnections among the polymer chains, thus 

forming the stable chemical matrix in molecular scale. 

For a given hydrogel at a fixed temperature, if the degree of crosslinker in the hydrogel is 

increased, the internal stress among polymer chains may be increased [149], and multiphase of 

hydrogels may be formed, thereby causing various mechanical properties of the hydrogel. Degree 

of crosslinker indicates that the amount of crosslinker agents in the hydrogel mixture solution. 

Higher degree of crosslinker in the hydrogel before polymerisation leads to smaller space between 

network junctions in the hydrogel after polymerisation, as a result of this, smaller degree of swelling 

of hydrogel is presented. For these reasons, the quantity of crosslinker agents (e.g. HEMA, EGDMA 

and any other components) was strictly controlled by using micropipettes, and the polymerisation of 

PHEMA specimen was carried out in this study at a fixed temperature by employing a thermostatic 

water bath, in order to keep side reactions to minimum and avoid a multiphase network structure 

formed inside the PHEMA during the specimen preparation.  

PHEMA specimens are produced with required dimensions by using pre-shaped silicone mould 

in this work. Generally speaking, the geometry control of the PHEMA specimens during their 

polymerisation can be divided into three main steps: i) injecting the polymerising liquid mixture into 

silicone moulds (PDMS) for polymerisation; ii) waiting for the completion of polymerisation reaction; 

iii) extracting the PHEMA specimen from the silicone mould.  

Fig.3-2 illustrates the procedures to fabricate the PHEMA hydrogel into required geometry with 

specific dimensions. PDMS (poly(dimethylsiloxane)) is used to make the silicone mould enabling 

self-adhesive property which can offer a proper sealing to prevent the polymerising PHEMA mixture 

leaking from the mould. Two flat polished aluminium dies are employed to close the system on both 
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sides. Aluminium is chemically stable during reaction of polymerisation, such chemical stability allow 

PHEMA specimen to be easily detached from the aluminium substrate at the extraction step (d to e 

in Fig.3-2). A copper spacer with certain thickness is assembled to determine the equilibrium 

thickness of the PHEMA hydrogel specimens. The polymerising liquid mixture is injected into the 

moulds within 5 minutes after the mixing of the initiator. It is then sealed and pressed by the 

aluminium plate covers to avoid leakages and constrain final geometry of the PHEMA samples (b to 

c in Fig.3-2). The polymerisation of the material should complete within 24 hours [119]. After that, 

the solid hydrogel can be extracted from the mould, which has to be washed with acetone enabling 

the removal of adhesive particles or contaminations.  

 
Fig.3‐2. Schematic diagram of the fabrication process of a PHEMA membrane. (a) Settings of the mould; (b) Injection of 

the polymerising mixture solution; (c) Assembly by compressing, forms a closed chamber for polymerisation of PHEMA; 

(d) and (e) Disassembly of the mould and extract PHEMA after polymerisation completed.  
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PHEMA specimens have been fabricated in two types of geometry, i.e. cylinder and membrane, 

by modifying the shape of PDMS mould. For compressive test which aims to investigate the 

mechanical properties of PHEMA, the dimension of specimen in the direction of compressive load 

cannot be smaller than 5 mm. Otherwise, the range of compressive displacement is too small to be 

measured by the displacement acquisition system of the compressive testing machine. Therefore, 

cylindrical PHEMA specimens, with height of 12.5 mm, diameter of 18 mm and 32 mm, are 

synthesised, aiming to conduct the uniaxial compressive tests (see Chapter 5.3). Meanwhile, 

PHEMA membranes with thickness less than 1 mm have been fabricated, and used to conduct the 

experiments to evaluate the reliability of sealing of microfluidic system by PHEMA membrane. All 

the dimensions of the PHEMA specimens which are used in this thesis, are listed in the Table 3-2. 

The dimensions of the small PHEMA specimen, 9 mm diameter with 7 mm height, are used in the 

cycling compressive load test (Chapter 5.4), which is determined by the load cell (maximum 50 N) 

installed in the compression testing machine. The load cell with capacity of maximum 50 N is 

capable of cycling compressive load test which requires more sensitive measurement of stress than 

uniaxial compressive test, and the load cell with smaller measuring range (e.g. 50 N in compare 

with 10 kN load cell) can detect smaller change of load. Meanwhile, the large specimen with 

diameter of 29 mm and height of 26 mm are used in the diffusion test, because the bigger sample it 

is, the more molecules of solute it can absorb. For the PHEMA membrane specimens, the 

dimensions are determined by the customer designed microfluidic testing rig (described in Chapter 

6), and are restricted by the Corning® Costar® multi-well plate for the cytotoxicity test (96-well plate, 

in Chapter 4.3) and ultimate fluidic shear stress test (6-well plate, in Chapter 4.4). 

Table 3-2. Dimensions of PHEMA specimens 

Geometry Cylinder Membrane 

Testing  
Uniaxial 

compression 
Cycling 

compression 
Diffusion 

test 

Sealing of 
microfluidic 

system 

Cell culture 
substrate 

Dimensions 
[mm] 

Ø18, h12.5 
Ø32, h12.5 

Ø9, h7 Ø29, h26 
28x38, h1 

28x38, h0.8 
Ø6.5, h1 
Ø34, h1 

Ø: Diameter.  h: Height.  
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3.2.3 Swelling and Drying of PHEMA Hydrogel 

After the PHEMA hydrogel is synthesised, a washing process has to be undertaken enabling 

the removal of the water-soluble contaminations or incomplete reacted molecules using ethanol 

aqueous solution. Within the same process, the take-up of water in the PHEMA can be gradually 

increased by reducing the concentration of ethanol in the solution, which can allow the immersed 

PHEMA to reach its fully saturated status prior to the fastening assembly process. However, 

different swelling conditions of PHEMA specimens are required for investigating the effect of degree 

of swelling on its mechanical properties. In such case, an additional drying process of the swollen 

PHEMA specimen is carried out to achieve various degree of swelling of PHEMA specimen. 

As a network structural material, PHEMA hydrogel possesses the properties of interactive 

exchange between external molecules and the crosslinker agents of the material. Thus, for the 

types of the interactive exchange behaviours between external molecules (e.g. liquid or solutes) 

and the hydrogel material, the swelling process and the drying process follow physically-reversed 

mechanisms: i) Swelling, defined as the liquid molecules diffuse into the dried material, is usually 

occurs during the process of hydrogel in prepared state (Fig.3-2e) to the swollen state of hydrogel 

[150]. ii) Drying, depicted as the liquid molecules diffuse out from the swollen material, is used to 

achieve different degree of swelling of PHEMA hydrogel in this study. These two types of interactive 

exchange behaviours are experimentally investigated in the following sub-sections. 

 

3.2.3.1 Swelling and Washing of PHEMA Hydrogel 

Swelling of the hydrogel is a process that allows hydrogel to reach its hydrophilic/hydrophobic 

balance status (equilibrium swelling) from its dry status [151]. The equilibrium status of hydrogel can 

be achieved when the osmotic force of driving solvent into the hydrogel is identical to the elastic 

force between the stretched hydrogel chains [152]. The equilibrium swelling, which reflects the 

dimensional change of the material and the patterns of releasing drugs from the material, is 

controlled by the degree of crosslinker and the interaction between hydrogel chains and solvent 

molecules. At microscale, the hydrogel chains are pushed apart by the solvent molecules during 

swelling. Meanwhile, the solvent molecules attached on hydrogel chains and occupied the space 

between the hydrogel chains, which made the volume of swollen hydrogel larger than that of dry 

hydrogel.  
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During the swelling process, the solvent molecules enter into hydrogel material from outside to 

inside. It leads to the different degree of swelling in the hydrogel, which is higher at the outside layer 

and lower at the inside core. As a consequence, distributed dimensional change which is caused by 

the different degree of swelling can result in an internal stress inside the hydrogel specimen. The 

fracture of specimens can be potentially resulted from the internal stresses due to a rapid change of 

concentration gradient between the inside (glassy core) and outside (swollen surface) of the 

PHEMA material. In order to avoid the fracture of PHEMA specimen in this study, ethanol solution is 

used as a buffer to reduce the internal stresses during the swelling process of PHEMA specimens 

by gradually decreasing the concentration of ethanol in the solution for immersion of PHEMA 

specimen. The ideal process of changing the ethanol concentration guaranteeing PHEMA 

specimens have no internal crack during swelling, which is obtained based on empirical process by 

researchers in University of Milan, is depicted as the dashed curve in Fig.3-3a. However, such ideal 

process of ethanol concentration replacement cannot be achieved because the mechanism of the 

swelling of PHEMA obeys the Fick’s law [153] because the swelling is the process that the solvent 

molecules diffuse into the network structure of PHEMA material.  

 
Fig.3‐3. Swelling and washing process for PHEMA hydrogel. The ideal process of changing the ethanol concentration 

outside the PHEMA specimen is not achievable, and the actual swelling process is an approaching replica process to the 

ideal process, which obeys Fick’s diffusion law.   

 

On the basis of Fick’s law, the diffusion flux of molecules is given by flux=‐PΔc, where P is the 

permeability that does not change at a given temperature (e.g. room temperature), and the Δc is the 
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difference of the concentration of molecules between the inside and outside of the PHEMA 

specimen. Thus, the diffusion flux decreases with the decreasing of Δc, and the diffusion stops when 

the equilibrium is reached, e.g. concentration inside and outside of PHEMA specimen are same. 

Hence, when the PHEMA specimen is initially immersed into aqueous solution of 45 vol% ethanol 

solution after removed from 50 vol% ethanol solution, the change of the ethanol concentration 

inside the PHEMA specimen is obeying the diffusion mechanism which is described by Fick’s law 

(Fig.3-3b). 

To approach the ideal process of change of the ethanol concentration outside of PHEMA 

specimen, the periodic replacement of the ethanol aqueous solution is made (see the solid curve in 

Fig.3-3a). The PHEMA hydrogel specimen were firstly immersed into one litre of 50 vol% ethanol 

aqueous solution for 4 hours which can allow the PHEMA hydrogel being almost saturated with the 

50 vol% ethanol solution. The PHEMA specimens were then removed from the 50 vol% solution 

and immediately transferred into the 45 vol% ethanol solution for another 4 hours to dilute the 

ethanol sucked in the specimens, which can serve the dual purposes: i) cleansing the residuals 

remained inside the PHEMA, and ii) reducing the ethanol content inside the specimens. This 

process was repeated by decreasing the concentration of ethanol solution by 5 vol% each time until 

ethanol content in the solution reached 5 vol%. After that, the ethanol content in the solution was 

reduced to 2.5 vol% and 1.25 vol% for further 8 hours before they were finally transferred into pure 

deionized water for 5 times to ensure the minimal ethanol content remaining inside the PHEMA 

specimens prior to the uses of such PHEMA specimens. It is understood that the handling of the 

PHEMA specimens at the final stage of treatment can be critical, thereby a smaller reduction (e.g. 

2.5 or 1.25 vol%) of the ethanol concentration had to be applied to ensure no damages such as 

fracture can occur. 

Therefore, compared with the ideal process of change of the ethanol concentration, the actual 

process which is implemented in this study shows a ‘dip’ in Fig.3-3 between every two concentration 

change points, but overall it still follows the trend of the ideal wash curve. This swelling and washing 

procedures of hydrogel materials take up to 3 weeks in total, and it shows a novel preparation 

process for hydrogels, which has similar time consumption but quite a different route of the 

preparation process from literature [154].  
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3.2.3.2 Drying of PHEMA Hydrogel 

Drying of the hydrogel is a reverse process to swelling, which aims to evaporate solvent 

molecules out of the network structure of hydrogel. Drying of the PHEMA hydrogel in this study is 

used to obtain PHEMA hydrogel specimens in different degree of swelling (DOS) from their swollen 

status, in order to investigate the effect of DOS on the mechanical properties of PHEMA hydrogel. 

 

Fig.3‐4.  (a)  Experimental  data  record  on  the DOS  of  PHEMA  sample  against  time  under  drying  environment with  60 

Celsius  degrees.  (b)  The  pictures  of  the  PHEMA  cylindrical  specimen  in  swollen  status  and  dried  status.  These  two 

specimens have same initial dimensions after synthesis.  

 

Degree of swelling is defined as the ratio of mass of swollen polymer to mass of dried polymer, 

or the ratio of volume of swollen polymer to volume of the dried polymer [155]. For certain hydrogel 

specimen, the error of measuring the volume is usually larger than measuring the mass, this 

geometric error (e.g. non-parallelism of the surface on a cylindrical specimen) of specimen may 

thereby cause the inaccurate calculation of volumetric value. However, the mass of the specimen 

can be precisely measured (±0.0001 g) by using an analytical weighing balance. Therefore, the 

ratio of mass of swollen PHEMA specimen (mc) to mass of dried PHEMA (md) of the corresponding 

specimen is chosen to represent the degree of swelling of PHEMA specimen (q) in this study. Thus 

the expression of degree of swelling is given by 

/                                                                Eqn.3-1 

where, mc is the current weight of the PHEMA specimen on a certain time point, md is the weight of 

the dried PHEMA specimen. GENLAB laboratory oven MINO/50 has been used to dry the swollen 

PHEMA specimens to obtain specimens with different degree of swelling in this study. It offers a 

drying environment condition of 60 ̊C, which is higher than the VPTT for PHEMA hydrogel thus 
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allow the drying process of hydrogel to carry out. The drying speed of PHEMA specimen under 60 ̊C, 

which is obtained by measuring the current weight of the specimen over time, is illustrated in Fig.3-

4a in terms of the DOS of PHEMA specimen against the drying time. The DOS decreases rapidly 

during the initial 2 hours of drying. The decreasing speed slows down with the increasing of time 

(2~8 hours), and reaches a constant value after 8 hours. It took approximate 24 hours for the 

hydrogel ultimately reach its dried status. 

A method which refers to the drying speed graph (Fig.3-4a) is developed to estimate the dried 

weight of PHEMA specimen before reaching their dried status. For instance, if the PHEMA 

specimen with DOS of 1.2 is desired, the first step is to estimate the drying time. The DOS at 1.2 of 

PHEMA specimen corresponds to approximate 4 hours’ drying time according to the curve in Fig.3-

4a. Thus, the PHEMA specimen has to be placed in the oven under 60 ̊C for 4 hours. However, the 

value of DOS of such specimen after this process is still an approximated value, because that the 

precise dried weights of PHEMA hydrogel specimen (md) is yet to know before reaching its dried 

status, due to slight dimensional difference among the specimens. The procedures for acquiring the 

PHEMA specimens which can be used for mechanical test with precise values of DOS are 

developed and recorded as follows: 

1) Measure the dimensions and weight (me) of a PHEMA specimen at its equilibrium swollen 

status. 

2) Check the estimate drying time according to Fig.3-3a to obtain the desire degree of 

swelling. Place the specimen into oven (60 ̊C) and start time counting. 

3) Extract the specimen out of oven after reaching the drying time, and cool the specimen 

down to room temperature. Then measure the weight (mc) of the specimen. 

4) Perform the mechanical test, i.e. uniaxial compression or cycling compressive test. 

5) Collect the specimen after mechanical test, and place the specimen back into oven for 

further drying. 

6) Remove the specimen from the oven after 24 hours, then measure the weight of the 

specimen (md). 

7) The precise value of DOS for the PHEMA specimen which was employed in the 

mechanical test can be calculated using Eqn.3-1. 
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As a result, PHEMA specimens with the values of DOS at 1.1, 1.3, 1.35 and 1.45 are prepared 

according to such drying procedures, to investigate the effect of DOS on mechanical characteristics 

of PHEMA hydrogel, which is reported in Chapter 5.4 in details. 
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Chapter 4. Diffusion and Biocompatible 

Properties of PHEMA Hydrogel 

4.1 Introduction 

The characteristics of diffusion of glucose molecules in poly(2-hydroxyethyl methacrylate) 

(PHEMA) hydrogel have been investigated in this chapter, because PHEMA hydrogel membrane 

acts as a molecule transport media in the designed microfluidic device (see Fig.1-1) according to its 

diffusion property. The reasons that glucose is chosen to be the transport molecule in these 

experiments are: i) Glucose, one of the basic monosaccharide, is the main energy source that cells 

need during culturing. ii) Comparing with other necessary molecules for cell culture, e.g. oxygen or 

carbon dioxide, glucose is more convenient to be detected within the solution. The test of the 

diffusion property of PHEMA hydrogel consists of two experiments: (a) the first one aims to evaluate 

the speed of glucose diffuses out from PHEMA specimen, such as the release rate of glucose from 

PHEMA hydrogel. On the basis of the kinetic theories of diffusion and the experimental results, the 

characteristics of diffusion of glucose molecules in PHEMA hydrogel can be quantitatively 

determined. (b) The second one aims to determine the absorb capacity PHEMA hydrogel to glucose 

in terms of the maximum glucose that a PHEMA specimen can absorb under the current chemical 

environment.  

Another factor which can indicate the feasibility of integrating PHEMA in microfluidic devices for 

bioengineering purposes is the interactive effects of PHEMA to cells, e.g. cytotoxicity or 

biocompatibility. According to literatures, PHEMA hydrogel has been used in bio-purpose 

applications, such as contact lens [85,86]. It can be regarded as a biocompatible material, but the 

quantitative measurements of such biocompatibility are rarely reported. Thus, cytotoxicity and the 

adhesion strength of PHEMA to cells are experimentally evaluated in this study. Both HUVECs 

(Human umbilical vein endothelial cells) and fibroblasts are employed as target cells and cultured 

on the PHEMA substrate, in order to obtain the influence of PHEMA substrate to the cells’ viability in 

terms of determination of the cytotoxicity of PHEMA. These two kinds of cells are the most popular 

models to investigate the effect of ECM (extracellular matrix) to cells. In the experiment to evaluate 

the adhesion strength of PHEMA to cells, a fluidic viscous force is applied on HUVECs to mimic the 
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fluid flow above cells in perfusion microfluidic device, after that they are seeded on the PHEMA 

substrate and formed a strong adhesion on the substrate. Under such fluidic viscous force induced 

by hydrodynamic shear, cells may be detached from the PHEMA substrate if the fluidic viscous 

force is high enough. Therefore, the value of adhesion strength of the PHEMA substrate to cells can 

be derived according to the minimum value of fluidic viscous force that can make cells detached. 

The value of such adhesion strength provides a reference to design the maximum flow rate for the 

perfusion culture device. 

 

4.2 Diffusion Properties of Swollen PHEMA Hydrogel 

4.2.1 Kinetic Theories of Diffusion 

When a swollen hydrogel is sank into buffer solution, the exchange of molecules between 

hydrogel and its external environments starts immediately. In this study, cylindrical PHEMA hydrogel 

specimen, which is fully swollen by glucose solution (200 g/L), is placed into PBS buffer (Phosphate 

Buffered Saline) to investigate the kinetics of diffusion of PHEMA hydrogel to glucose, including 

diffusion speed, diffusion mechanism and capacity of absorption. PBS buffer is a kind of common 

used buffer solution in biological research which can mimic the environment of inside human body, 

because the pH value, osmolarity and ion concentrations of PBS buffer are identical to the isotonic 

environment of human body. 

To analyse the characteristics of molecules diffusion in PHEMA hydrogel, a time dependent 

model, which is based on an empirical power equation, was developed by Peppas et al. [140]: 

,                                                             Eqn.4-1 

where Mt and M∞ denote the absolute cumulative amounts of molecule released from the hydrogel 

at time t and at the equilibrium respectively; k is a constant related to the properties of hydrogel 

network, e.g. structure, degree of crosslinker. And n is the diffusion exponent. According to the 

literature [156], three models which are dependent of the numerical range of the diffusion exponent 

n, can indicate the characteristics of releasing molecules from hydrogel material: (1) Fickian 

diffusion (n=0.5), diffusion controlled release process; (2) Zero-order model (n=1), swelling 

controlled release process; (3) Ritger-Peppas’s empirical model (0.5<n<1), anomalous release with 

respect to the applicability. According to Eqn.4-1, it is easy to notice that the relationship between 
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ln(Mt/M∞) and ln(t) is linear, with slope n and intercept k. Meanwhile, the values of Mt/M∞ and t can 

be obtained from the cumulative release experiment. The value of diffusion exponent n can be 

determined based on the results from cumulative release experiment, to indicate which kind of 

kinetics model can best describe the diffusion characteristics of glucose in PHEMA hydrogel. 

 

4.2.2 Experimental Methods 

Two cumulative release experiments are conducted, with the purposes of i) investigating the 

diffusion characteristics of PHEMA, when it is interacted with glucose molecules; ii) studying the 

capacity of absorption of PHEMA hydrogel to glucose. 

Table 4-1. Process of the cumulative release experiment to determine diffusion 

characteristics of glucose in PHEMA. 

 

For the first type of cumulative release experiment (Purpose I), the experimental set-ups, 

conditions and descriptions are illustrated in the Table 4-1. Step 1, 2 and 3 are the preparing 

procedures, aiming to fabricate the PHEMA specimen which is filled with glucose molecules. 72 

hours of stirring ensure that the glucose concentration inside the PHEMA specimens saturates 

completely. The step 4 aims to obtain the speed that glucose molecules diffuse out from the PHEMA 

specimen, by monitoring the glucose concentration in the PBS buffer over time. The constant 

environment for the diffusion experiment under 37 ̊C and 100 r/min stirring are maintained in water 

bath and using a magnetic stirring system.  
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According to the step 4 in Table 4-1, 3 ml solution is withdrawn from the PBS buffer solution 

outside the PHEMA specimen and immediately replaced by 3 ml fresh 37 ̊C PBS buffer solution at 

the designated time interval points (tx). The samples of such withdrawn solution are stored in -5 ̊C 

fridge in order to avoid the glucose diffusing out from the PHEMA specimen to be consumed by 

germs which may affect the accuracy of the experimental results.  Thus, ICB SBA-90 laboratory 

glucose meter (±0.01 g/L) is employed to measure the glucose concentration in the withdrawn 

solution samples. However in such step 4, the small amount of glucose exists in 3 ml solution which 

is extracted from the PBS buffer solution every time at tx, but the 3 ml replaced PBS buffer solution 

does not contain any glucose. This process causes a glucose loss, thus underestimates the amount 

of glucose which is released from the PHEMA specimen. Aiming to eliminate such glucose loss, the 

amount of glucose released from PHEMA specimen has to be calculated: 

∑                                        Eqn.4-2 

where, M(tx) and Mm(tx) are the actual amount and measuring amount of glucose at the designated 

time interval points tx respectively; x is the order number which indicates the withdraw time of the

3 ml PBS buffer solution. The equilibrium value of M(tx) equals to the value of M∞ from Eqn.4-1. 

Table 4-2. Process of the cumulative release experiment to determine the capacity of 

absorption of PHEMA hydrogel on glucose molecules. 
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The experimental set-ups, conditions and descriptions for the other type of cumulative release 

experiment (Purpose II) which aims to study the capacity of absorption of PHEMA hydrogel to 

glucose, are summarised in the Table 4-2. The step 1 in Table 4-2 is the same as the step 3 in Table 

4-1, ensuring the glucose completely saturated inside the PHEMA specimen. The experimental 

steps of such cumulative release experiment (Purpose II) are described as follows: (1) Place the 

PHEMA specimen into PBS buffer solution to diffuse the glucose out from the specimen. (2) Keep 

the environment under 37 ̊C, 100 r/min stirring for 24 hours, which allows the releasing of the 

glucose reach the equilibrium. (3) Extract 3 ml of the PBS buffer, mark as sample number y and 

store in fridge to keep temperature of -5 ̊C, to avoid consumption of the glucose by germs. (4) Then 

place the PHEMA specimen into 300 ml fresh PBS buffer solution, and repeat the Step 2 and 3. 

This repeat process is terminated if the concentration of glucose in PBS buffer is zero (Step 4). To 

guarantee the zero concentration of glucose, many times of the repeat of Step 2 and 3 have to be 

implemented. In this study, seven times of repeat were carried out, which means the samples 

marked with y (y=1, 2, 3…7.) have been obtained. Therefore, the amount of glucose that is 

absorbed by the PHEMA specimen (Mglucose	[mol]) is given by: 

∑ / 300 ∑ / /       Eqn.4-3 

where, My denotes the mass of glucose [g] that diffused out from PHEMA specimen at the time 

corresponding to the number y. Cy is the measured concentration of glucose [g/ml] from the 

withdrawn solution sample, which is marked as number y. As previously, the concentration of 

glucose was measured utilising the ICB SBA-90 laboratory glucose meter (±0.01 g/L). Thus, the 

capacity of absorption of PHEMA hydrogel to glucose can be given by: 

	 	 	 	 /
	 	 		 	 	 	 	

	 	 	 	
	   Eqn.4-4 

4.2.3 Results and Discussion 

4.2.3.1 Glucose Release Rate  

According to the Eqn.4-1, the experimental results from the cumulative release experiment 

(Purpose I) are presented in Fig.4-1a in terms of the amount of glucose releasing from PHEMA 

hydrogel over time. It indicates that the diffusion speed of glucose from the PHEMA hydrogel 

decreases with time, and approaches the equilibrium after 24 hours. The high diffusion speed at the 

beginning is caused by the initial large difference of glucose concentration between inside and 
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outside environments of PHEMA specimen. With the increasing of time, glucose molecules diffuse 

out from PHEMA specimen and spread into the PBS buffer solution, thus reduce the difference of 

glucose concentration between inside PHEMA and the PBS buffer environment. To determine the 

value of the diffusion exponent n in Eqn.4-1, the linear equation of the positive correlation between 

ln(Mt/M∞)	 versus ln(t)	 is plotted in Fig.4-1b. According to the intercept and slope of the linear fit, the 

values of k and n are calculated by k=0.273, n=0.456. Based on the literature [157], the values of n 

~ 0.5/0.45/0.43 for the specimen geometry of slab/cylinder/sphere respectively, indicate a diffusion-

controlled drug release process, in other word, Fickian diffusion mechanism. Thus, the diffusion 

characteristics of PHEMA hydrogel to the water soluble molecules can be described by the Fick’s 

law. This result offers an experimental validation for that the Fick’s law is applicable to describe the 

behaviour of swelling, which is depicted in Section 3.2.3. Based on the Fickian diffusion for one-

dimensional molecule transport, the equation for determining the diffusion coefficient D for initial 

stage is given by [158]: 

4                                                               Eqn.4-5 

where δ is the height of the PHEMA hydrogel cylinder, which is measured as 26 mm. Thus, the 

approximate value of the diffusion coefficient of PHEMA hydrogel for early time (t=1 s) is calculated 

as D=0.099 [cm2/s], by employing Eqn.4-5.  

 

Fig.4‐1. (a) Release profile of glucose from PHEMA hydrogel in PBS buffer solution at 37 Celsius degree for 24 hours. (b) 

linear plot of ln(Mt/M∞)	versus ln(t), to determine the diffusion exponent. The equation of the linear fit of the data is 

shown. Each set of data was the value averaged from four parallel experiments. 
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4.2.3.2 Capacity of Absorption  

The relationship between the mass of glucose that diffused out from PHEMA at the time 

corresponding to the number y is illustrated in the bar graph of Fig.4-2 with time. Two parallel 

experiments on the same PHEMA hydrogel specimens (Specimen 1 and Specimen 2) were 

conducted in this study. As is shown in the Fig.4-2, the PBS buffer solution from the first time refresh 

(y=1) contains most of glucose releasing from PHEMA specimen which is caused by large diffusion 

speed induced by the large difference of glucose concentration between the PHEMA inside and in 

the PBS buffer environment. After the wash by refreshing of PBS buffer (y=2,3,4), the glucose inside 

PHEMA is removed from PHEMA hydrogel, thereby causes less and less glucose molecules are 

detected from such PBS buffer samples. To ensure enough times of refreshing process have been 

conducted (step 2 and 3 in Table 4-2), the value of My (y=7) has to be identical to zero, thus 

guarantee all the glucose molecules have been removed from the PHEMA specimen, and the 

amount of such glucose molecules are all considered in the calculation of the capacity of absorption 

(Г). Therefore, according to Eqn.4-3 and Eqn.4-4, the total amount of glucose Mglucose [mol] and the 

capacity of absorption Г [mol/kg] are calculated and listed in the Table 4-3.  

 
Fig.4‐2. Bar graph of the amount of glucose detected from the PBS buffer solution versus the time. Sum the amount of 

glucose from all the refresh PBS buffer solutions, the amount of glucose absorbed by PHEMA hydrogel specimen can be 

obtained. 

 

In summary, through the glucose release experiments, the diffusion characteristics of PHEMA 

hydrogel to glucose molecules can be described by Fickian diffusion, which is also known as the 

diffusion-controlled release process. The diffusion coefficient of glucose molecules in PHEMA 

hydrogel has been determined as D=0.099 [cm2/s]. Meanwhile, the capacity of absorption of 
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PHEMA hydrogel in terms of the amount of glucose absorbed by 1 kg swollen PHEMA hydrogel 

specimen that has been experimentally determined is 0.038 mol approximately. These two 

parameters, D=0.099 [cm2/s] and Г=0.038 [mol/kg], will be retrieved and used in the simulation work 

in Chapter 7. 

Table 4-3 Geometric information of the specimens used in the cumulative 
release experiment (Purpose II) and the capacity of absorption 

 Specimen 1 Specimen 2 

Mglucose [mol] 6.33x10-4 5.39x10-4 

Dimensions [mm] Ø29, h26 Ø29, h24 

Volume [cm3] 17.16 15.84 

Mass [kg] 0.016 0.015 

Capacity of absorption [mol/kg] 0.039 0.037 

Ø: Diameter.  h: Height. 

 

4.3 Cytotoxic effect of PHEMA on cells 

4.3.1 Principle and Methods 

The cytotoxicity of PHEMA has been examined by two methods: i) Live/Dead Cell Staining 

imaging, which is used to quantitatively determine the number of live cells or dead cells within a 

culturing well. ii) Cell viability measurement, which is a quantitative method to determine the viability 

of cells. Comparing the status of the cells which are cultured on PHEMA membrane and the status 

of those are cultured without PHEMA membrane, the effect of PHEMA membrane as a substrate to 

the proliferation or differentiation of cells can be obtained by utilising these two examining method, 

i.e. Live/Dead staining and cell viability measurement. 

 

4.3.1.1 Live/Dead Cell Staining Imaging 

Live/Dead cell staining imaging is a common staining technique to visualise the status of cells 

(e.g. live or dead) through highlighting specific chemicals or molecules in the biological tissues [159]. 

In this study, the staining assay which is named acetoxymethyl ester of calcein (Calcein AM) is 

incorporated to highlight the living cells. The Calcein AM is able to penetrate the cell membrane of 

living cells, and be hydrolysed by the cellular esterases inside living cells into green-fluorescent 

Calcein, which emits green light at the wavelength of 515 nm. As dead cells lack active esterases, 
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only live cells are able to be highlighted [160]. Thus, by adding the solution of Calcein AM into the 

cell culture plate, the number of live cells can be counted through detecting the green colour of the 

fluorescence reagents in cells using fluorescence microscope. Meanwhile, the total number of cells, 

including living cells and dead cells, can be obtained by observing the same visual range of the cell 

culture plate using normal optical microscope. Therefore, by calculating the percentage of living 

cells to the total number of cells which are observed within the same visual range, the toxicity of 

culture substrate (PHEMA hydrogel) to the cells can be quantitatively determined. 

                                                                                                                                                                          

4.3.1.2 Cell Viability Measurement 

The Cell Counting Kit-8 (CCK-8) assay (DOJINDO, Japan) is utilised in this study, to examine 

the viability of cells which are cultured on PHEMA hydrogel substrate for long period. Owing to the 

stability of CCK-8 solution, long time such as 24 to 48 hours incubation of cells becomes possible. 

CCK-8 allows sensitive colorimetric assays for the determination of cell viability in cell proliferation 

and cytotoxicity assays. The sensitivity of detection utilising CCK-8 assay is higher than that of 

experiments using other tetrazolium salts such as MTT, XTT or MTS [161]. 

CCK-8 assay primarily consists of a highly water-soluble tetrazolium salt with pink colour, WST-

8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium), which can 

produce water-soluble formazan dye upon bioreduction in the presence of an electron carrier, 1-

Methoxy PMS [162]. After the bioreduction of WST-8 performed by cellular dehydrogenases, an 

orange colour of formazan product is produced. Theoretically, the amount of formazan product is 

proportional to the number of living cells. Thus, the number of living cells can be obtained by 

detecting the amount of the formazan product by measuring its optical density value at the 

wavelength of 450 nm. In this study, the optical density values of the solutions were detected using 

the microplate reader, Tecan infinite F50.  

To guarantee the experimental results are reliable, three experimental groups which were set 

up in this study to calculate the cell viability: (i) the experimental group (cells incubated upon 

PHEMA substrate), (ii) the control group (cells incubated normally, without PHEMA substrate) and 

(iii) the blank group (culturing media without any cells). As the colour of culturing media may affect 

the measurement of optical density, the measuring results (optical density ‘Ablank’) of the blank group 

has to be excluded from the measuring results of both experimental group (Aexper) and control group 
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(Acontrol). Thus, the cell viability of experimental group (Vexper [%]) is given by: 

                                         Eqn.4-6 

According to the literatures [163,164], it can confidently draw the conclusion that the in vitro 

environment (e.g. PHEMA substrate in this study) does not affect the proliferation of cells, if the 

value of cell viability from experimental group (Vexper) is calculated larger than 80%. Otherwise, the in 

vitro environment is toxic to cells. 

 

4.3.2 Preparation of PHEMA Substrates and Cells 

The cells for both Live/Dead cell staining imaging and cell viability measuring are cultured on 

the PHEMA hydrogel membrane within a standard 96-well microplate from Corning corporation 

[165]. As is illustrated in Fig.4-3, cells are cultured on the top surface of the PHEMA substrate in the 

culture medium. In the present study, PHEMA hydrogel membrane has been synthesised and cut to 

fit the dimensions of the culture well, i.e. 6.8 mm diameter and 1mm thickness. Before placing the 

cells, the PHEMA membrane has to be firstly processed in ultrasonic cleaner for 10 mins to remove 

the dirt or other particles on the surface of membrane, then sterilised by autoclave for 20 mins 

under 121~125 ˚C, and finally dipped into the solutions of sterilised PBS (Hyclone, USA) for three 

days, and refreshed daily. 

 

Fig.4‐3. Schematic diagram of culturing cells on PHEMA hydrogel substrate in a 96‐well plate. The thickness of PHEMA 

hydrogel membrane is 1 mm. Cells are incubated upon the surface of the PHEMA membrane. Culturing media is filled in 

the whole chamber.  

	

For the Live/Dead cell staining imaging, primary human fibroblasts have been used as the cells 

which are cultured on PHEMA substrate, the shape of fibroblasts after differentiation is unique as 

they have branched cytoplasm surrounding its nucleus. It is easily to distinguish the living 

fibroblasts from dead ones by observing their characteristics of shapes. Living or active fibroblasts 

can be recognised by their abundant rough endoplasmic reticulum. Dead or inactive fibroblasts can 
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be found as a ball-like geometry (Fig.4-5a) which is far smaller than the active fibroblasts [166]. The 

primary human fibroblasts used in the present experiment were derived from human foreskins, from 

donors undergoing circumcision upon their informed consent, and were approved by the ethics 

committee of WUHAN Union Hospital (Wuhan, China). The cells were seeded on PHEMA hydrogel 

substrate in 96-well plates at a density of approximate 5000 cells/cm2 and incubated in Dulbecco’s 

Modified Eagle Medium (DMEM) (Hyclone, USA) with 10% fetal bovine serum (FBS) (Gibco, 

Invitrogen, USA) and 1% penicillin-streptomycin (MP Biomedicals, USA). The culturing of cells was 

maintained in an atmosphere of 37˚C and 5.0% CO2. After the incubation over 24 hours, the cells 

which are cultured on the PHEMA membrane are ready to be visualised using Live/Dead cell 

staining imaging. 

Before staining cells using Calcein AM assay, 1 ml PBS (Hyclone, USA) has to be firstly 

added to the culture well enabling the washing of cells and removal of esterase from serum. 

Esterase may cause false positive results during the fluorescent measurement, for instance, 

esterase may be released from living cells and attached on the surface of dead cells, thereby 

causes the false positive results that dead cells can also emit green light and exhibits identical to 

living cells. After the washing process for cells, 200 µl Calcein AM assay was added to culture well 

under the conditions of 37˚C and 5.0% CO2. Such 1 mmol/L Calcein AM assay was obtained by 

mixing 1 mg Calcein AM (Dojindo, Japan) and 1 ml anhydrous DMSO (Dojindo, Japan). After the 

stirring and mixing over 20 minutes, the fluorescent reagents in the culture well were removed and 

replaced by 500 µl PBS prior to observing the results using fluorescence microscope (Olympus 

DP71, TH4-200). 

For the experiment of cell viability measurement, human umbilical vein endothelial cells 

(HUVECs) derived from the endothelium of veins from the umbilical cord are used. HUVECs serve 

as a widely used model to study the functions of endothelial cells and the responses of such 

endothelial cells to stretch, shear forces or culturing environments in vitro [167,168]. In this study, 

HUVECs, which were collected by Peking Union Medical College Hospital (Beijing, China), were 

grown and differentiated under the same conditions that were used to culture fibroblast, 10% FBS 

and 1% penicillin-streptomycin within 37˚C and 5.0% CO2 atmosphere. After the incubation over 24 

hours (group 1) and 48 hours (group 2), the values of the viability of the HUVECs cultured on 

PHEMA hydrogel substrate of each group are calculated using Eqn.4-6. 
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4.3.3 Results and Discussions 

Based on the experiment of Live/Dead cell staining, Fig.4-4 illustrates the cells on PHEMA 

substrate in the same visual range under the same magnification, Fig.4-4a and Fig.4-4b were taken 

by optical microscope (Olympus IX71) and fluorescence microscope (Olympus DP71，TH4-200), 

respectively. According to Fig.4-4a, both the living and dead fibroblasts are clearly visualised: 

differentiated fibroblasts are exhibited as strips or branches; undifferentiated or differentiating 

fibroblasts are in the shape of bright spots. Fibroblasts of Nall=55 can be counted in this visual range 

of Fig.4-4a. Meanwhile, the number of live fibroblasts can be obtained from the image taken by 

fluorescence microscope (Fig.4-4b) at Nlive=46, by counting the green illuminated points as the live 

cells. Owing to these two images are focused on the same area of the PHEMA substrate with same 

visual range, the cell viability which is defined as the percentage of live cells to all seeded cells can 

be given by: 

	 100% 83.6%                                             Eqn.4-7 

According to the literatures [163,164], the testing environment is not cytotoxic to cells if the cell 

viability is higher than 80%. As a result of the current experiment, the cell viability which is 

calculated as 83.6% indicates that PHEMA membrane as a substrate for cell culture has no 

cytotoxic effect on the proliferation or differentiation of fibroblasts. 

 
Fig.4‐4.  Image of  fibroblasts cultured on PHEMA membrane over 24 hours, observed by optical microscope  (Olympus 

IX71). (b) Image of fibroblasts cultured on PHEMA membrane over 24 hours, in same visual range and same scale of the 

image of (a), which is observed by fluorescence microscope (Olympus DP71, TH4‐200). Colour reference: Green for live 

cell. 

	

Another experiment for indicating that PHEMA hydrogel has no cytotoxicity to fibroblasts is 

through the observation on the individual shape of fibroblast using SEM photographs. Highly 
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differentiated fibroblasts are observed in Fig.4-5, in the shape of thin spindle (Fig.4-5a) and big flat 

plate with two branches (Fig.4-5b). A large number of fibroblasts on PHEMA substrate with such 

highly differentiated states can be found after 24 hours’ incubation. Therefore, it is an individual and 

direct proof that fibroblast can be successfully cultured on PHEMA substrate, and PHEMA hydrogel 

has no cytotoxicity to fibroblast. 

 

Fig.4‐5.  SEM  photographs  of  fibroblasts which  are  cultured  on  PHEMA membrane.  (a)  Image of  highly  differentiated 

active fibroblast and an  inactive fibroblast seed. The magnification  is 2000x. (b)  Image of an active fibroblast with two 

branched cytoplasm. The magnification is 4000x. 

	

Moreover, quantitatively evaluation of the cell viability on PHEMA substrate was carried out 

based on the HUVECs cells. HUVECs were planted on the PHEMA membranes for two groups, one 

group for 24 hours’ culture, and the other one for 48 hours’ culture. When the incubation complete, 

CCK-8 assay was added to the culture medium and reacted with the living cells. After measuring of 

the optical density at the wavelength of 450 nm of the culture medium, the viability of HUVECs cells 

was quantitatively obtained utilising the equation of Eqn.4-6. The results of cell viability on each 

group are compared with that of their corresponding control group, and illustrated in the bar graph 

of Fig.4-6, thus 59.7% for the group of 24 hours’ culture, while 80.6% for the group of 48 hours’ 

culture. According to the literature [169,170], the degree of cytotoxicity may be underestimated if the 

incubation time is greater than 24 hours, because i) cytotoxicity (e.g. necrosis) normally occurs at 

the initial stage of culturing rapidly and ii) cells are able to adapt the severe environment through 

their differentiations. However, according to the aims & objectives in Chapter 1, the device which is 

developed in this study is designed to enable automatic perfusion cell culture for long term 
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incubation. Thus, the cell viability of longer culturing group (48 hours’ culture) is more convincing to 

display the effect of PHEMA hydrogel to HUVECs than that of 24 hours’ culturing group. Therefore, 

the viability at 80.6% concludes that PHEMA hydrogel membrane utilised as cell culture substrate is 

not toxic to HUVECs at long term incubation (48 hours). 

 
Fig.4‐6. Cell viability test on HUVECs for 24 hours and 48 hours, was conducted using CCK‐8 assay. Cells are incubated on 

PHEMA substrate in PHEMA group, and incubated normally (without PHEMA) in Control group. All incubation of cells was 

performed under 37˚C and 5.0% CO2 atmosphere. The error bar of each group consists of the results from three parallel 

tests. 

	

To summarise the results from these experiments on the cytotoxicity of PHEMA as a substrate 

for cell culture, 83% fibroblasts with highly differentiated shapes are detected on PHEMA membrane; 

and approximate 80% cell viability are obtained by culturing HUVECs on PHEMA membrane over 

48 hours. Accordingly, the conclusions that PHEMA hydrogel has no cytotoxic effect on both 

fibroblasts and HUVECs, and it is can be used as culturing substrate for perfusion culturing devices 

based on the above results and the literatures [163,164,171]. 

	

4.4 Adhesion Strength of Cell-PHEMA 

4.4.1 Principle and Method 

When culturing cells using the PHEMA-based microfluidic device as designed (see Chapter 1), 

the cells are exposed under the dynamic fluid flow on the PHEMA membrane in the culture chamber 

during the culture process. If the fluid flow rate is high enough, cells may suffer a large fluidic shear 

stress induced by hydrodynamic shear force thereby make cells detach from their substrate. In this 

section, the minimum fluidic shear stress that makes cells (HUVECs) detach from their substrate 
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(PHEMA), which reflects the adhesion strength of HUVECs-PHEMA, has been experimentally 

measured based on the method reported by Rocha et al. [172].  

 
Fig.4‐7.  Schematic  flow  chart  of  the  principle  of  the  experiments  to  examine  the  cell‐PHEMA  adhesion  strength.  (a) 

HUVECs spread and occupy the surface of PHEMA membrane after at least 24 hours incubation. (b) Urging the culturing 

media flows rotationally at the speed of ω, shear stress with gradient (linear increasing) is formed and applied on cells. (c) 

Stop rotation and remove the culturing media with detached cells after 5 mins rotation, cells  in a circle with radius of 

Rcritical will remain on the PHEMA surface. 

	

Fig.4-7 schematically illustrates the process of the experiment that was carried out in this study. 

HUVECs are cultured on PHEMA membrane over 24 hours to ensure that the cells are fully 

occupied the surface of PHEMA substrate (Fig.4-7a). After the incubation, a rotated fluid flow at a 

certain angular velocity is applied on cell for at least 5 minutes. The fluidic shear stress is distributed 

linearly with the increase of the radius of the flow (Fig.4-7b). During the rotated fluid flow, cells are 

detached from substrate and suspended in the solution because of the high hydrodynamic shear 

stress towards the edge of substrate. Therefore, after refreshing of the culture medium in order to 

remove the suspended cells, a circular distribution of cells remains on the PHEMA substrate (see 

Fig.4-7c). During the rotation of fluid, the cells on the circular boundary (dashed line in Fig.4-7c) are 

under a critical constraint where adhesion strength to PHEMA substrate equals to the fluidic shear 

stress which applied on them. Hence, the radius of this critical circle Rcritical is correlated to the 

minimum shear stress that can make HUVECs detach from PHEMA substrate.  

The assembly of a rotating system equipped with a cylindrical rotator and the cells cultured on 

PHEMA membrane is schematically illustrated in Fig.4-8a. The linear increasing fluidic shear stress 

along the radius is induced by a cylindrical rotator with a certain angular rotating velocity. If the 

angular velocity of the rotator is ω, the flat bottom of the rotator can offer that rotate velocity v is 

increasing with the radius r linearly (Fig.4-8b). As is shown in Fig.4-8c, the fluid in contact with the 

rotator is flowing together with the rotator in a same velocity distribution, and drag the fluid near 

cells following such velocity distribution, because of the hydrodynamic drag force.  
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Fig.4‐8. (a) Schematic diagram of the set‐ups of rotated fluid flow. Agitator rotates at a certain speed of ω, it forces the 

culture medium rotate due to fluidic viscosity. Thus the fluidic shear stress τ will be applied on cells with linear gradient, 

which  is depicted  in (b), the top view of the PHEMA substrate with rotational flow. (c) Domain of fluid flow  in the gap 

between the bottom of the agitator and the cells. 

	

In a rotation flow with certain rotating angular velocity ω, the velocity (v0) of any point (Point O, 

see Fig.4-8a) in the fluidic domain is given by: 

/                                                           Eqn.4-8 

where, ω denotes the angular velocity of rotator moves, r0 is the distance between Point O and the 

vertical axis (z axis), z0 denotes the distance between Point O and the cells and Z is the gap (1 mm) 

between rotator and cells. For a Newtonian fluid, the fluidic shear stress (τ0) at Point O is given by: 

∙ 	 	                                                      Eqn.4-9 

where, η is the dynamic viscosity of the fluid. Combining Eqn.4-8 and Eqn.4-9 yields: 

∙
/
	 	 /                              Eqn.4-10 

Thus, on the basis of Eqn.4-10, the maximum shear stress (τmax) in the fluidic domain, which is 

in contact with the edge of the rotator (r0=R), can be transformed into: 

/                                                     Eqn.4-11 

where, R denotes the radius of rotator and equals to 16 mm. 
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By assuming the solution is Newtonian fluid without internal slip, the fluidic shear stress (τ) is 

considered to be linearly correlated to the distances away from the corresponding axises, e.g. the 

linear gradient of τ shown in Fig.4-8b&c. Thus, the fluidic shear stress on the critical circle near 

rotator ( ) can be determined according to Eqn.4-11, and the shear stress on the critical circle 

near cells (τcell) can be derived from the expressions of , which is shown in Eqn.4-13: 

								 0                    Eqn.4-12 

								 0                    Eqn.4-13 

where, Rcritical	 is the radius of critical circle and Zcell	 is the height of cells, which is 17 µm for HUVECs 

referenced to the information from source supplier [173]. 

τcell not only indicates the shear stress on the critical circles near cells, but also describes the 

minimum fluidic shear stress (critical shear stress) that can make HUVECs detach from PHEMA 

substrate. τcell is the parameter which reflects the adhesion strength of HUVECs-PHEMA. According 

to Eqn.4-13, the value of τcell can be obtained by measuring the radius of the critical circle Rcritical	 at a 

fixed rotational speed ω. 

 

4.4.2 Details of the Agitator and Experimental Set-ups 

If the rotational speed is low enough, Rcritical may be large enough to make the critical circle out 

of the range of culture chamber, as such the value of Rcritical cannot to be measured. If the rotational 

speed is high enough, Rcritical may be very small, thus hardly be captured. Therefore, an appropriate 

rotational speed that leads to a measurable value of the radius of critical circle (Rcritical) is required. 

Referencing to works done by Rocha et al. [172], they determined that the radius of the critical circle 

Rcritical is approximate 10 mm when the rotational speed is 1000 r/min for the situation that HUVECs 

were cultured on PMMA substrate. Based on this, the rotational speed within the range of 100~150 

r/min was chosen for the present experiment, to achieve an appropriate Rcritical of approximate

15 mm which is determined by the size of standard 6-well plate (radius at 17 mm) for cell culture. A 

self-built DC agitator is thus employed to achieve the steady rotational speed (±0.1 r/min) within the 

speed range of 100~150 r/min. Using this agitator has some advantages over a commercial agitator 

which can hardly meet the requirements of continuously steady rotation with accurate control of 

rotation in our desired speed range. For examples, (1) the minimum spinning speed of normal 
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laboratory homogeniser or disperser is 300 r/min, which is out of the desirable speed range for this 

experiment; (2) for those homogenisers or dispersers that can meet the requirement of spinning 

speed, their rotational speed exhibit fluctuating at low speed range (~150 r/min) which may 

significantly affect the continuous of flow. Accordingly, a self-built DC agitator is built to acquire the 

steady and low speed rotating requirements which has been more satisfactory. 

 

Fig.4‐9. (a) Circuit diagrams of the agitator, aiming to achieve the rotation at a constant speed. (b) Photograph of the 

assembly of the agitator, on the basis of the electronic circuit diagram. 

	

As illustrated in Fig.4-9a, the rotator and the digital tachometer are driven by a DC motor 

through a gearbox. Based on such mechanical transmission design, the spinning speed of the 

rotator can be directly displayed in the digital tachometer (Smart Sensor AR925, Shenzhen 

GRAIGAR Technology Co. Ltd, China). The DC speed controller is utilised to smoothly alter the 
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rotational speed through changing the input voltage of the motor. Thanking to the highly linear 

correlation between input voltage and output rotational speed of DC motor, the voltage regulator 

guarantees the steady voltage input for the whole circuit system including the input voltage of the 

DC motor, thereby ensures the steady rotational speed generated by the DC motor. The stability of 

the rotation is monitored by the digital tachometer which is capable of measuring the rotational 

speed range of 0.5 ~ 19999 r/min with the resolution of ±0.1 r/min. 

The rotator is made of poly(methyl methacrylate) (PMMA) on account of its transparency. A 

transparent rotator enables the opportunity to visualise whether the liquid fills the gap between cells 

and rotator before conducting the experiment, by observing the existence of bubbles directly 

through the rotator and liquid. In the present study, the rotator is manufactured by numerical turning 

lathe to minimise its geometrical run-out tolerance, which can therefore guarantee that the bottom 

surface of the rotator will not contact with the cells while rotating. According to the photograph of the 

assembled agitator in Fig.4-9b, the height of the rotator is fixed and can hardly be altered on the 

vertical direction (see z axis in Fig.4-8c). Thus, a laboratory lift platform (Manual Lifter SE1405, 

Sichuan Machinery Import and Export Corp.) has been utilised to alter the height of the 6-well plate 

in this experiment, in order to achieve the appropriate distance ‘Z’ between rotator and cells. 

The processes of such experiment to determine the adhesion strength of HUVECs to PHEMA 

substrate are described below: 

1) Prepare HUVECs which are cultured on PHEMA membrane in 6-well plate, and replace 

culture medium by PBS buffer. 

2) Clean the rotator using ultrasonic cleaner for 10 minutes. 

3) Assemble the agitator, and test the function of the agitator, e.g. rotational speed, and make 

sure the cycle run-out (tolerance) of the rotator is hardly noticeable while the agitator is 

rotating. 

4) Place the 6-well plate on the lab lift platform, and align the culture well with the rotator 

5) Switch on the agitator, alter and hold the rotational speed at 110 r/min. 

6) Raise the lift platform carefully to make the distance between rotator and cells around 1 mm, 

then start to count the rotating time using a stopwatch. 

7) Switch off the agitator after 5 mins’ rotating, lower down the lift platform gently, remove the 
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PBS buffer and suspended cells in the buffer solution, then replace the PBS buffer by 

formaldehyde solution to fix the location of remained cells. 

8) Extract the PHEMA membrane out of the culture well, and find out the critical circle of 

remain cells on the PHEMA membrane using microscope. 

9) Finally, mark the boundary of the critical circle on the plate, then measure the radius of the 

critical circle Rcritical.  

10) Calculate the adhesion strength of HUVECs to PHEMA using the equation shown in Eqn.4-

13. 

 

4.4.3 Results and Discussions 

In Fig.4-10a~d, the dashed lines shown in the optical micrographs clearly illustrate the 

boundary of the critical circle. As is predicted, cells detach from the surface beyond the critical circle 

(Fig.4-10f), while the cells remain adherent within the critical circle (Fig.4-10e). Based on the 

boundary of the critical circle that is observed, the Rcritical	 for PHEMA is measured to be 12±0.5 mm. 

After the measurement, this observed critical radius have to be translated into the critical shear 

stress (τcell) which is corresponding to the maximum allowed shear stress for cell culture.  

In the steady-shear operation, the rotator rotates with a constant rotational speed at 110 r/min, 

which is ω=11.51 rad/s at angular velocity. Therefore, according to the parameters that media 

viscosity η=8.9*10-4 Pa·s, height of cells Zcell=17 μm, and the gap between rotator and cells Z=1 mm, 

the value of the critical shear stress (τcell) can be calculated as 0.021 dyn/cm2 based on the Eqn.4-

13. This value of critical shear stress as the adhesion strength of HUVECs to PHEMA hydrogel is 

smaller than that of HUVECs to carbohydrate glass (1.0 dyn/cm2) determined by Miller et al. [174] 

and Jang et al. [175]; and is also much smaller than the adhesion strength of fibroblasts to PMMA 

(poly(methyl methacrylate)) at 21 dyn/cm2 and to PC (polycarbonate) at 5.1 dyn/cm2, which is 

reported by Rocha et al. [172]. Utilising the value of cell density (5000 cells/cm2), the critical shear 

stress (τcell) can be expressed as shear stress for individual cell at 4.18*10-6 dyn/cell. Such individual 

adhesion strength for HUVECs to PHEMA is also correspondingly smaller than that of fibroblast to 

Fibronectin (4*10-4 dyn/cell) and fibroblast to Tenascin (2*10-4 dyn/cell), by Lotz et al. [176]. 
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Fig.4‐10. (a‐f) images of PHEMA membrane after shear testing from optical microscope. This set of images was taken 

through the same magnification. (g) shows the location of the images (a‐f) where they were taken. 

	

Such results verified that the experimental approach introduced in this section is able to 

quantify the adhesion strength of HUVECs to PHEMA hydrogel. According to the comparison of 

literatures and the current experimental results, HUVECs present weaker adhesion strength to 

PHEMA hydrogel than that of fibroblast to carbohydrate glass, PMMA, PC, Fibronectin or Tenascin. 

From the aspects of physics, biology and biochemistry, three potential reasons can be proposed to 

give fundamental explanations for such results: i) Firstly, the adhesion strength between cells and 

substrate is dependent of the roughness of the substrate. High surface roughness of substrate can 

provide large area of contact interface for cells to attach, thus a strong adhesion between cells and 
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substrate. In the current experiment, the PHEMA substrate may be too smooth to offer a strong 

adhesion for cells. ii) Secondly, PHEMA hydrogel without any surface treatment is not a perfect 

substrate for culturing cells, though the value of cell viability (80.6%) on cells which are cultured on 

PHEMA substrate (demonstrated in Section 3.5) is larger than the criteria for judging the cytotoxicity 

of a material (80%). iii) Thirdly, it may be related to the molecular interaction at the cell-substrate 

interface. The molecular interaction between cells and substrate is primarily due to the chemical 

composition of proteins [172]. When culturing cells in vitro, the structural support and protection of 

cells are provided by polysaccharides (sugars) and collagen (proteins) which are from the 

extracellular matrix (ECM) [ 177 ]. These sugars and proteins are responsible for transporting 

necessary molecules through cells’ wall, and controlling the elasticity, humidity and adhesion 

[ 178 , 179 ] of the environment around cells. This becomes the primary reason why 

Fibronectin/Tenascin (proteins) and carbohydrate glass (coated by polysaccharides) provide 

stronger adhesion than that by PHEMA hydrogel. Based on these three reasons, the adhesion 

strength of HUVECs to PHEMA hydrogel can be improved through: i) Increase the roughness of the 

surface by using a rough aluminium mould during the synthesis process (Fig.3-2), thus increase the 

surface roughness of the PHEMA specimen which is synthesised from such aluminium mould. 

Accordingly, the PHEMA hydrogel as a cell culture substrate can provide larger area of the contact 

interface for cells to attach. ii) Coat the PHEMA surface with a layer of protein or polysaccharides, 

or cover the PHEMA surface with other hydrogels which possess better biocompatibility, e.g. Gelatin. 

They are both useful to improve the biocompatibility of the cell culture substrate, thereby increase 

the adhesion strength between cells and PHEMA hydrogel substrate. 

 

4.5 Summary 

The characteristics of diffusion and biocompatibility of PHEMA hydrogel have been 

experimentally examined and discussed in this chapter. The diffusion characteristic of water swollen 

PHEMA hydrogel has been proved to obey the Fickian diffusion process for water soluble molecules, 

which refers to glucose in this study. The capacity of absorption for PHEMA hydrogel has also been 

examined by further studying of the characteristics of diffusion of glucose in PHEMA. It indicates 

that approximate 0.038 mol glucose can be absorbed by 1 kg swollen PHEMA specimen. Live/Dead 

cell stain imaging method and cell viability measurement have been used to evaluate the 
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cytotoxicity of PHEMA hydrogel to cells. The results demonstrate that PHEMA has no cytotoxicity to 

cells. To culture cells on PHEMA hydrogel directly, the PHEMA hydrogel may be lack of 

biocompatibility, because only 80% viability of cells which are cultured on the uncoated surface of 

PHEMA is observed. Therefore, the adhesion strength of HUVECs-PHEMA substrate is weaker 

than that of cells to protein substrate or substrates coated with polysaccharides. To cope with this 

issue, two methods utilised to improve the biocompatibility of PHEMA hydrogel are addressed: i) 

increase the roughness of the surface by using a rough aluminium mould during the synthesis 

process. ii) coat the surface with protein or polysaccharides or cover the surface with other hydrogel 

which has better biocompatibility, e.g. Gelatin. 

To summarise, according to the results and conclusions from the current chapter (listed in Table 

4-4), PHEMA hydrogel can be used as a biomaterial for the purposes of cell culture. Specifically in 

this study, PHEMA hydrogel is capable of being used as a sealing membrane for the microfluidic 

chips and a permeable substrate for cell culture, thanking to its non-cytotoxic property and diffusion 

property obeying Fickian diffusion process. 

 

Table 4-4 Summary of results and conclusions in Chapter 4 

Properties of 
PHEMA hydrogel 

Description of Experiments Results Conclusion 

Diffusion 
characteristics  

Glucose release rate  
D=0.099 [cm2/s] 

n=0.456 
PHEMA obeys 

Fickian diffusion 
process 

Capacity of absorption on glucose Γ=0.038 [mol/kg]	

Cytotoxicity 

Live/Dead cell staining imaging 83.6% (>80%) 

PHEMA has no 
cytotoxicity to cells 

Cell viability measurement 80.6% (>80%) 

Observation on fibroblasts 
incubated on PHEMA 

Good shape 

Adhesion strength 
Rotational fluidic flow on HUVECs 

cells incubated on PHEMA 
substrate 

τcell=0.021 
[dyn/cm2] 

Relatively weak 
adhesion to cells, 

can be further 
improved. 
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Chapter 5. Mechanical Characteristics of 

PHEMA Hydrogel under the 

Compression 

5.1 Introduction 

Mooney-Rivlin theory and neo-Hookean theory which are used to analyse the nonlinear 

responses of hyperelastic materials to mechanical compression are elaborated in this chapter 

(Section 5.2). Numerical simulations have been built and investigated through these theoretical 

models, aiming to validate and predict the mechanical behaviour of PHEMA hydrogel. The 

mechanical properties of swollen PHEMA, including ultimate strength, ultimate strain and initial 

tangent modulus, are measured under the equivalent uniaxial compressive conditions, and the 

results are compared with the corresponding simulated results, thereby evaluate the quality that 

using such theoretical model to describe or predict the mechanical behaviour of PHEMA hydrogel 

(Section 5.3.1 and 5.3.2). According to the geometric design of the microfluidic device introduced in 

the Chapter 1, PHEMA hydrogel as an inserted membrane is utilised to seal the microfluidic system 

enabling assembly and dis-assembly routines in this case. In this chapter, the application of cycling 

compressive load on the PHEMA specimens has been considered to examine the resistant property 

of the PHEMA hydrogel to fatigue (Section 5.3.3), aiming to evaluate the repeatability of using 

PHEMA membrane as a sealing membrane for microfluidic device. 

Moreover, PHEMA specimens in different degree of swelling have been prepared, and tested 

under uniaxial compression, to investigate the effect of degree of swelling to the mechanical 

behaviour of PHEMA hydrogel. Numerical simulations corresponded to various degrees of swelling 

under equivalent conditions are analysed and verified by the uniaxial compression experiments (see 

Section 5.4). 

 

5.2 Theoretical Basis in Simulation 

5.2.1 Mooney-Rivlin Model 

The Mooney-Rivlin model [126] is a special case of the generalised Rivlin model [125] in which 

constitutive law can be expressed as:  
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, ∑ 3 3, ∑ 1                     Eqn. 5-1 

where W represents the strain energy density function, I1 and I2 are the first and second 

invariant of the unimodular component of the left Cauchy–Green deformation tensor, Cij are the 

empirically determined material constants and Dm is material constants related to the volumetric 

response, in the case of compressible Mooney-Rivlin material, it is obtained from the polynomial 

form of the hyperelastic model by setting the polynomial parameter N to 1, i.e. the first order 

polynomial [125,180]. J is the elastic Jacobian, which equals to the determinant of deformation 

gradient (F): J=det[F ] [181]. In the experiment of uniaxial compression, C11=0 and M=1, thereby 

Mooney-Rivlin expressions can be written as 

, 3 3 1                        Eqn. 5-2 

Thus, C10, C01 and D1 in the Eqn.5-2 are the related coefficients to be determined. 

Determination of D1 [182] 

Only linear functions of the deviatoric strain invariants are used in the Mooney-Rivlin model due 

to the first polynomial form of the hyperelastic model. The relationship between shear modulus (µ), 

the bulk modulus (κ) and the Poisson’s ratio (ν) are given by 

2                                                   Eqn. 5-3 

                                                                  Eqn. 5-4 

/

/
                                                            Eqn. 5-5 

where C10, C01 and D1 are temperature-dependent material parameters, defined in Eqn.5-2. 

According to the definition of Dm in Eqn.5-1, the parameter of D1 is directly correlated to the 

compressibility of material. Combining Eqn.5-3 and Eqn.5-5, it gives the expression of κ: 

                                                    Eqn. 5-6 

Mooney-Rivlin model is fundamentally established by considering the deformed specimen as 

ideal material (incompressible material), which means that the total volume of material is a constant 

during the deformation of the specimen, thereby the Poisson’s ratio (ν) is 0.5 [125]. However, such 

value of Poisson’s ratio leads to an infinite bulk modulus κ, because the denominator in Eqn.5-6 

equals to zero (1‐2ν=0). As a consequence, the value of D1 is approximately zero based on the 

Eqn.5-4, if the bulk modulus κ is infinite. Therefore, by inserting D1=0 into the Eqn.5-2, the 

expression of the Mooney-Rivlin strain energy density function for incompressible material can be 
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obtained that 

, 3 3                                      Eqn. 5-7 

where, the explicit expressions for the coefficients of I1 and I2 are given in terms of the stretch ratio λ,  

 and . 

Determination of C10, C01 

Due to the relationship between the Cauchy–Green strain tensor γij and Kirchhoff stress tensor 

tij, it’s possible to write 

                                        Eqn. 5-8 

where, 1 because of the assumption of incompressible material. Hence, the equation 

of material principle stress ti and stretch ratio λi is given by 

2                                          Eqn. 5-9 

where P is the hydrostatic pressure. Then the differences between each principle stress for an 

incompressible hyperelastic material are given by 

2                                  Eqn. 5-10 

2                                  Eqn. 5-11 

2                                  Eqn. 5-12 

where t is the true stress (in terms of current dimensions of material), which can be expressed by 

the engineering stress σ and the stretch ratio λ as t=σλ. The stretch ratio is given by 

/ 	 1 , where Li	 is the geometry length on the i direction and ε is the engineering strain 

(positive values for tension, negative values for compression). In this study, uniaxial compressive 

test is carried out on PHEMA specimen, which has only one direction of stress and gives  and 

1/√ . Thus, according to Eqn.5-7 and Eqn.5-10, the stress-strain equation under uniaxial 

compression or tension can be derived as: 

                                               Eqn. 5-13 

It is obvious to note that the relationship between σ/2(λ‐λ‐2) and 1/λ is linear, with slope C01 and 

intercept C10. The linear relationship between σ/2(λ‐λ‐2) and 1/λ can be easily plotted as the 

experimental results from the uniaxial compressive test is obtained in terms of engineering stress σ 

and engineering strain ε. Consequently, the values of C01 and C10 can be determined. 
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5.2.2 Neo-Hookean Model 

The neo-Hookean model offers a numerical solution for analysing the hyperelastic behaviour of 

materials, being similar to the Hooke’s law [180]. Unlike Hooke’s law, the curve described by the 

neo-Hookean model is not purely linear but presents an initial linear region for small deformation 

strain and then a nonlinear behaviour in the region of large deformation strain. It can predict the 

nonlinear deformation behaviour (stress-strain curve) for hyperelastic materials in the deformation 

range of 0~100%. This feature makes neo-Hookean model similar to the Mooney-Rivlin model. For 

a compressible hyperelastic material described using neo-Hookean model, the strain energy density 

function is given by [183]: 

3 1 ; 			                             Eqn.5-14 

where C1 is the constant for neo-Hookean model, which can be derived from the shear modulus µ 

that [183]: 

/2                                                      Eqn.5-15 

In the current study, PHEMA hydrogel are considered as an incompressible material. Thus, 

according to the descriptions in Page 65 with literatures [181,182], it leads to J=1 and D1=0. Thus, 

for an incompressible neo-Hookean hyperelastic material, the strain energy density function can be 

derived by 

3                                                  Eqn.5-16 

It is much simpler than the equation from the Mooney-Rivlin model, which is shown in Eqn.5-7. 

According to the characteristics of uniaxial compression that  and 1/√ , the 

differences between each principle stress can be derived as 

2 ;					 0                              Eqn. 5-17 

According to the relationship between engineering stress (σ) and true stress (t), t=σλ, the 

engineering stress on compressive direction can be derived in terms of shear modulus µ and stretch 

ratio λ: 

2                                      Eqn. 5-18 

Consequently, the mathematical model based on neo-Hookean theory for incompressive 

hyperelastic material can be established in simulation software (COMSOL Multiphysics) according 

to the values of shear modulus µ of PHEMA material. 
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5.3 Mechanical Behaviour of Fully Swollen PHEMA Hydrogel 

 

5.3.1 Uniaxial Compressive Test to Determine the Coefficients for Simulation 

5.3.1.1 Apparatus and Experimental Approach 

Mechanical properties, such as ultimate strength, ultimate strain, shear modulus and Mooney-

Rivlin coefficients are obtained in the uniaxial compressive experiment for PHEMA hydrogel. An 

Instron Series 3366 Model universal testing machine, equipped with 10 kN load cell, was utilised to 

measure the deformation response of PHEMA hydrogel specimens under compression. The 

accuracy of such deformation measurement is ensured by a screw-driven actuator with resolution at 

approximately ±0.05% of measured displacement, while loads can be precisely measured within 

±0.5% of the indicated force at 25°C. This accuracy is acceptable for flexible hydrogel compressive 

tests [184]. 

 

Fig.5‐1. Schematics of experimental setup: Water in the container offered the proper aqueous environment for hosting 

the PHEMA hydrogel specimens during the whole testing process. 

 

To preserve swelling and hydrated conditions of hydrogels, the compressive tests must be 

conducted in aqueous environment. The experimental set-up consists of the actuator (load cell), 

specimen (PHEMA cylinder), water container (polystyrene dish) and substrate (testing platform) has 

been schematically illustrated in Fig.5-1. Water in the container can offer a proper aqueous 

environment for housing the PHEMA hydrogel specimens during whole test. A compressive force is 

applied on PHEMA specimen to give a strain rate of 6 mm/min until the failure of specimen occurs, 

which is indicated by a singularity in the smooth curve in terms of compressive load versus 

compressive deformation. 
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The compressive tests were conducted based on two groups of cylindrical specimens with 

different diameters (Ø18 mm and Ø32 mm) but same height (12.5 mm). The goal of these 

experiments is to extract the stress-strain relationship up to 70% strain or find the ultimate strain. 70% 

strain is referring to compression of the PHEMA specimen by 8.75 mm, according to the specimen 

dimension/height. However, the distance of compression is determined on the basis of the 

maximum strain that can be reached prior to the material failure of the hydrogel. On the basis of the 

ideal compression theory [185], compressive stress has to be obtained in a slow-speed static 

testing condition in order to reduce the viscoelastic effect caused by the damping of the material. 

Therefore, the time to reach the maximum strain for specimen has been set to as 120 s, while the 

corresponding speed is calculated to be 100 µm/s. According to this loading speed, compressive 

loads [N] versus compressive extension [mm] are recorded by data acquisition system (50 sets of 

data per second). After normalising the stress and strain to make them dimensionless, the 

relationship between them in terms of compressive stress [MPa] versus compressive strain can be 

plotted, which is known as stress-strain curve. The shear modulus and Mooney-Rivlin coefficients 

can thereby be derived from the stress-strain curve. 

 

5.3.1.2 Uniaxial Compressive Test Results 

Repeatability of test 

Evaluation of the repeatability of the current experimental method is essential. Five 

experiments were performed on group of PHEMA specimens of the same height but different 

diameters, Ø18 mm group and Ø32 mm group. Fig.5-2a illustrates the stress-strain curve for the 

specimens of Ø32 mm group. At small magnitudes of compressive strain, in both plots, the PHEMA 

specimens of each test exhibited identical behaviour except for the region after 45% compressive 

strain. This region corresponds to the hyperelastic deformation region it behaves as if the modulus 

of elasticity keeps increasing along this part. As compressive strain is further increased, the PHEMA 

specimens begin to reach the ultimate strain representing specimen failure. Fig.5-2b gives the error 

bar graph of failure strain for Ø18 mm and Ø32 mm group, showing the maximum, minimum and 

average values of strain when the specimen exhibits material failure. The values of strain at two 

diamond points are similar, indicating that geometry has no influence on the failure strain of PHEMA 

material in this particular experimental condition. 
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Fig.5‐2 (a) Uniaxial compressive stress vs. compressive strain plots of five specimens in size of Ø32 mm testing group. (b) 

Error Bar Graph plot of ultimate strain of PHEMA specimens  for both  testing group  including original specimen  failure 

data points, marked as [Χ]. 

 

Thus, such strong agreement between the stress-strain curve and error bar analysis of the five 

PHEMA specimens of each group of different diameter indicates that it is repeatable and reliable to 

normalise the dimensions of cylindrical PHEMA specimen in the experimental compressive test. 

Therefore, the parameters (e.g. C10 and C01) used in the numerical simulations can be determined 

based on these experimental data groups. 

 
Fig.5‐3. Difference in compression behaviour (compressive load versus compressive extension) between specimens with 

different dimensions: same height, different diameter. 

 

Load versus extension 

The data of load versus extension (compressive displacement) for the PHEMA specimen in 

various dimensions are recorded directly by the acquisition system in the compressive tests and are 

plotted in Fig.5-3. The solid line indicates the responses curve for the specimen with Ø32 mm and 

the dashed line for the specimen with Ø18 mm. According to the graph, both specimens failed at 
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extension of 5~7 mm. By comparing the curves shown in Fig.5-3, it is apparent that approximately 

two times larger compressive loads are required for the Ø32 mm specimen (in comparison with Ø18 

mm specimen) to have same compressive strain. 

 

Stress versus strain 

The deformation characteristics of the PHEMA specimens under compression are illustrated in 

terms of engineering stress-strain (Fig.5-4a) and true stress-strain (Fig.5-4b). The graphs 

demonstrate that the ultimate true strains are higher than the ultimate engineering strains, e.g. 60% 

and 80% versus 45% and 55% for Ø18 and Ø32 mm specimen respectively. These data obtained 

from the stress-strain curves are analysed under both Mooney-Rivlin and neo-Hookean models.  

 

Fig.5‐4. Difference in compression behaviour (stress versus	strain) between specimens with different dimensions: same 

height, different diameter. (a) Engineering stress versus	engineering strain. (b) True stress versus true strain. 

 

As a summary of such experimental results, at room temperature, the ultimate engineering 

strain of water swollen hydrated PHEMA hydrogel under compression is in the range 45%~55%, 

corresponding to an ultimate yield strength in the range 0.45~0.7 MPa. The PHEMA hydrogel 

recovers its original geometry immediately if releasing the load applied on the specimen, unless the 

compressive stress is beyond the ultimate yield strength and causes the material failure. 

 

Values of C01 and C10 

As is shown in Fig.5-4, an obvious difference between true stress vs. true strain and 

engineering stress vs. engineering strain can be observed. It results from the barrelling effect during 

the compressive experiments on specimens. The barrelling effect is a phenomenon that causes 
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specimen attains a barrel shape, due to the frictional force on the contact interface between 

specimen and actuator. Under compression, the specimen will tend to spread in the lateral direction 

and thereby increase the cross-sectional area according to Poisson’s ratio of material. A frictional 

force on the contact interface between specimen and actuator/substrate will oppose the lateral 

spread. This frictional force consumes the energy which is induced by the compression equipment, 

and thereby slightly affects the value of engineering stress (σ) obtained from the experiment. 

 

Fig.5‐5. (a) Barrelling effect in the compressive tests. Lubricant was used in the test to reduce the barrelling effect on 

specimens. (b) Mooney‐Rivlin analysis by operating a linear programming of σ/2(λ‐λ‐2) and 1/λ on the initial stage of 

deformation in order to extract the Mooney‐Rivlin coefficients. The data from initial stage of deformation has minimum 

effect by barrelling due to friction.  

 

According to Fig.5-5a, the theoretical expressions to describe the mechanical behaviour of 

specimen under compression are based on the ideal compression without lateral friction. In reality, 
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the barrelling effect cannot be eliminated because frictions will always exist in experiment. In this 

study, lubricant (Dow Corning silicone compound) is coated at the contact interface between 

specimen and actuator/substrate to relieve the lateral friction, thereby to replicate the ideal 

compression as close as possible.  

To calculate the values of C01 and C10 using the Eqn.5-13, the relationship between σ/2(λ‐	 λ‐2) 

and 1/λ is plotted in Fig.5-5b based on the experimental results of engineering stress (σ) and 

engineering strain (ε). The relationship illustrated in Fig.5-5b is not a linear correlation as theoretical 

derived, due to the barrelling effect in experiments. To minimise the barrelling effect on the 

calculation of C01 and C10, the initial stage of compression is chosen to implement the linear fitting, 

because the data from the initial stage represent the least effect of frictions. In the initial stage, the 

compressive force applied on specimen is small, which leads to small interfacial friction because the 

frictional force is proportional to the compressive force. Thus, the lubricant works more effectively 

due to the small compressive force, thereby makes the deformation of specimen closer to the ideal 

deformation induced by compression. Accordingly, the inclusion in Fig.5-5b, which is based on the 

extracted data from the initial stage of the compression, is used to carry out the linear fitting. From 

the equations derived from the linear fitting given in Fig.5-5b inclusion, the Mooney-Rivlin 

coefficients are derived. They are: C01=492347.3 Pa, C10=486768.1 Pa for the Ø18mm PHEMA 

specimen, and C01=428880.2 Pa, C10=398611.0 Pa for the Ø32 mm PHEMA specimen. 

 

5.3.2 Simulations of Mechanical Behaviour of Fully Swollen PHEMA Hydrogel 

With the parameters extracted from experimental stress-strain relationships, Mooney-Rivlin and 

neo-Hookean models for PHEMA as incompressible materials are utilised to solve the 

corresponded constitutive equations, in order to obtain the deformation characteristics of PHEMA 

material under compression. Based on the assumption that there is no friction on the interface 

between cylindrical specimen and substrate (ideal compression in Fig.5-5a), the specimens are built 

as 2D-axisymmetric geometry domains in simulation. The schematic diagram such domain in 

simulation for the Ø32 mm specimen is illustrated in Fig.5-6a. The boundary conditions for the 

PHEMA specimen in simulation are determined to achieve the ideal uniaxial compression without 

friction. Thus, focusing on the material slice in Fig.5-6a, the base point O is set to be fixed; the 

constraint of the bottom boundary of the domain is set to be partially free (fixed degree of freedom 
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on the central axis ‘Z’, and free on the radial axis ‘R’). A force along the direction of central axis, 

increasing from 0 N to 400 N (step of 2 N) on the specimen with Ø32 mm and from 0 N to 200 N 

(step of 2 N) on the specimen with Ø18 mm, is set to be applied on the top boundary of the domain. 

The 2D material slice is meshed by rectangular elements with maximum size of 0.592 mm. 

Predefined Finer Quality and refining of the mesh space grid ensures that the solutions of the 

equation are independent of the spatial discretization. 2D-axisymmetric transform converts the 

material slice into a 3D cylindrical geometry, which deliberately replicate the exact dimensions of the 

specimens in experiments. In addition, the density of the PHEMA material is set as 1 g/ml due to the 

water swollen and hydrated status of the PHEMA specimen.  

 

Fig.5‐6. (a) Schematic diagram of the 2D‐axisymmetric model for Ø32 mm PHEMA specimens. (b) Simulation result in 

terms of displacement gradient for the Ø32 mm PHEMA specimens based on Mooney‐Rivlin theory, compressive strain is 

20% 

 

Simulation result in terms of displacement gradient has been illustrated in Fig.5-6b. By 

comparing the geometry of the material domain before and after deformation, it is obviously to see 
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that the deformation of the material domain follows the ideal deformation under uniaxial 

compression (see Fig.5-5a): the material domain spreads in the lateral direction ‘R’ because of 

Poisson’s ratio effect, however, without barrelling effect. Thus, the simulation results in terms of 

stress-strain, which are able to be calculated from the correlation of force-displacement from the 

simulation, can be obtained and compared with experimental data. 

 

Fig.5‐7. Comparison of experiment and simulation based on the Mooney‐Rivlin (MR) model and the neo‐Hookean (NH) 

model in (a) PHEMA specimens of Ø18 mm and (b) PHEMA specimens of Ø32 mm. 

 

In Fig.5-7, the results from the simulations based on Mooney-Rivlin model and neo-Hookean 

model are plotted with the experimental results, for Ø18 mm specimens (Fig.5-7a), and Ø32 mm 

specimens (Fig.5-7b). To make such comparison quantitatively, the root mean square (RMS) 

analysis and coefficient of determination (COD) analysis are utilised in the calculation. The RMS 

analysis, similar to the mean squared error control, is a risk function corresponding to the expected 

value of the squared error loss or quadratic loss. In the current analysis, the comparison is induced 

between the simulations and the experimental results, thus the RMS method is used to address the 
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goodness-of-fit of simulated results to experimental results in the current study. The data selected 

from simulated results are marked as Sij, where i (= 1, 2) indicate that i) S1 stands for simulation data 

from Mooney-Rivlin model and ii) S2 stands for simulation data from neo-Hookean model; where j 

stands for the index number. The data selected from experimental results corresponding to that 

from simulation are marked as Ej, where j is the corresponded index number. 

Theoretically, Ej	 ‐	 Sij stands for the difference (error) between the experimental load [N] and the 

simulation load [N] under same deformation of specimen. Hence, the value of RMS (Xrms), which 

reflects the goodness-of-fit between the simulation and experiment, is given by 

∑ 	→ 0                                        Eqn. 5-19 

where, n is the total number of the parameter j. According to its definition, the closer RMS value 

(Xrms) to zero, the higher goodness-of-fit between simulation and experiment. 

Table 5-1. Summary of the RMS method applied to different sizes of PHEMA specimens 
based on Mooney-Rivlin and neo-Hookean model simulation analysis 

 Mooney-Rivlin S  Neo-Hookean S  

Expression 1
 

1
 

RMS for the Ø18 mm group 0.18941012 0.51399658 

RMS for the Ø32 mm group 0.09087986 0.84695340 

Table 5-1 presents the RMS values for PHEMA specimens in different dimensions based on 

Mooney-Rivlin model and neo-Hookean model. It is clear to see that the ranges of RMS value from 

the Mooney-Rivlin model are much smaller than that of the neo-Hookean model in each 

dimensional group. It concludes that the Mooney-Rivlin model presents a much better quality (one 

third of the RMS error) than that of the neo-Hookean model for describing the compressive 

deformation of water swollen PHEMA hydrogel at room temperature. 

To further examine the goodness-of-fit between the simulated results based on Mooney-Rivlin 

model and the original experimental results, the COD is calculated using the formula 

1 1 ∑ /∑ ∑ → 1               Eqn. 5-20 

Therefore, the highest goodness-of-fit between simulation and experimental results is indicated 
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by a value of R2 which is very close to 1 and slightly smaller than 1. For the current results from 

Mooney-Rivlin simulation and compressive experiments, the error between the acquired 

experimental results and the simulated results is within 5%, and the value of COD is calculated to 

be 0.9921 for Ø18 mm PHEMA specimens and 0.9973 for Ø32 mm PHEMA specimen. These 

values of COD indicate that the simulations which based on the Mooney-Rivlin theory provide a 

good prediction of the mechanical response of the PHEMA hydrogel material under compression. 

Combining the results from RMS analysis and the COD analysis, it can be demonstrated that 

the Mooney–Rivlin model gives best fit to the experimental data for describing the PHEMA hydrogel 

mechanical response to compression.  

 

5.3.3 Fully Swollen PHEMA Hydrogels under the Cycling Compressive Loads 

5.3.3.1 Experimental Approach 

To investigate the fatigue/creep behaviour of PHEMA hydrogel under the compressive load, the 

cycling compressive tests are carried out. In the cycling compressive test, each cycle of 

compressive loading is applied and released repeatedly. The Instron Series 3366 Model universal 

testing machine, which equipped with 50 N load cell, has been setup to generate the cycling 

compressive load, the samples have dimensions of 9 mm diameter and 7 mm height. The flowchart 

for schematically showing the process and set-ups of the cycling compressive testing is illustrated in 

Fig.5-8. 

According to the Fig.5-8, the parameters of the compressive testing machine including Fhigh, Flow 

and N have to be determined prior to the cycling compressive tests. Fhigh is the maximum load which 

is determined by the value of the maximum strain of PHEMA hydrogel. For instance, in this 

experiment, the designated ultimate strains are set as 20% and 30%, the maximum stresses 

applied are thus determined as 0.1 MPa and 0.2 MPa according to the stress-strain curve shown in 

Fig.5-4a. Based on the dimensions (Ø9, h7 [mm]) of the specimen used in the cycling compressive 

test, the value of Fhigh is determined to be 6.35 N for the group with 20% compressive strain, and 

12.72 N for the group with 30% compressive strain. During the stage of screw reversing, negative 

values of load of actuator may be resulted from that the actuator detaches from the top surface of 

specimen. To avoid such negative reading of the variable F, the minimum load during the cycling 

compressive test Flow is determined as 0.01 N.  
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Fig.5‐8. Flowchart of cycling compressive tests setup. 

 

According to the flow chart shown in Fig.5-8, after the installation of specimen, the force sensor 

will measure the current load F at the moment while the screw-driven actuator begins to compress 

the specimen. The value of F increases along with the raising of compressive strain applied on the 

PHEMA specimen. When F equals to the value of Fhigh, screw for driving the actuator stops and 

reverses the direction, then start releasing the load respectively. During the releasing stage, the 

force sensor maintains the recording of the change of the current load F. When the value of F 

equals to Flow, the actuator stops and compresses again while the number of periodic cycle n is 

iterated by n+1 at the same time. Then, the processor of the system will compare the cycle number 
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n with the preset maximum cycle number N	 (N=100), if n<N, continue the experiment by applying 

another cycle of compressing/releasing; if n=N, terminate the experiment.  

 

5.3.3.2 Test Results and Discussions 

The cycling compressive test took 560 seconds to complete 100 cycles in total. Fig.5-9a and 

Fig.5-9b illustrates the displacement of the actuator plotted in terms of the time lapse (the initial 50 

seconds), corresponding to the 20% and 30% compressive strain for PHEMA specimen, 

respectively. Similarly, the graphs of actuator’s velocity versus time (initial 50 seconds) have been 

presented in Fig.5-9c and 5-8d for 20% and 30% compressive strain, respectively. It can be seen 

from Fig.5-9c&d that the actuator moves in a constant speed of 0.5 mm/s during the compression 

and release. The overshoots in these velocity graphs, which can be found before the actuator 

changed the moving directions every time, are caused by the motion delay of the servo motor. To be 

specific, it will take a short time for the driving screw to reach the same reversed rotating speed, 

including slow down, reverse the direction of turning and speed up again. Additionally, it can be 

found that there are 7 cycles appears in the Fig.5-9c, while nearly 5 cycles in the Fig.5-9d within the 

equivalent test time (50s). Due to the constant moving speed of the actuator, longer travel distance 

is needed to reach the 30% compressive strain than 20% compressive strain, thereby this requires 

longer cycle time for the group of 30% compressive strain. Furthermore, the phase space portraits 

in terms of velocity versus displacement are provided in Fig.5-9e and Fig.5-9f corresponding to 20% 

and 30% maximum compressive strain of PHEMA material respectively. Phase space portrait is one 

of the common used graphs to investigate the behaviour of periodic motion of resonator in vibration 

engineering, and it can give qualitative information on the stability of the periodic movements, which 

cannot be seen in other types of motion graph. The phase space portrait of a steady periodic motion 

consists of a series of closed lines with high consistency. According to the rectangular closed lines 

shown in Fig.5-9e&f, the highly consistent traces of actuator during 100 cycles of 

compressing/releasing indicate that PHEMA specimen under cycling compressive test behaves 

stable and reliable, and no material failure occurs during such cycling compressive test (up to 30% 

compressive strain). Similar conclusion was drawn in the literature [186] which is done by Bostan et 

al., where they have experimentally examined that PHEMA specimen showing a good mechanical 

behaviour in dynamic conditions under even severer conditions, e.g. frequency at 1 Hz, over 
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100,000 cycles of test: one third of groups of specimen exhibit material failure after their flexion-

extension cycling experiment.  

 

Fig.5‐9.  (a),(c),(e)  corresponding  to Displacement‐Time  graph, Velocity‐Time  graph  and  Phase  space  portrait,  are  the 

graphs  for  the actuator motion on PHEMA specimen up  to 20% compressive strain.  (b),  (d) and  (f) are  the graphs  for 

PHEMA specimen up to 30% compressive strain. 

 

To further investigate the stability of PHEMA material under cycling compressive conditions, the 

stress response of PHEMA specimens are plotted in Fig.5-10, in terms of the stress-time curve for 

initial 50 seconds (Fig.5-10a) and the stress-strain curves for 100 cycles (Fig.5-10b). 100 times of 
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compressing and releasing have been applied on the PHEMA specimen, the maximum strain during 

the cycling loading is 30%, the strain rate is calculated as 0.5 [mm/s] / 7 [mm]=0.071 [s-1]. As is 

shown in Fig.5-10b, the stress-strain curve does not significantly vary with the cycle numbers, and 

illustrates similar behaviour between loading and unloading, without the obvious hysteresis loop 

(see Fig.3-1c). Thus, it qualitatively verifies that: i) the behaviour of PHEMA under compression can 

be categorised as hyperelastic responses; ii) no failure causing drastic change of stress-strain 

relationship is occurred during the cycling compressive test of PHEMA specimen, up to 30% 

compressive strain. 

 

Fig.5‐10. (a) Initial 50 seconds of stress response to the cycling compression for PHEMA specimen. (b) Stress‐strain curves 

for PHEMA specimen. 100 cycles of compression under the strain rate of 0.071 s‐1. 

 

To quantitatively evaluate the hysteresis loop for this cycling response of PHEMA material, the 

ratio of the unloading to loading area was calculated for selected cycle (each ten cycle). This ratio 

can reflect the degree of specimen resilience, and the size of hysteresis loop. A schematic diagram 

of stress-strain behaviour for material with significant hysteresis effect is illustrated in Fig.5-11a. It is 

obvious that the unloading area is smaller than (or equals to) the loading area, thus the ratio of the 

unloading to loading area is smaller than (or equals to) the value 1. Therefore, hyperelastic 

behaviour is indicated by the value of this ratio closer to 1 (or even equals to 1). As a result, the 

ratio of unloading to loading area with respect to cycle numbers has been illustrated in Fig.5-11b. 

The trendline of the data indicates that this area ratio maintains as a constant at the value of 0.971 

for the PHEMA specimen under 100 cycles of compression. Therefore, two essential conclusions 

can be drawn. Firstly, the constant ratio indicates that no material failure of the specimen occurs 
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during the cycling compressive test, e.g. failure due to fatigue. It thereby verifies that PHEMA 

material behaves reliable and stable under cycling compressive load, at least for 100 cycles of 

loading. Secondly, the value of the constant ratio 0.971 means the small size of hysteresis loop 

(under 3% of loading area) for the PHEMA material under compression. The size of hysteresis loop 

is very small compared with typical viscoelastic materials. For instance, according to the work done 

by Anssari-Benam et al. [ 187 ], the size of hysteresis loop of aortic valve is determined at 

approximately 30%~50% of its loading area. This small size of the hysteresis loop obtained from 

PHEMA compressive behaviour suggests that PHEMA material possesses high resilience, and 

exhibit more hyperelastic response to compression than viscoelastic responses. Therefore, it 

validates that the feasibility of utilising hyperelastic theory (e.g. Mooney-Rivlin, neo-Hookean) to 

represent and simulate the mechanical characteristics of PHEMA material under compression. 

 
Fig.5‐11.  (a)  Schematic  diagram  of  stress‐strain  behaviour  for material with  significant  hysteresis  effect.  Loading  and 

Unloading area are  indicated  in the diagram. (b) Ratio between Unloading area and Loading area with respect to cycle 

numbers, for the PHEMA specimen under cycling compression.  

 

As summary, based on the experimental results and discussions from cycling compressive 

tests on PHEMA specimen, PHEMA hydrogel material has been proven to be an excellent 

membrane candidate in its stable and recoverable mechanical responses to the cycling 

compressive loading, in terms of highly consistent stress-strain curves and constant size of 

hysteresis loop. No material failure of the specimen has been observed during the 100 cycles of 

compressing/releasing actions in the experiments. Therefore, the PHEMA hydrogel is a suitable and 

reliable hyperelastic material to be embedded in microfluidic device as a sealing membrane, 

enabling assembly and dis-assembly routines at least 100 times. 
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5.4 Mechanical Behaviour of Partially Swollen PHEMA 

Hydrogel 

5.4.1 Uniaxial Compressive Test on Specimens with Different Degree of Swelling 

5.4.1.1 Experimental Approach 

Degree of Swelling (DOS), which is defined in Section 3.2.3 (Page 38), is commonly used to 

measure the degree of crosslinker of a network structural material, e.g. polymers. Different DOS 

may cause various mechanical properties of a polymer, because it significantly affects the 

consistence of polymer chains. Specifically, higher DOS indicates more solvent molecules inclusion 

in the polymer. At microscale, large number of solvent molecules inside the polymer makes the 

network junctions move away from each other, thereby leads to high stress of polymer chains 

because such polymer chains tend to return back to the relaxed state. Accordingly, parameters on 

mechanical properties of polymer will be affected, including Initial Tangent Modulus (Young’s 

modulus) which represents the linear relationship at the beginning stage of deformation behaviour 

of nonlinear materials. 

The compressive tests on PHEMA specimens with different DOS values were conducted. The 

apparatus and setups for the compressive test used in this study are similar to those introduced in 

Section 5.3.1, except the additional aqueous environment to immerse PHEMA specimen to facilitate 

the change of the DOS of the specimen during the test. The results such as stress-strain curves can 

then be obtained from the compressive tests under the equivalent conditions that were used for fully 

swollen hydrogels.  

 

5.4.1.2 Test Results and Discussions 

To examine the mechanical properties of PHEMA hydrogel under different degree of swelling, 

uniaxial compression has been applied on the cylindrical PHEMA specimens under the DOS of 1.1, 

1.3, 1.35, and 1.45. Fig.5-12 depicts the relationship between the Initial Tangent Modulus of PHEMA 

and the DOS of PHEMA, which is ranging from the dry state (DOS=1) to the equilibrium swollen 

state (DOS around 1.5). The inverse proportion between the variables in Fig.5-12 illustrates that 

lower degree of swelling leads to a higher Initial Tangent Modulus. This has shown a strong 

agreement with the literature reported by Ganji et al. [155]. In other words, the PHEMA hydrogel 
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behaves much harder in its dried status than it is in the swollen status. In a dried polymer that has 

been cross-linked as a network, the polymer chains between the network junctions are entangled 

and relaxed at microscale. In the swollen status, however, the polymer chains are pushed apart by 

the solvent molecules, thus behave moveable because of the attached solvent molecules. 

Accordingly, PHEMA specimen exhibit larger Initial Tangent Modulus at a small value of DOS than 

that at large value of Degree of Swelling. 

Fig.5-13 illustrates the relationship between stress and strain from PHEMA specimens in terms 

of various swelling status at 1.1, 1.3, 1.35 and 1.45. When the stress applied on PHEMA specimen 

is fixed, qualitatively, softer of specimen has been resulted from the higher value of degree of 

swelling. 

 
Fig.5‐12. Initial Tangent Modulus for PHEMA specimen in variable degree of swelling ranging from 1 to 1.45. Trendline to 

indicate the general  

 
Fig.5‐13. Compressive stress‐strain curves of PHEMA specimen in different values of degree of swelling (DOS) at 1.1, 1.3, 

1.35,  1.45,  respectively.  The  compressive  tests  were  performed  perpendicular  to  the  longitudinal  direction  of  the 

cylindrical PHEMA specimen. The solvent for swelling is distilled water. 
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5.4.2 Simulations of Mechanical Behaviour of Partially Swollen PHEMA Hydrogel 

According to Fig.5-13, PHEMA specimens remain the characteristics of hyperelastic material 

though they are in partially swollen status, i.e. with different degree of swelling values. Thus, the 

hyperelastic mechanical behaviour in terms of stress-strain curve from compressive test can be 

described and simulated based on Mooney-Rivlin theory. Following the same setup of simulation 

procedures introduced in Section 5.3.2, the Mooney-Rivlin coefficients (C01 and C10) for determining 

material’s mechanical property can be individually obtained from the compressive tests on the 

specimens in different DOS values. Table 5-2 lists the Mooney-Rivlin coefficients which are utilised 

to simulate the mechanical behaviour of PHEMA specimens with different DOS values. It can be 

seen that both the Mooney-Rivlin coefficients C01 and C10 are decreasing with the increase of the 

degree of swelling. This indicates that a variety of mechanical responses to compressive load is 

resulted from different degree of swelling of PHEMA specimen. 

Table 5-2. Mooney-Rivlin coefficients for PHEMA specimens with 
various degree of swelling 

Degree of Swelling C01 [Pa] C10 [Pa] 

1.1 1501395.92 2968133.75 

1.3 913971.44 1990742.85 

1.35 706625.60 879718.10 

1.45 442090.57 554760.94 

 

 

Fig.5‐14. Compressive stress‐strain curves of PHEMA specimen from experiments (solid curves) and simulations (dashed 

curves)  versus  degree  of  swelling  (DOS)  at  1.1,  1.3,  1.35,  1.45.  The  simulations  established  based  on Mooney‐Rivlin 

theory with coefficients C01 and C10 which are shown in Table 5‐2. 
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In terms of stress-strain curves, the comparisons between the experimental results and 

Mooney-Rivlin simulated results are illustrated in Fig.5-14, based on the PHEMA specimens with 

various degree of swelling. According to this figure, the trends of all the stress-strain curves from 

simulation (dashed lines) generally match the trends of their corresponding curves from experiment, 

respectively. Quantitatively, for the PHEMA specimens with various degrees of swelling, the errors 

between experimental results and simulated results are all within 7%, based on the calculation of 

COD (Coefficient of Determination). Therefore, it concludes that the numerical simulation based on 

Mooney-Rivlin theory can predict the experimental mechanical responses of PHEMA hydrogel 

specimen to compressive stress, even with the hydrogel specimens are partially swollen.  

 

5.5 Summary 

Compressive tests have been conducted to investigate the mechanical properties of PHEMA 

hydrogel, which aims to provide the fundamental basis to the design of packaging of the hydrogel-

based microfluidic device. The mechanical behaviours of PHEMA hydrogel (fully swollen or partially 

swollen) under static or dynamic cycling compression have been experimentally measured and 

simulated based on Mooney-Rivlin theory.  

In general, both Mooney-Rivlin and neo-Hookean models, which are widely used for 

investigating rubber behaviour, can predict the mechanical behaviour of the hyperelastic material. In 

this chapter, the error analysis demonstrated that Mooney-Rivlin model can be better than neo-

Hookean model in more accurately describing and predicting the mechanical response of PHEMA 

hydrogel to compression. Meanwhile, the feasibility and accuracy of using Mooney-Rivlin model to 

analyse and predict the hydrogel’s mechanical behaviour have been quantitatively verified. To 

determine the reliability of using PHEMA material as an inserted membrane in the hydrogel-based 

microfluidic system, cycling compressive load has also been applied on PHEMA specimens. The 

results verified that the PHEMA is more suitable to be regarded as a hyperelastic material than a 

viscoelastic material and demonstrated that PHEMA specimen possesses good stability under 

cycling compression within 60% strain, unless the material failure will occur. 

Furthermore, compressive tests on partially swollen PHEMA specimens conclude that the Initial 

Tangent Modulus decreases with the increasing of degree of swelling, and Mooney-Rivlin model is 

applicable to predict the general mechanical behaviour of such partially swollen PHEMA hydrogel.  
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Chapter 6. Assembly Process with PHEMA

Membrane under Mechanical 

Fastening 

6.1 Introduction 

The assembly techniques for microfluidic devices such as thermal pressure bonding [46], 

solvent bonding [41] or surface pre-treated assisted bonding [44] are well established and have 

been applied in the fabrication of microfluidic device. However, these bonding procedures are not 

applicable when dealing with biocompatible soft materials integration (e.g. synthetic hydrogels) due 

to their thermo-sensitivity, which may cause damages potentially hindering their functionalities. 

Furthermore, these bonding methods are not particularly suitable for the construction of microfluidic 

device where the re-use through disassembly may be desirable. In coping with the manufacturing 

challenges of microfluidic devices that can work with hydrogel based platform implementation and 

be reusable through disassembly and re-assembly routines, suitable bonding methods are 

demanded to meet these requirements. Mechanical fastening using bolts and nuts is a conventional 

assembly technique, which has been extensively utilised in various industrial applications, in 

particular for large components construction (e.g. aircrafts). It has presented a number of 

advantages over other assembly/bonding methods, such as low processing (e.g. ambient) 

temperature, easy-to-repair or replacement, low costs and possibilities of multiple disassembly. For 

what concerns microfluidic devices packaging applications, the process is less prone to the 

potential contaminations of the components due to the relatively clean condition during the 

operation where no glue or adhesives are involved. However, various challenges arise when it 

comes to apply such assembly technique at small scales; in particular, providing an effective sealing 

(or isolation) through an optimum management of the layers packaging compression in respect to 

the flowing fluid pressure is critically important in order to prevent liquid leakage in any part of the 

system, which could lead to its malfunctioning or to unreliable measurements.  

This chapter addresses fundamental aspects of mechanical fastening technique for hydrogel-

based microfluidic devices realisation, when a PHEMA hydrogel thin film (in swollen statue) is 

integrated in the device as an inserted membrane. The mechanical responses (e.g. stress 
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distribution, geometric deformation) of PHEMA hydrogel in both microchannels and culture chamber 

due to the compression induced by the assembly process can be numerically visualised based on 

the Mooney-Rivlin theory. The reliabilities of such bonding technique have been examined through 

leakage tests at the hydrogel/thermoplastic interface on a custom designed PMMA-based prototype 

device. 

Through this investigation, a guideline for optimization of the designs has been proposed 

through the selection of suitable parameters in terms of channel geometric parameter (e.g. depth, 

width, dip angle) and compressive pressure in assembly process. 

 

6.2 Determination of Critical Leakage Pressure by Simulation 

6.2.1 Principle Basis and Model Building 

The investigation on the reliability of the mechanical fastening method for microfluidic device is 

inevitably to determine the possibility of leak of the microfluidic channels after the device is 

assembled. The aim is to ensure that the pressurised fluid will not leak when it is flowing within the 

microchannels of the device.  

Fig.6‐1. (a) Schematic diagram of device cross‐sectional packaging structure. (b) Packaging pressures general distribution 

on the structure during operating condition. (c) Schematic diagram of liquid leakage situation due to high fluid pressure. 

The leakage occurs along the crevice at the interface between microchannel and sealing 

membrane as a result of high pressure of liquid inside channel. According to the designed structure 

of the microfluidic device (see Chapter 1), Fig.6-1 shows a cross-sectional schematic diagram of the 

microfluidic device used in this study to determine the critical constraint parameters of leakage. The 

structure shown in Fig.6-1 consists of a cover (simplified as a distributed pressure Pd), sealing 

membrane, substrate with microchannel, and pressurised fluid. The sealing membrane is subject to 

the fastening pressure (Pd) when the device is assembled using mechanical fastening technique. 

Thus, a localised pressure (PL) resulted from Poisson’s effect forces the membrane to protrude into 
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the cavity of the microchannel (Fig.6-1b). However, the fluid in the channel applies a pressure (Pf) to 

resist the protrusion in the cavity of channel against the induced localised pressure (PL). Therefore, 

the interaction between the localised pressure (PL) and the fluid pressure (Pf) determines the criteria 

of the leakage of the system. When PL>Pf, the membrane protrudes into the microchannel (see 

Fig.6-1b). Inversely when PL<Pf, the membrane surface is inflated and indented, leaving a gap at the 

interface (see Fig.6-1c). This can ultimately lead to the liquid leakage in adjacent to the channel. 

Accordingly, the criteria to determine the leakage of the device can be addressed subject to the 

values of Pd and Pf, because PL is induced by Pd. 

 
Fig.6‐2. The dark areas are the force applied area, pressure direction is shown along the arrows. (a) Distribution pressure 

applied (Cover). (b) Fluid pressure applied (Fluid). (c) Fixed area (Substrate). All dimensions in mm. 

 

Considering the criteria of leakage that is induced by the interaction between Pd	 and Pf, a three-

dimensional modelling was established in the simulation using COMSOL Multiphysics software. 

Fig.6-2 illustrates the configurations of numerical constraints for the hydrogel membrane in 

simulation. The distributed pressure Pd applies on the top surface of membrane (Fig.6-2a), fluid 

pressure Pf applies on the circular area at the bottom (Fig.6-2b), and PMMA substrate engraved 

with microchannel are simplified as a fixed constraint (Fig.6-2c). Once a fixed value of Pd is applied 

on the hydrogel membrane (without Pf yet), PHEMA hydrogel membrane is deformed and protruded 

out of the circular area due to Poisson’s effect. The displacement of the central point of the 

protrusion is recorded as s [μm], which indicates the maximum deformation of the membrane. When 

the fluid pressure Pf is applied, such displacement s	 [μm] will be decreased because Pf and Pd work 

against each other. Thus, by increasing the value of Pf, it is possible to determine the value of s and 

it will become zero when the localised pressure PL equals to the fluid pressure  Pf. Therefore, the 

maximum value of Pf that can cause any leakage may be derived. 

 

6.2.2 Simulation Results and Discussions 

In the simulation, PHEMA hydrogel is regarded as an incompressible hyperelastic material 

based on Mooney-Rivlin theory, which is elaborated in Chapter 3 and 5 of this thesis. Five groups of 
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simulations are carried out, in terms of the values of Pd at 5, 10, 20, 33.5, 99.1 [kPa] respectively. 

The values that 33.5 and 99.1 [kPa] are the engineering stress corresponded to 10% and 20% 

compressive strain, according to the stress-strain curve in Fig.5-4a. As an example, under a fixed 

value of the mechanical pressure Pd (=5 kPa), the reverse proportional relationship between the 

displacement of protrusion s and the fluid pressure Pf can be depicted in Fig.6-3. As is shown in this 

figure, Pf	 =9.92 kPa when s=0 mm, which means that the maximum allowed fluid pressure in 

channel is 9.92 kPa if the compressive pressure induced by mechanical fastening process is 5 kPa.  

 
Fig.6‐3. Displacement of central point s [µm] versus fluid pressure Pf [kPa]. Under mechanical compression of Pd=5 kPa, 

the displacement ‘s’ reaches zero when the fluid pressure is 9.922 kPa. 

 

Table 6-1 gives the values of the maximum allowed fluid pressure Pf corresponding to the 

various compressive pressure Pd from the five groups of simulations. The values of maximum 

allowed fluid pressure with respect to Pd=33.5 and 99.1 [kPa] (corresponding to 10% and 20% 

compressive strain) are read as 66.3 and 196.3 [kPa]. In literature, microfluidic valves that can 

achieve seal reliably against forward fluid pressure as high as 60 kPa is developed and reported by 

Zhang et al. [188,189]. Therefore, the ultimate fluid pressure of 60 kPa can be commonly applied for 

microfluidic systems, because valves are designed to resist high pressure and provide reliable 

blockage for a microfluidic device. Consequently in this case, the mechanical fastening process 

using hydrogel as an inserted sealing membrane is reliable as Pf	=66.3 kPa (or 196.3 kPa) which 

are greater than 60 kPa.  

 

Table 6-1 List of Pf with respect of Pd from numerical simulation 

 Test 1 Test 2 Test 3 Test 4 (10% strain) Test 5 (20% strain) 

Pd [kPa] 5 10 20 33.5 99.1 

Pf [kPa] 9.9 19.8 39.6 66.3 196.3 
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6.3 Determination of Critical Leakage Pressure by Experiments 

6.3.1 Design and Manufacturing of Testing Chip 

A sandwich structure-based micro-device has been manufactured for leakage tests at the 

thermoplastic/hydrogel interface nearby the fluidic circuits which are machined on a thermoplastic 

plate. In this study, the material for manufacturing the test chip is PMMA (poly(methyl methacrylate)), 

which allows real time optical microscope observation as a transparent material. As schematically 

illustrated in Fig.6-4, the assembled ‘sandwich’ structure with an insertion of membrane made of 

PHEMA hydrogel was constructed embracing a single closed microchannel, sealed between cover 

and substrate through mechanical fastening assembly process. PMMA thermoplastic material, as 

the cover and substrate provides a rigid and conformed protection to the PHEMA hydrogel 

membrane. PHEMA, the inserted membrane, is utilised to seal the microfluidic channels owing to its 

flexibility and toughness as a hydrogel material. The microchannels with inflow and outflow ports 

are manufactured on the PMMA substrate by micro-milling machine. Then, the microchannels are 

covered by the PHEMA membrane thereby forming a closed fluidic environment.  

 

Fig.6‐4. Schematic diagram of a microfluidic circuit in a stacked, PHEMA thin film sealed PMMA chip 

Fig.6-5 shows the layout of the PMMA layer with microchannels which is machined on the 

surface of PMMA layer with an enlarged schematic diagram of its details. The microchannels can be 

divided into two groups: i) T-Channels for fluid flow, which stands for Test Channel; ii) L-Channels 

used to gather liquid flown at the interface between the hydrogel and the PMMA, indicating whether 

leakage is occurred. When carrying out the leakage testing experiment, pressurised fluid is injected 
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from inflow port into T-Channels at first, and come out from the outflow port. Owing to the gap (700 

μm to 1000 μm) between T-Channel and L-Channel, they are not connected. Thus, under the 

situation of no leakage, L-Channel is dry and empty while the T-Channel which offers a perfect 

sealed pass route for fluid is full of flowing liquid. However, if the fluid pressure in T-Channel is high 

enough to raise the membrane protrusion towards the cavity of channel, it consequently makes the 

T-Channel and the L-Channel connected, thereby the leakage of the microfluidic system happens. 

Meanwhile, the L-Channel is able to seize the liquid which is leaked out from any direction of T-

Channel or ports. Hence, the leakage can be determined by observing the existence of liquid in L-

Channel.  

 
Fig.6‐5. Overview of PMMA chip. Each independent channel consists of ports, T‐Channel and L‐Channel, used as in/outlet, 

testing channel and leakage indicative channel respectively. 

 

Both T-Channel and L-Channel are micro-milled structure on the plate of PMMA. A circuit board 

engraving machine (Create-DCM3030) equipped with 30°/0.1 mm cutter (Fig.6-6b) is utilised to 

fabricate microchannels with trapezoidal cross-section on the thermoplastic PMMA substrate (Fig.6-

6a). The dimensions of such microchannels are determined by the geometry of the cutter. The 

engraving machine ensures the accurate manufacturing at ±5 μm for the depth of microchannel 

[190]. The speed of spindle during manufacturing is set to be 1500 rpm to avoid the melting of 

PMMA material due to the thermal effect induced by high spinning speed. T-channels with depths 

ranging from 200 μm to 1000 μm are manufactured allowing a comparative investigation on the 

mechanical responses of PHEMA hydrogel membrane to the different depths of microchannels. 
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Fig.6‐6. (a) Cross‐sectional view of the channel in PMMA substrate; depth ranges from 200 μm to 1000 μm on each 

channel sets. (b) Cutter geometry of the micro‐milling machine used in Testing Chip manufacturing. 

 

6.3.2 Leakage Testing Device (LTD) Assembly and Installations 

To achieve reliable sealing of the microchannels with hydrogel membrane, the control of 

compressive pressure induced by the mechanical fastening process is essential. Insufficient 

compression on hydrogel membrane may cause leakage of the microfluidic system. However, 

hydrogel membrane may be subject to material failure if the compression is so great that it makes 

the internal stress beyond the ultimate strain of material. According to the research on the 

mechanical properties of PHEMA hydrogel (Chapter 5), the compressive stress applied on the 

hydrogel membrane can be directly obtained from the stress-strain curve (see Fig.5-4a) if the 

compressive strain is known. Thus, the compressive pressure applied on the inserted sealing 

membrane in microfluidic device can be determined by controlling the compressive strain of the 

hydrogel membrane when it is assembled by mechanical fastening technique. Particularly, from 

Fig.5-4a, the engineering strain of PHEMA material in its water swollen state under compression 

can reach up to 55% without material failure at room temperature. Accordingly, the compressive 

strains varying from 10% to 50% are practically applied on the hydrogel membrane in current 

experiment to identify the optimum value which can establish reliable sealing for the hydrogel-based 

microfluidic device. 
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Fig.6‐7. Two parameters have to be measured to calculate the compressive strain of the hydrogel membrane: tspacer and 

tPHEMA. (a) All components are assembled before the fastening process. PHEMA membrane covers all the channels and is 

inserted between  the  two PMMA  jigs.  (b) The multilayer microfluidic device  is completely assembled by  fastening  the 

screws. The fluid inside the microchannels is sealed by membrane which has a protrusion into the cavity of the channels. 

	

Fig.6-7 shows the cross-sectional view of the hydrogel-based microfluidic device before and 

after fastening. The original thickness of PHEMA membrane (tPHEMA) was precisely prepared during 

the hydrogel synthesis process. The height of copper spacers (tspacer) determined the final thickness 

of compressed hydrogel membrane after the microfluidic device is assembled. Hence, the 

compressive strain (ε) of PHEMA membrane under the compression can be obtained by: 

	 100%                                   Eqn. 6-1 

Table 6-2: Various values of compressive strains used in this study, in terms of 
combinations of spacers and PHEMA membrane with different thickness 

tPHEMA	[mm] tspacer	[mm] Δt [mm] ε Strain 
1 0.5+0.2+0.2 0.1 10% 
1 0.8 0.2 20% 
1 0.5+0.2 0.3 30% 

0.8 0.5 0.3 37.5% 
1 0.5 0.5 50% 

Due to the dimension of silicone moulds which were used for controlling the geometry of 

hydrogel, only the PHEMA membrane with thickness 0.8 mm or 1 mm can be fabricated, and the 

copper spacers were cut from commercial copper rolls, with standard thicknesses of 0.8 mm, 0.5 

mm and 0.2 mm. By implementing specific combinations of copper spacers and PHEMA 

membranes, the designated compressive strains which are ranging from 10% to 50% can be 

obtained. They are listed in Table 6-2. 



 

~	95	~	
 

 

Fig.6‐8. Assembly process of the leakage testing device. (a) PHEMA film is positioned over the flat PMMA surface in the 

region defined by the metallic spacer and  (b) top PMMA  layer  is positioned; the micro‐milled  fluidic circuits cover the 

whole hydrogel membrane. [(c) and (d)] Top aluminium jig is positioned and then controlled compression is applied [(e) 

and (f)]. 

 

The assembly process of the actual leakage testing device (LTD) is schematically illustrated in 

Fig.6-8. PMMA slabs with thickness of 8 mm are used as the substrate for microchannels. All the 

fluidic circuits (i.e. microchannels and ports) are designed and fabricated within an area of 30x20 

mm2 in order to be entirely covered by the hydrogel membrane. The connectors which are used to 

host the tubes at the ports of inlet or outlet in the current study are selected as the model type of 

KJS02-M3 from Automation Distribution Incorporated [191]. The details about the dimensions of 

these connectors are listed in Appendix 1. Two aluminium jigs are fabricated and assembled to 

reinforce the multiple layers structure, avoiding the potential yield (i.e. bending) of the PMMA layer 

due to the stress induced by fastening. Hollow areas with the dimensions of 30x20 mm2 are 

manufactured at the centre of both the aluminium jigs and the metallic spacers, to reserve an optical 

window to favour experimental observations through optical microscope. Meanwhile, the aluminium 

jigs, PMMA layers, metallic spacer, and the hydrogel membrane are aligned by two reference dowel 

pins and fastened by 16 screws with thread of 6 mm. The locations of these screws are designed to 

be evenly distributed around the fluidic circuits, in order to provide distributed compressive pressure 

for the PMMA layers, and to make sure the hydrogel membrane is under uniaxial compressive 

constraints.  
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Fig.6‐9. Schematic diagram of the flow measurement setup. 

 

To demonstrate the feasibility and reliability of using mechanical fastening techniques to seal 

hydrogel-based microfluidic device, two conditions has to be satisfied: i) The fluid can pass through 

the microchannel. ii) There must not be any leakage anywhere in the fluidic system. Therefore, the 

examination of reliability can be examined by the determination of the critical leakage pressure, 

which is the maximum allowed fluid pressure in the fluidic circuit that will not cause leakage. A 

pressure generating system, consists of pressure sensor, testing chip, valves and connectors, has 

been built to measure the critical leakage pressure. As shown in Fig.6-9, the system ensures that 

the pressure is equal everywhere in the system. When pressurised air is injected into the device, air 

pressure gradually increases at the speed of approximately 500 Pa/s if the throttle valve is turned 

on. The air pressure is converted into the fluid pressure along the interface between air and fluid at 

the inlet port of the microchannel, because the testing chips is pre-filled with liquid prior to the air 

injection. Thus, the fluid pressure in the microchannels is equal to the air pressure which can be 

accurately measured from the pressure sensor/transmitter. In the current experiment, the real-time 

change of air pressure is recorded by the pressure sensor.  

 

6.3.3 Experimental Results and Discussions 

6.3.3.1 Material Failure Due to Fastening 

As is described, the compressive strains of PHEMA membrane are controlled varying from 10% 

to 50% in the experiment. The experimental results demonstrate that 30% or higher strains can lead 

to potential failure of hydrogel membrane. A fractured PHEMA membrane due to application of 30% 

compressive strain is shown in Fig.6-10a. The indentations which sketch the contours of the 
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channels (both L-Channel and T-Channel) indicate that the mechanical failure of the hydrogel 

membrane is likely to take place at the edge of the microchannels. It has been found from Fig 5-4a 

that the ultimate compressive strain that hydrogel material can resist is approximately 55%, where 

the internal stress in hydrogel membrane is primarily concentrated at sharp corners in contact with 

the edge of channel (see Fig.6-6a). Before the leakage testing experiment is conducted, the 

PHEMA membranes under 30%, 37.5% and 50% compressive strains have already exhibited 

material failures due to the stress concentration. Thus, only 10% and 20% compressive strain was 

experimentally applied on PHEMA membrane to evaluate the maximum allowed pressure (Pf), 

without causing any cracks of PHEMA material. 

 

Fig.6‐10. (a) Failed PHEMA hydrogel membrane, uninstalled from 30% compressive strain. Cracks traced on microchannel 

edges, especially on the ports.  (b) Optical microscope image of the membrane crack on the channel. (c) Normal PHEMA 

membrane surface image from optical microscope, act as reference when comparing with (b). 

 

6.3.3.2 Determination of Maximum Allowed Fluid Pressure (Pf) 

In order to make the optical observation of leaked liquid in L-Channel more distinctly, the 

flowing fluid in the microchannels is stained as red colour. Figure 6-11 indicates the microchannel 

and inlet port in the sealed state (Fig.6-11a&c) and in the leaked state (Fig.6-11b&d). Fig.6-11e 

schematically illustrates the change of pressure in the system with respect of time. Accordingly, at 

the early stage of the leakage test, the fluidic pressure was increasing rapidly with time from zero. 

The increase speed slowed down with the increase of time, because the difference between the 

pressure generator and internal pressure inside the microchannels became smaller and smaller. If 
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the pressure continually increases, a pressure collapse resulted from leakage can be observed. The 

criteria to judge whether the system leaks or not can be determined by such pressure collapse: no 

leaking before collapse; leaking after collapse. Therefore, according to the recorded pressure 

change by the transmitter/sensor, the critical leakage pressure which can be found at the pressure 

collapse equals to the maximum allowed fluid pressure in the microfluidic device that will not lead to 

leakage.  

 

Fig.6‐11.  Images  of  the  status  (Sealed  or  leaked)  of microchannel/port  from  optical microscope,  taken  under  room 

temperature.  (a)  and  (c)  Microchannel/port  operation  without  leakage,  empty  in  L‐Channel.  (b)  and  (d) 

Microchannel/port operation with  leakage, L‐Channel filled with red  liquids. (e) Schematic diagram for sensor pressure 

reading changes with time during leakage testing, the peak value of pressure donates the critical leakage pressure, which 

followed by a pressure collapse due to leakage.  

The critical leakage pressure (Pf) with respect to the channel depths is provided in Fig.6-12, 

which is based on three groups of parallel experiments. According to Fig.6-12a, for 10% 

compressive strain, the critical leakage pressure Pf falls in the range of 200 kPa to 350 kPa on 

channel depths, which indicates a stable and reliable sealing of the microfluidic channels. 

Interestingly, under the constraint of 20% compressive strain, the channels with depth of 200 μm 
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and 300 μm are blocked by the hydrogel protrusions towards the cavity of microchannel. The fluid 

cannot pass these channels because of the blockage, and can potentially leak directly at the inlet 

port if the fluid pressure is high enough. Meanwhile, the rest of microchannels (e.g. depth of 400 to 

1000 μm) under 20% compressive strain behaves normally as pressure increases following by a 

pressure collapse. By comparing the average pressure values between 10% and 20% strain, it is 

apparent that higher critical leakage pressure Pf is resulted due to 20% compressive strain in 

comparison with 10% compressive strain, excluding the blocked channels under 20% strain (e.g. 

depth of 200 and 300 μm). Therefore, the less pressure is applied, the smaller critical leakage 

pressure (Pf) is caused. 

 
Fig.6‐12. Critical leakage pressure under compressive strain of (a) 10%, (b) 20% with respect of the channel depth. (c) The 

median of critical leakage pressure data versus channel depth under both 10% and 20% compressive strain. 

As a result of the experimental investigations on the fluid pressure in the fastening bonded 

hydrogel-based microfluidic device, the critical leakage pressure Pf shown in Fig.6-12c identifies that 

the maximum allowed fluid pressure enabling reliable seal of the microfluidic system lies in the 

range of 200 kPa to 350 kPa for 10% fastening strain, and 300 kPa to 1000 kPa for 20% fastening 

strain (if no blockage).  
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Table 6-3. Comparison of Pf values from simulation and experiment 

 10% fastening strain 20% fastening strain 

Commonly LOC system 
pressure can reached 

60 kPa 60 kPa 

Maximum allowed pressure 
Pf (from simulation) 

66.3 kPa 196.3 kPa 

Maximum allowed pressure 
Pf (from experiment) 

200~350 kPa 300~1000 kPa 

Table 6-3 compares the results of maximum allowed fluid pressure which are derived from 

simulation (Section 6.2.2) and experiments (Section 6.3.3). As a result, both the maximum allowed 

fluid pressures (Pf) from simulation and experiments are larger than the maximum required fluid 

pressure for normal microfluidic system (60 kPa). Hence, it is numerically and experimentally 

proven that using mechanical fastening technique to assemble a hydrogel-based microfluidic device 

is an efficient and reliable packaging process.  

Notably from the Table 6-3, the values of Pf from experiments are at least two times larger than 

that from the simulations, for both 10% and 20% compressive strains. Practically, when the situation 

shown in Fig.6-1c occurs, the fluid is hardly to break through the contact barrier between hydrogel 

sealing membrane and the microchannel, because the stress in the membrane induced by 

mechanical fastening process is concentrated at the edge of microchannels. This effect of stress 

concentration was not considered in the numerical model which is introduced in Section 6.2, thus 

led to the underestimation of the value of Pf from numerical simulation. Such effect of stress 

concentration is numerically investigated and discussed in the following Section 6.4. 

 

6.4 Mechanical Behaviour of Hydrogel Membrane in 

Microchannel 

The Section 6.3 has considered a number of challenges, such as the maximum allowed fluid 

pressure that the packaged microfluidic system may subdue. The results from that section can 

assist to improve the reliability of such assembled microfluidic system. However, the cause of the 

leakage has not yet been reported in detail. Concentrating on the interface of PHEMA hydrogel 

membrane and the microfluidic channels which is engraved on the PMMA substrate, two issues 

have to be coped with: i) the design or optimization of the geometry of the channel, ii) possibility to 

achieve higher compressive strain but cause neither failure of membrane material nor blockage of 
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channels.  

In the present study, the responses in terms of materials deformation and stresses distribution 

of PHEMA hydrogel to the assembly compression and the geometries of microchannels are 

investigated to elaborate the hydrogel material characteristics as sealing membrane. In particular, 

the design parameters, including dip angle, depth and width of microchannels, and compression in 

terms of strain due to assembly process are theoretically examined through numerical simulations. 

The dip angle is used to define the slope of the channel walls with respect to the vertical axis. To 

validate the models which are obtained from the numerical simulations, experimental study has also 

been carried out by observing the deformation of PHEMA hydrogel membrane using 3D optical 

measuring system which is also known as confocal microscopy. It is anticipated that this study can 

assist the designer of such structural microfluidic device to understand the mechanical behaviour of 

PHEMA hydrogel membrane in the use in microfluidic device, thereby provide a guideline for 

optimization of the designs through the selection of suitable parameters in terms of channel 

geometric parameter and compressive pressure in assembly process. 

 

6.4.1 Simulation of the Mechanical and Geometrical Response of Membrane 

According to the geometric definition of the microchannels, the range of depth and width of 

microchannel (0.1 to 1.2 mm) is far smaller than the length of microchannel (30 mm). Hence, the 

deformation of membrane on the direction of length is far less than that on the direction of width. 

Thus, the principle stress on the direction of length can be neglected (assumed as zero in such a 

case), because the major issue that leads to failure of membrane is primary caused by the principle 

stress on the direction of width. Thus, in this work, two-dimensional (2D) modelling was used in the 

simulations to establish a predictive model using COMSOL Multiphysics software. The details of 

relevant parameters of materials and the settings of modelling, including boundary conditions and 

meshing, are given in Table 6-4. It is pertinent to utilise a different mesh element types (e.g. 

rectangular for PHEMA, triangular for PMMA) thus the maximum mesh sizes according to the 

materials and their locations in the package. The ultra-fine mesh of PHEMA (0.02) versus PMMA 

(0.02) is used to allow the accurate mechanical deformation to be observed in PHEMA which is 

most concerned in this study. To avoid the obtaining of the false stress values which may be caused 

by numerical stress singularity at sharp corners (e.g. edge of microchannel in this case), all the 
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sharp corner which contact with PHEMA membrane have been filleted at radius of 0.1 mm, and the 

locations to obtain the value of stress have been selected away from the point of stress singularity 

(Fig.6-13a). 

 

Table 6-4. Material properties and modelling setup used in the simulation 

 PHEMA (sealing membrane) PMMA (substrate) 

Theoretical basis Hyperelastic (Mooney-Rivlin) Linear Elastic (Isotropic) 

Material parameters 
C10=385487 [Pa]* 
C01=310401 [Pa]* 

E=2940 [MPa]** 
ν=0.38** 

Boundary conditions 
Rigid top boundary with prescribed 

displacement (compression) 
Fixed constraint 

Mesh element type Rectangular Triangular 

Maximum mesh size 0.02 [mm] 0.02 [mm] 

* data is obtained from reference [192]. 
** data is obtained from reference [193]. 

 

The parameters that can be used to describe the geometry of microchannels include the width, 

depth, and dip angle of channels as well as the compressive strain induced by fastening process in 

the assembled microfluidic device. They were assigned individually to investigate their effects on 

the deformation characteristics of the microchannels in the simulations. The selection of these 

parameters is based on the common uses of various design rules, and possible deformations that 

can be induced through assembly process of fastening. Table 6-5 provides these parameters that 

have been assigned in the modelling to enable a direct comparison of the changes of geometric 

parameters and compression and their effect on the mechanical behaviour of the PHEMA 

membranes. The displacement and Von Mises stress distribution across PHEMA hydrogel 

membrane, which reflects its deformation and internal stress distribution respectively, can therefore 

be obtained under various parameters in the simulations. 

 

Table 6-5. Geometric parameters of microchannels and compressive strains assigned 
in the simulations 

Compressive strain 10%, 20% 

Dip angle of channel [mm] 0, 15°, 30°. 

Width of channel [mm] 0.1~1.2 (step 0.05) 

Depth of channel [mm] 0.1~1.0 (step 0.1) 
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Fig.6‐13. Distribution of membrane displacements (a) and (c) in millimetre, and Von Mises stress distributions (b) and (d) 

in Pascal, under the compressive strain of 10% for (a) and (b), and 20% for (c) and (d). The depth of channel is 0.6 mm, 

dip angle is 15°. 

 

Displacement gradient and stress (Von Mises) concentration distributions of the hydrogel 

membrane in microchannel under compression induced by mechanical fastening technique, are 

shown as cross-sectional views in Fig.6-13. According to the displacement and Von Mises stress 

distribution shown in Fig.6-13, for both 10% and 20% applied compressive strain on the hydrogel 

membrane, similar displacement distribution and Von Mises distribution are observed. The 

displacement distribution indicates that the maximum deformation of hydrogel membrane is located 

at the centre of the protrusion (marked in Fig.6-13a). While the Von Mises stress in hydrogel is 

primarily concentrated near the corner in contact with the edge of microchannels (the bright regions 

in Fig.6-13b and Fig.6-13d), where a potential failure of hydrogel membrane is likely to occur if the 

stress level is high enough and beyond the ultimate tensile strength of PHEMA material. By 
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comparing the Fig.6-13a with Fig.6-13c, it is apparent that 2 times larger displacement from the 

compressive strain of 20% than that of 10% strain is observed. Similarly by observing Fig.6-13b and 

Fig.6-13d, it can be seen that the Von Mises stress at the corner induced by 20% compressive 

strain is nearly 1.4 times higher than that of 10% compressive strain. Therefore, it is important to 

take the compressive strain into account when applying compressive pressure in the assembly of 

the microfluidic device by fastening. The less pressure is applied, the smaller strain is induced thus 

less stress concentration is caused. 

 

Fig.6‐14. Von Mises stress distributions in Pascal due to different dip angle of channel at 0° (a,c) and 30° (b,c) under the 

compressive strain of 10%(a,b), 20%(c,d). The depth of channel is 0.6 mm, width of channel is 0.55 mm. 

 

The mechanical responses of PHEMA hydrogel membrane to the different geometric 

parameters of microchannels, such as depth, width, and dip angle of channels, have also been 

investigated by modelling. In Fig.6-14 and Fig.6-15, the Von Mises stress distributions with respect 

to different dip angles and width of channel under the 10% and 20% compressive strains are 
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compared. In Fig.6-14a, the dip angle is defined. As it can be predicted, the maximum or peak 

values of Von Mises stress in PHEMA hydrogel membrane are all located near the corner in contact 

with the edge of microchannels. This indicates that the locations of the maximum Von Mises stress 

were not affected by the geometric parameters (i.e. dip angle, width of channel) of microchannels. 

Additionally, the stress distribution for 30° dip angle (Fig.6-14a) is almost identical to the one for 0° 

dip angle under the compressive strain of 10% (Fig.6-14b), which implies no effect of dip angle on 

the internal stress distribution under the given depth and width of the channels. This was also 

observed by comparing the stress distributions between Fig.6-14c and Fig.6-14d under the 

compressive strain of 20%. Therefore, in the design of a microfluidic channel, the dip angle of 

microchannel is not a prime geometric parameter which should be considered in terms of its effect 

on the internal stress distribution and concentration induced in PHEMA hydrogel membrane due to 

fastening. 

 
Fig.6‐15. Von Mises stress distributions in Pascal with respect to different width of channel at 0.55 mm (a,c), and 1.20 

mm (b,d) under the compressive strain of 10% (a,b), and 20% (c,d). The depth of channel is 0.6 mm, dip angle is 15°. 
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The width of microchannel is another geometric parameter to be considered which may 

significantly affect the internal stress distribution of hydrogel membrane under the compression. In 

Fig.6-15, under the 10% compressive strain, the microchannel width of 1.2 mm has caused a lower 

Von Mises stress value near the corner at 204159 Pa (Fig.6-15b), in comparison with the Von Mises 

value of 545640 Pa (Fig.6-15a) caused by 0.55 mm microchannel width. By examining the stress 

distributions between small and large channel width (Fig.6-15a versus Fig.6-15b, and Fig.6-15c 

versus Fig.6-15d), it is obvious that stress concentration induced in the membrane near the edge of 

microchannel for small width (Fig.6-15a and Fig.6-15c) is much severer than that for large width 

(Fig.6-15b and Fig.6-15d). The degree of the Von Mises stress in contact with the edge of channel 

has been exaggerated due to the increased compressive strain applied, for instance from 10% 

(Fig.6-15a, Fig.6-15b) to 20% (Fig.6-15c, Fig.6-15d). 

 

Fig.6‐16. Membrane protrusion and Von Mises stress  near the edge of channel as a function of width of channel under 

10% compressive strain. The protrusion of membrane in channel refers to the value of ‘r’ in Fig.6‐18; The Von Mises 

stress on membrane is selected near the edge of the microchannel (without numerical stress singularity), based on the 

location shown in Fig.6‐13. 

 

To gain a better understanding about how the width of channel may affect the deformation and 

stress concentration of membranes, membrane protrusion r, which is defined as the maximum 

height of the hydrogel membrane that can be pressed in to the cavity of a channel due to 

compression (see Fig.6-13a), has to be investigated. Thus the values of Von Mises stress of the 

hydrogel membrane at the corner are plotted in Fig.6-16 versus the widths of microchannel ranging 



 

~	107	~	
 

from 0.1 mm to 1.2 mm. According to Fig.6-16, the details of the inter-relationship between the 

channel width and the membrane protrusion or the stress concentration can be found. As the width 

of channel increases, both membrane protrusion and the value of Von Mises stress at edge of 

microchannel increase drastically until the width of channel reaches approximately 0.6 mm, where 

the Von Mises stress exhibits its maximum value of 0.55 MPa. When the width is greater than 0.6 

mm, the stress value starts to decline rapidly. Considering the dramatic increase of internal stress 

towards the channel width of 0.6 mm, where the highest stress concentration is expected to be 

induced in the membrane, this may ultimately cause mechanical failure of membrane under the 

compressive pressure as can be predicted. The design of such microfluidic channels should 

therefore take this into account, for instance, various approaches should be considered to use the 

channel width away from the range of 0.5~0.7 mm.  

In terms of the membrane protrusion into the channel cavity due to the compression, it 

increases with the increase of the width of channel initially, until it reaches the peak value 0.22 mm 

near the channel width at 0.55 mm. During this increasing stage, the channel cavity is too small to 

fit the protrusion thereby the stretch force on the PHEMA membrane surface is on governing. Thus, 

the PHEMA material flows to its boundary rather than to the channel cavity, when it is under 

compression. Beyond the channel width at 0.55 mm, the protrusion remains relatively stable with a 

slight decrease. During this decreasing stage, the surface stretch does not play a primary role on 

the PHEMA membrane because it is reduced when PHEMA membrane is compressed on channel 

with large width. The height of protrusion r is reducing because the space of the channel cavity is 

getting larger. Therefore, such fluctuation of the membrane protrusion to the increasing of channel 

width has also been taken into account for the optimum design of the channels to ensure sufficient 

depth of channel to minimize the risk of channel blocking due to membrane protrusion. 

The channel depth, H, which can have a significant effects on the displacement and the Von 

Mises stress distribution of membrane, is another important geometric parameter in the design of 

microfluidic channels. For the purpose of validation, the simulations were also carried out to 

determine the values of membrane protrusion under the different depths based on the design of 

microchannels with a dip angle of 15°. It should be noted that the channel width varies according to 

the depth in order to maintain the 15° dip angle, as such the effects of both channel width and depth 

have been incurred. The values of membrane protrusion from simulations are listed in Table 6-6. 
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Table 6-6. Protrusion [μm] versus variable depth of channel, from simulation 

Depth of channel [μm] 200 300 400 500 600 700 800 900 1000 

Protrusion under 

10% strain [μm] 
111.8 151.8 171.1 183.2 192.0 200.8 209.1 217.1 220.6

Protrusion under 

20% strain [μm] 
200 248.2 274.4 300.5 318.6 331.4 340.1 334.0 323.6

 

6.4.2 Experimental Validation for the Simulation of Membrane 

As the experimental validation for the numerical modelling, the behavioural characteristics of 

hydrogel membrane (e.g. protrusion) in the cavity of microchannels has to be experimentally 

examined, and compared with the protrusion data from numerical simulation which is displayed in 

Table 6-6. On the basis of the geometry of the testing device, multi-layered structural microfluidic 

chip assembled with a single microchannel was built and shown in Fig.6-17. It is difficult to observe 

the details of the membrane protrusion towards the cavity of microchannel when device is 

completely bonded by mechanical fastening process, though the material (PMMA) for cover and 

substrate is transparent. Thus, destructively making cross-section (the insert plane revealed in 

Fig.6-17) and observing through optical microscope is undertaken to visualise and measure the 

protrusion of membrane. 

 
Fig.6‐17. Schematic diagram of a microfluidic circuit in a stacked format, PHEMA thin film (membrane) is used to sealed 

PMMA chip. Cross‐section inserted allows for a clear observation of the mechanical behaviour of PHEMA hydrogel 

membrane in microchannels. 
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In this experimental observation, 3D optical measuring system (also known as confocal 

microscopy) as an optical imaging technique was employed enabling the reconstruction of three-

dimensional structures from the obtained images [ 194 ]. Keyence VHX1000 Series digital 

microscopy system equipped with 100X-1000X universal zoom lens has been used to visualise the 

membrane protrusion. Moreover, this 3D optical microscope enabling 0.1 μm accuracy of geometry 

measurements ensure a precise measurement of the height of the protrusion through observing the 

cross-section, which is shown in Fig.6-17. 

As is described in Section 6.3.2, the microchannels with trapezoidal cross-section have been 

manufactured on the thermoplastic PMMA substrate. The trapezoidal cross-section of the 

microchannel is determined by the geometry of the cutter of the circuit board engraving machine. In 

the current experimental study, the cross-section of the microchannels sealed by compressed 

PHEMA hydrogel membrane through fastening process are examined using the same strain 

controlling method (10% and 20% compressive strain) as is described in Section 6.3.2 and 

illustrated in Fig.6-7. 

 

Fig.6‐18. Cross‐section’s view of PHEMA hydrogel membrane packed in microfluidic device, (a) depth of channel 600 μm, 

compressive strain 10%; (b) depth of channel 600 μm, compressive strain 20%; (c) depth of channel 500 μm, compressive 

strain 10%, with membrane failure; (d) depth of channel 300 μm, compressive strain 20%, with microchannel blocked. 
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As can be seen from Fig.6-18, PHEMA hydrogel membrane was deformed and protruded into 

the cavities of microchannels under compressive strains in the fastening process, and membrane 

protrusion resulted from 20% compressive strain is overall much larger than that from 10% 

compressive strain (Fig.6-18a vs. Fig.6-18b). To validate the simulations that have been performed, 

the cross-section views in Fig.6-18a and Fig.6-18b deliberately replicated the exact parameters of 

the microchannels used in the simulation in Fig.6-13b and Fig.6-13d, i.e. with 600μm depth and 15° 

dip angle under 10% and 20% compressive strain, respectively. The protrusions of membrane were 

measured approximately in Fig.6-18a (196.1 μm for 10% strain) and in Fig.6-18b (320.3 μm for 20% 

strain), which are very close to the simulated results presented in Fig.6-13b (192.0 μm for 10% 

strain) and in Fig.6-13d (318.6 μm for 20% strain) respectively. This has indicated that the 

simulations are reliable in predicting the mechanical behaviour of membrane under the equivalent 

conditions.  

On the basis of the results from modelling, the most risky points that may cause potential 

mechanical failure of membranes would be the contact regions near the edges of channels (see 

Fig.6-13b and Fig.6-13d) where the stress concentrations are of the highest in the hydrogel 

membrane due to fastening process, under 20% compressive strain (Fig.6-13d). This can ultimately 

result in the fracture of the membranes as it has been observed in Fig.6-18c. In such a case, the 

initiation and propagation of the cracks near the edge of the channel had occurred. This has 

strongly agreement with the simulation on the concentration of Von Mises stress (Fig.6-13b and 

Fig.6-13d). As has been predicted in the simulations, the blockage of microchannel with a depth of 

200 μm caused by the membrane protrusion under 20% compressive strain has also been 

experimentally observed in Fig.6-18d, which again demonstrated the validity of the modelling in the 

prediction of the protrusion of membranes that may become an issue in the design of 

microchannels. 

To verify the simulation results, the experiments for the measurements of the membrane 

protrusion ranging from 200 to 1000 μm both under 10% and 20% compressive strain have been 

carried out, and the results are plotted in Fig.6-19 in relation to the microchannel depth. From Fig.6-

19, the scattered data indicates the variations of measurements on the protrusions, but the overall 

trend of these protrusion increases with the channel depth. However, the greater the compression 

strain, the larger the protrusion, for instance, the protrusion for the same channel depth under 20% 
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strain tends to be greater than that under the 10% strain. According to the experimental data shown 

in Fig.6-19, the protrusion under 10% compressive strain is all relatively small, e.g. below 200 μm. 

The protrusion derived from experimental measurements in Fig.6-19 can be compared with the 

values of protrusion from the simulations listed in Table 6-6. Considering the deviations from the 

measurements indicated as the scattered data in Fig.6-19, the simulation results agree well with the 

experimental data, which indicates the confidence of modelling that has been performed on such an 

occasion. 

 

Fig.6‐19. Membrane protrusion versus the microchannel depth under the compressive strain of 10% and 20%. The solid 

curve is based on the simulation under 10% compressive strain and the dashed curve is based on the simulation under 

20% compressive strain. 

 

6.4.3 Passable Rate and Optimum Design of Microfluidic Channels 

The fluid flow capacity may be limited by the aspect ratio (i.e. the ratio of depth to width) of 

microchannel. According to the above experimental and simulation results, for a given channel 

which has a zero dip angle and fixed width, the protrusion of hydrogel membrane sealed under a 

certain compressive strain due to fastening is independent of the depth of channel. Therefore, for a 

small aspect ratio of microchannel, the channel depth has to be small with a fixed channel width. If 

the depth is smaller than the membrane protrusion (r), no fluid can pass through the channel 

causing ultimately a blockage, or fluid can hardly pass through requiring extremely high fluid 

pressure, which is under the risk of leakage. In the cases, the channel depth is greater than the 
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protrusion, then depending on the gaps remained in the channel cavity, the fluid may partially pass 

through the channel (see Fig.6-20 inclusion). Therefore, the term of passable rate can be defined by 

the ratio between the unblocked and entire channel cross-section areas. Therefore, the inter-

relationship between passable rate and aspect ratio may be derived in Fig.6-20. Accordingly, 

passable rate increases with the aspect ratio of the channel under both compressive strains (10% 

and 20%). However, as have been noticed, the passable rates under the compressive strain of 10% 

are all greater than that under 20% strain for the same aspect ratio of channel. 

 

Fig.6‐20. Passable rates as function of aspect ratio of microchannel obtained from simulation: inclusion is a schematic 

diagram of channel with protruded membrane to illustrate the passable rate. 

 

In the design of microchannels for a microfluidic system, subject to the other requirements of 

such a system, the first step is to consider the required maximum fluidic pressure inside the 

channels. To ensure the reliable channel sealing, the parameters in the fastening process that is 

used to assemble the system can then be determined. These parameters including compressive 

strain and the thickness of hydrogel membrane are critical in the design of microchannels, as they 

can fundamentally affect the mechanical behaviour of membrane under the certain strains. The 

results presented in this paper are anticipated to assist such a process in the design of microfluidic 

channels, for instance, simulations that can be performed to evaluate the potential stress 

concentrations and protrusions of membranes under the pressure, thereby, recommendations on 

the correct selections of channel geometry and dimensions may be provided. It is also practical to 

estimate the passable rates that will be associated with the internal stresses and fluidic pressure 

inside the channels. On the basis of the required fluidic pressure, the fluidic passable rate and the 
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size of the membrane protrusion may be predicted using modelling technique, then the aspect ratio 

of microchannel can be determined according to the inter-relationship between the passable rate 

and aspect ratio, as is shown in Fig.6-20. However, the effects of the width of channel on the 

membrane protrusion (see Fig.6-16) have to be taken into account, in combinations with the other 

relevant factors. This can be implemented through the following procedures: 

(1) Channel width must be in the ranges of 0.1~0.5 mm, or larger than 0.7 mm. 

(2) The passable rate of fluidic in the channel should be ranging from 50% to 80%. 

(3) Aspect ratio of channels, depending on the compressive strains, should be in the range of 

1.15~1.6 (under10% strain) and 1.45~1.6 (under 20% strain). 

This process in the design of microfluidic channels can be repeatedly applied to achieve 

optimum final parameters, which can then be used in the fastening assembly trials to validate the 

simulations. 

 

6.5 Mechanical Behaviour of Hydrogel Membrane in Culture 

Chamber 

According to structural design of the device which is shown in Fig.1-1, when such device is 

assembled, there can be potentially three types of constraints exerted on PHEMA membrane 

subject to their locations (see Fig.6-21): 1) ‘two-sides constraint’, two sides of PHEMA membrane 

contact with substrate (or cover), and the membrane is totally fixed by the compression which is 

induced by mechanical fastening. 2) ‘one-side constraint’, this can be found in the microchannel that 

only one side of PHEMA membrane contact with substrate, the other side of PHEMA membrane is 

deformed as protrusion towards the microchannel. 3) ‘free-standing’, this part of PHEMA membrane 

has no contact with substrate (or cover), and it can be found at the culture chamber. This part is 

designed to hold cells at culture chamber, and provide necessary molecular transportation between 

culture chamber and drug delivery reservoir. However, the internal stress may be severe at the 

boundaries between the ‘free standing’ part and the ‘two-sides constraint’ part, due to the drastic 

reduction of compression towards centre of culture chamber. Thus, the Von Mises stress inside the 

PHEMA membrane when it is inserted and fastened in the microfluidic device is investigated in this 

section. 
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Fig.6‐21. Schematic diagram to define the three types of constraint for PHEMA membrane (inserted blue rectangle): 1) 

Two‐sides constraint; 2) One‐side constraint; and 3) Free‐standing. 

 

6.5.1 Installation of PHEMA Membrane 

As is revealed in the Fig.6-22, the microfluidic device consists of top layer, membrane and 

bottom layer as a ‘sandwich’ structure when it is assembled together (also see Fig.1-1). The 

PHEMA hydrogel membrane is experiencing compression between the top and the bottom layer 

(Fig.6-22a), due to the mechanical fastening. However, there is no pressure acting on the PHEMA 

membrane exposed in the culture chamber. Hence, the stress distribution from the compressed 

region (sealed region between layers) to the ‘free standing’ region (area of culture chamber) in the 

membrane is unclear and required further study. In the current study, internal stress distribution of 

PHEMA membrane in such regions is numerically simulated based on Mooney-Rivlin theory in 

terms of Von Mises stress versus the cross-sectional length of the membrane (revealed in Fig.6-

22c).  

To represent the conditions of PHEMA membrane experienced in situ, a 2D-axisymmetric 

model has been built according to the cross-sectional structure of the microfluidic device, which is 

schematically elaborated in Fig.6-22c. In Fig.6-22c, the substrate under the PHEMA membrane is 

set as fixed constraint, i.e. the grey block; and the cover is simplified as a distributed pressure which 

is applied on the top of the PHEMA membrane, i.e. the series of arrows. The PHEMA membrane is 

installed between the distributed pressure and the fixed block, which is illustrated as the blue block 

in Fig.6-22c. The axial symmetry of the constraints including the distributed pressure (the cover), 

the fixed block (the substrate) and the membrane is utilised to achieve the transformation from 2D 

geometry to 3D geometry, in order to minimise the computational power and calculation time. 
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Fig.6‐22. (a) The culturing chamber in multi‐layered microfluidic device (half structure). Schematic diagram of modelling 

setups  in 2D  (c) which  is extracted  from 3D geometric modelling  (b)  to  simulate  the behaviour of PHEMA membrane 

under the mechanical fastening bonding. 

 

6.5.2 Drastic Stress Distribution on PHEMA Membrane in Culture Chamber 

Mooney-Rivlin theory has been applied on PHEMA material in the simulation, in order to predict 

the distribution of internal stress of the PHEMA membrane. The Mooney-Rivlin coefficients which 

are determined in Chapter 5 are used in the current modelling. Fig.6-23 depicts (a) the set-ups of 

the simulation model, (b) the two-dimensional stress distribution in PHEMA membrane under 10% 

strain, and (c) the distribution of Von Mises stress along the PHEMA membrane under the 

compressive strain of 10%, 20% and 30%. The results from this simulation are used to evaluate 

whether the concentration of Von Mises stress is high enough and beyond the ultimate tensile 

strength of PHEMA material thus causing a potential failure of hydrogel membrane. 

According to the stress graph Fig.6-23c, the Von Mises stress remains almost unchanged at 

the beginning (r=0~2 mm) and followed by a decrease in the region of r=2~2.5 mm. A drastic 

increase (peaks) of the stress around the region of r=2.5 mm corresponding to the interface 

between the fixed part and the free standing part of PHEMA membrane. After this, the value of Von 

Mises stress declines rapidly at the region of r=2.5~3 mm, and remains constant with a small stress 

near the symmetric axis, i.e. the location of r=3.5~5 mm.  
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According to the Von Mises stress distribution shown in Fig.6-23c, for both 10%, 20% and 30% 

applied compressive strain on hydrogel membrane, the larger Von Mises stress in PHEMA 

membrane is resulted by the higher compression. By focusing on the location at r=2.45 mm, the 

maximum values of Von Mises stresses are measured 0.05, 0.08 and 0.16 MPa for 10%, 20% and 

30% compressive strain respectively. Although these peak values may be caused by stress 

singularity in simulation, it can only illustrate that the PHEMA membrane has the risk of material 

failure at this region, because indentations or cracks were not found on the PHEMA membrane in 

experiments when the compressive strain is 10% or 20%. 

 

Fig.6‐23. (a) Simulation setup on PHEMA membrane to analyse stress drop. (b) Two‐dimensional plot with colour bar, in 

terms of distribution of Von Mises stress in PHEMA hydrogel membrane under 10% strain. (c) The line graphs shows the 

Von Mises stress versus top boundary of PHEMA membrane when membrane compressed by 10%, 20%, and 30% strain.  

 

Moreover, Cauchy stress tensor, which can represent both the direction and the magnitude of 

the internal stresses, have been evaluated to elaborate the components on single direction of Von 

Mises stress [195]. In this study, the Cauchy stress tensors are defined on the longitudinal direction 

(z) and on the radial direction (r), because of the 2D-axisymmetric geometry of the simulation model. 
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The general correlation between Von Mises stress (σv) and the Cauchy stress tensors (σij), is given 

by [196]: 

6               Eqn.6-2 

where σ11, σ22, σ33 are the normal stresses and σ12, σ23, σ31 are the shear stresses. In the current 

study, due to the uniaxial compression induced by mechanical fastening technique, all the shear 

stress are zero, and the stress vectors on longitudinal direction (σz) and radial direction (σr) are 

derived from the normal stresses	σ11, σ22, σ33.  

 
Fig.6‐24. (a) Two‐dimensional plot with colour range bar, indicating the distribution of stress on longitudinal direction ‘z’. 

(b) Curves of stress vector on  longitudinal direction  ‘z’ versus distribution at  the cross‐sectional  length of  the PHEMA 

under  10%,  20%,  30%  compressive  strains. Approximate  1 mm  length  of  ‘stress  buffer  range’  (2 mm‐3 mm)  can  be 

determined by the stress distribution, which connects the compressed PHEMA and free standing PHEMA. 

 

On the longitudinal direction ‘z’, the distribution of stress (σz) in the PHEMA hydrogel membrane 

under 10% compressive strain has been shown in Fig.6-24a. The corresponding stress (σz) along 

the top boundary of the material domain in Fig.6-24, under 10%, 20%, and 30% compressive strain, 

have been illustrated in Fig.6-24b respectively, because the top boundary of the material domain 

has the most severe change of stress. From Fig.6-24b, the stress at the locations from 0 to 2 mm, 

both the curves for 10%, 20% and 30% compressive strain exhibit constant values due to the 

distributed compression on PHEMA membrane. Higher compressive strain leads to larger value of 

the stress. According to the definition of positive force direction (see Coordinates in Fig.6-24a), the 
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negative values appear in Fig.6-24b indicate that the stress vector point downwards. The maximum 

value (absolute value) of the stress vector on ‘z’ direction can be found approximately r=2.4 mm at 

0.065 MPa, 0.199 MPa and 0.316 MPa, corresponding to 10%, 20% and 30% applied compressive 

strain. For the locations ranging from 2 mm to 3 mm, the stresses exhibit fluctuation since the 

compression applied on PHEMA membrane is drastically released at the location of 2.5 mm. The 

stresses on the range of 3 mm to 5 mm under 10%, 20% and 30% compressive strains are all 

constants with the value of zero, because no longitudinal stress on the free-standing region of 

PHEMA membrane induced by mechanical fastening. In terms of the overall range (0~5 mm), the 

effects of compressive stress along the longitudinal direction can be completely reduced from 

stressed to free constrained within 1 mm long from 2 mm to 3 mm, which is named ‘stress buffer 

range’ . 

 

Fig.6‐25. (a) Two‐dimensional plot with colour range bar, indicating the distribution of stress on longitudinal direction ‘r’. 

(b) Curves of stress vector on  radial direction  ‘r’ versus distribution at  the cross‐sectional  length of  the PHEMA under 

10%, 20%, 30% compressive strains. Approximate 1 mm length of ‘stress buffer range’ (2 mm‐3 mm) can be determined 

by the stress distribution, which connects the compressed PHEMA and free standing PHEMA. 

 

Similar to the Fig.6-24, the distribution of stress on the radial direction ‘r’ (σr) in the PHEMA 

hydrogel membrane under 10% compressive strain has been shown in Fig.6-25a, and the 

corresponding stress (σr) along the top boundary of the material domain, under 10%, 20%, and 30% 

compressive strain, have been illustrated in Fig.6-25b, respectively. According to the line graphs of 
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Fig.6-25b, the stress values in the range from 0 mm to 2 mm are all zero, followed by a descending, 

a drastic direction reverse and another descending of the stresses on radial direction within the 

locations between 2 mm and 3 mm, which is the ‘stress buffer range’. The drastic direction reverse 

of the stress occurs at the location of 2.5 mm, which is exactly at the boundaries between fixed part 

and free-standing part of PHEMA. In terms of the locations between 3 mm and 5 mm, the values of 

stresses in the membrane are slightly larger than zero away from the centre of the culture chamber. 

The stress at locations range of 0~2.5 mm induced by mechanical fastening can potentially move 

freely without constraints to the range of 2.5~5 mm, causing the stress on radial direction is partially 

applied on the free-standing region of the PHEMA membrane.  

As a summary, the PHEMA membrane at the ‘stress buffer range’ is highly stressed with drastic 

stress direction change. It has risk to exhibit material’s failure, but the risk is far less than that in 

‘one-side constraint’ (see results of Section 6.4), because the values of such drastic stress in ‘stress 

buffer range’ are far below the ultimate stress that PHEMA material can resist. 

 

6.6 Summary 

Mechanical fastening packaging method has been investigated through simulation and 

experiment, which has been proved to be an efficient and reliable packaging method for assembling 

of microfluidic device with the embedded PHEMA hydrogel membrane. Fastening pressure which is 

applied on hydrogel membrane is determined in the mechanical fastening process by controlling the 

corresponding compressive strain. The compressive strain should not be larger than 20% in the 

present geometric configuration of the microchannels (i.e. sharp edges trapezoidal cross-section), 

in order to avoid the membrane material failure thus ensuring the stability of the fastening 

assembled device. The maximum allowed fluid pressure Pf that causes the microsystem to leak has 

been investigated. It is found that increasing the compressive strain applied on the membrane leads 

to a raise of the Pf  for microchannel. The values of Pf have been experimentally determined to fall in 

the range of 200-350 kPa for 10% compressive strain, and 350-1000 kPa for 20% compressive 

strain, which is much higher than the maximum allowed pressure in normal microfluidic system (60 

kPa).  

Furthermore, the deformation (e.g. protrusion) and stress distribution of the PHEMA hydrogel 

membrane which is used to seal the microfluidic device have been specifically investigated. 
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Simulations using Mooney-Rivlin theory have been carried out to predict the mechanical behaviour 

of PHEMA hydrogel membrane in terms of displacement and the Von Mises stress. Von Mises 

stress distribution indicates the highly stress concentrated region is near the edge of channel, which 

is prone to the mechanical failure of the membrane under the compression. The geometric 

parameters of microchannels (e.g. width, depth or dip angle of the microchannels) can affect the 

Von Mises stress distribution in the hydrogel membrane, in particular, the width of channel. 

Additionally, these simulation results, including the deformation of membrane (e.g. protrusion into 

the cavity of microchannel), have been experimentally validated through the cross-sectional view of 

the deformed membrane under the compression. The results have been compared with the 

simulations that were undertaken under the same conditions and channel geometries, and it has 

been found the values of protrusion obtained from experimental measurements have agreed with 

the results from the simulations. Therefore, the simulation is reliable and has reflected the 

mechanical characteristics of membranes under the compression. Based on these simulated results, 

the generic design rules may be outlined for the optimum design of microchannels in terms of their 

geometry and dimensions. This will ultimately assist the process to enable rapid fixture of the 

related parameters in the fabrication of such microfluidic channels, in order to achieve reliable and 

efficient fluidic flow in the microfluidic device by minimising the internal stress concentration and 

enhancing the fluidic passable rate of the microchannels.  

Finally, drastic internal stress distribution in the PHEMA membrane near the edge of culture 

chamber region is numerically visualised using the verified simulation model. The distributions of 

internal stress in terms of Von Mises stress and normal stresses elaborated that the stress in the 

membrane drastically changed within the 1 mm long ‘stress buffer area’, which is located at the 

boundary between the fixed constraint and free standing constraint of PHEMA membrane. For both 

10% and 20% compressive strain induced by the mechanical fastening, such change of stress is yet 

able to cause the hydrogel material failure.  

In conclusion, mechanical fastening technique has been demonstrated as a feasible and 

reliable packaging process for hydrogel-based microfluidic device fabrication. 

  



 

~	121	~	
 

Chapter 7. Dynamic Perfusion Process in 

Microfluidic Culture System 

7.1 Introduction 

In a perfusion culture device, inflow velocity, initial nutrient concentration, and the dimensions 

of culture chamber are the key parameters which are used to determine the performance of the 

device. The present chapter focuses on the determination of these parameters to develop a 

hydrogel-based cell culture microdevice with optimal performance. Inter-relationships between 

these functional parameters have also been investigated in order to develop a microdevice for 

culturing various types of cells. 

In this chapter, the geometry and dimensions used in the simulation are closely associated with 

the structural design of the microfluidic device which is introduced in Chapter 1, and the optimal 

dimensions for microchannels which are identified in Chapter 6. The theoretical aspects of the 

simulations are based on the Navier-Stokes fluid dynamics and the Fickian diffusion property of 

hydrogel which was examined in Chapter 4. The results in terms of nutrient supply and fluidic shear 

stress are obtained from these simulations. Two optimum guidelines to restrict the range of such 

key parameters are proposed, which can potentially expand the range of inflow velocity thus 

facilitate different types of cells to be incubated using this microdevice. 

 

7.2 Theoretical Basis 

7.2.1 Fluid Dynamics 

To determine the characteristics of fluidic flow in terms of laminar or turbulent forms, a 

preliminary calculation of the Reynolds constant (Re) which is correlated to the dimensions of the 

microchannel is made [197]. It indicates that the maximum Reynolds number is located at the 

smallest cross-section when fluid flows in a tube or closed channel. Comparing with the fluidic port 

and culture chamber, the smallest cross-section in fluid passage in this microfluidic device appears 

at the microchannel. Thus, the maximum Reynolds number occurs at the microchannel. According 

to the dimensions of the trapezoidal cross-section in the current study: widths w1=0.48 mm, w2=0.1 

mm, height hc=0.7 mm and dip angel θ=15˚(see Fig.6-14), the maximum Reynolds number (Re) of 

this microfluidic device can be calculated based on the equivalent dimensions of the microchannel: 
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∙ 																																												Eqn.7-1	

where, μ is dynamic viscosity of fluid [Pa·s or kg/(m·s)], ρ is the density of fluid [kg/m3], and vin is the 

mean velocity of the fluid in the channel [mm/s]. The hydraulic diameter of the trapezoidal duct DH is 

given by DH	= 4*Cross-sectional Area [mm2] / Wetted Perimeter [mm]. The wetted perimeter in this 

case is the total perimeter of cross-section of channel, because the channel is fully filled with fluid 

thus all channel walls are in contact with the fluid. 

According to the initial flow rate (0.5 ml/hour) which is controlled by the micropump, and the 

area of the cross-section of microchannel (w1=0.48 mm, w2=0.1 mm, and hc=0.7mm), the value of 

vin	is calculated, which is 0.68 mm/s. Thus, with the parameters that are utilised in the simulation, i.e. 

μ=8.9*10-4 Pa·s, ρ=1000 kg/m3 and vin=0.68 mm/s, Eqn.7-1 yields a Reynolds number of 0.304. It 

indicates that the characteristics of fluidic flow in the microdevice is laminar flow, because the value 

of the maximum Reynolds number in the fluidic passage is much less than 1000 [198]. Accordingly, 

the theory on the momentum convection equation based on Navier-Stokes equations at steady 

state [199] can be implemented in the simulation which is used to represent the laminar fluid flow in 

the microdevice: 

∙                                         Eqn.7-2a 

0																																																																													Eqn.7-2b	

where,  is the velocity field [m/s], p denotes the pressure [Pa], f denotes the volume force [N/m3], 

and  is the standard del(nabla) operator,  [199]. The formula in Eqn.7-2a 

controls the momentum balance, and the other formula (Eqn.7-2b) defines the continuity for 

incompressible fluids. 

 

7.2.2 Diffusion in Hydrogel 

In terms of the diffusion property of PHEMA, it is represented based on Fick’s law 

(demonstrated in Chapter 4) in the modelling. To make the model simple, the culture medium is 

assumed as a diluted solution of mixed glucose and water. Therefore, the equation to describe the 

diffusion behaviour of glucose in the culture medium is given by [153]: 

∙ 0																																																																			Eqn.7-3	

where,  is the velocity field [m/s], D denotes the diffusion coefficient [m2/s], and c is the current 
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concentration of glucose [mol/m3].  

The PHEMA hydrogel membrane enabling the diffusion of molecules (e.g. glucose) through the 

material can be built in the modelling, the solute and solvent molecules pass through the hydrogel 

material obeying Fick’s law. During the diffusion, the PHEMA hydrogel is saturated by glucose. The 

capacity that PHEMA hydrogel absorb glucose is another key parameter for the numerical 

simulation in this study. Therefore, the Langmuir adsorption equation [200] has been utilised to 

describe the capacity of absorption of PHEMA hydrogel to glucose molecules: 

⋅                                                      Eqn.7-4 

where Г is the amount of glucose [mol] that absorbed by 1 kg PHEMA hydrogel in the solution of 

glucose concentration at c [mol/m3]. Гmax  is the maximum amount of glucose that PHEMA can 

absorb and independent to the value c. And k is the Langmuir equilibrium constant.  

 

7.2.3 Diffusion and Reaction in Solution 

In the perfusion culture, diffusion of molecules in the solution is assumed to follow the generic 

scalar transport equation in the format of conservation equation in terms of a substance ci : 

																																																											Eqn.7-5	

where  stands for the diffusion transport of chemical solute of interest (e.g. glucose) [W/m2], ci  is 

the concentration of chemical solute caused by reaction [mol/m3] [201], and Ri	denotes the rate of 

reaction [mol/m3·s]. Meanwhile, the reaction rate for glucose (i.e. consumption rate Rglucose) on the 

basis of Michaelis-Menten kinetics is given by [202] 

, 	
,
∙ 																																									Eqn.7-6	

where Rmax,g is the maximum reaction rate during the consumption of glucose [mol/m3·s], CHf,g is the 

glucose concentration of half maximum response in the whole glucose consumption period [mol/m3]. 

ct	denotes the glucose concentration inside cell [mol/m3]. When the current concentration of glucose 

(cg) is smaller than	 ct, cells will die due to the lack of energy income. Smoothed Heaviside function 

( ) guaranteeing convergence in iteration during computational calculation, is achieved by a built-in 

function which is named flc1hs [203] in COMSOL Multiphysics software version 4.1 (Burlington, MA, 

USA). This function was introduced and implemented by A.V. Hill [204,205] and Buchwald [206] in 

their works.  
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7.3 Simulation Details 

7.3.1 Geometry Building 

As is shown in Fig.1-1, the geometry of the numerical simulation in this chapter is built on the 

basis of the structural design: two individual perfusion sub-systems, including microchannel and 

culture chamber (or drug delivery reservoir). These two sub-systems are connected only through 

the diffusion of the hydrogel membrane which is located between them. Fig.7-1a schematically 

illustrates the fluid domains in simulation based on such structural design of the microdevice. To 

save the computational power and the time of calculation, the 3D model was half symmetrically 

transformed (Fig.7-1b) when carrying out the simulation. Due to the laminar flow determined by 

Reynolds number throughout the entire system (Section 7.2.1), the streams of fluid flow from each 

half of the geometry will not mix with each other. Thus, no convection existed between the two half 

symmetric parts. It therefore verified the feasibility that using half-symmetric geometry in the 

numerical modelling. 

 
Fig.7‐1.  (a) Fluid domain  in the microdevice, culture chamber and drug delivery reservoir, built  in 3D  in simulation.  (b) 

Culture chamber after symmetric transform. The hydrogel membrane on the bottom of the culture chamber has been 

highlighted in blue. 

The cylindrical culture chamber and drug delivery reservoir have the same dimension: diameter 

of 5 mm, height of 1.5 mm. The channels for fluid flow possesses trapezoidal cross-section, with the  

width of 0.48 mm and 0.1 mm, height of 0.7 mm which is selected from the optimum dimension 

range for the microchannels based on the investigations in Section 6.4. Overall, according to the 

dimensions and the geometries in this work, the model was built in COMSOL Multiphysics using 

laminar flow and transport of diluted species modules. The modelling was solved by the MUMPS 

direct solver on hydra cluster with 24GB of memory which is running by Bull Linux AS5. The hydra 

cluster consists of 161 compute nodes, and each node has two six-core Intel Westmere Xeon 

X5650 CPUs [207]. 
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7.3.2 Determination of Input Parameters 

Before the simulation for modelling, various parameters that define the physical environment 

for the simulation require to be determined. The basic parameters of the fluid and hydrogel, 

including dynamic viscosity, density of fluid and temperature of the perfusion solution, can be 

predefined as μ=8.9*10-3 Pa·s,	 ρ=1000 kg/m3,	 T=310.15 K, respectively. The pressure of the fluid 

flow in the microchannels and culture chamber is determined based on the results from Section 6.3, 

which has to be smaller than the Critical Leakage Pressure (Pf) to guarantee the reliability of sealing 

of the channel-chamber system of the microdevice. The mean velocity of the fluid at inlet (inflow 

velocity) is indicated by a variable vin [mm/s], which is dependent of the fluidic shear stress on the 

cells in culture chamber.  

The culture medium used in this study is Dulbecco's Modified Eagle's Medium (DMEM) from 

Sigma-Aldrich. The concentration of glucose of this culture medium is 4500 mg/L (=25 mol/m3). 

Thus, the value of the glucose concentration at the inlet (cin) is set to be 25 mol/m3. The glucose 

concentration from inlet of drug delivery reservoir is zero. The glucose concentration in cells ct at 

37˚C is assumed as 8 mol/m3, according to the linear interpolation based on the experimental 

results (Table 7-1) developed by Foley et al. [208]. 

Table 7-1 Summary of glucose concentration inside and outside of cells 
from literature of Foley et al. and the assumption in this work 

 Extracellular Intracellular 

Literature from 
Foley et al. 

[208] 

2 mol/m3 
Large cell 0.74~1.60 mol/m3 

Small cell 0~1.36 mol/m3 

5 mol/m3 
Large cell 2.03~3.67 mol/m3 

Small cell 0.44~2.97 mol/m3 

50 mol/m3 
Large cell 16.65~31.55 mol/m3 

Small cell 5.13~11.52 mol/m3 

Assumption in 
this work 

25 mol/m3 Medium 8 mol/m3 

Moreover, diffusion coefficients of glucose in hydrogel are determined based on experimental 

results which were determined in Section 6.2.3. The experimental approaches demonstrated that 

the capacity of absorption of PHEMA hydrogel to glucose is Г=0.038 mol/kg, in the solution with 

glucose concentration of 1111.1 mol/m3 (=200 g/L). The diffusion coefficient of glucose in PHEMA 

hydrogel was evaluated at 0.099 cm2/s. Combining such experimental results and the maximum 

capacity of absorption of PHEMA (Гmax=0.052 mol/kg) from literature [ 209 ], the value of the 
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Langmuir equilibrium constant k can be determined as 0.0024 m3/mol according to Eqn.7-4. In 

literatures, the diffusion coefficient of glucose is 6.80*10-10 m2/s at 20˚C in water [153], and is 

measured as 9.59*10-10 m2/s at 37˚C in aqueous medium by Bashkatov et al. [210]. It is also 

evaluated by Li et al. [211] at 9.25*10-10 m2/s in culture medium at 37˚C. Thus, average diffusion 

coefficient Dg=9.45*10-10 m2/s of glucose in water under the temperature of 37˚C is used in this 

study. Meanwhile, the diffusion coefficient of glucose in tissue (cells) is determined at Dg,t=4.0*10-11 

m2/s in the current simulation, within the range from 2.3*10-11 m2/s to 5.5*10-11 m2/s reported by 

Casciari et al. [212]. The diffusion coefficient of glucose in ascites cells (4.3*10-11 m2/s) determined 

by Busemeyer et al. [213], and inulin diffusivity in V79 Chinese hamster lung cell (4.2*10-11 m2/s), 

which is detected by Freyer and Sutherland [214] have also been used in work. 

According to the work done by Zhang et al. [215], the maximum glucose consumption rate for 

single cell is experimentally detected at the initial stage of cell culture with the value of 3.18*10-19 

mol/cell/s (=27.5 fmol/cell/day). After that, a decrease in the consumption takes place and followed 

by a constant consumption rate at 1.18*10-19 mol/cell/s (=10.2 fmol/cell/day). Hence, the value of 

maximum glucose consumption rate for a single cell Rmax,single is assumed as 3.2*10-19 mol/cell/s in 

the current simulation. Moreover, as is described in Chapter 3 of this thesis, the size of single cell is 

approximate Ø17μm for HUVECs, which gives the volume of cell at Vsingle=2.57*10-15 m3. However, 

the cell is modelled as a semi-sphere attached to the bottom of culture chamber in the simulation, 

thus the volume of cell in the modelling is the half volume of sphere, Vhalf,single=1.29*10-15 m3. Hence, 

the coefficient of glucose consumption rate in Eqn.7-6 is given by: Rmax,g= 
,

	
 = 2.42*10-4 

mol/(m3·s). This value of the consumption rate reaches a very close agreement with 1.4 g/(L·h) 

(=2.16*10-4 mol/(m3·s)) by Voulgaris et al. [216].  

Additionally, during cell culture in vitro, the highest glucose concentration presents at inlet 

because the concentration of glucose keep decreasing because glucose is consumed by cells in the 

culture medium. According to the glucose concentration of the culture medium (DMEM) at 4500 

mg/L (=25 mol/m3), the value of CHf,g which is a constant in Eqn 7-6 can be determined to be 12.5 

mol/m3. This value has a good agreement with the value of 10.4 mol/m3 from the literature reported 

by Zhang et al. [215]. As a summary, the parameters which can be used in the numerical simulation 

to investigate the dynamic perfusion behaviour of the hydrogel-based cell culture microdevice are 

determined and summarised in the Table 7-2. 
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Table 7-2. Summary of the parameters in simulation 

Category Description Name Value 

Geometrical 
dimensions 

Radius of culture chamber r	 2.5 [mm]

Height of culture chamber  h	 1.5 [mm]

Widths of channel w1,	w2	 0.48, 0.1 [mm]

Height of channel hc	 0.7 [mm]

Properties of 
fluid 

Dynamic viscosity μ	 8.9*10-4 [Pa·s]

Density ρ	 1000 [kg/m3] 

Concentration of 
glucose  

At inlet of culture chamber cin	 25 [mol/m3] 

At inlet of drug delivery reservoir cin_res	 0 [mol/m3]

In cells under 37 ̊C ct	 8 [mol/m3] 

Half maximum response CHf,g	 12.5 [mol/m3]

Diffusion 
coefficients 

Glucose in culture medium Dg	 9.45*10-10 [m2/s]

Glucose in tissue (cell) Dg,t	 4.0*10-11 [m2/s]

Glucose in PHEMA hydrogel D	 9.9*10-6 [m2/s]

Other 
Langmuir equilibrium constant k	 0.0024 [m3/mol]

Maximum glucose consumption rate Rmax,g	 2.42*10-4 [mol/m3·s]

Variables to be 
solved 

Inflow velocity of culture medium vin	 [mm/s]

Glucose concentration around cells cg	 [mol/m3]

Maximum shear stress around cells  τmax_cell	 [dyn/cm2]

 

7.4 Results in Culture Chamber 

7.4.1 Nutrient Supply to Cells 

During the perfusion culture of cells using microfluidic device, the primary factor of extracellular 

matrix (ECM) which needs to be controlled is the nutrient supply for cells. According to Chapter 4, 

glucose is assumed as the only solute and only nutrient for cells in the culture medium in this study. 

Thus, the results of the modelling, in terms of the streamlines of both water molecules, isosurface of 

glucose concentration in the culture medium, and the equilibrium gradient of the glucose 

concentration in culture chamber, are illustrated in Fig.7-2. The glucose concentration is 

approximately uniform in culture chamber within the range of 24.98~25 mol/m3. It can be seen from 

the isosurface plot (Fig.7-2b) that the lowest concentration of glucose locates around cells near the 

bottom of the chamber with the value of 24.93 mol/m3. The homogeneous distribution of glucose 

molecules in the culture chamber is attributed to the flowing of the fluid which can only be achieved 

by perfusion culture. In traditional culture method, cells are seeded in a Petri dish which filled with 
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culture medium. The nutrient concentration in culture medium decreases during the growth of cells, 

with the nutrient consumption by cells. Inevitably, the culture medium has to be replaced periodically 

in the traditional cell culture. If compared with such kind of traditional culture using Petri dish, 

perfusion culture based on microfluidic system guarantees that the nutrients concentration in the 

extracellular matrix is a controllable constant, thus can automatically achieve culturing of cells. 

 
Fig.7‐2. (a) Colour range: distribution of glucose in the equilibrium state under the conditions of cin=25 mol/m3, vin=0.1 

mm/s.  (b)  Isosurface of glucose concentration  in the equilibrium state, maximum concentration at  inlet then gradually 

decrease towards the bottom of the chamber, which  is the  location of cells. (c) Streamlines of fluid flow  in the culture 

chamber. 

 

In order for all the cells occupied on the bottom of the chamber to have sufficient glucose to 

consume, the minimum glucose concentration around cells (cg) has been plotted in Fig.7-3a with 

respect to the inflow velocity (vin) which is varying from 0 to 0.5 mm/s. In Fig.7-3a, when vin=0, the 

corresponding cg equals to 22.61 mol/m3. In this situation, the culture medium does not flow, but it 

connects to the inlet channel which provides fresh culture medium. Thus, the glucose molecules are 

transported from the inlet to cells only through the diffusion behaviour of culture in water, instead of 

transport through fluid flow. When 0<	 vin ≤0.1, it is apparent to see that the value of cg have a drastic 

increase with the increasing of inflow velocity. Within this range of inflow velocity, efficiency of 

consuming glucose by cells is significantly increased, as such cells can have sufficient nutrients to 
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perform proliferation and differentiation. In the following range (0.1<	 vin ≤0.5), the inflow velocity 

does not significantly affect the value of cg. On account of the glucose concentration in culture 

medium cin is fixed at 25 mol/m3, the value of cg maintains approximately 24.51 mol/m3 in this range 

of inflow velocity.  

The relationship vin~cg has been revealed at Fig.7-3a, and the relationship cg~Rglucose has been 

shown in Eqn.7-6. Thus, in order to determine the constraints of	 vin, the correlation between vin and 

Rglucose can be seen in Fig.7-3b & c. Comparing with the maximum and minimum glucose 

concentration rate for single cells Rmax,single and Rmin,single from literature [215], the value of Rglucose 

depicts as a constant (approximately 2.09*10-19 mol/cell/s), which is in the middle of the range 

Rmin,single ~	 Rmax,single. Accordingly, no matter what the value of vin is, it gives that Rmin,single <	 Rglucose <	

Rmax,single. Thus, it can conclude that cells can be well cultured in all range of inflow velocity (vin), 

because the culturing microdevice provides sufficient nutrients even vin=0. 

 

Fig.7‐3. (a) Correlation between minimum glucose concentration around cells (cg) and inflow velocity (vin), from 

simulation. (b) Correlation between glucose consumption rate for single cell (Rglucose) and inflow velocity (vin), based on 

Eqn.7‐6. (c) Enlarged plotted date from (b) 
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7.4.2 Fluidic Shear Stress on Cells 

Apart from the nutrient supply, another essential factor affecting the physical environment in 

perfusion culture in microfluidic system which is different from traditional culture is the flow of the 

culture medium during the incubation of cells. Theoretically, if there is fluid flow, then there is 

hydrodynamic shear. For the perfusion culture microdevice in this study, cells are incubated in an 

environment with a dynamic fluid flow and exposed in the field of hydrodynamic shear. If the shear 

stress which is applied on cells is high enough, it can potentially cause the decrease of proliferation 

rate of cells, or even cells to be detached from their substrate and flew away. To avoid this, the 

shear stress in terms of fluidic viscous force which is applied on cells has to be constrained smaller 

than the maximum adhesion strength of cells to substrate. The fluidic shear stress (τ [dyn/cm2]) at 

the bottom of the culture chamber where the cells are located is the parameter of interest for 

simulation study. Thus, numerical modelling has been established for dual purposes: i) to visualise 

the gradient of fluid flow velocity and the gradient of shear stress in the culture chamber during the 

perfusion culture, and ii) to examine the relationship between fluidic shear stress at the bottom of 

chamber (τ) and the fluid velocity at inlet (inflow velocity vin). 

The characteristics of fluid flow in the culture chamber in terms of the gradient of velocity and 

shear stress are numerically studied. Fig.7-4 illustrates the simulation results when the inflow 

velocity (vin) is fixed as 0.5 mm/s. It can be observed that the maximum fluid flowing velocity occurs 

at the inlet and outlet from Fig.7-4a, corresponding to the locations with high fluidic shear stress 

(shown in Fig.7-4b). The distribution of fluid velocity and the fluidic shear stress are relatively 

uniform in the culture chamber as shown blue in Fig.7-4a&b. The drastic changes of the velocity 

gradient and shear stress gradient near inlet and outlet are induced by the sudden change of the 

cross-sectional areas at the interface between microchannels and culture chamber. Meanwhile, 

focusing on the bottom plane of the culture chamber where the cells located, the distribution of the 

shear stress on the plane and the streamline of the fluid flow are shown in Fig.7-4c. The scattered 

plot in Fig.7-4c shows the magnitude of shear stress along the central line from the fluid entrance to 

the fluid exit on the bottom of chamber. This scattered plot indicates that the maximum shear stress 

around cells (τmax_cell) is 0.0215 [dyn/cm2] at the location near the entrance of chamber, but the 

average shear stress around cells is calculated at 0.0044 dyn/cm2. It implies that the maximum 

shear stress (τmax_cell) is nearly 5 times larger than the average shear stress. Therefore, if the 
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maximum shear stress at the bottom plane of chamber (τmax_cell) is smaller than the maximum 

adhesion strength of cells to PHEMA substrate (τcell=0.021 dyn/cm2) which is experimentally 

examined and described in Chapter 4 of this thesis, it can guarantee that shear stress anywhere 

else in the bottom of chamber is much smaller than τcell, thereby the cells are well cultured.  

 
Fig.7‐4. (a) Velocity gradient of the fluid in culture chamber, when inflow velocity is 0.5 mm/s. (b) Field of hydrodynamic 

shear stress in culture chamber, when inflow velocity is 0.5 mm/s. The white arrows in (a) and (b) indicates the velocity 

field of fluid in chamber. (c) Enlarged graph of fluidic shear stress gradient and the velocity streamline at the bottom of 

chamber. The plot is the shear stress along the central line of the bottom of chamber, maximum stress at inlet, minimum 

stress at centre. 

 

The simulation results in terms of the relationship between the maximum shear stress at the 

bottom of culture chamber (τmax_cell) and the inflow velocity (vin) are presented in Fig.7-5, as a 

proportional correlation between them. The horizontal dashed line in the figure indicates the value 

of the maximum adhesion strength τcell=0.021 dyn/cm2. This dashed line constrains the maximum 

allowed inflow velocity vin, corresponding to the value of 0.49 mm/s. Therefore, using any value 

smaller than 0.49 mm/s for inflow velocity, it can thus satisfy the requirements that cells will not be 

detached from their substrate during perfusion culture. Thus, the vertical dashed line (vin=0.49 mm/s) 
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constrains the maximum allowed fluid velocity for the perfusion culture microdevice when HUVECs 

cells are cultured on PHEMA substrate. 

 

Fig.7‐5. The correlation between maximum shear stress around cells (τmax_cell) and inflow velocity (vin), obtained from 

modelling. The maximum adhesion strength is tested in Section 4.6 of this thesis. Cell type: HUVECs. Substrate: PHEMA 

hydrogel. 

 

7.4.3 Determination of Inflow Velocity for Perfusion Culture 

Two primary variables, i.e. fluidic shear stress (τ) and glucose concentration around cells (cg), 

were investigated, since both can affect the viability of cells during culture in the perfusion cell 

culture microdevice. Based on these two variables, the suitable range for choosing the value of 

inflow velocity can be proposed. The minimum allowed inflow velocity (vlow) is determined from the 

investigation of nutrient concentration, because low enough fluid flow may potentially cause 

insufficient nutrient supply, thus cause cells shrink or die. From the work carried out in Section 7.4.1, 

vlow=0 is determined in this study, based on the assumption that the glucose is the only nutrient. 

Meanwhile, from Fig.7-5 in Section 7.4.2, the value of maximum adhesion strength for cells 

(τcell=0.021 dyn/cm2) and the relationship between shear stress versus inflow velocity has led to the 

maximum allowed inflow velocity (vhigh) of 0.49 mm/s. Thus, by combining these two results, the 

applicable range of the inflow velocity (vlow~vhigh) for the perfusion culture microdevice can be 

0~0.49 [mm/s]. Apparently, any value within this range is chosen for the inflow velocity to perfuse 

culture medium into the culture chamber, it can guarantee that cells are well incubated in the 

perfusion culture microdevice. 
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Accordingly, an economic issue can emerge: culture medium may be wasted if the correct 

inflow velocity (vin) is not selected, even within the applicable range (0~0.49 mm/s). For example, 

there are two groups (e.g. group A and group B) of culturing system with same configurations of 

chamber geometry, cells type and substrate material, but different inflow velocity (vin). Group A uses 

a small value vin in the applicable range of velocity, e.g. vin_A=1*10-5 mm/s, and Group B uses a large 

value in contrast, e.g. vin_B=vhigh=0.49 mm/s. After a certain period of time, both their configurations 

can keep that cells are well cultured and even potentially achieve the similar results (e.g. viability or 

density of cells), because of the friendly environments for cells are provided during culturing, with 

sufficient nutrient supply and acceptable hydrodynamic shear. The only difference between these 

two groups is that the consumption of the culture medium of Group B is far larger than that of Group 

A during the same period of culture, for vin_A	 >>	 vin_B. Therefore, to avoid the high consumption of 

culture medium but keep the friendly culturing environment for cells, two alternative practical 

approaches may be proposed: i) choosing relatively low inflow velocity in the applicable range for 

the perfusion microdevice, e.g. vin =0.1 mm/s, to optimize the consumption of culture medium. ii) 

performing the periodic “flow-stop” perfusion using CNC (Computer Numerical Control) technique, 

to enable automatic refreshment of culture medium. Such “flow-stop” method of perfusion culture, 

which mixes perfusion culture and traditional culture, has been reported by Korin et al. [217] in 

literature. 

 

7.4.4 Dimensional Effects on Nutrient Supply 

A number of problems can be solved if the culture chamber is well designed. For instance, 

sufficient nutrient supply can be guaranteed by proper distance of inlet to cell; hydrodynamic shear 

can be reduced by choosing appropriate height and/or radius of chamber. Investigations on these 

influences for the perfusion culture microdevice are rarely found in the literature. 

In this section, the effects of dimensions of cylindrical culture chamber on the glucose 

concentration around cells are discussed, in order to achieve an optimal dimensional design for the 

culture chamber. Based on the geometry of the culture chamber which is shown in Fig.7-1b, the 

correlations between the glucose concentration around cells (cg) and the radius and height of the 

culture chamber are obtained in Fig.7-6 as a 3D surface profile. Accordingly, for a fixed radius of 

chamber (r), the linear relation between glucose concentration around cells (cg) and height of 
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chamber (h) is found, but the glucose concentration does not vary significantly with the height of 

chamber. The estimated variability of cg is less than 0.2 mol/m3 over the range of the height of 

chamber h from 1 mm to 4 mm. However, the value of	 cg varies from 22.8 to 24.3 mol/m3 when the 

radius (r) in the range of 1~3 mm. For a given height of chamber (h), cg decreases with the increase 

of r initially, until it reaches the minimum value of 22.8 mol/m3 at r=2.5 mm, and followed by a 

gradual increase. The maximum value of the glucose concentration is corresponding to the smallest 

radius r=1 mm, because smaller the chamber is, the less cells that can survive due to the limited 

spaces in the chamber, which can result in less consumption of glucose. Considering the 

requirements on the cells density, the radius of culture chamber cannot be too small in order to 

reserve enough space for cells to proliferate. 

In summary, in terms of the glucose concentration around cells (cg), it does not vary significantly 

with the height of chamber h, the change of radius of chamber r can cause 6% variation of cg. With 

such insignificant effects of h and r on the value of cg, the dimensions of culture chamber is primarily 

depending on the requirements on the cells density in culture chamber. 

 

 
Fig.7‐6. The dimensional effects of culture chamber (radius and height) on the glucose concentration around cells, based 

on the configuration of culture chamber which is shown in Fig.7‐1b. The inflow glucose concentration is 25mol/m3 due to 

the properties of culture medium. The inflow velocity is assigned as 0, because it gives minimum glucose concentration 

around cells according to Fig.7‐3a. 
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7.4.5 Dimensional Effects on Fluidic Shear Stress 

When the dimensions (i.e. radius or height) of the culture chamber are changed, the flowing 

streamlines of the fluid in the perfusion culture device will be completely re-distributed. 

Consequently, the fluidic shear stress which is applied on cells will be totally different. In this section, 

the radius (r) and height (h) of the culture chamber are varied independently to numerically 

investigate the effect of these dimensions on the maximum shear stress around cells (τmax_cell). The 

simulation results are illustrated in Fig.7-7. 

 
Fig.7‐7. The relationship of maximum shear stress around cells (τmax_cell) and inflow velocity (vin), with respect to (a) the 

height of chamber h, when r=2.5 mm; and (b) the radius of chamber r, when h=1.5 mm. Increase of h, or decrease of r, 

can result in larger maximum allowed inflow velocity (vhigh).  

 

Firstly, fixing the value of radius of the culture chamber as 2.5mm, the height of the culture 

chamber h, the only variable varies from 1 to 3 [mm]. Fig.7-7a shows the correlation between 
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maximum shear stress around cells (τmax_cell) and the inflow velocity (vin), with respect to the height 

of culture chamber (h). As seen in the Fig.7-5, the maximum allowed inflow velocity is depending on 

the maximum adhesion strength of cell to PHEMA substrate. In the Fig.7-7a, we have 

v(h=3)>v(h=2)>0.49>v(h=1), which means if the height of culture chamber increases, the range of 

applicable inflow velocity will be increased by changing the upper limit (vhigh in Fig.7-6). Specifically, 

the inflow velocity range has been expanded by 80%, when h increases from 1 mm to 2 mm, 

because the upper limit vhigh has been increased from v(h=1)=0.36 mm/s to v(h=2)=0.65 mm/s. 

Similarly, inflow velocity range is expanded by over two times when h increases from 1 mm to 3 mm. 

Thus, the height of culture chamber can significantly affect the applicable range of the fluid velocity 

at inlet. Meanwhile, for a fixed vin, it can also be seen from the Fig.7-7a that τmax_cell is decreasing 

with the increase of h. Therefore, a guideline can be proposed when selecting a proper value of 

height for culture chamber: the height of culture chamber h should be as large as possible to reduce 

the shear stress on cells and expand the applicable range of inflow velocity. 

Secondly, the relationships between τmax_cell and vin, with respect to the radius of the culture 

chamber r, are numerically studied and shown in Fig.7-7b, and we can have v(r=1)>v(r=2)>v(r=3), 

which means the applicable range of inflow velocity is expanded by reducing the radius of culture 

chamber. When the radius of culture chamber is reduced from 3 to 2 or 1 [mm], the applicable 

range of inflow velocity is expanded from 0~0.42 [mm/s] to approximate 0~0.56 [mm/s] or 0~0.67 

[mm/s] respectively, increasing up to 60%. Thus, the radius of culture chamber r can significantly 

affect the applicable range of the inflow velocity (vin) with a inverse correlation.  

Consequently, brief suggestions for designing the dimensions of culture chamber, in terms of 

the height of chamber h and the radius of chamber r, can be proposed: i) For the height of culture 

chamber, it has to be designed as large as possible within the requirements of the dimensions. ii) 

For the radius of culture chamber, it has to be determined as small as possible to reduce the fluidic 

shear stress which is applied on cells. These design guidelines can be utilised to optimize the 

dimensions of culture chamber, in order to achieve a reliable cell culture microdevice. 

 

7.4.6 Effect of Location of the Microchannel on Shear Stress 

Beyond the original design of the culture chamber in Fig.1-1, the fluid stress on cells (τ) is also 

dependent on the location of microchannels (i.e. inlet and outlet), because different location of 
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microchannels leads to various streamlines of the fluid flow, and results in a re-distribution of 

hydrodynamic shear. In this section, the effect of distance between channel (d) and cells on the 

fluidic shear stress on cells (τ) is numerically investigated. The distance between channel and cells 

d is defined in Fig.7-8b. 

 
Fig.7‐8.  (a) Original design of  the  culture  chamber with  channels.  (b) Definition of  ‘d’,  the distance of  channel  to  the 

surface of cells.  

 

 

Fig.7‐9. The fluid velocity (arrows) and velocity streamlines (black curves) in vary value of ‘d’, which is ranging from 0.5 to 

5.5 mm. Vortex flow can be found in (c), (d), and (e) at the corner of the chamber. 

 

The variable d is assigned ranging from 0.5 to 5.5 mm in the modelling, by fixing the radius of 

chamber r	 at 2.5 mm, and the inflow velocity at 0.1 mm/s. Fig.7-9 presents the simulation results in 

terms of the fluid flow velocity distribution, and the streamline in the central cross-section of the 

culture chamber. By increasing the variable d from 0.5 mm to 2.5 mm, the streamlines of fluid flow 

behave continuously from the inlet to outlet. Beyond the distance d at 2.5mm, it can be apparently 

observed that there is vortex flow at the corners of the chamber, i.e. both lower corners for Fig.7-9c, 
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Fig.7-9d and Fig.7-9e. If cells are incubated in such configurations of chamber, the vortex flow will 

not carry the fresh nutrients from inflow but will remain at the corner all the time, thereby deteriorate 

the extracellular environment. Thus, large distance between inlet channel and cells has to be 

avoided when designing the culture chamber.  

 
Fig.7‐10. (a)~(f) Spatial distribution of shear stress on the bottom of the culture chamber. (g) The schematic diagram of 

the settings of the simulation. Scale bar of the distributions  is given, red for maximum shear stress, blue for minimum 

shear stress.  (h) The  relationship between  the maximum shear stress around cells  (τmax_cell) and  the distance between 

channel and cells d. 

 

Furthermore, the distributions of the fluidic shear stress induced at the bottom of the culture 

chamber with respect to the value of d	 are shown in Fig.7-10 in colour map. At small magnitude of d, 

e.g. 0~1 mm, two regions with high value of shear stress are caused (red parts in Fig.7-10a&b), 

which located near inlet and outlet regions respectively. With the further increase of d, these two 

regions move towards the centre of the bottom surface, and form one large high stress (red) region. 

This movement can be observed through Fig.7-10c&d. By continually increasing the value of d, the 

region with maximum fluidic shear stress becomes more concentrated (see Fig.7-10d,e&f). 

According to Fig.7-10f, a ‘dark ring’ is clearly observed, which corresponds to the interface of fluid 

streamline and the vortex streamline (see Fig.7-9e). The data that maximum shear stress (τmax_cell) 
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with respect to the distance of inlet and cells (d) are collected and plotted in Fig.7-10h. As the value 

of d increases, τmax_cell declines rapidly at the initial stage, i.e. d=0~2.5 mm. Beyond 2.5 mm, the 

decrease rate of τmax_cell is reduced. Accordingly, at small magnitude (i.e. 0~2.5 mm), increasing the 

value of d can significantly reduce the maximum shear stress applied on the cells. At large 

magnitude (i.e. 2.5~5.5 mm), the maximum shear stress on cells does not vary significantly with the 

variable d. 

As a summary, the location of inlet and outlet will significantly affect the fluidic shear stress on 

cells which located on the bottom of the culture chamber, in terms of the maximum shear stress 

(τmax_cell) and the distribution of shear stress on the bottom of chamber. Two guidelines used to 

determine the location of microchannels for the culture chamber are proposed: 

1) The distance between the inlet channel and the bottom of culture chamber (d) is 

recommended to be ≤ r (=2.5 mm), which is the radius of culture chamber. 

2) The distance between the inlet channel and the bottom of culture chamber (d) can be zero. 

But high hydrodynamic shear may potentially applied on cells during the perfusion culture 

in this configuration. 

 

7.5 Results in Whole System 

When the hydrogel-based cell culture microdevice is assembled, it consists of culture chamber, 

hydrogel membrane, and the drug delivery reservoir. The glucose molecules exist not only in the 

culture chamber, but also in the drug delivery reservoir due to diffusion through hydrogel membrane. 

Likewise, due to diffusion property of hydrogel membrane, the testing drug which is stored in the 

drug delivery reservoir can be transported to the culture chamber through hydrogel membrane to 

react with cells. Distribution of glucose in drug delivery reservoir and distribution of testing drug in 

culture chamber can be investigated and visualised using numerical modelling. Overall, the 

modelling in this study verified the feasibility of using hydrogel membrane as an interlayer for 

transportation of molecules, to connect culture chamber and drug delivery reservoir. 

 

7.5.1 Glucose from Culture Chamber to Drug Delivery Reservoir 

To investigate the characteristics of the transport behaviour of glucose molecules, the 

numerical simulation which consists of two chambers embracing a semi-permeable membrane has 
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been established. According to the determination of input parameters in Section 7.3.2, the glucose 

concentration at inflow entrance (Inlet	 1 in Fig.7-11a) is assigned to be 25 mol/m3. The glucose 

concentration at Inlet	 2 is assigned as 0, because the reservoir chamber is only designed to diffuse 

testing drug through hydrogel membrane to the culture chamber. The fluid flow velocity (v1) of the 

culture medium is assumed to be 0.1 mm/s. Meanwhile, the fluid velocity of Inlet	 2 (v2) is assigned 

as 0. The cells are built as a film occupies the area of the culture chamber to replicate the cell 

groups. The diffusion of glucose in the hydrogel membrane between two chambers is simulated 

based on Langmuir adsorption equation for absorption of glucose molecules and the Fickian 

diffusion equation for molecule transportation.  

 

Fig.7‐11. Sectional view of all the fluidic domains including culture chamber, membrane and drug delivery reservoir. The 

colour  illustrates  the  distribution  of  glucose  concentration  in  the  whole  system  under  the  equilibrium.  The  initial 

constraints at  inlets are  indicated at the corresponding places. The glucose concentration  in cells  is 8 mol/m3. Glucose 

transport from culture chamber to drug delivery reservoir through diffusion by PHEMA hydrogel membrane. 

 

The simulation results in terms of the glucose distribution and glucose concentration in the 

device, including the culture chamber, hydrogel membrane and drug deliver reservoir, are illustrated 

in Fig.7-11. The distribution of glucose concentration in the culture chamber exhibit the same 

characteristics as shown in Fig.7-2 based on the same input parameters and setups. According to 

the colour map in Fig.7-11, the maximum glucose concentration in the drug delivery reservoir is 

located at the entrance of Inlet	 2 (see Fig.7-11). Due to the difference of glucose concentration 

between Inlet	 1 (25 mol/m3) and Inlet	 2 (0 mol/m3), glucose concentration is gradually decreased 

from the Inlet	 1 to Inlet	 2 through the hydrogel membrane. As a glucose consumer, cells occupying 
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the bottom of the culture chamber, maintain the intracellular glucose concentration (ct) at 8 mol/m3, 

and consume the glucose around them, including the glucose molecules flowing in culture chamber 

and the glucose molecules diffuse up from delivery reservoir through hydrogel membrane. Thus, the 

consumption has resulted in i) a homogeneous distribution of glucose at approximate 8 mol/m3 in 

the drug delivery reservoir; and ii) the difference of glucose concentration between Inlet	 1 (25 

mol/m3) and outlet of culture chamber (approximately 18 mol/m3). 

According to the glucose concentration gradient of Fig.7-11, the glucose molecules which are 

originated from the Inlet	 1 with highest glucose concentration are transported through the culture 

chamber toward the cells, and contact with the cells for reaction. Some glucose molecules which 

are not consumed by cells may i) directly flow away above the cells to the outlets due to fluid 

flowing in culture chamber; ii) further travel through the hydrogel membrane to the drug delivery 

reservoir due to diffusion. Such results from numerical simulation demonstrated that glucose from 

the culture medium can be found in the drug delivery reservoir, and the concentration of such 

glucose in drug delivery reservoir is approximately 8 mol/m3 under the conditions in this study. 

 

7.5.2 Testing Drug from Delivery Reservoir to Culture Chamber 

 

Fig.7‐12. Sectional view of all the fluidic domains including culture chamber, membrane and drug delivery reservoir. The 

colour  illustrates  the distribution of  testing drug concentration  in  the whole  system under  the equilibrium. The  initial 

constraints  at  inlets  are  indicated  at  the  corresponding  places.  Drug molecules  are  transported  from  drug  delivery 

reservoir to culture chamber through diffusion by PHEMA hydrogel membrane. 
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The transport characteristics of the drug molecules in the extracellular environment including 

culture chamber, drug delivery reservoir and hydrogel membrane are also numerically investigated. 

As designated, testing drug are supplied from the drug delivery reservoir and transported through 

diffusion to the culture chamber for reaction with cells. The distribution of the drug concentration can 

be visualised in Fig.7-12 based on simulation results. The lowest drug concentration is located at 

the Inlet	 1, as only nutrients are perfused into the culture chamber without testing drug. Accordingly, 

the drug molecules will be transported through hydrogel membrane to reach the cells and reacted 

with cells, due to the difference of the testing drug concentration between culture chamber and 

delivery reservoir. This has qualitatively demonstrates that the drug molecules from the drug 

delivery reservoir are able to reach the culture chamber and react with cells through diffusion. 

 
Fig.7‐13. Sectional‐inside view of the fluidic domains. Colour map shows the distribution of testing drug concentration 

with respect to the various inflow velocities at Inlet 1. 

 

To understand the interaction of testing drug and cells at the bottom of culture chamber, 

quantitative evaluation of the testing drug concentration around cells has been carried out by 

simulation. Fig.7-13 is the colour map in terms of the distribution of testing drug concentration with 

respect to the inflow velocity (vin) at Inlet	1. As is shown in this figure, different inflow velocity causes 

various distributions of drug concentration in the culture chamber, larger inflow velocity (e.g. Fig.7-

13d) leads to inhomogeneous drug concentration in culture chamber. However, the drug 

concentration at the bottom of culture chamber, where the cells located, does not change 
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significantly with the inflow velocity (vin) at Inlet	 1. The averaged values of the concentration of 

testing drug (cdrug_avg) at the bottom of culture chamber are given in Table 7-3 with respect to the 

inflow velocity (vin) at Inlet	 1. As is shown in the table, though the inflow velocity increases from 

minimum (vin=0) to its maximum limit (vin~0.5, see Section 7.4.3), the value of cdrug_avg is changed 

from 10 to 9.99781 [mol/m3]. The variation of cdrug_avg is less than 0.3%. Similar results can also be 

found according to the work done by Shah et al. [218]. Thus, it is evident that the supply of testing 

drug from the drug delivery reservoir for cells through diffusion in hydrogel is stable, and can 

provide homogeneous concentration of drug to react with cells. 

 

Table 7-3. Averaged concentration of testing drug with respect to culture chamber inflow velocity 

vin at Inlet	1 [mm/s] 0 0.01 0.05 0.1 0.5 

Averaged concentration of 
testing drug (cdrug_avg) [mol/m3] 

10 9.99934 9.99867 9.99803 9.99781 

 

7.6 Discussions 

7.6.1 Optimum Design of the Culture Chamber 

According to the simulation results in Section 7.4, the increase of the distance between channel 

and cells (d) can be beneficial, and the optimal value d was determined as 2.5 mm. To consider this 

into the design of culture chamber for improvement, it can be difficult to make the top layer of the 

microfluidic chip as one piece (see Fig.1-1). This demands a new design of the structure of the top 

layer to identify the geometric parameters of culture chamber or channels, e.g. height of chamber 

(h), radius of chamber (r) and distance of inlet to cells (d).  

Fig.7-14b shows a possible solution through separating the top part into two layers (channel 

layer and chamber layer) and manufacturing them individually. After the fabrication process, these 

two layers have to be bonded together permanently, e.g. by hot-embossing or adhesives. Utilising 

this structural design, the culture chamber is still sealed by the hydrogel membrane using 

mechanical fastening technique, and the multi-layers device can still be dismantling without affect 

the cells or membrane.  

By collecting the results and conclusions from the Section 7.4.4, 7.4.5 and 7.4.6 above, 

dimensional optimization for the culture chamber design can be proposed as: i) optimum radius of 

the culture chamber (r) should provide enough space for cells to proliferation, in the range of 1~2 
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mm. ii) The height of the culture chamber h is dependent on sum of the value of d and the height of 

channel hc (see Fig.7-14b). iii) The distance between the inlet and the cells d is recommended to be 

1~2.5 mm given the range of r=1~2 mm. Using the parameters that have been assigned in such 

optimum guidelines to design the culture chamber, the perfusion culture device should provide 

reliable and efficient incubation of the cells. 

 
Fig.7‐14. (a) The original structural design of the multi‐layers microfluidic device, which is illustrated in the Chapter 1. (b) 

the optimized structure of the device which satisfies the required values of the distance (d) between channels and cells. r 

is the radius of the culture chamber, h is the height of the culture chamber, hc is the height of microchannel. 

 

7.6.2 Experimental Validation of Simulations 

In order to validate the function of the cell culture device which is developed based on 

simulation, a prototype of the hydrogel-based microfluidic culture system was fabricated. The 

schematic diagram of the system is shown in Fig.7-15. Micropump provides the pressure and power 

to generate fluid flowing within the system, achieving perfusion culture. Culture medium is stored 

and recycled in a reservoir. The prototype chip which is assembled using mechanical fastening 

technique consists of PMMA cover, PHEMA membrane and PMMA microfluidic chip. Three parallel 

culture chambers and corresponding microchannels were engraved on the PMMA microfluidic chip, 

to be compared with each other as control groups. To replicate the extracellular environment for 

cells which is shown in Fig.7-14b, a piece of PHEMA hydrogel is placed at the bottom of each 

culture chamber as culturing substrate where cells were seeded. Accordingly, two goals are 
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expected from this experimental test on this prototype system: i) to validate the perfusion culture of 

cells on PHEMA substrate using the structural design shown in Fig.7-14b; ii) to further verify the 

reliability of mechanical fastening bonding method. 

 

Fig.7‐15. Schematic diagram of  the prototype  system  to verify  the  function of  culture  chamber. PHEMA membrane  is 

used  to  seal  the microchannel  system,  and  PHEMA  substrate  is  used  to  replicate  the  environment  for  cells which  is 

shown in Fig.7‐14b. Fluid flow rate in the whole system is controlled by the micropump. 

 

Within the limited time left for this project, the experimental test on the prototype was not 

successfully completed because HUVECs cells were mostly dead during the preparation period 

before transfer to the hydrogel-based prototype. Further trials of such experimental test on the 

prototype were confronted with three obstructions: i) Cells dead due to contamination. Side 

reactions during the synthesis process of PHEMA hydrogel were kept as minimum by maintain the 

constant environmental temperature, and most of contaminants were removed during the washing 

process. However, few contaminants (e.g. incomplete reacted chemicals) may be still attached on 

the polymer chains after the washing process of specimens. According to literatures [219,220], such 

contaminants can be potentially released from PHEMA hydrogel after a long time since the hydrogel 

is synthesised, and contact with cells which are seeded on PHEMA substrate, causing the 

deactivation or even death of cells. ii) Inactive generation of cells. Activity of cells in terms of the 

metabolism is highly dependent on the incubation environment during the preparation stage of cells. 

The degree of activity of cells between their generations may be various due to unequivalent 

incubation conditions. If the generation of cells with low degree of activity was used in experiment, it 
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is highly possible to obtain unsatisfied results, such as non-proliferative cells or even dead cells. 

This should be avoided only by conducting several times of experiments using different generations 

of cells, and draw the conclusions by summarising all the obtained results. iii) Project funding 

expired. The experimental test on this prototype was carried out at CIMAINA in the University of 

Milan, Italy. It was supported by the Fondazione CARIPLO for the project Hybrid Multifunctional 

Microdevices to Probe Cell Biology, under the programme Promuovere progetti internazionali 

finalizzati al reclutamento di giovani ricercatori. The experiment was scheduled on June/July 2013, 

but the funding was expired by the end of July 2013. Therefore, there is no sufficient time to repeat 

experiments, because preparing cells in different generations is a time-consuming process.  

To consider various issues in the experimental tests of the prototype, based on the current 

research findings, this investigation has proposed the future work which is included in Chapter 8. 

 

7.7 Summary 

The dynamic perfusion behaviour of the hydrogel-based cell culture microdevice has been 

simulated and analysed. The following three primary physical mechanisms have been incorporated 

in the modelling: i) the dynamic characteristics of fluid in culture chamber; ii) diffusion of glucose 

and drug molecules in extracellular environment including the culturing solution and the semi-

permeable hydrogel; and iii) consumption of energy molecules (e.g. glucose) by cells.  

For the culture chamber, the glucose concentration around cells and the fluidic shear stress 

which is applied on cells are numerically analysed through simulations. The results show that the 

inflow velocity range is dependent to the glucose supply and maximum adhesion strength of cells to 

substrate. The glucose concentration at inlet determines the lower limit of the range of allowed fluid 

velocity (vlow) at the value of 0 in this case. However, the fluidic shear stress which is applied on 

cells determines the upper limit of that range (vhigh) with the value of 0.49 mm/s. By further 

investigating the influences of dimension of culture chamber on the nutrient supply and fluid shear 

stress, guidelines which aim to achieve optimal design of the culture chamber are proposed. The 

applicable range of geometric parameters has been determined: the radius of culture chamber 

r=1~2 mm; the distance between inlet and cells d=1~2.5mm; the height of chamber h=d+hc, where 

hc is the height of channel (determined in Chapter 6). 

For the whole device including culture chamber, hydrogel membrane and the drug delivery 
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reservoir, a structural optimization has been developed to realise the manufacturing approach of the 

microdevice with optimized structure. Additionally, the simulations to visualise the transport of 

testing drug from delivery reservoir to culture chamber, and the transport of glucose from culture 

chamber to delivery reservoir, are established. It demonstrated that the molecules of testing drug 

are able to reach cells by crossing the hydrogel membrane through diffusion, and forming a 

homogeneous distribution on the bottom of culture chamber to react with cells. This result validates 

the original concept that maintaining drug and culture medium in their individual chamber, providing 

reliable incubation of cells in culture chamber and offering stable testing of drug by exchanging 

assigned molecules through diffusion in PHEMA hydrogel membrane. 
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Chapter 8. Conclusions, Recommendations

 and Future Works 

8.1 Main Conclusions 

The conclusions from the research work presented in this thesis are summarised in this section 

and categorized into three main components: i) experimental work on the properties of hydrogel 

material, ii) experimental and simulation work on the packaging of the hydrogel-based microfluidic 

device, and iii) simulation work on the perfusion culturing of cells using the hydrogel-based 

microfluidic device.  

 

8.1.1 Properties of PHEMA Hydrogel Material 

Diffusion characteristics: Two parameters, i.e. glucose release rate and capacity of 

absorption, which are related to the diffusion characteristics of PHEMA hydrogel material, have 

been experimentally examined. The glucose is chosen to be the only type of molecules for 

investigating the diffusion characteristics of PHEMA, because it is the prime energy source for cells 

during incubation of cells. The diffusivity of glucose molecules in PHEMA hydrogel has been 

experimentally proven obeying the Fickian diffusion behaviour in this study. Accordingly, the 

diffusion coefficient which indicates the transport speed of glucose in PHEMA hydrogel is calculated 

as D=0.099 cm2/s, based on the formula of Fickian diffusion for one-dimensional molecule transport. 

Meanwhile, the capacity of absorption (Г) has also been determined from the experiment, with the 

value of Г=0.038 mol/kg. 

Cytotoxicity: The effect of PHEMA hydrogel to cells, including HUVECs and fibroblast, has 

been investigated through three experiments with different focuses on the cells: i) When cells 

(HUVECs and fibroblast) cultured on the PHEMA substrate, 83.6% of fibroblasts are observed alive 

and emits bright green light from the experiment of Live/Dead staining; ii) Great shapes of these 

living fibroblasts, which reflect a good differentiation and proliferation environment, are observed 

through SEM photographs. iii) Over 80% cell viability for HUVECs cells has been obtained from the 

cell viability test through staining cells by CCK-8 assay. These three experimental results 

demonstrate that PHEMA can be used as culturing substrate for perfusion culturing devices. 
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Adhesion strength: An agitator has been built in the experimental determination of the 

maximum adhesion strength of HUVECs cells to the PHEMA hydrogel membrane. The value of 

maximum adhesion strength for HUVECs to PHEMA hydrogel substrate has been experimentally 

determined as 0.021 dyn/cm2, through measuring the critical radius. It is demonstrated that the 

adhesion strength of HUVEC cells to PHEMA hydrogel is relatively weak if comparing with the 

adhesion strength of HUVEC cells to other materials (e.g. PMMA or Fibronectin) from literature. 

This is attributed to the molecular interaction at the cell-substrate interface of PHEMA hydrogel 

though PHEMA has no cytotoxicity.  

Mechanical deformation: Standard tests under constant load and cycling compressive load 

with PHEMA hydrogel specimens have been conducted. These experimental results verified the 

hyperelastic response of PHEMA hydrogel to mechanical compression (fracture occurs over 55% 

compressive strain), and demonstrated the reliability of using PHEMA hydrogel membrane as a 

sealing membrane under compression (allowing the assembly and re-assembly of microdevice at 

least 100 times). Meanwhile, numerical simulations to investigate the mechanical responses of 

PHEMA to compression have also been established. The simulation results indicate that the 

Mooney-Rivlin theory can be employed to describe the hyperelastic behaviour of PHEMA hydrogel. 

 

8.1.2 Packaging for PHEMA-Based Microfluidic Device 

A novel packaging process for bonding of the multilayer hydrogel-based microfluidic device has 

been developed and tested in this research. A number of significant findings have resulted from 

these experiments and simulations. The technique could be used to bond any kind of microfluidic 

system with embedded hydrogel membrane or any other kind of soft membrane. 

Feasibility of mechanical fastening packaging process (simulation): The fundamental 

definitions of leakage in the microfluidic channels has been introduced and assumed in the 

modelling. The simulation using the Moony-Rivlin theory to predict the hyperelastic properties of 

PHEMA hydrogel has been established. It has been found that the maximum internal fluid pressures 

are 66.3 kPa and 196.3 kPa, when the hydrogel membrane is compressed by 10% and 20%, 

respectively, through mechanical fastening process. These values are larger than the ultimate fluid 

pressure for normal commercial microfluidic system (60 kPa), thereby guarantees that the 
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mechanical fastening packaging process is feasible for the bonding of hydrogel-based microfluidic 

system. 

Reliability of mechanical fastening packaging process (experiment): Microchannels with 

various depths are bonded with PHEMA hydrogel membrane through mechanical fastening 

packaging process to construct a multilayer microfluidic device. The reliability of mechanical 

fastening packaging process is experimentally tested by obtaining the critical leakage pressure 

under the given pressurised fluid flowing in the microdevice. Conclusions from this experiment are 

summarised as: i) the compressive strain which applied on the PHEMA membrane should be ≤ 20% 

due to the high potential risk of material failure; ii) the maximum allowed fluid pressure is 

determined as 200~350 kPa for 10% compressive strain, and 350-1000 kPa for 20% compressive 

strain, which are much higher than the ultimate fluid pressure for normal commercial microfluidic 

system (60 kPa); iii) it has proven that a good packaging reliability for hydrogel-based microfluidic 

device using the mechanical fastening process can be achieved.  

Behaviour of PHEMA hydrogel in the packaging process (simulation&experiment): The 

deformation (e.g. protrusion) and internal stress distribution of the PHEMA hydrogel membrane 

were estimated and analysed through both experimental measurements and the simulation. The 

results has shown: i) higher compressive strain applied on the PHEMA membrane causes larger 

protrusion of the PHEMA membrane into the microchannel, ii) severer internal stress concentration 

occurs at the contact edge of microchannels. Internal stress concentration at the contact edge of 

the microchannels resulted in a high potential risk of material failure, indicating that compressive 

strain applied on PHEMA membrane should be ≤ 20%. Additionally, the consistency between 

simulation and experiment was confirmed, thereby the validity of using Mooney-Rivlin theory to 

predict behaviour of PHEMA hydrogel material was experimentally verified. 

 

8.1.3 Cell Culture in PHEMA-Based Microfluidic Device 

The dynamic interactions between cells and extracellular matrix which can be provided by the 

hydrogel-based microfluidic device were simulated and analysed to elaborate the dynamic 

characteristics of fluid in culture chamber, diffusion of glucose and drug molecules in extracellular 

matrix and in hydrogels, and consumption of energy molecules (e.g. glucose) by cells. Based on 
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two key factors, i.e. nutrient supply and fluidic shear stress, a methodology which can be used to 

quickly evaluate the functional capacity of the perfusion cell culture devices has been developed. 

Nutrient supply in the cell culture: The nutrient supply (glucose) for cells was proved to be 

slightly dependent to the fluid flow rate during perfusion culture. To maintain sufficient nutrient 

supply for cells, the lower limit of the range of allowed fluid velocity (vlow) can be determined. The 

simulation results showed that being independent of the inflow velocity (vin), the glucose 

concentration around cells (cg) varies in the range of 22.5~24.51 mol/m3, which induces the glucose 

consumption rate of cells larger than the minimum allowed glucose consumption rate (Rmin,single). This 

can ensure sufficient glucose for cells to perform their proliferation and differentiation during the 

perfusion culture. Therefore, the lower limit of the range of allowed fluid velocity (vlow) is calculated 

as 0 mm/s in this study. 

Fluidic shear stress on cells: Based on the adhesion strength of HUVEC cells to PHEMA 

membrane which was detected at 0.021 dyn/cm2, the maximum inflow velocity was thereby 

determined at vhigh=0.49 mm/s, in order to avoid detaching of cells from their substrate due to high 

level of hydrodynamic shear. Combining the value of vlow which is evaluated by nutrient supply, the 

range of allowed inflow velocity which reflects the cell culture capacity of the hydrogel-based 

microfluidic device is therefore identified as 0~0.49 mm/s. Utilising this method, the controlling 

variables of the hydrogel-based microfluidic device (e.g. inflow rate, type of culture medium, time of 

perfusion culture) can be directly derived for a given type of cell. 

 

8.2 Recommendations for Optimum Design of Microfluidic 

Device 

A number of recommendations for design and optimization of hydrogel-based microfluidic 

device were made to enable such microfluidic device efficient and reliable. They are summarised as 

follows: 

Design of microchannels: To ensure enough space for fluid flow inside the microchannels 

sealed by hydrogel membrane, the channel width must be in the ranges of 0.1~0.5 mm, or greater 

than 0.7 mm, and the passable rate of the channel should be from 50% to 80%. To avoid the failure 
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of hydrogel membrane due to the compressive strain induced by mechanical fastening bonding in 

the device, the aspect ratio of microchannels should be in the range of 1.15~1.6 (under 10% strain) 

and 1.45~1.6 (under 20% strain). 

Optimization of culture chamber: During the perfusion cell culture using the hydrogel-based 

microfluidic device, cells are suffering fluidic viscous stress at the bottom of culture chamber. 

Optimization of the dimensions of the culture chamber can help reduce such fluidic viscous stress: i) 

Optimum radius of the culture chamber (r) can provide enough space for cells to proliferation, which 

has been determined as 1~2 mm  in this case. ii) The distance between inlet and cells (d) is 

recommended to be 1~2.5 mm. iii) The height of the culture chamber (h) is subject to the sum of the 

value of d and the height of channel hc. Based on these optimal guidelines, the culture chamber can 

provide reliable and efficient culturing of cells if using a suitable inflow velocity vin, i.e. 0~0.49 mm/s. 

To fabricate the microfluidic chip with such optimal dimensions, the PMMA plate with culture 

chamber has to be fabricated separately as two chips due to the requirement of manufacturing, and 

then be assembled by permanent bonding.  

 

8.3 Future Works 

Due to the constraints of research facilities and limited time for this research, a number of 

areas have not been fully investigated. Therefore, future work on hydrogel-based microfluidic cell 

culture device can be outlined: 

PHEMA coating: The weak adhesion strength of cells to PHEMA indicated the constraint of 

using PHEMA hydrogel material in bio-purpose application. To provide a strong adhesion between 

cells and the hydrogel substrate in the cell culture device, coating of the substrate by 

polysaccharides or protein particles is considered to enhance the interfacial adhesion. The 

improvement of the adhesion strength between cells and substrate can increase the resistance of 

cells to the fluidic viscous stress, consequently this can expand the range of inflow rate in the 

device. 

 Experimental validation based on prototype: The feasibility of the hydrogel-based 

microfluidic device has been numerically examined through determining the parameters (e.g. inflow 

velocity) of such device. However, it would be more credible to conduct the perfusion culture 
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experiment of cells using the prototype of the hydrogel-based microfluidic device which has been 

introduced in the Chapter 7 in this thesis, to validate its performance and capability as a perfusion 

culture microfluidic device in practice. Two suggestions which are summarised from the previous 

issue (e.g. cells died before conducting the experiment) may be considerable for further 

experiments: i) Use freshly synthesised PHEMA hydrogel to avoid any contaminants released from 

the PHEMA hydrogel; ii) Conduct repeated groups of validate experiments based on different 

generations of cells, to avoid poor results caused by various bioactivity of testing cells. 

Multiple variables in nutrient supply: Only the effect of glucose to cells has been taken into 

account in the current investigation of the extracellular matrix around cells in the culture chamber. In 

reality, numbers of variables, including the concentration of oxygen, carbon dioxide, fetal bovine 

serum or other growing factors can affect the differentiation and proliferation of cells during 

incubation in the culture chamber. Based on the numerical simulations introduced in this thesis, 

there is a potential need to establish the FEA modelling to include multiple variables for the study of 

the effect of nutrient supply on cells. It is expected that the model established may be employed to 

accurately predict the response of cells to the ECM involved with multiple variables. This can be a 

potential future research topic to allow numerical study for identifying optimum constraints of 

culturing cells under multi-parametric environment. 
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Appendices 1: Dimensions of Connector
and Chips

A1.1 Dimensions of connector

Items Info.

Applicable tubing. O.D. [mm] 2

Model KJS02-M3

Connection thread, T [mm] M3 x 0.5

Width across flats, H [mm] 1.5

Ø D [mm] 5.5

L [mm] 12.5

A [mm] 10

M [mm] 8.8

Effective area [mm²] 0.9

Weight [g] 1.1
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A1.2 Dimensions of Aluminium Rig
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A1.3 Dimensions of PMMA Layers
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Appendix 2: Calibration Certificate for
Compressive Testing Machine
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Appendix 3: Chemicals Sheets

A3.1 HEMA

A3.2 EGDMA

A3.3 TEMED

A3.4 APS
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