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ABSTRACT This paper looks at six different applications for a domestically located battery system and
determines how these could be translated into different electrical power application ‘‘drive’’ cycles. The
applications considered are as follows: 1) A house with four people and a solar panel using the battery
to absorb extra energy when the PV panel is producing more power than is absorbed in the house and then
releasing this energy afterwards. 2) A house with four people and PV panels on a time of use tariff. 3) A house
with four people and no PV on a time of use Tariff – where the battery is charged at low tariff and discharged
on high tariff. 4) The battery is operating as part of an aggregated frequency response system performing on
the Firm Frequency Response (FFR) market. 5)The battery is operating as part of an aggregated frequency
response system performing on the Enhanced Frequency Response (EFR) market. 6) The battery is operating
as part of an aggregated system looking at competing in the day ahead market. This paper describes each
use cases and developes a representative charge/discharge profile of these applications using MATLAB code
and generates waveforms of battery charging and discharging for each use case over a year-long period in
monthly intervals. Any time intervals where the battery was inactive were removed from the generation
of the cycling patterns. Two statistical analysis methods (Haar transform and a pragmatic method) were
used to condense the data into programmable steps for generating battery sweat testing and cycling model.
These were then coded and used to generate year-long sweat testing of the different applications for use with
degradation and financial analysis to look at business opportunities. This paper looks at the development of
the charge and discharge profiles of these applications and defines a set of power application ‘‘drive’’ cycles
which are published in excel alongside this paper for use by researchers longing at battery degradation.

INDEX TERMS Batteries, drive cycle, cycling, sweat test, frequency response, battery tariffs.

I. INTRODUCTION
There are well established ‘‘drive cycles’’ associated with
electric vehicle battery and system testing. Example of com-
mon drive cycles include the Urban driving cycle (UDCECE-
15) [1], [2] and theNewEuropeanDriving Cycle (NEDC) [3].
These offer standardised cycles that can be used by multiple
parties to enable performance comparison. There has been
some criticism that these are not sufficient real world and
additional cycles have been proposed [1]–[3] which repre-
sent other conditions, eg a vehicle travelling on a motor-
way. These drive cycles give parameters such as speed and
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condition and can be used to design powertrains with bat-
teries, such that these undertake calculable and repeatable
cycling behaviour. An example of such an application is
shown in FIGURE 1 which is representative of cycle testing
around a representative drive cycle.

The type of cycling in an electric vehicle application is not
the same as would be seen in an electricity grid application.
Energy storage is only recently becoming popular in the
domestic market. Currently listed domestic markets products
for new and second life battery systems are shown in Table 1.

A performance comparison between different solutions is
not possible at this time because different manufacturers and
researchers assume different test based conditions to look at
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FIGURE 1. One day load current profiling for accelerated aging tests [4] –
based on the WLTC drive cycles.

TABLE 1. Different published claimed 2nd life and new systems.

FIGURE 2. Examples of published cycle testing for different battery
chemistries.

how these products perform. FIGURE 2 gives an example of
previous cycle testing the researchers have undertaken with
different battery chemistries – all of which are non-standard
with non-detailed data sets.

The majority of the cycles are based on fixed charge and
discharge cycles including those from IEC [5] and IEA [6]
and don’t take into account application specific requirements.
Additional testing based on a similar premise has included
variation for charge/discharger rate and temperature to allow
research into aging mechanisms [7]–[12].

Where an application specific ‘‘drive cycle’’ has been
used the underlying data has not been published alongside
the paper and therefore it is difficult to replicate the cycle
for use with performance testing. This shortfall in relevant

application specific ‘‘driving’’ cycling for domestic applica-
tions makes it difficult to compare products.

The aim of this paper is to detail some use cases for
a domestic battery system and use these to develop a set
of ‘‘drive cycles’’ to provide a common sets of curves for
batteries to be tested against. The work is based on a 3kW and
4kWh product in a domestic environment for which scaling
would be required for size variants. The data is published
alongside this paper in excel spreadsheet format for use by
other researchers.

The following process has been used to develop the
associated data curves;

1. Identifying the characteristics of different applications.
2. Developing a representative charge/discharge profile of

these applications.
3. Developing a detailed cycle profile which may be

used for sweat testing of the batteries through multiple
cycles.

Six cases have been chosen for study;
1. A house with four people and a solar panel using the

battery to absorb extra energy when the PV panel is
producing more power than is absorbed in the house
and then releasing this energy afterwards.

2. A house with four people and PV panels on a time
of use tariff where the battery is used to absorb extra
energy from the PV panel and release this when the
tariff is highest.

3. A house with four people and no PV on a time of use
Tariff – where the battery is charged at low tariff and
discharged on high tariff.

4. The battery is operating as part of an aggregated static
frequency response system performing on the UK Fast
Frequency Response (FFR market).

5. The battery is operating as part of an aggregated
dynamic frequency response system performing on the
UK Enhanced Frequency Response EFR) market.

6. The battery is operating as part of an aggregated system
looking at competing in the day ahead market.

It has been decided not to include sophisticated demand
side management or fast charging of electric vehicles in these
use cases at this time as these are not currently market ready.
Similarly, microgrid functionality has not been included for
the same reason. Grid scale peak load lopping has also not
been included as there is no market mechanism for dealing
with this type of energy storage benefit.

There are some additional electricity markets that are open
to larger battery systems, but not yet available as an aggre-
gation of smaller domestic units. However, it is thought that
these may become a realistic proposition under political pres-
sure. Therefore, the additional auxiliary market mechanisms
have been included for study.

This paper deals with each use case in turn and quantifies
the charging and discharging that would occur over a year
long period. The paper then condenses this profile by remov-
ing periods of inactivity and determining an average profile
for each month for each use case using two different methods
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(which tie up with the ability of a load bank to follow a cycle).
These are determined for each month of the year. The total
year-long data set forms a ‘‘drive cycle’’ for each of the use
cases. The study is based on a nominal Powervault kWh &
kW battery and scaling would need to be considered for other
sizes of battery.

This work is organised around these different applications;
Section II looks at case 1 – PV, maximising FIT payments,
Section III looks at case 2 – PV, maximising FIT payments
and TOU tariff, Section IV looks at case 3 – no PV, but
maximising TOU tariff, Section V looks at case 4 – FFR
market participation and Section VI looks at case 5 – EFR
market participation. Section VII looks at case 6 – Day ahead
market participation, Section VIII describes the methodology
used to convert the yearlong profile into a set of cycling tests
and Section IX concludes the paper.

II. USE CASE 1 – PV AND MAXIMISING FIT PAYMENTS
The Feed-in Tariff (FIT) is an electricity payment scheme
for domestic and commercial energy producers that generate
their own energy and export it to the grid funded by the
UK government and developed to encourage increased used
of solar power. The CREST Demand Model [21] is a high-
resolution stochastic model of domestic thermal and elec-
tricity demand. The model produces one-minute resolution
demand data, disaggregated by end-use, using a bottom-up
modelling approach based on patterns of active occupancy
and daily activity profiles derived from time-use survey data.

The model uses an occupancy model based on the prob-
ability of the number of occupants in the house at any given
moment. In this work, the max number of residents in a house
is set to 4. The model also has some typical solar irradiance-
based data which can be used in conjunction with the 3kW
model. This example irradiance data is provided from the
CREST irradiance database for Loughborough [21]. The data
is filtered to a one-minute exponential moving average (with
a weighting factor 0.1). The irradiance per month is assumed
to be the same for each day of the month.

This work used the solar data along with a years’ worth
of data generated for a four-person occupancy home over the
course of a year with a split between weekday and weekend
as appropriate. Use case 1 is about using any excess produced
solar power to charge a battery which can then be used to
supply household load when the sun isn’t shining. This is
because the income from exporting excess solar power is
lower than the cost to re-import later. FIGURE 3 shows a
modelled battery charge and discharge power in spring for
a single day (from the year-long study). The full years’ worth
of this charging and discharging data is available in the files
associated with this paper. To ensure that the energy in the
battery is managed correctly the software used to generate
the battery charging and discharging profile from the input
data also ensures that the battery ends the day at the same
state of charge as it begins the day to avoid the additional
complications that would result from a different starting point
each day.

FIGURE 3. Data over a day in spring (April), (a) left Y axis battery power
and PV power, right axis load power (b) left Y axis battery energy and
right Y axis load power.

TABLE 2. Time of use tariff – price per kWh.

III. USE CASE 2 – PV, MAXIMISING FIT PAYMENTS
AND TOU TARIFF
There are not many time of use (TOU) tariffs cur-
rently available in the UK. One such typical tariff has
the following characteristics (August 2018) as shown
in Table 2.

Looking at these figures shows that it makes sense to
discharge the battery between 16:00 and 19:00 on weekdays
as much as possible.

The battery charge and discharge power are calculated for
a 4-person house with 3kW PV to maximise FIT payment
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FIGURE 4. Data over a day in spring (April), (a) left Y axis battery power
and PV power, right axis load power (b) left Y axis battery energy and
right Y axis load power.

as well as benefiting from the TOU tariff. FIGURE 4 shows
an example of a battery charge and discharge power in
spring for a single day. In this case, the battery is discharged
between 16:00 and 19:00. The battery is also charged between
23:00 and 24:00 to return the SOC to the same condition as
the start of the day.

IV. USE CASE 3 – NO PV, BUT MAXIMISING TOU TARIFF
Not every householder will have PV panels but may want to
use a battery to benefit from TOU tariffs. Therefore, this case
looks at using a BESS to benefit from tariff. Table 2 is used
as the basis for tariff costs. The difference with case 2 is that
the solar irradiance-based data is not included in the battery
charge/discharge power calculation. Therefore, in this case,
the battery is charged when the tariff is low (23:00 – 24:00)
and is discharged when tariff is high in this case 16:00
and 19:00.

An example of Battery charge and discharge power for
the TOU tariff only in April for a single day is shown in
FIGURE 5. A years’ worth of this charging and discharging
data is available in the associated files.

FIGURE 5. Data over a day in spring (April), (a) left Y axis battery power
and PV power, right axis load power (b) left Y axis battery energy and
right Y axis load power.

V. USE CASE 4 – FFR MARKET PARTICIPATION
Representative frequency data with a one-second reso-
lution has been made available by National Grid [22]
over a year. This paper uses the data from the year
July 2017- June 2018. The FFR response service is split into
two products; static and dynamic frequency response. Static
response is where battery operation is triggered by a thresh-
old, whereas dynamic response means the setpoint of the
battery is continuously adjusting. As the dynamic response is
similar to EFR (Enhanced Frequency Response: this is done
in use case 5). In this case, a static response is modelled with
a dead band of 50Hz ± 0.1Hz as shown in FIGURE 6. The
battery is operated as follows:
• The battery is used to absorb extra energy when the FFR
frequency is higher than the lower limit

• The battery to release energy when the day FFR fre-
quency is lower than the upper limit

FIGURE 7 shows an example of the battery performance
in April for a single day. The battery is discharged when
the frequency exceeds the lower limit and charged when the
frequency is higher than higher limit.
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FIGURE 6. FFR frequency boundary limits over a day in winter (January).

FIGURE 7. Data over a day in Spring (April), (a) left Y axis battery power
and right axis frequency, (b) left axis battery energy and right Y axis
frequency.

VI. USE CASE 5 – EFR MARKET PARTICIPATION
Enhanced Frequency Response service (EFR) is a trial
method to help to control frequency by National Grid. It is
similar to dynamic response [23]. Similar type curves have
been suggested in other European countries and so it is likely
that some form of curve like this will be adopted. This ser-
vice is only a dynamic service with variable battery output
depending on frequency. There are two variants wide and
narrow band. However, current metering does not allow for
narrow band – so this will not be considered. FIGURE 8

FIGURE 8. National Grid EFR battery storage specifications - Wide
specification.

FIGURE 9. Data over a month in spring (April), left Y axis (Battery Energy
in %) and right Y axis (EFR Frequency).

shows the technical requirement for the EFR energy storage
system with wide frequency band (50Hz± 0.05Hz) response
[24], [25]. This response envelope provides the battery stor-
age response required for a specific frequency value. Each
of these envelopes is represented by a lower and upper limit
for battery SOC management. The x-axis is the frequency
in which the provided response must remain within the fre-
quency envelope with the nominal frequency of 50Hz. The
y-axis is the percentage of deliverable power of the battery
storage.

This paper uses the provided envelope relative to the pre-
sented battery capacity to model the battery SOC and charge
and discharge power pattern.

An example of Battery charge and discharge Energy for
EFR market participation in April for a month are shown in
FIGURE 9.
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FIGURE 10. Data over a day in spring (April), left Y axis ((a) Battery Power,
(b) Battery Energy) and right Y axis (Day ahead market price).

VII. USE CASE 6 – DAY AHEAD MARKET PARTICIPATION
The day ahead auction price is agreed 24 hours ahead in
one-hour periods ahead of delivery of electricity. The day
ahead block prices are available from ‘‘Nord pool group
website’’ [27]. In this case, it is assumed that an aggregator
trades the battery to deliver power when the price is above a
price limit and consume power when it is below a price limit.
The battery is operated as follows:

• The battery is used to absorb extra energy for 1 hour
when the day ahead price is lower than the lower limit

• The battery is used to release energy for 1 hour when the
day ahead price is higher than the upper limit

The higher limit and lower limit is estimated based on a years’
worth of data. FIGURE 10 shows an example of the battery
operation for a day in April.

VIII. PRODUCING CYCLE TEST DATA
It is important to be able to take the data generated in the 6 use
cases over the course of the year and produce application
specific battery systems cycle testing to help get an indication
of life span. The process around this is typically;

FIGURE 11. Case 1 – PV, maximising FIT participation data over a month
in spring (April).

1. Quantify the charge/discharge test profile associated
with each application

2. Develop accelerated aging tests around the profile
The process is complicated by the processes around aging

and degradation. This section explains how the yearlong data
is turned into sweat test curves that represent the typical usage
that the batteries could see over a year-long period of their
life.

The waveforms for battery charging and discharging for
each use case over a month-long period are taken and any
battery rest time is removed. FIGURE 11 shows an example
of the data for use case 1 in April.

This data was then used to generate statistical data for
each month of the year using two different methods. Two
different methods were used because not all load bank and
power source/ battery testing equipment has the capability
to undertake fast switching transients to capture all of the
possible micro-cycling that may be occurring. Matlab 2018b
was used to generate a Haar Transform of the data – this is
similar to a Fourier Transform but generates pulse patterns
rather than sinewaves as an output. These can be re-combined
according to the battery tester specification to re-generate a
signal set close to the original waveform. Where a battery
tester cannot meet such fast testing – an alternative approach
has been used.

FIGURE 12 and FIGURE 13 show a generated Haar Trans-
form coefficient and histogram chart respectively. The Haar
transforms offers a more complex method of taking into
account the cycling that the battery would go through but is
significantly more complex to code.

The charging and discharging curves are partly cyclic but
with variation caused by load, PV, frequency etc. These
waveforms can be decomposed in a manner very similar
to a Fourier Transform to create a set of component parts
which when added together give the original waveform. The
Haar transform is a wavelet transform and is often used to
compress and sample signal and images in electrical engi-
neering. Similar to Fourier transform, Haar transform is a
sequence of square-shaped functions which their summation
forms the original signal. These sequences can be calculated
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FIGURE 12. Case 1 – PV, maximising FIT participation data over a month
in summer (April) x axis is time (sec) and y axis is power (W).

FIGURE 13. Case 1 – PV, maximising FIT participation data over a month
in summer (April) x axis is Power range (W) and y axis is Time average
(sec).

using Equation 1 and Equation 2.

ψn,k (t) = 2
n
2ψ

(
2nt− k

)
Equation 1

yn = ψnxn Equation 2

where ψ is Haar function, n and k are integers in Z (in this
case n = 5 and 0 ≤ k ≤ 2n−1), y is Haar transform function
of input function x. The MATLAB wavelet toolbox was used
to generate square-shaped sequences of the modelled battery
charge and discharge.

FIGURE 12 shows an example of the Haar transform of
the battery operation for use case1 over April. Where S is
the original signal, a5 and d1 to d5 are Haar coefficients.
Coefficients d1 to d5 mostly contain high-frequency details
and abrupt changes in signal. Coefficient a5 contains an
approximation of the signal. This depends on the level that the
Haar transform is calculated. A proposed sweat testing and

FIGURE 14. Case 1 – PV, maximising FIT participation data over April
a) Battery charge and discharge cycle, x axis is Time(min) and y axis is
Current (A), b) Battery charge/discharge current + duration.

FIGURE 15. Use-case 1 histogram based sweat test monthly waveform
shown for three separate months.

FIGURE 16. Use-case 2 histogram based sweat test monthly waveform
shown for three separate months.

cycling waveform could therefore be based on coefficient d5
and approximation a5. However, not all equipment is capable
of dealing with this level of sophisticated and fast coding,
so an alternative is also suggested.

The other method proposed is to use a more pragmatic
approach. In this method, the cycling patterns are statistically
analysed, and an ‘‘average’’ daily cycle is composed. This
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FIGURE 17. Use-case 3 histogram based sweat test monthly waveform
shown for three separate months.

FIGURE 18. Use-case 4 Sweat test over April.

FIGURE 19. Use-case 5 histogram based sweat test monthly waveform
shown for three separate months.

is done by analysing the total time the battery is operating
at each charge and discharge rate over the month and then
averaging this over a day to give the charge and discharging
rates and their duration. These are then organised as close to
the loading shape as possible to ensure the battery does not
exceed any limits. The distribution of battery power variations
over time in amonth are plotted as a histogram. These are then
averaged to create a daily cycle for that month and coded for
all the days of the month. FIGURE 13 shows an example of
the histogram chart of the battery operation for case1 over
month of April.

FIGURE 14 shows an example of the cycling pattern of the
battery for case1 over the month of April using the histogram
data from the table.

FIGURE 20. Use-case 6 histogram based sweat test monthly waveform
shown for three separate months.

TABLE 3. Summary of battery charge and discharge energy over a year.

FIGURE 15 to FIGURE 20 show examples of the battery
sweat test over three different months of January, April and
May for each application using this method. This data is
representative of a day’s worth of charge and discharge and
needs to be run for the number of days in each month.
In FIGURE 18, the battery is charged and discharged for a
duration of 1 min in line with the National Grid data and as
the battery is triggered on or off this is at full power.

The discharge current in FIGURE 19 is because the battery
ends up in a fully charged state and needs to be discharged
back to a nominal SOC regularly for this years’ worth of data.

IX. CONCLUSION
Table 3 gives a summary of battery energy throughput of
all application scenarios over the year. On the surface the
EFR application shows the lowest energy throughput- but
this belies the tiny micro-cycling that occurs as part of the
dynamic frequency response and impacts aging.

This paper identifies the characteristics of different appli-
cations for a domestic battery, develops a representative pro-
file of these six scenarios and develops a ‘‘drive’’ cycle test
for each application. The battery operation principle of each
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scenario was explained and some of battery energy/power
and cycling waveforms were represented. A full set of curves
for use by others with this data is available alongside this
paper. It is hoped that these curves will help define a common
power application test platform that can be used to quantify
performance, allow comparison of different applications for
battery types and allow comparison between different system
by different manufacturers.
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