LOUGHBOROUGH - .
UNIVERSITY OF TECHNOLOGY
LIBRARY

N AUTHOR/FILING TITLE

- Acc ESSION/COPY NO.
\ YRS 4—8

....._--_-.-_-——_-_.-.-...-—_

lmvﬁ*







COMPUTER AMALYSIS OF WING DESIGN

FOR'GENERAL_AVIATION AIRCRAFT

BY

M1cHAEL PAPADAKIS

A Thesis
submitted in partial fulfilment of
the requirements for the award of
the degree of Master of Science
of the Loughbofough University of Technology
- January, 198;.

Supervisors: F.G. MACCABEE, M.Sc.,D.C.Ae.,C. Eng.,A.F.R.Ae.S.
Department of Transport Technélogy

" K.S. PEAT;’B.Sé.,Ph.D.

bDepartment of Engineering Mathematics —~

LY



Laughborpugh Univarsivy

of Technal~gs Liviery

e Men B . |
Class

:,E?“--IOGSL#%/;;J
7




SUMMARY

the calculation of £he two dimensional viscous incompressible flow about
single and.multielement aerofoil sections is considered. ,

A panel method, based on vorticity and source distributions is used for
the calculation of the potential flow. Once the velocity distribution is
known, integral boundary layer methods are employed to predict the viscous
effects. A wake model has alsc been developed for the calculation of the wake
behind the aerofeoil system.

The solution is iterative. ' At the end of each iteration the velocities
on the aerofoil are corrected for viscosity and wake effects; the wake pésition
is also relaxed, beforé the next iteration starts,

The mathematical model of the flow, together with the computer program
written to test the model are described here in detail. The numerical results

obtained using the computer program are found to be in good agreement with

both experimental data and exact solutions.
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~ INTRODUCTION

During recent years the field of computapional fluid dynamics has
developed sufficiently to initiate'some changes in traditicnal me&hods of
aerodynamic design. Both computer power and the efficiency of numerical
algorithms are improving with time, while the energy cost for driving large
wind tunnels is becoming progressively higher. Partly for these reasons it
has been advocated that the impact of computational aerodynamics on future
methods of aircraft design will pe profound (14).

There are fhree compelling reasons for developing combutational
aercdynamics. One is to investigate important new technological capabilities
that cannot easily be investigated experimentally. A second concerns energy
conservation. Large wind tunnels reqﬁire large amounts of energy; whereas
computers require comparatively negligible amounts. In coming years, energy
considerations are likely to impose significant restfictions on testing time
in such tunnels (14). The development of computational aerodynamics and
advanced computers can be e;pected to lessen considerably the impact of
such restrictions. Finally the third reason for developing computational
aerodynamics réiates to economics, since compu£er speed has increased at a
much gréater rate than computer cost.

The net cost of conducting a given numerical siﬁulation with a fixed
algorithm has decreased rapidly (DiaQram 1). Equally remarkable has been
the improvement in the computatiqnal efficiency of numerical algorithms for
a given computer. This is illustrated in Diagram 2, which compares the
trend in computational cost attributable to computer improvements alone,

with the corresponding trend attributable to algerithm improvements alone.
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DIAGRAM 1l: Trend of relative computation cost for numerical
flow simulation on large computers; given flow
and algorithm (14)°

The two trends have compounded to bring about an altogether extracrdinary

cost reduction in computational aerodynamics,

The cost of experiments, by

contrast, has been increasing over the same period,

IMPROVEMENT N
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DIAGRAM 2: Cost effectiveness improvements in computer
hardware and in numerical methods

Historical progress in computational aerodynamics can be characterised

by a series of steps, each representing a more refined approximation to the

full Navier-Stokes equations. Four major stages of approximation stand out.

In order of their evolution and complexity they are:

1.

2.

linearized inviscid

nonlinear'-inviscid

p L)



3. Reynolds averaged Navier-Stokes

4, full Navier-Stokes

The present work is céncernéd with the first stage. Numerical
computation methods using this stage of approximation are termed 'panel
méthods' because complex aircfaft geometries are modelled by a large number
of contiguous surface panels. Solution of the full Navier-Stokes equations .
requires conservation of mass, momentum and energy which contain altcgether
60 partial derivative terms when written out in three Cartesian coordinates;
‘whereas the linearised inviscid approxim;tion truncates this to the well
known Laplace equation containing only three terﬁs.

The application of panel methods together with boundary layer theory to
aercfoil design and analysis was accomplishea many years ago. Since then a
number of methods have been, and are being, developed (mainly in Europe and
the U.S.A.}, which deal with the two-dimencsional viscous flow about single
and multielement aerofolils. In Britain, however, most of the work has been
concerned with high subsonic and transonic flow and very little has been
done in the low subsonic area. Thus the design of a method for the analysis
of general aviation aerofoils appeared necessary in order to £ill the gap
between existing methods.

It is the aim of th;s‘work to develo?-a complete mathematical model
for the analysis of attached incompressiblé viscous flow about single and
two element aerofoils. A number of available potential flow and boundary
layer methods, some of which are of recent development, have been combined
to create the flow model, The model consists of:

l. a potential flow analysis

2. a number of integ;al boundary layer methods

3. a wake flow analysis.

17



For the sake of completeness separated flow regions have also been
considered and some of them, such as short bubble separation, are included
in the computer program developed to test the flow model. A model to analyse
trailing edge separation is also included in the present work although it
has not yet been tested. ,

In the following sections a full description of the flow modél is given,
Section 1 considers mathematical models to describe the airflow. 2
literature survey of up-to-date potential f;ow ﬁethods is carried out in
Section 2. Section 3 starts with a brief description of the linear vorticity
model; this is followed with a detailed description of the new potential flow
model. Viscosity and methods to model and account for it are discussed in
Section 4. The boundary layer methods used in the ﬁresent model are described
in Sections 5 to 8. The wake analysis is considered in Section 9. With two
element aerofoil sections, interaction between the wake flow of the upstream
aerofoil anaréhe boundary layer of thé flap”can take ﬁlace in céftain cases}
a éonfluent boundary analysis is then necessary. This is described in
Section 10. Trailing edge separation is considered in Section 1l. The
overall calculation procedure is discussed in section 12, Section 13
presents some results obtaihed from a number of runs of the computer program.
The results are foundAto be in good agreement with both theory and experiment.

Finally in Section 14 suggestions for further work are given.
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MODELLING OF THE AIR FLOW - A GENERAL DISCUSSION

- 1.1 INTRODUCTION

The basic probleﬁ when dealing with aerofoil analysis is to calcuiate
the aerodynamic forces and moments and the pressure distributions thch
. result from the motion of‘the aerofoil througﬁ the air.

A general mathematical model of the flow about aerofoils of arbitrary
geometry is thus required. Any such model must have built into it all the
individual characteristic features which distinguish the particular flow
from the others.

The basic theory and assumpticons that lead to the modelling of the
real flow about two dimensional aerofoil sections is briefly described in
this section.

The aim is to list the important equations and the assumptions that
lead to simpler flow models. No attempt has been made to derivg any of the

equations. These matters méy be found in textbooks. {(e.g. Refs, 100,29,54).

1.2 MODELS TO DESCRIBE THE AIR AND SCME OF ITS FPROPERTIES

We‘are concerned with air and hence strictly, with thg motion of air
molecules. Thus we should start with the kinetic théory of gases as
developed by Boltzmann and Maxwell which itself already represents a highly-
ingenious model of whatever may happen ip reality. The main assﬁmptions
and the derivation of the basic equations are fully described in (ref. 121,
b.144). :

It is possible to derive first Boltzmann's equation (ref. 65) which
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describes the gas in terms of the motion of its constituent particles, and
then from this to derive the Navier—Stokgs equations, the continuity
equation and the energy equation for a fluid.

In deriving the Navier-Stokes equations in this way a number of
additional assumptions are implied: the gas must not be too dense but, on
the other hand, there must be a sufficient nﬁmber of collisions ko preserve
macroscopic equilibrium (Ref. 65). It is fortunate, however, that despite
these assumptions the Navier-Stokes equatiqns,lasrit happens, give an
extremely close approximation to the behaviour of a gas over a much wider
range of conditions than are to be exbected from the analytical derivations.

It should be noted that the set of equations is not closed in that
there are more unknowns than there are equations. The unknown properties
are density, pressure, temperature, and the three components of velocity.
The extra equations required is the equation of state, which may also be
deduced froﬁ kinetic theory. |

Thus the full set of equations is

bt =X =F+ L [u(eh - Savu )]+ 5[+ 2N 2 [+ 2)] )
- blgone)| gl gz )
e |
 p—eRT=0, . - S e
Energy equation

The possibility of solving the above system of equations for the
case of arbitrary geometry is still quite remote despite the advances that
have been made in computer technology. Thus the above equations have to

'be simplified even further,
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By assuming that the flow is isothermal and incompressible the equation
of state and the energy eguation become superfluous as far as the
calculation of the flow field is concerned. The flow field can now be
considered independentlf from the eguations of thermodynamics.

The new set of equations is therefore,

ou du du 3u‘
9('a'f+"'é'5="+”‘é'§+ Bz)_

H

”+(w+w+$)'
+u (5

.r’+{:‘y‘ az’)
(az'*' ax+” ey ) (ax=+ay+az*)
du év dw
k3

= +a—y‘+—a\—=0-

'z

19(%—",—4—“%4— vg-”—-i- w-?~)
(1.3)

At this point it sﬁould be mentioned ﬁhat in writing the equations of
motion the Eulerian instead of ﬁhe Lagrangian approach has been used.

The Lagrangian descriptipn of the flow.field provides a history of
the fluid as in the.case of the motion of a particle in ordinary dynamics.

| When using the Eulerian method only the fields of the various physical

quantities are considered (107)}. There is no need to trace directly the
paths of individual particles of the fluid. Instead the conditions at a
general point in the fluid are observed. For example, if x_is;the velocity
field of the fluid then v is a function of the space variables x,y,z and
also of the time if the flow is unsteady. This field describes the
velocity of a particle of fluid which is located at (x,y,z) at time t;
thus the actual path of any individual particle is npt exﬁibited directly
in this description.

Another concept used to simplify matters is that of.the air particle
which may be thought of as a 'fluid eleﬁent' or 'body of fluid'. Bulk
properties are actually thought of as interactions between such particles.

The concept of fluid particles is useful in that it allows the physics of
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fluid flows to be distinguished from that of solid bodies and of plasticity.
Fluid particles can easily.be moved relative to one another; there is no
special initial arrangement of the fluid particles; and small forces are
_suffiéient and little work needs to be done, to bring about a different
arranéement of the particles and let them flow if the changes are slow
enough. But this is also the reason why it is so difficult to describe
and to understand fluid motions.

Going back to the equations (1.3) further simplifications are required
before useful solutions can be obtained. '

One drastic but nevertheless pften useful simplification is to‘ignore
the viscosity of the air altogether and, moreover, to assume the flow to

.

be irrotational. 1In these potential flows, only the condition of zero

normal velocity can be fulfilled and tangential slip must be allowed to
occur along a solid wall. An even more useful assumption for high
Reynolds' nimber flow is that of Prahdtl's (88) boundary layer. According:
to this all viscous effects are confined +to a thin layer along the surface,
of the body. Outside the boundary layer, the flow is taken to be inviscid.
Within the boundary layer it is assumed that the velocity along the body is
much less than that normalr to it, and that streanmwise wvariations are much
smaller than cross-stream vafiations.A In that flow model, the condition éf
zero tangential velocity can be fulfilled and account must be taken of the
fact that the slowed-down fiow near the surface takes up more room and
displaces the streamlines in the external flow ocutwards, compared with
where they would have been had there been no boundary layer. The

existence of such a displacement thickness means that the flow outside Fhe
boundary layer and hence the pressure along the surface of a given body,

is the‘same as the irrotational flow about a hypothetical body with zero

normal velocity which lies wholly outside the given body (Ref. 65).
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Thus even the boundary conditions to be applied depend on the simplified
ﬁodel of the flow we choose to adopt. In this flow model of Prandtl,

work must be done by the bedy on the boundary layer, as it moves through
the air, and momentum is exchanged. Alsc, the boundary 1ayef air is left
behind the body in the form of a wake and the reduced momentum in the wake

corresponds to a drag force on the body.

- 1.3 POTENTIAL FLOW

Figure 1;1 shows the analytical steps that lead to potential £low
theory. For a steady, inviscid, incompressible flow, Euler's equations of
fluid motion reduce to two relatively simple relationships that govern the
velocity vector (V)

div Vv =

|2
j<2
Il

. 0 : (1.4a)
curl V=9¥xV=0 ~ (1.4b)

Thelfirst equétion satisfies conservatidhvef mass; the second one

assures that the dynamics of the flow is treated correctly (123).

In addition to satisfying eqguation (l1.4) one must assure that any
mathematical description of the flow field around a given body_shape
satisfies the boundary condition that there be no velocity normal to the
body at all points on its surface. If n is the unit vector.normal to the
.surface, the following must hola

‘v.n=0 - | | (1.5)

To assist in the solution of equation (1.4) tw6 functions are

introduced. The first of these is known as the velocity potential., ¢,

and is defined such that

] 9x y az
oY generally,
| v=Y4¢ (2.7)
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Equation (1.7) satisfies identically equation (1.4b}. However, in
order to satisfy equation (}.4a), it follows that ¢ must be a harmonic
function (123}, that 1is

V4 = 0 . (1.8)

A flow for which equation (1.4) is satisfied, and hence ¢ can be
defined, is known as a potential flow, The resulting fluid motion is
described as being irrotational, This follows since,‘in the limit at a
point, the curl of the velocity vector, whiph is zero, is equal to twice
the rotational or angular velocity.

The stream function, ¥, is related to the velocity components by

_ _
u= 3y v = oy (1.9)

P can only be defined for two-dimensional, or axisymmetric, flow. To
obtain a particular compcnent, the partial derivative of ¥ is taken in
the direction normal to the velocity and to the left as one looks in the
direction of the velocity.

For an irrotational fiow in order to satisfy equation (1.4b) the
stream function P must also be harmonic

' vzq'/ =0 I (1.10)
Th; change in the potential function ¢ betweeﬁ two points A and

B (biagram 1.1) can be expressed in vector notation as

) B
$(B) - $(n) = Jg.dg_ ‘ (1.11)

A
where R is the radius vector to the curve along which the integration

is being performed.
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DIAGRAM 1.l: Two dimensional flow through a line element

If now ¢1 and ¢2 are functions satisfying equation (1.1l1l), then,
because this equation is linear, their sum will also satisfy (1.11). 1In
general both the velocity potential and stream function can be constructed

by summing less complicated functions,

n
bxy) = L ¢y Gy
i=1
(1.12)

)
v, {x,y)
i=1 *

Equation (1.12) represents the real benefit to be gained in

¥ (x,y)

describing a flow in terms of ¢ and ¢.
When summing the flow functions, the velocities will add wvectorially.
This is obvious from equation (1.12) since

grad ¢ = grad ¢l + grad ¢2

= + + ...
or v=y, +V,
The simple flows frem which more complicated patterns can be develcped
are referred to as elementary flow functions. There are three of them:
1, uniform rectilinear flow

2. vortex flow

3. source flow
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Vortices and sources produce singularities in the potential flow field.
An element may consist of singularities of constant strength, or the

strength may be considered to vary in some simple manner along the element.

1.4 METHODS FOR SOLVING FOR THE FLOW ROUND AN AERCFOIL

Profile theory can be treated in two different ways: first By the
methed of conformal mapping and second, by the so called method of
singularities.

For practical purposes the method of singularities is considerably
simpler than conformal mapping. In general, the method of singularities
produces only approximate solutions, whergas conformal mapping leads to

exact solutions, although these often require considerable effort.

1.4.1 Conformal Mapping

This methed is limited to two dimensiocnal problems. The flow about
a given body is obtained by using conformal mapping to transform it into

a known flow about another body (usually a circular cylinder)}, {see Ref.l0l).

1.4.2 Singularities

In the method of singularities the body in the flow field is
substituted by sources, sinks ahd vortices. Through superposition of their
flow fiélds with é uniform flow a suitable body contour (profile) is
produced. The flow field within the contour has no physical meaning.

For the creation of a symmetric profile in a symmetric incident flow
fiéld, only sources aﬁd sinks are tequi;ed, whereas for the.creation of
camber, vortices must be added to the profile.

| The.method of singularities can also be applied to three dimensional

flows, such as wings of finite span and fuselages.
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THE HISTORY AND DEVELOPMENT OF TWO DIMENSTONAL

POTENTIAL FLOW METHODS

2.1 INTRODUCTION

In this section various methods for calculating the potential flow
about single and multielement aerofoil sections are presented, {see Figure
2.1). The survey that follows has been based mainly on reference 105.

The development of the early methods has evolved the present day
sophisticated analysis techniques an& this progression is described here.

This includes both conformal transformation and singularity metheds.

2.2 THE PROBLEM OF CALCULATING WING LIFT

A systematic study of the problem of lift developed by a given wing
would seem to begin with consideration of the lift developed by a slice or
section out of the wing. yodelling the problem in this fashion has the
advantage that one need consider only flow in two dimensions rather than
in three, a greater mathematical simpiification. Further it would seem
reasonable to assume that the fluid is inviscid, if for no other reason
than to take advantage of the extensive analytical studies (Refs . 125,129)
that had been carried out for this case during the nineteenth century.
These studies had been successful at explaining several egperimental
facts and present far less mathematical difficulty than one would encouhtér‘
working the more general equations for the flow of a viscous fluid formulated

"by Navier and by Stokes about 1840,
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The immensity of the problem facing engineers in 1900 trxying to
devise a rational means of calculating wing lift can be bettér appreciated
when one realizes that in the contemporary view lift was the force
reacting to the change in the momentum of the airstream striking the inclined
lower surface of the wing. Such a force would be proportional to sinza
where o is the angle by which the lower surface is inclined to the airflow.
If bne were to assume that a wing is flying at fifty miles an hour, with a=6°,
then it coﬁid develop abﬁut 3.1N of 1lift per square meter of surface
according to this theory. Since it was then impessible to build a wing
lighter than this weight many scientists confidently predicted that man
would never fly. More perceptive individuals noted however that the flight

of gliders could not be explained by such small values of lift and therefore

something must be wrong with the theory.

2.3 THE EARLY STAGES

*

Lord Rayleigh had shown in 1878 that the swerving flight of a 'cut!
tennis ball could be explained at least in general terms by comparing it to
the case of a c¢ylinder placed in an inviscid uniform stream. By superposing
a circulatory flow upon the cylinder, the cylinder developed a force nofﬁal
to the direction of the uniform.stream, directly porportional to the strength
of the circulatory flow. This result along with the earlier éqfk of
Helmholtz and Kirchhoff was known to the German mathematician M.W. Kutta
who was investigating the 1lift produced by cambered aerofecil at a=0. In a
paper of his published in 1902 he examined the theorétical flow round a
thin aerofeoil formed by a circulaf arc.. He concluded that the flow over

the upper surface was equal to that over the lower surface at the trailing

edge. The flow would thefefore leave the surface smoothly at finite
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velocity. In order to obtain an approximate solution for the 1lift he was
ready to accept the idea of aninfinite velocity at the sharp leading edge,

a situation studied by Helmholtz.

2.4 DEVELOPMENT OF THE FIRST METHODS

Joukowski ,working indepenaently along somewhat simpler lines, was able
to obtain exact solutions for a certain class of aerofoils in inviscid flow.
He first showed that whén a cylindrical body of arbitrary cross-section
moves with velocity, V, in a fluid whose density is p and there is a
circulation of magnitude, T', around the body, a force is produced equal
to the product pVI per unit length of the cylinder. The direction of the
force is normal both to the velocity, V, and the axis of the cylinder.
_Joukowski alsc assumed therflow to leave the aerofoil smoothly at the
trailing edge. By means of this hypothesis the whole problem of 1lift
becomes.purely mathematical: one has only to determine the amount of
circulation so that for zero vertex angle at the trailing edge the velocity
of the flow leaving the upper surface is equal to the flow leaviﬁg the
lower surface. If the tangents to the upper and lower surfaces form a
finite angle, the trailing edge is a stagnation point.

Joukowski then found a transformation C=z+02/2 by which a circle in
therz~p1ane becomes an aerofoil in the {-plane. Since the transformation
is conformal, the fluid velocity and pressure which exist at any point on
the surface of the cylinder can be related quantitaﬁively to those ﬁhich
exist at the corresponding point on the aerofoil. Integration of these
pressures in the direction normal to the free stream velﬁcity then gilves
the aerofoil 1lift (which is also the same as the lift produced by the

generating cylinder}.
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The Joukowski transform technique was a great step forward in
analyzing the lift of aerofoils. It gives the correct variation of lift’
with angle of attack and predicts lift wvalues which are very close to
measured values at the éame angles of attack. However the Joukowski
transform technique also has a number of disadvantages: .

l. It is an inverse technique, that is one does not know beforehand
precisely what the aerofcil will look like. As a result it is
difficult to use the technigue to estimate the'éharacteristics
of-a given aexrofeil.

2, It leads always to an aerofoil with a cusp, at the trailing edge.
This is impractical sttructurally.

3. It generates aerofoils whicﬁ have their minimum pressure point
very far forﬁard. Consequently, they have thick boundary layers,
and therefore higher drag and lower maximum 1lift values than
aerofoils with the minimum pressure point further back.

4, Being an invisic theory, it cannot be used to estimate either
lift characteristics near stall or drag values.

5. It is tedious to determine the ordinates of the aerofoil accurately.

These deficiencies were soon recognized'and many investigators tried
to devise more general transforms which could be used to répresent a great
variety of aerofoils, in particulaf those with finite trailing édge angles.
Karman and Trefftz (Ref. 128), von Mises (Ref. 133), Muller (Ref. 134) and
Theodorsen (Ref. 115) were among the leadefs in this effort, whiph by 1932
had reached the point where one could determine the lift characteristics
of a great variety of aerofoils. The great effort required to complete a
calculation; however, discouraged thoughts of a further generalization in

the transform technique.

.
.
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Analyses of the 1ift characteristics of various Joukowski aerofoils
in the meantime revealéd £hat the aerofoil thickness contributed little to
the 1lift. If therefore seemed to some that if aerofoils for which one had
difficulty finding conformal tr;nsforms could be characterised by theirx
mean camber lines only, then perhaps one could have a relatively simple,
yet direct method of evaluating therlift and pressure distribution of
arbitrary aerofecils. Such an approach is obviously most app?opriate when
the actual aerofoils are thin. These ideas were develobed in the early
1920's by Munk (Ref. 8l), Birnhaum (Ref. 123), and Glauerﬁ (Ref. 124).

_Glauert replaced the aerofoil by its mean camber line which He assumed
that it lies near the chord line., On this basis he-made the apprbximation
that the velocities over the aercfoil could be represented by a coﬁtinuous
disﬁribution of vortices lying along the chord line. The variation in
- vorticity with chord location is not known initially. The velocity induced
at point X1 on the chord of the éerofoil due to the vortex sheet is given by

C

= —yéx
V(xl) = JO T (oK) (2.1)

where ¥ is the vortex strength per unit length. This induced.velocity

is actually calculated for a point on the chord but according to Glauert's
appréxiﬁation may be taken to be the same as the induced velocity at the
corresponding point of the ae;ofoil itself. Since the resultént of the
free gtream velecity and the induced velocity adjacent to the aerofecil must

be parallel to the surface at each point of the aerofoil and since the flow

angularities are small one may write this statement as

y._ .o
a.+ v ax (2.2)
where gy, ig the slope of the mean camber line at X1. It will be seen

ax

that these two equations are sufficient to provide a complete solution
of the problem in terms of the shape of the curved line which represents

the aerofoil. The solution is obtained as yY({x). Then according to
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Joukowski's theorem

C
L = I pPVYdx
- O
M= J pVY xdx
(o]

Values of CL énd CMo computed by this method were found to be in
‘close agreement with experimental determinations of these gquantjities.
Glauert's methed can be seen to be considerably simpler to use than the
transform technique. Duriﬁg the 1930's when designers tried to find ways
of reducing wing drag by eliminating external bracing, they were forced

by structural considerations to abandon the very thin aefofoils they had -
been uéing until that time. They found that in order to predict the lift
and moment characteristics of the newer and thicker wing sections more
elaborate analytical methods or extensive ﬁind tunnel testing, were

. necessary. Some of the new analytical methods were based on the following.
Since the sum of solutions to the, Laplace equation which describes the .
inviscid incompressible flow, is also a solution, one can describe a thick
cambered aerofoil at angle of attack by superimposing solutions for a

curved iine, a flat plate at angle of attack and a thick symmetrical

aerofoil at a=0, Karamcheti (Ref. 127) provides such a solution.

2.5 MODERN METHODS FOR THE CALCULATION OF THE POTENTIAL FLOW

It has only been within the last 20 vears or so that interest in
improved analytical methods has been taken up again. This is mainiy due to:
1. Recent sharp increase in the cost of making models and.carrying

~out test.
2, The desire to optimize certain aspects §f aerofoil behaviour
- and to investigate the characteristics of unconventional

aerofoils.
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3. 'The appearence of large digital computers which made it possible

to consider the use of what had previously been rather laboricus

methods on a routine basis,

Weber's method was one of the first and perhaps most widely used
methods of the current revival. By transforming a symmetrical two-
dimensional aerofoil at angle of attack into a slit, she was agie to show
that the source distribution which she used to represent the thickness at
zero lift can be placed along the chord line rather than on the surface with
little error, provided the aerofoil is no thicker than about 10% of the

chord. Using this assumption and by superimposing a vortex distribution

on a flat plate at angle of attack, Weber obtained the equation

v, %
dz, 2
Yo

1 .
L+ i[ G 22 dx']% (2.4)
™o 1-(1-2x"') x-x' |

l t
cosa[l+-:'r-J—gx——-d—z]isina -]43

Vix,z) = ) x=x'  ax X

The positive sign holds for the upper surface, the negative sign

for the lower surface. V(x,z) is the velocity along the aerofoil surface.

The pressure coefficients along the surface are given by

' CP -1 - (V(z:’;z))2

Weber extended her approach to £reat camber aercfoils (Ref., 139 )

Comparisons between Weber's results and exact theory for Jourkowski
aexofeils indicate that her méthod predicts pressures which are low by
about 1%. Maximum camber must be less than about 4% of chord and thickness
less than 10% of chord to obtain results of this accuracy.

The success of Weber's approach and its adabtability to computer‘
solution seems to have served as a spur to the development of more exact

aerofoil representation schemes which are practical only if carried out by
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digital computer. The_mgthod of Hess and Smith (Ref. 126) is among the
best known of these developments. in this method the non-lifting aerofoil
surface is replaced by a scurce sheet with strength ¢ (s) where s is the
distance measured along the aerofoil surfaqe. The sum of the velocity
induced by the source sheet and the free stream velocity is forced to
satisfy the condition that its component norﬁal to the aerofoil surface at
each value of s is zero. This statement is written mathemétically as a

Fredholm integral equation of the second kind

2ng{s) + %0(5')2nr(s,s')d5' = Ffs) ' (2.5)
where r(s,s"}) is the distance between‘the point of interest, s, and any
~ other point on the surface, s'. The function 0(s') represents the
source strength at points other than s; o(s) is fhe source strength at s;
and F(s) represents the component of tﬁe free st¥ream velocity normal to
the surface at s. The left side of the equation represents the component
of'the velocity induced by the scurce shéet which is normal to the surfaée.
For a given aerofeil éeometry and freestream velocity the quantity to be
found is o(s') which occurs under the integral sign.
In order to solve the integral eguation Hess and Smith m§de the
following approximations:‘
a. The contour of the aerofoil can be modelled by N.straight line
segments. |
b. o(s') is constant over each segment.
c¢. The integral is evaluated at only one point - generally the
midpeint - of each seément.
By solving the system oflthé N simultaneous equations 0 can be found

on each segment and therefore the_tangential component of velocity and

the surface pressure,
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Lifting aerofoils can be treated with this method by superimposing a
vortex sheet of su;table strength s0 that the total flow satisfied the
local tangency condition as well as the Kutta conditions at the txailing edge.
A different approach to the problem was taken by Martensen tRef. 131).
By requiring that the stfength of the vortex sheet be identical to the
‘velocity distribution on thé surface of the aerofoil he was able to show
that in the interior of a closed vortex sheet the velocity is everywhere
zero. Thus on the inner side of the vortex sheet the net tangential
velocity which is the sum of the free stream and that induced by the vortex
sheet is zero. This can be written as

T (S) - ._].'_ i L} . [ ] | — g,x__ _q_y_
2 >7 3n § y{s")inr{s,s')ds' = Vw(ds cos o+ 35 sina)
(2.6)

By discretising the above integral Ma?tensen ended up solving a

© system of simultaneous equations. In order to obtain a closed sclution

of the problem an extra equation is required and is obtained.from the
Kutta condition. When dealing with very thin aerofoils Martensen's method
gives rather poor results. This is because when the upper and lower
surface control points are very close together the vortices located there
induce strong tangential welocities on each othér. While this induced
velocity actually decays very rapidly for points in the neighbourhod& of
the control point, the method of approximating the integral thch
Martensen used assumes it to be constant;

By using a different limiting approximation Jacocb imprbved_the results
however at the cost of restricting the way in which the control points can
be distributed on the aerofeil surface.

Oeller formulated the problem inltermS‘of the stream function as the
dependent variable. The stream function y is governed by Laplace's equation

v =o0
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which is linear, s0 the solution of the flow field can be obtained by
superposition. The aerofoil is represented by a distribution of vorticity
along the surface of strength yv{s). Adding the freestream function to £he
streém function of this vortex sheet results in the stream function of the
whole flow field |
=V cosaz -V sina'x + %(}ﬂs')ﬁ.nr(s,s")ds' (2.7)
r = the distance between a poiht on the aerofoil surface and
. a field point (x,z).

The streanm funétion of the vortex sheet is found gy integration of

the stream functions of elementary vortices from the lower surfacé

trailing edge poink (s=0) to the upper surface trailing edge poinéf(s=sTE).

+

The value of the stream function Y is constant along a streamline. Hence
Y is also constant along the aerofoil contour which is part of the
stagnation streamline,

To solve the integral equation’ the aerofoil geometry and the vortex
distribution are discretized as follows. The aeréfoil surface is divided
into N segments. The (N+l) corner points of these segments are placed on
the aercfoils surface and are then connected by straight lines. The
vorticity along each segment is constant. By choosing N control points a
the integral equation reduces to a set of linear algebraic eguations,

wc - jzl k:j Yj = Vwcos<xzj -V sincxxj, j¥1,2,...,N. (2.8)
¢c'= stream function at the contour of the aerofoil.
kzj's = aerodynamic influence coefficient.
Since the system of N linear equations has N+l unknowns an extra equation
is required and this is obtained from the Kutta condition.
Several improvements in the transform approach to predicting aerofoil

characteristics have also appeared iﬁ recent years. Lighthill (Ref. 136)

chose to specify the desired velocity distribution about the aerofceil in
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closed form. Sato (Ref. 135) extended this approach to permit a velocity
diétribution of any kind to be specified. As evaluated by Sato, the
velocity distribution is assumed in such a way that front and rear
stagnation points can be treated separately. A well-behaved functiocon g(8)
takes up the velocity distribution everywhere with the exception of the
stagnation points and three constants which‘are imbedded. The constants
are determined by g({f), the fact that the aerofecil is a clésed curve, and
the fact that the flow field at infinity is uniform. A-set.of initial
values must be giveﬂ to the three constants in order to obtain g(6) from
the specified velocity distribution. ihis g(f8) is then used to obtain a
new set of wvalues for the constants which will give a closed curve as the
aerofoil geometry. The process is répeated iteratively until the initial
and final constant values match. In this way Sato's method always guarantees
an aerofoil geometry giving the desired velocity distribution. Because of
the repetitive nature of many of its steps and the need for piecewise

integration, it is best done on a digital computer.

2,6 CONCLUDING REMARKS

The history and development of potential flow methods fo; the analysis
of single and multielement aerofoils has been presented.

Most of the methods described are of the singularity type. There
exist 'a large number of panel methods today, and it is not possible to
mention all of them. However the reader is referred to fhe work of
Argyris (3), Callaghan and Beaty (10), Eppler and Somers (34}, Kennedy
and Marsden (6l), Mavriplis (73), Morgan (7%9), Morino and Kuco (80},

Seebohm aﬁd Newman (103), Smith (1l06).
A number of currently used methods have been extensively tested by

Freuler and Gregorek (40} and Sytsma (112). Thé results indicate quite a

.
-
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variation in the performance of such methods, thus the user has to select
the method that best fits his requirements.

A typical examﬁle of transonic flow analysis is described in
reference (11), however, this kind of flow is beyond the scope of the
present work.

A rather detailed intfoduction into the theory of the methods described

here can be found in reference 17.
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SURFACE SINGULARITY MODEL FOR THE CALCULATION OF THE

POTENTIAL FLOW ABOUT THICK AEROFOIL SECTIONS

3.1 INTRODUCTION

The surface panel method philosophy for solving arbitrary incompressible
potential floﬁ problems involves the mating of classical potential theory
with contemporary numerical techniques,  Classical theory is used t; reduce
an arbitrary flow problem to a surface integral eguation relating boundary
conditions to an unknown singularity distribution (Ref., 66). The numerical
techniques are then used to calculate an approximate solution to the integral
equation.

All properly formulated surface panél'ﬁethods are exact in the sense
that the difference between the approximate numerical solution and the exact
solution to the integral equation can be made arbitrarily small at the
expense of increasing the number of computations, assuming that computer
errors are not a problem. This does not imply that all panel méthods are
equally successful. Indeed, vast differences exist with respect to
prediction accuracy versus compﬁtational effort, reliability, simplicity
and appiicability to a given analysis problem.

In this section a brief desc;iption of the surface singularity method
used for the potential flow calculation, during the early stages of the
research, is given. The inabiliﬁy; of the linear vorticity model to deal
with wing sections having a blunt trailing edge, enforced the use of a
rather mo?e gophisticated surface singularity method. This method is

outlined in some detail here.

.
-
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3.2 LINEAR VORTICITY PANEL METHOD

Maskéw (70) applied the linear vorticity model to the thick aerofoii
section problem, and showed that a linear vorticity distribution combined
with low order panels can predict the potential flow pressure distribution
around multielement sections with good accurécy.

A basic limitaticn of the model, however; is that it can only deal with
sections having a sharp trailing edge, thus it is not suitable for viscous

flow analysis.

3.2,1 Model Description

In order to allow for both finite thickness'and circulation, the aerofoil
contour is approximated by a closed polygon (biagram 3.1}. A continuous
distribution of vortices is then placed on each side of the polygon, with the
vortex strength pef unit length, Y (s), varying linearly from one corner to
the next and continuous along the corner, Control points are chosen idway
between the corners. The vorticity values are solved at the corner points
using a boundary condition that requires the total normal velocity at each

control point to be zero.

3.2,2 Equations

The velocity at any péint P (Diagram 3.1) is given by (70) :

ki‘h SEGMENT

Ni, SEGMENT

DJ SEGMENT CONTROL POINT

DIAGRAM 3.1
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(s)r" } (S )
] Y rl Y .
vV = ——-% -—fisf—a ds * ——?fl— t +V - (3.1)

For zero normal velocity the product !P'EP must be zero. Therefore

Y(s) (x~3).n
1 thadiiie 2 _ .
or % rz ds + Xw' Ep =0 . (3.2}

Using the panel method described above the integral equation isg

modified to a set of N linear equations given by the following formulae:

5 (ykAjk) + !m'ﬂj =0 , j=1,2,...,N (3.3)

L]
k=1

where : . .
Y is the value of the singularity at corner point k.

1s the influence coefficient of the singularity Y

Byx k

associated with the contrel point j.
Ej is the normal unit Q;ctor‘of panel j.
Note that if there are 'N corner points and hence N+l unknown ¥ values
at the corners, the N control poihts provide one less equation than unknowns.
This situation is remedied by applying the Kutta condition at the trailing

edge. This requires that YN+ = —Yl, assuring that the.wvelocities induced

1
at the trailing edge are finite,
Having determined the vortex strengths, the velocity field and, hence,

the pressure distribution around the aerofoil can be calculated.

3.3 SYMMETRICAL LINEAR VORTEX AND CONSTANT SOURCE SURFACE SINGULARITY MODEL

3.3.1 Basic Considerations

Bristow (7), Maskew and Woodward (72) hawve shown that if a combination
of sources and vortices is used for the calculation of the potential flow
about thick aercfoil sections, then the singularity strength values are .
minimized (Diagram 3.2);-thus violently opposing singularity strengths on
upper and lower surfaces are eliminated and any flow leakage effects are

considerably reduced.

.
-
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DIAGRAM 3.2: Equiwvalent singularity representation for a
circular cylinder
" Slotted aeroféil applications are particularly sensitive to flow leakage
since it is possible for flow distortion on one surface to affect the control
points on a neighbouring cne, and aiso, because of the way the Kutta condition
is applied, the overall circulation can be affected.

The symmetry ¢f the mddel arises from the constraint that ihe mean line
of the aerofoil is a streémline of the intermal flow (72}). Such'a constraint
would clearly require that the magnitudes of both the source and vortex
distributions be eqﬁal at corresponding points on the upper and lower surfaces.
By enforcing this simple symmetry condition, "doublet" effécts between the
upper and lower surfaces would be eliminated and the scource and vortex
singularities would again work in harmony each providing its own characteristic
to the flow (72). 1In su;h a model, the Eorrect éingularity would become
dominant in limiting.cases where either incidence or thickness goes to zero.

'The model can be extended to three dimensional potential flow

calculations (85).°
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3.3.2 'Theoretical Basis

The problem is to find a potential function ¢ having prescribe& values
over a certain boundafy surface S and which satisfies Laplace's equqtion
V2¢=0 within the region enclosed by S. This is known as Dirichlet's problem
(See integral equations by Moiseiwitsch). Neumann showed in 1870 that this
pfoblem is equivalent to the éolution of an integral equation.

From reference 78 any solution to Laplace's equation, can be expressed

in the form 1 9.1 ';_gg
¢P T oam ¢§(¢8n{r) T r 3n) as < (3.1)

where § is a closed surface at every point of whose interior V2¢=O and
v2p=0. P is a point interior to S (diagram 3.1), r is the distance of P
from the element of area dS, n is the normal vector to the body surface at
as, positive ocutwards and ¢P is-the value of.¢ at P,

If the fluid extends to infinity then the integral needs to be taken
only over the finite boundary (the aerofoil surface in this case) provided
¢p tends to zero at infinity (Ref. 70). The value of ¢P on the surface S 'is

¢y = 2%#@%(-}) - %g—ﬁ)ds | (3.2)

The first term in the integral equation (3.2) is the velocity
potential for a surface distribution of doublets with axes normal to S
and of density ¢ per unit aiea. The second term is the velocity potential
for a surface distribution of sources with sensityo= - %%-per uniﬁ area.

For two dimensional flow, it is generally more coﬁvenient to use vortex
singulafities in place of doublets. It is possible (Ref. 7) to replace a
surface doublet distribution of density u by an equivalent vorﬁex

distribution where the vortex density vector y satisfies the following

equation at each surface point

Y = nxVu ' 7 - (3.3)
The ﬁroblem now becomes to determine the strengtﬁ of the source
and vortex singularities so that the required boundary conditions are

satisfied everywhefé.
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3.3.3 Numerical Soclution Procedure

There are many ways of'obtaining a'numerical solution to the iﬁtegral
equation. For example the siﬁgularities could be represented by a continuous
series in which case the problem would be reduced to that of finding the
coefficients of the singularity series. However, such an approach could pose
severe difficulties when considering flap edges or rapid changes in surface
conditions (70). Instead the integral equation is solved using a panel method.

The pénel method apprcach has proved to be very powerful becausé it only
requires specification of the boundaries. 1In contrast field methods such as
finite difference or finite element methods (Refs. 2,18) need to consider the
entire domain of perturbed flow,. | | ‘

The aerofoil surface is reﬁ%esegted by an inscribed polygon with an even
nunber of sides or panels. Each panel has a constant source distribution.

The midpoint of each pénel is selected as the boundary condition control point
(Figure 3.1).. The even number of panels allows corresponding upper and lower
surface panels to be defined such that they have equal singularity strengths.
The vorticity unknowns are located at the panel edges.

Assuming that there are Nm panels on the mth aerofoil element then the
number of unknowﬁ source strengths and vortex strengths on the element are
Nm and §m+l respectively. However, sipce there are only Nm control points
and, therefore, Nm equations to solve, the extra unknown has to be eIiminapgd.
.This is done, once again, by using the Kutta condition which in this case

requires that

The condition is simultaneously applied to each trailing edge when

considering a multielement aerofoil.

3.3.4 Veiocity Equations .,

The velocity vector at a general point J in the plane of the aercfoil

13
.
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is given by (25)

N . . N N
T 1 m : 1 m_
vy = =) G, (3 Ky, (K) o1 G 3Ky (KDY (3.4)
m=1 k=2 k=1

where NT is the total number of ae}ofoil elements, Nﬁ is the number of
th th

panels on the m  element, YV(K) is the vortex strength at the K~ corner
. point, YS(K) is the source strength on the Kth panel, GV(J,K) and GS(J,K)
are the influence coefficients for the velocity induced at the Jth control
point by the vorticity and source on the Kth element respectively. (see
Appendix 7 }.

Making use of the symmetry and Kutta conditions we can define new

influence coefficlents and singularity strengths such that,

N, N ,
T 1 m .
vy = 2‘,_ 5o Z_ G(3,K)Y(K)) + V (3.5)
m=1 k=1 .
vhere ) ‘

YK} = YV(K+l) B Yv(Nm—K+l) } (3.6)
G(J,K) = G _(J,K+1) + G (J,N-K+1) , K=l to N /2

v v 3N R ' m

= o

Y(K) = YS(K—lez) - ys( 5 K+1) 5.7
_ _ N _ 3Nm N :
G(T,K) = GS(J,KT) + GS(J,T -K+l), K=—+ 1 to Nm

2
If J is now considered as a mid segment point on the aerofoil section
surface we can resolve the ¥velocity into components normal and tangential

to the Jth segment to give

N’I' . Nm ‘

Vo= L G Z_ GN(J,K}Y(K)) - V_sin(e -a) (3.8)
=1 k=1
N’T L Nm

Vip = L G I GTW@,KIY(K)) + V _cos(0 o) (3.9)
m=1 k=1 -

where GN{J,K) and GT(J,K) are the normal and tangential components of the
influence coefficients, ed'is the angle with which the Jth segment subtends
the aerofoil chord and o is the incidence of the aerofoil chord to the free

stream direction.
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Since there are N panels and N unknown singularity strengths we have
th . .
two N order systems of simultaneous equations which can for convenience

be expressed in matrix form

[v,] = 5%{- [en] [y] - [v_sin(e-o)] . (3.10)
[v,] = Elﬁ- [er] [v] - [vmcgs(e—a)]_ © (3.11)
NT
N = X N
m=1

Eliminating ¥ between equations (3.10) and (3.11) the following
result is obtained
-1 r L .
v )= [er] [ev] " ([v ]+ [V sin6-c) ]) +[V_cos (8-0) ] (3.12)
For the inviscid case the normal velocity on the aercofoil surface
is zero and the tangential velocity therefore becomes the inviseid

solution to the flow about the aerofoil. Hence the inviscid velocity is

[VI] = [A] [szin(e—u)] + [Vmcos (G—u)] ‘
1 | (3.13)
(] = [er] [o]
Note that the velocities are calculated at the panel midpoints.
The pressure coefficient C_ is calculated from
VI 2
=1 - |— .
Cp v {3.14)

o)

This result is then used to calculate the boundary layer development

over the aerofoil as shown in the following sections,
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VISCOUS FLOW - A GENERAL DISCUSSION

4.1 INTRODUCTION

Once the potential flow calculation has been completed the ideal velocity
and therefore pressure distributions about the aerofoil are known.

To ﬁake use of the above calculation certa;n assumptions have to be
made before the viscosity effects can be considered.

Starting with a short introduction into thé boundary layer cencept, this
section gives a brief description of all wviscous regions enccﬁntered in the
present analysis, and outlines the gengral calculation procedure.

Having obtained the viscous flow parameters ways must be found to
include these parameters in the flow model. This is known as the viscqus
flow repreéentation. Ways for representing viscosity are described at the

end of the section.

4.2 GENESIS OF THE BOUNDA%Y LAYER CONCEPT

The equations of motion of a viscous fluid were established in the
first half of the last century by Navier (1832), Poisson (1831), Saint Vencent
(1843) énd Stokes (1845) having attained the form that is now called the
Navier-Stokes equations.

Attémpts to obtain exact solutions to these equations, however have
failed apart from a small ﬁumber of special cases where the non-linear
terms were either negligibly small or identically vanishing. This having
not been the case in thg majority of the problems met. in practice, it was
necessary to introduce soﬁe approximations for solutions. The simplest was

of course to neglect the viscosity of the fluid, but this brought about
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nothiﬁg but the 4'Alembert paradox, according'to which a solid body of any
shape placed in a uniform.stream experiences no resistance.

As a second approximation the non-~linear terms of the equations were
ignored. This assumpticn is only true for slow motion, however it was hoped
that for faster motions the solutions might give a better representation of
the flow than those obtained by neglecting viscosity.. Indeed drag was
predicted this time but its magnitudé was rather too small,

In the paper of 1905, Prandtl started from the clear recognition that
tﬁe most important consideration for fluidé of small vi;cosity is the
behavicur of the fluid at the wall of the solid boundary. He suggésted that
the variation of velocity from the wvalue corresponding to irrotatiocnal
motion to the zero velocity demanded by the condition of no slip at the wall
takes place within a thin layexr adjacent to the wall. This layer was called
by Prandtl tfansitiOn layer oxr boundary layer. The smaller the viscosity
the thinner is the transition layer. Inspite however of the small viscosity,
the steep velocity gradient, produces marked effects which are comparable in
magnitude to those due to inertia force,

The small thickness of the boundary layer allows the foliowing
approximations to be made:’

1. The variation of pressure normal to the wall is negligibly

small, and the variation of velocity along the wall is much
smaller than its variation normal to it,
2. Por two dimensional flows the effect of moderate curvature of
the wall is negligibly small so that x and y may be taken as
the distances along and normal to the wall, respectively and u
and v as the corfespohding velocity components. *

The-x-component of the Navier-Stokes .equations is then simplified to

the form
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du qu  3du 1 3p a u
el VI I =y —
5t T Uy f 5y T p ox v—5 (4.1)
- . oy
where :
.t = time p = density
p = pressure - v = kinematic viscosity

The pressure p is regarded as é function of x and t and prescribed
by the irrotationél motion {potential flow)} outside the boundary layer.

The equation above is parabolic, although the original Navier—St;kes equations
are elliptic., Thus it can be integrated step by step in.the direction of x
when u is known at a fixed valﬁe of x foi all values of y and t, the upstreanm
influence being suppressed to the order of approximation.

From a number of investigations carried out P;andtl showed that in
certain cases, the flow separates from the surface.at a point entirely
determined by external conditions, it was explained that this was due to
the increase in pressure in the streamwise direction.

Prandtl's model of the viscous flow has proved to be a very useful one.
A greater number of boundary layer methﬁdﬁuhave evolved from Prandtl's
concept (see Ref. 114). Most of these methods are concerned with the

calculation of laminar and turbulent boundary layers.

4.3 VISCOUS FLOW MODEL

The viscous flow model used here is divided into the following main
regions: |

1.‘ Laminar boundary layer

2. Boundary layer transition

3. Short bubble flow

4, Turbulent boundary layer

5. Wake viscous flow

6. Confluent boundary layer.
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Figure 4.1 shows all viscous flow regions involved in the model
together.with the methods used for their analysis.

A laminar bound;ry-layer is assumed to exist on the upper and lower
surface of each aerofoil component. At some stage the laminar boundary
layer becomes unstable and underxgoes a transition phése before the flow
5ecomes turbulent. Transition may take place‘over a éhort bubble whose
behaviour plays a vital part in the overall flow behaviour. The method
used for the calculation of the above viscous regions are based on the

following equations

Ju u dau 3T
u— v = U o (—

ax oy dx ay(p) ) (4.2)
su . v _ '

ax Tay - °

and on a number of experimental results.

The viscous flow in the wake behind thé aerofoil is calculated
using Green's lag entrainment method.

The effects of viscosity are more complex and stronger on multiple
éerofoils, in particular,. when the wake of the main aercfoil mixes in
with the boundary layer along the flap. In such cases methods for
calculating the development of ordinary boundary layers cannot be applied
directly and must be extended to cover these more complex flows (653).
Consequently, the available methods are even more tentative. Of these,
only some that have proved useful are mentioned: Foster (38), Foster and
Irwin (39), Coradia (109}.

Boundary layer and wake surveys indicate that, in the configuraticn
shown in Figure 4.2b, there is.a stream of clean air flowing through the
slot with full total head (core region), and the boundary layer on the flap
only just merges with the-ﬁake from thé main aerofeil. If the gap is
wider, the lift drops, following the trend in inviscid flow, which is

reinforced by viscous losses on the flap itself (65). If the gap is smaller,

'-
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the viscous layers merge and this reduces the effectiveness of the slot and
leads to a substantial losé of lift.

More details about the individual viscous flow regions could be fouﬁd
in the appropriate sections of this work, where methods for the calculation

of the particular region are also described.

4.4 VISCOUS FLOW REPRESENTATION

The boundary layer causes the irrotational flow outside it to be that
about not the solid‘surface itself, but a éurface disPl;ceq into the fluid
through a distance §*, the 'aisplacement thickness' of the léyer.

Let x be the distance along the surface in consideration (e.g. aerofoil)
and y the distance measured nor;al to the sufrace, let u and v be the
éorresponding velocities and U thé value of u just outside the boundary
layer. The difference (U-u} represents the reduction in flow velocity due
to the presence of rotational flow iA the boundary layer. The total
reduction in volume flow per unit span is:

IN(UQu)dY
0

Now between the surface and any stream line just outside the boundary
layer, there mugt be a constant volume flow per unit span. This will be so
if the flow reduction inside the layer is compensated for by an outward
displacément of such a stream line through a distance §* (which produces
a flow increase U§*, since the.velocity is U in the region of stream line
displacement), provided that,

: '
5% = %Jo (U-u) ay (4.3)

This displacement of the irrotational flow streamlines implies

that they can be regarded as streamlines of the irrotational flow around

a surface displaced into the f£fluid through a distance §*.
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A similar argument may be used for the wake behind the aerofoil, In

§* = %-Jm(u-u)dy

—C

this case:

Computationally however it is not very efficient to simply add &*
to the y-coordinates of the aexrofoil or wake; This is because the
influence coefficients of the aerofoil and wake will have to be re-
calculated. Instead other ways for taking into account the displacement
thickness are used., (Ref. 67,68).

The most commonly used method represents the effect of the boundary
layer by means of an equivalent surface distribﬁtion of sou?ces whose
strength is defined by

G = 'dix E(U-u)dy = Ei-—(us*) {4.4)
{see Appendix 10).

A method similar to the one just described, but which approaches
more directly the problem of finding a surface y¥6*(x), the irrotational
flow about which is the same as the flow outside the given boundary layex,
is the 'velocity comparison' methed. This method is used in the present

‘mathematical model.
‘As shown in Appendix ]0, there is at the edge of the boundary layer

a normal velocity condition imposed on the outer inviscid flow of:

v = 1 d(pud*)
o] dx
which for incompressible flow is
_ @(ud*)
V=3 {4.5)

Lighthill (67) describes another method where the problem is
that of finding the flow induced in the presence of the body by'a given

distribution of vorticity. This is the mean velocity method.
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4.5 AERQFOIL SURFACE VELOCITY EQUATIONS

Having calculated the‘normal velocity v=VN, equation (3.12) is solved
with this prescribed normal velocity. Finally consistent with integral
-boundéry layer theory the normal velocity is considered small in relation
to the tangential wvelocity and so the latter 'is taken- as the complete

solution (25). | ' ' .
=03 + [y (4.6)

][ sin-0)] + [V cos(e-a)]

B 95
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a. Flow without potential core

b. Flow with potential core

" FIGURE 4.2 Attached Flow Models
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LAMINAR BOUNDARY LAYER

5.1 INTRODUCTION

Two methods for predicting the incompressible laminar boundary layer

parameters will be outlined briefly. Both methods are.of the integral

type.

5.2 THWAITES METHCD

Thwaites method (Ref. 117) is universally accepted as one of the ..
better of the existing calculation methods.
" Starting with Prandtl's equation of motion of steady two dimensional

boundary layer flow

. 2
NP AP CL AN A (5.1)
ox ox ax 3y2

and integrating between y=0 and y=« using

u
* = - —
8 (1 U)dy

o_ 3

’ u u

B = Jm E(l - Eﬁdy

O
H = &*/8
and the continuity equation

Ju , v '
_—t—— = 0 5.2
Ix 3y ¢ )

the integral momentum equation is obtained

6 _ o (gepy@U 8, v du
= = (H+2)de_+'UZ(ay)y=0 (5.3)

Setting y=0 in equation 5.1 gives

2
Uy y vy o (5.4)
. dx 3y2 y=0 :
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The essential features of equations (5.,3) and (5.4) are the two terms:

-(ay y=0 and

From equation (5.4)

, 2

dax 3y y=0

du, 2 u
55 ( 2)y=0

(5.5)

Therefore in order to integrate (5.3) a relation between (au/ay)yzo

2 2
and (3 u/8y )y=o is required. For if some such relation is assumed

{e.g. by the use of a family of velocity distributions), then (8u/3y)y=O

is known as a function of x since the value of (Bzu/ayz)yzo is known

from (5.5).

The two derivatives of u with respect to y indicate the behaviour of

the velocity distribution at the boundary.

Its general 'shape' elsewhere

is indicated by the value of the shape parameter u, which also occurs in

the momentum equation.

Equation (5.3), therefore, is not only concerned with boundary values,

but relates these with the velocity distribution as a whole.

For this

reason the momentum equation is capable of giving good results. Thus a

2
relation between H and (3 u/ayz)y=0 is also required,

Defining two parameters m and £ as:

m = Q_{Q_E. = 9
= oo =7
U 3y y=0 v
. 8.2u
L= u(ay)y=o

0 du 0 vi
— + — — o —
= (H 2)dx Ut o

_ 80  vim

0=V 52

(5.6)

- (5.7)

Taking € as the principal dependent variable and assuming that H

and § are only functions of m Thwaites obtained the.following equations:
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e2

d[t::
="
|

= L{m) | ‘
} 5.0

L(m} = 2((H(m)+2)m+2m)
The assumptions, giving 5.8, are based on a critical examination
of known solutions to the laminar boundary layer problem.
Thwaites has simplified the above eguations even further by taking
L{m) = 0.45 + 6m .
without seriously affecting the accuracy of the solution.

Thus the final set of equaticns required for the analysis of the

laminar boundary layer is

_ i . |
62 0.45 U 6v J Usdx \

o]
_ v o?
n dx v
(g}_{) _u o) i (5.9)
y y=0 8
) §* = 0H(m) : o
with #(m) ,H{m) and L{m) given in Table 5.1 (ref. 117).
At any point of the system under consideratiqn U, du/dx and x are
available so that 6§ can be found from (5.9). Once 6 is known m'(%§0y=0

and §* follow from (5.9) and Table 5.1.

The parameter m is known as the pressure gradient parameter and if
negative the pressure is decreasing.(i.e. favourable pressure gradient).
Positive values of m refer to adverse pressure gradient (i.e. increaéing
pressure with x}. If the vaiue of m becomes greater or equal to 0,082

laminar separation takes place.

5.3 CURLE'S METHOD

In this method the non-dimensional parameters H, % and L are assumed

to depend on two parameters namely:
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_dug”
A ax v
and o ' ' 12 “ . {5.10)
="
(w?
Thus
L = FO(J\)-u_GO(A)
2 (5.11)
L = Fl(h)-uGl(l)
Careful examination of the available range of exact solutions of
the boundary layer equations has enabled the four functions FO'GO'Fl'Gl

to be tabulated and the above functional Forms agree with the exact

solutions to a remarkable accuracy (Ref.28),.

5.3.1 Egquations
The full set of equations necessary for the calculation of the laminar

boundary layer is:
X

6% = 0.45 v ® J (1+2.22g)u5dx (5.12)
O .
’ 2 2 n
A=g-x‘l%—, u=’“’“2 : (5.13)
. _ .
g = FO(A)—O.45+61-uGO(A) ' . (5.14)
L = FO(A)-uGO(A) = 0.45-6A+g - (5.15)
2 o
L = Fl(x)-pGl(J\) s (5.16)
- L-29, ,
H_— ~{2 + 2 ) (5.17)
&% = Hp ' o (5.18)
L . .
T = o - (5.19)

5.3.2 Calculation Procedure

The method of completing a calculation of the usual boundary layer
characteristics is as follows.
Firstly the value of 0 at station x is found from (5.12) with g=0.

Once again it is assumed that U and its derivatives are known at x.
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From the value of 0,U,U' and U" the values of A and § can be cbtained.
Table 5,2 is used at this stage to find Fo(h) and Go(l). Equation (5.14)
gives a new estimaée for g and the calculation is repeated until 8 has
converged to the required decimal figure. When the final value of 6 has
been found together with ﬁhe final values éf A and i at station %, FO,Fl,
G0 and Gl are found from Table 5.2. The caiculatioﬁ proceeds by finding
L,%,H,8* and T, from the equations above.

The above procedure is repeated at each station x until laminar

separation or transition is predicted.

5.3.3 ZLaminar Separation

At sgparation
Fl(l)-uGl(l) =0 | - (5.20)
which yields a relationship between X and u at separation which supercedes
Thwaltes separation criterion (A=-0,082).
Generally speaking Curle'’s method is a refinement of that due to
Thwaites. Reference 28 'indicates that the errors of this method are only

5% of those given by Thwaites method (see Tables 5.3 and 5.4).
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m ey  H(m L

+0.082 0 3.70 : 0.938
+0.0818 0.011 . . '3.69 0953
+0.0816 0016 3.66 0.956
+0.0812 0.024 3.63 - 0962
+00808 - 0.030 - 3.61 0.967
+0.0804 0.035 '3.59 ' " 0969
40.080 . 0.039 . 3.58 0971
+0.079 0.049 3.52 0570
+0078 0.055 3.47 g 0.963
+0.076 0.067 . 338 . 0.952
" 4+0.074 0076 - 330 i 0.936
+0.072 0.083 , 3.23 0919
+0.070 0.089 . 317 0.902
+0.068 0.094 i 313 - 0.886
+0.064 0.104 3.05 j 0.854
+0.060 . 0.113 2.99 0.825
4-0.056 0122 2.94 _ 0.797
+0.052° 0.130° ) 2.90 ' 0.770
+0.048 10.138 2.87 ' 0.744
+0.040 0153 . . ©281 0.691
+0.032 _ 0.168 ' 2.75 , 0.640
+0024 0.182 2.71 0.590
+0.016 _ 0195 . . 267 . 0539
+0.008 . 0.208 | 2.64 0.490
0 - 0220 - . 2.61 : 0.440
~-0.016 © 0244 2.55 0.342
-0.032 0268 , 249 o 0.249
-0.048 0291 - 244 0156
-0.064 0313 - 239 0.064
—0.080 0.333 2.34 -0.028
=010 . . 0359 - 2.28 -0.138
-0.12 0.382 223 - . =0251
-0.14 o 0404 218 —0.362
-0.20 0463 2.07 * -0.702
-025 0.500 2.00 ' . —1,000
‘e TABLE 5.1
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TABLE 5,2

The Unlversal Functions

A Fa Ga Fo—0-45+6A Fy Gy Gy
00855 4] 09165 0-0630 0-1296 02626
0-08 00258 090 Q0558 0-1236 0-2535
0-07 0736 087 0-0436 01128 02378
006 01225 0-84 0-0325 . 0-1025 (2228
05 01724 081 0-0224 00925 02087
0-04 02238 078 00136 0-0830 0-1953
003 02761 075 0-0061 00738 1827
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BOUNDARY LAYER TRANSITION

6.1 INTRODUCTION

The problem of transition froﬁ laminar to turbﬁlent flow in the
boundary layer is unparalleled in having attracted the interest of
investigators for so many years. Despite the enormous.amount of research
effort devoted to it, our understanding of the pfoblem is far from complete,
Tani (Ref. 113) and Reshotko (Ref. 92,93) give a detailed description of
the phenomenon based on our present knowledge of it.

Predicting the onset of transition is a very difficult task since a
sound knowledge of the individual effects of all factors affecting transition
is required. Such important factors are: Pressure gradient, suface
curvature, free stream turbulence and surface-roughness (Ref., 113).

It was early hypothesized by Reynolds that transition is a consequence
of instability of the laminar flow. This hypothesis was further developed
by Rayleigh (Ref. 100) .and to this day remains most highly regarded. For
the purpose of predicting the onset of transition a number of simple
semiempirical methods have been developed {e.g. Ref. 22,55). :

Three such methods have been chosen, on the basis of simpliéity,
accuracy and computational efficiency, for the present mathematical model..

These methods are briefly outlined in this section.

6.2 CRABTREE CRITERION

An emplrical criterion for transition is obtained by plotting the
boundary layer Reynolds number based on momentum thickness (Re) against the

.pressﬁre gradient parameter {(m).

. -
.
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By calculating Re and m at the observed transition position on various
aerofoil sections Crabtree (Ref. 22) obtained a universal curve (Figure 6.1).

To use this c;rve for predicting the transition position (more strictly
the limit of existence of the laminar layer) it is only necessary to
calculate the boundary laygr development aﬁd to plot Re and m on (Figure 6.1).
The intersection with the universal curve gives the—estimated transition
conditions.

From (Figure 6;1) it can be seen that the curve is not very well
established in the region where m<0.04 due to thé scarcity of experimental
points in regions of low pressure graéients. In any case the acchracy is
expected to be highest where m>0.04 for then Aue to the steep adverse
pressure gradients the value of m changes quite rapidly with distance

along the surface.

6.3 MICHEL'S METHOD

A method proposed by Michel {Ref. 77 ) depends on a universal curve of
Re at transition against RS at transition where s is distance measured along

the aerofoil surface. The calculated curve of RG versus Rs for a given
case then intersects the-universal curve at the predicted transition point,
Michel's method gives good results in two dimensional cases provided the

velocity distribution is similar to one or more of those used in

constructing the universal curve (Figure 6.2).

6.4 GRANVILIE'S METHOD

In Granville's method it is first necessary to determine the limit

of stability from the universal curve of Ré versus m. A process of

iteration using a curve of average Re against average m over the unstable

region then yilelds the transition position.
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'6.4.1 Instability Prediction

As mentioned above £he first step in the calculation is to locate
the point of laminar instability. Schiichting (Ref. 100) has solved the
Orr-Somerfeld equation assuming Polhausen laminar velocity profiles. The
results of this linearized stability are presented in (Figure 6.3).

Using the following equation to approximate thé curve the'value of

(Re )crit can be calculated for each value of the pressure parameter.

0
Instability is predicted if the local value of Re is greater than the
corresponding critical value. °
{R_) = exp(5.46963+43.37458k+218.28k2-1934.6k

ee crit

3_23080k%)

for -0.1567gk£0.0767 (6.1)

6.4.2 Transition Prediction

Once the instability point has been located the search for the

transition point begins. Granvillé (Ref.109 ) correlated

= - .2
A(Ree)tran (Ree)tran (Ree)inst (6.2)
against the average pressure gradient parameter k ‘which is equal to
— i (s
k = 'S—_s'——- J k ds {(6.3)
inst .

‘ sinst
The symbols in (Figure 6.4) represent the correlation of experimenta
data by Granville, Goradia {Ref. B) has approximated this curve by

the following equation

AR ) = 825.45+28183,5K4721988% 24+6317380K"
ee tran
~0.05gk<0.0767 (6.4)
Transition is saild to have occured if
ARée = (Ree)loc - (Ree)inst 3 A(Ree)tran : (6.3)
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SHORT BUBBLE ANALYSIS

7.1 INTRODUCTION

The laminar boundary layer over the nose of a thin aerofoil at high
incidence fails to rémain attached to the upper surface in the region of high
adverse pressure gradient that occurs just downstream of the suction peak.

The separated shear layer which is formed may curve back to the aerofoil
surface to form a shallow region of reverse flow knewn ag a separation bubble.
The fluid is static in the forward region of the bubble and a constant
Pressure region results, At high Regnolds numbers the extent of such a bubble
is véry small of the order of 1 per cent chord (Ref. 41), and the slight step
in the pressure distriﬁution produced by the dead air region has a negligible
effect on the forces acting on the aerofoil. However with a change in incidence
or speed the shear layer may fail to reattach and the 'short bubble' may
'burst' to form either a 'long bubble', or an unattached, free shear layer.
This change in mode of reattachment can occur gradually or quite sharply,
depending on theltype of aerofoll. The pressure distribution associated

with a long bubble is quite d;fferent from that of inviscid flow (Figure 7.1)
and the forces acting on the aerofoil are therefore modified, sometimes gquite
drastically, by the change in mode of reattachment. In particular, bubble
bursting creates an increase iﬁ drag and an undesirable change in pitching
moment. If a very large bubble is formed on bursting, or if the shear layer
fails to reattach, there is also an appreciable fall in lift. (thin aerofoil
stall). Thus short bubble fixes the maximum angle of attack possible fof én
aerofoil section for any giveq condition of Reynolds number and free-stréam

turbulence. It would be of obvicus benefit to be able to predict the

-
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development and bursting conditions of these separation bubbles, especially
for the new series of aerofoils becoming available for general aviation

application.

7.2 SHORT BUBBLE MODEL

The flow in the bubble region resembles a boundary layer in the sense
that viscous effects are confined to a thin layer of fluid adjacent to a
surface in motion relative to a free stream which regarded as inviscid.
However the viscous layer is not a boundary layer in the usual sense because,
in the problem considered, . the boundary-layer equations do not properly
describe the separated portion of the viscous layer. (Ref. 6).

From a number of experimental inyestigations made by Gaster (Ref. 41)
and 6thers into the structure and behaviour of laminar separation bubbles
Horton (kRef. 53) has de&elOPed a simple model (Figure 7.2) for the prediction
of bubble growth and bursting. This model will be described briefly in this
section.

The essential features of a laminar separation bubble are illustrated

in Diagram 7.1.

FREE STREAN

FUM’//"

-

DIAGRAM 7.1: Section view of a two-~dimensional short laminar
separation bubble, z scale greatly exaggerated
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The laminar boundary layer separates from the surface at S to reattach
downstream at the point ﬁ. ‘Between ﬁhe points S and R the flow may be divided
into two main fegions: |

1. the free shear layer cont;ined between the outer edge S"T"R"

of the viscous region and the mean dividing streamline ST'R, and
2. the recirclation bubble contéined between the mean dividing

streamline and the aerofoil surface STR.

These two regions may then be further subdivided int; parts upstream
and downstream of the transition point T. Upstream of T, the free shear
layer is laminar and is incapable of doing any significant diffusion;
because weak viscous shear stresses operate in this region. Figure 7.1 a,b
and ¢ indicate that the surface velocity is practically constant between
separation and transition. This constant pressure 'plateau' is a general
feature of the laminar part of the separated.flow.

" Having described the main features of the bubble the equations for the
calculation of its parameters are now listed below. The parameters involved
are:

1. Bubble laminar length

2. Bubble turbulent length

3. Momentum thickness at reattachment

4., Shape factor at reattachment

5. " Reattachment velocity

6. Bubble bursting length.

7.2.1 Laminar Part of Shear Layer

In this part of the bubble skin friction is exceedingly small and since
the velocity is constant d0/dx is zero (Ref. 53). Thus from the boundary

layer momentum equation BTFBS. The laminar length (21) of the bubble is given

by
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. = 8 4x10
1 s R,
eS
BSU (7.1)
Re )
BS ‘
Roberts (96) suggests that a better estimation of 21 is given by
4
21 = BS(Z.SX10 -1oglo(coﬁh(TFX10))/Ree ) (7.2)
S

where TF is Taylor's turbulence factor defined by
TF = Tu'(C/LS)l/5
and BS is the momentum thickness at the point of separation of the laminar

boundary layer.

7.2,2 Turbulent Part of Shear Layer

The turbulent length (22) of the bubble and the velocity (UR) at the

point of reattachment are found from

—4 ' - =
up = (Cy /4H + (ITUR/£2)/(Cd /4HB -A) (7.3).
m m m m
where g . w
U, = 6.*3. = I_JE (7.4)
T [
£, = == {7.5)
eS
= fdy, _ _
Ar (U dx)R 0.0082 . {7.6)
Cd = 00,0182 (7.7)
m
= £ _
B, =g=15 : (7.8)
m
H = §*/0 c _ (7.9)
1 a 22(1-U ) '
ey 3
%= 8% (63 T P (7.10)
R R R

A full derivation of the above equations can be found in Reference 53.

A graphical solution of equation 7.3 is shown in Diagram 7.2.

75



PRESCRIBED VELOCITY ) ‘
DISIRIEUTION !

- L]
U =l ug= 15 $ - SEPARATION
i T - TRANSITION
R - REATIACHENT
R* - THEORETICALLY POSSISLE
’ BUT PHYSICALLY LUREALISTIC
POINT OF REATTACHMENT .

PREDICTED PERTURBED
VELOCITY DISTRIBUTIOHS

\
\ . LOCT 9F POSSIBLE
A(’ PoLATS OF

\ REATIACKRENT

0.9—

=t

DIAGRAM 7.2: Example of graphlcal prediction of bubble growth
and bursting.

7.2.3 Bubble Length at Bursting

The total length of the bubble (Figure 7.2) is given by

2= 8, * 2, : (7.11)

Using the non-dimensicnal length (2) defined as L/BS equation (7.11) can

be written as

L= 'E.'L + 22 : ‘ (7.12)

At bursting the non-dimensional length of the bubble may be
approximated (for linear inviscid velocity distributicns Ref- . 53) by
the curve, '
| % = 6x104/Re : - (7.13)

%
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‘7.3 METHOD OF SOLUTION

Using the value of'moﬁentum thickness (BS) at separation the laminar
length of the bubble is calculated first from equation 7.12 taking TF=0.0l
{Ref. 96). Equation 7.3 is then éolved iteratively to f£ind 22 and Eﬁ.

If no realistic solution to equation 7.3 is found then the bubble is said
to have burst and its length at bursting is found from equation (7.13).
‘If a solution exists then the momentum thickness BR at reattachment

is calculated next from equation (7.10) and is used as the initial value

for the turbulent boundary layer analysis.

The method just described is based on Horton's éhort bubble model.
The model is simple and easy to apply,however,since it is based on limited
experimental results it has its limitations. Attempts to solve the bubble
problem using the Navier-Stokes equations have beén made {e.g. Ref, 6} but
in such cases the bubble model is much more complek and becomes difficult
to gpply.

It can be argued that a bubble calculation may not be necessary
since for short bubbles it is only required to know whether the bubble has
burst. Thus only a criterion for short bubble bursting is required. If
such an approach is used,lhowever, it becomes difficult to estimate the
extra thickening of the boundary layer due to the presence of the bubble.
Thus a full bubble analysis is used in the present mathematical model of
the viscous flow round an aerofoil.

Long bubble analysis'is beyond the scope of the present work and the

reader is referred to (e64)

I
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TURBULENT BOUNDARY LAYER

8.1 INTRODUCTION

The analysis of the turbulent b&undary layer is based on integral
methods, meaning that a system of ordinary differential equations derived
from integral equations is employed.

The methods applied here make use of the momentum integral equation,
which is usually'regarded as the ordinary differential equation for 6,
together with an entraimment function.

A brief description of the methods is given in this section, and ways

for predicting turbulent separation are discussed.

8.2 HEAD'S ENTRAINMENT METHCD

Head's turbulent boundary layer method (Ref. 44,48) is an incompressible

integral method based on the following two equations

C
g_i- = TF - %g—g (H+2) - (B.1)
¢ =+ 2 == Lu-s%) = Fm) - (8.2)

Equation (8.1) is the momentum inteéral equation while equation

{8.2) 1s the non-dimensional entrainment rate. The rate of entrainment

a9

™ of fluid into the boundafy layer is given by
g, | (8.3)
ax "~ ax Y :

It .is assumed that the turbulent boundary layer grows by a process
of 'entrainment' of non-turbulent fluid at the outer edge of the layer

into the turbulent region.
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8.2.1 Eqguations
The following equations are required together with the momentum integral

equation to calculate the wvalues of H,CF.and 6.

= - s’ g & Benrse] | )

F = F(H) = 0.025H-0.022

¢, = 0.246 exp(-l.561H)R;o'268 [ . (8.4
8 - }

"8.2.2 Method of Calculation

Starting with the values of 6 and H at transition or at the po.int of

reattachment, in the case of a short bubble, a step by step approach is used _

+ .

as described below:

X | ™ xHx

- Ax/2 -

(2 At -}
DIAGRAM 8.1

Pl

Assuming that 0 and H are known at station x the values of © and H
will be calculated at station x+Ax. tDiagram 8.1). 1t is also assumed
that U and :x—u are known at x and x+Ax.

Firstly R, is calculated, then the skin friction coefficient and

0
X

the entrainment F are found at station x. Thus gi{— and gx—e are obtained at

station x.

The value of 6 and H at point M can now be found from

L db Ax
eX%ﬁ&xfi__ex + (a;ox -5 ga‘s)
Hxi:A;s/Z =T &2 o
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The values of R , C_, and F, gg-and EE-are calculated at x+é§-as above.
eg F dx dx 2
Finally using the new values of g% and gg-the values of H and 0 at x+Ax are
obtained from an
. = + {(— .
e:-: +AX ex (dx) x-i-——A; bx _
' {8.6)
dd
= + fi— .
HX+lb< Hx (dx)x %? Ax

Head's assumption that the entrainment is uniquelf related to the
boundary—layer form parameter H is rather a simplified one {(Ref. 49) and
it is perhaps suprising that it gives satisfactory resulté in quite a wide
range of cases. The method however tends to fall down in cases of

i. Equilibrium flows,-and

2, Flows where a strong pressure gradiént is followed by a region

of zero pressure gradient.
One of the main advantages of the method is its simplicity, thus it was

used initially for the calculation of the turbulent boundary layer.

8.3 THE METHOD OF HEAD AND PATEL

This method (Ref, 49) still makes use of the entrainment idea, and its
development has been based on the previous method.

Established relationships have been considered in order to:determine
the value of the entrainmment coefficlent for equilibrium layers,.and the
entrainment coefficient for non-equilibrium conditions is obtained by
multiplying the corresponding equilibrium wvalue (CE ) by a suitable

eq .

empirical function, thus

Cg = CE ® F(rl) | (8.7}
eq

This increases the entraimment when the rate of growth of the layer
is less than that of the corresponding equilibrium layer, and decreases
it, when the rate of growth is greater. This variation of entrainment

is in accordance with observation from experiments.
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8.3.1 Equations

The equations required for the calculation of the turbulent boundary

layer are: ¢ ) _
1de) _F _ 8 du
v ax -z - Wy i (8.8)
Cp = exp (aH+b) (8.9)
where 9 . 3 '
a = 0.019521-0,386786C+0.028345C ~0.0007010C
b = 0.191511-0.834891C+0.062588C2~0.001953C"
C = loge Re6
au* _ H* |1 d(u8) _
ax [u dx_] (F(xy)-z)) . (8.10)
eq
C - .
1 d(ue) . F H+1
[a & =72 [“T" . (8.11)
ed .
1k |
T = [G.IJ - 1.81 (8.12)
c = H-1 (i);: (8.13)
H ¢ : :
F
_Llagwe) , [iawe | ,
e [U dx] | 8.14)
_ 1
F{rl) = 2rl—l for rlal {8.15)
5--4r1
F(rl) = 3-2r1 for rl<l | {8.16)

L]

8.3.2 Method of Calculation

It is assumed that U and gg-are known at all points on the aerofoil

where 6§ and H are required. Thgn using the initial values of § and H the
calculation proceeds as follows.

The value of Ré and therefore I’,nRe is found at x (Diagram 8.2);
o _ 6
using Table 8.1., and the values of H and logeRe a value of H* is obtained
- . e N

at x.

The skin friction coefficient cF is found next and the value of

I%_dégﬂ{]eq is calculated from equation (8.11) using equations (8.12) and (8.13}.

(=7

*
»
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> N x+Ax
Aﬁ/z
s -
DIAGRAM 8.2
. 1 d4d(usg) : " .
The value of T Tax at x is obtained from equation (8.8) thus r, and therefore
*®
F{rl) can be found. Finally from equation (8,10) %g— can be calculated.
Applying equation (8.5) and (8.6)
an* Ax
H* =H + (—) .=
« Ax X dx 'x 2
2
Similarly for (UB) Ax ° Then using Table 8.1 once nmore the value of
x2
H at x#gg-is found. The calculation is repeated to £ind the values of H,

2
and CF at x#Ax.

8.4 INITIAL VALUES

The turbulent analysis is started assuming the value of the momentun
thickness at the last laminar point is equal to the momentum thickness at
the transition point. Thus‘a plot of 8§ will be smooth through transition
while H'CF' and § * will show a certain d;scontinuity as they go through

transition.

The initial value of the turbulent shape factor is calculated using

the expression (Ref. 8):
_1.4754

= 1°glOR + 0.9698 . : {(8.17)

%

If a short bubble analysis has preceeded the turbulent boundary
layer analysis, the values of 6 and H at the point of reattachment are

-

used.
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8.5 TURBULENT BOUNDARY LAYER SEPARATION

There exists a large number of methods of varying complexity and accuracy
for predicting.turbulent separation, (Ref. 12,97,111},

The aim of this work is to find a criterion which is simple to use and
which predicts the point of separation with the reliability and accuracy

needed for aerodynamic design purposes,

8.5.1 Head's Criterion

This method (Ref.12), like most integral methods, uses the shape factor
H as the criterion for separation., Although it is not possible to g}ve an
exact value of H corresponding to separation, when H is between 1.8 and 2.4
separation is assumed to exist. The difference between the lower and upper
limits of H makes very little difference in locating the separation point,

" since close to separation the shape factor ircreases quickly.

8.5.2 Epplers Method

~ *k

In this case the shape factor H = 5

predicts separation if H goes below 1.46. However if H remains above 1.58

is employved. The method (Ref.34)

no separation takes place.

-

A simple relation (Ref.109) is used to relate H to the normal shape

factor H. L g _ 1.269H

H= =5 =850.379 (8.18)

The above expression is deduced from experimental results.,
Reference 8 indicates that for attached flow the shape factor H

should be constrained to the range

1.55 < ¥ <1.85.
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8.6 CONCLUDING REMARKS

The turbulent boundary layer methods used are simple and easy to
programme and test, In view of the limited time availabhle and the
complexity of the overall model no attempt was made to programme any of the
more complex methods available such as those of: Nash and Hicks (82),
Nash and McDonald (83), McDonald and Stoddart (75), ete. However_if>required
fhese methods can éasily be put into the program.

Figures 8.1 to 8.4 give an idea of the accuracy to be expected from the

method of Head and Patel.
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TABLE 8.1

H(H', R}
25 < logyo Re < 32

Log,o R; | 2500 2-600 2:700 2:800 2900 3-000 3-100 3-200
H :

3-600 0 0 0 0 0 ] 0 ¢
3650 0 0 0 0 0 0 0 .0
3700 0 0 0 0 ] 0 0 0
3-750 0 0 0 0 0 0 0 0
3-800 0 0 0 0 0 0 0 0
3-850 0 0 0 0 0 0 2:795 2-635
3600 (1} 0 0 0 2-800 2:640 2:545 2:460
3-950 0 0 2-800 2:620 2:515 2:450 2-380 2:330
4-000 0 2:655 2540 2450 2:375 2320 2:270 2:235
4100 2:500 2:400 2:330 2-280 2:230 2:180 2:115 2:085
4200 2:340 2275 2:220 2:170 2:125 2:090 2055 2025
4-300 2:260 2:195 2:135 2:090 2:050 2020 1985 1-955
4-400 2-185 2130 2:085 2040 2:005 1965 1940 1915
4-600 2:085 2030 1985 1-950 1-915 1880 1855 1830
4-800 2010 1960 1910 1-880 1-845 1-810 1780 1-750
5000 1-960 1905 1-865 1-825 1795 1-765 1725 1-700
5-500 1-885 1795 1750 - 1715 1-675 1-650 14625 1:600
6-000 1840 1-735 "1695 1655 = 1625 1-590 1-565 1-540
6-500 1750 1700 1-655 1-620 1-585 1555 1525 1-495
7.000 1725 1670 1625 1:5%0 1555 1525 1490 1-470
8000 1675 1625 1-580 1-540 1.505 1-480 1455 1435
9000 14635 1-580 1535 1-495 1-460 1-435 1-405 1:385
1:000%1 | 1590 1535 1-485 1-450 14420 1395 1365 1-345
1100%1 | 1-545 1-485 1445 1-415 1-380 1355 1335 1320
12200*1 | 1-505 1-455 1415 1-385 1-355 1330 1-305 1285
3:300%1 | 1470 1-425 1-390 1-355 1-325 1-295 1:270 1250
1-400*1  |1-430 1390 1350 1:320 1-290 1-270 1:230
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TABLE 8.1 - continued

H(H', Ry)
33 < log,o Ry €40

Log,o Re| 3300 3-400 3-500 3600 3700 3800 3900 4-000
3600 0 0 0 0 0 0 0 0

3650 0 0 0 0 "0 0 0 0

3-700 0 0 0 0 0 0 2850 2605
3-750 0 0 2-835 2:680 2:5%0 2510 2450 2405
3-800 2795 2665 2-565 2480 2425 2:370 2330 2290
3850 2555 2-480 2-415 2:360 2:315 2265 2235 2:200
3900 2:395 2:340 2290 2250 2215 2185 2:150 2-120
3950 2290 2:250 2210 "2-180 2-145 2115 2090 2:070
4000 2:195 2:165 2:135 2105 2:085 2:060 2:045 2025
4100 2:060 2035 2015 1995 1975 1-955 1-940 1-910
4-200 2:000 1-975 1955 1935 1915 1-900 1-875 1-870
4-300 1-935 1615 1-890 1875 1-860 1-845 1-835 1-820
4-400 1-890 1865 1850 1830 1-815 1-80¢ 1-790 1-775
'4-600 1-805 1-785 1-765 1745 1-735 1-720 1-705 1-700
4800 1-725 1700 1-670 1660 1-650 1-635 1-630 1-620
5-000 1-675 16558 1-635 1-620 1-610 1-600 1-585 1-580
5-500 1:575 1-560 1-540 1-525 1-510 1-500 1-485 1-480
6000 1-520 1-500 1-480 1-465 1455 - 1-440 1-435 1-420
6-500 1-475 1-455 1-440 1-425 1415 1-405 1-395 1-385
7-000 1-445 1-430 1415 1-400 1-385 1375 1-370 1-360
8-000 1-415 1395 1380 1-365 1-350 1-340 1330 1-325
9-000 1-365 1-35¢ 1:340 1-325 1315 1-305 1295 1290
1-000*1 | 1-330 1-320 1-310 1295 1-285 1-280 1270 1-265
1-000*) | 1-305 1-290 1:280 1:270 1-260 1250 © 1245 1-240
1-200*1 | 1270 1-255 1245 1-235 1-230 1-225 1-220 1215
1-300*1 | 1235 1-220 1-210 1-205 1-195 1-190 1-190 1-185
1-400*1 } 1-215 1:205 11690 1:185 1-180 1-175 1-170 1-170
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TABLE 8,1 - continued

H(H', R,)
42 < log,o Ry < 54

4-600 4-300 5000

Log,s R¢| 4-200 4-400 5200 5400
HO

3600 0 0 0 ¢ 0 2764 2:640
3650 0 2:665 2:535 2455 2:405 2365 2330
3-700 2490 2415 2:350 2:305 2270 2:245 2230 .
3-750 2:330 2:270 2225 219 2170 2150 2140
3800 2230 2-180 2145 2:120 2095 2:080 2070
3-850 2:145 2110 2075 2:050 2035 2025 2015
3900 2075 2:040 2015 - 1995 1-980 1975 1970
3950 2:025 . 1995 1975 1955 1-845 1:935 1-930
4000 1985 7 1960 1-935 1920 1-505 1-895 1-8%0
4100 1-885 1-865 1-850 1:840 1-835 1-835 1-830
4200 1-850 1-830 1-815 1-805 1795 1-790 1-785
4-300 1-800 1-785 1775 1765 1760 - 1750 1-745
4-400 1760 1-745 1-730 1720 1715 1-710 1705
4-600 1-680 1-670 1-660 1-655 1-650 1-650 1-645
4-800 1-610 1-605 1-600 1-595 1-595 1-590 1-:390
5000 1565 1555 1-550 1-545 1-540 1-540 1-540
5-500 1-465 1-460 1-450 1-450 1-450 1-445 1-445
6-000 1-410 1-400 1-400 1-400 1-395 1-395 1-395
6:500 1-370 1-365 ©  1-360 1-355 1:355 1-355 1:355
7000 1-345 1335 1-330 1:325 1-325 1-320 1-320
8-000 1-310 1:305 1-300 1-295 1-290 1-285 1-285
9-000 1-280 1270 1-260 1-260 1-260 1-255 1-255
1-000*1 | 1250 1:245 1-240 1-235 1-230 1-230 1:230
1-100*1 | 1230 1:225 1-220 1-215 1215 1-215 1-215
1:2200%1 | 1210 1205 1205 1-200 1-195 1195 1-195
1-300*1 | 1185 1-185 1-185 1-185 1-185 1-180 1-180
1-400*1 | 11170 1170 1-170 1170 1-170 1-170 1-170
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WAKE ANALYSIS

9.1 INTRODUCTION

On a lifting wing the streamlines in the region of the trailing édge
must be inclined to the direction of the mainstream and thus the ;ake Will be
curved as it turns back into the mainstream direction. This curvature implies
that there is a circulation in the viscous wake, i.e., a vorticity component
across the mainstream, in addition to the streamwise vorticity component.,

This circulation must be taken into account in the calculation of lift. Since
it is umually negative the actual 1lift is less when the wake is included than
when it is ignored (65). :

The boundary layer air that is left behird the body in the form of a wake,
and the reduced momentum in the wake corresponds to a drag force on the body.
Thus inclusion of the wake effects in the calculation of the lift and drag.
forces is necessary. -

The wake analysis is divided into three main parts. The calculatibn'
begins by defining the initial-fosition of the wake singularity sheet. &
potential flow calculation Eollows. The aim of the analysis is to estimate
the effect of the wake on the aerofcil potential flow and vice wversa. A
viscous flow calculation of the wake region is carried out next. Finally

the wake is relaxed and the values of the wake singularities are calculated

for the next iteration.

9.2 PQOTENTIAL FLOW WAKE MODEL

The wake singularity sheet is that potential flow which is attached to

the average tralling edge boint of an aerofoil component. The singularity
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model of the aerofoil component is in fact extended onto the wake which can
be considered as two layers; one being the development of the upper surface
boundary layer and the other the development of the lower surface boundary
layer. (Figure 9.1).

As with the aerofoil the wake singularity sheet is divided into panels.
A continuous distribution of vortices ana sources is p}aced on each panel;
both varying linearly between corner peints and being continuous élong the
corner. Contrel points are chosen midway between the panel ends. 1In theory
the last segment of the wake must be semi-infinite to carry.the wake into the

far field.

9.3 WAKE SINGULARITY SHEET

Since the position of the wake singularity sheet is not known at the
start of the analysis, an initial approximate position has to be assumed.
This position is updated duiing each iteration through a wake relaxation.
The geometry of the wake singularity sheets for a two element aerofoil is
shown in Figure 9.2. The wake of the main component is assumed to be parallel
to the flap upper surface. The distance is
1

hslot + E-tTE

where the symbols hSlot and'tTE stand for the slot height at the upstream
slot exit and the trailing edge thickness of the upstream aerofoil,
respectively. The corner points (end points) of the wake panels are chosen
by shifﬁing the corresponding flap surface points along the surface normal.
The procedure gives a wake center}}ne @hich extends from the slot exit to the
trailing edge of the flap.

The initial position and the total length of the flap wake singularity
sheeﬁ are selected by extending the chord length of the flap by 100%. All

segments representing this-wake singularity sheet are of equal length.

The calculation of the initial wake geometry is fully described in

N
L]

Appendix 11,
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9.4 VELOCITY EQUATIONS

';'he normal and tangential velocity components induced at the control
point of each wake segment, due to the confribution of
| 1. BAerofeil singularities
2, Wake singulﬁrities
3. Free stream velocity
are calculated from the following set of equations (25)}. The equations are

given in matrix form

v = 2oy, ][] + z R NS AR R oA

N —[Vmsin(s-a)] - (9.1)

EHCA IR NS AERC I RN R

[v.)

- [V _cos(e-a) ] (9.2)

Nw = numbey of wakes

[YA] = 2% [GNAA] -1 ( [dgz *] N [vmsir} (6 ,-a) D
_ g:l(&sl] AR SR o
[Al] g = [ov AA] '_1 [em,, 15

) -1 (9.4)
[a,); = [oMya] "[omy);
The calculation of Yy and Yq is described in a later paragraph.
The mean wake velocity magnitude is
2 2 2 ‘
= +
Vm VN V‘I‘ _ (9.5)
The upper and lower wake velocities are given by (25}):
2 Yo.2 Vs 2
Vo= v =D (P
y y (9.6)
2 v, 2 s, 2

or within the assumption of the normal velocity contribution being small

in relation to the tangential velocity
' Y

. o e
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9.5 WAKE VISCOUS FLOW ANALYSIS

The viscous flow in the wake behind each aerofeoil component is calculated
using Green's lag entrainment method (Ref. 8,45).
The method is an integral method formulated in terms of the momentum

thickness 0, the shape factor H and the entrainment coefficient C_ where

E
6u u : '
0 = J -U—-(l - G—)dy . (9.8}
O w W _
' 8 u 7
H= — , §* = {1-—) dy . {(9.9)
8 U
o w
c. =X —d-(ru &) (9.10)
E U Q4 Yl .
. w x ‘0

8 is the distance from the wake singqularity sheet to the outer edge ;f
the wake, y is measured perpendicular to the wake singularity sheet and Uw
is the velocity at the wake outer edge (Figure 9;1).

Note that the method has to be applied twice at each point to give

the total thickness of the wake.

9.5.1 Equations
The following eguations are used for the calculation of the wake
viscous parameters on one side of the wake singularity sheet.

}. Momentum integral equaﬁion _
du

as _ _ b _w
= {(H+2) m T (9.11)
w
2. Entrainment equation
du
g 1 _dH 6 _w |
= § am (CE +H1(H+1) T o= ) {9.12)
- 1l w
3. Lag egquation
dac
E _F [2.8 L %
L —_— == ({c) -T(C)) +
ax o | B EQq
du du
] w 8 w
(U ax )EQ U ax ] {9.13)
w W

25



The lag equaticn is an empirical equation which takes into account the
influence of the upstream.flow.history on the turbulent stresses.

The various terms in the above three equations are given hy the following
empirical formulae (8):

§-6* 1.72

_ _ ) 2
By = = 3.15 + £37= - 0.0L(5-1) _ | (9.14)
2
6H _ _ {H-1)
an, ~ T 1.72¢0.02(8-1)3 , (9-15)
c = 0.024c. + 1.2C°
L E TR
I SR (9.16)
0.012+1.2C, | i
A = 0.5
au
8 D, _ .25 H-1 2
G & ’'mo - ® G.asm (9.17)
W o
o U \ ,
(c.) = -H (H+l) (— ——)._ , (9.18)
E'EQ, 1 U ax EQ -
2
(Chgy = 0.024(Cp)p, + 1.2(C ), (9.19)
0 0 0
{c) .
TEQ, L
(c.) = (———= 4+ 00,0001} - 0.0l {9.20)
E EQ 2
1-23
il fEEg - | (9.21)
u, dx EQ H) (H+1) .

'For the upper outer edge (25)

{see Section 9.4}.
The total displacement thickness of the wake is given by
6% = §* + §* o (9.22)
w u 2
In addition the distance from the wake singularity sheet to the
lower edge of the wake denoted by the symbol 62 is needed to predict the

~ end of the core region

= *® .
62 92(H1)1+6£ (9.23)
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9.5.2 Initial Conditions

-The initial values of 8 and H for the upper and lower parts of the wake
are provided by the corresponding parts éf the boundary layer, at the |
trailing edge of the aerofoil. An initial value of the entrainment
coefficient CE is assumed to be given by its equilibrium value (CE)EQ which
can be calculated using equations (9.14),(9.17),(9.185,(9.19} and (9.20)

together with the initial values of 9, H and Uw'

9.5.3 Calculation Procedure

The wake flow is calculated on both sides of the wake singularity sheet

ac
solving the equation for g%—, %g-and E}E'in marching fashion beginning at the

-

trailing edge of the upstream aerofoil. At each point of the wake centerline,

the wake parameters of both sides are calculated before the integration

@ a_ ¥
procedure advances to the next point, The values of = a;—and T at

station x are used to calculate 9,H and CE'at station x+Ax, using

_ 48, Ax
ex+%§- - 9x + (dx)x 2 ! and
(9.24})
_ as
9x+Ax = ex + (azox %; Ax

and similarly for H and Cgr

.,

9.6 CALCULATION OF WAKE SINGULARITIES

It is shown in Appendix 10 that the incremental velocities imposed on

the outer inviscid flow at the upper and lower edge of the wake are:

2
7 a g+ . dpV §*) '

AV = =V (8*+0 )(.d_e. + u) 4 i'- onu . {9.25)

u u u u ds ds2 p ds .

a2a+ d(pv &%)

de L i j A '

— * — it .| -—— T ——— .
sz = vz(6£+62)(ds d52) o as {9.26)

where g% is the local curvature of the wake singularity sheet.
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Consider the velocity_vector at the mid point of the wake segments in
terms of two contributions; one beiné due to the singularity strengths Yv'Ys
of the particular segment considered and the other thé contribution of all
other singularities both in the wakes and on the aerofoil elements and also
including tﬂé free stream. If !ﬁ is_the average induced velocity vector
across the singularity sheet, and i;—g_and %;-E_are the velocity' vectors due

to the local singularities, then the velocities on the upper and lower sides

of the sheet respectively are (25):
¥

v Is '

Vv, sVt trie (9.27)
Y, - Y
v s :

V=¥ -5Lt-i5¢t | (9.28)

Note that the sense of the local singularity contribution depends
on which side the singularity sheet is approached.

From reference 68 the velocity jump across the wake is egual to Vu—VL'
whiqh is also egual to Avu-AYL' Thus f;?? equations (9.2?) to (9.28), the

values of the wake singularities, at the panel midpoint, are given in terms

of the wake viscous parameters by

de dzaﬁ de dQGE
Y. = =V (§*+8 }(— + —5=) - V_{8*40 ) (— - ) {9.29)
v u u u ‘ds ds2 L' "4 'ds d52
and a(v 6*) a(v _&*) '
) - uu - L1 -
Ys = 3= + de . ) {9.30)

9.7 WAKE RELAXATION

Since the final position of the wake singularity sheetlis not known
at the start of the analysis its shape has to be determined iteratively
using a relaxation method.

By definition the direction of the ‘'wake singularity sheet is in the

local streamline direction and hence
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If the calculation indicates a non-zero normal velocity (VN) the wake
singularity sheet needs to be repositioned. This is done by rotating each
segment about its upétream end point to :eélign it with the local flow while
the downstream segments are translated to maintain a continuous sheet.

The coordinates of the repositioned wake segment at its downétream end

are -V " RV

N Tk Nk '
| - + —_— -
p 3 % I ASk { Y l)cosek 5 sin € (9.3L)
k=1 L
and N 'ka RV 3
LI 3 + —— - 1 .
zg = 2y Z Ask X sin e, + A oS £ {9.32)
k=1 -
vhere A = Vi + R2V§
' k k

vhere N indicates the wake segment which is relaxed with the first segment
being closest to the aerofoil; xN and zN are th; coordinates of the segment
downstream end point before relaxation} xﬁ,zﬁ are the coordinates after
relaxation, ASk is the 1ength of the kth wake segment, tan € is the slope

of the unrelaxed kth segment and VN ,VT the normzl and tangential
. k 'k

~ velocities at the midpoint of the kth segment (Figure ¢.3). R is a relaxation
factor (25) where O<R¢l. (R=1 for the present analysis).

Each time the wake is relaxed it will be necessary to recalculate the
influence coefficients iﬂfblving the wake. This however does not greatly
increase the computaticnal time of the method which is dominated by the
inversion of the métrix BH%UJ which is still computed once only.

Tﬁe wake iteration is terminated once the values of VN are nearly zero.
Eowever to avoid excessive computation time, resulting from either slow
convergence or from a non-converging wake, the maxiﬁum number of iterations
is fixed w;thin the program, If this number is exceeded the program stops
and prints the current values of VN so that fhe user may decide whether to

continue the iteration orr proceed with the other stages of the analysis.
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9.8 END OF POTENTIAL CORE

“The method of Reference 8 is used to predict whether interaction
between the wake flow of the main aerdfoil and the boundary layer on the
upper surface of the flap has taken place., In the case of a flow interaction
the method calculates where the resulting potential core ends.

The physical boundariés of the potential core region are shown in-
Figure 9.4a. The end of the core is defined by the normal to the upper
surface of the flap which passes through the point of intersection of wake
and boundary layer edges. This definition is consistent with the aerodynamic
model of the confluent boundary layer for which initial values must be
provided along the same surface normal. |

The notation used in deterhining the end of the core is illustrated in
Figure 9.4b, It is assumed that properties of the boundary layer on the flap
upper surface are known. The wake flow calculation proceeds in marching
fashion along the wake singularity sheet. At each step of the calculation
it is checked whether or not the end of the core region has been reached,

Knowing the wake properties at station S , which include the half width of

i
the wake 62' the following calculations are performed.

The distanée 8,5 along the normal to the flap surface is first

iF
determined. (Appendix 11}. Then the distance & along the surface normal

measured from the point Si to the edge of the wake is obtained from
ASGEi

d =-AScosy+(62 —52 )siny
i i-1

(9.33)

where AS is the arc length between the points s; angd Si-l on the wake

singularity sheet, y is the angle formed by the normal to the wake
singularity sheet at point Si and the surface normal of the flap. (Figure 9.4b).

The end of the core region has been reached i1If

a+8, 2 |55 (9.34)

where GBL is the thickness of the boundary layer at the point SF'
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9.9 AERQOFOIL VELOCITIES

.The normal and tangential velocities on the aerofoil surface due to

aerofoil singularities, wake singularities and free stream are:

[v; ——1,<[GNAA][YA]+ ;“’l ([GNAV] AR g [l - sinc,m0]
B (9.35)

[v,]= 2o 1] + 1 PRGN [Y] ) +[v cos (0,.-a]]
: (9.36)

Equations (9.35) and (9.36) can now be solved for a normal velocity
on the aerofoil surface due to the boundary 1§yer (Equation 4.5 ) while
making use of equatiqns (A7.24), defined in Appendix 7, to eliminate the
wake singularities and source influence coefficients. Taking the tangential
velocity as the viscid solution about the aercofoil, the aerofoil surface
velocity is obtained as a summation of the inviscid velocity VI, a
contribution due to the boundary layer V and a contribution due to.the

wake(s) V . Thus upon eliminating YA between equations {(9.35) and {9.36)'

6= Byl + Byl + [0 ¢ ] (9.37

where [v] = [R][v sinte,-)] + [V costo,-a)]
ool 01 [22]
[Vw1]= = (] [le]‘[Alz] ['Ysl])
[Vw2]= 5 ([By] [sz]-[%z] [, 1

and

B - ],
] = oy, 1-B oy, ]

Bis] = oy, 1-04 EGTA; 1
P = oy, 10 (o,
_.|: J- b, 1 (] [GTAVJ |
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Y. +Y +Y_ +Y_  are given by equations {9.29) and (9.30).
Vi Vo Sy sy

The pressure coefficient CP at the ith control peint is given by
i

v

i
= ] = =

¢ v
o

wvhere

(see equation (9.37)):.
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CONFLUENT BOUNDARY LAYER

10,1 INTRODUCTION

The incompressible mathematical model of the confluent boun?ary layer
due to Goradia {(Ref. 109) is used to calculate the boundary layer growth
downstréam of the slot. The model is based on a limited experimental data.
Thus the results should be treated with care. The present section'gives a
brief description of the flow model together with the necessary set. of
equations for the calculation of the flow parameters.

+

10.2 GENERAL CONSIDERATIONS

As shown in (Figure 10.1) the flow over the flap consists of the
following regions:
l. Core region
2. Confluent boundary layer
3. Ordinary turbulent boundary layer.

The existence of this‘kind of flow region depends on a number of
parameters such as:

1, Aerofoil geometry
2, Flight conditions,.

For interaction between the flap boundary layer and the wake flow
behind the maln aerofoil the gap between the aerofoil and the flap should
be small, Other parameters such as flap deflection and aerofcil angle of
attack are also important., Finally for'all flow regions to exist the fiap
cord length must be relatively large. There are many cases (at optimum-

~conditions} when the potential core extends beyond the flap trailing edge
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- thus there is no interaction between the flap boundary layer and the main

aerofoil wake.,

10.2,1 Main Assumptions

The prediction of the confluent boundary layer flow is based on the

following assumptions:

1.

2,

3.

4,.

The flow is two dimensional and incompressible.

Surface curvatures are assumed small so thét their effect can

be ignored.

The viscous layers comprising the confluent boundary layer regions

are governed by the two dimensional incompressible boundary layer

equations
ou u due 3 .t
L + Y— = — + oy { -
ax 3y Ue dax ay(p) - (10-1)
Ju . v .
— o —— . .
3 ™ o] _ ' {10.2) .

The static pressure in the direction normal to the surface
along which the confluent boundary layer devélops is constant.
The flow is attached.’

The velocity profiles of the individual viscous layers are

self-similar,

10,3 MODEL DESCRIPTICN

Goradia divides the confluent boundary layer into two flow regions,

each of which consists of a number of viscous layers.

The first region is called main region 1. and starts immediately

downstream of the potential core., As shown in Figure 10.2 the region is

-subdivided into three viscous layers termed:
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‘wall layer
jet layer

wake léyer

The wall layer is the continuat;on.of the upstream boundary layer on
the flap surface., The jet layer and wake la?er represent the remainder of
the inner and outer part of the viscous wake of the main aefofoil respectively.
The velocity at the ocuter edge of the wall layer is~denoted by Um.
The symbol UQ denctes the velocity at the common boundary of jet layer and
wake layer, The outef edges of the three layers are denoted by thé variables

'6 (Figure 10-2)0

65.63 4
The wvelocities Um,Uw at the edge of the wall layer and jet layer
respectively must be determined from a viscous solution, in contrast to Ue

which is known from the wake potential flow solution.

The wake layer from y=3§_ to y=64 is shown to terminate at station C.-

3
At this.point main region 2 starts. This region consists of two layers,
nameiy the wall 1ayer'and the jet layer. At the end of this région the jet
layer disappears and the flow ;s that of the ordinary turbulent boundary
layer type (Figure 10.3).°

The aim of the model is to predict the confluent boundary layer
displacement thickness, the overall skin friction coefficient and find
whether separation of the flow has taken place.

The governing equations of the viscous layers are ﬁhé turbulent
boundary layer equations mentioned earlier. The equations of each layer
are solved utilizing an integral method and the assumption of self-

similar profile, Turbulence is modelled by empirical relations (Ref, 109)

for the following quantities:
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1, Growth functions. for the widths of the jet layer and wake layer.
. 2., Shear stress.

3. Velocity profiles and their integrals.

Goradia's original method uses the assumption of a one parameter

velocity profile for the wall layer

4 dyl/m ‘ -
== (6 ) . (10.3)
m 5 -

Reference 8 assumes Coles' two parameter velocity profile in
order to predict the point of separation. This method has been adopted

here,

10.4 EQUATICNS FOR THE CALCULATION OF MAIN REGIONS 1 AND 2

The necessary equations for the caleulation of all relevant confluent
boundary layer parameters are listed here, The equaticns are taken

directly from'Ref.B, where details for their derivation could be found.

10.4.,1 Coles Velocity Profile

Coles (17) law of the wake in the turbulent boundary layer defines

the following two parameter velocity profile at the wall

u |, yu u
= =L _T Bl - bus'd
u =y l:!.n = + c] + 5 [1 cos 55] {10.4)

where uT is the friction velocity which is defined in terms of the

wall shear Tm and density p and is given by

w
u, = 5 (10.5)

u B |
constants and have the following values

is an unknown parameter with diﬁensions of velocity, k and ¢ are

k = 0.41 c = 2,05 ‘ (10.6)
v 1is the vinematic viscosity of air and 65 is the thickness of the

wall layer,
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a &x*
an 55

Using equation (10.4) and the equations defining 6%,65

the following equations are obtained:

Ve uB ' .
* —3 A——— —
Um65 (k + 3 ) 65 ‘ (10.7)
u u u u
2, - T B T, a2 32
ve, = —=+u - X R 2697 - 3 uB] 5 (10,8)
u u
3eas _ 8 3 _9_ 2 2 2 Tt _ T
Umés = I7g uB 5 UmuB + UmuB + 2l;]m o Bklum T uB
u u u u
7,2 T 2 T, 2 T, 3
- — — s — .9
GUm(k Yo o+ 3k2 m uB + 3k3(k ) uB+ 6(k ) 65 (10.9)
where kl = 1,58949, ké = 0,697958, k3 = 1,846111 {(10,10)

10.4.2 Main Region 1

A set of eight first order ordinary differential equations employed
for the analysis of this region, These equations are the:

Momentum integral equation of the wall layer

dum des
0 —_— = ‘ .11
An T + A12 T Bl {10,11)

Energy integral equation of the wall layer
- dUm dG g* . .
] ———— ' 0 . 2
P & 233 P2 (10.12)
Momentum integral equation of the jet layer

du as’ das* au
m 5 5 + A w

— — —_—
Ay ax Y Pt Ps ax.

+ A

36 ax 3

Momentum integral equation of the wake layer
du as ds* dUw

m 5 5 _ _ ' ;
ATt A +A + A = B _ ~ Q0.12)

44 3x 45 ax 46 ax 4
Equation 10,7 differentiated with respect to x
du das as* du du
5 5 T B8
. | RR = 15
A A + A o] (10.15)

=B © {10.13)

—_— —_—
54 @ * Pss @ T P57 3 58

Equation 10.8 differentiated with respect to x
du de as du du
m 5 5 . Ut B8
— — anp— —— = .6
M1 TPeadx TPeadx Therax Thesa 0 © (10.16).

Equation 10,9 differentiated with respect to x .
du djx+ as du du ' '
m 5 5 T g8
— ——+A , ~~—=4%+ A ===+ A =0 0.17
MaE Pk TPuxm thrE: TP x - we.dn
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Setting u=Um and y=6g in equation 10.4 gives

uT 65u
Umr(f.n 8

. Differentiating the above with respect to x the final equation of the

T

+c) +u

set is obtained.

Differentiated skin friction law eguation
dUm dGS duT duB
A1 & T Peadx therE tPeem O . (10-18)

The above set of equations can be written in matrix form as:

4 .
(a] [ééﬂ = [B]  (10.19)
where _ _ o 3 -
All A12 0 () 0 0 (o) 0 Bl
Azl o] A23 o] 0 . 0 (9] 0 32
Ryy O 0 Ay B Ay OO By
B O O BB hye OO o r
As B= (10.20)
Bgy O 0 Ay RAgg O Ry Ry ° '
gy Bgg O Bgy O O AL AL 0
A?l 0 A74 0 8] 0 A_,,, A']B o]
gy O 0 Ay O 0 Ay Ay 0]
e rd as** 4 d§* 4du  du 4
ag] Um dae 65 §5_ 65 . uT uB ‘
ax &% dx  d%x  -—dx  a&x & dx &

The elements of matrix A are determined from the following equations:

_All = (235 - 55 + 5?/Um . | (10.21)
A, = 1.0 ' ' | (10.22)
By = (38%* - 28 +280) /U {10.23)
A,y = L0 - | (10.24)
Ay =b ; [LZUm-uwf-4umsm3+3uwsm3+2(Um—uw) sm5]+(um-uw) (55—6;) (10.25)
1\34 = Umtum-uw) , . (10,26)
A = ~u_(u -U ) ' (10.27)
Ay = bj[éqmsm3'uwsm3’2(Um'Uw)Sm;] | .(10.28)
sm3 = 0,5644, sms = 0,4331 (10.29)
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4]
44
45

46

51

55
57

58

6l
62
64
67

68

71

A4

77

18

54

13

(qw—Ue)(bj-bjSm3+55-6;)
U {(u-0)
m w e

-Um(Uw—Ue)

buUus +2b (U-U)S8 4b (U -U )S
wen w W e m j w e n
1 2 3
s = 1,178 , S = 0.786
m;. m.,
&%
Su* uB
g
u
.
-65/k
- 2
65/
uT uB
2Um95_65(i—-+ 5—0
U2
m
2
m65/65
%5 t
" LUk, umars)
Um Ye 3
-65{5_ ‘kl X  a uB)
u
2 e .2 2 T
= - - —
3Um<55 3 65 \:lB 265'Umu8 4650m m
. uT ur 2
+ 365]{1 'k—" ‘UB + 655 (k—'}
U3
m
-U3 5**/5
m 5 S a
- f§(2U2-3k Uu 120 X+ 3k u
k m 1lm@B mk 28
Y Y2
+6k3 E- u3+ lB(E;} )
15 2 9 2 T
== —— - - + - U ——
65(16 uB 2 UmuB um 3kl -
v | uT 2
—_— 4+ Ly,
+6k2 " uB 3k3(k 1)
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(10,30}
(10.31)
(l10. 32)

(10,33)

(10. 34)

(10.35)
(10, 36)

(10.37)

" (10.38)

(10,39)

{10.40)
(10.41)
(10.42)
(10.45)

(10.44)

.{10.43)

{10.46)

(10.47)

(10.48)

(10.49)



A. =1 : _ (10.50)

- 81 -
u
A, == — (10.51)
84 X8 L
Um-u 1
AB? = -(——-—gu + E’) {(10.52)
T
The following equations are used for the calculations of the
coefficients of matrix B.
dUe 65 rm-r(ﬁ )
= - — v— A ———————— .
B1 Ue T 3 5 {10.54)
u pU
m n
Tt ~1t(6.) f 2
[ - 5 . 1.385 v 45.7Qe 0.91855+17.21Yr0.743Y (empirical)
pU {10.55)
m
= - *
Y = ¢n H, 65/65 (10.56)
au, 8,85  2t(5,) 85 ]
B, = ~2U , - + 2! L A Bay (10.57)
2 e dx .02 pU2 o pUz 3y U
™ m m
S ' 2
I 12 %;(%‘)dy 0.889 1023y~158.7_~0.636H,+48.55Y-1.,82Y
0 pUm n {empirical) {10.58)
1(65) 1 T -1(65)
3 = mz - & > shear stress at the
pUm DUm pU
. . B outer edge of the wall layer
(10.59)
r . 2
2 = 0,943 1016 - 114.62 1.819H5+35.68Y 1.365Y
pUm ' wall shear (10.60)
T ~1(6) '
The term —————Ji— in {10,59) can be found from equatiocn {(10.55).
} pU
m
dau t{s.) t(6.)
B.=U —2b, +0° —3 - > —2. - (10.61)
3 edx J m 2 m 2
pU pU
m m
. , db,
w-v)fu-20s +us +w-u)s ] =L (10.62)
m w m mm Wwomn m W m dx
3 3 5
- 8§ = 0.5644 , S = 0,4331 (10.63)
T o5
1(63) = 0.31m shear stress at the outer edge of
the jet layer {assumption) (10.64)
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T is obtained from equation above

1(65) is also obtained from equations above

db U ~u
E;i-= 0.17 T 0 growth of jet layer {10.65)
m W
dUe
= S =2(Uu ~U )s_ + - C—
B4 [be ml (Uw e) m1 Z(Uw Ue)sm;] bw ax 7

t(6.) ‘ db
w0 —2 4 w-u) [tu-uys -v] L
™ 2 w e n w m, m dx
py 3
m
. .
- - + - — .
(v -v) [UeSm (v ue)sm] = . (10.66)
1 2 )
s =1.178 , S =10,786 (10.67)
m m,
1 ' 2 .
dbw Ue—Uw
= = 0,185 T I0 {10.68)
e w
10.4.,3 Main Region 2
- The wake layer does not exist in this region hence
=U §.)) =0 10,69
u, o T 3) { )

The number of unknowns reduces to seven, so
¢ = (Um,es,ﬁg*,ﬁs,ég,ur,us) .

The governing equations of main region 2 are derived from those
of main region 1 by eliminating the momentum integral eguation of the
wake layer and rewriting the momentum integral equation of the jet layer

\ using equation (10.69). All other equations remain the same. In
partiéular the empirical coefficients in the shear-stress terms and the
‘growth function for the jet layer thickness are neot changéd. Writing the
set of ordinary differential eguations as ‘ .
[z [%ﬂ = 8 | (10.70)

where
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rﬁn 312 o 0 0o 0 o] "151'
"21 0 523 0O 0o 0 o B,
Ay O 0 Ay Ry R 0 By
a= |5, o o A,A A K. [ B Jo ‘ {10,71)
Ry By 0 Ay O By By, °
Rey © Bgy Ay O Ryg B, °
5, ©° © Rpy O By E*;?— 0
The elements of matrix A and matyix B are given by:
Coefficients of matrix A
311 = Kll ‘ : . (10,72
312 =A,  (10.73)
321 =3, : - (10.74)
523 = A, {10.75)
331 N B, [zum—ue-4umsm3+3uesm3+2 (b;-ue} Sm5] (U ~U ) (§.-8%)  (10.76)
334 =U (U -0) (10.77)
'1135 =-U (U -U) (10,78)
336 =0 | (10.79)
.;:;1 = 0.17 ;“%JE ' (10.80)
_ m
By =Rgy By =Ry A =By A=A, A=Ay (10.81)
Rgp = Rgy By, =Rgy By =g Ag =g K_sv = RBgg 110.82)
Rgy =By BAgy = Ay Ry =By A=A, A =2 (10.83)
Ry =g By =Ry Ry =Ag A= Ag | (10.84)
Coefficients. of matrix B
'El = B, ; . (10, 85)
B, = B, . ) . (10.86)
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dao 5 1(58._)

B = -2 + + - __._e- -
By = b, [v,-2us +us +2(u -U)s J|—= - U >
.3 3 5 pUm
‘ _ db .
(U -U )[U =20 S +U S +(U -U )S ] i (10.87)
m e m mm em m e m dax
3 3 S
db U -u
—1 =0 m_e .
e 0.17 Um+ue {10.88)

10,5 INITIAL CONDITIONS

In specifying initial values for main region 1 two cases are
| distinguished depending on whether or not a potential core exists at

the slot exit, A potential core exists at the slot exit 1if

GBL(xo) + 681 < hSlot (10.89)
where SBL(xO) = thickness of the.b0undary layer on the upper
surféce of the flap at the sliot exit
631 = = boundary layer thickness at the lower surface
trailing edge of the main aerofoil
hSlot = slot height at the slot exit,

10.5.1 Main Region 1 is Preceded by a Core Region

In this case GBL(xo)+6sl<hslot' Denoting the locat%on of the end
of the core by X, the initial values read,
Um = Vc(xc) .65 = GBL(xe)
= * = Rk 10.90
05 BBL(xe) 65 GBL(x ) ( )
*& =
65 = 1.73eBL(xe) Uw 0.8 Uwake(xe)
. u GSuT ‘ '
w =u y-= u, = U -"= (20 + c) ~ (10.91)
T m 2 R m k Y _
pU
m
T -0.678H -0.268 8%
2 e 5
DUm 95 : 5
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v&(xe) is the surface velocity of the £flap at the slot exit,

Uwake = wake centerline velocity.
The initial values of bj and bw are given by
. - (8
bj = (Gl)wake b, = nkwake
.Y 2 (10.93)
k2 = 2,5
where Gg'Gu are defined in diagram 10.1
6“
WAKE

&3 ‘ CENTRELINE

DIAGRAM 10.1

10.5.2 Main Region 1 Not Preceded by Core

For this case

Sprixe! * 651 3 h

and the computation enters main region 1 directly at the slot exit. The

slot

1nitia1 values at the slot exit x_ are

o]
. Td .
VvV _(x) u =U ‘/ —_
n c O T m U

U = >
%Tm Gsu
Os = Oa0% = 952_ u, = U = en ===+ c)
r =1, .
65 1 6835 . | }
6. =6_ (x) =38 Yo . o.123 1070-678H; . ,=0.268
5 BL “©O s 2 o
2 pU 6
m 5
* = &% *
BT el H = %5 R = Yuls
= 5 4] e v /

(10.94)

The thicknesses of the jet layer and wake layer are initially
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$

f
b, ¢ = — = 0, N
3 = 65 bw ” 0 45f {10,95)
1 2
where BS and Gf denote the boundary layer thicknesses at the lower

1
and upper surface trailing edge of the upstream aerofoll respectively.

s

10.5.3 Main Region 2

It is assumed that this reglon is always preceded by main region 1.
Therefore the initial values of main region 2 are simply the values of

the variables at the end of main region 1.

10.6 CALCULATION PROCEDURE

Using the initial conditions at the beéinning of main region 1,
equation (10.19) is used to calculate the values of all the derivatives
g% (equation (10.20)). The values of'¢ are fouﬁd at the next step using
equations (8.5) and (8.6) (Section 8). The values of %% at the next
station x are now calculated and the values of ¢ for the next step are
predicted and so on until the end of the region is reached. (i.e. when
the value of bw is found to be zero).

Equation (10.70) is,then used to predict theldevelopment of main

region 2 using the same method as above,

10,7 . CONFLUENT BOUNDARY LAYER PARAMETERS

10.7.1 Thickness & .

This is obtained from

s =65+_bj+k

4 k =2.5 (10.95)

2bw ' 2

where b, and bw are calculated from the empirical growth functions

J
db U -U
— oW
= 0.17 Um+Uw
i (10.96)
. EEE = 0.185 Ue UW
dx * U _+U
e W
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and the ihitial values of equations « By definition the wake

thickness bw is zero inmmain region 2.

10.7.2 Displacement Thickness §*

This is calculated from

* = &% * *
§ 65 + ﬁj + tSw {10.97)
using Um Um Uw
5; = bj [l -5 + ([_]— - U_.)sm ] (10,98)
e e e 3
Uw :
6; = bw {1 - -U—-)Sm . (10.99)
e 1
S = 1,178 . S = 0,5644 {10.100)
) My

10.7.3 Momentum Thickness 0

The confluent boundary layer momentum thickness is given by

O = 95 T ej + Bw _ {10.101)
with Um Um Uﬁ Um qw
9j=bj['{]—(l--ﬁ—)" (1-'6—)('{]—"'6—-)5!“
e e e e e 3
Um Um Uw Um Uw 2 '
+ l—]—('ﬁ—' - 6—) Sm - (-{I—' -~ -U—) Sm -] (10.102)
e e e 3 e e 5
u u 2
8 =b [(1.- s - (1 -9 _} (10.103)
W W U m U m
e 1 e 2 .
5 = 00786 ¥ - 8 = (0,4331 (10. 104)
m, ng .
10.,7.4 Skin Friction Cf

The skin friction coefficient is given by

T
= A
cf = > {10.105)
LoU,,
The wall shear Tm ig computed from the friction velocity uT
2
T = up .- {10.106)
w T .
Thus for U =1 .
@ 2
C_ = 2u (10.107)
R £ T :
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10,7.5 Separation
Separation is assumed to take place when
c_ £ 0,001

where ’ T

2 2
=2 .
uT/Vc

10.8 FURTHER COMMENTS

The confluent boundary layer model just described has been programmed
for the purpose of the present analysis., lHowever the ;odel has not yet
been tested due to tﬁe limited time available, The program listiﬁg is
glven in Appendix 12 . Experimental results for comparison with theory

can be found in Ref,(%7).
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FIGURE 10.1 Slot Flow and Confluent Bdundary Layer Model
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SEPARATED FLOW MODEL

11.1 INTRODUCTION

Flow separation is one of the most important of fluid flow phenomena
related to aerodynamic¢ lift and drag. Following a brief discu;sion on flow
separation, a description of a mathematical model for turbulent boundary
layer separation is given.

It is not the aim of this work to develop a separated flow model;
instead a simple model is chosen which can be used to carry out preliminary

numerical studies on aerofoil flow near and beyond the point of stall.

11.2 FLOW SEPARATION

Three types of boundary layer separation have been identified as

contributing to aerofeil stall and are illustrated in Diagram 1l.1.,
‘ TYPE (8) TRAILING EDGE SEPARATION

RECOMBMNATION

TYPE (b) SHORT BUBBLE LAMINAR SEPARATION -
REATTACHMENT *

- TYPE (¢) LONG BUBBLE LAMINAR SEPARATION

SEPARATION MEATTACHMENT -
==
. LT
e
——

DIAGRAM 11,1: TIllustration of three types of separated
flow on an aercfeil

These types of separation can occur singly or in combination. The classic

form of separation, described by Prandtl in his original paper proposing
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the concept of a boundary layer, is shown as type (a) of Diagram 11.,1. It
is referred to as trailing edge separation. The separating boundary layer
can be either laminar or turbulent. Separation first occurs at the aerofoil
trailling edge and moves forward with incfeasing angle of attack. ﬁrailing
edge separation leads to aerofoii stall on relatively thick aerofoils
{t/c>15%-18%). Analytical descriptions are gvailable for fully developed
trailing edge separation., Jacob (57).characterized the trailiné edge
separation bubble by distributing sources within the aercfoil near the
point of boundary layer separation., The flow from the sources simulated
the ¥egion of reverse flow. Their strength was determined by specifying
equal pressures at the point of boundary layer, separation, the aerofeil
trailing edge, and a point on the equivalent aerofoil surfaée between the
inner and outer flows. Similar but more refinea models have been developed
by PFarn, Goldschmeid and Whirlow (36); Geller (1937} and Dvrorak (136}.
More advanced models have-been developed by Gross (46), Chow and.Spring
(16) , Korst (64), and Zumvalt and Sharad (122). The last model is a rather
sophisticated model of the flow within the separation bubble.

Another form of boundary layer is illustrated as type (b) of diagram
11.1. lLaminar separation is feollowed almost immediately by transition to
turbulent flow in the sheér layer and then reattachment, The resulting
short bubble (2/c=1%-2%) develops as the aerofoil angle of attack is
increased until reattachment no longer occurs. The bubble then is said
to havé "burst". ©On thick aerofoils short bubble laminar separation causes
a thicker downstream boundary layer, but on thinner aerofoils.short bubble
© bursting can lead directly to aerofoil stall. A detailed account of the
short bubble separation phenomenon can be found in References 23 and 69.

An anélytical short bubble model is describea in Secticon 7 of this work.

When the short bubble burst, a free shear layer is formed that re-
combines with the flow from the lower surface beﬁind the aerofoil trailing

*
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edge, However, under certain circumstancés of aercofeoil thickness and
Reynolds number, the flow reattaches to the aerofeoil surface and a new
turbulent boundary layer is formed. This 1s flow (c) of diagram 11.1 and
is referred to as a long laminar separation bubble., Increases of angle of
attack cause the bubble length to increase until reattachment does not
occur.

Aerofoil stall resulting from the types of flow separation described

above is pictured in Diagram 11l.2 (Ref. 15). Stall (d} of Diagram 11.2

is a combined short bubble and trailing edge type of stall.

cl cl cl ¢l cl

dai: a2

DIAGRAM 11.2: Aerofcil stall classification

11,3 SEPARATION FLOW MODEL

Il

The separated flow model used here is that of Maskew and DvocaR: (71)

and is briefly discussed below.

11.3.1 Basic Considerations and Assumptions

The mathematical flow mcodel is shown in Diagram 11.3. As can be seen

from the diagram four main regions are used to model the real flow.
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REGION 1"~ POTENTIAL FLOW REGION

REGIOA 2 - DOUNDARY LAYER

REGIOK 3 - FREE SHEAR LAYGR

REGIOm & = WAk - YORTEX SAZETS

REPRESENTING
{ecion 1 FREZ-SHEAR LATER

YORTEX SHEET REPRESENTING

R : BOUNDARY LAYER

DIAGRAM 11,3: Mathematical flow model

Region 1: This is the region exterior to the boundary layer and separated
wake and is almost irrotational since the shear is everywhere
so low that viscous stresses impart a negligible rotation to the
fluid. Since the flow Mach number is assumed to be very low,
regioﬁ 1l is very nearly a potential flow region.
Region 2: This is the region next to the aerofoil surface and is térmed
| the boundary layer. The shear stresses are high, and hence, tﬁe
viscous stresses are high, Thus significant vorticity 1s present
in this region.
Region 3: This is called the free shear layer. The thin flow region fed by
the separating boundary layer has rotation, but only moderate shear,
Reglon 4: The flow between the_two shed boundary layers, the wake, is a
region with low overall vorticity and significant viscous stresses.
The main assumptions used to define the model are: |
‘1. The boundary layer and free shear layers do not have significant
thickness and, hence, éan be represented as slip surfaces; that
is streamlines across which there exists a jump in velocity.
2, The wake does not have significant vorticity and has constant -
total pressure (iowar than the free-stream total pressure). It

is therefore taken to be a potential flow region.
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Once again, the mathematical problem is to find the vorticity sheet
strength such that the appropriate boundary conditions are met. The position
of the vorticity sheet representing the free shear layer is not known a priori.

The boundary condition for the aerofoil surface is that of zero normal*
velocity (VN=O). However, when allowing for viscous effects the incremental
normal velocity VN = é%(UG*)‘replaces the VN=0. The boundary conditions are

satisfied at the control points (panel midpoints).

11.3.2 Approximations for the Free Shear Layér

11,3.2,1 Wake shape

Initially, the streamlines are not known and so the shape of the free
shear layers must be obtained iteratively starting from an initial position.
Figure 11,1 shows the initial geometry suggested by reference 71. 'The upper
and lower sheets are represented by parabolic curves paséing from the
separation points to a common point downstream which is pesitioned at a
distancé 0.2 to 0.5 chord lenéths downstream on the mean wake line. The

slope at the upstream end is the mean between the free stream direction and

the local surface slope.

11.3.2.2 Pressure in the wake

If the average velocity in the upper shear layer is

1
vV = 5‘(V

) outer : v ) (11.1)

inner
u Y

’ ‘ = ) =y - 2%
then - vouter =V 2 ' vinner v 2 (11.2)

where Yu is the vorticity on the upper sheet.

The jump in total pressure across the shear layer is then

7 1 Yu, 2 1 Ya 2
- = - + - —=}")= + = {(V+ —
Hj.nner Houter Pinner _ip(v 2) ) (Pouter 2 v 2) )
- _ : . {11.3)
. s AR vau = vag .

AH =

where Yy is the vorticity on the lower sheet. The value of P is assumed
constant across the shear layer. From assumption 2. the jump in total

pressure across the free shear layer is the same everywhere,
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11.3.3 Theoretical .Basis

The potential flow analysis is based on the following integral equation:

[ ky(s)ds + Yy (J kds =~ J kds} + v.n= VN .(11.4)

C L
where the constant value of the strength of the lower free vorticity
sheet 1s used and where the kernel function, K, is the normal velocity
component (at the boundary point for which V.n is being enforced) .due to
a unit point vortex at the point associated with the element, ds, of the
line of integration, and where the integration paths, C;L and U are the
aerofoil and the lower and upper free vortex sheet locations, respectively.
The unknowns are the vorticity strengths on the aefofoii, and on the free
sheets represented by y(s) and }, regpectively. The former is a function of
position on the aerofoil, and the latter is a constant. Two auxiliary
conditions are applied; the first is related to the Kutta condition, and
specifies that the vorticity values at the separation points on the upper
and lower surfaces are equal but opposite and have the value of the free
vorticity sheets, i.e., Yl' The second condition concerns the vorticity
distribution on the aerofoil surface in the separated region; this
distribution islconstrained to start and finish with zero vorticity (i.e.
zero velocity).

The right side of equation (11.4), V

N’ is zero for the initial potential

flow solution. Following a boundary layer analysis, however, the displacement
effect is represented by a piecewise constant source distribution; VN then

becomes the integrated normal velocity induced by the boundary layer source

distribution.

11.3.4 Method of Solutiocn

The aerofoil contour is represented by an inscribed polygon (Figure 11.2}.
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. The individual.panels representihg the polygon each have a linear variation
of vorticity along them- (see section 3.2). 'The free vortex sheets are
représented by a number of panels of uniform vorticity. The wvalue of the
vorticity at the start of the ith panel is denoted by Yi', Thus the function
¥(s), in equation (11.4) can be expressed in terms of the unknown sequence,
EY;J and the iﬁtegral equation in the unknown function, ¥ (s) becomes a set

of algebraic eguations in the unknowns, E}']

L Initially there are N+l

unknown Ti values (for N panels), but the auxiliary conditions remove two

unknowns:

Yseparation = Y1 ' T+l - © (11.5)

The Y value just downstream of the separation point on the upéér
surface is set to zero. A square set of linear equations is obtained
by introducing one unknown source strength distributed uni formly along
the aerofoil surface.

' Once the vorticity is found the velocity (V) at any point in the

figw field is found by adding to the fréémétreém the velocities induced

by the vorticity and source distributions. The value of Cp is given from

v . 2
c =1- 9%+ AL
where AH is zero everywhere except in the wake region where AH=pVY£.

(11.6)

The overall solution to the problem is an iterative one. Firstly
during each iteration the wake shape is calculated as follows, once the
separation points have been located. Using the vorticity distributiocn,
calculated from the érevious iteration, velocities are calculated at the
panel midpoints on the free vortex sheets. The new wake shape is then
determined by piecewise integ;ation, starting at the separation points.

The downstream end points, which were coincident in the initial wake,

are allowed to move independently in subsequent iterations. At each wake
iteration, the wake influence cocefficients at the surface control points
are recalculated and a new potential flow solution is obtained. The number

+

of wake iterations

is fixed.
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Once the wake shape is known the overall iteration continues. This
invo}ves a boundary layer analysis which gives the new separation points
and the boundary layer source distr;bution. The sources are set to zero
in the separated region.

A new wake shape 1s calculated using the new separation points together
with information from the previous calculation of the wake. A new potential

flow sclution is then cobtained and so on.

11.4 CONCLUDING REMARKS

Maskew's and Dvorak's separation mddel has been described. The model,
however, has not yet been included in the computer program. However, since
the program already contains a linear vorticity model for the calculation of
the potential flow, the separated flowlmodel should be relatively easy to
includé. Figure 11.3 indicates that good results can be expected from the

model,
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OVERALL CALCULATION PROCEDURE

.12.1 INTRODUCTORY COMMENT

The objective of the solution procedure is to find those pérticular
distributions of surface velocity and boundary layer displacement thickness
which simultaneously satisfy both the potential flow problem and the
boundary layer problems. The desired solutions of surface velocity and
displacement thickness, from which all other flow parameters can be |
computed, must be arrived at by an iterative procedure since the coupling
of the flow problems is mathematically nonlinear. The computer program

uses a cyclic iteration described below.

12.1.1 First Iteration

During this cycle the following computations are performed:

1. The positicn of the wake singularity sheet of each component is
computed. |

2. All wake singularitiés aré set to zero.

3. A potential flow analysis is carried out.

4. A viscous analysis is performed based on velocities calculated in step 3.
fhe analysis inﬁoles laminar and turbulent boundary layer#.

5. The aerofoll inviscid velocities are corrected for viscous effect using

A ?=d(05*)/ds and VT=V

N

6. The tangential and normal velocity components at the middle of each

+ .
mw B

wake panel, due to aerofeil singularities and free stream velocity
are calculated.

7. A viscous wake analysis is then carried out.
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8. The results of the wake viscous analysis are used to calculate the
wake singularities at the end of each wake panel. These singularities
{sources, vortices} are stored for the next iteration.

9. The wake position is relaxed and stored for the next iteration.

-12.1.2 All Other Iterations

Here it is assumed that there is no interaction between the wake of the
upstream aerofoil and the flap boundary layer. This is true iﬂ most cases
when the aerofoil and flap are at the optimum setting. If this is not the
case a final iteration is required in ofder to carry out a confluent boundary
layer énalysis.

During each of the rest of the iterations the following computations
are performed.

1. A new boundary 1ayer’analysis using the corrected aercofoil surface
velocities.

2. The velocities inducéd by the wake on the a=zrofoil are calculated.

3. The aerofoll surface velocities are corrected for viscosity and wake
influence.

4. The tangential and normal velocities on each wake segment are calculated.

5. A wake viscous analy;is is carried out.-

6. The new wake singularities are calculated and stored for the next
iteration.

7. fhe new wake position is calculated and stored for the next iteration.

Once all iterations have been completed the final set of aerofoil surface

velocities is used to calculate the overall forces and pitching moment.

12,1.3 Pinal Iteration

This is required if a confluent boundary layer is found to exist.

In this case the following procedure is adopted. The end of the potential
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core is first located., A confluent boundary analysis is carried out
sta;ting from the end of the core. The velocities of the flap surface
under therinfluence of the confluent boundary layer are correéted for
viscosity using the displacement thickness of the wall layer only. The
,fest of the aerofoi; vélocities are left unchanged since the confluent
boundary layer does not affect the boundary layer digplacenent phickness
of the main aerofoil and the flap lower surface. The wake of phe main
aerofoil is assumed to bé part of the confluent boundary‘layer. However a
new viscous analysis is required for the wake of the flap. A new set of
singularitf strengths is calculated for the second wake and sz is.

recalculated. Finally the final set of aerofoil surface velocities is

-

Ve = Vow T Yers T Va2

given by

Note le is not considered since its effect is assumed to be taken

into consideration in the confluent boundary layer analysis.

Once the final set of aerofoil velocities is known the overall forces

and pitching moment are calculated.

12.2 AERODYNAMIC COEFFICIENTS

12.2.1 Lift and Moment Coefficients

The lift coefficient CL of a multielement aerofoil is calculated by
integrating the pressure and friction forces. The calculations are
perfofmed in the aerofcil axis system. The forces and the momént acting on
a multielement aerofoll are (8):

A Component of the force in d;rection of the x-axis, termed

axial force

N Component of the force'in direction of the z-axis, termed

normal force

Mo o Pitching moment about the origin of the axis system, positive
' .

nose up.
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Corresponding force and moment coefficients are defined by

‘ M
o ref Y ref 0,0
o ref
vhere
N'J'.'
1l 2
a, = 5 pqu and Cref = izlci

where Nf is the number of aerofoil elements.
.Both the surface pressure Ps and the wail shear stress Tw contribute
to these forces and moment_coefficients. Their contributions are
calculated by discretizing the aerofeoil geometry in exactly the same way
as in the potential flow calculation, @.e., by replacing the actual aerofoil
surface by a polygon. The>corner points of thg polygon (Diagram 15.1)

y

Segment

Corner point

DIAGRAM 12.1: Discretization of the geometry

are positioned on the aerofoil surface and are identical with those used

during the potential flow analysis. The contribution of the surface

pressure to CA'CN and cMo o'read
N - N
: T m
Cpp = S Ly % Cplz, -2, ) (12.2)
ref m=l i=2 t
N N
1 T m .
Cp = -5 — L L Culyx ) (12.3)
Nref m=1 i=2 .
N
: 1 oF - -
c, ) = TZ Zm o [x(x.*x _q)+2(z, -z )_-_] : (12.4)
MO,O p Cr . n=l i=2 P i 7i-1 i 7i-1
where e
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(at the panel midpoint)

P
- (]
X = 1(x‘+x ), E = (z +z. )
*=iia 2'%17%-1
NT = total number of aerofoil components
Nﬁ = number of surface points on component m
The contribution of the wall shear to C_,C..,C is
A N M .
0,0
N N . .
1 . )
c, _ = Z X c . {x,-x, ,) . (12.5)
AF  Coof p=1 i=p f 1 171
NT Nﬁ : .
Crp o — L L cplz-z ) :  (12.6)
ref m=l i=2
N N
Loy § o ]
{C ). =5 — c.lz(x,-x )x(z ) (12.7)
MO,O F c m=l i=2 £ i i-1 i i 1
ref
In these equations Cf is the value of the skin friction coefficient
T
c, == (12.8)
£f q
L-+

at the midpoint of the ith panel. Note that for the purpcse of

computing the lift coefficient, the sign of Cf is reversed on the lower

surface of each aerofoil component (8).

G =-Cp (eI ) .. 2.9

Istag is the index of the stagnation point of the mth component.

Axial-force and pitching moment coefficients aré cbtained from

(12.10)

The 1lift coefficient C2 follows from
CcL .= CNT.COS o - CAT sin o {12.11)

vhere ¢ is the angle of attack.
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12.2,2 Drag Coefficient

The drag coefficient of the aerofeil is calculated using the Squire

and Young formulae‘(Ref. 108). The drag coefficient Cd of each surface
. , s .

of each of the N& aerofoil components is obtained from

c. =2 2 (Y ,k(H5) (12.12)
d C U
s ref ©

where the boundary layer momentum thickness 8, the shape factor H,

and the potential flow velocity are given by their values at the
trailing edge point. 1In the case of a confluent boundary layer the
chosen momentum thickness is that of the wall layer‘only since the outer
wake portion of the confluent boundary léyer is already represented by
the upstream aerofoil (8). The total profile drég coefficient (Cd) of
the high~lift aerofoil is the sum of the drag coefficients of the ZNT

surfaces.
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METHOD VERIFICATION

Some results from applying the flow model to a number of cases are
presented in this section; The method has been tested against theoretical
and experimental results.

The potential flow model was first applied t§ Williams' two component
aerofoil (Ref. 120) using a total of 95 panels, The calculated pressure
distribution for aerofoil and flap are shown in Figure 13.1(a) and (b)
respectively, Clearly the agreement between the exact and calculated
pressures is very goo&. The calculated lift coefficients for the main
aerofoil and flap are 2.9075 and 0.83046 respectively compared with the
exact values 2,9065 and 0.8302 (Ref. 120, p.7).

To test the whole model two single element aergfoils, namely a GA(W)-1
and a NACA4412 , and one two element aerofoil, a CA(W)-1 wing section with
a8 297C Fowler flap were used.

Figure 13.2 shows the geometry of the GA(W)-1 aerofoil section. In
Figure 13.3(a) to (c) the calculated #ressures are compared with the
experimental ones (Ref., 76) at three angles of attack. A total of 74
panels were used to reﬁresentlthe aerofoil surface, The calculated pressures
were obtained after 3 iterations, The Reynolds number for both theory and
experiment is 6X106. Figure 13,3{a) shows the pressure distribution on the
aerofoil at a=—4.l1l1 degrees, The agreement between theory and experiment
is good. Figure 13.3(b) and 13.3(c) show the pressure distributions at

" a=4,17 and 12,0} degrees respectively. Generally speaking the theory predicts
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the correct pressure distribution. However due to trailing edge separation
in the case when a=12.04 there is some disagreement between the experimental
and calculated values neér the uﬁper surface trailing edge region.

Figure 13.4(a) gives the geometry of the GA(W)-1 aerofoil with a 297C
Fowler flap, The flap pivot point locations are given in Figure 13.4(b)
Artotal of 76 panels were used in this case; 48 panels were distributed on
the surface of the main éerofoil and 28 on the flap, The extensive
experimental results of Reference 135 were employed‘tb test the theory.

The calculated results presented here were obtained after 3 to 4 iterations.

Figure 13.5(a) compares the experimental results with the calculated
ones for both aerofoil gnd flap. The angle of attack is 0° and the flap
deflection is 100, the Reynolds number is 2.ZXI06. The agreement is
generally good with the exception of the lower surface of the aerofoil
near the trailing edge and the flap upper surface. The same trend is
present in Figure 13,5(b) ﬁhere the angle of attack is 5°, however, the
disagreement is less in this case. Figure 13.5(c) and (d) present 2 more
difficult gest for the model. In this case the flap deflection has been
increased to 30° for the same angles of attack, The agreement between
experimental and calculated values is good in both cases. Finally Figure
13.5(e) presents the pressure distribution on both aerofoil and flap at
an angle of attack of 5% with flap deflection of 40°, Once agaiﬁ good‘
agreement between experiment ° and theory is demonstrated.

Figure 13,6 presents the calculated and experimental lift curves for
the GA(W)-1 aerofoil section at a Reynolds number of 2.7x106. Clearly
‘the inviscid curve over-estimateleL. ‘The CL curve corrected for
viscosity and wake effects is in good agreement with the experimental

one (Ref, 76) up to an angle of attack of about 7 degrees. Separation
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reduces the predicted value of CL considerably at higher angles ﬁf attack,

- The large camber of the NACA4412 aerofoil presents a difficult test
for the model. Figure 13,7 compares the theoretical with.the experimental
(Ref,1) lift curves. Once aga%n the agreement is good up to about 8 degrees
of incidence when separation effects dominate and reduce the theoretical
values of the lift coefficient,

A waie'relaxation'is presented in Figure 13.8. The reéults are
obtained using a GA(W)-1 section at a=0° and Re=6X106. fi&e iterations
were used to investigate the shape.of the wake, Clearly the wake position
has nearly converged after the 3rd iteration. The wake, which is one
aerofoil chord long and is modelled using 18 panels, is shown to curve
-rapidly near the aerofoil trailing edge. The wake trailing edge is shown
to have turned back to the free stream direction after the third iteration.
Table 13,1 shows the normal and tangential‘wake velocities obtained,

Using the same aerofoil at an incidence of 60, the results of five
iterations are shown, It can be seen that the value of Y has become
practically zero on most panels after the thir& iteration,

| Finally some typical boundary layer analysis résuLts are presented in
Figure 13.9, . ! '

To summarise, a number of theoretical and experimental results have
been used ;o test the flow model developed, In general the'calcﬁla;ed',.
results are in very good agreement with both theory and experiment. Only
a small number of panels is required to model the aerofoii element (s) aﬁé
the wake(s). This makes the method very economical to use. In most cases

only 90 sec. of C.P,U. were reqnired on the PRIME 400 computer to carry out

5 iterations,
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aFl

ITERATION 1

VN1

 =0.1060

~0.0684
-0.0471
-0.0314
-0.0196
-0.0099
-0.0018
0.0052
0.0113
0.0164
0.0213
0.0255
0.0293
-0.0328
0.0357
0.0388
0.0414
0.0439

VTl

0.8799
c.7172
0.9358
0.9476
0.95582
0.9618
0.9443
0.9702
0.9731
0.9754
0.9774
0.97923
0.7208

L0.9820

0.7831
0.9241

0.9349

0.9256

VN1

-0.0702
=-0.114%
-0.08%24
=0.045%
-0.0241
-0.0123

T, 0045

Q. 00046
0.004%8
0.0035
0.011%
0.0153
0.0183
0.0227
0.0273
0.0334
0.043%
0.06465

VT1

0.8061
0.8345°

0.8977
0.7201
0.9286
0.93354

0.9372

0.2400
0.92424
0.7444
0.9442
0.9477
0.24320
0.9502
0.9513
0.7523

0.93324 .

0.9755

VN1

0.010%
~0.0010
=0.0201
=0.0004

¢.0122

0.0172

©.0123

0.00849

¢.0052

0.0027

0.0007
-0.0010
-0, 0024
-0.0042
=0.0040
-0.00%7
-0,0217
~0.0252

VT1

0.7832
0.80546
Q.9029
C.9537
0.93512
0.9495
0.9509
0.7525
0.9539
0.7353
0.7545
0.99275
0.9982
0.9387
0.9586
0.9547
0.9%59
Q.7874

VN1

0.00346
=0.0040
~0.02465
-0.0173

0.0103

0.0150

0.0087

0.0049

0.00z24

0.0007
=0.0002
~0.0007
-¢.0012
-0.0014
~0.0011

. =0.0016

=0.,0055
-0.0103

TABLR 13.1: Normal und Tangential gake velocities
(GA(W) =1, Incidence 6°)

VTL

0.7800
0.78&0
0.8723
0.7207
0.9745
0.9601
0.9587
0.7409
0.7624
0.924633
0.9L329
0.2645
0.946351
0.9654

0.9449

0.9611
0.7582
0.97936

VN1

0.0071
0.00465

—-0.,0179

-0,0231
0.0024
0.0134

0.0085

0.0033
0.0018
0.0012
0.0004
G.0001
-Q.0001
-0.0000
g.0007

. 0.0012
=0.000%8

-0.0027

VTt

0.7238
0.7676
0.8443
C.9099
0.7952
0.9459
0.9577
0.94622
0.9458
0.9448
0.9449
0.92&649
0.9&72
0.9477
0.9672
0.9621
0.9574
0.9748
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pressure distributions for the two element
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Upper Surface Lower Surface

X /c Z2 /c . o X/c . . % /e
0.00000 0.00000 - -0.00000 . 0.00000
.00200 .01300 _ .00200. -.00930
00500 . ..02040 . . 00500 -.01380
.01250 .03070 . 01250 =+ 02050
.02500 04170 .02500. =.02690
.03750 04965 .03750. —=.03190
. 05000 .05589 .05000 -.03580
. 07500 -06551 -07500 -.04210
.10000 . 07300 .10000 -.04700
.12500 .07900 ' .12500 ~.05i20
«15000 .08400 ' - -.15000 - ~.05430
.17500 .08840 ' - «17500 =+.05700
.20000 .09200 : .20000 =+05930
«+ 25000 .08770 : .25000 --06270
.30000 .10160 «30000 - 06450
35000 10400 .35000 -. 06520
.40000 .10491 a .40000 ~+.06490
.45000 .10445 45000 " =«06350
.50000 .10258 .50000 -.06100
.55000 .09910 .55000 =.05700
-57500 .09668 o 57500 -+.05400
.60000 L09371L .60000 =.05080
.62500 . 09006 .62500 --04690
.65000 ' .08599 .65000 - —«04280
«67500 .08136 .67500 ~.03840 "
.70000 . 07634 .70000 -.03400 .-
« 72500 .07092 » 72500 . =.02940
.75000 06513 75000 ~.02490
. 77500 . 05907 . «77500 ° ~-.02040
~«80000 . 05286 .80000 =+.01600
82500 .04646 o .82500 -.01200
.85000 .03988 ‘ «85000 - -.00860
+B7500 .03315 .87500 -.00580
90000 .02639 .90000 --00360
.92500 .01961 T .92500 =.00250
.95000 01287 - . 95000 ~.00260
97500 .00609 .897500 -.Q0400

1.00000 -.00070 ' 1.00000 -+.00800

FIGURE 13.2 GA(W)-1 Aerofoil Coordinates
148



Upper surface

Experiment
Lower surface
-24 , Upper surface Theory
Lower surface ~~"°7°°
-2,0 it
P N 6
‘ Re.= 6 x 10
~1.6
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FIGURE 13.3 Comparison of experimental
and calculated pressures for
a GA(W) -1 aerofoil section
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. 29%C Fowler Flap Coordinates

- -

Upper Surface : Lower Surface
xf/c - Zf/é . Xf/c Zf/F
0.00000 -.02350 0.060000  '~.02350
. 00030 -.02000 : +00100 -.02700
« 00200 -.01790 _ .00200 -.02880
. 00400 -.01550 +00400 -.03000
. 00800 ~. 01130 .00800 -.03100
. 01200 - ~,00780 | . .01200 = =,43040
.01800 -.00330 - 02000 -.02880
02300 .00000 ) «03000 -.02700
.02800 . 00230 ‘ 05000 -.02350
.03800 .00700 ‘ .07000 -.01980
. 04800 .01100 . ' o 08000 -.01600
< 05800 . 01410 «11000 -.01300
« 06800 ~ .01680:. vm «13000 . ~-.01000
.07300 .01900 .15000 -.00770
.08800 .02070 «17000 -.00580
.09800 . 02180 .19000 -.00360 "
+10800 . .02230 +21000 . -.00270
«11800 .02280 «23000 -.00280
«12800 .02300 .25000 -.00350
«13800 -.02340 «27000 -.00500
14800 .02280 «29000 -.00800
.15800 .02230 _

16800 .02190
«19000 .01980
21000 .01680
23000 - .01380
.25000 .00980
27000 . 00580
«28000 -.00070

Nose Radius = .0075¢C .
Nose Radius Location (xf/c,zf/¢; = (.0075,-.0235)

' FIGURE -13.4a 29%c Fowler Flap Configuration
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28%C Flap Pivot Point Locations - Computer Design Settings

6e X/c zZ/c )
0° (Nested) 730 " =-,040 '
10°  .880 . =.061.
PR -5 L. .s00 =085 .
~ 20° 920 T -,049
25° ' .930 . -.046
30° .940 " . -.043

40° . .950 - -.040

68 .70 .72 74 76 B 80 .2 .84 .86 .88 .90 .92 .94 .96
_ X/c ) :
FIGURE 13.4b Flap Pivot Point Locations
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CONCLUSIONS - FURTHER WORK

14.1 CONCLUSIONS ' _ v

A mathematical model has ﬁeen developed for the calculation of the
attacﬁed viscous incompressible flow about single and two element aerofoil
sections in free air.

A potential flow method, of recent development, based on symmetrical
vortex and source singularities distributéd on flat panels is used for the
calculation of the ideal flow. The method can bé applied to thick aerofoils
of arbitrary geometry. It also allows aerofoils with both sharp and blunt
trailing edges to be analysed.

Since singularity distributicns on opposite panels are equal, flow
leakages are minimized. Also the use of both vortices and sources results
in smoother singularity distributions. Results obtained with the present
method are shown to be in very good agreeﬁént with exact solutions.

The potential flow model has been combined with an iterative boundary
layer and wake solution in order to correct the ideal aerodynamic character-
istics of the aerofoil for real flow effects. The viscoﬁs analysis is carried
cut using integral boundary layer methods: Viscous effeﬁts are accounted for
by using a modified boundary condition for fhe nofmal velocity at the aerofoil -
surface. In this way the aerofoil influence ccefficient need only be
calculated once and the métrix inversion is also carried out once only. The
wake analyszis cpnsists of a wake relaxation and a wake viscous analysis which
1s used to calculate the new wake singulérities for the next iteration. No
overall convergence criterion has been found so far. Thus the results have

to be checked at the end of the analysis.

*
-

1687



Results obtained using the flow model are found to be in very good
agreement with experimentalldata even in cases where flap deflections are
large (e.g. 40 degrees), Only a small number of panels is required to carfy
out the analysis (a total of 76 panels on a two element aerofoil is fouhd to
~be sufficient).

The computer program written to test the model requires very.little CPU
time and this makes it a very economical tool for aerofoil analysis.

Finally it can be said that the aim of the present research has been
accomplished and that the method developed is a powerful and yet economical

tool which can be used for aerofoil design work.

14.2 FURTHER WORK

it is clear from the results obtained that, depending on aérofoil geometry
and flow conditicons, there exists an angle of attack above which separation
effects dominate the flow. Thus models to describe such flows have‘to be
included in the present model in order to allow near-stall and post-stall
calculations to be carried out. A model for short bubble separation is
.included in the present program. Trailing edge separation has also been
considered in an éarlier segtion., However, the model wa%(éésted with the rest
of the flow model. Use should be made of the linear vorticity model in this
case, since it 1s more adaptable to the separation model.

The confluent boundary layer model, for which a number of computer
programs are given in Appendixié, needs to be tested and combined with the
rést of the flow model, The experimental results of Pot (87) and Preston (89)
may be used to test the confluent boundary layer model. This will allew the
flow model to aﬁalyse multi-element aerofoils at 'off-design' conditions.i;e.
in cases where the gap between aerofoil and its flap is very small.

From the pressure diagrams obtained it can be seen that in certain cases

high velocities are.present near the flap leading edge. In such cases
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cﬁmpressibility becones impqrtant and the resulté have to be corrected., The
equations which can be.used to correcﬁ the velocities and boundary layer
parameters for éompressible flow are given in Refs.(8) and (109 p.26).

The viscous flow methods used by the present model could be tested more
extensively against available experimental results (see Refs. 5,63,90,10%) and
if necessary they should be replaced with more‘up-to-date methods. The computer
progréms allow this to be carried out with ease.

Finally the computer program itself needs furthexr wqu to bring it up to
production standard. This work involves:

a) the inclusion of gemcetry routines to allow interpolation fiom the
input aerofoil cﬁordinates, so that the distribution of panels is
done within the program. A distribution of panels based on aerofoil
curvature (see Appendix 9 ) should be tried and compared with the
cosine méthod of distributing panels.

‘b) an improvement of the interactivée nature of the program to enable
the desired variables to be obtained.

c) a reéuction of the storage space required., This may be dong by
a more efficient redistribution of the common blocks and by
dimensioning all subroutine matrices aynamically.

d) generalisation of the model to deal with any number of aercofecil

elements,
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AppENDIX 1

THE COMPUTER PROGRAM

N

A listing of the computer program develcoped to test the flow model is
given in the following pages. The program is written in standard FORTRAN
for the éRIME 400 computer of Loﬁghborough University of Technology. The
program could be run in batch mode or ihteractively.

Figure Al.l shows the main functions of the'computer program. A flow
chart of the program, in terms of its subroutines, is given in Figure Al.2.

Considerable effort has been put into optimizing the program so that
CPU time is kept low (five iterations with a total of 60 panels require &0
secs. of CPU on the PRIME 400). Required storage is approximately 150K.

More program information is given in Appendices 2 and 3.
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9871

2D - MULTIELEMENT AEROFOIL
MATHEMATICAL MODEL

l

TNPUT + ITERATION SUTEUT
+ i TEST
)] |
PROCESS AEROFOIL INITIAL
GEOMETRY .CONDITIONS
A Y Y Y ! ; AMIC
VISCOUS FLOW POTENTIAL VISCOUS SEPARATED, R ANTS :
REPRESENTATION FLOW FLOW FLOW cm . Ce . Cd.
* * b } / ] -
VELOCITY WAKE CENTER VELOCITY
PRESSURE LINE PRESSURE WAKE sgggiggso
ON VELOCITY AND ON ANALYSIS | | REGION .
AEROFOIL PRESSURE AEROFOIL
¥
1 TRANSITION ‘ ,
LAMINAR LAMINAR TURBULENT CONFLUENT
BOUNDARY | SEPARATION BOUNDARY WA KE BOUNDARY
LAYER SHORT LAYER SOLUTION LAYER
BUBBLE

FIGURE Al Flow Model Decomposition




MAIN

Y
Y

Y Y Y Y Y Y Y Y Y R
PLOT Cv| [WAKEGHt WAKEG2| |[PO2001 DRIVE1 W'IWZSS] Wiw2s1 WAKREL |DRIVE2 BLCALC| [CNXCLD|
Y i
cc _ WAKVIS
b
DUIDU 2
Y
Y ¥ y ¥ Y Y K
CUB}C . QUAD AlRIC |- | wakelc BLCALC GAUSS MATMUL
Y
SOLVE \
. Y Y Yy .
2 AIRIC WAKEIC MATMUL
* \
¥ Y Y ) Y
LAMBL TURBL1 LAMBL1 pUtDU2 SPLINE | [TursL2 |
: | et
Y Y I - I ouipu2
TRANS BUBH LE INPOL
y Y
INPOL BUBLE1
: ., { |
Y i Y R ¥
TRANS BUBBLE INPOL HEPA INPOLY INPOL2
Y ¥
INPOL BUBLE1

FIGURE Al1-2 Subroutine decomposltion of computer programme



£QG001)
(0002)
((eloiend]

(0004)

C0005)
€0005)
€007}
€0003)
C0009)
(0010)
(0011)
(0012)
(0013)
(0014)
€0015)
CO014)
€0017)
€0018)
(0019)
€0020)
(0021)
(0022)
(0023)
C0024)
(0025)
(0026)
0027
£0023)
{0029)
£0030)
(0031)

(0032)

CQ033)
(0034)
{0035)
C0034)
Q37
(03I}
Q0323
(0040)
(00413
(00422
(00432
(00443
(00453

100443

oonoo

ERUERELEFEXXEXEXXX%E M A I N P ROGRAM % % 2K X HHEFER

INTEGER#2 TYPE.CODEsIP1(4)} -
COMMON/BLOCK1/ALPHAsCLsCRARY XMy ZMsCHORD
COMMON/BLOCKZ/CENC(10)sCM(10) »COFP(10) sCNTCMT»COFPT
COMMON/BLOCKI/RELISTAG(10)

COMMON/BLA/ALPHAZ»KKINSI s NS2sP1 .
COMMON/BLS/XC(99)1Z(9F)+85(92)1SALIFI1CNL1(2F9)sSNL1(FD)
+T1097)+T3(79) . '
COMMON/BLE/XWLIC99) s ZWL (9T XW2(99) 1ZW2(99) sSWL (T2 1SHZ()
COMMON/BL7 /XBW1L (92) v ZBW1{99) 1+ XBW2(I9) +ZBWZ2(99)
COMMON/BLE/VNI(Y?F) sVNZ(922 2 VTL1 (993 VT2(99)
COMMON/EBEL2/VUWL (990 s VLWL (793 yVUWZ2(97) sVLW2(99)
COMMON/BLLO/GAMVLI (293 yGAMVZ(F7) +»GAMSL1(79) +GAMB2(99)
COMMON/BLIL1/GAMVILI(97) »GAMVZZ(9721GAMSE1 (990 yGAMSRZ2(7D)
COMMON/BL1IZ/SNWL (7732 SNW2(99) yINWL (79> s CNW2(99)
COMMON/BLIZ/TULLI(?9) s TWIS(29) s TUZI (99 THZ2I(99)
COMMON/BLLI4/GNVI (299990 sGNVR(?7392926TVL (7939931 GTV2(99+97)
COMMON/BLIS/GAMAC(?2)+VTOTL(29)
COMMON/EBL1A/TINSHINSTINIsHINI»TIN2SHINZ2,»TINS+HIN3 \
COMMON/BEL17/7XBAR(Y7)»ZBAR(IT)

COMMON/BL12/CP(99)+CF(F?)

COMMON/EBLIQ/KN(10)

COMMON/BLZO/ ITRACE

COMMON/BL2I/PHICIO)

COMMON/BLZ23/IPAR

COMMON/BL24/RESA4 (79 +MAN1 s MAN
COMMOMN/BLZ25/CDUL»CDUZ2.CDL1,CDL2

-DIMENSION VMI1(29)yVM2(29),
HWICP?)SVBLI?9) s VHLI(99) VW2 (2?3 CAPC10)+CNP (10 yCMPCI0)
+H(?272,G(992CAF (100 sCNF (1Q) yCMF(10):D(4140) s IARRAY(43) s
+XPCRYI S ZP (W DELX (I 2 DELZ () H»L(10) s X100(27) s Y100 (97) »DUDS(IY)

SINSERT SYBCOMYKEYS.F
SINSERT SYS5COM)ASKEYS

P62

97EE

WRITE(1:9948)

FORMATC(//+’ PLEASE ENTER TYPE OF ANALYSIS REGUIRED ie I ar O
READ(1s%)IPAR

WRITE(1199246) :

FORMATC(//+" TRACE ON 1 %**% TRACE GOFF 0'+//)

READ(1+%3 ITRACE

WRITEC(1+202)

FORMAT(/»" PLEASE ENTER DATA FILE NAME’1//)

READ(1:20401IP1
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7))
i2)
12D
Q)
11)
2
P
T: 3
i52
1)
37)
123
39
20
213
w2
233
24 )
33)
2k )
27)
58)
593
703
71)
72)
733
74)
793
7&)
772
78)
79)
202
EP )
323
23
34)
357
35)
37
39)
3
707
71)
72)
73)
74)
73)
7&)
77}
782
793
20
2l
22)
033
043
05>
053
07>
08>

204

9964

200

4000

4500
4002
3500
S10

512

220

315

]

11

13

525
S20

2001

FORMAT (&A2)

CODE=0

CALL SRCH$$(K$READsIP1:+12+1,TYPECODE)

CALL ERRPR$(K$NRTN:0:01050)

WRITE(129964)

FORMAT(/+' PLEASE ENTER UUTPUT FILE NAME? »//)

READ(1 42043 1IP1

CALL SRCH$$(K$WRIT1IP1,12:2,TYPE,,CODE)

CALL ERRPR$(KENRTN10101030)

IF{IPAR.EQ.1)GOTD 4002

WRITE(1+200) : .
FORMAT(//+10Xs* AEROFOIL. GEOMETRY OR PRESSURE DISTRIBUTION 27 /7y

+9X+*TYPE 9% FOR THE FIRST OR 99 FOR THE SECOND’//)

READ(1s%)IP
WRITE(1+4000)
FORMAT(//’ PLEASE ENTER TITLE BF X-AXIS OF SECTION PLOT?)
READ(1+450C) IARRAY
FORMAT (4BA1)
CONTINUE
WRITE(1,510)
FORMAT (//+' PLEASE ENTER AILPHA - CBAR - XM -IM - MO ')
READ(1 s %3 ALPHAYCBARs XMIM+RMO
WRITE(1,512)
FORMAT (//»’ PLEASE ENTER REYNOLDS NUMBER BASED ON UNIT CHORD’ s//

- READ(1 s*)RE1

CHORD=LBAR

WRITE(&2220)ALPHAYREL

FORMAT(//17 ANGLE OF ATTACK=" yFS.2+10X+’RE="sE12.74://)
RMOSQ=RMO*RMO '

BET=80RT (1-RM0OSQ)

WRITE(1:515)

FORMAT(//+' PLEASE ENTER TOTAL # OF COMPONENTS EG.FLAPS ETC’ s/
READC(L s *#)NT

NT=NT+1

DD 7 K=24sNT

READ (Ss #IKN(K)

CONTINUE

L(1)=0

KN{1)=0

DO S K=2NT .

KNCKY=KN(K-1)+KN(K)

L () =KN(K)

CONTINUE

KK=KN{NT)

IF(IPAR.ER.1)6G0OTO 11
IFCIP.EQ.77)READCS s #) CX(K) 2 Z(K) sG(K) s K=11KK)
IF({IP.ERQ.9)GOTO 11

GOoTa 13

CONTINUE

IF(IPAR.EQ.1)KK=KK+NT-1

READ(Sy %) (X (K) »Z (K] sK=11KK)

KK=KN(NT)

REWIND G

RAD=0.01745327232

IFCNT.ER.2)G0 TO 10

JJI=NT=-2

DO 520 K=1.JJ

WRITE(1:3523) .
FORMAT (/" PLEASE ENTER XP(K) +ZP(K) »DELX(K) sDEL(Z) »PHI(K)" )}
READ(1 s ¥)XP(K) +ZP(K) +DELX (KD s DELZ (K} s PHI (KD
WRITE(&632001)KaXP(KI +ZP(K) yDELX(K) s DELZ (K} s PHI(K)
FORMAT(/+I313Xs" XP="1F3.5+3Xs " ZP=" 2F8.593X s’ DELX="1F8.5>
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{01093
(0110)
(0111)
(0112)
(0113
(0114)
(0113)
(0116)
€0117)
(0118)
o119
0120)
(0121)
(0122
£01232
Q124>
(0125)
(0126)
€0127)
(o12e)
o1z9
C(OL30)
(0131)
(132D
(OL332
(0134)
(0135
CO134&)
(Q137>
(0132)
(01393
(0140)
0141

0142y

£0143)
{Q144)
(0143)
(01443
€0147)
(0148)

(014%2).

(150D
(0151)
(0152
(0133
(Q1o4)
Qi35
(Q134D
(0157
(0152)
(0159
01560
(0161)
(0162)
(01563)
(01&4)
(01465)
(01464)
(01467
(0163
CO1569)
C0170)

14

99£0

123

10

+3X s DELZ=" +F8.5+3Xs? PHI=" sF5.2s"Deqg’ )
NR2= ' '
IF(JJ.NE.L1)READ(Ss®)INK2 .
NRK2=NK2-1 :
NK1=1

DO & II=NK1:NK2
ALPHAD=PHI(II)*RAD
I=KN(NK1+1)+}§
J=KN(II+2)
IF(IPAR.EQ.1)I=KN(2)+2
IF{IPAR.EQ,1)YJ=KN{(3)+2
CP10=COS5(ALPHAD)
SP=SINCALPHAD)

DO & K=IyrJ
XCKY=XP(II)-X({K)
ZCKI=IPCIIN-Z (K} .
ALPHAD=XPCIIJY+DELXC(II)~-X(K)*CP10G-Z(K)*5P
ZCKI=ZPC(IIY+DELZCITI )+ X (K)*SP-Z(K)*CP10
X(K)=aLPHAD

CONTINUE

MM=KK

IF(NT.EQ.3)MM=KK+2

HWRITE(LH 1240 LT X(I)2ZLI2sI=1+MM)

FORMAT (10X I3sS5X+F12.7+SXsF12.7)
IFCNT.ER.2)GOTO 125

IKI=KN(2Y+2

IK2=KN{3)+2

iVAR=IK2

CONTINUE

IFCXCIVAR) LT.X€1)2260TO 124

IVAR=IVAR-1 .

IF(IVAR.GE.IK1)GOTOD 123

iIFLAG=0

GOTa 125

CONTINUE

IFLAG=1

ISTORE=IVAR

CONTINUE .

1IFCNK2Z.ER.JJIGATO 10

NK1=NKZ+]

NK2=JJ

GO TO 14

CONTINUE

ALPHAD=ALPHA

ALPHA=ALPHA*RAD

ALPHAZ=ALPHA

IF(IPAR.EQ.1)G0OT0496

IFCIP.ERQR.29)GATO 4979

CALL CV(X1Z+1SsT11 T3+ XBARSZBARYHsD1GyKNIKKINT1K3)
GOTO 498

CONTINUE

DO 34 JJ=2sNT

R3I=KN(JJ~1)+1

Ka=KN(JJ)

DO 36 K=K3i:1K4

J=K+1 '

IF(K.EQ.KA)YJ=K3

Si1=X(J)y-X{K)

S3I=2(J)-2(K)

S(K)=5BRT(S1%S1+53%53)

TL(KI=51/5(K)

T3I(K)I=53/5(K)
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1> 36 CONTINUE

2) - RKZ=0

3) KS=K4-4

43 K&=K3+3

23 ‘ DO 40 I=Ké1KD A0
&) IF (G(I).GT.RK3)I2=I

7) IFC(G(I).GT.RKIIRK3=G(ID)

2) 40 CONTINUE
?) 34 - - CONTINUE

03 DO 38 K=1:+KK

13 - D(KI=5RRT(1-G(K))

23 IF(K.GT.I2)D(K)=-D{K)

3y 38 "CONTINUE

4) CALL CC(X+Z15sTL»T3IsD1KNsKKyNT)

2} 494 CONTINUE )

&3 IF (NT.EQR.2)GOTO 102 :
73 CALL WAKEG1(ISTOREsIFLAGsKNsXWisZW1L)
83 CALL WAKEGZ2(KNs+NT1XW2+ZUWZ)

2y C CALL PLOT1C100sNTyX100:Y1Q0»0)

oy GOT0 70 '

1) 102 CALL WAKEGZ2(KNsNT»XW1sZW1)

2y C CALL PLOT1C100sNT»X100+Y10010)

3 70 - CONTINUE

4) WRITE(1:250)

53 250 FORMAT(10X+"ENTER No OF ITERATIONS (NITER}Y RERQUIRED'//»
&) +20Xy72(= NITER (= 8'7/)

7) READ(1 s #)NITER

=] NITERI=NITER

) IF(NT.GT.2)NITERI=NITER-1
o DD &4 ITER=!.NITERL

1 WRITE(&L19990) ITER

2) WRITE(1+9990)ITER

3) 9990 FORMATC(//+SX+7 ITERATION No ="312+//)
4> CALL PO2CO01(ITERsNTsKN)

3 IFCITER.GT.12G0TO 84

&y NK=1

7Y DO 84 I=2¢NT

) KRE=KN(I-1)+1

ey K4=KN(I)-1

0) DO 386 K=K3:1K4

1 SA1=XRAR(K+1)-XBAR(K)

23 SAZ=ZBAR(K+1¥~IBAR(K)

32 A SACK)=BBRT(SP1*5A1 +5AZ*5A2)
4 C WRITE(1,11123)NK»SACNK)

9 11123 FORMAT (13+3X:F12.7)

&)y C NK=NK+1

7y 86 CONTINUE
8 &4 CONTINUE

73 CALL DPRIVELI(ITERINT), KN)

0) IF(MAN.LE.Q)GQTO 44

1) - IF(MANI1.LE.0)GOTOD 44

2y C CALL PLOTIC102sNT»X100+Y100yD)

) NS10=NS1+1

4) WRITE(&s99946)

5) 9994 FORMAT(///7+37X»" GAMV1? 35X GAMS1T 15X GAMV1I1" 95X " GAMB11" +/ /)
&) - WRITE(&Ls9993) (GAMVI(IS) »GAMB1 (IS +GAMVI1C(IS)»BAMBLI1(IS) s I5=13NS1
7) ) CALL DRIVE2CITERNT)

2) IFLAG=0

?3 IF(NT.EQ.2) IFLAG=]

23 DO &4 I=1:NSi

13 . VMLICD)=8ART(VTICII®VTLICIX+VNLICII®VNICI))

23 VUWLICI) =M1 (D) +GAMVI(I) *.5
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»/
1: 3
35
R&)
§7)
($=D)
9
107
11)
12)
13
143
153
1463
173
12
19)
303
31)
2
33
38>
335)
3&)
37
35)
393
50)
51)
52)
3
543
557
&)
57)
52D
597
7
713
723
73)
743
79
74&)
773
7533
797
830)
21
22)
83)
242
35
24)
873
am
a9
907
F13
92)
933
243

66
9994

9993

VEWIAVLIL=YOILVLITURIIVLIANLI Tasd

CONTINUE
WRITE(4692994)

CFORMATC(///7323X e VML? 18X UN1T 28X " VTL 16X VUKL 56X VLWL 4 /7)

WRITE(&+ 9923 (VML C(ID)yVUNICIS»VTLIC(IS) »VUWLI(IS)»VLWICIS) 1 IS=1sNS
FORMAT (26X 1F8.4+2XF8.412X1F8.432X+F8.4+2X1F8.4)
CALL WI1W288(GAMV1GAMS1:129NS1+0)

C *x** GAMVI GAMBY are the sxngularxty values at the panel ends of WAl

£

9929

9995

9987

Ké&=KN(2)/2+1
caLL NINESICXNIvZNl,GAMV11|GAM811|0.10.1N81:0)
IF(NT.EQ.2)CALL WAKREL (XW1sZW1sVT1sVNIWNELD)
IFCIFLAG.EQ.1)GOTG. 104
DO 68 I=1i1NS2
UM2CI)=SRART(VT2 () *VT2CId +UNZ2 (1) *VN2(1))
VUWZ(IY=VM2(I+GAMVZ2(1)
VLRZ(I)=VMZ(I) GAMVZ(I)
CONTINUE
N510=NS2+1
WRITE(4399E9)
FORMATC(/// +37X+7 GAMV2 13X " GAMB27 15X » " GAMV22 45X ? GAMS227 1/ /)
WRITE(&y7995) (GAMVZ (IS GAMS2(ID) s GAMVEZ (I5) +GAMB22(IS) +IS=1NS
FORMAT (35X sF7.4:3X9F7.813X1F8.412X+F8.4)
WRITE(&49987) :
FORMAT(//7 /728Xy TVM2? +8X " VN2 18X " VT2 186Xy " VUNZ? 16Xy "VLIW2 v/ /)
WRITE(6s2293) (VMZ(ISIsVNZ2CIS)sVT2CIS) 2 VUNZ(IS) +VLRWZ(IS) s IS=1sNS
- CALL W1W28S(GAMV2,GAMS2y29NS251)

C *x*%%* GAMVYZ GAMS2 gingularities at panel ends of WAKEZ2

104

64

72
106

74
110

298’
500

KA=KN(Z)+ (KN(3)-KN(223/2+1
CALL WIW251(XW2yZW2sGAMVZ2GAME22+0yRESA(KL)Y ' NS241)
CALL WAKREL(XWisZW1+VT1:1VNLIINS1)
CALL WAKREL (XW2yZWZ2sVT2+VN2INE2)
CONTINUE
CALL PLOTI(100:NTsX100+Y100,0)
CONTINUE

IF(NT,.EQ.2)G0OTO 110
CALL DRIVEICITER:NTi1KN)
CALL DRIVEZCITERINT)
DD 72 I=14N51
VMICI)=BURT(VTLIC(I)*VT1(I)+UNLICII*VNLCID))
VUKL (I)=VMIC(I}+0AMVIC(I)*.S
VLWICI)=VMLI(I)-GAMV1(I)*.5

CONTINUE
CONTINUE

DO 74 I=1sNB2
VM2(I)=8SAGRT(VT2C(II*VT2C(I)+VNZ(II*VN2(1))
VUWZCTI=VM2 (I Y +6GAMV2(T)

VLW2(I)=VM2(I2- GAHVZ(I)

CONTINUE

CONTINUE

CALL CNXCLD(CAPsCNPsCMPsCAFsCNF sCMFyCATH»CNT s CMT1CLAKNINT)
GOTO 300

WRITE(1:3500)

FORMAT(//" IS HEADING AND PARAMETERS LISTING RERUIRED ?7)
READ (1 *3Mb

IF(M6.LT.1IG0 TO 401

WRITE(1,22)

WRITE(1124)
NRITE(Is??)ﬁLPHAD;CBARaXMsZH!RHO!CL
IFCNT.ER.2)GOTO L2

WRITE(1+503)

FORMATC(1H )

WRITE(1:22)
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&) WRITE(1+30)

97y - JI=JJ+1

92 IFCIPAR.ER.OIWRITE(1+25) (CNCK) yCMCK) s COFP{(K) yK=1+1JJ)
99y 12 IFCIPAR.EQ.QIUWRITECL1y32)CNT+CMT+COFPT |

o) WRITE(1+504) : _ .

1) 50& FORMATC(IH 1)

02} IFCIPAR.ER.1DGOTO 300

03} 401 WRITE(1s3501) )
043 501 FORMAT(1IH »* 1S DETAILED LISTING REQUIRED ?'3

05) READC1 sy %)M7

06) IF(M7.LT.1>G0 T4 400

G7) WRITE(1s23) '

08) WRITECL373%XC1)+2(1)2DCEY+GC1)CP1O

o) DO 7 JJ=2sNT

103 I=KNCJJI-1)+2

11 J=KNC¢(II)

123 DO 15 K=I+J ‘

13 CP1O=G(K)/ (BET+RMOS@#G(K) /{2% (1+BET)))

143 . WRITEC13373XCKIsZ(K)»DCK)YsGC(K)sCP10

15) 1S5  CONTINUE

14) WRITEC1+8)

17 7 CONTINUE

18) 8 FORMAT C 1HO)

12) 22 - FORMATC(IH »10X%,"TWD DIMENSIONAL INVISCID FLOW COMPUTATION)
20) 26 FORMAT (SOH 1 )

213 23 FORMATC(1HO 46X 1HX 113X 1HZ+13X14AHV/VO» 10X »IHCPI 11X +3HCPC)

22) 24 - FORMAT(1H +SF14.6)

23) 25 " FORMATC(1IH +3F14.6)

24 27  FORMATC(1H " ALPHA=? sF7.4s3X ' CBAR=" yFE.3+3Xs" XM=" sF5.2+,3Xs’ IM="T
Z25) 1 FS.2:s3Xy*MO="yF5.313X"CL="+FB.5)

26> 37 - FORMAT(1H »5F14.6)

27y 30 FORMATC(LIHOy7X 1 ZHCN 12Xy 2ZHCM» 10X 6HC.OF P / 1Xv12HPER AEROFGIL)
28 32 FORMATCIH +7XsZHCN2 12X 92HCMy 10X s &HC.OF P / 1Xy7HDVERALL 7 1X
293 1+3F14.6)

=0) 92 FORMAT(1HO7X 1 2HXP s 12Xy 2HZP» 11X s AHDELX 10X+ 4HDELZ s 11 X+ 3HPHI)
31y 400 WRITE(142%)

32y 29 FORMATC///v14Xy’ INCOMPRESSIBLE VISCOUS CALCULATION® +/7/)

33D IFCIPAR.ER.OICALL BLCALCC(GY»DySsKNIKKsNT» IPARYDUDS)
34) WRITE(1+100)

33 100 FORMATC(1H +7 I8 PLOT REQUIRED ?°)

34y READ (1, %3M3

37 IF(MS.LT.1260 TQ 300

Z8) . ALPH1=ALPHA*120/3.1415926534

z9) WRITEC(1 2999

403 2999 FORMAT(//»10X»’ENTER DEVICE YOU WANT TO USE FOR PLOTTING'//»
a1) 123X, VDU . :

42) 223%»” TREND 2"/

43> 323X+ TEKTRAONIX 3"/

44> 423Xy C10351IN avs//)

453 READ (13 *)Mé

453 - IF(M&6.ER.1ICALL VDU

473 IF(M&.EQ.2)CALL TREND

483} IF(M&6.EQ.ZICALL T4010

423 IFtM&.ER.AICALL C1051IN

—0) CALL PENSEL(1:0.0+0)

S51) CALL AXIPLOC(Qs120.5120.131291291290.91.29-0.410.627X"10,472/0° 13
523 CALL GRAMOV(.2+-0.65) :
55) CALl. CHAAL(IARRAY»48)

24) CALL. PENSEL(2:0.0,Q)

25 © CALL PLOTCX»Z LaNTsKK)

563 .CALL PENGEL(1+0.0+03
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03533 CALL AXIPLO(CO3120.9Y635+3524129K47-110.91.2+4Y33+-Y35"N" 0
03593 ' ‘1 GAMMA® +3)

Q3602 CALL GRAMOV(.3+Y¥35-3.5) ) '
034613 CALL CHAHDOL(3Z2HVORTICITY DISTRIBUTIDN " X/C%,.)
03462) CALL PENSEL(2+0.0,0) . X

03863 CALL PLOT(X1DyLNT1KK) '

034643 CALL PENSEL(14+0.0y0) '

Q34652 CALL MAX(G:KK1YAS1Y461K47sYOS1YS6sYST79YED)

03663 CALL AXIPLOCOs120.9Y6513921129KA790,91.291.9Y3S?X/C" 10+ CP?
034673 - CALL GRAMDV(0.15:+Y56)

03468) CALL CHAHOL(33H 2D INVISCID INCOMPRESSIBLE FLOW *.)
03592 CALL GRAMDV(.4:YS7)

0370} CALL CHAHOL (16H CDMPUTATIDN*.)

03713 CALL GRAMOV(.3:-0.3)

0372 CALL GRAMOV(.3»2.3)

0373 CALL CHAHOL(3ZHPRESSURE DISTRIBUTION X/7€%,)
0374) CALL GRAMOV(.2+-Y44)

03753 CALL CHAHOL (19HANGLE DOF ATTACK =*.)

0Z7¢&) CALL GRAMOV(.73:-Y46)

Q377 CALL CHAFIXC(ALPH1+5:2)

0372) IF(PHIC1).ER.0Q.0)6G0TO 302

037 CALL GRAMOV(.2,-Y435)

0330 CALL CHAHOL (19HFLAP DEFLECTION —*.)

0321> EALL GRAMOV(.75s-Y45)

0332 CALL CHAFIX(PHIsd4,1) !

0323> 302 CALL PENSEL(2+s0.0,0)

0Z24) CALL PLOTC(X+GysLsNTsKK)"

N3E3) CALL DEVEND

032s) 300 WRITE(1:3000)
0387 3000 FORMAT(1H »*WOULD YOU LIKE TO RUN THE PROGRAM AGAIN ?27)
D352 READC1y%)MLD

0339} IF(M15.GE. 1) GOTO 3500

03703 CALL EXIT

N3913 END

0392 C

0393 €

N3IF4) [ EEXENFEEXRFREERAXEXE § U B R OUT I NE O FHEAEXAREERXEXFEEER
03953 C :

0394) €

0397 SUBROUTINE CV(X+Z»SsT1 T3+ XBAR1ZBARHID»GIKNKKINT K3
N393) COMMON/RBLOCKL /ALPHAsCLyCBARY XM+ ZMs CHORD

0399 COMMON/BLOCKZ/CN(10) yCM(10) sCOFP(10) sCNTsCMT+COFPT
04003 COMMON/EBL20/1ITRACE

04013 DIMENSION X(KK) s Z(KKI1SC(KK) s T1(KK) s TI(KK> 1 XBARCKK) y ZBAR(KK) »
04023 1HCKKY yDCKZ) 1 G CKK) yKNCNT)

0403) IFCITRACELEG. 1DWRITE (419999

0404) 9999 FORMAT(//,* SUBROUTINE cv v/

D40S) PI=3.1415926534

D404 EPS=1,E~06

04073 DO 19 JI=24NT

0408 . KI=KN(JJ~1)>+1

0409). Ka=KN(JJ}

04103 DO 1 K=K3,K4

04113 J=K+1

D412y IF(K.ER.KA)I=K3

04133 . S1=X(J)—X (K>

04143 - 8§3=2(J)-Z (K}

nais) S(K)=S5RRT(51*51+53%53)

0414> T1(K)=51/5(K)

04173 T3tKI=B83/5(K)

0418) XBARCK)I=(X(JI+X(KI))*0D.5
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0420) H(K)=81

(0421) G(K)=83
(0422 1 CONTINUE
(0423 19 CONTINUE :
(Q424) 51=C0S5 (ALPHA)
(0423) . 83=SINCALPHA)
(04248) J2=KK-1
ceazyd WRITE(1+123)

(0423) 125 FORMAT (/747 IS CHECK ON INFLUENCE COEFFICIENTS REGUIRED ?7)
(0427 ’ READ (1 s %)X MML

(0430) WRITE(1+334)

(0431) 334 FORMAT(' IS LISTING OF INFLUENCE COEFFICIENTS REQUIRED 2')
(0432) READ(1s*)MM2

(0433 DO 4 J=1+KK

(04343 DO 3 JJ=2iNT

(0435) SAVE=0

(0438) KI=KN(JJ-1)+1

(0437 Ka=KN(JJ)

(0432) DD 2 K=K3sK4

(043 A1=(XBARCJ)-XBARCK) ) /S(K)
(0440) A3Z=(ZBARCI)-ZBAR(K) Y /S(K)
(0441) ASO=A1*A1+A3*AT+0.25
€0a42) F=A3*T1(K)-AL1*T3(K)
(0443 FM=ABS (F)

{0444) E=A1*T1 (K)+A3Z*TI(K) '
(0445) EA=0.5-E

(0444) EB=0.5+E

(0447} IF(FM.LT.EPS)GO TO 10
(0448) U1=F/FM

(04493 THETA=ATANCEA/FM) *U1
(0450) THETB=ATANCEB/FM) *U1
(0451) 60 TO 11

(0452) 10 U1=2*ABS(EA)

(0453 U2=2*ARS(EB)

{0454) THETA=EA*P1 /U1

£0455) THETB=EB*P1/U2

(04546) 11 T=THETA+THETB

(0457) RNUML=ASQ~E .

(0452) IF(RNUML.LT.EPS)GO TO 12
(0459 DENL=ASQ+E

(0460) IF(DENL.LT.EPSIGO TO 12
(04a61) RL=0.5%ALOG (RNUML/DENL)
(0442) G0 TO 13

{0463y 12 RL=0.0
(0464 13 L FT=F*T1 (K)-E*T3(K)

(0465) ET=E*T1 (K)+F*T3 (K)

(0466) A=T*T1CK)

(0467) B=RL*T3(K) ,

(0448) C=T*T3(K)

(0469 A1=RL*T1(K)

(0470} U1=A-B

(0471> W1=C+Al

(0472} UZ=T#ET+RL*FT-T3(K)

(0473) W2=RLAET-T*FT+T1(K)

(0474> A=UL*TI(T)-W1*T1CT)

(0475) B=U24T3(J)-W2*T1(J)
(0478) A=A%0.5 <

(0477) G(K)=A-B+SAVE -

(04783 SAVE=A+B

€0479) IF (MM1.ER.0.0)GOTD 2

(0420) IF (ABS(GC(K)).LE.0.001) WRITE(1:120)TsJJ K3 1K4 K1G(K)
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131)
132)
183)
1243
125)
186)
187)
138)
133
1907
9L
192
193
1243
1953
A9&)
1973
1932
199
5000
3013
3022
305
5042
5035
504D
3072
3083

309 .

3100
311)
312)
313)
3147
313)
il1é)
317)
512)
319
3200
3210
322)
323)
324)
3233
32&)
3273
328>
3297
330
331
332)
333
334)
5353)
334D
337
332
3392
403
541%
342)

120 FORMAT(1H 2 J=" s 1342Xs" JI=" 2 I392X s K3=" 1 132Xy " KA=" s IZ+2Xy
I"K=" 2 I332%2G(K)I=" +FB3,.6) :
2 CONTINUE ,
: G(K3I=G(KI)-SAVE . _ o,
3 CONTINUE '
DENL=2%¥PI# (S1%T3(J)-S3%T1<(J))
KZ2=KK+1
G(K2)=-DENL
IF(MM2.EQ.0XGOTO 334
KK2=10*INT(K2/10Q)
WRITE(1+338)J )
338 FORMAT(* J="+13)
DO 50 KM=1:1KK2+5
KMi=KM+1
KM2=KM+2
KMI=KM+3
KM4=KM+4
WRITECI s33TZIKMGIKM) v KMI s GCKMLY 1KM21G(KM2) s KMI+G(KM3)Y yKMA s G (KM
333 FORMAT(S O G 1 I3+"=" yF10.731X))
SO CONTINUE .
<~  KLi=KK2+1
KL2=KK2+2
KLI=KK2+3%
KLA=KK2+4 , i
KL5=KK2+5
KL&=KK2+46
KL7=KK2+7
KLE=KK2+8
KL9?=KK2+9
WRITE(1s333)KL1 G{RKLL) yKLZyGC(KL2)Y sKL3»G(KL3)sKLAY
1IG(KLA) sKLS s G(KLS) 1KL&sG (KL A) +KL7yG(KL7) 1KL8s
IGCKLE)Y s KL? G (KLY '
WRITE(1:+345)
345 FORMATC(LH 1)
3346 IF(J.NE.1)GD TO 150
DO 131 K=1s+KK ‘
D{Ky=~G(K+1)/G(1)
151 CONTINUE
GO TD 4
150 L=J-1
KD=KK-1.+1
RE=KD-1
DENL=G(J)
DO 160 I=14L
160 DENL=DENL+G(IXY*D(I*KD-KE)>
DO 152 K=1:KE
RNUML=G(K+J)
DO 1461 I=1.L
RNUML=RNUML+G(I) %D {I*KD~-KE+K)
161 CONTINUE
H(K)=-RNUML/DENL
152 CONTINUE _
DO 153 I=1,L
P=D(I*KD-KE}
DO 154 K=11KE )
DCCI-1)*¥KE+K)I=H(K)*P+D({I*KD-KE+K)
136 CONTINUE
153 CONTINUE
DO 154 K=1.+KE
D{L*KE+K>=H{K)
154 CONTINUE
a4 CONTINUE

&
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443
i453
4L
472
i48)
i3
F=1¢ D)
iS5
92D
53D
943

i5S5)

1563
i57)
iS58
i59)
360D
1)
622
63D
64l
i63)
164
3673
3683
367
3700
71D
372D
3735
3743
i75)
i7&)
377}
378>
37
3200
381
332
383
i284)
325
584)
327)
3853
589
3903
321}
3923
323}
574
375)
i9&)
377D
398)
379
500)
501)
2023
503
043

GCKY=1-D(K>*DCK)_
16 CONTINUE
CALL CC(X3Z1SsT1sT31D1KNIKKINT)
RETURN |
END -

FEEARXNXEXXFXAAXX*%% S UBROUTINE Q2 FEXRERERNERNEXER RS

o0Oaon0n

SUBROUTINE CC(X1Z+S+T19T3sD1KNyKKINT)
COMMON/BLOCK1 /ALPHAsCL+CBARY XMy ZMs CHORD
COMMON/BLOCKZ2/CNC10YCMC10)yCOFPC10) sCNTyCMT»COFPT
COMMON/RL20/ITRACE
DIMENSION XCKK)sZ (KK sSCKK) s T1CKK) s TICKKY sDCKK) +KNCNT)
IFCITRACE.EQ.1D)WRITECS519999)
9999 FORMATC(//y*SUBROUTINE CC *//)
CMT=0.0 '
CNT=0.0
DO 111 L=2,4NT
I=KN¢L—-13+1
J=KN(LY~-1 . .
DIR=X(I)-XCI+1)
DO 112 K=I.J
IFCCX(KY-X(K+1))*DIR.LE.O.Q)GOTO 113
112  CONTINUE
K=J
113 KLE=K
EX=X(I)~-X(KLE)
£Z=72(1)-Z(KLE)
C=SART(CX#CX+CI*CZ)
Li=L~-1
CN(L1)=0.0
CM(L1)=0.0
I=I+1
DO 114 K=I+J .
Ki1=K+1
A=D(K) #D(K)+D (K> #D (K1) +D(K1>*D(K1)
CNCL1)=CNCLI)+SCK) %A% (TL(K)*CX+TI(K)I*CZ)
CMCL1)=CMCLII+SCKI*¥(A/3. 0% C(XM=0.5% (XCKY+X (K1) I*TL(K)+(ZM~0.5:
1CZOKI+ZCKID DI %TI(KI ) ~(DCK13%D{K1)~D(KI*DC(KI ) *SCKI/12.0)
114  CONTINUE
ENCL1Y=CNCL1) /7 (3%C*C)
CMCL1)=CMCL1) / (CRAR*C)
IFCARSC(CNCL1Y) . .LE.0.000001)GOTO 1146
COFP(L1)=—~C(CM(L1)%CBAR/CN(L1)~(CZ*(ZM—-Z (KLE}>+CX* (XM=X (KLE))) /I
GOTO 117 '
114 COFP(L1Y=1000,0
117  CONTINUE
IFC(L.NE.2)GOTD 115
RNX=-CZ/C .
RNZ=CX/C -
115  CNT=CNT+CN{L1)#* (RNZ*CX-RNX*CZ)
CMT=CMT+CM(L1)*C
111 CONTINUE
CNT=CNT/CBAR
CMT=CMT/CBAR
10=0.0
X0=0.0
IF(ABS(CNT).LE.0.000001)G0TO 118
COFPT=—~(CMT*#CBAR/CNT+RNX%(ZM~Z0) —RNZ# (XM~X0))
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3603)
2604
2607)
0608)
2609
0565100
0611)
06123
06133
26143
0615)
D616)
0&617)
0612)
0619}

D&203

D&E2L)
0622)
06220
2624)
2623)
2E)
A627)
3628)
1629)
630D
IG3L)
1632)
3633)
2634)
633
J634)
JE3T)
16383
Y637
2640)
16413
642D
1643)
1644)
16473)
J644)
Y647)
1648)
1549)
LS50}
W651)
J6TS2)
16533
16543
16553
2E5L)
Yo T)
1658)
16593
164600
61D
1662)
1663
16564)
16465)
664D

" 6oTo 119

118
119

17

ooDono

9999

oonon

9797

10

COFPT=1000.0

CONTINUE

CL=0.90 -
DO 17 L=2NT '
T=KN(L~-1>+3

J=KN(L) -2

DO 17 K=I+J
CL=CL+S(K)*#(D(K+1)+D(K>)

CONTINUE

CL=-CL/CBAR

RETURN

" END

ERERFXEFXXXXRXAX*E%* S UBROUTINE IREE T EITT TR L E ST LY

SUBROUTINE PLOT(XsZsLyNTsKK)
COMMON/BL20/ITRACE
DIMENSION X (KK)1Z (KK} yL(NT)
IF CITRACE.ER. 1)WRITE(S9999)
FORMAT(//y’ SUBROUTINE PLOT *7/)
DO 1 I=2NT '
K30=L (1)

11=1-1

K20=L(11)+1

CALL GRAMOV (X (K20)1Z(K20))
DO 2 J=K20:K30

CALL GRALIN (XCJI31Z(J))
CONTINUE

CALL GRALIN(X(K20)sZ(K20))
CONTINUE

CALL PICCLE

RETURN

END

HEEXEREREEEREERFERNERE G UBROUTINE 04 HHEREEXEFEEHAX %X

SUBROUTINE MAX(X>KK1Y451Y461KA7 Y551 Y4 Y572 Y45)
COMMON/EL20/1TRACE

DIMENSION X (KK)

IF (ITRACE.ER. 1)WRITE(419999)
FORMATC(/ /2" SUBRQUTINE ~ MAX 7//)

DO 1 I=1:KK

IF(YAS.GT.ABS(X(I)))GOTO 1
Y45=AES(X(I))

CONTINUE

YS5=-INT(Y45) -2

YS4=Y55-3

Y57=Y55-2

Y44=Y45+1

YAS=INT(Y45)*#10+20

KA7=Y44+2 :
WRITEC1110)Y451Y461KA71Y551Y563Y571Y563
FORMAT(1H 17F14.6)

RETURN

END
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"
3)
?)
»
Ly
2)
53
»
5)
5
7>

?)
3)
Ly
2)
3)
1)
53
5)
73
3)
3
2)
1)
2)
3
45
5)
5)
7)
2)
23
0)
1)
2)
2)
4>
5)
5)
7
)
2)
0)
1)
23
2
45
5)
6)
7)
)
23
o)
1)
2)
23
4>
5)
)
73
)

HHEEEERXNAFFXXRAXA® § U B ROUTINE IR T T T E T FET T EFETYE

nonon

SUBROUTINE BLCALC(GsD1S»KNIKKyNT» IPARDUDS)
COMMON/BLOCK3I/RELISTAGCL1O) -
COMMON/BLI&/TINsHINsTINISsHINLIyTINZ2sHIN2sTINI+HINS
COMMON/BL1S/CPC(929)sCF (9

COMMON/BL17/XBAR(99) yIBAR(?9)

COMMON/EBL20/1TRACE
COMMON/BLZ25/CDUL+CDU2+CDL1YCDL2

aoon

DIMENSION G(KK> sD(KK)Y 1S(KK) yKNC10) ySUCTF) 1SL(99) sUUP(99) yDUUPL (Y
1+DUUP2(99) yULC(99) sDULIC(99) +yDUL2(99) yDEL1(99) yDELZ2(99) +DUDS (99}
IDELTLL(99) +DELTL2(99) 1H1Z¢99) yDDSUL9F) 1 DDSL (99 1 DAMMY (99} + CFL (99
+sCFU(99) »UDSU(99) yUDSL(99) s XBU(99) s XBL(99)

IFCITRACE.ER.1XWRITEC619999)

9999 FORMAT(//+'SUBROUTINE BLCALC'//)
RE=REt
. ISTART=t
c SEARCH FOR LEADING EDGE STAGNATION POINT

DO 20 L=2:NT
S LI=KN(L-1)+1

L2=KN(L) _ '

RK3= '

Ni=L1+3

N2=L2~3

DD 2 I=N1sN2

IFCGCIY.GT.RK3)I1=1

IF(G(I).GT.RK3)RK3I=G(1)

2 CONTINUE .

ISTAG(L)=1I1

100  WRITE(1:1200)

c
C QUTPUT CP NEAR LE AND TE
c o
WRITE(1+202)6GCL1)sGC(I1-12yGCL1+13GCI1D)»G(L1+2)+6(I1+1)
WRITE(1,204)
C
C DECISION TO STGOP OR CONTINUE THE CALCULATION
C :
READ(1»*)M1
IF(M1I.EQ.OXURITE(L s204)
IF(M1.E@.0)STOP
C .

WRITE(1+214)
216 FORMATC(/ /1" ENTER LAMINAR BOUNDARY LAYER METHOD'///)
WRITE(1+218)
218 FORMAT(Z0X+*UPPER SURFACE® +11X:*LOWER SURFACE® //»
112X Curle’ »2Xa7 17 923X07 17 7/
112Xy Thwaites 16Xy 27 223Xs727///)
READ(L s ®*)NA NS
WRITEC(14+220)

220 FORMAT(//+? ENTER TURBULENT BOUNDARY LAYER METHOD® ///»

+20X»TUPPER SURFACE?s 11Xy’ LOWER SURFACE™ //»
+12X s " Head 1 10X17 17 s23%X7 17/ /1

+12X " Head-Patel " va4X 72" 1 23X72° /7 )
READC(1 s ¥ INAIN7

CALCULATE DISTANCE OF LEADING EDGE STAGNATICN POINT FRDM
THE END OF EACH SEGMENT

aann
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293
'30)
'31)
r32)
'33)
'34)
'35
'34)
'37)
'38)
'39)
'40)
'41)
r42)
4T3
7443
7453
7443
47)
74%3)
749)
750)
7513
752>
153)
154)
'55)
7543
157)
752)
'59)
160)
'61)
'52)
'63)
'64)
'65)
68 )
'67)
'68)
693
'70)
'71)
'72)
'73)
'74)
'75)
'76)
'77)
'78)
'79)
'80)
'31)
'g2)
'83)
'34)
'35)
'S6)
'37)
'38)
'39)
90)

ooon

vy REoNy!

16

20

13

40

& 0
[

UPPER SURFACE

LL2=L2-IPAR
SUM=0
SUC1>=0.0

I12=1
XBUC1)=XBAR(I1)
DO 4 I=I1.LLl2
I12=12+1

. SUM=SUM+S(I)

SUCIZ)=5UM
XBUCIZ)=XBARCI+1)
WRITE(1,123)I2:8UCI2)
FORMATC(IZ+3XsF12.7)
CONTINUE

Ki=1I2

LOWER BURFACE

SL(1)=0.0
SUM=0.

[2=1

I13=I1-1
XBL{1)=XBAR(I1)
DO & 14=L1+13
12=12+1 o
I=I1-1+L1-14
SUM=SUM+5CL) ¢
SLCI2¥=5UNM
XBLCIZI=XBARCI)
CONTINUE

Kz2=12

I2=0

DO 16 I=I1:L2
12=124+1
UUP(IZ)=ABS(DCI))

CONTINUE

IFCIPAR.EQ.1)GOTO 90

IFCABS(UUPC1) ) .GT.O. 1)UUPCI)=.1

I12=12+1

UdupPcI2i=.1

CONTINUE

12=0

DD 12 I=L1i+I1

I12=12+1

I14=I1+L1-1

ULCIZ2)=ABS(D(I4))

IFCI.ER.I1ULCI2)=.1

CONTINUE

ULc13=UUPCL) - ‘

CALL DULIDUZ (UUP»SUsDUUPL»DUUPZ K1)

CONTINUE

IF(NA.EQ.1)CALL LAMBL(UUP»DUUP1»DUUPZ2+sSUsDELLSDEL2+K1JURE+CFI
IF(NA.EQ.Z2YCALL LAMBLICUUPYyDUUPL+SUYDELIZWDELZ K1+ JUYREYCFLD)
IFING.EQ.I)CALEL TURBLICBUSUUPHYDELL1yDELZ2'DUUPL+JUYHUsREsK1sCFU)
IF(N&.EQ.2)CALL TURBL2(SUsUUPyBPEL1+DELZ2DUUPL1+JUHUIRE»K1CFU)
PO B I=1.Ki

IFCDELZ2(I) .LE.O)DEL2(I)=DEL2(I—-1)%1.2

IFC(DELICIDD) JLE.OXDELICE)=DELICI-1)+.0004&

Hi2(I)=DELIi(I)/DELZ2CI)
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791)
792)
793>
774)
795>
7343
7373

798}

792)
300
301>
302)
303
204)
305
304D
3072
202)
309)

310>
311

312)
313>
3143
315}
3143
317)
312
3122
220)
B21)
322)
3237
eg24)
823)
B243
g27)
g2
829
330)
831)
B32)
833
334)
835)
8349
837)
8399
239
240)
g841>
242)
243)
2445
845)
g44)
847>
845>
2493
850)
e513
g2

UDSUCI)=UUP{I)*DEL1CL) "
8 CONTINUE
IF(L.EQ.2)TIN=DEL2(K1)
IF(L.EQ.2)HIN=DEL1 (K1) /DEL2(K1)
IF(L.ERQ.3)TINZ2=DEL2(K1)
IFCL.EQ 3YHINZ2=DEL1(K1>/DEL2(K}1)
CDC=2,*DEL2(K1)*UUP(K13*%(, 5*H12(K1)+2 5)
IFCL EQ.2)CDUL=CDC
IF(L.EQ.3)CDU2=CDDC/.2
IF(L.EQ.2YHRITE(L22248)
IF(L.EQ.3)WRITE(L1226)
224 FORMAT(//s+” #x%ax%x%x% FIRST ELEMENT *%x%xx%%x’4//)
226 FORMAT(/ /" #¥%%%%%% SECOND ELEMENT %%%¥x%x%%"3//)
WRITE(612208)
WRITE(6:210)
WRITE(6s2 19)(IsXBU(I)1UUP(I)qDUUPi(I)sDUUP2(I);SU(I)nDELI(I)v
"1DEL2CIIsHIZ2(I) W XBUCI) »I=13K1)
CALL DUIDU2(UL+SL+DULLDULZ+K2)
IF(N5.EQ.1)CALL LAMBLCUL;DULI;DUL°nSLsDELTL1vDELTLEvK2sJLaREsC
IF(NS.EQ.2)CALL LAMEL1CULsDUL1+SL+DELTL1+DELTL21K2+JLyRE»CFL)
IF(N7.EQ.1)CALL TURBL1(SLsULDELTLI1»DELTLZsDULL1sJL+HLYREYK2+CF
IF(N7.EQ.2)CALL TURBL2(SLsULDELTLI+DELTLZ2+DULLsJL+HLY»REYK2sCF
DO 10 I=1+K2
IFCDELTL2CI) .ER.O)DELTLZ(I}=DELTL2(I-1)»1.2
IF(DELTLICI) .EQ.O)DELTLICI)=DELTLIC(I~1)+.0004
H12(I)=DELTL1C(I>/DELTL2(I)
UDSLCI)=ULCI)*DELTLL(I)
10 CONTINUE
- CDC=2.%DELZ2(K2)2UL(K2)**(.5*¥H12(K2}+2.5)
IF(L.EQ.2)CDL1=CDC
IF(L.ER.33CDL2=CDC/.2
IF(L.EQ.2)TIN1I=DELTL2(K2)
IFCL.EQ.2)HINI= DELTLICKZ)/DELTL2(K2)
IF(L.ER.3I)TINI=DELTL2(KZ)
IF(L.ER.3)HINZ= DELTLI(KZ)/DELTL2(K2)
WRITE(61214)
WRITE(6:210)
WRITE(6+2Z212) (I XBLCI>»ULCI)»DULLICI) hDULZCIY»SLCIIZDELTLIC(I)
IDELTLZ2CI) sHIZC(IX v XBLC(I) 2 I=1+K2)
CALL SPLINE(SU,UDSUsDDSUsDAMMY 1K12321)
IND=ISTART+K2~1
DO 22 I=1K1
IND=IND+1
DUDS (IND)=UDSU(I)
CFCINDY=CFUCI):
22 CONTINUE
IND=K2
K22=K2-1
CALL SPLINE(SL:UDSL»DDSLsDAMMYsK215:11)
DO 24 I= 1;K22
J=K2-1
DUDS{J)= UDSL(I)
CF(J)=CFL(I)
24 CONTINUE
ISTART=ISTART+K1+K2-1
20 CONTINUE
200 FORMAT(/ /312X’ CP Trailing Edge CP Leading Edge')
202 FORMAT (I (1SXsF10.463 15X F10.467))
204 FORMAT(//S5X+’ If CP Values Acceptable enter 1 +to continue.’//
: 1’ If programe termination is required enter 0')
2046 FORMAT (? ®%% PROGRAMME ENDS EERT )
208 FORMAT(//132Xs'U P P E R SURFACE "/

201



(0853) 210 FORMAT (1 Xa7 IT 14Xy " XBAR? 97Xy U 210Xy DUL" +EX " DU2" s2Xy' 5"
(0834) +9 10X "DELLY +8X+"DELZ2? v 10Xs*H* »8X ' XBAR 1+ /)

(08353 212 FORMATCCI3+2(2X3F2,.5)15(2X1F10.7)3+2(2X4F7.3)3)

(08354) 214 FORMAT(//+32Xs'L O W E R SURFACE"'"//)

£0857) RETURN

(0838 END
(0852 C
(028603 C
(024612 C HRERFREEEEXAEXAAX%%%% § U BROUTTINE O& %2323 % % %% %A%
(0842 €
. (08463) C '
(0844 SUBROUTINE DUIDUZ(U+S«DUL1sDU2 K1)
(QR65) COMMON/BLZ20O/ITRACE
(0244 C :
(0847) C CALCULATES DU1=DU/DS DUZ=D/DS(DU1?}
(0868) C
Qs C Dut DU2 ARE CALCULATED AT ELEMENT ENDS
(0870 C )
0871} C DU1 Dpu2 ARE CALCULATED AT ELEMENT ENDS
(03723 C FOR FIRST AND LAST ELEMENT DUl DU? ARE CALCULATED
(0873 C AT ELEMENT MIDPOINT
{0874 C ’
(0375 DIMENSION UCKLIX+SKI)sDULICKLY yDUZ2CKYL)
08742 IFCITRACE.EQR.I1JHRITE (499799
(OB77> 9999 FORMAT(//,’SUBROUTINE DUIDU2*//).
(0872 C -
(0277 C ‘
(0820 C CALEULATION OF DUl
(ogg1y C
(Qg22) DULTCI=CUC(23-UC1))I/B(2)
(B3I K2=K1-1
(0234 DO 28 I=2:+K2 .
(0B835) DULCI)=CUCI+1)-U(I-1)2/7(S5(I+13}-S(I- 1))
(OR2&) 8 CONTINUE
(0837 DUL(KI)=(U(KLI)-U(KLI-13)/(5CK1)~-S(Ki-1))
(0B22) DO 14 I=1+K1!
(02892 IFCARS(DUL(IY). GT 150.)DULICIN= (DU1(I)/ABS(DUI(I)))*ISO.
(0890) 14 CONTINUE
(o871) C .
(0892 € CALCULATION OF DUZ2
(0893) C ] )
(0B94)> U21=CU(2)+U1) > /2
(0395 DS=5(23/2
{0894) DUZ211=(U21-UC1)>23/D5
(OR973 ‘DUZ221=CU(2>-U21>/D5 .
CO393)> DUZI2=(DUL (Z)+DUL{(2)2 /2
(0899 DU2C1)=(DUZ221-DU211) /DS
0900 DUZC2)=(DUI2Z2-DULCL)I/C(S(2)/2%
(0701 K2=K1-2
C0902) . DO 10 I=3+K2
(0903) DUZC(I)=(DUL(I+1)-DULi(CI- 1))/(S(I+1) S(I-1))
(0904) 10 CONTINUE
L0705} UAaV=(U(KLI+U(KI~-1))/2
{07043 DSi=(S(K1)-8C(Ki-1))/2
{09072 DUK1=(UAV-U(KI-1))/D51
(0902) DUKZ2=(UB(K1)-UAV) /D51
Q9093 DUKMi=(DUL(Ki-1)+DUL (Ki- 4))/2
{0910) DU2(K1-1)=(DU1(K1)-DUKML}Y/ ((S(K1}~-S{Ki- 2))/2)
(0911 DU2(K1)Y=(QUK2-DUK1) /D51
(0912 PO 12 I=1+K1 _ ‘
(0913 IFCABSC(DU2CIY)Y GT.. 1500 0DUZCI)=(DU2LI)/ARBS(DUZCI) ) )* 1500,

(0914) 12 CONTINUE
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15)
L&)
173
12
19)
20)
21)
22)
23
24)
237
253
27)
28}
292
302
31)
323
33
34)
353
3&)
37)
327
3
40>
413
42>
4.2}
44>
43>
443
473
4s)
ad
=0)
512
o223
53
54>
S55)
=79
=7
o)
=)
6HG)
61)
62)
£3)
643
&5)
54)

&7

'&B)
693
70)
713
72
‘75
'74)
735}
'T&D

100

ooonoon

RETURN - ’
END

EXEXEXXREXXEXEXRERNX%% SUBROUTINE 07 FXEXXREXRXEERERERRR

SUBROUTINE LAMBL(UsDU1+DU2+S+DELLsDEL2+K1+J3REVCF)
COMMON/BL20/ I TRACE )

DIMENSION U(K1)sDUL (K1)»DU2(K1) ySCK1)sDEL1 (K1) CFIC(K1)
IDEL2(K1) yBLMC(S0) yRLC24I\WF(243+F11¢24)+G11¢(24)

REAL LAMsMEE : .

DATA RL/.0E553,.089.071.061.051,04+.03:.021,019.04-.01+y-,02y-.03
1= 044 =, 051~ 061=.0791=.081s-.09 1=, 19~ 119=,129y~.139=,133/
ZF/0.9.02081.07364v.12251.,17281.223641.274611.3297+.32458y,,4410,.4982
J.99721.6167 46777 9.74044+.8053+,872%21.943491.0164641.0928,1.17248
41.258+1.3373+1.3636/

DATA F11/.1296+.1236y.1128+.10254y.09251.083y.0738y.04&514+.0547
1.0487+.04114+.03385.027+,02074+.014%2+.0095+.00471.001+~.0019
2=.00393~.0051y~.00551-,.0051:~.0047/
IB11/.26261.28359.23781.2228: 2087 +1.19539.1827+.171v.1464,1498
4,1404,,13181.1240+,1164.1075+.09711+.0252+.07281.0401+.0470,.033

- 5.01975.0054+.0/

9999

100

110

135

IFCITRACE.ER.1IWRITE(£4+9999) ,
FORMAT(//+' SUBROUTINE LAMBL® //)
J2=0 .

J3=0
Ja=0
SUM=0,0
DEL2(1)=SORT(.0S54/ (RE*DU1(1)))

DEL1¢1)=2.31%DEL2¢1)

K10=0

SUMJ=0,0

DD 12 J=2:i1K1 R
K10=0 ]

GLM(J)=0,

SUMI=(UCT) #%5+U(JT—-1)%*#5) %, 5% (S(J)-S(J-1)) % (1+2.22%6GLM(JT))
DEL250Q=,45% (SUM+SUMJI >/ (U(J) **&%RE)

DEL2(J)=SQRT (DEL2S®)

IFCK10.6T.3)60TO 110

LANM=DEL250*RE*DU1 (J)

IFCLAM.EQ.0.YH1=2.61

IF(LAM.ER.0)GOTO 135

IF(LAM.GT.0.09)LAM=0.0855

IFCLAM.LT.-.09)G0TD 115

MEE=(DELZSG*RE) %%2%U(J) *DUZ2¢.J)

IF(ARS(MEE) .GT.1.)G0TO 115

GO=.4&4+3*LAM

CALL INPOLCRLIF124+LAMIFO)

GLM(J)Y=F0-,45+4*LAM-MEE*GO

K10=K10+1

GOTO 100 .

CAPL=FQO-MEE*G0

CALL INPOLCRLaF111282LAMIF1)

CALL INPOLCRLsG11124yLAMsG1)

SMALSR=F1-MEE*01 ’

SMAL=SBRT(ABS(F1-MEE*G1)) . '
IF(F1-MEE*051.LT.0..AND.J2,.EQ.0,AND.J3.ER.C.AND.J4 .EQ.0YGOTO 12F
H1=( (2Z*SMAL-CAPL)Y/ (2*LAM) 3 -2

DEL1(J)=H1%*DEL2(J)

SUM=SUM+SUMJ

203



77
?75)
?72)
730)
731D
1322
1333
r34)
1283)
184D
1873
788)
1287
770)
71}
7923
793>
7943
795)
79586)
797)
7922
?79%)
200)
J01)
202)
203>
204>
203)
206)
307)
102)

209)

210)
211
212)
313
214>
2115
214D
2117
12)
219D
2200

2Ly

)22)
I23)
)z24)
1253
J246)
Y273
1283
29
130D
3L
3D
233)
134)
pRI=3)
234)
237D
pR1=D

115

12

120

125

202
204
2046
203

130

oaononon

aoa - Aa

]

REDEL1=DEL1(J)*RE*UCJ)

RES=S(J)*U(J)*RE

REDELZ2=DEL2(J)*U(J) *RE

WRITE(1:202)J+HL1+DEL1CI) sLAM .

CALL TRANS(RES+REDEL1+REDEL2+LAM»J»d2:33+J4)
WRITE(1+204)REDEL1+REDEL2:RES .
IFCI.GT.INT(.67*K1))G0TO 130 L.
IF(J2.NE.O.AND.J3.NE.O.AND.JA.NE.OXGOTO 130 - , '
IF(LAM.LT.~.09.AND.J2.ER.0.AND.JI.ER.0.AND.J4.ER.0)GOTD 125
IF(LAM.LT.~.09.AND. (J2.NE,.0,OR.J3.NE.0.OR.JA.NE.0))GOTD 120
CONTINUE

WRITE(1+204)

" READ(1+*)JM10

IF(M10.EQ.O)STOP

GoTo 130

WRITE(1,202)
Hi=—((FO-FixGO/G1)/ (2*GMAL)) -2
DEL1(J)=H1xDEL2(JT)
WRITE(1,2023J+H1+DELL1CT) sL.AM

J10=J-1
CALL EBUBBLE(S,UDEL2,DEL1+J10+K1sRE«IR)
J=IR

FORMAT{(//+7J=" 1 I3+2X» " H =? yF9.4634Xy* DEL1=" sF2.4614Xy"LAM =" +F9.
FORMAT (" REDEL1 ='3sF10.4+4X+* REDEL2 ="»F10.4+4X+"RES ="yE14.4)
FORMATC(//»"T RA NS I T I ON NODDE NOT DEFINE:

1+//751H »”ENTER TRANSITION NODE #11 TO CONTINUE' /s
210X»"OR 050 TQ STGP®) '
FORMAT (/7" LAMINAR SEPARATION a7

114 »*VALUES OF H»DELTA1 AND LAMBDA AT SEPARATIONsFOLLOW'+//)
RETURN
END

FRREXXXXNERAXHAR%%% S U B RO U T I NE 05 FEXEEREXREXXXRRRER

SUBROUTINE INPOL{X+YsNsLAMIY1)
DIMENSION X{N)sY(N)
‘REAL LAM
IFLX(1).GT.X(2))607T0C 8
DO 2 I=1:N
IF(XC(IY.GE.LAMIGOTOD 4
DO 1 I=1N
IFCXCI2.LT.LAMOGOTOD 4
IF (X(IJ.EQ.LAMXGOTO S
CONTINUE

It=1-1

X0=X<CI)

CX2=XCI1D)

Yi=Y({I>

Y3=Y(I1)

A=(Y1=-Y3)/ (X0-X2)

Bz XQ*¥Y¥3—~X2%Y1) /(X0-X2)
Y1=A*LAM+B

IF (X(IJ.EQR.LAMYI=Y(I)
RETURN

END

EEERXEXXEERERXEEAXXE S U B ROUTINE OF 933 H 33 % %% %% % %%

SUBROUTINE TURBL1(SsU-DEL1.DEL2,DUL+J1sH1>RE+K1+CF?)

204



1039
10407
10413
1042)
1043)
1044)
1045)
1044)
1047)
1042
1049)
1050)
1051)
1052)
1053}
1054)
1035)
105&)
1057}
1052)
1057)
10560)
10612
10623
1063
10564)
10465)
1064)
1067)
10562
10693
10763
1071)
1072)
1073
10743
1075)
10743
1077)
10725
1072)
1020)
10313
1032)
1083)
1024)
1033)
1034)
10872
1082)
10892
1070)
1091)
1092)
1093}
1024)
10935)
1094)
1097)
1093)
1099)
1100)

0coOn 000

nooaon

F999

100
200
202
204
102

HEADS METHOD IS USED.TD CALCULATE THE INCOMPRESSIBLE
TURBULENT BOUNDARY LAYER

..

COMMON/BL20/ITRACE

DIMENSION S(K1)sU(K1)yDEL1(K1)»DEL2(K1)»DUL1CK1) sCFI(KI)
IFCITRACE.ER. 1XWRITE (549999

FORMAT(//+" SUBROUTINE TURBL1'//)

J2=K1-1 ‘

REDZ=RE#*DEL2(¢(J1)*U{(J1)

A1=ALOG10C(RED2)
H1=.0341045%A1%%2-.3859576+A1+2,30461293

DO 2 J=J1+J2

DZUDU=DEL2(J)*DU1{(J)> /UCJ?

REDELZ=DEL2(J)*U{(J)*RE

CF=.246%EXP(-1.561%H1) /REDEL2%%,248
ENTR=,025%H1-,022
DH=—1./DEL2CI) % (H1% (H1#%2—13 *D2UDU+ ., 5% CH1—1) % ( (H1#%2~1) *ENTR~!
1*CF))

IF(ABS{DH) .G6T.10.)DH=DH/ABS(DH)Y *10.
DDEL2=.5*CF~-D2UDU*(H1+2)

WRITE(1+202)J+sH1+DHyDDELR

SAV=(5(J+1)-8(J))*.,5

DEL22=DEL2(.J)+DDEL2%SAV :

H2=DH*BAV+HL

UAV=(UCI+1Y+UCTY I*.5

DULAV=C(DUL ¢TI+ 1D 4+DUL (T )%, 5

D2UDU=DEL22*DU1AV/UAV

REDELZ=DEL22#UAV*RE
CF1=.246%EXP(~1.5&41%H2) /REDELZ** .248
ENTR1=.025*H2~-.022

DH1==1,/DEL22% (H2# (H2*%%2-1) #DZUDU+ . 5% (H2— 1) # ( (H2%%2-1) %
1ENTR1~-HZ*CF1))
IFC(ABS¢DH1).GT.10.)DHI=DH1/ABS{(DH1>*10.
DDELZ1=,5%CF1-D2UDU* (H2+2)
DEL2¢J+13=DEL2C(J)+DDEL21%#(S(J+1)~5(J))
H1=H1+DH1#{SC¢J+1)=-8¢{I))

IFCHLI.GT.1.9)WRITE(1:,204)J

IF¢H1.6T.1.9)Hi=1.9 .

DEL1C¢J+1)=HI*DELZ2(J+1)

J3I=J+1

CONTINUE

WRITE(1:200)J3:H1

GOTO 102

WRITE(13204)T

FORMATCIZ2 13X H="»F10.7)

FORMATCIZ 13X+ H=" yF10.7+4Xs?DH="? yF10.7+4X s’ DDELTA2=" »F10.73
FORMATC(//1H s+’ TURBULENT SEPARATION AT NODE':13s//)
RETLRN ‘

END

EXREXRFXXERUEXXEAA*X® S A B ROUTTINE 10 3035 3 38 9 3 3 3 3% 3 % 9 3% % %%

SUBROUTINE TRANS(RES»REDEL1sREDEL2,LAMsJ+J2+J3+J4)

REAL LAMsLAME

DIMENSION RLG(SO)!RLLG(ﬁO)!RMTC(B)!RDZC(B);RD?N(lo) REMC103
1RLF (25 sRD1(23)

DATA RLG/12.5+412.0511.5911.0+10.5+10,019.5:7.0:83.518.0,

205



2)
13>
4}
3)
15
7
15
93
o)

1>
23
2
43
33
&)
7
B2

23
10
M
223
23)
24)
23
26)
273
283
292
50
513

oo 0o0o

aogon

32y "

35
34)
393
563
373
)
)
i)
L3 )
12
13)
14)
15
1&)
173
12
1
30)
3D
iz
3%
343
353
36)
373

32

373
503
51)
52)

100

102

104
200
202
204

o+

g

+—
+—

+
+
+
+
+
+
+

o

i,

731 7.0y 6.5y 6.0 5.5y 3.0y 4.5y 4.0y FT.5y 3.0

2.5y 2.0¢ 1.5y 1.0 0.5y 0.09-0.91-1.03~1.5+v-2,0,
2.5¢=-3.01-3.51-4.09-4.55-5.0+-5.5¢-6.03-5.5+-7.0,
Z:eF1=8.01-8.54-9.01—-7.5s=-10.+~10.51=11.9-11.5v-12./

DATA RLLG/0.0946350.094815:0.094430+1094083+0.09317+0,091283,
0.0902332+0.088223190.08528547+0.0831341+0.0800677:0. 074656638
0.07293044+0.062877510.0464515840.059854A410,0549126+0.049467567
0.04422351+0.038504390.0320461810.0264054+0.020053730.0135238
0,.006%33210.00000003—=.0049575+~.01840205+v-.0211700s~. 02338467
-.03545101~.04294324- . 05024346y~ 0575323 +y~. 0647893+~ . 0719947
= 0721287 94=,0845171463=,09310371=. 0999037 +y~. 1045584 +~. 1130430,
«.11934091=.12543809=. 13130461 =, 134693544 ~-,. 1423097 1—. 1474112
«15222485+~.15467347/7

CRABTREE TRANSITION DATA

DATA RMTC’IO?, -04' n02‘ .0!".004&!“-0078!-¢01!"'-0154/
DATA RDRZC/752.+1012.91125.+1291.11400.41400.+1800.12400./7

MICHEL TRANSITIUN DATA

DATA RDEH/1457.01390.11322.91278.11152.,1052.1941.7832.!707.!57=
RSM/S.EQL4.5E06+4.E04&1 3. 5E0b13 EQ&+2.5E04+2.0E0611 .5E0L6+1.E04,

2.5E08/ n

1.

POHLHAUSEN TRANSITION DATA

DATA RLP/B8.17.16,1515.5715.+4.48+4.0813.5713.312.6412.1+1.38
81’ 059' I49‘ 118’ -0'_-18'-l41 '_-81 ’-1 -56'—1 -951-2.57!—3.74!"5.894

23RD1/11670.111370.510000.+2000.,13000.47000,54000,95000.,4000.
33000.:2000.|1500.v1000.!900.a800.1700.!6&5.;bOO.suDO.;dOO.vSOO-
41250.1200,1150.1100.7 '

{
RED2=0.
RED1=0.
AD2=0.
CAPGL=0.
N=350
CALL INPOLCRLLG+RLGsN:+LAMsCAPGL)
N1=25
IF(CAPGL.GT.B.0.0R.CAPGL.LT.-5.82)60T0 100
CALL INPOLC(RLPsRD1sN1,CAPGLRED1)
A1=ARS(RED1-REDEL1)
IFCAL.LT.60URITE(122000]
IFCAL.LT..£0.)J2=]
LAMI==-LAM
N2=8
IF(LAM1.06T.0.02.0R.LAML.LT.-0.0154)G0OTO 102
CALL INPOLCRMTCsRDZCIN2 1LAML+REDZ)
AZ=ABS (RED2-REDELZ2)
IFCAZ.LT.110.)WRITE(L1202)T
IFCAZ2.LT.110.)33=TF
N3=10
IF(RES.GT.5.EQ04.OR.RES.LT..5E06)6G0TO 104
CALL INPOLCRSMsRDZMINIRESsAD2)
A3=ARS(AD2~REDEL2)
IFCAZ.LT.70.0WRITE(1+204) ]
IFCA3.LT.70.)J4=T
CONTINUE
FORMAT (//»* POHLHAUSEN TRANSITION AT NODE'1I3+//)
FORMATC(//+" CRABTREE TRANSITION AT NODE'+134+/7/7)
FORMAT(/ /1" MICHEL TRANSITION AT NODE’sI3.//)
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(11633 206 FDRMAT(’CAPGL='sF!0.7|2Xs’RED1='1E14.5|éXs'REDZ=’E1d.5v
(1144) 12Xs7 AD2="+E14.3)

(11465) ' IFCIJZ.NE.O.AND.J3.NE.C.AND.J4.NE. O)J (J2+TI3+J4¥/3.+.5
(11663 140 RETURN ..

C1167) END ‘

(11462 C

£11469 C .

C1170 c AEEEHEEXERXEXXEUX%¥% S UBROUTINE 11 FHEEEAREERERENE
(1171 C o

C1172) ‘ .

C1173> SUBROUTINE BUBBLE(S+U+DELZsDELI1+vJ1+K1sREYIR)
11743 DIMENSION S(K1)»U(K12+DELZC(K1) DELL1 (K1)

(1175) D2S=DEL2(J1?

(117&) SA=.5%(S(J1X+5CJ1+13)

(11773 US=.S* (UCT1)+UCT1+1))

(11783 RED25=RE*DEL2(J1)%US

(11793 LEUB=4.EQ04/REDZS

1130} TF=.011

(1i131> EX=EXP(TF*10.)

1182} - EX1=1./EX

€1183) RL1=D25+*2.5E04%AL0OG10(CEX+EX1)/(EX-EX1)) /RED2S
1184> RLi=D25%4.E04/RED25

1125 SRL1=SA+RL1

(11843 ) ) DO 2 J=J1+K1 '

(11375 IF(S¢(Y).GT.SRL1)GOTO 100

1128y 2 IF(S(T) .EQ.SRLIYGOTOD 102

€11e9) 100 STEP=(S5(J»-5RL1>/10.

(11703 ST1=5SRL1

(i191> DIF=85(J)-5(J~-1)

61192)_ Ji0=J

1193 DO 10 I=1.10

(1;94) STi=8T1+S8TEP

(1193 DIF1=5¢(J»-8T1

11943 R1=DIF1/DIF

(15973 UST1=U(II-R1*(U(S)~- U(J-l))

C1199) UR=UST1 /US . *
(1199) RL2=ST1~SRL{

C12003 CALL BUBLEI1(RLZ+UR'D25+5AsSTLs1.BUB«1+J+IR)
1201} IFCIR.NE.QI)GOTO 110

(i1202> 10 CONT INUE
£1203) 102 K2=Ki-1 .
€1204) DD 12 I=J.K2

1205 Jio=1

€1204) 5T1=8(I)

1207) STEP=(S(I+13-5(I>X)/1Q,
(1208) DIF=SC(I+1>-5(1)

(12093 DO 14 I1=14+10

(i210) STi=ST1+STEP

(1211) DIF1=S(I+1)-5T1

(1212) | UST1=UCI)+R1*(UCI+1D-UCI))
(1213) UR=UST1/U8"

(1214) RL2=8T1-5R{.1

(1215) CALL BUBLEi(RLZ!UR’DZSsSA:STI,LBUBvII!J!IR)
(12143 IF(IR.,NE.C)GOTOL110O

1217 14 CONT INUE
(1218). 12 CONTINUE

(1219 J2=J

(1220) 110 RL2=5T1-SRL1

(1221) RT=RL1+RL2

(12223 IF(IR.E@.2)G0OTO 118

€1223) WRITE(1,200)RL1+8(J1)yRL2Z+SRL1sRT+ST1

(1224) 200 FORMAT(//+27X " BUBBLE CALCULATIDN RESULTS //»
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(1225 +15Xs*"Laminar Lengthﬂ'yFB.d:bXa'Separatinn at 5="F8.4/»

(1224) +15Xs* Turbulent Length="4F8.4+06Xy' Transition at 85="1F5.4/»
(1227) +15Xy’ Total Length=" 4F8.4+4X ' Reattachm. at S='F5.4//)
(1228 118 A=.0182/4./71.5 . .o

(1229} DEL2R=D25% (1./UR**3+A*RLZ* (1-UR**4) / (UR**3Z*(1-UR)))

(12303 IF(S(J2).GT.5RL1)GOTO 112

(1231) DO 146 J=J2.K1

(1232) IF(SRL1.LT.5(J))GOTO 114

(1233 DEL2(J)>=D2§

(1234) DEL1(¢J)=D2S#1. 5
(1235 16 J3=J '
(12346 112 DEL2(J2)=D28

(1237) J3=J2+1

(1238) DEL1(J2)=1.5%D2§

(1239 114 DO 18 J=J31K1

(1240 IFCS(J).GT.ST1YGOTOD 1148 ,

(i241) " DEL2(¢J)=(S(J>-8SRL1)/RL2%(DEL2R-D25)+D28S
(1242) PEL1(J)=1.5*DEL2(J)

(1243 18 CONTINUE
(12443 116 IR=J

(1245 DEL2CIR)=DELZR

C1244) RETURN

(1247 END

(12438 C . .

(1249) C _
(1250 C ERERAEXEXEARXNEXN%XX® S UBROUTINE 12 EREREFEXREENAER
(12513 C ' ’

(1252 €

(1253 SUBROUTINE BUBLE1(RLZURIDZ2S5+8AsST1:LBUB+I1+JyIR)
(1254) A=.0182/4./1.3

(123553 Bi=1./C(A+.0082)
L (12548) RLZ2=RL2/D2S. .

(1257 ERROR=UR*#4-(A+{1-UR} /RLZ2)*B1

(1252 IFCER#*ERROR.LT.0..0R.ABS(ERROR) .LT.,05)IR=1

(1259 IFCI.GT.2.AND.ARS(ERROR)Y .GT.ABS(ER))IR=1

(124603 ER=ERROR

(12461) IFCABS((5T1-5A)/D25-LBUBY .LT.S.2GOTD 100

(12623 GOTO 1026

(12A3) 100 J2=J+1

(12464) WRITE{(1+200)3S5Ti+J+J2+LBUB _

(12565 200 FORMAT(//+25X2"Bubble has Burst?//

{1264) +25X AT S=":F3.5+2X " Batween node 113" and node? 113/
(1287 +25%X+'Length of Bubble =F11.467/)

(12468) WRITE(:,202)

(1262 202 FORMAT (/77 YOU MAY CONTINUE THE ANALYSIS OR STOP IT?H/
C1270) + "ENTER 1 70O CONT. O TOQ STAOP"s//)

(1271) "READC(1 %) IA a

(1272)> IFCIA.LE.QXSTOP

(1273 IR=2

(1274 .1024 RETURN

12733 END

(12746 C

(1277) ©

(1272 C EREFEFXXENEXERNAFXX* S UBROUTINE 13 *EEREREEFEHFHA
(1279) C S

(1280) C

(12813 SUBROUTINE LAMBLI(UsDULI+S:DELL1+DEL2yK11JsRESCF?)
(1282) COMMON/BLOCK3I/REL11ISTAGC(10)

(12833 COMMON/BL20O/1ITRACE

(1284) REAL MsMi.LAM

C(1285) DIMENSION U(Kl)vDUI(KI)sS(Kl)sDELI(Kl)!CF?(Kl)v

(1234) _ 1DEL2CK1)|HH(?5)vH(35)
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9979

100

135

202
204
206

DATA M/.082,.0818,.08156,.0812+y.08081.0804+.03+.0791.078+.0764.07¢

+.0729.07+.0681.064y.06+.0547.052+,0483.04+.0321.0241.01461.008+0.1

+=.016y~,0321-.048:-.0649~.081~.19-.129~.145-.2+-.25/

DATA HM/3.713.69+3.661+3.6313.6133.5913.5893.52+3.47+3.3813.5»
+3.2393.1793.1313.05992.9992.9442.7:2.87+2.8132.79s2.7112.67+12.64
+32.56112.5512.4912.44+2.3912.34+2.2812.2312.18+2.07+2./

IF(ITRACE.EB.1IHRITE(LH+77999)

FORMAT(//+* SUBRGUTINE LAMBL1'//)

RE=RE1 ‘

J2=0

J3=0

Ja=0

SUM=0D.0 . '
DEL2(1)=SGRT(. 0854/(RE*DU1(1)))
DEL1(1)=2.31%DEL2(1)

SUMI=0.0

DO 12 J=2.K1%

SUMI=(UCT) #%5+U(T-1) % 4#5)%.5#(5¢(I>3-5¢(J~-1))
DEL2S0O=.45% (SUM+SUMJIY / (U(3) **6%RE)
DEL2(J)=5QRT(DEL25®)

M1=~DELZGSR+*RE*DUL(J)

CALL INPOL(MsHM»3ISsM1HL)
DELLIC(I)=HL1*DEL2(JT)

SUM=BUM+SUMJI .

REDEL1=DEL L1 (JX*RE*U(JT)

RES=S(J)*U(J)*RE

REDELZ=DELZ2(J»*U{J)*RE

WRITE(1s2 0°)JsH11DEL1(J),M1

LAM=~M1

cAaLL TRANSfRESaREDELlaREDELzaLAM,J;JzaszJA)
WRITE(1:204)YREDEL1 s REDELZ3sRES
IF(J.GT.INT(.23%#K1))56070 130
IF(J2.NE.O.AND.J3.NE.O.AND.JA.NE.O)GOTO 130
IFML.GT.0.0B2.AND.JZ.EQ.0.AND,. J3.EQ.0.AND.JA4.ER.0XGOTO 123
IF(M1.GT..082.AND. {(JZ.NE.0.OR.JTZ.NE.O.OR,JA.NE. D) 3IGOTD 120
CONTINUE

WRITE(1:206)

READC1s#)J:sM10O

IF(M1I0.EQ.0)STOP

GOTO 130

WRITE(L{s+s208)

H1=3.7

DEL1<¢Jy=H1*DEL2(J)
WRITE(1:s202)J+HL1+DELI(J) ML

J10=J-1
CALL BUBBLE(S!U!DELZ,DELI1J10;K1;RE!IR)
J=IR

FORMATC(/ /17 3= 21342X9 H =?3F9.634X? DELLI="sF2.614%Xs" M1 =" 4F92.6)

" FORMAT ¢’ REDEL1 =" sF10.4+4%X:? REDEL2 =’ ,F10.4:4X,’RES =":E14.4)
FORMATS//+'T RANS I TTON NODE NOT DEFINETD:

ts//91H »? ENTER TRANSITION NDDE .1 TO CONTINUE? /»
Z10X+"0OR 00 TO STOP')
FORMAT(//+’ LAMINAR SEPARATION *s//

11H »*VALUES OF H.:DELTAL1 AND M AT SEPARRTIDN;FDLLDH'!//)
RETURN
END

EEEXEXEXERXAXRXXAX%% S U B ROCOUTINE 18 HRERXEREREFFXEERREHR

209



’ -

Onon o0

SUBROUTINE TURBLZ(SsUsDELI1+DELZ2+sDUL+J1sHyREsK1sLF9)

The routine calculates the turbulent boundary layer
parameters using the method of Head & "Patel

COMMON/BLOCK3I/RELI s ISTAG(IO)

COMMON/EL20/ITRACE

DIMENSION S(K1)sU(K1)+sDELI1{(K1), DELﬁ(Ki) DUL1 (K1) +HSTAR(27)
+aREDZ(ZI) s H1(Z7 1233 s H(292 s WORK (27 ) 1 WORK1 (272 CF9(99)

DATA HETAR/3.633.6053.793.7593,813.8013.913.9514.144.11+4.2+4.3+4.4
+4.638.895.15.516.16.517.98.1F.310.911.912.213.014.7/

DATA REDZ2/5.84:5.215.14.8:4.614.814.214.+3.733.813.713.633.5v°
+3413.353.213.193.12.912.812.7+2.5622.57

DATA H1/2.54+42.3312.23+2.14+2.07+2.015:1.97321.93+1.89+1.83+1.785
+1.74551.70591.645+21.5911.5491.445+1.395+1.355+41.32+1.285,1.255,
+1.2311.215+1.19591.1891.17
+2.76432.36512.245+12.15092.0512.02591.973+1.935+1.8795+1.835,
+1,7911.75+1.7111.46591.5911.5491.4845+1.375+1.35511.32+1.285+1.295»
+1.2331.21591,195:1.818+51.17
+052.40592.272.1712,.09312.035+1.98+1.845+1.905+1.835+1.795»
+1.7601.71591.6591.59531.5441.4591,.39541, 34511 I2511.29:1.2641.23
+1.213+1, 195!1 185+1.17»

+(0 12,45 3052195 2.1252.0591.99511.95511.7291.8451.803,

+1,76% 11 7211 55541.59511.545:1.45+1.451.35551.325+1.,.295+1.2651.23
+31.21591.241.18511.17 ]

+0v 2., 535092.35:2.225+2.14542,075:2.015+1.97551.93551.85+1.815+1.775

-

,+41.73s1.6&11.611.55!1.45;1.4-1.3611.3311.3;1.2611.24;1.2211.205

+91.185:1,.1730.92.64652.41512.2792.1852.11:2.0411.995+1.94+1.845
+31.83351.78511.745 1 6791 ,.60591.555+41.4691.451.36541.335+1.305
+1.2791.245+1.22591.,20591.185+1.1790.30.92,.89+2.3342.23+2.145,
+2.075352.025+1.785+1.8085+1.85:1.8+1.7611.6891.461491.565+1.46511.41
+1.37+1.345+1.31+1.2891.25:1.2351.2194.18591.1790.30,12.560512.405
TR 212 2 120 2.0752.02521.211 .8741.82+1.775+1.7:1.62:1.58+1.48»
+1.4211.385011.346+1.325+11.2991.265+1.24+1.215+1.,185+1.,170,+0,92.83
+2.45+12.3312.23592.1592,0742.04511.9451.87551.835+1.7711.705:11 .63

.41 58%511.48511.435:1.39511.3791.33+41.295+1.27+1.245+1.2291.1951.17

FI¥0 2. 0192, 3712. 26542108542, 115+2.0651.95551.911.8485+1.8+1.72».
+1.63531.691.541,4441.,40551.37551.3411.305+1.258+1.25+1.225+1.17»
+1 . 17S43%0 . 92,0992, 42512.31512.21512.145+2.085+1.9275311.915+1 .86
+1.21591.73541,.46592.61913.5191.45591.41551,38551,.3591,31591.285+1.2
+91.2391.19591.1293%0,12.6812.4312,.36192.2532.12+2.100+1.7293+1.930
+1.87551.8390.74591,6601.6291.02591.46591.42591.441.36591,.325+1.,29
+351.2791.23511.20541.1835+3%0,.12.83992.5046512.415+2.29+2.21+2.135
+2.01541.955+1.87+1.8591.76591.6791.63541.5491.4851.4451,4154+4.38
+31.3451.3111.2891.24591.2131.1934%0,+2.4465:2.4822,.348+2.251+12.165
+2,03511.97511.91591.86511.78531.711.65591.5611.591.455+1.483+1.398
+1.3591.32+1.29+1.255:1.22+1.205:4%0,. 52,7951 2.535+2.37532.2912.193
+2.06’2.;1.935!1.8?:1.80551.72551.67551.575:1.5 v} .475+1.445+1.415
T6531.3391.30591.2791.235+1.215s5%#0,92,.63512.462.3392.235+2.08
+12.02 $1.95591.915:1.8391.75:1.7:1.691.5451.495+1.471+1.43511.335»
+1.u44’1-d2’1-&85’1- S5911.23+5%0,.12.79512.54552.38+2.2712.115,
+2.05511,98T11.74+1.855+1.7891.72511.62511.565:1.525+1.4%9
+1.495+1.4803+11.365+1.335:1.305+1.27+1.245+16%0,42.64:+2.4512.32+2.1F
+2,0712,0211.965:1.8811.8191.765:1.465+51.57:1.555+1.5325+1.48,

+1.43531.39511.35551.3311.295v1.27+4%0,.352.392.515+2.375+2.2312.,12C

+2,0512.00511.915+1.845+1.79511.67511.42551.585:1.555,1.505+1.44)
+1.42+1.38+1.355:1.32511.29:7#0.32.62+2.485:2.2812.1712.09+12.04+1.9
+91.88+41.82511.715+1.6050511.46211.5911.5451.495+1.45+1.415+1.385
+1.35511.32917%#0.12.852.5812.3312.2212.135+2.085+11.985+1.91s1.865
+1.7511.695:1.65591.625:1.5891.53%+51.425+1.44541.415+1.39:1.35
+&8%0, 12 .655!2 442.27592.19592.1392,0351.,9691,90591.79541.73511.7
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411) +1.46711.625+1.5891.535491.485+1,40091.425:1.3719#0.12.5:2.34+2.2

412> +2.18512.08512.01+1.96+1.885+1.84+11.7551.725+11.475
413) +1.463551.5911.545+1.505+1.47+1.43/ |
atay o g
a415) IF(ITRACE.ER.1IWRITE(&L1 999

416) 9999 FORMAT(//+7 SURRDUTINE TURBLZ2?//)

4173 RD2=DELZ(J1)*UC(J1) *RE ’

418) F1=ALOG10C(RD2)

4193 CALL INPOL1(REDZ+F1:23:J2)

420) J3=J2-1

a2ty DIF=REDZ(J2)-RED2(J3)

422) DIF1=F1-RED2¢(J3) -
423> R1=DIF1/DIF

424> DO 2 I=1,27

az25) WORK(II=H1C{IsJZ)+R1%#(HI1(IsJ2)-HI(I+J3})
a24) IF(H1(1+J3).EQ.0..0R.H1(I1+sJ2).EQ.C.)WORK(I)=0,
az7y 2 CONTINUE .
428) HZ=H(J1)

429 ' CALL INPOLZ2(WORKyHSTAR1273HZ2HST)

430 HST=HST

431> MZ=K1-1 ,

432> DO 4 J=J1+M2

a33) SD2=DELZ2(J) ,

434) sU=U(J)

435) SDU=DUL(J)

436) SH=H(J)

a37y ) DO & I=1,2

438) CALL HEPA(SDZsRE»SH1SUsSDUsHSTsDHSTDUD2)
439> DS=(85(J+1)-S(J)%.5

440) IF(I.ER.2)DS=DSx*2,

a4ty HST=HST+DHET*DS )

4423 Bi=UCJ)*DEL2¢J)+DUDZ*DS

4433 SU=(UCII+UCT+1)) %, 5

444y IF(I.EQ.2)8U=UCT+1)

445) SD2=RB1/5U

44&) RESD2=SU*RE#5D2

aa7y FZ=ALOG1O(RSD2)

443) CALL INPOL1C(RED2:1FZ3:23+12)

449> J3=J2~1

450) DD 28 12=1,27

4513 WORK(IZ3=H1(I2,J2)

452) =R WORK1(I2)=H1(I2:+J3)

453) CALL INPOLZ(HSTARIWORKs27sHST1H2)

454) CALL INPOLZ(HSTARWORK1s27 1HSTsHI)

455) DIF=RED2(J2)~RED2(J3)

4548) DIFi=F2-RERZ(J3)

457> R1=DIF1/DIF

4533 SH=HZ+R1% (HZ-H3)

459) . SDU=(DUL (J)+DUL(T+1))*.5

460 6 CONTINUE

a61) IF(SH.GT.1.9)WRITEC(L1+202)J

4562) IF(SH.GT.1.9.0R.SH.LT.1.38H=1. 9

4463) H¢J+1)=5H

444) : DELZ2(J+1)>=8D2

4565} DEL1 (J+1)=H(J+1)*DEL2(J+1)

466y 4 CONTINUE

4567y 100 WRITE(135200)(SCIYsUCI)sDULCIIsH(I)sDEL2C¢I) s I=1sK1)
aszy 200 FORMAT(SF14.5)

4473 202 FORMAT(//+” TURBULENT SEPARATIUN AT NODE 'sI3s//)
479) RETURN

4713 . END

472) C
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¥HEXRFEEEERXEXXEXAXAXE § U B ROUTINE 15 %295 % % %% %%

SUBROUTINE HEPA(SDEL2+REsSH . 5UsSDUHSTDHST»DUD2)
REDZ=RE*SU*5DEL2 )
C ALOG(RED2)

019521 —-.3846768%C+,.028345%C*x2-,000701*C*x3
B—.191511-.8448?1*C+ QL2582 *xCH##2- . 001953 #C%%3
CF=EXP (A*SH+B)

D10=CF#*,5-(SH+1)*SDEL2*5DU/SU
G=(SH-1)*5QRT(2./CF)/SH

 PI=C((G+1.7)/46,.10%%2~-1,.81

D2O0=CF*.S*(1+(SH+1)/SH*PI)
R2=D10/D20

"IFCR2.GE.1)FR2=1./(2.%R2~-1.)

IFCRZ.LT.1.)FR2=(5.-4.%R2)/(3.-2.%R2)
DHST=HET*D20*(FR2~RZ2) /SDELZ2
pUD2=D10*8U ;

RETURN

END

W RERERREREAFERUEE*E S L h R GU I I NE 16 HREEXXAXEE XXX

SUBROUTINE INPOL1(X:X1iNsI)
DIMENSION X (M)

DD 1 I=1,N

IF (X(I).LE.X1)RETURN

END

EXAEFAXXEXEFE*XXX%X%% S U B ROUTIMNE 17 HEREXXEEXFEXFER

SUBROUTINE INPOLZ2(XsYsNsLAM»Y1)
DIMENSION X(N}sY(N) ,

REAL LAM
IFCX(1).GT.X(2).0R.X(1),EG.0.)GOTD 8
DO 2 I=13N

IFCX(IY.GE.LAMIGOTO 4

CONTINUE

Do 1 I=1N

IFCXCIN.LT.LAMLAND.XC(I).NE.O..AND. X(I+1) NE.Q.)GOTO 4
IF (X(I)LER.LAMIGOTO S
CONT INUE

I1=1-1

X0=X(I)

X2=X(11).

Yi=Y(I)

¥Y3=Y(I1)
A=CY1=-Y3) /7 (X0-X2)
B=(XO*Y3-X2%Y1)/{X0~-X2)
Y1=A*LAM+B

IF (X(I)L.EQG.LAMIYI=Y(I)
RETURN

END

EEFKREFERFLERAR%%X%% S U B ROUTINE 18 REXAFXAERENX
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(153%)
(1536}
(1537
(1538)
(15392
(15407

(1541)°

(1542)
(1543
(13442
(15453
(1544)
(1547)
£1543)
(1549
{15507
(1551
(1552
(1553)
(1534)
C153535)
(13562
(1557)
1538
C(1339)
(1560)
(1361)
{1562)
€1563)
{1564)
£15465)
C135448)
{13672
C(1562)
(15692
(15702
(18712
(135727
(1573>
(1574)
(1573)
(1578)
C1S77
(1572)

C1379) .

(1530)
(15313
(1532
(1583

£1584) .

(15852
(1G8&)
(15877
(1388
(1339
(1570)
(1571)
(15920
{15923
(1574)
(15950
(13598)

"

SUBROUTINE DRIVEICITERINTKN)

HRIEREXEEAREXEEXEERERERAFXEREEEXEEE RN REEFEEEEREEEEE

¥ The subroutine ralculates the tangential velocity on *
¥ the surface of each aerofoil element. This velocity *
*¥*is given by! . . *
* _ *
* Vtan= Vinv + Vvis + Vwakel + Vwake2 *
* *
¥ For single element aernfoils VwakeZ is zero. *

34 N A9 33K I I 3 I I A I I I K I3 I K I I I W I I KK KK EF K XN

aOoDoooooOonon 0O

COMMON/ELA/ALPHAZ 'KKINGS1 s NS24PI1
COMMON/ELS/XCP992+2(9F)15(F2)+SA(FPICNL(TTISNL(P9) »
+T1(99) s TICIN)
© COMMON/BLG/XWL1C(7F)sZW1 (99 s XW2(79) 1 IUH2(79) +SWI1(T9)1SWH2(F9)
COMMON/BL7/XBUW1 (%) s IBW1 (7921 XBW2{(99) + ZBUW2(99)
COMMON/EL10/GAMV1 (97) +GAMY2(77) s GAMSL (921, GAMS2(99)
COMMON/BL11/GAMV11(99)2GAMVZ2(99)GAMSL11 (79) s GAMSZ2(99)
COMMON/RBLLIZ/SNWL (29) s SNW2(29) sCNWL (99) +CNW2(FF)
COMMON/EBLIZ/TWIL1C(?2)y TUIT(292 9 THZ21 (79I s TUZI (TP
COMMON/EL14/6NVI(27:79) sGRV2(97197) 1 GTV1 (77993 1GTV2(79+99
COMMON/EBELIS/GAMACT?) »VTOT (77D
COMMON/BL17/XBAR(Y7) + ZBAR(IY)
COMMON/RBL18/CP(79) sCF (99}
COMMON/EBL20/ITRACE
COMMON/EBL23/1IPAR
- COMMON/BL24/RES4(77)»MANL s+ MAN
DIMENSION RES(?92)sRES1(77)+DUDSC(72) 1GNC(I?7+9)
+3RESZ2(993+RESI(F2) s VW1 (T2 s VHZ(F92 40T (79499)
+sKNC103 sVBL(97) sCAP (103 +sCNP (10 3sCMP(10)»CAF(102CNF (10D
+1CMF (10D IPIV(?9)
IFC(ITRACE.EQ.1IWRITE(4L19999)
9979 FORMAT(//+* SUBROUTINE DRIVE1'//)
PI=3.1415926536
IF(ITER.GT.10G0TO 1000
CALL AIRIC(KKsNT +KN+sGNyGTs XBARYZBARYyT1 T3 XBARYZBART19T3y
c CALt. MATINVI(GNsKK)
CALL GAUSSIGNsIPIVIKK)

C CALL MATMUL {GN>SN1sRESsKKKK)
CALL SOLVE(GN:SN1sRESIPIVIKK) .
Cx*x%¥ RES=[GN-11%#SIN(PHIa-~ALFHA) Fi

DD 190 I=1»KK

SN1(I)=RESC(I)

RESA(I)=2.%PI*RES(I)
10 - CONTINUE

C *x*x% SN1=[ON-1]1*3IN(PHIa-ALPHA) ' F2
CALL MATMUL(GTsSNisRES1KKsKK) :
C %*»%» RES=LGTI*FZ2 F3

DO 20 I=1:KK
. CN1C(I)=CN1(I)Y+RES(1)
20 CONTINUE
DO 22 I=14KK
VTOT(I)=CN1(I)
CPCI)=1-VTOT(I)*VTOTCI)
: WRITEC(SL200) 14 XBARLID s CRCIIHVTOTCID .
200 FORMAT (I3 19X »* XBAR=? sy F12.7+9Xs?CP="sF12.7+9X»* VIOT="yF12.7
22 CONTINUE o
C #*#%%% CN1=COS(PHIa~ALPHAI+F3I=Vinviscid Fad
C #+x%% The above calculation need only be performed once
CALL CNXCLDC(CAPsCNPsCMPsCAFsCNFsCMF1CAT»CNT sCMT+CL KN
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00 CONTINUE
IF(ITER.EQ.1YUWRITE{1+2000)

00 FORMAT(10X,7 IS VISCOUS ANALYSIS REQUIRED 8/
IF(MAN.LE.OC.AND.ITER.ER.1IREAD(1+»#)MAN
IF(MAN,.LE.C)GOTO 150
DO 24 I=1+KK
CPCIY=1-VTOQT(IY*VYTOT(I)

CONTINUE .

CALL EBLCALC(CPsVTOT:SA'KNsKK»NTs IPAR2DUDS)
CALL MATMUL (GN»DUDSyRESsKKsKK)

CALL SDOLVEC(GNsDUDSsRESsIPIVsKK)

DO 30 I=1+KK

DUDS(I)=RES(1)

CONTINUE

#¥*¥%%DUDS=(GN-11*[D{U*DEL. TASTAR) /DSlaerofoil FS
CALL MATMUL(GT +DUDS1VBLyKKKK) :

*#%#% VBL=GT*F5 Viscous velocity component F&

¥#¥%#% The value of VBL is updated during each iteration
DO 32 I=1+KK
VTOTC(I)=CN1CI)+VBL(I)

CPCIY=1-VTOTC(I)*VTGT(I)

CONTINUE

CALL ENXCLDC(CAPsCNPsCMPyCAF» CNF;CMFvCAT’CNT,CMTsCL KN»
+NT)Y

IF{ITER.EQ. 1)WRITE(112002)

2002 FORMATC//+7 I8 WAKE ANALYSIS RERUIRED ? *+//)

<

\-‘0
cC

C
c

IF(MANL.LE.OYREAD (1 2% MANT
IF(MANL1.LE.O)GOTO 150

DO 420 I=1+KK ’
GAMACI)=2.#PI%(SN1(1>+DUDSC(I))

CONTINUE
x%%% DAMA=2%PI*(F2+F5) , F7
#%%% This is the final value of GAMA for the first iteration
###% During the first iteration all wake singularities are zero

IFCITER.ER.13G0OTO 150

NMN=KK

NN1i=1 . -

NN2=NE1

CAaLL NﬁhEIC(NNsNNlsNNZsGNV1vGTV1:XBQRsZBARaTl-TS;XBNI:ZBNIaTNllv
+TH15yGUHLD

**¥% GNV1 GTV1 are L[GNv] wi-}a and I[GTv] wl--)a

NN=KK

NiN1=1

NNZ2=NE52 ‘
IFCNT.GT.2)CALL WAKEIC (NNsNN1yNN2+sGNVZ1GTVZsXBARSZBAR T+ T3,
+XBWZyZBWZ2 s TW2Z1 3 THZ23 sGW2)

*#%%% OGNVZ and GTVZ are [GNvil and [GTv] Ww2-=-}a
CALL MATMUL(GNV1GAMV11+RESYKKINS1) '
*¥#% RES=[GNv1*GAMAvV wakel

CALL MATMUL(GMIRESsRES1 sKK»KK)
CALL SCOLVE(GNJRESIRESI»IPIVIKK)
*#%% RES=(GN-11 # L[GNv]l * GAMAv ~ wakel
DO 350 I=1sKK
GAMA(I)=GAMA(1)~RES1(I)’
CONTINUE
*%%% GAMA=F7-F9
CALL MATMUL(GTV1:GAMS11:RES» KK;NSI)
*%%% RES=[GTv]*GAMAs wakel
CALL MATMUL (GNsRESsRESZ:KKyKK)
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CALL SOLVE(GNIRESIRESZsIPIVIKK)
C *###% RES2=IGN-1] * EGTv] * GAMAs wakel
DO 460 I=11KK
- GAMA(I)=0AMACI)}—-RES2(I)
] CONT INUE
**%% GAMA=F7-F9-F13

CALL MATMUL(GTVI+GAMV1I+RES'KKsNS1)-
#%%% RES=[GTv] * GAMAv wakel
CALL MATMUL (GT+RES1 sRES3I+KK1KK)
*%%% RESTI=GT *#OGN~-1 *GNv * GAMAV wakel
DO 70 I=1+KK
RES1 (1)=RES(I)>-RES3(I)
70 CONTINUE
C **%% RES1=H1*GAMAvV wakel
CALL MATMUL (GNV1syGAMS11s:RESIKKsNS1)
C ##%% RES=(LGNvl * GAMAs wakel
CALL MATMUL(GTsRESZsRES3+KKKK)
C *xx*%* RESI=GT * F13 wakel
DO 80 I=1:+KK _
RESZ(I)=RES(I}+RES3(I) ==
20 CONT INUE
C ##%% RESZ=C1 * GAMAs wakel
DD 90 I=1+KK
VWI(I)=(RES1(1)-RES2 (I))/° /P1
F0 CONTINUE - - et
C ##%* CALCULATION OF VUi HAS BEN COMPLETED
C
IF(NT.ERQ.2)G0T0 130

*x%% GAMA CALCULATION CONTINUED

CALL MATMUL (GNV2,GAMVZ2+RESIKKsNS2)
CALL MATMUL (GNsRESsRES1sKKIKK)
CALL SOLVE(GNsRES»RES12IPIViKK)

*%x%¥% RES1=[0ON-13 * L[GNv] * GAMAvV wake2
DD 100 I=1.KK
GAMA(I)=GAMA(I)-RES1(I)

100 CONTINUE

C *%2%x GAMA=F7-F9-F13-F22

- CALL MATMUL(GTV2,GAMS22+RESIKKINS2)

c
C
c
c
c
C

c CALL MATMUL (GN»RESs RES2s KKy KK} -
CALL SOLVE(GNsRESsRESZ2:IPIVIKK)
C *%*¥x RESZ2=[GN-1]1 * I[GTv] * GAMAs wake2

DO 110 I=1,.KK
GAMA(I)=GAMA(II-RESZ(I)

110 CONTINUE

c

C ****¥ GAMA caleulation completed

c

C *x%% ENALUATION OF VW2

cC
CALL MATMUL (GTV2,GAMV22.RESsKKsNS2)
CALL. MATMUL(GT+RES1sRESIsKKsKK)
DO 120 I=1s:KK
RES3(I)=RES(I)-RES3(I)

120 CONTINUE

C #x%% RES3I=RHZ2 *GAMAv WAKEZ2
CALL MATMUL (GNV2, GAMS22+ RESsKKINE2)

215 .
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c

C #%%% CALCULATION OF VWi WAKE1--)AEROFOIL
C .

c

e

For a single element aerofeil there is only one wake

S
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Fl
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213
22)
23)
24)
23)
2&)
27)
23)
29)
R{e}
i
320
33
34)
335
386)
37)
33>
3?3
40>

a1y

a23
43>
44)
43)
46)
47>
42)
493
50)
51)
52)
53)
54)
55)
56)
57)
533
59)
&£0)
61)
62)
63)
&4)
63)
66)
67)
68)
59
70)
71>
72)
73)
78>
'75)
'74)
'77)
'78)
793
'30)
'31)
'32)

CALL MATMUL(GTsRESZyRES1sKK1KK)
DO 130 I=1,KK
RES(I>= RES(I)+RE81(I) e .
130 CONTINUE -
C **%¥% RES=C2 *GAMAs NAKE2
DD 140 I=1:KK
VW2(I)=(RES3(I1)-RES(I))>/2./P1,
140 CONTINUE

c

£ x*x%x VW2 HAS BEEN EVALUATED
c

150 CONTINUE

WRITE(&L19976)
9976 FORMATC(/// 413X+ 17 54Xy XBAR v&6X 7 VIV 16X 7 VVIS a7 "VHI s 7Y 7V
+38X?Vtot” 1 7Xs"CP? «SXs*GAMA® 2/ /)
DO 1460 I=1:KK
VTOTCI)=CNLCI)+VEL (I +VUHL (T +VU2(TID
CRPCIX=1-VYTOTCII*VTOTCI)
WRITE(&!??7B)I|XBAR(I)!CNI(I)!VBL(I)!VNI(I)sVW°(I)!VTUT(I)!CP(I
+GAMACT)
9972 FORMAT(12X+12+2XsF3. 5!2X’FB S1ZX 1 FB8.593XFR.512XFS.5+2X1FE.5+2
+F8.512XF8.5)
160 CONTINUE
- CALL CNXCLD(CQP!CNP’CMP CAFsCNF sCMFYyCAT+CNT s CMT s CL s KN

4NT)

RETURN

END
c
c .
(e HEXXXRRFRRRAXXIR%%%® S U R ROUTINE 19 FHHEHNHNEREN NN
c .
c -

SUBROUTINE DRIVEZ(ITERJNT) )
C
c RHFEREREFRREREREFEREERFRREEEREREREFRRERRRRRRRARRRERRFRRRFRF AR
c *# The routine evaluates the normal and tangential components *
c * VN VT of the induced velocity at the mid point of pach  *
c * wake segment. Vn and VT arve then used to? *
c * *
c * 1, Relax the wake *.
c » 2. Calculate YM=SQRT(VT*VT+VN*VN) *
G * 3. Calculate Vu=sVM+GAMAV/2 *
c * Vi=VM-GAMAV/2 *
c * *
C HRERRXEEEARRR KRR RN RRARER AR RN RRERRRRERREFRRRAR X T REE AR AR
c

COMMON/EBLA/ALPHAZYKKINS1 sNS2PI

COMMON/BLS/X (99312993 15(9933SA(99)1CN1(99) »SN1(99) »
+T1(27)2T3(99)
CDMMDN/BL&/XNI(Q?)12”1(99)sXWZ(??)aZNZ(??)sSNl(??),SN2(9?)
COMMON/BL7/XBW1(77) s ZBW1 (79) 1 XBW2(79) 1 ZBW2(3?)
COMMON/EL2/VYNL (99) s VNZC(FFI VT L (99) s VTZ(77)
COMMON/EL10/GAMVI (79) +GAMVZ(79) sGAMB1 (270 GAMS2(97)
COMMON/EL11/GAMVIL1(97) yGAMVZZ2{(99)16AMGE11(79)yGAMS22(99)
COMMON/EBL12/SNWL (993 sSNWZ2(97) sCNW1 (991 sCNW2(I)
CDMHUN/BLIE!THII(??)mTHIo(??)1TH21(99)!TNJ3(99)
COMMON/EBL1S5/GAMACYFI»VTRT(99)
CDMHDN/ELl?/XBAR(i?TpZBQR(??)

COMMON/BLLI9/KNCL10)

COMMON/ELZ20/ITRACE

DIMENSION Gl (99+29)sG2(99+99)1GAMI(F9), GAHZ(??);GSI(?9}’
+G82 (771 +VN(F9) s VT (F9) sRES(99)yRES1 (99) yRES2(99) »RES3(79)

216



9999

16

18
112

102

116

103

12

IF(ITRACE.EQ.1)WRITE(461+19999)
FORMAT(//»’ SUBROUTINE DRIVE2'//)
ALPHA=ALPHAZ
IF(ITER.EQ.1)GOTO 112

DO 16 I=1sNG1
GAM1(1)=GAMVI1(I)
GS1(I)=6AMS11 (1D

CONTINUE ‘

DO 18 I=1:NS52
GAMZ2(T1)=GAMV22(I)}
GB2(I)=6AMS22(I)

CONTINUE

CONTINUE

MFLAG=0

CONTINUE

IF(MFLAG.EQR. O)CALL AIRIC(NS1yNTsKN+G1 G2y XBUW1»ZEW1+TW1L1 s TW13 ¢ XBAI
+sZBARYT1+T345)
IF(MFLAG.ER.1)CALL QIRIC(NSI’NTsKN!GI:GZ!XBNZ!ZBNZ!TNZI'TN235XBQ|
+3ZBARIT1+T348)

CALL MATMUL(G1,GAMA3RESsNS1 s KK)
cALL MATMUL(GZ-GAMA;RESIsNSviK)
DO 2 I=1sNS1
YNC(I)=RES(CI) .

YT (IY=RES1(1)”

CONT INUE
IFCITER.ER.1)GOTO 108

IF (MFLAG.EQ.0)CALL. HAKEID(NSI!l:NSI:GIvG’sXBNIaZBHlvTNllyTN13sXB$
+3ZBWLsTWI1+TWLIZ¥yS5WL)

IF(MFLAG.EQ.12CALL WAKEIC(NS1y1sNS1,G1+G22XBW
+s7ZBHZ2yTWZ21 s TW2I+8W2)

CALL MATMUL(G!)GAM1RESsNS1yNS1)-
CALL MATMUL(GZ)GAM1sRES1sNS1,NS1)~
CALL MATMUL(G2:6511RES21NS1INSL)-
CALL MATMUL(G1+G51,RES3I1NS1INS1)
DO 4 I=1sNS{ _
VNCIY=VUNCI)+RESCI)Y+RES2(I)

VT (I)=VT(I)+RES1 (I)+RES3(1)
CONTINUE .

IF(NT.EQ.2)G0TO 116 .12t

IF (MFLAG.ERQ.O)CALL WAKEIC(NS1,1sNS2

+1 ZBNZyTW21 s TW2Z»8W2)
IF(MFLAG.ER. 1 YCALL HAKEIC(NSI51sNSZ!Gi1GE!XBN2123H2;TW211TN235XBh
+2ZBW1TWI1,TW13,8W1)

CALL MATMUL (G1+GAM2sRESINS1 s NS2)

CALL MATMUL (GZ+GAMZsRES13NS1 yNS2)
CALL MATMUL (G2:GSZsRES21NS1INS2)

CALL MATMUL (G1,GS19RES31NS1yNS2)

CONTINUE Es

DD 6 I[=1sNST .

"UNCII=VNCI)+RES(I)+RES2(1)

VTCI= VT(I)+RESI(I)+RES3(I)
CONTINUE

CONTINUE

IF(MFLAG.ER.156G0OTD 1056 .

DO 12 I=1sNE1 , ‘

VN1 CIY=YNCI) /2. /PI-SNW1(13"
VTIC(I)=VTCI)/2./PI+CNWLIC(T )Y
CONTINUE

IF(NT.EQ.2)RETURN

MFLAG=1

IFCITER.EQ.1)GOTO 110 217

23 ZBUZ2»TW21,TW23 1 XBL

1G1sG2yXBUHL+ZBWE»TWI1.TWLE



145)
14&)
47
a8
143>
1502
191)
S2)
53
24D
&3
I54&)
372
m8)
S
160D
ial)
162)
&3
‘64)
165)
hd)
67
b2)
59)
70)
71)
72}
733
743
73
762
77)
78)
179
20D
21>
1827
23
124)
o)
124
187
123)
1293
1703
i71)
1923
V73)
94)
195)
194)
97
198
A
'Q0)
'01)
'Q2)
0%
Q4
'0352
'O43

DD 14 I=1yNS1!
GAM2(I»=GAMV1i1(I)
GS2(I)=6AMB1L(CI)
14 CONTINUE
DO 20 I=1.NB2
GAM1 (I)=06AMVZZ2(I)
GS1(1)=6AMB22(I)
20 CONTINUE
110 CONTINUE
NN=NG1
NS1=NS2
NS2=NN
GoTG 102
106  CONTINUE
DO 22 I=1sNS1
VNZ2(I)=VN(I) /2. /PI-SNNZ(I)
VT2C(I)=VTC(I) /2. /PI+ENW2(T)
22 CONTINUE '

<

NN=NS1

NE1=N&2

NS2=NN

RETURN

END
C 1
C .
C XEEREXFXEEXEAXEXH*XX%%X § U R RODUTTINE BRI TS LT LS LS L L T
c .
C

SUBRDUTINE AIRIC(KK sNT 1 KN3sGN» GT:XBaZBsTll‘T131XBAR|ZBARsT1|T3ss

COMMON/EL20/ITRACE

REAL L

INTEGER SUMsSUMIL ) - N
C - -
cC T R Y I I Y I AT I E I E RIS S
c * ‘ %
C * This subroutine evaluates the influesnce coefficient of all#
C #* aerofoil control points due to? *
c * - . ' *
c * 1. Aerofnil singularities *
C * 2. Wake singularities *
c * _ *
C * The normal components of the influence coefficients *
C * are stored in matrix GN while the tangential components *
c ¥ are stored in matrix GT. *
(04 * +*
c 336 K006 636 T 326 0T KRR R KKK KRR
G

DIMENSION KN(1031GXV(99) s XB(P7)1T11(99)9yT13(99)42B(99)
+GYVLT?) s0GXS(29)1BYS (99 1LNC10) sGN(29+92)1GT (99199 s85(9)
+ 1 XBARCY?) + ZBARCI?I s TL (992 s T3 (79)
IFCITRACE.EQ.1IHWRITE(4,9997)
9999 FORMAT(//+* SUBROUTINE AIRIC*//)
PI=3.1415926334
EPS=.000001
LNCEI=KN(2)
LNC23= KN(S)“KNCZ)
IA=NT-1
WRITE(1+4999246)}(S(I1)s1I=1+KK)
79956 FORMAT(F12.7+2XsF12.7+2XsF12.712XsF12.792XsF12. 7)
DO 2 J=1+KK T
DO 4 JI=2+NT -



37)
)83
2
1O)
(1)
(2
3
.9
\5
.6)
7D
i8)
22
00
1)
223
23
145
152
263
173
2)
27)
50D
51D
32
352
4
i5)
&)
73
83
)
LG
11
v2)
)
4)
k)
&)
7)
B8
73
i)
i12
2
53
4)
3)
&)
73
3)
2]
0)
1)
2)
3
a)
52
&)
7)
2)

9995

114

114

120
130

SAVEBX=0.

SAVEAY=0.

SAVEAX=0.

K3=KN(JJ=1)+1 |
K4=KN(JJ) . ..
DO &6 K=K3+K4

IF(S(K) .ER.0IWRITE(1+9998)K15(K)
FORMAT(* K=" s I313Xs?DS=" 1F12,7).
AL=(XBC(J)=XBARCK)) /S (K)
AZ=(ZB(J)=ZBARCK)) /S (K)
ASE=A1*A1+A3%AT+.25

F=A3%T1 (K)-A1*T3(K)

E=A3*T3I(K) +A1*T1(K)

EA=.5-E

Eb=.5+E -

FM=ABS (F)

IF(FM.LT.EPS)GOTO 114

U1=F/FM '
THETA=ATAN (EA/FM) *U1
THETB=ATANCEB/FM) *U1

GOTO 116

Ul=2.*ARSCEA)

U2=2%ABS(EB)

THETA=EA*PI/UL

THETE=EE*P1/U2 ;

'T=THETA+THETB

RNUM=ASO-E

IF (RNUM.LT.EPS)GOTD 120
RDEN=ASQ+E

IF (RDEN.LE.EPS)GOTO 120

L=, 5%ALOG CRNUM/RDEN).

GOTO 130

L=0.0

CONTINUE

F1=F#T1(K)-E*TI(K)
E1=E*T1 (K) +F*TI(K)
BY=L*E1-T*F1+T1 (K)
BX=T*E1+L*F1-T3(K)

AY=.5% (T*T3(K)+L*T1(K))
AX=.5% (T*T1(K)-L*TI(K))
M1=K

IF(JI.EQ.3)M1=K+1
GXV(M1)=AX-EX+SAVEAX+SAVEBX
GYV(M1)=AY-BY+SAVEAY+SAVEBY
GXS(K)==2, *AY

GYSCK)=2.%AX

SAVEBY=BY

SAVEBX=BX

SAVEAY=AY

SAVEAX=AX
IF(J.EQ.1.0R.J.EQ.40.0R.J.EQ. B0 )WRITE(11200) Ty JIsKI1KdsKaM1 s 1A
IF(ABSCGXV(K)).GT.10..0R.ABS(GYV(K)).GT.10.)WRITE(119990> J1KsFM
FORMAT (10X I3:5X1I13y5X1F12.7)
CONT INUE

CONTINUE

DO 8 Li=1+1A

SUM=0

SUM1=0

IF(L1.EQ.1)60TO 106

1R=L1-1

DO 10 L2=1,1B

SUM=SUM+LN(L2) 219



?)
03
1)
2)
K9
4>
=3
&)
7)
2)
3

o)

13
23
33
43}
5)
&)
72
2
2
o)
1)

2)

3)
4)
=
6)
7>
2)
?)

0.

1)
22
33
4)
3
53
7
2
)
0
1)
2}
3
4’
5)
&3
7)
g
2
10
1
123
133
‘43
3D
63
7D
2

2 .

1))

10

104

108

c
c
200

.12

9999

7798

SUM1=SUM1+2%(LN(L2) +1)
CONTINUE

K&=L1+5UM ' :
Ke=LNCL1)/2+L1-1+SUM . .
GOTO 108

Ka=1

Ky=LN(1) /2

DO 12 K=KBiK9

IV=K-1.1+1

IVi=K+1

TV2=LN(L1)+1-K+5UML -
IS=K-L1+1+LNC(L1)/2

IS1=K=-L1+1
1S2=LN(L1)+2-L1~K+SUML
AZ=GXV(IVI)+BXV(IV2)
BR2=GYV(IVI}+GYV(IV2)
GTCI»IVI=A2%T11 (I +B2*T13¢J)
GNCJ» IVI==A2%T13(JII+B2*T11 ()
C1=GX5(I51)+GXS(IS2)
D1=0YS(IS1)+GYS(IS2)
GTC¢JISI=C1*T11 () +D1*T13¢JT)
GNCJIyI1S3=—C1*#T13(J)+D1i*T11¢I)
IF(J.EQ.1.0R.J.ER.28.0R.J.EQ.54.0R.J.EQ.55.0R.J.EQ.74.0R. J.EQ.92

+WRITE(135200)J1KyIVHIV1HIVZ2118+1514152

FORMAT(R16)

CONTINUE

CONTINUE _

CONTINUE !
DO 20 I=1.KK

DO 20 J=1:KK

IF(J.ERQ. I)NRITE(&:SOO)I|I!GN(J’I)|GT(J I3
FORMAT (T4 163X F12.7+5XF1247)

CONTINUE

RETURN

END

HAAFRFXEXFZFXERAREXX% S U B ROUTINE 21 FREXEENNFEEENNR XA N

SUBROUTINE WAKEIC(KKIKIsKE1GNyGT1XBl1sZB1+yTX1+1TXZ3+XBARZBARYT14T3
+)

COMMON/EL20/ITRACE .

REAL L ) '
DIMENSION GN(992y99) sGT(9923s99)3XB1(29)+ZB1(99)1TX1(99),
+TXI(F9) s XBARCIDI1ZBARCIII s T1L2FI+TI(F?2)+8(97)
IFCITRACE.ER.1IWRITE(&+y9999)

FORMATC(//+' SURROUTINE WAKEIL'//)

PI=3.1415924635346

EPS=1E~-Q¢4

DO 2 J=1sKK

SAVEBY=0.

SAVEBX=0.

SAVERY=0,

SAVEARX=0.

DO & K=R3+K4

IF(S(R).EQ. 0)”RITE(1!9998)K!S(K)

FORMAT (K=" sI3:3Xy?DSW="sF12.7)
Al1=(XB1(J)-XBAR(K)Y)Y/S(K)

AZ=(ZR1 (J)=-ZBAR(K) 2 /8¢(K)

F=AZ*TI(K)~A1*TI(K)

E=A3*T3(K)+A1*T1FK) 250



(2031)
(2032)
(2033)
(2034)
(2035)
(2034)
(2037)
(2038)
(2039)
(2040)
(2041)
(2042)
(2043)
(2044)
(2045)
(2045)
(2047)>
(2043)
(2049)
(2050)
(20513
(2052)
(2053)
(2054)
(2055)

(20383

(2037)
(20352)
(2059)
(2060)
(2061)
(20462)

L (2063)

(2044)
(2063)
(204643
(2067)
(20568)
(20469)
(2070)
(2071}
(2072
(2073)
(2074)
(20733
(20763
(2077)
(2072)
(2079
(2030)
(2081)
£2082)
(2083)
(2034)
£20235)
(20348)
(2087)
(2088)
(20893
(2090)
(2091)
€2092)

110
112

100

102

104

M O~

aooononn

EA=.5-E

EB=.5+E

FM=ABS (F)

IF(F.GT.0.0) FM=F .
IF(F.LE.0.0) FM=-F :
RNUM=EA*EA+F*F y
RDEN=EB*EB+F#F |
IF (RNUM.LE.EPS.OR.RDEN.LE.EFS)GOTO 110
L=.5%ALOG (RNUM/RDEN)

GOTC 112

L=0.

CONTINUE
IF(FM.LT.EPS.AND.F.GE.0.)GOTO 100
IF(FM.LT.EPS,AND.F.LE.0.)GOTO 102
T=ATANCEA/F)+ATANCEB/F)

GOTO 104
IF(E.LT..5.0R.E.GT.~-.5)T=PI °
IF(E.EQ..5.0R.E.EQ.-.5)T=PI/2.
IF(E.EQ..5.0R.E.EQ.~.5)L=0,

GOTO 104
IF(E.LT..5.0R.E.GT.~.5)T=~PI
IF(E.E@..5.0R.E.EQ.-.5)T=-P1/2.
IF(E.EQ..5.0R.E.EQ.~.5)L=0,
IF(FM.LE.EPS.AND.ABS(E) .GT..5) T=0.
F1=F*T1 (K)~ExT3(K)

E1=E*T1 (K) +F#T3(K)
EY=L*E1-T*F1+T1 (K)
BX=T#E1+L*F1-T3I(K)
AY=.5%(T*TI(KI+L*T1(K))

AX=.5% (T*TL(K)~L*T3CK))
GXV=AX-BX+SAVEAX+SAVEBX
GYV=AY-BY+SAVEAY +SAVEBY

SAVEBY=BY

SAVEBRX=BX

SAVEAY=AY

SAVEAX=AX

GT (T K)=GXVETX1 (J) +GYV*TXI(T)

BNCT 2K ==GXV*TX3 (I +GYV*TX1 CJ)
CONTINUE .

CONTINUE

RETURN

END

CRFAREEERNAARRRFALEXS S UBROUTINE O RERERRRRRERER

SUBRCUTINE W1WZ2SS(GAMV:1GAMS 1K1 +K2 IFLAG)
COMMON/BLA/ALPHAZ KK NS1:NS2:P1
COMMON/BLA/XWLIC99) sZW1 (99 s XW2(T99) s ZW2(97) 1SH1IL22)1SW2(9)
COMMON/BL2/VUWL (99) s VLWL (793 yVUW2(99) s VLWZ (99D :
COMMON/BL15/GAMA(?7}VTDT(99)
COMMON/BLLA/TINIHINsTINLISsHINIyTINZ2 »HINZ2»TINI HIN3
COMMON/BL1I9/KNL10) '

COMMON/RL20/ ITRACE o

DIMENSION DSUWI1(99)sTUWL1(99) +SLOPWI1(99) sDDSUNL(IF) s
+DSLWI(99) s TLW1(99) yDDSLUWL (99) 1 VDSUKL (99) »VDSLW1(99)
+3DSUWZ(F9) 2 TUW2(77) s SLOPWZ(99) s DDSUW2(29) s
+DSLWZ2(99) s TLHW2(9%) sDDSLUZ{99) + VDSUWZ(99) 1+ VDSLU2(99) »
+GAMV (793 yGAMS(22) s DUWL (992 »DUWNZ (99) s HUW1 (22) s HUWZ (29}
+3DLWL(99) +DLUWZ2 (99 sHLWI (99) »HLUWZ2(99)
IFCITRACE.EQ.1)WRITE(419999)
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393
194)
195)
176D
1973
1983
199>
LOO)
L0t}
1023
103)
104>
1053
LO&3
1073
108>
1093
1103
1113
1123
(13D
114)
1153
114D
L17)
1183
119
1203
1213
1223
123
124)
1 25)
1 24)
2T
.23)
:29)
.30)
(21)
132
133)
134>
135)
134D
Ky
1T
139
L40)

L1413

142>
143)
l44)
L45)
l4&)
L47)
L48)
149>
§=153)
lS1)
152
153)
|54)

999

FORMAT(//+' SUBROUTINE WiW288'//)

IFCIFLAG.ER. IJGDTD 100

KS=KN(2)

VINIT=VTOT(KS)

caLL NAKVIS(VUNI:VINIT;XN!|ZN1;TINvHINlTUN1sHUWIsDUNl:NSlv

. +VDSUWL sDSUW1 s DDSUWL s SLOPHWL)

F790

9992

9997

100

9729

9982

aoonoooo

WRITE(&619990)

FORMATC(/ 7/ 219X XWL1? 96X VUNL? 96X 7 DUWLT +SX» " DSUWHL" 46X TUUL?
+3 56Xy THUWLY 25X« " DDSUWLT +dXs* VDSUWL? 9+ /7 /)

URITE(Ly 9973 (XWLCISIaVURLCTID) sDUWLCIS) o DSUWLICISY s TUWLCIS)
+HUWLI (IS s DDSUNL (IS +VDSUWIC(IS) s IS=14NS1)

Ké=KN{1)+1

WINIT=VTOT(KS)

CALL WAKVIS(VLWIsVINIT»XW1sZW1sTINI HINL»TLWIsHLUWL yDLWL 1Ny
+VDSLW1sDSLNisDDSLNI,SLUPHl)

WRITE(H17992)

FORMATC//7/7 319X " XWL1? 36X > VLHLT 46Xy DLW +SXs"DSLWL® s 6X s ? TLUHL?
+9AXy"THLWL +SX s " DDSLWLI? 44X+ " VYDSLWL? v/ /)

WRITE(LHsF9272 CXWIC(IS) »VLUWLCIS) s DLWLCIS) s DSLWLCIS) s TLWICIS)Y
FHLWLICISY s DDSLWICIS) yVDSLHWI(IS) s I5=14NS1)

FORMAT (17X sF7.5+2X1F8.512X1FB.5+s2X 1y F7.433X1F2.512XF2.5
+2X1F28.8s2%X+F3.4)

DO 2 K=K1sK2

GAMV(K) == (VUKL (KX * (DSUWI (KX +TUWL (KX ) +

CAVLWL (K) % (DSLWL CKI+TLWICK) Y)Y '

GAMS (K)=VDSUW1 (K3 +VDSLHW1 (K)

CONTINUE

RETURN

CONTINUE

K7=KN(3)

VIN=VTOT(K7)

CALL WAKVIS(VUWZ2sVIN, XWZ:ZN2,TIN21HIN7;TUN2,HUN2iDUN2:N32!
+VDSUWZ s DSUW2 s DDEUWZ2 s SLOPUWZ)

URITE(6s9989)

FORMATC(/// 19X " XW2? s X" VUHZ? y6X v DUWZ? +»5Xs " DBUKZT + 6X 5 TUWZ?
+26X s THUWZ? + 35X+ DDBUWZ2” 414X+ VDSUW2" 4/ /)

WRITE(As9297) (XW2(IS) sVUW2C(IS) sDUWZC(IS) 1 DSUW2CIS) s TUN2CIS) »
+HUWZ (1S53 2 DDSUW2CID) s VDSUWZ(I3) 1 I15=11N52)

K3=KN(2)+1

VIN=VTOT(K3) ‘

CALL WARVIS(VLWZ2yVINsXW29ZW2 s TINIsHINI»TLRZ HLW2DLWZ2INS2
+VDSLWZDSLW2+sDDSLWZ » SLOPW2)

WRITE(&59928)

FORMATC(/ /719X 27 XW2T 16X VLHZ2" 56X DLUW27 25X s " DSLUW2" 26X ? TLHZ2®
Fa&XyTHLWZ? 55X " DDSLWZ? 14X VDELUW2Y 1/ /)

WRITE(CSLHyF977) CXWZ2(IS) »VEW2C(IS) sDLW2C(IS) s DELW2C(IS) s TLWZ2(IS) »
+HLWZ2(IS) +DODSLWZCIS) s VDSLWZ2C(ID) s IS=11NG2}

DO 4 K=K1sK2

GAMV (K=~ (VUWZ2(K) ¥ (DESUWZ (R) +TUWZ (K) ) +VLWZ (K * (DSLW2 (KX +TLHZ2 (K)
GAMS (K)=VDSUW2(K) +VDSLWZ (K)

EONTINUE

RETURN

END

ERXRNEXXERHKAFXXEXNAXXE® S U B ROUTTINE pASRE T T IETLTEYE LTS N

SUBROUTINE MATMUL(A;B!CaNIOaNZO)
COMMON/BL2C/ITRACE

DIMENGION A(97199):B{99):C(29)
IFCITRACE.ER. 1XUWRITE(L49999)
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1S5 9999 FORMAT(//»" BUBROUTINE MQTMUL'//)l

15463 DO 2 J=13sN10O

tS7) SUM=0,

LS8) DO 4 J2=1+N20 .

1593 SUM=SUM+A(J1J2}*B(J2) ’

L&y 4 CONTINUE

l61) C(J>=8UM

162 2 CONTINUE

163) RETURN

164) END

163> C

166> C

167 € EEREEFEFEREXXEEAXXXE S U B ROUTINE 24 FRREN KR RN R ®EE¥
143 C

169 C :

t702 . SUBROUTINE MATINV(AsND

171) COMMON/BL20O/1ITRACE

1723 DIMENSION A(99:927)sPIVOT(9?),Y(F9)1IP(99)

L1735 REAL MAXEL .

174> IFCITRACE.EQ.1DURITE (43999

175> 9799 FORMAT(//s” SUBROUTINE MATINV'//)

176 €

177) C Matrix inversion using Gauss elimination with pivoting.
173y €

1793 C The subroutine evaluates the inverse of A and maps

180 C it on top of A. Thus on exit A contains the elements
121 C of its inverse,

182 C .

133y C *PIVOT® is a linear matrix of size N which on exit holds
184 C the pivotal elamentts obtained during the elimination.
185> C

1843 C Y+IP are used as working space.

187y €

188 C N is the matrix size limitted to 120,

189) € ' '

190 C EPS:The subrputine stops the computation if the absolute
171y C value of the current pivotal element in the

192> C elimination process is less than EPS*#MAXEL where
193> C EFS is a tolerance chosen by the usar . MAXEL is the
194 C largest element of A in absolute value and is found internally
195 C by the routine.

194 C

197 MAXEL=0.0.

198) EPS=.0000001

199) DO 5 I=1sN

200 DD 5 J=1N

201) IFCABS(ACI«JY)LE.MAXELIGBDOTO S

202 MAXEL=ABS(A(I+J))

203 S CONTINUE

204) , TOLER=MAXEL*EPS

203) DO 10 I=1sN

204) IPCIN=I

207y 10 CONTINUE

208) NN=N-1

2093 DD 47 K=1NN

210 . XMAX=0.90

211> 1FLAG=0

212> DO 20 I=KiN

2133 IF(ABS(AMKI) ). LT.ABS(XMAX) XGOTO 20

214) XMAX=ACK,I)

219 MPIVOT=I

2143 IFLAG=]
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(2217 20 CONTINUE

(2218) IF(IFLAG.EQ.0YGOTO 30

2219 IX=IP(K) .
(2220) IP(KY=IP(MPIVOT)

(2221) IP(MPIVOT)=IX

(2222) DO 25 J=1,N

(2223) DUMMY=AC{KJ?

(22243 AKYy D) =AMPIVOT»J)

(2225) AMPIVOT » J>=DUMMY

(22263 25 CONTINUE
(22273 30 CONTINUE

(2222) PIVOT(K)=A(KK)

(2229 ZPIVOT=AC(KK)

(2230) IFCABS(PIVOT(K)).LT.TOLER)GOTD 120 -
(2231) A(KK)=1,

(2232 KK=K+1

(2233) DO 45 I=KKsN

(2234) FACT=A(I1:K)/PIVOT(K)
(2233) AC(IVKY=0.0

(2236 DO 35 J=KKsN

(22373 A{I+JI=ACI»I)~-FACT*ACK+I)
(2238 35 CONTINUE

(2239 . DO 40 J=1.K !
(2240) Al JI=A(I+J) - FACT*A(K-J)
(2241) 40 CONTINUE

(2242) 45 CONTINUE

(22433 47 CONTINUE

(2z244> PIVOT(N)=A(NIN)

(2243) ZPIVOT=A(NN)

(22446 IFCABS(PIVOT(N}).LT.TOLER)GOTD 120
(22473 ACNIN) =1, .

(2248) DO 50 J=1.N

(22493 AN DI =ANIY /PIVOT (ND
(22502 50 CONTINUE

(2251 K=N~-1

(2252) 60 CONTINUE

(2253 DO 70 J=1,N

(2254) Y(J)=0.,0 :
(2255) IF(J.LE.K)GOTO 70

(2254) Y{(JI=A(Ky»J)

(2257) ACKYJI=0,0

(2238 70 CONTINUE

(2259 DO 90 J=isN

(22600 T 8=0.0

(2261) K8=K+1.

(2262) DD 80 JJI=KE8i:N

(2263) S=6+A(JT»JI)*Y (JJ)

(22464) 80 CONTINUE

(2263) AKYyI)=(ACK JI-8) /PIVOT(K)
(22642 90 CONTINUE

(22673 K=K-1

(2268 IFC(K.GE.1)GOTO &0

(2269) DO 97 J=1sN

(2270) IFCIP(J).EQ.JIGOTO 77
(2271) JI=IP(J)

(2272} DO 95 I=1,N

(2273)

(2274) DUMMY=A(TI+J)

(22733 ACI+I)=ACIJT)

(2274 ACI»JJ)=DUNMMY

(22773 95 CONTINUE

(2275) IPCI)=J
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(227%)
(2280)
(2281)
(22823
(22833
(2284)
(22385)
(228463
(22873
(2238)
(228
(2290)
(2271)
(2292)
(2293
({2294)
({2295)
(2296)
(2297)
(2293)
(2299
(2300)
(2301)
(2302
(2303)
(2304}
(2305)
(2304)
(2307)
{2308)
(2309
(2310}
(2311)
(2312
(2313
(2314)
(2315)
(2314)
(2317
(2318
(231
(23200
(2321)
(2322)
(2323
(23243
(2325)
(2324)
(2327)
(2328)

(2329,

(2330)
(2331)
(2332)
(2333)
(2334)
(2335)

. (23362

(2337
(2333)
(2339
(2340)

aoogoan

99792

IPLII)=JT
CONTINUE
WRITE(63200) .

FORMAT(//+" THE INVERSE QF THE MATRIX A'"1//)
DO 100 I=14N .
WRITE(&1202) 1

FORMAT(/ ' ROW NO.=',14/)
WRITE(&:204) CACT+J) 9 T=11N)

CONTINUE

FORMAT(5(F12.7+3X))
FORMAT(3(2XsI3)+3X»2(F10.5))
FORMAT(F10.4s3Xy1241I3)

RETURN

CONTINUE

WRITE(1+2046)ZPIVOT

FORMAT(//* THE MATRIX IS SINGULAR THE CURRENT PIVOTAL

1ELEMENT="F15.7)

RETURN ; , )
END :

TR RN H RN RNR NN S UBRODUTINE LRI T IE R T TN

SUBROUTINE WAKREL (XsZyVTsVNYNS)
COMMON/BL20/ ITRACE

DIMENSION X(99)1Z(991D5(T93 +COST(99) 1SINT(I9) 1 VT (99 sUNC'
+)

IFCITRACE.ER, 1YWRITE(6199799)
FORMAT(//+’ SUBROUTINE WAKREL'//)
N=NS+1

DO 2 I=1,NS

DX=X(I+1)=XCI)

DZ=Z(I+1)~Z(1)
DS(I1)=SERT(DX*DX+DZ*DI)
COSTCI)=DX/DSCI)
SINT(I)=DZ/DSCI)>

CONTINUE

DO 4 I=2:N

SUM=0 .

SUM1=0

I1=I-1

DO 6 J=1,I1

VM=SQRT (VT(J) *UT (TI+UN CTI %UN(I))
R1=VT(J) /UM

- RZ=VN(JI/VM

=]

oo nn

SUM=SUM+DE(J)*((R1-1)*COST(II-R2*SINT(J))
SUMI=SUM1+DS(J)* ((R1~1)*SINT (J)+R2*COST(J))
CONTINUE

XCI)=X(1)+8UM

ZC(I)=Z(I)+8UM1L

CONTINUE

RETURN

END

HEXAFXFFRAEXX¥XX%%% S UBRODUTINE 26 FERRRKEKKRS

SUBROUTINE GAUSSZ(AsB»X1N)
COMMON/BL20/1TRACE
DIMENSION AC10+210),BC10):X(10)
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(2341)
(2342)
(23437
(2344)
(2345)
(2344)
(2347)
(2348)
(234%)
(23507
(2331
(2352)
(2353}

(2354
(2353)

(23562
(2357
(2358)
(23593
(2360
(235610
(2362}
(23463}
(2364)

(23565
(2364)

(2367
(23462)
(236
(2370
(2371)
(2372)
(2373
(2374)
(2375)
(2376
(2377)
C2372)
(2379
(23303
(23813
(2332)
(2383
(2384)
(23853
(2384)
(2387)
(2382)
(2387)
(2370)
(23712
(2372)
(23933
(2394)
(23953
(23946)

(2397)

(2392)
C237)
(23400)
(2401)
(2402)

ooOnNOnNDOon aoanooo

Y799

20

30

a0

60
S0
10

80

70

9999

IFCITRACE.EQ.1DWRITE(6+999F)
FORMAT(/ /' SUBROUTINE GAUSS2'//)
NN=N-1

DO 10 K= lsNN

XMAX=0,0 : : : .
IFLAG=0

DO 20 I=KsN
IFCABS(A(I+KI).LT.ABS(XMAX)HGOTO 20
IFLAG=1

XMAX=A(I 1K)

MPIVOT=1

CONTINUE

IFCIFLAG.ER.0)GATO 40

DO 30 J=1sN

Y=A(KyJ)

ACK» J)=A(MPIVOT »J)
A(MPIVOT»J)=Y

CONTINUE

Y=B(K)

BCKY=RB{(MPIVOT)

B(MPIVOTI=Y

CONTINUE

KK=K+1 -

DO S50 I= =KK 1N

ACIYKI=ACI 1K /ACKIK) 1

DO 60 J=KKiN

ACLy I =ACT s JI-ACTKI*A(Ks J)
CONTINUE .
BOI=RCII-A(1KI*B(K)

CONT INUE '

CONTINUE

X(N) B(N}/A(NaN)

R=N-1

KS=K+1

5=0.0

DO 70 J=KS»N
S=5+A(Ks J) *X(J)

CONTINUE
X{KY=(B(KY=-5)/A(K+K)

K=K-1 '

IF(K.GE.1)G0TO 20

RETURN

END

FEFFEFEREFXREXUER%%% G U B ROUTINE 27 RREXRHEF RN

SUBROUTINE WiW281(XsZ16VMsGSMIVINLI+SINL NNy IFLAG)

LTI T ELILILSI TN LS LS E LI XL L LS LI L LS L EEEEL LS L E LR EE L E RS S 4

The subroutine calculates the wake singularity *
at the panel ends using the singularity value *
at the panel mid-point *

FE 3 3 I3 I I I I I AR NI I3 NI N NN

CDMMDN/BLlO/GAMVI(??)vGAMVZ(??)sGAMSl(??)vGAMSZ(??)
COMMON/BL20/ITRACE
DIMENSION X(??)’2(99)1GVM(99)vGSM(?9)
IFCITRACE.EQ.1JWRITE(LH 19999
FORMAT(//+7 SUBROUTINE WIiW281*//)
N=NN
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[
LY

(2403
(2404)
(2405)
C24046)
(2407)
€2408)
(2407)
(24107
(2411
(2412)
(2413)
(2414)
(2413
(Z416)
(2417)
(24183
(2419
(2420)
(2421)
(2422)
(2423)
(2424)
(24253
(2425&)
(2427)
(2423
(24293
(2430)
(24313

(2432}

.

(24333
(2434)
€24335)
(2434)
(24373
{24383)
(243%)
(2440)
(2441)
(2442)
£2443)
(2444}
€2445)
(24443
(24473
(2448)
(2449)
(24502
(24513
(2432)

(2433

(24543
(2455)
(2454)
24377

(2458)

£2439)
(244560
(24561)
(2452)
(24633
(2444)

GVM(1)=V1INt

GSM(1)=GAMS1(¢1)*1.2

IF(IFLAG.ER.1)GATD 100

DD 2 I=2:N

GVM(I)=(GAMVI (I} +GAMVI(I-1))*.5

GSMC(I)=(GAMS1CI)+GAMSI(I~-1))*.5
2 CONTINUE

GVM(NN+1)=GAMV1(NN)%.5

GSM{NN+1)>=GAMS1 (NN)*.5

RETURN
100  CONTINUE

GEM(1)=GAMS2(1)#1,.2

DO 4 I=2:N '

GVMCI) = (GAMV2CI)+6AMV2(I~-1))%.5

GSM(1)=(GAMSZ(I)+GAMS2(I-1))*.5
4 CONT INUE

GVM (NN+1)>=GAMV2 (NN)Y*.5

GSM(NN+1)=GAMS2(NN)*.5

RETURN

END

7

HXEXERRXREAXREFRIXA* S U BROUTINE iR I T T XX L L L T

aOnGon

SUBROUTINE SPLINE(XI:YI;DY DDY;KIO:ISTART;NOT)
COMMON/EBL20O/ITRACE -
DOUBLE PRECISION XsYsWrWORKL+WORKZ1C3855+851K(99)
DIMENSION Y(9%) s X(9231DY(F2)2DDY (993 3W(29))
+WORK1(99) s WORKZ2 (4,993 1C(I7)18(53 1 X1(99)1Y1(99)
IFCITRACE.ER. 1)UWRITEC(L19992)
7999 FORMATC(//:’SUBROUTINE §8SPLINE'//)
DO 1 I=1+K10
XCIX=X1CI)
Y(I)=Y1CD)
1 CONTINUE
IFCNOT.EQ.1)GOTO 109
CALL DUIDU2{Y X DYy DDY'KIO)
NCAP=0
IK=5
DO 10 I=1+K10
IF(AES(DY(I)).LT..4)GOTD 10
KCOIKY=XCI)
IK=IK+1
IFCILER.1.OR.IL.EQ.KIO)GOTO 10
IF(DY(I+1)#DY(I-1).GE.Q)GOTO 10
KCIKY =X (1)
KCOIK+1)=X(I)

IK=IK+2
10 CONTINUE
GOTO 102
100 CONTINUE
C NRITE(ls?OO)(X(I)!Y(I)vI 1,K10)
200 FORMAT(Z(F12.7+3X))
IK=3
K9=K10-4

DO 12 J1=ISTART:K?
KCIK)=XC¢JI1)
IK=IK+1

12 CONTINUE

102  CONTINUE
NCAP=1K-4
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(2465)
(2466
(2467)
(2468)
(2469)
(2470
(2471)
(2472)
(2473)

(2474)

(2473)
£2474&)
(24773
(2472)
(247%9)
(2420)
(24813
(2482)
€2483)
(2484)
(2435

(24863

(2487)
(z2422)
(24897
(2490)
24913
(2492)
(2493

(2494)

(2493)
(24343
24973
(2492}
(2499)
(25003
(25013
(2502)
(2503)
(2504)
(2203)
£25064)
(2507),
(25033
(2509
(2510)
(2511)
(2512)
(2313
(2514
(2515}
(2516)
(2517)
(2512)
(2319
(2520)
(2521)
(2522)
25233
(2524)
(2523
(2524)

20

30

aoooon

ooooonoa

9999

NCAP7=NCAP+7

DO 20 I=1.K10

W(Id=1.

CONTINUE

IFAIL=0 *
CALL EG2BAF(K10yNCAP7»X1YsWsKyWORK1YWORK2+sCsSS+IFAIL)
po 30 I= 1!K10

IFAIL=0

CALL EO2BCF (NCAP7:1K1s CvX(I)slesIFAIL)
DYC(IX=8(2)

DDY(I}=5(3)

CONTINUE

RETURN

END

EREAARZEXFEXXENEXX%%® S UB ROCUTINE 27 AXERFERAREERER:

SUBROUTINE WAKVIS(UW UWINyXWyZWsTIN'HINISTOTySTOHSTOD NS
+VDSUWYDSTARYDSTARZ s DANG)
COMMON/BLZ20/ITRACE -

FEEE T ERFETR LT LTEE L E FORTRRERRE F R R F R 2 S A S S
* Calculates the viscous flow onh one side of the wake *

* using GREENS LAG ENTRAIMMENT wmethod *
RERFERERERRLREERERFEFFEERERREARERAREREERERERERRE AR RREE

DIMENSION UWC(F9) v XU+ ZW (TR STOT(Y7)2ySTOH(92) +STOD(992
+9ySEW{YT) +BEL (922 UDAMCZ9) s DUDAM (793 yANG(FT) + DANG (792 »VDEUW (¢
+) yDSTAR(I?21DSTARL (99) + DESTARZ(?7) +yRUBISH(992 88T (922 »DDUDAM!
+9),STREN£99)aDSTREN(?9)sHELP(??)sHELPZ(??)

IFCITRACE.EQ.1IWRITE(4£+9999)

FORMAT (/7' SURROUTINE WAKVIS'//)

IF{TIN.LT.0001)TIN=0.009

IF(HIN.LT.1.5.0R.HIN.GT.1.9)HIN=1.9

S8L(1)=0.

UDAMC1D)=UW(1)*1.05

H=HIN

RLAM=.5

Hi=3.15+1.72/(H-1.)~.0i*%{(H-1.)*(H-1.)

QO=—~(1.25/H)*((H-1.)/(6.432%H) ) %*2

CEQO==H1*(H+1.)*Q0 ,

CTRO=.024%CEQO+1 ,2*CEQO*CEROD

CEQ=SURT(CTRO/ (1 ,2*RLAM*%¥2)+.0001)-.01

CE=CEQ

M=1

DO 4 I=1.,NSi

M=M+1 :

DX=XW(I+Ly—-XW(IS

DZ=ZW(I+1>-ZW(I}

E8W(I)=SART(DX*DX+DZ*DZ)

ANG(I)Y=ATAN(DZ/DX)

IFCILLT.NSIISST(I+1)=58T(I)+58W(I)

SSL(M)=8SL(M=1)+5S5W(T)=*.5

UDAM(MI=UWLI) '

M=M+1

SSL{M)=88L (M- 1)+SSN(I)* 5

IFCILLT NSO UDAMMI=(UW (I+1)+UWCI) I *.5

CONTINUE

K10=2%NGS1 .

CALL DUiDUZ2(UDAMHSSL+DUDAMsDDUDAMIK10)
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© 400 RETURN

M=1
DSTAR(MI=HIN*TIN
T=TIN
STREN(M)=DSTAR(M) *UDAM (M)
DO & J=1sNS1
IFLAG=1
20 DT=«(H+2.)*T*DUDAM(M} /UDAM(M)
H1=3.15+1.72/(H~1.)~.01%(H~1.)*{H-1.)
DHHl=~(H=1 . )% (H~1,)/(1.72+,02%(H~1.)%({H-1.)%(H-1. ))
DH=DHH1 % (CE+H1* (H+1., )*T*DUDAM(M) /UDAM(MIX/T
CT=(.024+1 .2#CEY*CE -
IFCABS(CT) .LE.C.OC0001XCT=0
F=CT/(.012+1.2+CE)
DO0=~(1.25/H)*((H~1.,)/C&6£.432%H) ) %*2
CEQO==H1%(H+1.)*R0
CTQO=.024*%CERQO+1.2%¥CERQO*CERO
CEQ=SART(CTRAQ/(1.2%RLAM*%2)+.0001)-.01 : -
Q=—~(CEQ}/(H1*(H+1.)) '
DCE=F#((2.8/ (H+H1L) )% (SQRT(CTRO) - RLAM*SQRT(CT))+G T*DUDAM M) /UDAMLC
+3)/7T
IF(DH.GE.3.)DH=3.
IF(DH.LE.-3.)DH=-3,
T=T+DT*SSH(J)*.5
H=H+DH*SSW(J)*.5 , ;
CE=CE#DCE*SSW(J)*.5
M=M+1
DETAR(MI=H*T
STREN{M)=DSTARCMI*UDAM(M)
IFCIFLAG.ERG. O)GDTO 6
IFLAG=0
STOT(I)=T
STOH(J)=H
IFCJ.ER.NS1)GOTO &
GOTO 20
b CONTINUE
DO 30 I=1+M
HELP(I)=DSTARCI)
30 CONTINUE
CALL DUIDUZ(DSTARSSLDSTARL1sDSTARZM)
CALL DUIDUZ(STREN:SSLyDSTREN»RUBISH M)
DO 40 I=1M
DSTARZ(IY=HELP2(I)

- 40 CONTINUE

NK=1
DO 8 I=2+M+2
DSTAR1 (NK)=DSTAR1(I)
DSTARZ (NK)=DSTARZ2(I)
UDAMCNK))=UDAMCI)
DUDAMI(NK)Y=DUDAMC(I}
CVDSUWINK ) = DBTREN(I)
NK=NK+1
8 CONTINUE
caLL DUIDUZ(ANG!SST:DANG;RUBISH;NSi)/

END

HERFEERRERAFFERERER S UBRODUTTINE KOEE T LS EE L ST LY

oonoaan

~ SUBROUTINE CNXCLD(CAPsCNPsCMPsCAFsCNF2CMFHYCATSCNTICMTCL KNy
CHNT)

228 .
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1
2)
3
43
53
)
7)
2)
3
03
13
2)
5D
4)
3>
&
73
B

9y -
0)

1)
2)

)

D

=3
&)
73
2)
)

0

1)
2)
3)
4)
5)
45)
73
23
?2)
)
1)

23

59
4’
2
A
7
2
?)

oy

1)
23
3)
43
53
53
73
23
73
Q3

9999

9592

7971

CUMMDN/BLDCKS/REI;ISTAG(IO)
COMMON/BLS/X (2202 2(29398(92)1SACI?I+CNL(F9)1EN1 (99D

+T1(99)sT3ICID

COMMON/BLLIB/CP(92)sCF(29) _ i
COMMON/BL20/ITRACE
COMMON/EL25/CDUL»CDUZ2,CDL1 s CDL2
DIMENSION CAP(10)sCNPCIQ)sCMP(103»CAFC10) yCNF (103 sCMF(103+KN(10)
IFCITRACE.ER.1JWRITE(4£19997)
FORMAT(//’ SUBROUTINE CNXCLD*//)
KK3=0 '

DO 2 I=2sNT

K3=KN(I-1)+1

K4=KN{I1)

IF(I.EQ.3)K3I=KN(I-1)+2
IF(I.EQ.3)KA=KN(I)+1

SUM=0

SUM1=0,

SUM2=0.

DO 4 K=K3+K4

KK3=KK35+1

CP1=CP(KKS)

SUM=SUM+CP1%(Z(K+1)-Z(K))
SUM1=SUMI-CP1# (X (K+1)~X(K))
SUM2=BUM2+CP1* (. 5*(XCK)+X(K+1))*(X(K+1) X(K)I+, 5*(Z(K)+Z€K+1))

+% (Z(K+1)=-Z(KI)D)

CONTINUE

CAP(I)=5UM

CNP{I)=8UM1

EMP(I>=5UM2

SUM=0

SUM1=0.

sSuUM2=0.

KK&=0

DO & K=K3sK4

KK&=KK6+1

CF1=CF (KKé)

IF(KKS . LE.ISTAGCI) YCF1=-CF (KK&)
SUM=SUM+CF1*(Z(K+1)>=-Z(K))
SUM1=SUM1+CF1# (X (K+1)-X(K))
SUM2=8SUMZ+CF1# (T (X (KO +X(K+1I I % (X (K+ L) =X (KD DI+ G (Z (KD +Z(K+1D)

+#CZCK+1D~ZCKY))

CONTINUE

CAF (I)=8UM

CNF (1) =8UM1
CMF{I)=5UM2

CONTINUE

CAT=0.

CNT=0.

CHT=0.

DO 8 I=2,NT : :
CAT=CAT+CAF(1)+CAP(I)

" ENT=CNT+CNF-(I>+CNPL{I)

CMT=CMT+CMF (I)+CMP (1)

CONTINUE

CL=CNT*COS (AL PHA)-CAT*SINC(ALPHA)

CD= CDU1+CDU2+CDL1+CDL2

WRITE(&y9972) ' .

FORMAT(/// 228X CAP? 48X " CNP" 18X »"CMP? 22X s CAF" 18X s " CNF” +8X»? CMF

+//77)

WRITE(6+9991) (CAPCISY +CNRPCIS) +CMPCIS) yCAFC(ID) +sCNF(IS)F»CMFCIS)I IS

#3NT)

FORMAT (28X FB.0+2X s FB.5+2XyFB.512XFE.52XF2.35342X2F2.3)

230



(2651) HRITE(It???S)CAT!CNf:CMT!CLvCD

(2652) WRITE(LHs9925)CAT+CNT+CHTCLHCD

(2653 9995 FORMAT(//+'CAT="1F8.513X+'CNT=" 1F8.5s3X 1" CMT=" +F8.513%»
(24654) +?’CL="sF8.5s3Xs'CD="sFB.5://) ) '
(2655 40 RETURN

{2656) END

{2657 €

(2632 C

(2659) C HEERERFHERERXXAXXN%%% § U B ROUTINE KSR T TT LT ETLE LY
(2660 C

{2661) C

(2662) SUBROUTINE WAKEG1C(ISTORE»IFLAGYKNsXWy»ZW)

(2663) COMMON/BLA/ALPHAZs KKy NS1aNG24P1

(2&648) COMMON/BLS/XC(I92+2C(92)+8(992ySACII1ENL(ZYIaGN1(99)
(2663 +T1(99)1T3(IM

(265640 COMMON/BLL20/ITRACE

(26567 DIMENSION KNC1OX +XHW(F9X+ZW(99)

(264658) IFCITRACE.ER.1IWRITE(S 1992

(264693 9999 FORMAT(//+'SUBROUTINE WAKEGL'//)

(26703 KNIT=KN{(33+1

(2671) IFCIFLAG.ER.1)XGATO 100

(26723 NF=KN(3)-KN(2) R

(2673 IBEG=KN(2)+1{+3*NF/3

(26747 IMAX=10. ,

(2675 DO 20 I=IBEGiKN3

(2676) DIST=(X(1)=XC(I) ) *%2+(Z(1)~ Z(I))**Z

(26773 _ IF(DIST.GT.XMAXIXGDTO 30

(256782 IMAX=DIST '

(2679 20 CONTINUE

(26203 WRITE(14+202)

(26813 202 FORMAT(//y'ERROR IN SUB 25 AFTER FORMAT 202',//)
(2682) 30 CONTINUE - .

(2683) ISTORE=1-2

(26843 100 CONTINUE

(2685 Xt=XC(ISTORE}

(26863 X2=X{ISTORE+1)

(26873 X3=X(ISTAORE+2)

(2688 Yi=Z(ISTORE)

{24689 Y2=Z(ISTORE+1) .

C2690) YI=Z(ISTORE+2)

(2691 Call QUADCX1 4 X2+ XT9s¥Y1¥Y24¥Y3 AL LBLCL)
(2672) - CALL CUBIC(ALqBL!DL’ISTDRE;XNDM;YNUM)
C2693) ISTART=ISTORE+2

(2674} IFCXNOM.GE . X1 .AND.XNOM.LE. X2)ISTART=ISTORE+1
(2695 TKNZ2=KN(2)+1

(26946 TET=Z{KN2)~Z(1)}

(2697) HSLOT=Z (1) ~-YNOM+.5*TET

2698) XWC1i)=X(1)

(2699 ZWC1)=Z(1)X+TET* .5

(2700 . NCOQUNT=2

(2701 C WRITE(1:s2046) ISTARTIKN3

£2702 204 FORMATC2C(IS12X)) _ i,
(2703) DO 40 I=ISTART I1KN3 -
(2704) IFCI.EQ.KNIYGOTO (02 '

(2705) X1=X(I-1)

(2704) ‘ X2=X(I)

(2707 X3=X(I+1)

(27083 Yi=Z(1-1)

(2709 Y2=Z(1)

(2710) Y3=Z(1+1)

(2711) CALL GUADCXI 1+ X2 X3 Y11Y2: Y3 +ALYBLACL)

(2712 102 CONTINUE
231



(2713) X2=X(1) "~

(2714) Y2=Z(1)

(2715 ELOPE=2.#AL*X(I)+BL

(27182 : SLOPEN=~1./5L0PE

(2717) XP=XZ+HSLOT/SQRT (1. +SLDPEN**2)
(2712) ZP=SLOPEN*#XP+Y2-SLOPEN*X2
(271 IF(ZP.GT.Y2)G0OTO 104 . .
(27206) XP=X2-HSLOT/SORT(1.+SLOPEN*%2)
€2721) ZP=SLOPEN*XP+Y2~-SLOPEN*X2
(2722) 104 CONTINUE

(2723} XW(NCOUNT)Y=XP

(2724) ZW(NCOUNT) =ZP

(2723) NS1=NCOUNT-1

(272862 NEOUNT=NCOUNT+1

(27273 40 CONTINUE

(2728} WRITE(1+204) (XW(I)sZWCI)»I=1+NCOUNT)

(2729 204 FORMATLF12.7+3%XvF12.7)
(27303 997 RETURN

(2731) END

(2732 C

(2733 €

(2734 C EEEFEXXEEFAANEXAA%%% S U B ROCUTINE 32 ARFRERXERER
(2735) C

(27346) C '

(2737 SUBROUTINE GUADCX1+ X2+ X3:Y1Y2:Y3sALBLCL)

(2738) Al=Y1*XZ2+Y2%XT+YI%XI=YIHX2-XT*xYL1-Y2%X1

(2739 AZ=X1 %X 1 #Y2+X2%X2%YI+XI*XIHY L -XI XTI HY2-YIAN I X1~Y2I1X2%)2
(2740 AZ=XL*# X142+ X228 X2 XT+ATHATENL-XI XTI HXZ-AT X1 X1 -X2xX2%X]1
(2741) AL=A1/A3 P

(27423 BL=AZ/A3 :

C2743) CL=Y1-BL*X1-AL*X1*X}

(2744 RETURN

(2743} END

(2746 C

(2747 C ,

(2743 C RERRREEAXXRE%XX%%%% G UB ROUTINE IT RENERERENKN
£274%> C '

(2750 C

(2751) SUBROUTINE CUBIC(ALsBL CL+ISTORE » XNOMs YNOM)

(2752) COMMON/BLS/XC(993+Z2(99)15(9931SA(F7)+CNLI92)sSN1(FY)
(27535 +T1029)sTI(9D)

(27543 COMMON/BL2C/ITRACE

(2755) DIMENSICGON XX<4)

{2758 IFCITRACE.EQ. 1)WRITELL+999F) _

(2757 9999 FORMAT(//+'SUBROUTINE CUBIC™ //)

(2733 EPS=.000001 :

(27359) © AL1=2,.%AL*AL

(27460% ' AZ2=3.%#AL *BL

(27461} AZZ=2.#AL*CL+BL#BL-2.#AL*7C(1)+1

(2762} A44=CL*BL-X(1)~BL*¥Z (1)

(275633 XXC1)=XC(ISTORE)

(2764) XXC2)=X(ISTORE+2)

(2745 X1=XX{1)

(2764) X2=XX{2)

(2767} X3=X2 .

(27462) FXT=A11%XX (1) #XX (1) XN (1D 4+A22% XX (1Y XX (L) +HAZIHAX (12+A44
(2769 10 CONTINUE

(27703 FX2 AlI*XXCZD*XX(zJ*XX(z)+A24*XX(2)*XX(2)+933*XX(2)+A&4
(2771) XXC3I=XX(2)- (XX (2)=XX (1)) *F X2/ (FX2~FX1)

(27723 IFCABS (XX (3 =X {(2)).LT.EPS)YCOTD 20

(27733 XXC1)=XX(2)

(27743 XX(2)=XX(3)
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775)
7763
777)
7783
7797
7300
781)
7623
7833
7843
783>
786>
787)
7883
789>
790
791)
792)
7933
794>
7933
79&)
7977
7983
79
800>
go1)
802)
803>
804>
805}
8042
807
805>
809
810)
311
312
313
814>

8153 -

8146)
817)
212)
8193
820)
'821)
8227
|823)
324>
‘8253
8242
'827)
228
829
B30
'831)
8323
18333
'834)
1235y
1835

20

202

40
200

30

onoonn

9999

100

102

FX1=FX2
GOTO 10

CONTINUE

WRITE(1,2023XXC3)1X11X3

FORMAT(3(F10.5:3X))

IF (XX (3).GE.X1.AND. XX (3) .LE.X3)60TO 30
Fi=A11

G1=AZ2+XX(3)*F1

H1=-A44/XX(3)

R1=G1%G1-4.*%F1*H1

IF(R1.LT.0.)GOTO 40

DELTA=S@RT(R1)

XX(3)=(~G1+DELTAY/ (2. %F1)
IF(XX(3).GE.X1.AND.XX(3) .LE.X3)GOTO 30
XX(3)=(-Gi-DELTA)/(2.%F1)
IF(XX(3).GE.X1.AND,XX(3).LE.X3)G0TO 30
WRITE(1,200)

FORMAT(//+"ERROR  SUB 27 #%% NO REAL ROOT *%% FORMAT 200 +//
RETURN .
YYZ=AL#XX(Z) XX (3 +BL*¥XX (3)+CL

XNOM=XX (3)

YNOM=YY3 .

RETURN >

END

XREREXXXEFSEXRRRE%*% S U- B ROU T INE KA LIS T LS

SUBROUTINE WAKEGZ(KNyNTsXW2sZW2)
COMMON/BLA/ALPHAZ KKy NS1 s NS2sPI
COMMON/BLS/X(92)1Z2(99)185(99)18A(992:CNL1(F72 +SNL1{99)

+T1C99)sT3I(99)

COMMON/BL20/ITRACE ,
DIMENSION KNCL1Q) yXW2(99) s ZH2(99)
IF(ITRACE.ER.1IWRITE(41»979F)
FORMAT(//+* SUBROUTINE WAKEG2'//)
J=NT-1

IFINT.EQ. 2)KN3 KNINTI+1
IF(NT.EQ.2)KN2=KN(1)+1
IFINT.EQ.I2KNI=KN(NT3+2
IFINT.EQ.3}KN2=KN(2)+2
IVAR=KN2

XMAX=10.

CONTINUE

IF (X(IVAR).GT.XMAXXGOTOD 102
XMAX=X {IVAR)

IVAR=IVAR+1 ‘
IFCIVAR.GT.KN3)GOTD 108

GOTO 100

CONTINUE

ISTORE=IVAR-1

AT=IX{KN2)Y+X (KN3))*.5
ZT=(Z(KN2)+Z(KN3))%,.5

-X1=X(ISTORE) -

Z1=Z(ISTORE)
DX=XT-X(ISTORE) -
DZ=Z(ISTOREY-ZT
XWT=X(ISTORE)+2.%DX
ZWT=2(ISTORE)~2.%#DZ
NF={(KN3-KN2+1)/2
IFCNF.GT.128)XNF=18
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XSTEP=DX/NF
XU2(1)=XT
IW2C(1)=2ZT
SLOPE=(Z1-ZWT)/ (X1-XWT)
Bi=ZWT-SLOPE*XWT
NCOUNT=2
XSUM=XT

104 CONTINUE
XWZ(NCOUNT) =XSUM+XSTEP
ZWZ(NCOUNT)=SLOPE* (XSUM+XSTEP) +B1
XSUM=XWZ (NCOUNT?
NCOUNT=NCOUNT+1
IF(NCOUNT.ERQ.NF+1)GOTO 104
GOTO 104

106 CONTINUE
XW2(NF+12=XWT
ZHZINF+1)=2UT
NF1i=NF+1

- NB2=NF1-1

IF(NT.EQ.2)NSL1=NF1-1
IF(NT.EQ.2)NS2=0 .

C WRITE(&s204) (XW2(I)2ZW2(TI)sI=1sNF1)

204 FORMAT(F10.5:3X+F10.5)
RETURN ot

108 CONTINUE
WRITE(1+202)
202 FORMAT(//1' ERROR SUB 28 ##% FORMAT 202 *%% LEADING EDGE NOT FOU
+'a//)
RETURN
END

FREXEEEXXAXEXEXFE%*% S U B ROUYUTINE 5 EREERAFHEEERERRREER

aooonn

SUBROUTINE PD2001(ITERsNTsKN)
COMMON/RBLA/ALPHAZ ' KKINST sNS2WPI
COMMON/BLS/X (723 s2(99)+8(99)15AC99) CNI(??)!SNI(??);
+T1(?9)sT3I(29)
COMMON/BLA/XUWL (D) s ZWL (922 s XW2(F9) 2 ZHR2C9)+SWL(F9) 1 8GW2(77)
COMMON/BL7/XBW1{(99) 2 ZBW1 (993 yXBW2(99) +»ZBW2(?79)
COMMON/BL12/SNWL (77) s SNWZ{(99) sCNW1 (97 +CNHW2(ID)
COMMON/BL1IZ/TWI1 () 2y THIZ(99) 1 TH21 (992 TH23(ID)
COMMON/BL17/XBAR(97)1ZBAR(9?)
COMMON/BLZ20/1TRACE
DIMENGION KN(103
IFCITRACE.ER. 1DWRITE(4L1999%9)
7999 FORMAT(//+7 SUBROUTINE. PO20017//)
WRITE(L6:9?20) ITER
9980° FORMAT(//+20Xs'I TERATTION NO "+13:77)
WRITE(629970)
7970 FORMAT(10X > FIRST ELEMENT’ 2+ /)
WRITE(Ls9960) ‘
7960 FORMAT(FXs"K? 99Xy " DE" 18X  T17 18X  T3” 97X+ SN17 s 7Xs "CN1" /)
ALPHA=ALPHAZ
IF(ITER.GT.1)GOTO 10
KK5=0
DO 2 JJ=2.NT
IF(JJ.EQ.2)K3=1
IF(JJ.EQ.2)KA=KN(IJT)
IF(IT.EQ.3IKI=K4+2

IFCIT.EQ.IIKA=KN{(II)+1
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1899
12000
19013
1202)
1203)
1204)
19035)
19046)
19072
'908)
1909)
1910)
L)
12
1213)
914>
1213)
9182
9173
9123
L1
19203
921>
P22)
19232
924
1223)

P26

927
928
929)
19303
g3
932)
933D
1934)
R3S
938&)
2937
938
19393
2403
19413
942)
943}
'944)

945)

19446)
1947)
942D
1949
950D
S
1952)
953D
1954)
953D
19548
2957)
952D
195%)
1960)

990

995
10
2950

9940

£ 0

ooonaoan

DD 4 K=K3i1K4

KK3=KKS+1

XBAR(KKS) =(X (K+1)+X(K))*.5 .

ZBAR(KKS)=(Z (K+13+Z(K))*.5

DX=X(K+1)=-X(K)

DZ=Z(K+1)~Z(K)

SCKKS) = SQRT(DX*DX+DZ*DZ)

D=8 (KK3)

T1C(KKS)=DX/DS

T3(KKS¥=DZ/DS

SN1(KKS)=(DZI*COS(ALPHAY-DX*SINCALPHA)) /DS

CN1 (KKS)Y=(DX*COS (ALPHAXY+DZ*5INCALPHA) /DS
WRITE(6+9920)KKSyS(KKS) 2 T1 (KKS) s TI(KKS) + SN1 (KK5) s CN1 (KKS)
FORMAT(BX I3 SXsFB.612X 1 F3.6+2XFB.612XFB.612X1F8.6)
CONTINUE

IF(NT.EQ.3.AND.JJ.EQ.23WRITE(&L19973)

FORMAT(//+10X+* SECOND ELEMENT?»//)

CONTINUE

CONTINUE

HRITE(6+9950)NG1

FORMAT(//7+10Xs’ WAKE OF FIRST ELEMENT *%x NO OF PANELS 1347/
WRITE(&19940) :
FORMAT(IX 1" K" 98X " XWL1" 97Xy ZW1” s 7X 9" DSWL" 96Xy " THW117 16X THLI3? o
DO & I=1yNGt ! :
DX=XW1(I+1)-XW1(I)

DZ=ZWi (I+1)-ZW1C(I) :

SW1C(I)=5ART(DX*DX+DZ*DZ)

XBHICI)=C(XWLICI+1)+XWICI) ) *.3

ZBWICID)=C(ZWICI+1D+ZWL (1)) %, 3

TWLLIC(IX=DX/5W1CI)

TWI3CI)=DZ/SWICIY .- ut
SNW1(I)=(DZ*COS(ALPHA)-DX*SIN(ALPHA) ) /SW1(I) Ve
CNW1(I2=(DX*COSLALPHA) +DZ*GIN(ALPHA) ) /SWL (1) bue
NRITE(&!???O)I!XNI(I)1ZN1(I)sSNl(I)rTNIl(I)!TN13(I)
CONTINUE

IF(NT.ERB.2)GOTO 40

WRITE(&:7930QINS2 . _

FORMATC(/ /410X ” WAKE OF SECCND ELEMENT x*#*x% NO OF PANELS"1I3+//)
WRITE(&:19220)

FORMAT (X  K? 98X a7 XU2? 47X 9 " ZWZ" 97X+ " DSW2" 16X TH217 26X 7 TH23
DO 8 I=1yNS2 :
DX=XW2(I+1)=XW2C(I)

DZ=ZWZ(I+1)=ZW2CI)

EW2(I)=BQRT(DX#*DX+DZI*DZ)

XBWZ2(Id)=(XW2(I+1)+XUW2(I))*,5

IBW2CI)=CZWH2(I+1)+ZUZ2(II D *.5

TH2I(I)=DX/SW2(I)

TW23(I)=DZ/SW2(I)
SNW2(I)=(DZ*COS(ALPHA)-DX*SIN(ALPHA) ) /SW2(I)
CNW2(IY=(DX*COS(ALPHAY+DZ*SIN(ALPHAI ) /SUHZ2(I)

WRITE(Sy 990 T XW2CIX1ZW2CI)+SW2CIX 1 TWR1CI) + THW23(I)
CONTINUE

RETURN

END

HEXEF XXX A XXXXX%%% S UBROUTINE ThH EREXEFEXEEEEENF¥D

SUBROUTINE PLOTIC(IPLOTNTX100,Y100.NS)
COMMON/BLOCKL /ALPHACLyCBARY XM ZMyCHORD
COMMON/BLOCKZ2/CNCLIOY »CMCLO) Y COFPCIO) yENTsCMTHCOFPT
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&1 COMMON/BLOCK3/RELyISTAG(10)

522 COMMON/BLA/ALPHAZyKKINSE sNSZ21PI

63D CUMMDN/BLS/X(??)!Z(??)sS(??):SA(??)!CNl(??)!SN1(99)|
&4 +T1C92Y9 T3

&£3) CUNMDN/BL&!XWI(??)sZNIC??)1XN2€??)!ZN’C??)!SNI(??)!SNZ(??)
646 COMMON/BL7/XBWL (7Y ZBWI(92) s+ XBW2(29) v ZBW2(99)

67 COMMON/BLE/VN1(99) 1 UN2(99)2VTL(92)2VT2(29)

&8) COMMON/BL?/VUWL (992 s VLWL (99) s VUW2(99) s VLWZ (T

&9) ’ COMMON/BL10Q/GAMVLI(99) s GAMV2(9?7) sGAMB1 (99) +GAMS2(99)
703 COMMON/BLLIL/GAMVIL (99) +GAMV2Z2(99)1GAMS11(99) +GAMEB22(9T)
712 : COMMON/BL12/SNWL (79) ySNUHZ (22 yCNW1 (99) 1 CNW2(I9)

723 COMMON/BLII/TWLL1C(29)sTHI3(29)sTW21 (971 TH2I(I)

733 COMMON/BL1IS/GAMACY?I WVTOT(99Y

74) COMMON/BLIA/TINYHINsTINIsHINLYTIN2+HINZ2s TINI+HIN3
753 COMMON/BL17/XBAR{(29)yIBAR(I9}

7&). COMMON/BL1IS/CP(99) sCF(9?)

772 ~ COMMON/BLIZ/KNC1IO) '

783 " COMMON/BLZ2CG/ITRACE

79 COMMON/BL21/PHICIO)

300 DIMENSION X100(992:¥100(99)

3212 ALPHI=ALPHA%*199/3.1415926536

1823 IF(M&.EQ.OMURITEC(L »299)

2TY 2999 FORMATC(//1+10%X>?ENTER DEVICE YOU WANT TO USE FOR PLOTTING'//»
243 +23%»"VDU 17 /» .

'83) +23X+? TREND 2° /1

1243 +234y" TEKTRONIX I/

187 . +23%+’ S1IGMA 8% /1

e8) +23X+"C1031N 5's//)

7893 IF(M&L.ER.OYREADCL v %) M6

1903 IF(M4.EQ.1)CALL VDU

171) IF(M&LER.2YCALL TREND

ATy IF(MA.ER.TICALL T4010

PARY) IF(MA.EQ.A)CALL S56460

7124) IF(MA.ERQ.D)CALL C1051N

795) CALL. PICCLE

794) IFCIPLOT.EQ.100G0TO 100

797} IFCIPLDOT.EQ.102>G0T0 102

792D . IFCIPLOT.EQ.104XG0T0O 104

799> 100 CALL PENSEL(1+0.0:0)

200) CALL AXIPLOC(O1120.9120.+322916114690.91,.61-0.810.83"X730+7Z/C" »:
J013 IFIM6.EQ.A)CALL AXIPLOCOIZI00.+300.9392+20+2000.12.3~1.31.
202) TP XICT ST Z/C 3D

3073 ) CALL GRAMOV(.41+-0.75)

204) CALL CHAA1({IARRAY1148)

203D . CALL PENSEL(Z210.0:0)

2043 DO 2 I=Z2NT

2073 IFCILER.2)K3I=KN(I)+1

2082) IF{I.EQ.2)YKZ2=1

20N IFCI.EQ.3VKI=KN(I)+2

210) . IFCI.EQ.IIKZ2=KN{(I-1)+2

211 IFCI.ED.2)KKI=K3+1

12 IF(L.ER.3)KKA=KI+1

2715 CALL GRAMOVI(XC(K2Y1Z(K2))

014> b0 & J=KZ21K3

AU , caLL GRALIN(X(J)!Z(J))

0143 4 CONTINUE

0173 CAL.L GRALIN(X(K2}1Z(K2))

018y 2 CONTINUE

0193 IF(NS1.ERQ.Q)YRETURN

D203 : XTEL1=(X(KK3)+XC(1))+.,5

021) ZTE1=(Z(KK3)+Z(1))*.5

0222 CALL GRAMOV(XTEL.Z2TEl)
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123) " NS=NS1+1

¥24) DO & I=11NS

125) CALL GRALINCXWL1CI) »ZWICID)

28) & CONTINUE

)27} - IF(NS2.EQ.G)RETURN

1283) XTE2=(X (KK3+1)+X(KKA))*,5

)29) ZTE2=(Z(KK3+1)+Z(KKA»*.5

)30 CALL GRAMOV(XTE2:ZTE2) '

131> NS=NS2+1

1323 DO 8 I=1INS

133) CALL GRALINCXW2CI)sZW2(I))

)34 8 CONTINUE

)35) RETURN

I35 102 CALL PENSEL(1310.0+0)

¥37) CALL MAX(CPIKKIYAS 1 Y441KA7 1YSS5:YS561YS71Y65)
)33) CALL AXIPLOCO1120.3Y6513521121KA790.91.231.3Y5517X/C 101’ CP? +2)
)39 CALL. GRAMDV(G0.15)YS6)

1403 CALL CHAHOL(3I&4H 2D VISCOUS INCOMPRESSIBLE FLOW #.)
413 CALL GRAMOV(.2:1Y57)

1423 CALL CHAHOL{14H COMPUTATION*,)}

143) CALL GRAMOV(.3+-0.3)

44) CALL. GRAMOV(.312.5)

1453 CALL CHAHOL (ISHPRESSURE DISTRIBUTIDN X/C%*.)
1453 CALL GRAMOV(.2:1-Y248)

T: CALL CHAHOL (19HANGLE OF ATTACK =#.)

A8 CALL GRAMOV(.75:-Ya46)

149) CALL CHAFIXC(ALPH1+5:2)

50 ) IFCPHICL) L.ER.0.0)GOTO 302

1513 CALL GRAMOV(.2:~Y&S5)

1523 CALL CHAHOL (19HFLAP DEFLECTIDON =#%.)

1S3) CALL BRAMOV(.73+-Y45) , ,
1543 CALL CHAFIX(PHIsdsi)" - o
1553 302 CALL PENSEL(2:0.9,0)

154 CALL PLOTC(XBARICPsKNINT I KK)

1573 RETURN _

58) 104 CALL PENSEL{1310.0:0)

1593 CALL GRAF(X100:Y100:NS:0)

160 RETURN

151) END :

62 C

163 C : :

1643 G HEFERXEXXAXAEXXXA%2% S U B ROUTINE EYAE T ITITEEE L L XL T L L
65 C

6&) C .

167 SUBROUTINE GAUSS(AsIPIN)

7)) DIMENSION A(79199) 1P (99

169 DO 10 I=1sN

1703 IP{I)=1

71y 10 CONTINUE

1723 * NN=N-1 ‘

1733 DO S0 K=1:NN

'74) XMAX=ACIP(K) 1K)

175) MP=K

174) KK=K+1

177 DO 20 I=KKiN

78 IF(ABS(A(IPCI):K)) LE.ABS(XMAX))GOTO 20
179 XMAX=ACIPCI) 1K) .

180> MP=1

31 20 CONTINUE

B32) II=IP(MP) ,

83, IPCMPY=IPC(K)

34 IP(KY=11I
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{3085)
(3086)
(3087)
(3082
(3089)
(3090}
(30913
({3092
(3093
(3074)
(3095
- (3096)
(3097)
(3098)
(3099
{3100}
(3101)
(3102)
(3103)
(3104)
€3105)
(31056)
(31073
(3108)
(3109)
(31103
(3111
(3112)
(3113
(3114)
{3115)
(3114)
(3117)
(3118)
(31193
(3120)
(3121)
(31223
(3123)
(3124)
(31253
(3128)
(X127
(31283
(3129)
(3130)
{3131)
(3132
(3133
(3134>
(3135)

30
40
S0

ooooo

c
2

70
&0
20

20
10

00

a6

30

DO 40 I=KKsN

ACIPCI) 1K) A(IP(I)'K)/A(IP(K)sK)

DO 30 J=KKN
ACIPCID) »J)=ACIPC(I) s J)- A(IP(I)-K)*A(IP(K)uJ)

CONTINUE

CONTINUE

CONTINUE .

DO 40 I=1:sN
FORMAT(S(F12.713X))
CONTINUE

FORMAT(S(IS515X))

RETURN

END

ERXEXXEEEXNRERXAX%%® S UBROUT INE

SUBROUTINE SOLVECAIBsX»IPsN?

DIMENSION A(??c??)slP(??)!B(??);KC??)

NN=N-1
DO 10 K=1sNN

KKR=1IP (K)

KK=K+1
DO 20 I=KKsN

ITI=IPC(I)

BCIID)=BCIII)-ACIII+K)*B(KKK)

CONTINUE
CONTINUE

NRITE(l!QDO) CB{I) I=1 N2
TaS(F12.7+2X3)

FORMAT (¢’ B=
ITI=IPCN) .
XCNI=BCIIIX/ACIIIND

I=N-1

CONTINUE
I+1

8=0.
ITI=IP(1)

IS=

0

DO 30 J=ISsN

JII=IP(J)

S=8+ACIII+JI*X(J)

CONTINUE

X{I3=(B(III}-8)/ACIII:1)

I=I~-

1

IFCI.GE.1) BOTO 40

DO 13 K=1sN
BEKI=X (KD
CONTINUE

WRITEC(1:200) (B(I)sI=14N)

RETURN

END
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- ApPENDIX 2

RUNNING THE PROGRAM

A2.1 PROGRAM INPUT

-

The program input may be divided into two main parts; one involves the

geometry of the aerofoil system.and the other the main flow parameters.

A2.1.1 Geometry Definition

The input geometry of an aerofoil is defined by a set of surface points
(xi,zi). The coordinates are read into the program beginning at the lower
surface trailing edge point. The reading of thne data then proceeds along the
lower and upper surface of the aerofoll component and ends at the upper surface
trailing edge. :

The aercofoil geometries may be quite general having:

a. Arbitrary distributions of camber énd thickness
b.  Blunt of‘sharp trailing edge sh;pe
¢. Flap which overlaps or does not overlap with the main aerofoil.

Sharp discontinuities of the aerofoil surface must be avoided because
the poténtial flow model is not able to handle them.

Depending-on whether the linear vorticity (old model) .or linear vorticitg-
constaﬁt source model is used, the trailing edge point of each ﬁomponent shoulad
be defined once or twice respectively.

The linear vorticity model caﬁ only. deal with aérofoils having a sharp
trailing edge. The linear vorticity-constant sourée model.deals with all

types of trailing edge.
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Figure A2.l1 clarifies the input geometry further. The user is advised
to use‘a cosine distribution for the surface coordinates., The number of
panelé defining each component may be odd or even if the linear vorticity
model is used. However when the new ﬁodel.is used only an even numbér of
panels should be used and panels on the upper and lower surface should have
the same x coordinates (see Figure A2.1(a)).

If the total number of points defining the aerofoil system is NMAX, for
best results (Ref.7) the folléﬁing formulae can be used to divide these poiﬁts
between the flap and the main component:

_i
. ) ) Co
number of surface points defining aerofeil component i

N, = integer of [(mAX - 21N )=+ 21 -

where Ni =
NT = number of aerofoil components
ci = chord length of aerofoil componenf i
CT = sum of chord lengths of all components.

AZ2.1.2 Other Geometry Inputs

CBAR . = Aerofoil chord
XM, ZM = Coordinates of the point about which the pitching moment

is to be‘calculatgd {e.g. 0.25, 0.0)

N = Number of aerofoil components, (NT=1 for a single element
aerofoll and 2 for a tﬁo element aerofoil).

KN(K) = Number of panels on each element.

XP{X},ZP(K) = Coordinétes of flap pivot point.

DELX (K) ,DELZ(K) = Ax,Az distances relative to flap pivot representing

the ﬁorizontal and vertical translation of the flap.
PHI {K) = Flap rotation (i.e. deflection).

The flap coordinates define the flap in the nested position. The program
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: modifieé this coordinate by firstly translating and then rotating then about
the flap pivot point.
Examples of the aerofoil geometry definition are given in Tables AZ.1

and A2.2.

A2,1.3 Input of Flow Parameters

ALPHA = Angle of attack in deq.

RE1

Reynolds number based on aerofoil chord.

Mach number.

MO

A2.2 OTHER INSTRUCTIONS

The program allows the folléwing calculations to be performed for one or
two element aerofoils.

1, Potential flow.anaiysis

2. Viscous flow analysis

3., Wake potential flow and viscous analysis

A2.2.1 Potential Flow Analysis

This can be carried out with both models although the old model does not

allow the use of aerofoils with thick trailing edge. To choose the old model

set IPAR = O
IP =9
To choose the new model set
IPAR = 1

A2,2.2 viscous Flow Analysis
Once again both models allow a viscous analysis although if the old model
is used no iteration is allowed and the inviscid pressures are not corrected

 for viscous effects. The new model allows any number of iterations although
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éurrently it is suggested that one uses a maximum of 8.
'NITER = 2,3‘etc. up to 8.
The inviséid velocity is cor;ected for viscosity and the new velocities
are used to carry out the new boundary layer analysis.
| If the pressures are available from experimental results a boundary

layer analysis may be carried out by setting:' '

i

> IPAR = O and
1P =99

In this case the input file should contain the X,Z coordinates and the
.corresponding Qalue of CP. )

The user may rhoose between two laminar and two turbulent boundary layer
methods, ;hich may be different for the upper and lower surface. Thus if
Curles’ methoa is required to calculate both the upper and lower surface
boundary layer, the inpu£ should be 1 1. If however Curles' method is
required for the upper surface analysis'whiie Thwaites meéhod is required’ for.
the lower surfacé analysis then the input should be 1 2. This ailows the
combination of a method (Cufles' method) which gives good resuits in cases of
adverse pressure gradients {e.g. upper surface) and a method {(Thwaites' method)
which gives a fast solution, but which is more applicable to sméother
pressure distributions (e.g. lower surface}. | |

The same applies to the turbulent boundary layer analysis.

Natural transition is predicted by the program. The user may also fix
the transition peoint if it is required. Similarly short bﬁbble separation or

tprbulent boundary layer separaticon may be suppressed to allow the analysis

to be continued.

A2,2.3 Wake Analysis
The number of wakes is equal to the number of aerofoil elements. Wake

analysis is only available with the new model. The wake effects are included

-
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in the pressure coefficient and aerofoil surface velocities, before the next

iteration is carried ocut.

A23 FURTHER COMMENTS

One of the main reasons for keeping the old model is that it can be
combined with a flow separatién model to allow near-stall and post-stall
analysis to be carried out. Alsc in many cases where viscous effects are not
impo;tant and the aerofoil has little or no camber the linear vorticity
model may.be used since it is simpler and requires less timé to carry out the
potential flow sclution, ' -

Examples on how to run the program are giveh at the end of this Appendix.

Finaily the program output is written onto a file named by the user.

The input aerofoil geometry should also be available in a file.

243



TABLE A2,1: Input file for a two element aerofoil

62

31
. 96 . b1
.82 .ai?q

g 7135
a0 022
. 8¢ I P
. 94 9233
.82 L8224
.8 . B211
. 72 L8173
P72 . B157
.76 L8118
. 74 . 8gze
L2 - Bar3s
.7 - a2
. 675 - 832
. 65 - 8423
. 625 - 8462
.6 - Baae
. 973 - 854
.35 - 857
.- - 0&1
. 45 - BE2S
.4 - B&43
.39 - fe4s
3 - BedS
.89 - 8627
. 175 - 837
.15 - 8542,
. 125 - 851
B -, 847
. 875 - f421

v .85 - f2L8
. 837 - 83179
025 - 0268
@105 ~. G205
. 8as - 2128
. an2 - 809z
e a
. oe2 L1z
. oS L8204
. 8125 L axoy
L8235 L8417
. 8375 . 84565
. &3 N Rt
) B
1 B & s
L1258 N chgel
A8 L 8ed
L2 i

<] . 8977

T3 L1016
35 104
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L8232
. B228
. 82139
L B1E8
. BESe

. 18481
. 18445
10258
. 8951

. 08371
. Ba&3g

-

. Gre3q
. BESLE
L QE286
. azegt

. aal
. 8p3
. 8835%
. goz8
L gezv
L gaze
. ass
. aory
. 81
.81z
. 01e
. 8138

L BE3E

B27

. B304
Bk

-
ey

L BEXS
L8173
L8113
Y A
o
. 811

L Bles
Lgzev

g".\"?'.-‘
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TABLE A2.2: Input file for a single element aerofoil

74
i. =008 Q02 .013
975 . =.004 . 005 0204
.95 -.0024 : T L0125 L0307
V925 -, 0025 025 0417
9 ~. 0036 .0375 08965
. 875 -.0058 .05 . 05589
.85 -.0086 075 086551
. 825 -.012 . 073
.8 -.016 125 . 079
. 775 -.0204 .15 .084
.75 -,0249 175 .0E884
725 -, 0294 .2 092
.7 -.034 . 29 0977
. 675 -.0384 .3 : 1018
85 -.0428 .35 .104
425 -.046% .4 10491
.6 ~-.0508 .45 .10445
575 -.054 .5 10258
.55 ~.057 .55 T L0991
.5 -.061 . 575 09648
- L45 -. 0635 b 09371
! -. 04649 525 09006
35 -, 0652 45 08599
.3 ~.0445 . B75 08136
.25 ~. 04627 .7 ‘ 074634
-2 “10593 : -725 -07092
175 ~.057 75 06513
.15 -.0543 .775 05907
3125 —-051 UB -05286
o1 ~.047 .825 048644
075 ~-.04821 .85 03988
.05 -.0358 : .875 03315
0375 -.0319 .9 02639
025 -.0269 925 019461
0125 -.0205 .95 01287
. 005 -.0138 . 975 . 004609
002 ~-. 0093 i. -.0007

-0 -0
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BAAMPLE UN HUW LV DUN AL FRVODshiN

OKs SEG #MPS134BIGZ

PLEASE ENTER TYPE OF ANALYSIS REQUIRED ie 1 or Q

1

" TRACE ON 1 *%%x TRACE OFF ©

o

PLEASE ENTER DATA FILE NAME.

GANF@O‘

PLEASE ENTER DUTPUT FILE NAME

ouT1

PLEASE ENTER ALPHA - CBAR - XM -IM ~ MO
5 1. .25 .0 .02

PLEASE ENTER REYNOLDS NUMBER

2.2E08

PLEASE ENTER TOTAL # OF COMPDNENTS EG.FLAPS ETC

2
PLEASE ENTER XP(KXyZP(K) +DELX(K) sDELCZ) +PHI(K)
73 —u04 .15 —-.021 10
ENTER No OF ITERATIONS (NITER) REQUIRED

2{(= NITER (= @

ITERATION No = 1

CAT=-03.17640 CNT= 2.12778 CMT=-0.94407 CL= 2.12798 CD= 0,000

IS VISCOUS ANALYSIS REQUIRED ?

9
CP Trailing Edge CP Leading Edge
0.41485% 0.938502
r0.833897 0.970590

0.483582 . 0.975951
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I+ CP Values Acceptéble enter 1 to continue.

1f programe termination is required enter O

ENTER LAMINAR BOUNDARY LAYER METHOD

UPFER SURFACE LOWER SURFACE

Courle ' 1 ' 1

Thwaites 2 ’ , 2

ENTER TURBULENT BOUNDARY LAYER METHOD

UPPER SURFACE LOWER SURFACE
Head 1 ' . 1
Head-Patel 2 2

CRABTREE TRANSITION AT NODE 11

TRANSTITTION NODE NOT DEFI NED

ENTER TRANSITION NODE. #.1 TO CONTINUE
" OR 040 TQ STOP
11 1

CRABTREE TRANSITION AT NODE 10

CRABTREE TRANSITION AT NODE 11

TURBULENT SEPARATION AT NODE 13

TURBULENT SEPARATION AT NODE 14

L4%
TURBULENT SEPARATION AT NDDE 15

oAQ



CP Trailing Edge
0.443844
0366972
0,.5336138

~

I¥ CP Yalues Acceptable enter 1§

CP Leading Edge
0.435513
0.,7020897
0.724£85

to continue.

If programe termination is required enter O

ENTER LAMIMAR BOUNDARY LAYER METHOD

UPPER SURFACE
Lurle 1

Thwaites 2

ENTER TURRULENT BOUNDARY LAYER METHHOD

: UPPER SURFACE
Head 1

.Head~Patel' 2
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APPENDIX 3

* COMPUTER PROGRAM SUBROUTINES

.

The function of all program subroutines is briefly explained. The

subroutines are

AIRIC:

BLCALC:

BUBBLE-BUB

CcC:

CNXCLD:

CUBIC:

DRIVEL:

DRIVE2:
DULDU2:

HEPA:

listed in alphabetical order.

The routine calculates the influence coefficients of the
aerofoil source and vortéx singularities on the aerofoil and
wake (s) .

This routine provides the necessary geometry and velocities
for the boundary layer analysis. It also controls all routines
involved in the boundary layer calculation.

LEl: The subroutines perform the short bubble analysis.
Calculates the lift coefficient and pitching moment for the
linear vorticity model.

Calculates the overall forces and pitching moment for the
linear vort?city and constant source model.

Solveé a cubic eguation using Newton-Raphson's method. -
Calculates the influence coefficients of the aerofoil vortices
on the aérofoil control points (old model).

Controls the calculation of the inviscid, viscous and wake
potential flow for the new model.

Calculates the wake normal and tangential velocities.

Finds the first and éecdnd derivatives of a set of data.

See TURBLZ.

INPOL-INPOL1-INPQL2: Routines used for linear interpolation.
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LAMBL; Calculates the laminar boundary layer using Curles' method.

LAaMBLI: Calculates £he laminar boundary layer using Thwaites' method.
MAX: Finds the maximum value of a set of data stored in a line;r
matrix.
. MATINV: Finds the inversé of matrix and stores it on top of the original
- matrix. l .
MATMUL: . Multiplies a rectanguiar'or square mafrix with a vector.

QUAD: Finds the equation of a quadratic (y=ax2+bx+c) from a set of
three (x,y) values. .

PLOT-PLOT1: Routines used for plotting data.

PO2@P1 : Calculates a set of geometrical parameters for the aerofoil
and its wake. ’

SPLINE: Fits cubic splines to a set of data for interpolation or
differentiation.

TRANS: ©+r Estimates the point of laminar boundary layer tfansition.

TURBL1: Calculates the turbulent boundary layer using Head's method.

TURBL2: Calculates the turbulent boundary layer using the method of
Head and Patel,

WAKEG]: Generates the geometry of the wake of the main aerofoil
component. |

WAKEG2: Generates the geometry of the wake of the flap/single element
aerofoil, |

WAKEIC: Finds the influence coefficients of the wake singularities
on the wake/aerofoil control points.

WAKREL: Relaxes the wake.

ﬁAKVIS: Performs a wake viscous analysis on one side of the wake

.'Vsingularit;esrsheet, using Green's lag entrainment method.
Wlw2ss: Calculates the wake singularity strength at the panel midpoint

_using the results of the wake viscous analysis.
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WlW2sl: Calculates the wake source and vortex singularity strengths
at the end of the wake panels using the values at the panel

midpointsQ
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. APPENDIX 4

DATA SMOOTHING - MATRIX INVERSION

A4.1 DATA SMOOTHING ' . .

Some of the variables have to be smoothed out.during thé analysis
before they can be differentiated or used for any other‘purpose.

The smoothing of a set of data is accomplished by use of a standard
computer subroutine namely NAG-EO2BAF. The routinelcomputes a weighted
least-squares approximation to an arbitrary set of data by a cubic spline
with knots prescribed by the programme. The resulting function S({x) can
then be differentiatedlusing the subroutine NAG-EO2BCF. This routine
evaluates the éubic spline S(x) and its first three derivatives at
prescribed arguments x. ’ Teome

‘When choosing the knots care should be taken so that oscillations of
the function S(x) are avoided. Knots divide the group of data into sub-
groups, and the routine fits a.spline to each subgroup. At the knot the
function and.its first two derivatives are continuous. Discontinuities

may be introduced by use of multiple knots. Thus four knots at the same

*1 position make S(x) discontinuous at Xy three knots make §%£§L
2

discontinuous at xl, two knots make g—§—(§-)--discontinuous at xl. The
ax .

routine 1lnserts automatically four knots at the smallest and largest x
arguments.

The knots should be grouped more closely in regions where the
fuﬂction (underlying the data) ox its derivatives change more rapidly than

elsewhere., Figures (1 to 3) illustrate some of the points mentioned above.
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A4.2 MATRIX INVERSION

Matrix inversion is carried Ou.t‘using Gauss elimination with partial
pivoting (Ref.21). The algorithm is programmed to map the inverse of
matrix [A] onto [A] such that only one matrix is required for the inversion.
This saves a lot of memory spac;e especially when dealing with large
matrices. A listing of the subroutine that.performs the inversion is

given be low .
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ia

Ll o Y o]

CGOCGOOOOGOOOnOOnGO0GO0000

1@

COMPUTER PROGRAMME TO. INVERT A MATRIX

T~

DIMENSION RC428. 1202, PIVOTCL28), Y4200, IP(128)
RERD(S. #2N : -

0g 18 I=14.N '

REAQCS, ¥ Y(RCT, 2 J= .l.c N

CONTINUE

EPL=1 E-12

CALL MATINVCA, PIVOT. ¥, IR, N: EPS)

CALL EXIT :

END

SUERQUTINE MATINY(H, PIVOT. Y. IF fh EFS)
DIMENSION RC12@, 12001 IVDT(’J..?L'D Y1202, IPCL28D
RERL MANEL

MATRIX INYERSION USING GAUSS ELINIJ‘HTIUH RITH FIYATING,

THE SUSROUTINE EVALUATES THE I*.‘E’EE“?E OF R AND MAPS
IT ON TOQF OF R, THUS ON EXIT R CONTRINS THE ELEHENTS
OF ITS INYERSE.

TRPIVAT” IS R LINEAR MRTRIK OF SIZE N WHICH 0N EXIT HOLDS
THE PIVOTRL ELEMENTTS ORTAINED DURING THE ELIMINATION.

¥, IF ARE USED RS NORKING SPACE.
N IS THE MATRIY SIZE LIMITTED TO 128

EPS:THE SUBRQUTINE STOPS THE CONMPUTATION IF THE RESOLUTE
YALUE OF THE CURRENT PIVOTAL ELEMENT IN THE ‘
ELININATION PROCEEZS IS5 LESS THAN EPS+MAXEL HHERE

EFS IS A TOLERANCE L‘HO"EH BY THE USER . HMAKEL IS THE
LARGEST ELEHENT OF R IN RESOLUTE YALUE AND IS5 FOUND INTERNALLY
BY THE RRUTINE. .

MAKEL=8. 8

bg § I=4,H

pa & J=14. N

IFCABSCACT, JX ) LE MAXELGATY 5
HAKEL=RBS(ACT. JX2 , 2
CONTINUE :
TOLER=MAXEL+EPS

L0 18 I=1. N

IPCI)=1

-CONTINUE

NH=N-1

DO 47 K=1. NN
KHAKX=8. 8
IFLAG=@

Do 28 I=KWN

IFCRESCACK, I3y, LT, ABSCEHAY YG0TO 20
XHpx=ACK, 1)
HPIVOT =1
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&

IFLAG=1

CONTINUE

IFCIFLRG. EQ. 82G0TQ 38

IN=IPCKD

IPCKY=IRCHRPIVAT)

IFCHPIVATY=IX

oo 25 J=1. N

DUNNY=ACK, J2

ROEJY=ACHRPIVAT, J)

ACHPIVOT, Jy=0UMHY

CONTINUE

CONTINUE

PIVOTCKI=ACK, KD

SPIVAT=R{K, KD
IFCRBSCRIVATKD). LT, TOLERXGOTO 120

ACK K=1.

(K=K+1

RO 45 I=KK. N :

FACT=A{1. K2v PI'}UT(K?

AT KY=8.8

DR 35 J=KK. N

H(.I.l ._T) H{I.l J)"'FHLT*H(!I\J J.)
CONTINUE

DD 48 J=1;K

ACL, J)=A¢I, J) -FRCT*ACK, J)
CONTINUE .

CUNTINUE

CONTINUE

FIVOTI{NI=ACN, N)

ZRIVAT=RA{N, N
IF(HE":-(PH'UT(H)) LT. TULEP)LJOTG 12

B{H: N =

pR 5@ J 1, N

R{H JX=R8{N: J3¢ 'FI%'UT{N)
CONTINUE

K=N-1

CONTINUE

pR 7@ J=1. N

Y=g, 8 |

IFCT LE KX5oTR ri _ J
Y{TY=R{K, J)

ACK, J)=8. 8

CONTINUE

DO 8 J=1, N

5=44a )

Ks=K+1

Do 88 JJI=KS. N

S=S+RACTT JOHYOTTD

CONTINUE

ROK, JAI=(RK, JI=SX/PIVATIKD
CONTIHNUE

K=K-1

IFCK GE. 12G0T0 59

oo 87 J=1. N
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IFCIRCTY, EQ. JXGOTO 57
JI=IPCTD
po 25 I=4. N

DUNNY=A{I, I
RS Ja=R<I JJ)
AL, JId=punny

33 CONTINUE
IPCT)=d
IPCTS =00

ar CONTINUE
HRITECL. 288)

208 FORMAT(/ S “THE INYERSE OF THE MATRIX RY. 47D
Do 188 I=1.N '
HRITECL, 282)1 '

2a2 FORMAT(: ¢ RON NO. =", 1473
HRITECL, 2840CACI. T2, J=4, N>

iag CONTINUE

284 FORMATCICF12. 7, 3X)) _

: RETURN e

128 COMTINUE
WRITE(L, 28&82ZFIVOT

S 28s FORMAT(ASTHE MATRIN IS SINGULAR THE CURREHT PIVOTAL

IELEHENT=", F15. 7>
RETURN
END
EOTTOH
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Triple knot set at point of maximum Cp

FIGURE A4 - 2a Plot of Cp by fitting cubic splines

to the calculated data. The knots are
shown on the next figure
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FIGURE A4-2 (c)

: Plot of first derivative
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FIGURE A4-3 (a) : Aero foil
; . upper surface plot using cubic splines
1] : The knots are shown on the next figure
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FIGURE A4-3 (b)
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Residuals

- Residual

Addition of one more knot results in oscillation shown in FIGURE A4-3d
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APPENDIX 5

METHODS FOR.SOLVING A SET OF LINEAR EQUATIONS

A5.1 SUCCESSIVE ORTHOGONALISATION METHOD

Let the set of linear eguations be

= + +o.. +b_ =
i=1 211Xy 12y X e gyt = 0
. . . . (a5.1)
= + +ouo . +b =
J=N A1 e 2 AN oy T ©
where ajk is the coefficlent of variable Xy in equation j (j=1,2,...,N,

k=l,2, . -'N) .
In Purcell's (91) method the jth equation can be represented by

Ej;§_= 0
+b.)

whe a a A, reiesd
e 31025212537+ 2Py

Ej
a = (xl,xz,x3,...,xN,l) (AS.?)
c and d being vectors with components as shown above.

The dot product of two vectors 1s zero if the vectors are orthogonal.
Thus the solution may be‘found by constructing a vector d which is

perpendicular to all Ej vectors,

The method begins by forming a set of linearly independent vectors

1 .
!i = {i=1,2,...,N)
which are orthogonal to Ei' Each of the gi vectors has N+l components and
has the form
1 1
v, = v];+1,0,...,0)

y_; = (vizrollr ees O}
(a5.3)

1 1
'V-N (VINIOIO'O--’I)

*
.
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where V?i is the kth component of vector !2 which is orthogonal to the

vector Ej whose components are the coefficients of equation j.

Now set

!i.gl =0 this gives
v1 a_ +a = 0 or
a
1 = - 1'i+1 * .
vli = e . {A5.4)

11

The components v1i are stored at this stage. Next, N-1 linearly

2 1 )
independent vectors !i are constructed from !i' These have the form,

2 21 1
2 _ + ]
Ei Bi.‘ll .Yi+1 . (AS 5)
The new vectors have components
2 1 2 ,
v, = (v2l'v21'l’o""'o) |
2 1 2
v, = (v22.v22,0,1,...,0) | '

2 1 2
v = (Vz'N_lrvz'N_lroror---rl)
Where

1 1
v2i =B vl +v1

2
Voi

Now let Hi be orthogonal to EQ i.e. set

17V1,1i41

. (A5.6)

[l % T R 8 )

=B

2. _
!{‘EQ =0

this gives
1

2
-+ -
V21321%V2122278 342 = O

- . 21 . 1

2
. o (B a.,+B a_.ta o)

1V117V1,142722178%20720 342 T

from which

1
a +a,.v
2 +2 +
By =~ 222 2 LAR | (4=1,2,...,1) (85.7)

. .
a7%1V11

and hence V;i and vzi can be calculated from equation {A5.6).

The new vectors gi are orthogonal to both =2 and S5 and only the
components V;i and vgi are needed for the next stage of the calculation

(vii are no longer required).
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This process is repeated for all gj; the final vector yz contains

the solution for g,

N 2 '
W = (vl 3

N
AL] A A AR TR

At the jth stage there are j sets of components to be stored, each
of length N+1-j. This number reaches a maximum in the middle of the matrix

when it has a value ) ' .

N{N+2)
4
, : l 2
Since at each stage only the previous set of components Vli'vzi’vzi’

etc. are needed, these components may be conveniently stored in a single

N(N+2)

linear array [D] of maximum size given by 2

. Whose elements’ are
updated after each row has been operé%ed on.

As shown above only the coefficients of the jth equation are required
at a particular stage so these can be stored in a linear matrix [A] of size
N+1.

- Por the first eguation (i.e. for j=1) the matrix {D] contains the.
compongnts of all vectors Yi orthogonal to g - |

Thus for j=1 :
- A(I+1) . : 5
_ETiT' (A5.8)

For j>1 the following equations apply (70):

D(I) =

NUM :
B{I) = - % (a5.9)
where J-1
NUM = [A(I+3) + ) A(R)XD(M+I)]
K=1
J-1
DEN = A(J) + } A(K)xD(M)
K=1

I=1,2’ co pN+1_J
M=1+(K-1) (N+2-J)

Once B(I) has been found the new set of components of matrix [D] is given

-

by
D{I+(K-1) (N+1-J)} = B(I)XP4D{I+1+(K-1) (N+2-J))
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where P=D(1+(K-1) (N+2-J))
I=l,2,.}.;N+l—J
¥X=1,2,...,3-1.

The inner loop represents the components down each column i.e. the
1 V1
M TR

column except the last one at a given stage, The last column of stored

» etc. (see equation A5.6); the outer loop represents each complete

components is given by
D((J-1) (N+1-J)+I) = B(I)
.I=l,2,...,N+1-J
When all N of the rows of.the matrix have been processed then the

first N elements of [D] is the solution vector X.

The Fortran coding is given below on page

A5.2 GAUSS ELIMINATION WITH PARTIAL PIVOTING
For linear systems with a small number of equations the method of
Gauss with partial pivoting (21) is used. The Fortran coding for this

method is also given below.
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FORTRAN CODING OF.GAUSS ELIMINATION WITH PARTIAL PIVOTING

DIMERSION AC16, 183, B(1875. .‘f(l@)
READCL, #IN
o0 1@ I=1. N
RERD(L, ¥IBRCT D ('H('Ia J, =1,
ia CONTINUE
CALL GRUSSZCA, B, X, N
Do 185 I=1.N :
KRITE{L, 2002XC1)
288 FORMAT(Fle. &)
13 CONTINUE
CALL EXIT
END

Law Raw R a

SUBROUTINE :.:PUEE.—:‘(H, EB. XK. N2
DIHEH SION A{48. 182, B{102. .‘.'fm)
HHN=H-1
D'? 18 K=1, NN
NHAK=0. 8
IFLAG=1
pa 28 I=K. N
IFCRESCARCIL, KX, LT, RES(EHAKYYGATA 24
IFLAG=1 ~
KHAX=ACI, K2
FPIVDT*I
28 CONTINUE
IFCIFLAG. EQ. 825070 40
Do 38 J=1. N
tf, ﬁ(l\.’ Lr)
AR TY=ACHPIVOT, J2
AMPIVOT, Jo =Y
24 CCONTINUE
Y=2(K)
BIKI=B{MFIVOTY 7
. BCHPIVATY=Y
48 CONTINUE
KK=K+1
DO 58 I=KK, N :
AL KY=RCL, KXAARCK, KD
oo &8 J=KK. N
AL IY=ACT, JY-ACT KY#AL J)
&8 CONTIRUE
' BCLY=BCIXY-AT. K2+B{KD
S0 CONTINUE
18 CONTINUE
NOHI=ECNYARCH MY
K=N~-1
28 KS=K+1
’ S5=84.8 .
DO Fi J=KS: N
S=5+R{K: JI#X (T2
g CONTINUE
HCKY=CBCRKY =52 0K, K2
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(=K~1
IFCK. GE. 12G0T0 &8
RETURN
- END
BOTTONM
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APPENDIX 6

VELOCITY INDUCED BY. PARABOLIC VORTICITY
DISTRIBUTION ON LINEAR PANEL

A6.] EQUATION OF INDUCED VELOCITY

Iet y(u)=cl+c a+c

27 73

a be the circulation per unit length of the segment
(0zo£l) .

Let the straight line segment be of length s and have unit

tangential and normal vectors t and n respectively (DA6.1l) and let the

<<
e 1
-

=

7
%s ~

dq& -
. Diagram A6-1

circulation on the element sds be-of strength T (a)=y(a)sda .

Thus,
Fla) = y(a)sdaj

r(a) ~j
av = L) -
- 2n

tr(a))®

The velocity induced by the circulation on the element sda is given by

1 Y (a) sdar(a) ~j
2T

5 (A6.2)

(r(a))

From vector algebra r(a)=atast and if 9_'=f_1_/s then,
. r(a) = s(a'+at)

(26.3)
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Substituting the above in the equation for 4V gives

é(g_'-l-gj_:_) (cl+c catc az)sdu

-3 . 2 3
dv = 2n s(a'+at).s(a'+at)
(a‘+at) (c1+c2c1+c3cr.2)da
av = - A (B6.4)

- 2n (a'.a'+20a’ .E+a2)

and integrating between a=0 and 1

1, . o2 3
i i.j X c,a +(c1_§_+c2_a_\_ )q+(02§_+c3§_ la te,toda
T 0 (2 -a'+20a" . tho")

- = - — A ] + ' 1 + .
o v 5 A [c,a I e the,at) I H(e treaat) I, c3EI4] (n6.5)
and after collecting €%y and c; terms together,

v=—1—[cA+cA+cA] (R6.6)
- 2mr "1 22 "33

which is the velocity induced by a parabolic wvorticity distribution on
a linear segment.

Taking ¢.,=0 then Y(o.)=cl+c @ which is a linear vorticity distribution.

3 2
In this case the velocity is given by

1
E rm— + .
V=3 [clﬂl C2A2] (26.7)
Finally if c2=0 then ‘Y(a)=cl. Thus for uniform vorticity distribution
on a linear segment -
! = ET- Clél {16.8)
A6.2 " EVALUATION OF 3,,A,,A,
The values of 9_1,52 and 53 are related to the values of 11,12,13 and
I 4 in (a6.5) through the following equations:
. = ' <+ ~
_&1 (a' 11 312) 3. |
- 1 -+ ~ »
A, = (@'I LI )~] . (26.9)
= «f ! + A
A3 (a I, E.I4) 3

where
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where

rl
I = da 5 3
1 a'.at2ga'.t4a
JoT™ T T T
rl ada
I2 = >
a'.a't2ea’.tra
‘0 . 4 ’ {A6.10)
] 2
_ rl o do
I3 = 7
a'.a't2qa’.tt+a
lo” T - -
(1 u3da
I4 = 3
a'.a't+2¢a!l .t4a /
Jo - - - -

After integration of the above integrals

_yfttat.r -1 /2t \
Il=——1--—- tem1 '--tanl
la*.n| |a*.al |a’.n|
12 = I~a .tIl
where
a'.a'+2a'.t+l 1 b
L = &n ( _a-. .-a-' - }“ = tn ;
2 2 ; (A6.11)
- - L} 4 | ey |
13 . 1 2atL (at an )Il
where
' = a'. t [ '
1 , 2
22 e I -
I4 3 2at 3 a 12
where 2
a' = a'.a’ J
(for a more detailed proof see Ref.70, pp.355-357).
Substituting the values of 11,12,13,I4 into the equations for 51.
§2 and éﬁ the following expressions are obtained:
= - + 1
A, = ~Tt+ln |
where T=a'l
. nl
A, = {Ta'~-La')t+(1l-Ta'-%a')n
53 = (Te+Lg~a')Ef(Tg-Le+5-aé)£
where n
= al. «~a!
e an ag
g = 2a'a’ J

276



A6.3 LIMITING VALUES

It was shown (A6.12) that:

T a'l

nl

. al 1+a| a!
S =2 [tan™t —E - tan™t -t )
|a: | a2 |a; | {36.13)
' 1+a® a' .
= {sign of a;) (tan—l L 1:<';m_l £
la: | |a!]
n n

Clearly, a limiting value for T‘has to be found when aﬁ+0 and also
the limiting value of L has to be considered as a or b tend to zero.
In either case a'.n is zero, thus T is also singular, .

[

A6.3.1 Case 1l: Limiting Value for T

In considering the limiting value of T the value of aé must be taken

into account. Table A6,]1 gives all possible cases.

TABLE A6.1

a

— + -

. Range for a'= — .t " Limit of T=a'I., as a'2»0 and a'»0
t s n n n

1

lim T
' +
1 a;l-)o
= =
If at 0 or at 1 then lim T

a'-»0
n

ISTE

|
E

[
E
=]
Il
o

'>0 <=1 ' th
If at or at en

-
)
H
n
O

[

2]
-3
it
=

If -l<a£<0 _ then
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A6.3.2 Case 2: Limiting Values for L

. a
The quantity L becomes singular as ax'1=g .n tends to zero if at':=0 or

The velocity induced by the isolated segment is then indeterminate

at these points (i.e. at either end of the segment, since if a{'__=0 then

a=0, If a£=-l then

a
a'+l =0 ,', —.t+l =0 .°. a.tts =0
t s - -
.. {a.t).t+s.t =0 .". atst=b=0).

a .
Consider the limiting case as ar'1=§ .n tends to zero at the junction

between two segments of linear vorticity. (Diagram 46-2)

Diagram A6-2

. a €
A B C
< -0
Y s1 Y% s2. Y
The velocity induced at B due to S1 is
v, = i—(c A_+c A,) ' | (A6.14)
-1 2n 71— —2-2
while that due tc:»ns2 is |
l ] 1
= — +n! ] . . .
Yo = G170k - e
where o = c =' _
1= Y1 2 =Y
= o~ +
By =A™
A, =T (-t +'-—E—-n}-L(-—€—t-n)
2 1 1 s 1 l's, =1 —1
1 1
since ar'l = - f— a' = -1
1 1 1

H‘-]
1l
t
<]
=
|
'—l
<
tn
o]
N
=
[
Il
=
o}
I+]
[1:]
————
=
e

€
a'! = - — a'! =o0
My % t2
1 ]
A]_,Az,'I'z,L2 as for Sl'
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Thus
5

1 - e
ARSIy 5y n, )}

1 -1
T .[ tan (-

+log_ (=) &y 0 ~f 7y ) (- ;f—l— £+ b,y,In) ] (A6.16)
N ,
and

v, = 1 -tan_l:-%) (=y B, H{v,—. )=-n,)
ﬂ[ € 2—2 3 2 S, =2
S

+loge(?2)(729_2+(y3-72) -_52-52) + (yymyy)n, ] (36.17)

The total induced velocity with ¢ very small is

s s
-1 -171 -1,72
Y=9o3 [Y2 (Eltan (- +E, tan (-3 + n, loge s,

-n, log (s,)+(n,-n,) (1-leg (e))+yn -y, 2, ]
Thus there is only a limiting finite value as €20 if P-1=P—2 i.e. if the two

segments lie in a straight line. Then

v..12_t+_l_( 1o (.s_2_)+ -v.) (A6.18)
Y= 2t %5 T Y3 TR :

or when calculating the velocity at a séginent edge in such cases then

set

and

3
Il
A

log (b) 1if a=0
-loge(a) if b=0.

[]
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. APPENDIX 7

FORMULATION OF THE INFLUENCE COEFFICIENTS

A7.1} INTRODUCTION

Three types of singularities have been used, in the present
mathematical model of the ﬁotential flow, round the aerofoil and wake
system. These singularities are:

1. Linear vorticity
2, Linear source
3. Uniform source.

In Appendix 6 it was first shown how-.the influence coefficients of
a parabolic vorticity distribution on a flat panel, are derived and then
the influence coefficients of linear and constant vorticity distributioné
were considered.

The aim of this appendix is to relate the influence coefficients
between corresponding source agd vorticity distributions and to give the

final formulae for thelr calculation, in program format,

A7.2 SOURCE-VORTEX RELATION

Let LA and v, be the complex potential functions of a source of

strength Yq and a vortex of strength Y, respectively. From Reference 54:

Ys r ie
w o= E;-ln ;— e
s 0 (a7.1)
and iyv 10
Ww =—fin—e
v 2n ro

where the various symbols are illustrated in Diagram A7.1.

-+
-
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that the complex potential function is the same in each case with the

1
T

T

-~

Y

T~

P Wy

Point source

. \
Equipo*renti_g]/

{ \\_______,_. lines

DIAGRAM A7.1

]
Point vortex

From a direct comparison of the two potential functions it is clear

exception of the constant., Thus if:

then

and the influence coefficients due to a source Y_ can be obtained

from the corresponding ones due to a vortex Yv'

A7.3.1 Influence Coefficients due to Linear Vorticity

(A7.2) .

As shown in Appendix 6 the velocity induced by a linear vorticity

distribution on a flat panel is given by

point § due to a linear vorticity distribution on panel k is given by

1
BAS —ACE R

Referring to diagram A7.2 the velocity induced at the control
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As,

J
3

K - K+1

x-1/ o \w

singularity ¥, located at the end of the panel.

Yy
Vi
where
A -A
—1jk 2
and

J
N
AN

DIAGRAM A7.2

I
[
~
|5
i ol
>
S
+
=

is referred to as the influence coefficient of the

k

A is the influence coefficient of singularity ¥y,

located at the other end of the panel.

(A7.4)

The strength of the singularity ¥ varies linearly between Yy and Y41

In program format these influence coefficients can be obtained from

the following set of equations (see Figure A7.1):

]
~

SN RN ]

oo}

I

e 5 -
(R = %) + (z - 7))

2%

'5{zk+l + zk)

.S(xk+l + xk)

cos 6k5_+ s?n Bk k
-sin ek 1 + cos ak 5_ |
{(z:.l - zk)cos ek - (xj - xk)sin ek}/sk

((zj - Z )sin Bk + (xj - xk)cos ek)/sk

k
-1  .5-E -1  J.54E
tan ( = ) + tan { = )
(.S-E)2 + F2
0.5 &n 5 5
(.54E)° + F
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(a7.8)
(A7.9)

(A7.10)

{a7.11)
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F' = 6. - Esi
Fco§ " sin Bk

| I + '
E Ecos Bk Fsin Bk_

B = T.BE' + L.F' - sin Bk
xjk .
Bz = L,E'" - T.F' + cos Bk
jk .
ﬁijk = 0.5(Tcos Bk - Lsin Bk)
= +
Azjk 0.5(Tsin Bk Lsin Bk)
G = A - Bx + A
xvjk *5x dk %y,k-1
Gz = Az - Bz + Az
Vik jk jk k-1
Ev = Gx i+ Gz k
jk vjk vjk
Gtv =G " . Ej
jk
Gn = Ev . . Ej
vjk 3

+ B
*5,k-1

The following limits apply to T and L in the above formulae when

the value of F approaches zero

T==%n7 , for —.5<E<.5
T =% %-, 1=0 for E=%.5
T=0 for  [E|>.5

where the positive values are taken 1f F approaches zero with positive

value,

A7.3.2 Linear Source Influence Coefficients

In complex number notation the vortex influence coefficient G

can be written

S, =6, +i6,
jk vjk vjk
where o 1 =4a1 .

283

jk

(A7.14)

{47.15)

(A7.16)

(A7.17)

(A7.18)

(A7.19)

(A7.20)

(A7.21)

(A7.22)



Multiplying the above by 1 gives

igv = ti - Gz .
jk vjk : vjk

Let the influence coefficient of the source singularity be:

G =G + iG . ' {(Aa7.23)
s k xs zs
. 3 kS5
since -
G = iG
—Sjk —ij_
G = —G
—xs zv
' ik ik
and iG = iG
xv zs
jk jk

(3]
"
7]

Ik ik o | (A7.24)
sjk vjk .
thus the source influence coefficients could be obtained directly from

the vortex ones.

A7.3.3 1Influence Coefficients due to a Uniform Source

As for the linear vorticity but the x and z components are given by

G = =-2A

xSjk 25k

(A7.25)

]
Ny
i

G
Z X,

Thus

ik (A7.26)
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APPENDIX 8

LINEAR VORTICITY METHOD APPLIED T0 THICK

AEROFOIL SECTIONS

A number 6f aerofoil sections have been tested using the linear vorticity
model. The results presented here give an idea of the performance to be
expected from this potential flow model. Generally speaking, provided that
the aerofoil has a sharp trailing edge, the shape of the pressure distribution,
predicted by the model, is corrert, Figures A8.1 and A8.4 show the pressure
distribution for five different aerofoils at various angles of attack., The
main feature of these graphs is a pressure peak at the trailing edge. Reasons
for this phenomenon are given in Appepdix 9. Figure A8.2 shows the pressure
distribution around a two element aercfoil section. fhe trend of the pressures
is in reasonable agreement with the experimental shape (Ref.l35) although the
actual values need further improvement, The pressur; distributions for the
 high 1ift aerofoil section ?f Figure AB8.3 are in good agreement with those of
Reference 138, however, a pressure oscillation is present near the trailing
edge. Finally Figure A8.5 shows the vﬁriation of CL with anglé of attack‘for
a NACA4§12 aerofoil. C(Clearly the inviscid theory éives rise to significant
errors in predicting the value of CL in cases of high angles of attack,
especially when the aerofoil has significant camber. Thus correction for

viscous and wake effects is necessary.
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APPENDIX 9

.

LINEAR VORTICITY MODEL - A GENERAL DISCUSSION

A%.1 INTRODUCTION .

During the course of this research some time was devoted to the
-testing of the linear vorticity model. It was then found that a number
of parameters have a sighificant effect on the performance of the model.

These parameters are briefly discussed here:

29,2 AEROFOIL SURFACE REPRESENTATION

The total number of panels, the panel distribution and the relative
size of adjacent panels are important factors to be considered when
modelling the aerofoil surface. In principle as the representation of
the aerofoil contour improves the wvalue of the lift coefficient should
approach its potentiai flow value asymptotically. The panelling of the
aerofoil surface can be improved, firstly by increasing the number of
panels which cons£ructm£he polygon rééresenting thé"éerofoil contouf and
secondly by distributing Ehese panels in sﬁch a way so that more panels

are placed in high curvature areas. An efficient representation combines
a sufficient number of panéls with a good distribution so that
pomputatioﬂal time is kept low, while the accuracy of the analysis remains
good. |

To test the linear vorticity model a cosine distribution of panels
‘was employed. As suggested (Ref.26) such a distribution is simple to
apply and it tends to distribute more panelé near the leading and trailing

edges of the aerofoil. A more dense grouping of panels near the leading
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edge is necessary since the surface curvature'islconsiderable at this end.
However too man§ panels near the trailing edge can sometimes cause an
instability resulting in large values ;f the pressure coefficient at the-
trailing edge. . However the effect on the overall value of
the lift coefficient is very small.,

The cosine distribution is based on the following formulaes:
C
X =3 (1 - cos ¢i)

im

where ¢i =N

i=1,2,...,N8
and N is half the total number of corner points defining the aerofoll
ﬁplygon. | ,

A distribution which spaces points of the aercfoil surface relative
"to the local curvature (Figure A9.) is better than the cosine distribution

(Ref. 79) but is more complex to apply.

A9.3 AEROFOIL TRAILING EDGE

It was mentioned earlier that the linear vorticity model can only
deal with aerofoils having a sharp trxailing. In this section the
rvariation in C% with number of panels, everything else being constant,

is examined for both sharp and blunt trailing edges.

A9.3.1 Sharp Trailiﬁg Edge

VThé aerofoils chosen to test the linear vorticity model weré those
+of the NACA four digit series since they are very simple to generate.
In most cases the trailing'edge had to be extended very slightly until a
sharp one was obtained. The variation of the lift coefficient with
number of panels for a NACA 1408 aerofoil is shown in (FigureAQQ).
Clearly‘as the number of ﬁanels is increased C{ in;reases; rather
rapidly to beginlwith but it then levélsloff once the number of panels

has reached sixty.
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The increase in C% can be explained as félléws.

Assuming ; particular type of distribution, as the panels are
increased in number the length of thegmlygonrepresenting the aercfoil
Surface approaches the length of the aerofoil contour, thus the
circulation is increased and therefore CR. At thé same time the
condition of zero normal velocity is satisfied at more poinis and therefore
the distortion of the flow pattern, due to the presence of cross flows
between control points, is reduced. Finally since tﬁe control peints
are the mid-panel points i.e. points laying within the contour, the more
the panels the nearer to the true aerofoil surface the control peints
will be. Ideally the condition of zero normal velocity should be satisfied

on the aercfeil surface.

A9.3.2 Blunt Training REdge ¢

The above test was repeated with a NACA 1408 aerofoil whose trailing
edge was not modified this time ((EJTE=O.00168. Ref.l.p.408). From
Figure A9.3it can be seen that Cf varies in a random fashion with the
number of panels. ‘his is thought to be due to:

1. The presence of a sharp change in surface curvature at the

training-edge..

2, The type of Kutta condition used.

Sharp corners are reflected as discontinuities in the vbrtex:
distribution (Ref.7) and this is probably the main reason for the

"instability observed.

The Kutta condition applied to this model requires tﬁe total
vorticity at the trailing edge to be zero. (Diagram A9.1l). However

this allows the individual vorticity strengths at the trailing edge to

reach large values.

300



DIAGRAM 9.1

Thus as the number of panels is inc:eased it is a combination of
variable surface discontinuity and vorticity distribution which creates
the instability observed in the value of CL.

To solwve this problem researchers using this type of potential flow
model have tried to modify the Kutta condition {(Ref.34). WwWith viscous
fléw, however, such Kutta conditions increase the complexity of thé
calculation. If only a potential flow analysis is required matters can
easily be improved by simply extending the trailing edge till a sharp
one is obtained. Such extensions are obviously valid. If they are short
in-comparison Eo the length of the aerofoil chord so that no sericus

effect on lift arises from the modification of the aerofoil geometry.

A9.4 INACCURATE SURFACE CORNER POINTS

When the number of surface corner points definiﬁg the aercfoil
polygon_is not sufficient one may wish to increase this number by simply
interpcolating between the available points. However, unless some kind
‘of curve fitting is employed, interpolation may result in panel
oscillation (Diagram A9.2). This in turn gives an OScillétion in Cp
(Figure A9.4), The overall effect, of such inaccurate geometry, on CR

has not been investigated.
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AEROFOIL
4”’4.‘~s:;_qzéé;::_-_—SURFACE

INPUT POINT

s

DIAGRAM 9.2

A9.5 THIN AEROFOILS

wWhen the upper and lower surfaces of the aerofoil come very close
together the induced veloclties can reach high values, due to the nature
of the vorticity singularity, thus instability, in the solution for the

vortex strength may arise,
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(a) Cosine method.

{b) Curvature method.

Figure A9.1 Comparison of cosine and curvature methods for distribution of segment corner points.
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Figure A9,2 Variation of CL with number of panels {(Linear vorticity model) .
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APPENDIX 10

VISCOUS FLOW BOUNDARY CONDITIONS

In methods which involve Separafe calculations of the wviscous flow
over the wing and its wake and of the inviscid flﬁw externgl to these
layers a matching proceés is required which will enable the mutual inter-
actions of these flows to be determined. The matching is accomp;ished
through the normal velocity at the aer?foil boundary (i.e. aerofoil
surface). For the wake both normal and tangential velocity boundary

conditions are considered (Diagram Al0.1l).

1 a-
- afe ) = 5y 33 quuwsﬁl

'b....-‘ - ,
: #""‘- line 6 = 0

= = (8
afe.) Kl (8 + 8
(xy = flow curvature}

w!

Diagram A10-1 : Boundary conditions
on Aerofoil and wake '

AlO.1 NORMAL VELOCITY BOUNbARY CONDITTON

This conditition is derived by integrating the equation of continuity
across the boundary layer for both the real flow and the equivalent

inviscid flow and matching the two flows at the edge of the boundary layer.

(25).
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Al0.l.1 Surface Transplration Method

Consider the continuity equation applied to a viscous layer.

d{pu) + d(pv)

ds dy =0
. _ dfpu)
. . dlpv) = ~a§s dy
and upon integrating from y=0 to y=& using V&=0=0
'-Va=‘51‘ I ‘?.{ig.u_)dy
. 8§ ‘0
By definition
' ]
&% = j (- —F’——)dy
< 0 §™s
Hence 5
S*pus = J (paua—pu)sdlr
P §* Pty = 6“66 - Jopu dy
and differentiating with respect to s
A gpay = Lo - [ L pu a
as ° P57 as Psls® o T
. d ~a
—_ = — +
. as (§*Pgug) = Fol8pgugt pg Vg
. P T - P -4
g Vs "o, L& 0"Ps ds(‘s"a“a)]
For incompressible flow p6 1s constant and equation (Al0.4) reduces to
d d
= — * . —
Vs ds(é u,) ds(auﬁ)
vis

Consider now the inviscid incompressible flow,

velocity that exists at a small distance § above the aerofoil surface.

From the continmuity equation,

du _ dv . . _ _¢@un
= <. dv = is dy

Integrating with respect to y between O and § and using Vg=

and the normal

(alo.1)

(210.2)

{Al0.3)

(Al0.4)

(Al0.35)

Cfo, the above

gives: au 6 du
v = = —-E- dy = =3 __.._6..
6 o
inv ds o ds
Comparing Vé and Vé the incremental normal velocity due to viscosity
vis inv . ‘

is
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Vg = ——46*u6)

The above equation states that the mass flow normal to the wall

(Al0,6)

in the equivalent inviscid flow is equal to the streamwise rate of

change of the 'mass flow deficit' in the boundary layer.

Al0.l.2 Egquivalent Sources

The additional outflow AQue to- the presence of the boundary layer may
also be represented by a surface distribution of sources whose strength
{volume flow rate) per unit area is

0 = S(u %) : ' (A10.7)
ax & |

The same considerations are applicable in the wake, where however
O is negative, so that we may consider the rear dividing streamline of
the irrotational flow as dotted with sinks (67).

Now the 'new' fluid emitted at the sources just described would fill
a region, adjacent to the body, of thickness §%; for the flow of 'new!
fluid past any point P (with velocity ud) must equal the total outflow,
from the part of the surface between that point and the point of attachment

{(Diagram AlO.2) and this is

8 * Surface of
¢ : displacement body

.

Point of
attachement

Aerofoil surface

Diagram Al10-2
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per unit span. But the external flow can be reéarded as the irrotational
flow about the surface of separation between the fluid from upstream and
the 'new' fluid from the sources and this has been shown to be a surface

displaced into the fiuid through a distance &%,

Al10.2 TANGENTIAL VELOCITY BOUNDARY CONDITION

The momentum deficit of the viscous layer is given by:
S 2 s 2 :
M=1]p, udy - pPu. Ay (710.8)
o §& 78 o §°6
Equation A10.8 gives the difference between the momentum flow rate
which would occur in no boundary layer existed (in this case the velocity
in the vicinity of the surface, at the station considered, would be constant
and equal to the main stream velocity ua) and the momentum flow rate within
the boundary layer.

By definition

. .
8% = I (1 - 22y gy
o Psis

§
o -] ta -ty

‘ o °sY% Us
Multiplying both &é* and © bY%q; gilves

9 8
'oauaﬁ* = Iudpsud-ﬁu)dy

§
and p u20 = pu(u,~-u)dy
§78 o é
Adding the above two egquations gives
2 § 2 2
P U, (6%+0) = (p.u, -pu )dy (Al0.9)
548 0 §°6

From (Al0.9) and (Al0.8) the difference in momentum flow rate or
momentum deficit in the viscous layer can be written as:
M= psui (§*+0) (310.10)
This momentum deficit mu;t equal the momentum transported outside
of the viscous layer by the velocity VN {Eq. Al0.6). |

_Cdnsider the inner boundary surface s of the viscous layer and the
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.

‘displacement surface sl. let k be the curvature of s and kl the curvature

of'sl. Let s, be the flow boundary which is also curved and take an

element 632 on this bounaary (Figure 210.1). The momentum transported to
the inviscid outer flow through-ﬁs2 will be turned in direction due to the-
curvature of the element (25)., This will result in an additional normal
forde being exerted on the outer flow. This force will in fact be exerted
on the displacement surface Sl' since the displacement-thickness is the
normal disﬁance that the momentum is transported, and it will be greater
than that required.in potential flbw by an incremental force AF where
AF = p ﬁz (6*+2)k ds

§°6 1.1

dgl {A10.11)

1 - dsl

This incremental force must result in a normal pressure gradient

and k

in the outer flow and must be related to an incremental tangential

velocity AuT (25). The normal pressure gradient is given by:

du
dp .8
2 . . —_ .12
an p6u6 an {Al0,.12)
since — =
M= AuT X mass ;eAuT(pﬁqusl)
1
= o= * —
then AuT ua(ﬁ +0) dsl _ {210.13)
From Figure Al0.l and from the definition of curvature
| de d2y dy
.d.s_l_= 2_1 (1 + (dx_1)2)3/2  (Al0.14)
1 dx 1 :
1
Referring again to Figure AlO.l
yi =y + §*coseg
X, = x-8* sine (alo. 5)
dy _ dx _
ax tane , as cose
writing dyl dyl/dx
dx,  dx,/dx
and using
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1 dy . 4as* de
— = + — *
T 3% T ax cose-0*sine —
dx

1 _ _ as*  oaw de
= 1 = sine - &* cose ax
dx=costds

the following result is obtained

dyl g%— + tane (1-6* ——% : '
= s ) (Al0.16)
)y pane 38 g« @-

ds ds

which after expanding binomially and retaining first order small terms

only gives
) _ as+

dxl ds

secze + tane : (310.17)
dé*> : de
Note, terms such as . and &* a are both small. For the latter

term at the léading edge gg-may be large but §* is very small, elsewhere

. de
as d* increases a;—becomes very small,

Using a similar approach the two terms of (Al0.l4) can be written as

dy
1,2 3/2 3 . ds* 3/2
[l + (dx —) ] = gec ({1 + 2tane as 3 {Al10.18)
.dzy dy dx . |
— = 1 / = d 5* ) sec?e (310.19)
dxl

Combining equations (A10.14), (A10.18) and (Al0.1%9) the curvature

of the displacement surface can be written

de

* *
1 dE d6 /E_+2tane :]
dsl

*
and since tan as® is very small as explained above

ds

de 2

d_l = g-;i +4 ‘5; (310.20)
%1 . ds

Finally combining (310.13) and (A10.20) the incremental tangential

velocity (VT where VT=AuT) is given by
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_ de , 4 6* ’ o '
VT = -116(6*4"9) (a—s— + ——(—i-;é-) | (A10.21)

which involves only terms related to the gecmetry of the surface concerned

{(i.e. wake or aerofoil) and the corresponding wiscous layer parameters.
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APPENDIX 11° o

WAKE GEOMETRY

The procedure for the calculation of the initial shape of the wake

singularity sheets is described here.

All.} WAKE OF MAIN AEROFOIL

The initial position of the wake gingularity sheet is taken to be

parallel to the flap upper surface, the distance between the two stream-

lines being, . 1

= - + —
h (zT zN)

> tTE (All.1)

where Xt 2, are the coordinates of the trailing edge of the main

aerofoil (seé Figure amd), tTﬁ is the trailing edge thickness {for
blunt trailing edges), xN,zN_are the coordipates of tue point of
intersection of the normal from Xt Z, to the flap upper surface.
once h is found the coorainates‘xi,zi of the wake singularity
sheet are calculated By constructing the normal at xk,zk on the flap.
surface aqd taking a point xﬁ,zﬁ

The calculation procedure is the same for both negative and positive

distance h from xk,zk.
overlap. For pointed trailing edges tTE=O'

All.1.1 CcCalculation of X 12y

To find h only xN,zN have to be found since xT,zT and tTE are known
from the aerofoil geometry.

Let 4 be the length‘of the normal from x to the flap surfacé,

o’ %

and the flap surface. But

then 4 is the minimum distance between xT,zT
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2 2 2 )
a% = (xx )"+ (2,77 : (All.2)

Starting from a convenient point on the flap surface a search ls
carried out to find a peoint X, 02, (defined from the input geometry) for

which T g 2
i (xT-xi) + (zT-zi)

is minimum. Once xi,zi has been located a quadratic curve

z=ax’ +bx+ e _ (a11.3)

is fitted to the points (x

i—l'zi-l)'(xi'zi)'(xi+l'zi+1)' (Diagram All.l).

Xis1'Zin

Diagram All-1

Ximpr Zj=1

The slope at any point on the curve is given by

E=2ax +b (AlL.4) -
and the slope of the normal to this point is given by

1 _ 1

= - = - all.5
" dz  2axb (a11.5)
dx
Iet
z=mnx + e
be the equation of the line joining (xT,zT) with (xN,zN) then:
1
1] =-_-_-_-—_— +
ZN 2ax_-+b xN e
N
where
e =2z -+ ~—JL——~ X
T 2axN+b T
Thus
x -
N 1 :
= = — + ———— -
ZN ZaxN+b + zT 2axN+b xT (A11.6)

Since (xN,zN) is a peoint on the curve,
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z = ax2 + bx + ¢ v (All.7)
then 2z = ax_ + bgu + e (A1l.8)

Combining (All.6) and (All.8) gives

2 ! ' -
+ + ¢ 5 ——— -
axy *bx +c 2a%, 7D (%42, (2ax b))
which reduces to
3 2 ’
+ 2 ‘
AlxN Asz + A3xN + A4 0 (1}1]_..9)
where Al = 2a2 '
A2 = 3ab |
2
= 2ac+h - +
A3 ac+b 2azT 1
=h -x -b
A4 bc xT zT

t

Newton-Raphson's method iz used to solve the above cubic, starting'

with an initial value xN=xi to find the root xN such that

< <
-1 S % S ¥

Substituting kN into equation (All.7) gives the value of Zye

Once Xy and ZN are known the value of h is found from equation (AlLl.l).

All.l1.2 cCalculation of Wake Coordinates (xﬁ,zﬁ)‘

The following calculation is repeated for 211 points xk,zk on the

flap upper surface for which
-
** 7 *p
A quadratic 2
z=ax +bx +c. : (All,10)
is first fitted to the points
. ‘ (xk"]. rzk_l)’; (xkrzk) ' (xk'i'l’zk‘l*].)

The slope of the curve at any point is glven by

dz

== 2ax + b ,
hence az

(320x=xk = 2axk +b

The slope of the normal to the curve at-(xk,zk) is:
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m = -—1/(2axk + b)

and the equation of this normal i1s

z=mx + e,
vhere e = zk - mxk
hence Z = mx + zk - mxk
he 1 = ] -
- I

Also

k

solutions,

h

L ym2+l

The two values of xi are substitﬁfed back in (All.10) .and the value of

x! which satisfies

is the required value.

All.2 WAKE OF FLAP

The initial position of the flap wake singularity is obtained by

simply extending the flap chord length by 100% (8).

2 ) 2
(xk xk) + (zk zk) h
and substituting for z'! from (All.12) gives a quadratic in xi.with

2

(All.11)

(A11.12)

{AlL.13)

(All.14)

Let (x%,z%) and (xf,zf) be the coordinates of the flap leading and

trailing edges respectively and let xw,zw be the coordinates of the wake

trailing edge (Figure All.l). The coordinates %02 are given by:

= !
xwl 2xf xf

= —
zw 2zf zf

“The distance x X is divided into N/2 segments where N is the

£

total number of segments defining the flap surface,

All.3 SINGLE ELEMENT AERCFOIL

To estimate the initial position of the wake singularity sheet in

this case the method described in Section All.2 is used.
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FIGURE All-1 : Wake Geometry




APPENDIX 12"'

COMPUTER PROGRAM TO CALCULATE THE

CONFLUENT BOUNDARY LAYER
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1)
2)
D
1)
»
£)
D

3)

7>

3
1)
2)
k)
]
3
L)
7
2)
#)
»
S
23
3
13
3
53
73
2
72
by

£y

2)
3
1)
3)
53
7}
3
2
23
1>
22
33
1
3)
&)
™)
3
)
3

D
i
i2
'}
")

'
3

A

10

FavallaAMMD LU wALLVULLLD MALN OLWFLAV L

DIMENSION A(10+10)2B(10)

DO 10 I=1+8 “

B(I>=0.0

DO 10 J=1.3

ACL11)=0.0

CONT INUE

A(111)=(2,*¥TS-D5+DS5) /UM

ACLr2)=1,

AC211)=(3, *DSSS~2. #D5+2 . *DS5) /UM

A(2r3)=1,

UMW=UM~UW

UMMI=UM*SM3

UWMI=UW*SM3

ACTy1)=BI% (2. *UM-UKN-4. *UMMZ+3 . *UNM3+2Z . *UMWX5MS) +UMW* (D5-DSS)
ACT 24> =UM*LNW

ACTISI=—AC3:4)

ACT16)=BI* (2, *UMMI-UWMI -2, *UMW*SMS)

UWE=UW-UE

A(4+1)=UNE#* (BJ-BJ*SM3I+D5-DSS)

AC4ya)=UM*UWE

AL41S)=-AC444) :

AC4146) =BWUEXSM1+2, *BWrUWE*SM2Z+BI*UWE*SMS

ACSs1)=DSS '

ACSy4) == (UT/RK+UB*.5)

ALSyS)Y=UN

AC517)=-(DS5/RK)

ACS18)=-(D5%.5)

ACLyY1)=2, #UMXTS+DS*A(S14)

ALY 2) =UM*UM

ACLr8)=~ALL12)*T5/D3

ACLYT7)=~DS* (UM-RK1*UB-4 ., *UT/RK) /RK

AC41E)=-DS* (UM*.5-RK1%UT/RK-.75%UB)

AC711) =3, %UM*UM*DSS5+(9. /8, ) *DS#UB*UB-2 . *DS*LUM*UB=~4 , ¥ [T *UM*UT/RK+:
+.0%¥DS*RK1*UT*UB/RK+6 . #DS*UT#UT/ RK/RK

AC7 2 3) =UM*UM*UM .

AC738)=-A(73)*DSSS/DS

AC717=-DS% (2, *UM*UM~-3. *RK1%UM*UB-12 . UM*UT/RK+3 . #*RK2*UB*UB+6 . #RK:
+#UT*UE/RK+12. *UT*UT/RK/RK) /RK |

ACT718)=~DS#* (15, *URXUB/16.~9 . *UM*UB/4 . +UM*UM~3 . *RK 1 #UM#UT /RK+

& RRKZ®UT#UB/RK+3 . *RKI*UT*UT /RK/RK)

ACSy1)=1,

AC254)=-UT/RK/DS

Ay 7)== CUM=-UB) /UT+1 . /RK)

ACS18)=~1,

Y1=ALOG (RE*UM*TS)

H5=DS5/TS , | S
ALOD=ALOG(1.385)~45.79+ALOGIY 1) +17 . 21%Y1~. Q19%HS5—. 74TxY 1Y
AZ00=ALOG(.B887)+23.%ALOG(10.)~153.7*ALOG (Y1) +45.554Y 1, 634 %HS5~1 .5
FRY LY

A300=ALOG(.743)+14. %ALOG(10.)~114 , 4*ALOGCY 1) +35.63%Y1~1 . 219%
+HS-1.T65%Y1%Y1

FUNL=EXP(A100)

FUNZ=EXP (AZ00) %2,

FUNIZ=EXP(AZ00) ,

B(1)=-UE*DUE*DS/UM/UM+FUN1

B(2)=-2. *UE*DUE¥ (DS~DSS) / (UMUM) =2, % (FUNI-FUNL) +FUN2

FUNA=. I*FUN3

DBJ=.17*UMW/ (UM+UW)

B (3> =UE*DUE*BI+UM*UM*FUNA~UM*UM* (FUNI-FUN1) —UMW* CUM—2 , *UMMIT+UWMS+
+UMW*SMS) *DBJ

DBW=. 125# CUE-UW) / (UE+UW)

B(4)=BW*DUE* (UE#SM1 -2, xUNE#SM1+2 ., #UWE*SM2) ~UM*UM*FUNA+UWE * (UMW *SM3
~UM) *DEJ-UWE* (UE*SM1 +UNE*SM2) *DBW

CALL EXIT



1y

12)
13
14)
¥53)
15)
73
e}
12)
.G
1)
2D
.E)
4)

5y

&)
7
8)

D)
0)
1)
12)
2Z)
28)
15)
243
Y73
29)
19>
103
1)
§2)
%9’
34
153
343
37)
75)
73
10)
11)
12)
13)
14)
15)
14)
17)
18)
193
30
31)
329
330
54
35)
34)
57)
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PROGRAMME TO CALCULATE MAIN REGION 2

DIMENSION A(10,10)+,B{10)}

DO 10 I=1+7

B{IY=0.0

DO 16 J=1+7

A(I+J)=0.0

CONTINUE .
A(1+12=(2.#T3-D5+DSS) /UM
ACl+2)=1.
AC2y1)=(3.%DBE5-2.%D3+2.%DS55) /UM
A(2+3)=1.

UW=UE

UMKW=UM-UW

UMMI=UM*5M3

UWMI=UNW%xSM3I

A(3»10=BJ* (2, *UM-UW—-4 ., 2UMMI+3 . #UWMI+2 . *UMW%EMS) +UMW* (DS-DSS)
AT+ 4)=UM*UMY

ACI+S)I=—AC3:14)

‘A(d+1)=DSS

BlayA)=—(UT/RK+UB*,5) !

A(4+5)=UN

AC8+63=—(D3/RK)

A(4+7)=—(D5%.5)

ACSy1)=2,%UM*TS+NS*A(Ss4)

A(S+2)=UM*UN

A(S5148)1=—AC5:+2)2T3/DS

ACSy6)=-DE+{UM-RK1*UB-4 . %UT/RK) /RR

A(Sy7)=~DS* (LIM* ,5~-RK1#UT/RK~.75%UB)

AL 11=3 #UM#+UM*DEES+ (7. /8. ) #DS*xUB*UB-2, #DS#UM*UB—-4 . * DS *UM*UT /RK-
+.Q0*xDSxRK1*UT*UB/RK+46. *DJ*UT*UT/RK/RK

ALy I y=UM*UM*UM

AL 14)=~AL4A+3)I4DSBS/D5

AChL16I=—DS* (2. %UM*UM=-3 . *RK1#UM*UB—-1 2., *UM*UT/RK+3 . *RK2#UBxUB+46 . %R}
+¥UTHUB/RK+15 .. %UT*UT/RK/RK) /RK

AL 7)1=-D5+ (15, %UB*UBR/16. -7 . »UMxUB/4, +UM*UM=-3 . *RK1*UM%UT /RK+
6 FRKZFUT*UB/RK+3 . #RKI*UT*UT/RK/RK)

B(7r13=1.

A(7+4)=-UT/RK/DS

A(7+6)==~((UM-UBY/UT+1./RK)

A(T+7)=-1.

Y1=ALOG (RE*UM*TS)

H5=DSI/T3

ALGO=ALOG(L «SEDY-45.79%AL0G (YLD +H17 .21 %Y1~ 91 8%HI- . 743*Y14Y1
92Q0=ALDGC.88?)+23.*GLDB(10.)—158.7*ALOG(Y1)+48.55*Y1—.636*H5-1d
+*Y1*Y1

CAZOO=ALO0GC.943)+16. *QLUGCIO y-114. *ALDG(Y1)+?5.&8*YI 1.819%
+HI~1.3465%Y1#Y]

FUNMI=EXP(ALOD)

FUNZ=2.*EXP(AZQ0)

FUNZ=EXP(AZI0O0)

B(1))=-UE¥DUE*DS/UM/UM+FUN1 ‘

BE(2)=-2 . %UE+DUE* (DS~ DQﬁ)/(UM*UM) -2, *(FUNS FUN1Y+FUN2
FUNG=,3xFLUN3

DRJ=. i 7+UMk/ (UM+UW) _

B(3I>=RI*DUE* (UE-2 . *UMMI+UE*SMI+2 % (UM~UE Y *SMS-UM*UM* (FUNI-FUN1)
+=(UM=UE) % (LiM-2 . *UMMI+UE*SMI+ (UM=-UE) #*SM3)*DBJ

CALL EXIT

END
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C
c

Calculates confluent boundary layer parameters
for Main region 1 & 2

19 3 3 96 36 96 96 % 0 36 36 9 2 W I 06 63 e K 36 3 N A 36 T 3 I 369 AN I I3 H KWW NN

c

DIMENSION BIMC10) sBWMCL10)
DA=DS+BJI+RK2*EBW .
BIJMC(I)=DRJI*DX+BJM(I~-1)
BWM(I)=DEW*DX+BWM(I~-1)

DS=D55+DSJ+DSW )

T=T3+TJI+TH

gMi=1t.178

SM2=.786

SMI=.5444

SM5=.4331

UMDE=UM/UE ' -
UWDE=UW/UE

UC=UMDE~UWDE

DSJ=BJ#*(1.-UMDE+UC*5MT)

TJI=BJ#* (UMDE*(1.-UMDE)>={(1-UMDE) *UC*SMI+UMDE*UC*SMI-UC*UC*SMS)
DSW=BW*5M1% (1-UWDE)

TW=BW* (1 . ~UWDE)*BM1~(i.~UWDE) *%2%#5M2)
CF=2.%C(UT/VCI**2

CFB=2.%UT*UT

CALL EXIT

END






