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Preface 

This thesis was stiJrted at Loughborough University in Summer 

1974 when the author became a member of a small research team employed 

upon· a Science Research Council (SRC) contract. The SRC project, under 

the direction of Mr. F. G. Maccabee of the Department of Transport 

Technology, was designed to examine the possible effects of resource shortages 

upon the future development of the transport - both passenger and freight • 

. Whilst Geoff Lambert, the other member of the research team, concentrated 

upon passenger transport, my responsibilitywas for the freight and distribution 

aspects of the study. Some of the common subject matter was however under

taken jointly. 

Since leaving the University in May 1976 the thesis has been 

virtually rewritten, so that little, if any, of the original joint work remains. 

In part this was necessary simply to update facts and figures, :but a more 

fundamental change of emphasis- away from the technical towards an 

economic approach - was prompted by contacts made in my present position 

as Research Officer in Physical Distribution with the Institute of Grocery 

Distribution. 

The data collection stage of the research involved searches of 

British, American, and European literature, both personally and by the 

excellent University and IGD staff on my behalf. This desk research of the 

burgeoning amount of material appearing in the wake of the 11 Yom Kippur 11 

War was supplemented by interviews with interested parties in industry, 

Government and the academic spheres, and by several small scale surveys. 

The computer facilities of the University were used to produce 

a series of projections of transport demand and fuel usage to the year 2025 -

the time horizon selected for this thesis. 



ABSTRACT 

The distribution of goods is essential to all developed 

economies3 and is dependent upon non-reneUJable resources of energy 

and raw materials UJhich must become progressively scarcer and 

more expensive UJithin the next fifty years. Although 
resource shortages are thought unlikely to bring transport 

systems to a half UJithin this time3 the historical trend towards 

concentration upon relatively resource extravagent modes and 

systems may create future problems. The purpose of this wide

ranging thesis is therefore to examine ways by which freight 

transport's dependence upon scarce resources may be reduced 

and to discussthe potential for a more efficient use of resources 

in distribution. 

Oil is of course the most vital and the most threatened 

(by both physical depletion and political manipulation) of 

resources with important transport applications. Others3 including 

platinum3 asbestos3 copper and lead must be considered because 

of their present and future roles. "Trade-offs" between the 

'direct' use of energy as vehicle fuel and 'indirect' usage in 

the manufacture of vehicles and infrastructure are also explored. 

Oil will be progressively priced-out of non-premium 

markets leaving a high proportion of the remaining oil for transport. 

OtheY' sources3 particularly 'synthetic oil' from coaZ and 

battery electric traction will supplement oil within our chosen 

period. 

Three broad approaches to improving the efficiency of 

fuel usage and re~<cing dependence upon oil products are identified. 

These are improvements to vehicle design3 greater use of more 

energy efficient (and less oil dependent) transport modes3 m1d 

operational and organizational changes. Potential sa1)ings by each 

approach are discussed3 with particular reference to the grocery 

industry in the case of operational and orga:nizational aspects. 



CONTENTS 
Page No. 

ln~roduction l 

Section 1 FREIGHT TRANSPORT AND DISTRIBUTION 5 

1. 1. Introduction 6 
1. 2. Freight transport : the present position 8 
1. 3. Future freight needs 25 

Section 2 ENERGY AND TRANSPORT 34 
2. 1. Introduction 35 

2. 2. Direct energy use by transport 35 

2. 2. 1. Transportation energy usage- modal split 38 

2.2.2. Freight transport and energy 39 
2.2.3. Fuel productivity of freight transport modes 39 

2.3. Indirect energy use by transp!Jrt 51 

2.4. "Trade offs 11 between direct and indirect energy usage in 56 
goods vehicles 

Section 3 ENERGY AVAILABILITY AND DEMAND 59 

3. 1. Introduction 60 

3.2. World oil availability 60 

3. 2. 1. U, K. oil availability 67 

3. 2. 2. Oil and the USA 70 

3,.3. Increasing the yield of diesel fuel from crude 71 
oH by ~efinery changes . 

3.4. Increasing diesel availability by changes to fuel 74 
specification. 

3.5 •. Natual gas 76 

3.6. World coal reserves 79 

3.6.1. U. K, Coal Reserves 80 

3.7. 
- Nuclear Energy Resources 82 

3~·7 ~ 1. Fission 82 

_:J.7 .2.· Fusion 84 
~ 

3.8. Water, Solar and Geothermal Power 85 



Page 

3 .. 8.1. Water Power 85·· 
3.8.2. Soiar Power 86 
3.8.3. Gaothermal Power 87 

~.9. Trends in U.K. energy consumption 88 
3. H) Future energy needs 92 
;3.11 Projections of road freight vehicle fuel usa,ge 99 

Section 4 ALTERNATIVE FUELS FOR GOODS TRANSPORT 102 

4. 1. Introduction 103 

4.2. Economic criteria 104 
4·.3. Technical criteria 105 

4.4. Environmental criteria 106 

4.5. Strategic criteria 106 

4.6. Hydrogen 107 

4.7. Methanol 109 

4.8. Ammonia 111 

4.9 Liquified petroleum gases 115 

4. 10. Natural gas 116 

4c; 11. Other potential fuels 116 

Section 5 MOTIVE POWER UNITS 118 

5. 1. Diesel and petrol engines 119 

5.2. Gas turbines 125 

5.3. The stirling engine 129 

5.4. Rankine eycle engines 130 

5.5. Battery electric road vahicles 132 

5.5. 1. Potential and costs 132 

5. 5.2. Refuelling electric vehicles 139 

5.5.3. Electric vehicles, energy efficiencies and 141 
resources. 

Section 6 TilE SGOPE.FOR ·TRANSFERRING 143 
TRAFFIC FROM ROAD TO OTHER MOutS 



'· Pag~ 

Section 7 REDUCING ENERGY LOSSES IN COMMERCIAL VEHICLES 152 

7.1. Introduction 153 

7.2. Rolling resistance 160 

7.3. Air resistance 161 

7.4. The effects of road improvements upon goods 173 
vehicle fuel consumption 

Section 8. THE GROCERY DISTRIBUTIVE INDUSTRY AND ENERGY 178 
USAGE 

8.1. Introduction 179 

8.2. Operational and organisational aspects of fuel . 182 
consumption 

8.2.1. Traffic congestion and retail deliveries 183 

8.2.2. Consc;>li dation of deliveries. 191 

8.2.3. Application of computers to reducing vehicle 204 
mileage 

8.2.4. The effect of increasing maximum vehicle weights · 208 
upon fuel consumption 

8.2.5 • Energy usage in retail outlets 211 
. ---

8.3. Grocery retailing trends influencing fuel consumption 213 

8.3. 1. Retail outlets 213 

8. 3. 2. Structure of the trade 220 

8. 3. 3. Service levels and article numbering. 222 

8.4. The future development of retailing. 225 

Section 9. SUMMARY AND CONCLUSIONS 231 

References used in Sections 1 - 8 and appendices. 240 

Listing cf Tables 272 

listing of Figures 278 

Appendices 

Apf=endix 1 Present materialslusage by transport systems 280 

Appendix 2 Constructional raw material resources and consumption 306 

Appendix 3 Conservation of materials 321 

Appendix 4 Raw materials and energy 340 

Appendix 5 Projection of freight demand, 1980-2025 351 
based upon {a) 1953-1974 data 

(b) 1953-1977 data 



Appendix 6 

Appendix 7 

Appendix 8 

Appendix 9 

Projections of road freight fuel usage 
1980- 2025 based upon (a) 1950-1974 data 

(b) 1950-1977 data 

Glossary of terms 

Notation 

Outline of thesis os submitted in 1974 

.. 
I ~. 

Page\ 

358 

369 

371 

374 



INTRODUCTION 

Concern about the future availability of energy and other resources 

is far from new : Stanley Jevons for instance expressed fears about coal 

shortages more than a century ago. In recent years energy problems have 

become a major preoccupation of politicians, business leaders and academics. 

Twice in the last six _years political manipulation of oil supplies has sent 

shock waves through western economies and precipitated the worst economic 

recession for forty years. The concentration of oil reserves into a few hands 

has enabled effective cartelisation of an essential resource and allowed 

oil prices to rise from about $3 a barrel in 1970 to over $20 a barrel in 1979. 

By the turn of the century the real price of North Sea oil is expected to be 

between $45 and $65 a barrel. These dramatic price increases have high

lighted the indisputable fact that the world's oil resources are limited and 

cannot continue to sustain demand at historical consumption rates for more 

than a few decades. Whilst it is not possible to say precisely when long 

term demand will begin to exceed long term supply, many economists believe 

that it will occur before the end of the century •. From this point onwards, 

-energy demands will have to be met increasingly by alternatives such as coal 

or nuclear power, supplemented by renewable energy sources including solar, 
/ 

wave and wind power. 

Britain alone among the major industrialised countries is fortunate 

to be self-sufficient in oil for perhaps 15 or 20 years, and in coal for centuries 

to come. The 11 breathing space11 granted by_ our good fortune will permit time 

for a thorough examination of alternatives and the potential for learning by 

others• experiences and mistakes. We cannot however be insulated from 

world energy prices and our transport systems must adapt to higher cost fuels 

with all that this implies. 

Transport is a major consumer of energy in this and other countries, 

and is virtually completely dependent upon oil : it is therefore extremely 

vulnerable to sharp price rises end interruptions to supply. The development 

of suitable a.lternatives to oil as a fuel is a priority if fut~re movement is not 

to severe! y restricted, but conservation of supplies by various approaches must 

also be a major aim. 



Although energy availability is certainly the most pressing and 

intractable of the world's resource problems, there are in addition several 

raw materials presentaly vital to transport whose supply could be restricted 

by either physical depeletion of reserves or by political manipulation. The 

famous 11 Club of Rome 11 study in 1974 concluded for instance, that resources 

of aluminium.- copper,lead and ~sbestos- all of which have important transport 

applications- could each last less than 50 years at historical consumption 

rates. These 11 doomster11 forecasts have been largely discounted as exaggerated 

·but were nevertheless a timely reminder of physical limits to growth and 

caused widespread examination of the ways i.n which material~ ore used. . 

This was particularly apposite in the case of transport industries since many 

relatively scarce materials including lead, copper and platinum could 

assume a greater importance than hitherto with the potentially widespread 

adoption of electric vehicles in response to oil shortages. 

Perhaps more critical than the threat of depletion of raw materials 

is the question of the.ir energy needs. The I ink between energy and raw 

materials has many facets and cannot be ignored in any discussion· of resources. 

A substantial proportion of transport systems' energy needs are accounted · 

fof' in.the· form of energy used during vehicle and infrastructure manufacturing, 

jncluding processing, fabrication, and assembly. Moreover, there may 

well be a trade-off between increased (electrical) energy used in manufacture 

and reduced oil consumption in use, and these balances should be considered 

in a sound energy policy. 

The adjustments required of countries, industries and individuals 

in coming to terms with the reduced availability of oil and other resources 

will not be painless and will clearly require massive spending in research 

and development together with huge capital investment before these 

alternative sources can complement and eventually succeed oil. This 

·prospect has led the twenty members of the OECD's International Energy 

Agency to espouse energy conservation as a necessary goal to slow energy 

demand and 'buy time'. The transition to a non-oil-based economy could be 

postponed by several years, perhaps de~ades, by active conservation measures. 

2. 



Aims and Approach 

The stated purpose of this study is to examine the implications of 

reduced availability of energy and raw materials for the future development 

of freight transport and distribution. 

The approach taken involves examining the present development 

of freight transport in this country and assessing future trends- using both 

published and our own projections of future demand. Secondly, the links 

between transport and resources are explored and the availability and possible 

future consumption patterns of energy and raw material resources discussed 

in some detail. (The constructional raw material aspects are reviewed in 

Appendices 1-4). Alternative fuel sources and motive power units are 

assessed for their practicability- with particular reference to battery electric 

vehicles and synthesized fuels. 

A criticism often levelled at road vehicles is that they are less 

energy- efficient than railways, pipelines, and water transport. This 

assertion is examined in Section 6 and potential savings calculated assuming 

the practicality of •transferring 1 traffic to rail. 

Much attention has recently been given to the significant fuel 

savings possible by reducing the air and rolling resistance faced by commercial 

vehicles. In Section 7 the scope for such savings is assessed for particular 

vehicle operations. 

Finally, using the grocery distributive industry as a •case study•, the 

various operational, organizational and locational aspects of fuel usage 

are explored. lt was thought useful to relate the rather nebulous aspects discussed 

here to a specific industry so that. observed trends may be exa~ined in greater 

detail thanwould otherwise be possible. 

·3 •. 



A fifty year time horizon has been chosen for this thesis, since 

it is generally agreed that world oil and gas supplies will_be in very short 

supply towards the end of this period. In addition some constructional 

raw materials may also be in relatively short supply by the end of this 

period. Such a span therefore allows scope for consideration of the 

imp I icatians of resource shortages, although of course at such a distance 

hence, any projection of possible future conditions can at best be speculative. 

4. 



SECTION 1 

FREIGHT TRANSPORT AND DISTRIBUTION 

Distribution is vital. to aU industrialized countries and is 

a major sector within :Jur economy. Here we explore the present 

development of freight transport and assess possible future 

needs using both published and our own forecasts. 

·. 
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Section 1 FREIGHT TRANSPORT AND DISTRIBUTION 

1.1. Introduction 

Physical distribution is the term given to those activities - transport, 

unit handling, packaging, stock holding and control, warehousing and 

administration which are necessary to ensure that the right goods arrive at 

the right place, at the right time and at the right price. Each of these 

elements is interlinked to the extent that a change in one may cause a reaction 

in another. This fact has led distribution practitioners and academics to assert 

that physical distribution management should be widely adopted to integrate 

and co-ordinate those functions which if managed separate! y may not produce 

an optimal result overall. (Refs 1, 3). Many 'tr~de-offs' are available to 

the distribution executive whereby overall costs may be reduced even though 

individual elements cost more. Thus if the quantity (and costs) of stocks held 

is increased in a given distribution system, it may be possible to reduce 

transport costs (since a less responsive service is required), thereby lowering 

total costs. Similarly, introducing a faster ordering procedure (at higher cost) 

many allow a reduction in stockholding and permit more flexibility in the use 

of transport. Trading-off one aspect against another to improve total costs/ 

service has been termed 'synergy' (Refo 2) and clearly has important im

plications for fuel usage. For example, a supplier may, in the interests of 

fuel conservation, decide to the reduce the frequency of delivery to his 

customers. By so doing, he may be able to utilize larger and hence more fuel

efficient delivery vehicles, but at the same time may increase the size of the 

stocks that his customer needs to carry to cover the extended period between 

deliveries. These relationships, and their fuel implications are explored in 

more detail in later sections. 

The transport function is generally the IQrgest single element 

within distribution, both in terms of its fuel needs and in terms· of its costs. 

6. 



For this reason, attention is focussed upon transport in this section. 

As a percentage of retail turnover, a widely quoted survey 

(Ref. 4) showed that distribution accounts for 16% and transport for 5. 5% 

of the total : 

TABLE i PHYSICAL DISTRIBLITION COSTS AS A% OF RETAIL TURNOVER 

Transport. 

Stockholding : Interest 2.0 

Other loO 

Warehousing : factory 1.0 

Distribution 
Depot 1·.5 

Packaging 

Administration 

Order Processing/ 
Communications 

Cost of activity 
as% of sales 

5.5 

3.0 

2.5 

2.0 

2.0 

0.5 

16.0 

Cost of activity 
as% of total 
P. D. costs 

34.5 

15.5 

12.5 

12.5 

3.0 

100.0 

With regard to the grocery distributive industry {the subject of 

the 'case study' later in this thesis), a survey by Mintel (Ref. 5 ) found that 

only 7% of the 76 grocery manufacturers surveyed believed that distribution 

costs exceeded 10% of trade sale price; 47% of companies reported them 

to be less than 5% and 45% more than 5%. Given that the average gross 

margin of food manufacturing companies has varied between 2.7% and 6% 

between 1972 and 1978 (Ref. 6 ) there is clearly a powerful argument for 

containing distribution costs- of which transport accounts for about one-third. 

7 .. 



. ? 
I·- • Freight transport : the present position~ 

The importance of transport within the economy may be seen from 

the figures below, which show that users• expenditure upon transport has 

remained around 9-11% of the Gross Domestic Product (GDP) in recent 

years, with road transport accounting for some 90-95% of the total. 

TABLE 2 USERS• EXPENDITURE UPON TRANSPORT, 1966-1976 (£m) 

~ 

1966 1968 1970 1972 1974 .-

Road 2812 3363 4212 5293 7757 

Rail 281 269 279 260 289 

Inland Waterways 3 3 2 2 4 

-
Total 3096 3635 4493 5555 8050 

1976 

9501 

415 

4 

9920 

GDP 33083 37390 43368 54958 73652 '09080 .

1 
Transport as% 9.3 9.7 10.4 10.1 10.9 9.2 

SOURCE : Ref.?. 

Transport and communications are major employers of labour 

providing more than 1! million jobs, or about 6% of the total UK workforce. 

As may be seen from Table 3 below, road haula~e employs nearly a quarter 

of a million workers (90% of this number is employed in road haulage for 

general hire or reward). 

TABLE 3 EMPLOYMENT IN TRANSPO~T AND COMMUNICATIONS 

u. K., 1974 (Ooo•s) 

Railways 

Road haulage contracting for general hire 
or reward 

Other road haulage 

Sea Transport 

Port end inland water transport 

a. 

221 

219 

22 

87 

78 



Air transport 

Road passenger transport 

Postal services and communications 

Miscellaneous transport services and storage 

Total, transport and communications 

Total, all industries and services 

SOURCE : Department of Employment 

79 

215 

443 

142 

1,506 

22,790 

Freight transport is general! y measured in terms of tonnes I ifted 

and tonne kilometres moved, and whilst these are probably the best measures 

available for the purpose of giving a broad picture of the global freight 

transport situation, they give widely divergent impressions of the relative 

importance of different modes beca,Jse of the big differences in the distances 

whi-ch traffic is conveyed on average by mode. Moreover, the "'tons' and 

'ton miles' for different kinds of traffic are thems.elves very different. 

Aggregating tons of machinery and tons of groceries can for instance be mis

leading as a measure of work done, as can miles travelled on motorways and 

miles travelled on busy urban roads. These measures also necessarily ignore 

the importance of a consignment to the sender, as reflected for instance in the 

value of the goods or the freight charges. 

Bearing in mind the shortcomings of the measures available, the 

major trends in the movement of internal freight over the past twenty-five 

years or so may be seen at a glance from Figures 1 and 2 • From the first of these, 

it is evident that the tonnage lifted increased fairly steadily to peak in 1968; 

after this time, it has fluctuated irregular! y around the 1800 million tonnes 

per year level. In contrast, there has been a more continuous growth in 

tonnes moved- implying an increase in the average length of haul. This is 

confirmed by Table 4 which summarizes domestic freight traffic in greater 

detail for the two years 1966 and 1976 in terms of tonnage lifted and tonnag·e 

moved. Between the two years, the tonnage I ifted fell by 8. 7% whilst 

9. 



FIGURE 1: TONNES LIFTED BY VARTOUS MODES, GREAT BRITAIN 1953-1977 (million tonnes) 
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FIGURE 2: GOODS MOVED BY VARIOUS MODES, GREAT BRITAIN 1953-1977 
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TABLE 4 DOMESTIC FREIGHT MOVEMENT IN GREAT BRITAIN BY MODE 

19.66 and 1976 

TONNES TONNE-· KILOMETRES A6{F~g~ 1 1ength I 

Number (mill ions) :. %of total Number ( 1 0(5 - ) %of total kms 

. 1966 1 -1976 . 1966 1976• . ,1966 1976' 196,~1 1'/76 1~0n 1976. 

Total 1950 ' 1781 100 100 , 1245 1420 100 100 64 80 

Road 
Mainly for hire and reward {1) 721 798 37 45 428 601 34 42 59 75 

Mainly own account (2) 920 717 47 40 ; 304 355 24 25 39 50 

Total Road 1641 1516 84 86 '• 733 956 59 67 58 63 

- Rail (3} 217' 176 11 9 240 231 19 16 112 131 
... . 

I\) . 
Coastal Shipping (4) 53 39 2 2 203 200 20 14 477 51-2 

Inland waterways 8 5 '- - 2 1 - - 25 20 
I 

Pipe! ines (5) 31 46 1 3 16 32 1' 2 52 ?C I I 

Air (Domestic) 0.04 0.07 - - 0.0) 0.02 - - I 
SOURCE : Ref. ,7. 



Notes to Table 4 Freight Movements by Mode, 1966 and 1976 

1. Hire and reward : traffics carried for third parties by 

2. Own account : 

undertakings engaged in the business of road 

haulageo 

traffics relative to their own activities carried 

by industrial and commercial undertakings in 

their own vehicleso 

Abolition of the 'A', 'B' and 'C' licensing system by the 1968 

Transport Act has blurred the distinction between these two 

categorieso 

3. Rail figures include carryings by parcel trains, but exclude carryings 

by British Rail for its own domestic purposes (about 3 million tons, 

1974) and freight carried by passenger trainso 

4. Coastal shipping figures include petroleum moving to and from 

Northern Ireland, but exclude the movement of other goods to and 

from Northern Ireland. 

So Pipeline figures exclude public utility pipelines used for the 

conveyance of water, sewage, gas etco 

. 13. 



movement rose by 14% due to an increase in th~ average length of haul from 

64 to 80 kms. One of the reasons for this increase in the distance moved is 

the longer average haul undertaken by the 11 mainly for hire and reward 11 

category of road transport, as a result of capturing traffic from rail and the 

other modes. In other words, it is apparent that over this decade, road 

transport has become more competitive for long distance freight. 

In terms of tonnage, 86% of all domestic freight is now carried 

. by road, rail's share having shrunk to less than lOOk and that of coastal 

shipping to 2%. If measured by tonne-kms, the greater distance over which 

freight is moved by rail and particularly by coastal shipping compared with 

road gives a very different pTcture : 67% of traffic is moved by road, with 

rail and coastal shipping taking 16 and 14%. 

The relative importance of road, rail and pipeline in the carriage 

of various goods is illustrated in Table 5 below. 

TABLE 5: ANALYSIS OF THE GOODS MOVED BY DIFFERENT MODES IN 

GREAT BRITAIN IN 1976, IN TERMS OF TONNE-KILOMETRES 

Totals Percentage Distribution 
(thousand I million t.kms) % Road Rail Pipeline 

Food, drink and fobacco 23.6 19.3 97.6 2.4 -
Building materials and 
aggregates 23.7 19.4 87.2 12.8 -
Coal and Coke 11.5 9.4 23.0 77.0 -
Petrol eu~ products 10. 1 8.3 4L2 26.6 32. 1 

Iron and Steel 10.4 8.5 65.8 34.2 -
Other 34.9 28.6 90.6 9.4 -
All Goods 122.0 100 78.4 18.9 2.7 

I 

SOURCE : Ref. 7. • 

14. 
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Although mineral products account for the bulk of goods 

transported in this country, the avera3e distance over which the tonnage 

is moved .is relatively small. In terms of ton-miles, the group consisting of 

food, drink and tobacco is dominant and equivalent to nearly one-fifth of 

all ton-miles. (This group, roughly equivalent to the output of the grocery 

industry is the subject of a more detailed case study later in the thesis). 

Road is the major mode of _transport for each of the product 

· groups shown above except coal and coke, about 75% of which is moved 

by rail. For the two major categories of product - namely food, drink and 

tobacco, and building materials and aggregates (which together account for 

nearly one-half of all traffics), the market is dominated by road transport. 

Given the present size of the rail network and its evident inability to handle 

a large increase in traffic without massive investment, it is clear that road 

freight must continue to be the primary mode in this (and most other in

dustrialized countries). Nevertheless, the higher energy efficiency of rail 

compared with road (as discussed in the section 11 Energy and Transport 11
), 

together with its greater environmental acceptability (in terms of pollution, 

congestion and noise) has I ed many planners, pal itic ions and academics to 

urg.e that this investment be made. The seep~ for transferring some traffics 

to rail and the other energy efficient modes is briefly discussed later, after 

the trends in individual modes have been examined. 

Road Freight Transport 

As at the end of 1975 there were approximately 1,750,000 lorries 

and vans in Great Britain. The analysis of this total by gross vehicle weight 

{g. v. w. - the maxim.um load plus the tare weight of the vehicle) is shown in 

Table 6 below. 

TABLE 6: COMMERCIAL VEHICLE POPULATION, 1975, BY G. V. W. 

Under 3! tons 

3! to 11 tons 

15. 

1200,000 

227,000 



11 tons to 20 tons 

20 tons to 23 tons 

28 tons to 32 tom 

202,000 

55,000 

66,000 

. 1750,000 

The vehicle population has shown evidence of polarizing in recent 

years, with i'he numbers of both small and large trucks growing at the expense 

of the middle weight rangeo Of the total 7 million tons carrying capacity 

of this fleet nearly one-third (2o2 million tons) is accounted for by lorries 

over 20 tons go Vo Wo which make up only 7% of the total fleet. 

Despite the inroads made by the diesel engine, about two-thirds . 

of the total fleet is still powered by the petrol engine, although practically 

all lorries over 3! tons now have diesel engines. 

During the last decade there has been a marked trend in the 

quantity of tons carried and miles run towards 'third party haulaae' from 

'own account' transport, even though some 1 o4 million (or 80%) of the 

total fleet is operated by 'own account' traders. From Table 4 it may be 

seen that in the decade to 1976, the tonnage carried by vehicles for hire 

and reward increased sharply (as did ton-miles) whereas 'own account' 

tonnage declined. Nearly 70% of lorries over 20 tons g.v.w. are operated 

by.'third party' naulierso 

Estimates of the goods moved by road freight vehicles according 

to size in 1976 are given in Table 7 below; 

TABLE 7: ANALYSIS Or TON-KMS. BY VEHICLE SIZE AND BY 'OVVN 

ACCOUNT' AND 'THIRD PARTY'. ( 000 million) 

Mi'linly Third Party Mainly Own Account Totals 

.. - % % 
Under 3! tons· 0.2 0.3 2.5 7.0 2.8 
3! tons to 11 tons 1. 5 2.4 4. 1 11.5 5. 5 
11 tons to 20 tons 10.5 17.5 1 0.8 30.4 21.3 
20 tons to 28 tons 8.6 14.3 7.2 20.3 15.8 
28 tons to 32 tons 39.3 65A 1 1 .o 31.0 50.2 

TOTALS· I. 60.1 100 3 5o5 100 95.6 

SOURCE : Ref. 7. 
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I. 
I 

Again, it may be seen from this table how important public 
. ~ 

haulage is at the 'heavier end' of the market- being responsible for&;% of the 

50200. million ton-kms performed. The average len!,;Jth of haul for p·.1bl k 

haulage vehicles was 75 kms. in 1976 (Table 7) compared with 50 kms 

for own account. 

Companies tend to use their own transport and public haulage 

much the same for hauls of up to 50 miles (Table 8 below), but with 

progressively longer hauls, public haulage is increasingly preferred. 

TABLE 8 : TON-KMS. PERFORMED BY 110WN ACCOUNT AND "THIRD 

PARTY" TRANSPORT, ANALYSED BY LENGTH Or HAUL 

(000 mill ion) 

Mainly Third Party Mainly Own Account Totals 

.. 

Up to 25 miles 7.7 8.4 16.0 

25 to 50 miles 6.9 7.7 14.6 

50 to 100 miles 11.5 8.5 20.0 

100 to 200 miles . 20.0 7.4 27.5 

Over 200 miles 14. 1 3.4 17.5 

TOTALS 60.1 35.5 95.6 

SOURCE :Ref. 7. 

lt may be argued that the obs3rved move from 'own account' to 

'third party' haulage is to be encouraged in terms of fuel conservation. Third 

party operators are, by virtue of their consolidated flows and deliveries from 

different companies, able to make effective use of larger (and hence more fuel 

efficient) vehicles than is the own account operator. Additionally, the third 

party operator makes greater use of his vehicles by arranging return loads : 

hence load factors are much higher than in the own account sector where the 

general pattern is 'deliver and return empty~ The scope for fuel savings by 

improving load factors and by other operational changes is discussed in more 
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detail later in the thesis • . 
T~e major traffics in tonnage terms (not ton-miles) transported by 

road are analysed by commodity and length of haul in Table 9 below. As 

may be expected, 'crude minerals and ores' constitute the largest single 

group of products in terms of tonnage, but have a relatively short average 

length of haul •• (Only 21% of the total 351 million tons transported in 1976 

moved more than 25 miles) • 

. TABLE 9: ANALYSIS OF ROAD FREIGHT TRAFFICS BY COMMODITY AND 

LENGTH 0 F HAUL 

Up to 25 25 to 100 101 to 200 Over 200 
miles miles miles miles 

million % million % million % million % 
tons tons tons tons 

Food, drink, and 
tobacco 156 17 108 26 30 25 10 25 

Crude :ninerals & 
ores 279 30 64 15 7 6 1 3 

Coal and coke 55 6 12 3 3 2 1 3 

Petroleum & 
Petroleum product 43 ·5 32 8 3 2 1 3 
Chemicals & 
fertilizers 19 2 20 5 11 9 4 10 

Building materials 113 12 39 9 9 7 3 8 

Iron and Steel 32 3 23 6 12 10 4 10 

Machinery and 
transport equipo 22 2 17 4 8 7 3 8 

Other ~ . ~ . 220 23 100 24 39 32 13 33 

Total 

million 
tons 

305 

351 

70 

77 

55 

164 

70 

50 

372 

Totals 9'JJ 100 415 100 122 100 40 100 1516 . 
SOURCE : Ref. 7. 

Food, drink and tobacco products as a group constitute the second 

largest tonnage transported by road, and, with a longer than average haul 

account· for about one quarter of road tonnage moving over 26 miles. Nearly 

half the tonnage in this group travels more than 20 miles, and in terms of ton-

mileage as was seen earlier (Table 5),), this group of products is the most 
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important collcGtive item rnovedo Road haulage dominates the distribution of 

food more completely than any other single product,occounting for some 96% of 

all food transported. · 

Rail Freight 

Rail remains the second major freight mode in the United Kingdom 

despite a continuous decline .in the length of the rail network (to 18000 kms. 

in 1976- a fall of nearly 20% in the decade) and in tonnage carried. In 

1976 9% of the country's tonnage (compared with 24% in 1953) 'Jnd 16% of 

all ton-miles (compared with 44% in 1953) were performed by rail (Table 4). 

Coal and coke account for about 50% of the 175 million tons 

hauled by rail in 1976 (Table 10 ) with iron and steel providing a further 17%. 

TABLE 10: RAIL FREIGHT LIFTED AND MOVED 1976 

Mill ion tonnes Million kms 
By Freight Train 1966 1976 1966 1'176 

Coal and Coke 133o8 97o0 11173 8892 

Iron and Steel 39A 29o5 4399 3568 

National Freight Corpn 2o5 2.9 N.A. N.A. 

Other train/wagon load 
traffic 41o2 40.6 7958 7989 

Total 217o0 204o0 23530 20448 

SOURCE : Ref. 7. 

Within the category 'other trairy'wagon load traffic', the decline 

in tonnage carried has been less severe than in ooal and iron, and in terms of 

tonne-kms. 1 there has actua 11 y been a sma 11 increase o As may be seen overl eafi 

the carriage of 'Earth and Stones' and of 'Oil and Petroleum' has risen sub

stantially over the decadeo In contrast the use made of rail by 'Agriculture, 
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~cod and drink' has fallen dramatic..::ly: 

TABLE 11: RAIL FREIGHT LIFTED AND MOVED: OTHER TRAIN/NAGON · 

LOAD DETAILS 

Million tonnes Million t. kms.· 
1966 1976 1966 1976 

Agriculture, food & 
drink 6.0 1.5 167~ 571 

Earth and Stones 10.4 13o 3 1280 2007 

Chemicals and 
allied products 5o5 4o4 1185 1061 

Building materials 5o3 4.9 1123 1033 

Oil and petroleum 10.3 16.7 1668 2689 

Motor vehicles and 
components -.. 

Miscellaneous 
3.7 1.8 1001 628 

products ·-

Total 41.2 40o6 7958 7989 

SOURCE : Ref. 7. 

The average length of haul of all rail traffic has increased by 

10% over the decade to 1976, from llOkms. to 121kmso, As an indication 

of the competition from road transport, however, it may seen that in some 

product groups, notably 'agriculture food and drink' the length of haul 

rose by one-third over the same period- to 374 kms : 

TABLE 12: BRITISH RAIL: AVERAGE LENGTH OF HAUL 

Average overall 

Coal and coke 

Iron and steel 

Other train/waaon load traffic : 

Agric'uh;vre, food and drink 

SOURCE : Ref. 7. 
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Freight! iners 

Fret.ghtliner services began on a very limited scale in 1965. There 

ore now some 34 Freightliner depots and some BO services ore operated 

(counting each direction separately). 

About 720,000 containers are forwarded a year, the size of the 

containers varying in length from 10 feet to 40 feet (in 10 foot modules). Rather less . . 

·than one-half ore Freightliner owned, the rest being largely owned by shipping lines. 

The distribution of container movements iri 1975 by mileage bands was os shown 

below, from which it may be seen that two thirds of movements were 

between 100 and 300 miles, the remainder being almost equally distributed 

between the two extremes. 

TABLE 13: CONTAINER MOVEMENTS BY MILEAGE BANDS, 1975 

SOURCE : Ref. 7. 

Up to 100 miles 

100 to 200 miles 

200 to 300 miles 

Over 300 miles 

110,000 

ZdO,OOO 

200,000 

130,000 

720,000 

In current circumstances, and if the container has to be collected 

and delivered, it is generallyonly at distances of over 200 miles that Freight

liners are on average competitive with road haulage in terms of cost. This 

average distance falls to about lOO- 150 miles if the container has to be 

moved by road only at one end. 

The tonnage of goods being moved annually is estimated at 

about 8 mill ion or about 0. 5% of the total carried by road. In terms of ton 

kms., given the above average length of haul, this rises to 3%. 
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With maritime traffics, the container has only to be moved by 

rood at one end, but the larger portion of domestic traffics are both coliected 

and delivered by road. About one half of containers were moved by road .,t 
~~;y one end of their journey and one half were moved by road at both ends. 

Containers which move by rail between private sidings and thus not by road 

at all, are the responsibility of the British Railways Board and are not 

Freightliner traffics (Ref. 7). 

Coast:JI Shipping_ 

A small and declining tonnage of United Kingdom freight (2% 

of the total in 1976) is annually moved by coastal shipping OV6!). on average, 

a long distance (average length of haul is a little over 500 kms) compared 

with 80 kms for all modes. The decline over recent years is main! y due to 

a fall in coal shipments. Past trends may now alter, however, with the 

growing importance of coal and the development of off-shore oil production. 

In 1·~74 the estimated traffics carried by coastal shipping 

(including the movement of oil, but not of other commodities, to and from 

Northern Ireland) is given below : 

TABLE 14: COASTAL SHIP?ING TRAFFIC BY TON!'-JAGE AND TON-MILES, 

1974 

Tonnes Ton kms 

Millions % Millions %· 

Petroleum Products 35 84 17200 83 

Coal 4 9 2270 11 

Other 3 7 1140 6 

Totals 42 100 20620 lOO 

SOURCE : Ref. 7. 
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. Inland Waterways · 

The British Waterways Board commercial network comprises only 

about 350 miles of waterways, of varying capacity. A very small and rapidly 

declining tonnage (0.?'/o of total freight tonna~e in 1976) is carried, of which 

coal and liquids in bulk form the larger part. The relative insignificance of 

the canal network as a freight mode in this country compares stark! y of course 

with the role played by inland waterways in Europe and North America. The 

. prohibitive capital cost required to ugrade the network to commercial 

proportions however must surely relegate canals to a purely recreational and 

amenity role in Britain. 

Pipelines 

Extensive national networks of pipes, both publicly and privately 

ownedi distribute water and gas, collect sewage and transport oil and other 

industrial commodities. The importance of these 'pipelines is illustrated by 

the fact that each year 5000 mill ion tons of water ore distributed over the 

public water supply; this is more than two and a half times the total tonnage 

of all freight moved by surface transport. However, the movement of water, 

sewage and gas is clearly unsuited to any of the more conventional modes of 

transport, and only oil pipelines are normally included in the national 

transport statistics. About 55 million tons of oil and oil products are carried 

annually, this being about 3% of all freight transport. The growth of off-shore 

oil production may be expected to increase the importance of pipelines in 

this country. 

The movement of non":'liquids in pipelines has been the subject 

of much experimentation and development, both in Britain and abroad, and 

capsules propelled by compressed air for instance may have limited application 

for urban transport. Despite the very high capital costs of such systems they 

have been estimated to be competitive to other modes (Ref. 8) •. 
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Domestic air freight 

Domestic air freight almost doubled over the ten years to 1974, 

but is still extremely small in volume terms (about 46,000 tons in 1976). lt 

consists primarily of high value consignments or particularly urgent ones. 

Consignments transhipped to foreign destinations are excluded from the 

domestic statistics. 
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1. 3. Future freight needs 

In this section various estimates of future freight needs are discussed 

and compa:ed with forecasts prepared especially for the thesis, so that some 

·idea of potential fuel needs may be gleaned. 

Several techniques are available for forecasting freight demand. 

These include : 

lo Forecasting future levels of Gross Domestic Product 

(GDP) and then establishing a relationship between 

GDP and Freight by regression analysis. The equation 

derived is then used as the basis for estimating future 

tonne-kmo This is the method adopted by Sharp (Ref. 9), 

Tulpule {Ref. 10 ) and Tanner (Ref. 11 ) among others. 

lt has been criticised for being too simplistic by 

McKitterick (Ref. 12 ) who points out that the relationship 

between GDP and freight can only be loose since GDP 

(by definition) excludes imports which generate a sub

stantial demand for tramport. Any apparent 'fit' 

between the two factors must therefore, he claims, be 

fortuitous. 

Pitfield {Refo 13 ) levels further criticisms at this method,. 

including its failure to take account "of locational changes, 

the effects of integration and technical change or of the 

measurement problem that arises from the level of 

aggregation of commodity groups, the spatial setting of 

warehouses and terminals and the variation over time, 

across space and between commodity groups in the number 

of trips record·ed for a good between prod•Jction and 

consumption11
• 
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2. The selected industries method. This approach, 

developed by Brown and M'Jultby (Ref. 14), involves 

identifying those industrial sectors that generate the 

largest demand for the transport of goods. A small 

number of commodity groupings a:count for 85-90% 

of total inland freight tonnage. Onr::e these commodity 

groups have been associated with industrial sectors, 

then indices of growth for these sectors can be weighted 

by the relative importance of each of the groups in 

tonnage terms at the base year. The method depends 

for its success of course upon reliable and consistent 

forecasts of the growth of the key commodity groups. 

Pitfield {Ref. 13) believes that this selected industries 

approach, d:espite its shortcomings, offers the greatest 

potential for estimating future freight demand. 

3. Extrapolatirtg historical data. This is the approach 

explored in this thesis. as an alternative to the methods 

outlined above. lt involves .selecting the trend line · 

which best fits historical data and then using the co

efficients of the equations so derived to project the 

trends forward. The method is open to criticism but has 

the advantages of not rei ying on other data - GDP 

forecasts or estimates of commodity groups - and of 

relative simplicity. 

Before describing this approach and its results in detail, however, 

other estimates of future freight demand are considered. 

The Department of the Environment's Transport and Road Research 

laboratory (TRRL) has produced several reports dealing with forecasts of 

freight and vehicles (Refs. 10 and 11 ), using the GDP approach outlined 

above. 
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,-------------------------------------

In updating Tulpule's work, Tanner re-examined the ratio of 

tonne-km. to GDP {at fixed prices) in Britain and various other countries. 

He found that this ratio, which had in the pa;t been approximately 

constant, was declining r.~nd that for several reasons, he suggests that the 

ratio will decline more rapidly in future. These reasons include an 

increasing proportion of services in GDP, restrictions I ikely to be placed 

for environniantal grounds on the expansion of road transport - perha?s 

leading to shorter hauls, and technological impiovements, perhaps encouraged 

by higher energy costs, leading to lighter weight per unit of GDP. Tanner 

suggests that in future tonne-'<m. by all modes will increase in proportion 

to the two-thirds power of GDP. Thus, if GDP grows at 3% per year, 

tonne-km. will grow a~ 2% per year. Similady, if the GDP grows at 

l'k er 4% per year, tonne-kmo will grow at 4/3 or 8/3% per year respectively 

and tonne-km. per unit of GDP will fall at~ or 4/3% per year. 

Tanner's projections, based upon the outlined assumed ratio 

between GDP and freight, and three different rates of GDP growth (Low = 

2% p.a., Medium= 3% p.a., High= 4% p.ao) are given below: 

TABLE 15 TANNER'S FORECASTS OF TONNE-KM (THOUSANDS OF 

MILLIONS), GREAT BRITAIN 

GDP Growth 

low Medium High 
Year All Modes Road All Modes Road All Modes 

1975 143 95 145 97 147 
1980 153 104 160 112 167 
1985 163 114 176 128 190 
1990 174 125 195 145 217 
1995 136 136 215 164 247 
2000 199 148 237 1.36 282 
2005 212 160 261 210 321 
2010 227 174 289 235 366 

SOURCE : Ref. 11. 
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The figures given in the above table for road freight transport 

are residua~s, derived by deducting tonne-km. performed by rail, water 

and pipeline from the total of all modes. 

In so doing, Tanner has made the following assumptions : 

1. Rail freight tonne-km. will increase by 0. 5% per 

year in future, despite a steady decline over the 

past 20 years, apart from increases in 1969 and 

1970. (Between 1952 and 1962 the decline averaged 

3. ~lo p·~r year and betwaen 1962 and 1972 it 

averaged 1. 3% per year). 

2. Water tonne-km. will decline by 1% per year. 

(lt increased slowly until 1966, since when it has 

fall en at an average rate of 2. 6% peryear). 

3o Pipeline traffic is expected to increase from the 

1974 level of 3000 mill ion tonne-km. to 6 by 1935 

and 11 by 2010. (These figures do not allow for the 

movement of North Sea oil from well to refinery -

(which by 1·n7 had swelled the total to 8700 

million tonne-kms) ). 

Turning now to the approach explored for this thesis, seven 

different curves, namely second degree polynomial, logistic, log. parabola, 

gompertz, simple modified exponential, linear and log. linear, ware 

fitted to historical d:tta by means of programs developed by Dr. D. Pitfield of 

Loughborough Universityo Detailed results - including the statistical tests 

applied ai"~ given in the appendices, but the results are summarised in the 

tables below and are graphed in figures 3- and 4. 
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The programs were applied to two sets of data, namely goods 

I ifted- (expressed in tonnes) and goods moved (expressed in tonne kilometres). 

In ea-::h case two time series - 1950 to 1974 and 1950 to 1977 were used 

and the trends extrapolated to the year 2025. The very considerable difference 

in the trends forecast for the two time series reflect in part the sharp fall 

in freight demand as a result of the economic recession in the mid 1970's. 
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.TABLE16TREND EXTRAPOLATIONS: GOODS MOVED 

'Best' forecasts of ~oods moved in Great Britain, by mode, 1980-2025 

(108 tonne kilometres) 

.Mode 

1 Road . .. . 

2 Rail 

3 Coastal 
Shipping 

4 Inland 
Waterways 

5 Pipelines 

6 Forecast 
Total 

7 Total of 
1-5 above 

8 Difference 
(6-7) 

Note: 

' 
1980 1990 2000 2010 2020 2025 

1053 1182 1251 1286 1303 1308 
1130} (1346) (1492) ( 1585) (1642) (1661) 

241 241 241 241 241 241 
(246) (246) (246) 

1 
(246) (246) (246) 

Forecasts statistical I y unsound 

I 
Forecasts statistical I y unsounc 

58 83 97 104 107 108 
(53) (77) (104) (137} (173) (193) 

1537 1659 1728 1765 1785 1790 
(1672) (1984}. (2261) . (2498) (2694) (2779) 

1352 1506 1589 1631 1651 1657 
(1429} (1669) (1842) (1968) (2061) (2100) 

185 153 139 134 134 
(143) (315) (319) (530) (633) 

I ' 

(1) Figures in brackets( ) refer to forecasts based 

upon 1953-1974 data. Figures without brackets 

refer to forecasts based upon 1953-1977 data. 

(2) 'Best' forecasts shown above have been selected on 

joint statistical and intuitive grounds from the 

forecasts produced by the seven trend fit curves 

shown in Appendices. 
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TABLE 17 TREND EXTR/\POLATJO)'~S: GOODS LIFTED 

'Best' Forecasts of Goods Lifted, by Mode, for Great Britain, 1980-2025 

(Million tonnes) 

I 
I 

Mode 1980 1990 2000 2010 2020 2025 

1 Road "85_4 -2147 :;248_11 2_79_4 '3107 3264 
'!: i (2168) (2636) {'3104) (35/'2) (-40t1-~) (4274) 

2 Rail 

3 Coastal 
Shipping 

4 Inland 
Waterways 

5 Pipelines 

6 Forecast 
Total * 

7 Total 
1-5 above 

8 Difference 
(6-7) 

Note: 

160 128 102 82 65 
(160) (124) (94) (70) {51) 

Forecasts statistical I y unsound 

I I 
I I 

Forecasts statistically unsound 

71 82 86 87' 88 
(lOO) (156) (185) (200) (207) 

2142 ·2441 2740 3039 3338 
'(2452) (290~) (3558) '(3811) (4204) 

•2085 ·~ 2377 2669 2963 326G 
(2428) (2916) (333:3) (3a42) (4=.£3.) 

sr M '71 7&- . 78 
(24) - (-9) -r~is> {-31) (-94) 

(1) Figures in brackets ( ) refer to forecasts based 

upon 1953-1974 data. Figures without brackets 

refer to forecasts based upon 1953-1977 data. 

(2) 'Best' forecasts shown above have been selected on 

joint statistical and intuitive grounds from the 

forecasts produced by the seven trend fit curves 

shown in Appendices. 

(3) Although not the best fit on statistical grounds, 

the 'linear' trend line has been selected for 

extrapolating 1953-1974 Road and Forecast Total 

(*) for comparability with the 1955-1977 series. 
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FIGURE 3 FORECASTS OF GOODS MOVED IN GREAT BRITAIN·, BY MODE, 1978 to 2025 

('000 million tonne kilometres), COMPARED WITH FORECASTS 

9 
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FIGURE 4 FORECASTS OF GOODS LIFTED IN GREAT BRITAIN BY MODE, 1978 to 2025 (mill ion tonnes) 

Based upon {a) 1953-1974 data 
{b) 1953-1977 data 
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SECTION 2 

ENERGY AND TRANSPORT 

Transport systems are major consumers of energy~ both directly 

as fuels and indirectly in their manufacture~ and being dependent 

upon oil they are extremely vulnerable to interruptions of 

supply. In this section we examine the fuel productivity of 

the various modes and explore possible "trade-offs" between 

direct ar~ indirect usage. 
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Sec:Hon 2 EN GERY AND TRANSPORT 

2. l. Introduction-

Transport is a major consumer of energy, both directly as a prop ellant 

and indirectly in the manufacture of roads, vehicles and everything else 

necessary for the movement of people and goods. 

In this section both aspects of transport's energy needs are discussed. 

Indirect usage is perhaps less appreciated than dired fuel consumption, but is 

. nevertheless very important since it may account for c:;about 23% of goods vehicle 

energy (see page 51) • This is somewhat larger than that estimated by American 

researchers such as D. P. Grimmer and K. Luszcynski (Ref. 1'5:)) who calculate that 

indirect energy use in the USA amounts to at least 9% of total Net Energy Input 

(N. E. I.). The major consuming areas are fuel refining, asphalt and energy 

for road consumption (4. 6%) extraction of primary metals for transport (1. 9%) 

manufacturin:::~· {1%} and other activities (2%). A further 0~6% of N. E. I. 

goes into concrete for roads and another 0.8% into motor vehicles' lubricating 

oil. They estimated that transport took at least 40% of useful energy in total. 

Another survey, again relating to U. S. A., by Hirst and Herendeen 

(Ref. 16) suggests that direct energy consumption by cars accounted for only 

57% of total energy use by the car in 1963 and 61.7% in 1970. The re

mainder was accounted For (in 1970:by refining (12. 9%), car manufacture 

(5. 5%) tyre manufacture (1. 4%), road construction (6. 9%) and other purposes 

(11.6%). 

2. 2. Direct Energy Use by Transport 

Transport fuels account for a large and increasing share of this country's 

energy consumption; as they do in most other developed economies. This 

is illustrated in Table 18 overleaf, from which it may be seen that inland 

energy consumption grew by about 100/o in the decade to 1977 to about 83700 

million therms. Of this, some 30% was used by fuel producers or lost in the 

conversion or distribution processes. 
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Of the remaining useful energy, transport by all modes consumed as 

fuel 13051 million. therms,· ·or 22.3% c:nd after industry and domestic users 

was the most important class of consumer., The 30% growth in . 

TABLE 18 ENERGY CONSUMPTION BY CLASS OF CONSUM:R, 

U.K., 1967 AND 1977. (HEAT SUPPLIED BASIS) 

Class of consumer 

Transport 

Industry 

Domestic 

Other 

Total consumption by 
final users 

Total energy consumption 

Million 
Therms 

9928 

22760 

14154 

6511 

53353 

76287 

SOURCE : Department of Energy 

1967 

% 

18.6 

42.7 

26.5 

12 • .2: 

100.0 

Million 
Therms 

13051 

22815 

15045 

. 7621 

58532 

83680 

1977 

transport's needs to 1967 contrasts sharply with the 6% rise in :d.Pmestic needs 

and the virtually unchanged requirements of industry. 

Transport's dependence upon oil and hence great vulnerability to 

interruptions in supply is underlined by the fact that of the 13051 million therms 

of energy used as transport fuel in 1977 (Table iS ), 12931 or 99.1% were 

derived from petroleum. (The small balance being electricity for use by 

electrified trains and by pipeline pumps). 

From Table 19, it may be seen that transport accounted for about 

47% of the 62.28 million tons of petroleum products used as fuels in 1977, 

a rise of some 36% over the previous decade (1967 = 21.6 m. tons). Transport, 

36. 
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Table 19 :Inland deliveries of petroleum products used os fuels 

1967 1977 

Million tonnes % Million tonnes % 

Transport: 

Railways 0.98 1.9 0 .. 88 1.4 

Burning oil 0.01 0.01 

Gas/Diesel oil 0.87 0 .. 81 

Fuel oil o. 10 0.06 

Rood 16.54· 31.2 23.05 37.0 

Motor Spirit 12.18 17.34 

Derv fuel 4.36 5,71 

Water 1.11 2.·1 1. 22 2.1)' --
Gas/Diesel oil 0.63 1-. 13 

· Fuel oil 0.48 0.09 

Air 2.96. 5.6 ~.22 6.8. 

Aviation spirit o. 1J 0.05 

Wide cut gasoline 0.31 . ' 

Aviation turbine fuel 2.52 4 .. 17 

Total transport 21.S2 40.8 29~37 47.2· 

Agriculture 1. H 2. 1 1.38 2.2 

Iron and Steel 4~80 9.1 2.94 4.7 
' 

Other industries 17.51 33. 1 17.65 28.3 

Domestic 2~30 4.3· 3~31 5 •. , 

Public Services 3~ 12 5.9 4.,53 7.3 

Miscellaneous 2.16 4.1 . 2~69 4.3 

Total 52.98 too 6428 100 

Source Re_f. 53 



in ether words, is the major consumer of oil products in this country- using 

more than industry and the domestic sector put together. In the United 

States, transport consumes more than 400 mill ion tons of oil equivalent 

in fuel (considering direct consum?tion only) equal to almost 25% of 

primary energy consumption and 53% of oil consumption (77% of the total 

is used by rc..'Od, with 10% consumed by air-craft). 

In Europe most countries e~p~nd between 17% and 23% of total .. 
. energy (France 17.5%, Germany 15% and Italy 19.5%- Ref. 17) ) and· 

about one-third of their oil in transport. 

2. 2. 1. Transportation Energy Usage - Modal Split 

As noted earlier of the total energy consumption in the U.K. in 

1977 transport accounted for 22.3% (on a thermal basis). This now apportioned 

as shown below : 

TABLE20ENERGY CONSUMPTION BY TRANSPO~T MODE, U.K., 

1967 AND 1977 

1967 1977 

%of total %of %of total %of 
energy transport's energy transport's 

·• consumption usage consumption usage 

Road 13.8 73.9 17.4 77.8 

Air 2.4 13.2 3.2 ·14.2 

Railways 1.4 7.7 0.8 3.8 

Water 0.1 5.2 0.9 4.0 

18.6 99.9 22.3 100.0 

SOURCE : Ref. 53 
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Road transport has dominated transport's fuel consumption since the 

early 1950's and now accounts for ne-arly 80% of the total, reflecting 

of course the importance of road ITansport to the economy. Air transport's 

fuel needs have overtaken those of rail, ·..vhich like water transport's 

consumption, have declined sharp I y over th-e decade. 

The growth of road arid air transport, together with the complete 

elimination of coal as a mobile fuel for railways and shipping has necessarily 

increased transport's dependence upon oil (which has a calorific value 

about 1.5 times that of coal). 

2. 2. 2. Freight transport and energy 

The energy used in the movement of freight in this country may 

be roughly estimated at about 35% of the total energy consumed by transport 

{Ref. 21) ~n a primary fuel input basis ) and at about 5% of total inland 

energy consumption for all purposes. (Lack of statistics about the proportion 

of energy used by British Rail in the carriage of goods as opposed to 

passengers, and lack of detailed information about shipping's fuel usage 

is a constraint). 

As with passenger transport, virtually all freight is propelled 

by petroleum products, chiefly derv, petrol and diesel oil, with a little. 

more than 1% of total energy contributed by electricity for rail and electric 

pumps for pipelines. 

2. 2. 3. Fuel productivity of freight transport modes 

The quantity of fuel required to perform a given amount of work 

varies marked! y between modes and within a single mode, depending upon 

such factors as the operating regime, vehicle size and type, load characteristics 

and driving techniques. 

Research into the energy efficiencies of the different modes conducted 

by American analysts including Hirst (Ref. 18 ), Mooz {Ref. 19) and Rice 

(Ref. 20 ), are widely quoted and examples of their findings are given overleaf 
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in Table 21·. 

If these estimates of fuel intensiveness are expressed as ratios, using 

the road mode as base (road·= 1) in each case, then the energy intensiveness 

of rail may be estimated at between .24 and .31 that of road, whilst pipeline 

varies from • 16 to .77 that of roado Similarly, aircraft require between 15 

and 26 times as much fuel per ton-mile as road vehicles • 

. TABLE21 ENERGY INTENSIVENESS OF DIFFERENT FREIGHT MODES, 

EXPRESSED IN BTU PER TON-MILE AND AS RATIOS OF TRUCK 

ENERGY INTENSIVENESS 

Road Pipeline (oil) Rail Water Plane 
Author 

Hirst 2800 450 670 . 680 42000 
( 1 ) 0.16 0.24 0.24 15o0 

Mooz 2400 1850 750 500 63000 
( 1 ) 0.77 0.31 Oo21 26.3 

Rice 2300 450 680 540 37000 
( 1 ) .20 .30 .23 16. 1 

SOURCES: References 18, 19 and 20. 

Although such comparisons as these may give a very broad indication 

of relative modal fuel efficiencies, they are of I imited value for several 

reasons. Firstly, the very different mix of the traffics carried by each mode 

mecn s that their relative energy efficiences cannot be usefully compared 

by the methods used by Mooz and others, that is, by reference to the energy 

consumed by a particular mode related to global statistics of ton-miles. 

Secondly, the limitations of available data for pipelines and aircraft in 

particular render comparisons suspect. Finally, it is doubtful, given the 

very different operating conditions in the two countries, whether this 

American experience could be directly applied in Britain. 

Given the limitations in applying these American estimates to 

the U.K. freight market, the following section discusses the fuel product

ivity of the various modes of transport in this country. lt should be 
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~tressed, however, that relative energy efficiences are strictly not comparable 

because of the different mix of goods carried and the very different operating 

conditionso 

.Road freight 

TABLE22FUEL PRODUCTIVITY OF ROAD FREIGHT TRANSPORT IN U.K., 

1967 AND 1977 

1967 1977 

Motor spirit 
usage by road 

2454000 2515000 
freight vehicles 
(tons) 

Derv usage by 
road freight vehicles 3282000 4709000 
(tons) 

Total fuel used by 
road freight vehicles 5736000 7224000 
{tons) 

Ton-miles (kms) performed 
45627 59878 

by road freight vehicles 
(74600) (97900) 

(millions) 

Ton-miles (kms) ton fuel, 7955 8289 
all road freight vehicles (13005o 6) (13552.0) 

Ton-miles/gallon fuel, 
30o5 31.8 

(ton-kms/litre) all road 
(11 0 0) (11.4) 

freight vehicles 

SOURCE : Ref. 53 - -

NOTE: Conversion factor of 71861itres/ton (261 gallso/per ton) used. 

Fuel productivity appears to have improved marginally over the past 

decade to about 31.8 tm/goll. (11.4 t.kmo/litre) if the figures presented in 

Table 22 above may be relied upon {the 4% difference in ton-miles/ton 

of fuel between the two years however could easily be accounted for by 
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inaccuraci~s in the ton-mileage estimates). On a priori grounds some 

improvement may be expected over time for such reasons as the increase 
/ 

in the average size of good~ vehicles (larger vehicles are generally more 

fuel efficient- if their ex"tra capacity is utilized), complete dieselization 

of the road vehicle fleet over 3 tons G\ffl (diesel units are more efficient 

than their petrol equivalent) and improvements in vehicle design. Increasing 

the motorway network may also improve fuel economy by easing congestion, 

although increased consumption due to higher vehicle speeds must be offset 

againsrthis saving. 

Estimates of fuel productivity for a range of common · goods vehicles are 

given in Table 23 overleaf. These estimates take into account not only 

the miles per gallon figure which might be expected for eac~ vehicle 

(e.g. a 3 ton rigid van may do i8 mpg), but also the range of payloads 

carried (e.g. the same 3 rigid van may carry between 0. 2 and 0.5 tons) 

and the proportion of loaded to· total miles. This last factor will vary 

very much according to the particular operating regime of the vehicle. 

The 3 ton van which is the subject of the present example may only perform 

'between 25% and 40% of its total mileage fully laden whereas a van 

trunking parcels between depots (example 11) may average between 

80 and 100% of its totaf mileage fully laden. (These estimates are 

probably 'good averages' for the traffics in questions, but may not represent 

the extreme limits of utilization). For any given traffic flow carried on 

an appropriate vehicle, it may be seen that there is a very wide range of 

fuel productivity, according to how fully the vehicle is loaded and the 

extent to which empty mileage is involved. 

The examples given in this table fall into two classes- those traffics 

with characteristics_which make them !Jarticularly suitable for road 

transport (Section A) and those traffics, (Section B) whose characteristics 

make them suftable for conveyance by rail,. pipeline or:water as well as by 

road. Section A includes shop deliveries, furniture removals, parcels 

collection and delivery work and delivery of petrol to filling stations-

jobs which, except in very special circumstances could not be performed 
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Table 23 : Estimated fuel productivity of various road vehicles and traffics 

Data on representative vehicles 

Approximate fuel productivity, 
allowing for empty running 

. 
Miles loaded (i) (ii) 

Description of road. haulage per Payload miles ton MJ/tonne km 
transport activity Description of vehicle gallon (tons) % miles/gallon (see note (a)) 

(A) Traffics with characteristics. 
Range Range Range Range which make them suitable • 

1 
for rfad trans~ort. 
Retai shop de iveries to 
customers 15 cwt van 25 .·· 0.2-0.5 5-12 22-9 

~ 
.'(..) 2 Deliveries to retail shops 
• and other local delivery work 3 ton rigid van 18 0.5-2.0 . 25-40 2-18 49-6 

3 Parcels collection and (i) 2i ton parcels van 17 1.5-2.5 25-75 6-31 18-3 
delivery work (ii) 2 ton parcels van 18 0.5-1.0 30-60 3-11 41-10 

4 Collection and delivery -
work as rail feeder services 3 ton flat truck 17 1..0-3.0 30-70 5-35 24-3. 

5 Furniture removals 6 ton luton rigid van 12 3.0-6.0 50-90 18-65 7-1.9 
' 

6 Tipper work, such as open-
cast mining, aggregates to .. 
building sites, refuse tipping 

I etc. 15 ton 8 wheel tipper 10 12-15 40-60 48-90 2~5-J.4 

Cont'd •••• 



Table 23 continued •••• 

D t h" I t r a a on represen a 1ve ve JC es 
Approximate fuel productivity 
allowing for empty running 

Miles Loaded (i) ( i i) 
Description of road haulage per Potload miles ton t~'d/tonne km 
T ronsport ac itvity Description of vehicle gallon {tons) % miles/gallon (see note (a) 
(A) Traffics with characteristics 

which make them suitable 
for road transport. 

7 Delivery of fuel to filling 5000 gallon articulated 
stations tanker 8 14-17 40-60 45-82 2.7-L5 

.J 

8 Delivery of coal and other 14 ton 6-wheel rigid 
fuel to consumers .. truck 10 12-14 40-60 48-84 2.5-1.4 
domestic and industrial 
(except large industrial 
consumers who are roil 
connected) 

9 Extra-heavy loads, etc. 6 x 4 tractor+ 2 axle I 
trailer, 35 ton payload 6 30-35 50-80 90-168 1. 3-0.7 

10 Traffic other than above 
and other than bulk traffics 
moving less than 50 miles 10 ton flat truck 12 5-10 70-90 42-108 2.9-l. 1 

Cont 'd ••• 



Table 23 continued •••• 

D t h" I a a on reoresentat1ve ve IC es 
Approximate fuel productivity I 
allowing for empty running 

I 
I 

Description of vehicle 
(gvw =gross vehicle . 
weight Miles Loaded (i) (ii) I 

Description of road haulage i.e. payload plus per Payload miles ton MJ/tonne km 

transport activity weight of vehicle) gallon (tons) % miles/gallon (see note (a) 
. 

(B) Traffics with characteristics I such that conveyance by road, 
rail or water is often physically 
feasible / 

11 Parcels trunking 3-axle articulated 
vehicle, 10 ton maxi-
mum payload 10 3-5 80-100 24-50 5.0-2.4 

12 Haulage of containers 32 ton gvw 4-~xle 
articulated unit 7 10-20 70-90· 49-126 2.4-0.9 

13 Movement of other export/ heavy 3-axle articulated 

import traffics unit, up to 24 tons gvw 8 10-16 50-90 40-115 3.0-1. 1 

14 Movement of finished goods 
to warehouses, etc. (i.e. i 

trunking leg of distribution heavy 3-axle articulated 

system) unit, up to 24 tons gvw 8 10-16 50-90 40-115 3.0-1.1 

15 Movement of semi-finished 32 ton gvw vehicle, as in 
goods between factories 12 ubove ... 7.·.· 10-21 ' . ' .. 50-90 35-132 3.5-0.9 

Cont'd •••• 



·Table 23 continued •• o o 

D h" I ata on representative ve 1c es 

Approximate fuel productivity 
allowing for empty running 

Description of vehicle 
{gvw =gross vehicle 
weight Miles Loaded (i) (ii) 

Description of road haulage i.e. payload plus per Payload miles ton MJ/tonne km 

transport activity weight of vehicle) gallon (tons) % miles/gallon (see note (a)) 

(B) Traffics with characteristics 
such that conveyance by road, 
rail or water is often physically 
feasible 

16 Bulk chemical/oil tanker 5000 gallon articulated 

movements tanker, 26 ton gvw 8 14-18 50-80 56-115 2.2-1.1 
I 

17 Car delivery articulated unit with 
specialised trail er 8 8-12 50-80 32-77 3.8-L6 

18 Long distance movement 
of building aggregates, 32 ton gvw articulated 

minerals, etc. tipper 7 18-21 40-60 50-88 2.4-1.4 
' 

Source Ref. 21 



by train, pipeline or barge and are therefore entirely dependent upon 

road transport. Section B (examples 11 to 18) includes traffics such as 

parcels trunking, haulage of cont::tiners, movement of semi-finished goods 

between factories and of finished goods to warehouses, bulk chemical 

and oil deliveries. Such traffics are currently carried by modes other 

than road, and if so required, rail and other modes could probably be 

utilized more with relatively little difficulty. The fuel productivity 

of traffics included in Section A, where the use of road haulage is 

virtually inescapable, is often very low, because of the low loads, high 
empty mileage and urban congestion, As may be seen from th.J Table, 

fuel productivity may be below 20 ton miles per gallono (This compares 

with the 'global average' shown earlier of 31,8 ton miles per gallon 

derived from the division of total ton-miles by total gallons used). 

lt is only for the .traffics shown in Section B that other modes of 

transport can be considtJred as possible rivals to transport by road, and 

for these traffics the fuel productivity is usually much higher than for those 

restricted to roado For traffics where comparisons with other modes is 

most relevant, the fuel productivity figures by road would be of the order 

of 100 ton-miles per gallon (1 o 2 MJ per tonne kilometre), given good 

loadings with little empty running. 

Rail freight 

lt is not possible to calculate the energy productivity of rail freight 

in the same way as for road freight because of the complex nature of rail 

operations and mix of passenger and freight traffics. Therefore, in order 

to produce a figure for the energy productivity of rail freight it is 

necessary as a first step to apportion the total energy used by Briti~h Rail 

between passenger and goods trains. Although statistics of this are not 

directly available, certain assumptions can be made about the extent 

of usage and performance of aifferent types of locomotives for different 

types of operations to arrive at estimates of fuel productivity. These 
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estimates may contain large margins of error, however,_and cannot be 

used with any confidence as the basis of comparison with other modes. 

In 1974 the carriage by British Rail of 24200 million ton kms. of 

freight required an estimated 7.8 million hours of locomotives time. 5% 

of this was provided by electric locomotives, the rest by diesel. The 

total energy consumed by these trains is estimated by British Rail as : 

i. Diesel fuel : 85 million gallons (325,700 tonnes) 

ii. Electricity : 200 Gigawattjhours as delivered by 

the grid. 

For electrically hauled trains insufficient information is available 

to permit the average consumptions for different types of traffic to be 

calculated. There is, however, little difference in the effective energy 

performance of electric and diesel locomotives when engaged on similar 

work. 

For diesel trains it is possible to estimate the average consumption 

of energy for different types of traffic, and British Rail estimates are given 

below : 

Energy consumption in MJ per tonne 
kilometre 

Likely range Probable average 

Merry-go-round 

Freight liner 

0 ther train load 

Wagon 'load 

SOURCE : Ref. 21 

1.1-0.4 

1.6-0.5 

1.2-0.4 

1.7- 0 •. 6 

0.60 

0.91 

0.65 

0.96 

The wide ranges shown reflect the nature of different routes,. the varying 

amounts of empty running and the type of locomotive used. 
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The rail energy consumption figures are adversely affected by 

the high tare weight of the wagons plus the weight of the locomotive 

relative to the payload. Thus the payload of a coal train rarely exceeds 

600k of the gross weight of the train and this is about the highest ratio 

encountered. For wagon load trains the ratio may be as low as 30%. 

Freightliners 

The freightliner service consists of three energy-consuming 

operations, namely : the rail haul between depots, the road feeder net

work serving railheads and thirdly, the transfer of containers from one 

mode to the other. 

As noted above, the energy productivity of the freightliner rail 

service has an estimated range of between 1.6 to 0.5 MJ per tonne kilo

metre (avera~ing 0. 9 MJ per t Km). (Ref. 21 ). whilst hauling containers 

by road (Table 23 ) has an estimated fuel productivity of between 2.4 to 

0.9 MJ per tonne kilometre. Container transfer between modes is proba~ly 

very minor in its energy demands. Providing that the carriage of containers 

by road remains a small proportion of the total Freightliner mileage, the 

figure of 0. 9 MJ per tonne kilometre, (given a:; a probable average for 

the rail service) is likely to be a reas:mable average for the entire s~rvice. 

Should road trunking ·::)f containers expand at the expense of rail trunking 

(as may be the case, particularly for relatively short journeys of, say 

under 200 km), then this average must necessarily b~ revised upwards. 

Coastal Shipping 

Coastal shipping operations are very efficient in terms of energy 

productivity. The primary energy consumption of representative coastal 

vessels ranges from about 0. 1 MJ per tonne kilometre for a 20000 ton 

deadweight tanker up to about 0.4 MJ per tonne kilometre for a smaller 

1000 ton tanker or motor ship. (Ref. 21 ). 
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Inland waterways 

The energy prod,Jctivity of inland watenvays is of a siiT'ilar order 

. to tha~ of coastal shipping and pipelines, end on average is higher tha:1 

either ro..'ld or rail. (According to Hirst, Mooz and Rice (fable 21 ), 

tran~?ort. b)' water is four to five times as energy efficient as road transport 

in America}. 

Pipelines 

Pipelines are extremely efficient movars of oil and other liqlJids, 

being preferable on energy conservation grounds to all other modes. The 

energy used by oil pipelines is howaver not separately accounted in U.K. 

Statistics, being included in oil company refinery usage. The typical 

range of energy requirements for crude oil pipe I ines may be from a'Jout 

0.1 MJ/tonne kilometre for large pipes up to 0. 3 MJj;·onne kilometre 

for an 8 inch pipe (Ref. 21 ). 
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2. 3. lndirect energy use by transport 

Vehicles annually consume substantial amounts of energy in 

their manufacture (indirectly) as well as in their usage (directly). In 

this section an attempt is made to give a rough estimate of this indirect 

energy requirement, and to assess the possible 'trade-offs' between direct 

and indirect energy needs as a result of materials substituti:on. Lack of 

suitable data about rail, sea and air perforce limits the discussion to 

road transport, the dominant mode with regard to both direct and 

indirect fuel usage. 

Turning first to estimation of energy required to manufacture 

goods vehicles, we assume : 

that the proportional material composition of the 

average road goods vehicle (including light vans 

and heavy lorries) is identical to that of a car. 

that the average unladen weight of all goods vehicles 

in the UK in 1976 was 2.4 tons (computed from the 

figures in Table 68 ), or a little over three times the 

weight of the typical UK saloon car. 

Ignoring for the moment the wide variations in the size, shape and 

composition of actual vehicles, we can say that the manufacture of the 

average U.K. goods vehicle requires the expenditure of about 53000 kwht'' 

or 4.45 tonnes of oil (as shown in Table 24). Thus the 370,000 goods 

vehicles produced in this country in 1977 used of the order of 19,767 million 

kwht. of power or 1.65 million tons of oil. This is equivalent to 0.8% 

of total inland energy consumption (199 million tons of oil equivalent, in 

1977) or 23% of the total fuel (7. 2 mill ion tons} used by road goods veh ides 

in that year. 
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TABLE 24: 

Materials 

Steel 

Cast Iron 

Aluminium 

THE ENERGY REQUIRED TO MANUFACTURE AN 

"AVERAGE11 ROAD GOODS VEHICLE 

Weight of Extraction and 
Material in Processing energy 
'average' Costs {kwh/kg) 
vehicle (kgs) 

1617 13.2 

414 6.0 

38.1 65.0 

Copper /Brass,lr in 32.7 12.0 

Zinc 17.7 10.0 

Lead 15.0 10.0 

Glass 83.1 7.2 

Rubber 21.2 ~ 38.1 

Plastics, Paint 
Undersea ling 144.3 25.0 

Others 28.5 -
Total Weight 2602.5 

Total energy required for manufacturing of materials 

Fabrication of parts and assembly of vehicle 

Transportation of materials 

Transportation of finished vehicle 

Total energy 

52. 

Energy Cost 
of materials 
(kwh~ 

21344 

2484 

2477 

393 

177 

150 

598 

8083 

3608 

-
39314 

39314 

13200 

6700 

210 

. 53424 
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NOiES TO TABLE 24 

SOURCES : 

NOTES: 

1. The 'average' goods vehicle is assumed to weigh 

2.4 tons, a figure derived from Table 68. 

2. The material proportions are those shown inTcible 

for a 1500/1600 cc saloon car weighing 867.5 kg. 

3. The energy costs per kg of material are taken from 

Table 85 , using the figures for average energy needed. 

4. Fabrication and transportation energy costs are adapted 

from the work of Berry and others (Ref. 22 ) • 

See notes below. 

1. The rubber cost of 43.3 kwh/kg is based on the energy 

cost of natural and synthetic rubber shown in Table 85. 

The mid-point in~·the synthetic energy range, 51 .0 kwh/kg, 

was chosen and the energy cost split in the ratio of natural : 

synthetic= 0.27;) .73 since this was the proportion 

in the average U.K. car type in 197 4. 

2. Berry's original figures for fabrication, etc., are as follows 

(kwht) : 

fabrication of parts and assembly of car 

transportation of materials 

transportation of car 

9,345 

655 

255 

Since these estimates refer to an American car of about 

1700 kgs. scaled up by a factor of 1.4. 
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lt may be argued, however, that since many of the materials 

contained in vehicles are recycled, some allowance should be made for this. 

After all, the energy required to produced recycled material is in many 

· cases much lower than to fabricate parts from 'new' material. This is 

particularly so for aluminium, where recycled metal requires only about 

l/ 20 of that needed by the original material. 

Based upon the assumptions given in Table 25 , an energy 'rebate' 

of 12,000 kwht (1 ton of oil) has been cal culatedper 'average' goods 

vehicle, thereby arriving at a "net energy·cost" of 41,000 kwht per vehicle 

(3.4 tons of oil) or 15,170 million kwht (1.25 million tons of oil) in total. 

Using the method outlined above for goods vehicles, the total 

gross energy cost of manufacturing a typical British saloon car may be 

calculated to be about 22,000 kwht' the equivalent of 1.8 tonnes of oil 

or the petrol used in nearly two years average m'otoring. Since many of 

the materials in a car should be eventually recylced at a lower energy 

cost per tonne, a deduction or "rebate" of 4, 140 kwht could be argued 

to be jusHfied thereby arriving at a n~t en~rgy cost of about 18,000 kwh • t . 

The gross and net energy cost:; of the total 1977 U.K. producti-Jn 

of 1. 32 .11illiyn cars on the assumptions discussed will be in the rag!on · 

of 2.89 x 10 ° kwht and 2.37 x 10
10 

kwht respectively. These totals . 

account for about 1.4% and 1 .1% of the U.K.'s total primary energy 

in 1977 (5.8532 million therms) (Tien and others (Ref. 23) estimate that 

car production takes about 1 .2% of total energy in the United States). 

· The influence of vehicle weight on manufacturing energy needs 

can be illustrated by taking the example of an average U .S. car, of about 

double the weight of the U.K. car above. Berry and others (Ref. 22) have 

calculated that the "contribution to the total free energy cronge due to 

the manufacture of one auto " is 37,275 kwht' or 1 .7 times as much as the 

U.K. car. Tien and others have used a similar method to calculate that 

a present U. S. 1603 kg (3600 I b) car costs 29,270 kwht of energy to 
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TABLE 25 : CALCULATION OF THE ENERGY 11 REBATE 11 DUE TO THE 

GROSS ENERGY CONSUMED IN THE MANUFACTURE OF. 

AN AVERAGE U.K. ROAD GOODS VEHICLE 

Material Average Energy Savin8 Weight Total 
Energy Cost . for scrap 
(kwht) (kwht) (kwht) {kgs) (kwht) 

Steel 13.2 8.0 5.2 1617 8408 

Cast Iron 6.0 3.0 3.0 414 1044 

Aluminium 65.0 3.2 61.8 38.1 2355 

Copper /Bra ss/ 12.0 . 2.7 9.3 32.7 304 
Tin 

Lead 10.0 3.0 7.0 15.0 105 

Total 12216 

SOURCES : As for Tabl~ 85. 

NOTES: The materials omitted, namely zinc, glass,rubber and plastics, 

are not effective! y recycled -

The energy values for recycled cast iron and lead have been 

guessed since no relia!:>le estimates ore known to the present 

author • The margin of error in the total figure will however 

be relatively small. 
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produce, but by using completely recycled materials the energy required 

would be reduced to only 18,488 kwht (63.1 million B.T.U.). Using 

the input-output approach, Hirst and Herendeen (Ref. 24 ) have calculated 

that the manufacture of an average U .S. car in 1970 cost 36,000 kwht 

(123 million B. T. U.) or 5.5% of the total energy consumed both indirectly 

and directly during their life. 

2.4. "Trade offs 11 between direct and indirect usage in goods vehicles 

In theory, it would be possible to design a vehicle to minimise 

total energy needs, both in manufacture (indirect) and in use (direct) 

Substituting one ;naterial for another in vehicle construction for instance 

may have a considerable effect on both direct and indirect energy demands. 

Aluminium is the most obvious choice perhaps for lightweight vehicle 

construction, and is widely used in vans and trucks as a moons of reducing · 

unladen weight and thereby increasing carrying capacity. CommerCial 

vehicle designers no doubt use aluminium wherever its properties permit 

replacement of steel and other relatively heavy metals, but what will be 

the effect of this substitution? 

Average energy production costs for aluminium may be three times 

those of steel (Table 85 ) , but this cost will be offset by a lower vehicle 

. weight and hence higher fuel productivity in use. Not only is there an 

immediate weight saving by replacing steel with aluminium, but secondary 

weight savings in ligher suspensions, axles, etc. may be possible in some 

vehicles. This may be the case even allowing for the heavier guage of 

aluminium needed to compensate for its lower structural strength. 

Cochran {Ref. 25 ) has proposed the use of an 11 energy return 

factor" (E.R.F .) to measure the trade-offs or cost/benefits available when 

substituting aluminium for steel in vehicle construction. 

E.R.F. =Energy saved in powering ligher aluminium

containing vehicle over its lifetime 

Additional energy to make aluminium instead 

of iron and steel for the vehicle. 
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,...------------------------ ------------

TABLE 26: THE ENERGY COST/BENEFIT OF PRODUCING A 

PANEL FROM VARIOUS N\ATERJALS 

Material Weight Material Total Energy Energy Savings Energy Savings Total Energy 
Energy to Produce Over Steel due to I ight savings 

(kgs} (kwh/kg) (kw h) {kw h) weight (kwh} (kw h) 

Steel 34.0 18. 1 615.5 base base base 

Aluminium 16.6 70.0 1165.0 -549.5 1236.0 736.5 

Two-Piece 2L3 25.9 552.5 63.0 940.2 1003.2 
F. R. P. I 

One-Piece 15.4 25.9 399.5 216.0 1376.6 1592.6 I .~ F.R.P. 
If 

SOURCE : Ref. 26. 

NOTES: All figures have been converted t.o metric units. 



Where the E.R.F. is one, aluminium requires as much extra 

energy to make as it saves and there is no energy saving until the aluminium 

is recycled to another vehicle. Where the factor exceeds one, more energy 

is saved in powering the vehicle than is required ·for making the aluminium 

as opposed to jron and steel. Using this method, Cochran has calculated 

that for U.S. goods vehicles the factor is 9.5, thus justifying a widespread 

replacement of steel by aluminium. Although the American operating regime 

may be very different from our own, a positive E.R.F. is virtually certain 

for any vehicle travelling more than a certain mileage below maximum gross 

tonnage. (No improvement in vehicle fuel consumption can be expected 

for a fully laden vehicle). Moreover, substitution of steel by aluminium 

may be justified since the production of aluminium and fabrication of 

vehicles may use a variety of energy sources (electricity from coal 1 nuclear, 

HEP, etc. or natura I gas, etc.) • whereas road freight transport is dependent 

upon oil. 

Cochran has also calculated the E.R.F. for a variety of other 

vehicles. For a typical U.S. car with a 100,000 mile lifetime and weighing 

1633 kgs., he estimates the factor to be between 2.7 and 2.9. For ships, 

the factor is 8.5 and for aircraft 2,900. For the London Underground the 

E.R.F. is estimated to be 6.1 and for the Tokyo Rapid Transit System, about 

12. Using Cochran's method, the present author ealculates that for a 

typical British car, the energy return factor is only just positive. 
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SECTION 3 

ENERGY AVAILABILITY AND DE."JAND 

How long can oil and the other major energy sources sustain 

the present and future projected rates of consumption? Here 

we assess the position for Britain and the worZd and include 

extrapolations of the fuel needs of road freight vehic.les. 
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Section 3 ENERGY AVAILABILITY AND DEMAND 

3.1. Introduction 

In the following section, the future availability of various 

energy sources is discussed and Britain's present and future require~ents 

analysed with particular reference to freight transport's needs. (Computer

produced projections of these needs to 2025 are included here). 

A Jthough oil is the dominant power source for transport, other 

primary energy forms must be included in any review of transport's energy 

requirements for three major reasons. In the first place, potentially valuable 

transport fuels can be synthesized from coal; secondly, electricity produced 

by coal, nuclear or other primary sources must assume greater importance 

in future; finally, substitution of oil by other fuels in domestic and 

industrial usage will direct usage towards premium consuming sectors. 

Before looking in some detail at the prospects for individual 

fuels, the overall position for both present and potential future reserves 

is given in Table 27 •. From this, it can be seen that oil reserves may be 

depleted in between 16 and 140 years time,, depending upon the relative 

rates of discovery and consumption. In comparison, coal reseryes are more 

abundant 1 and would support demand for many centuries to come. 

3.2. World oil avaiiability 

_ Over the past 30 years, "uftimate reserves"have increased by a 

factor of four 
1 

from around 500 x 109 barrels to the present widely accepted 

figure of 2000 x 109 barrels. This latter figure has been relatively stable 

for the past ten years or so, and is unlikely to change significantly in 

future. 

"Proven reserves", on the other hand, are by definition dependent 

on prevailing price and technology 1 and so the two estimates given in 

Table 28 (560, and 675 x 109 barrels) are almost certainly underestirr.ates. 
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TABLE 27 : WORLD ENERGY RESERVES .. 

Present Known Potential Future (2) 

Reserves Years of I ife Years of life Reserves Years of life Years of life 
at .current at future at ~urrent at future 
consumption c ::msumption c·)nsumption consumption 
rates rotes rotes rates I 

Oil ·560 - 630 32- 36 16- 18 1750 - 2520 100- 140 30- 40 
. 

Coal 130- 2200 60- 100 30- 190 1100- 4800 500- 2200 150- 250 
- < . 

(3) 

Natural Gas 34-48 33-45 15- 19 90- 340 90- 330 25-40 

Uranium 0.9 (4) - 16 .(50-1 00)(5 1 .3- 3.2 (6) - 20/(50-1 00) (5) 
37 /( 50-1 00) 

Shale/far Sands '680 - 340 39-48 Extend oil by 1960 - 3500 110- 200 Extend oil by 
9- 11 I 10- 17 

For details of the units used and explanation of the basis of the figures, see notes oh the following page. 



Notes for Table 27 • 

Units: Oil, shale/tar sands expressed in billion barrels (10
9
) oil 

Coal in billion tons of coal (x 0.7 =tons of oil equivalent) 

Natural gas expressed in trillion {10
12

) cu.m. {x0.86 

to give bill ion tons oil equivalent) •. 

Uranium expressed in million {10
6

) tOI'}S of uranium. 

Life in years. 

1 ~ The consumption rates are Oil = 2, 500 MTOE, Gas= 900 MTOE and 

C0:al = 1500 MTOE. 

2. Potential future reserves are estimates of recoverable reserves, allowing 

for improvements in technology of extraction and price. 

3. Several sources quote 7.600 billion tons- much higher than known 

recoverable reserves. 

4. Known at less than $20/kg. 

5~ Fast breeders extend uranium I ife - hence 2 figures - uncertainty in 

nuclear development make figures particularly speculative. 

6. 3. 2 mill ion tons assumes cost of not more than $30/kg. At cost up to 

$20/kg reserves of 60 million tons available. Also seawater contains 

4 bill ion tons of at present inaccessible reserves. 

Compiled from :-

Boyer, L. W. Combustion, December 1971 

Boyer, L. W. Paper 678 to 4 U.N. International Conference on the 

Peaceful Uses of Atomic Energy, 1971 

British Petroleum Statistical Review of World Oil Industry 1971 (Ref. 27 ). 

Hubbert, M. K. Resources and Man, Ch. 8 WH. Freeman and Co. 1969 {Ref. 28). 

World Oil, 173, Pg. 52 1971 

World Power Conference, Survey of Energy Resources 1968 

SOURCE : Institute of Fuel, 'Energy for the Future'. (Ref. 29 ) 
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TP.BLE 28: WORLD CRUDE OIL RESERVES (10
9 

Barrels) 

Proven Reserves Ultimately 
(1) % (3) % Recoverable Reserves (~ 

Middle East 345.0 62 356 53 600 28.% 

' USSR, Eastern Europe 
and China 67.1 12 101 15 500 24 

North America 46o4 8 56 8 295 14 

Africa 50.9 9 108 16 250 12 

Latin Ameri ea 29.1 5 29 5 225 11 

Far East/Australia 14.2 3 12 2 200 10 

Western Europe , .• 1 1 8 1 20 1 

TOTAL 559.8 100 675 100 2090 100 

SOURCES: (1) and (2): Ref. 30.,(3}: Ref. 31. 

NOTES : 1Proven Reserves 1 
- are those quanti~ies known to be present in 

formations that have been explored and are commercially recoverable 

by present day techniques and at current cost and price levels. 

1Uitimately Recoverable Reserves• - Include :-

{a) Such fossil fuel as is believed to exist in already proven 

areas but whose production today would be uneconomic or 

technically impossible. 

{b) Such fossil fuel as may be assumed to be present in 

formations expected to exist but as yet unidentified. 
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At pre-1974 price levels, only 30% of oil present in specific 

deposits ~·as economically recoverable by existing techniques. Since 

recovery efficiency is increasing about t% per year, some 45% of known 

deposits are I ikely to be recoverable by the year 2000 {Ref. 32 }. 

The dominance of the Middle East can be clearly seen from 

Table 28 : with more than 50% of proven reserves and about 40% of world 

production, it supplies more than 90% of oil entering into world trade 

(Ref.30). 

Between 1960 and 1970, the posted price of crude oil remained 

constant. Persiqn Gulf posted prices for light crude were held at about 

$1.80 per barrel, substantially less than the 1948 posted price of $2.17 per 

barrel, and realised prices for crude fell below posted prices through the 

1960's. Between the 1971 Tehron negotiations and 1973 the posted price 

rose to $3 a barrel, giving the world a foretaste of O.P. E. C.'s new 

power. The unilateral price. increases between October 1973 and January 

1974 raised posted prices four-fold to $11.65 per barrel and trebled the 

price of imported oil to Western Europe to nearly $10 a barrel {Ref. 41 ), 

In July 1979, prices on the Rotterdam ''spot market' peaked at $36 a barrel

compared with the maximum OPEC price of $23.50. (Ref. 33). _). 

The semi-monopoly position enjoyed by 0. P. E. C. is I ikel y to 

be reinforced by the rise of participation agreements: the proportion of 

Gulf oil effectively covered by these arrangements is thought likely to 

increase from the present 60% to 80% i·n the near future (Ref. 27 ). The 

consequences of 0. P. E. C.'s actions on the industrialized countries 

have been three-fold. In the first place, the increased price of oil and 

built-in inflation clauses has thr~atened economic growth and put a 

strain on the balance of payments of nearly all oil importing nations. 

Secondly, O.P. E. C.'s enormous accumulating financial reserves {recently 

estimated by the World Bank at about £500,000 m. by 1985 (Ref. 34) 

may disrupt the world's money and capital markets. Thirdly, there is 

the threat that 0. P. E. C. could cut supplies for political ends {as it did 

with the USA and the Netherlands, in late 1973- early 1974). Although 

some crocks have appeared in the united 0. P. E. C. front (Saudi Arabia, 
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for instance, has shown some reluctance to follow the •hard' line set by 

Algeria and others), the accrued benefits to date have been so enormous 

that an internal break-up of the O.P.E.C. cartel is highly improbable at 

present. 

*" The historical growth in oil demand has been about 8%, and, 

if continued this would lead to a •peaking out• of world oil production by 

. about 1995. This, and the effects of slower rates of growth are shown in 

Figure 5. The higher price of oil is likely to hold consumption closer to 

the middle curve drawn,which shows a peak in 2000 and the decline to the 

present level of oil consumption in 2020. On all extrapolations, oil production 

.will be less than to-day; and, according to this figure, by about 2050 all 

crude oil sot.r ces will have been depleted. These extrapolations exclude 

tar sands and oil shales which are thought by some observers to hold great 

potential. 

Estimates of ultimate world reserves of sands and shales vary 

tremendouslyo One estimate puts the total ultimate recoverable reserves· 

for both sandsand shales at between 280 and 500 x 109 barrels of oil, with 

present known reserves li.nited to less th~:1 120 x 109 tons of oil (i.e. cbout, 

20% proven liquid oil reserves (Ref. 28 ) ). A U. N. report, in contrast, 

shows that reserves of oil shales alone are equivalent to 18,000 times the 

total world production of energy in 1968 (Ref. 35 ). 

Until recently exploitation has been discouraged by the low 

prevailing price of oil throughout the 19501 sand 19601 sand because of 

the technical and environmental obstacles involvedo The attraction of sands 

and shales has risen sharply with the increased price of oil :md they may 

substantially supplement conventional oil within~ decade •. Possib.Jy .the 

world•s largest deposits of tar sands are found in Alberta, where three groups 

of deposits have been estimated to contain 301 x 109 barrels of potentially 

producible oil (Hubbert Ref. 28 ). The first large scale mining and ex

traction operation was begun in 1966, based on Alberta's Athabasca deposits, 

but at pre-cr.isis oil prices of $3-$3o50 a barrel was only a marginally 

economic proposition. 
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Figure 5- Possible Future World Oil Production Profiles 
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The oil· content of oil shales varies from near zero to about 65 

US gallons a ton according to Duncan and Swanson (Refo "37> ). Norih 

America (mainly the U. S.A.) has about half the world total of 

190 x 109 barrels that are considered to be recoverable under 1965 

conditions. The cost of extra:ting oil from shales is very high due to 

the heavy energy input required to separate the oil from the rock and 

ror-J... 

Chapman (Refo 36 ) for one doubts whether these resources 

will ever produce significant quantities of crude oil due to this: foetor and 

also the high water needs. (The low nei-energy efficiency implies a high 

price compared to other sources such as coal and nuclear power). 

3. 2. 1. U.K. oil availability_ 

Britain is now in the enviable position of being a major oil 

producer (ranking 11 tho in the world), with a significant export potential. 

The quantity of recoverable oil reserves originally in place on the U.K. 

Continental She! f is officially estimated to lie between 2,400 and 4,400 

million tonnes (13th. in the world (Ref. 38 ) ). Up to the end of 1978, 

106 mill ion tonnes of this total have been produced since the first oil field, 

Argyll, began producti?n in June 1975. Remaining reserves at the end of 

1978 were therefore in the range 2300-4300 mill ion tonnes, as illustrated 

by the table below. 

TABLE 29: ESTIMATED OIL RESERVES ON UK CONTINENTAL SHELF 

as at 31 December 1978 

(a) Remaining recoverable reserves in present discoveries 
(mill ion tonnes) 

Proven* Proboblr! Possible* Possible 
Total 

(1) Fields in production or under 
development 1121 124 173 1418 

(2) Other significant discoveries 
not yet fully appraised 276 385 432 1093 

(3) Total for present discoveries 1397 509 605 2511 

I continued ••• 
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(b) Recoverable reserves in future discoveries {million .tonnes). 

(1) Reserves in future discoveries under present licences, 
including the Sixth Round 350-800 

(2) Reserves on the remainder of the UK Continental Shelf 550-1000 

(3) Total for future discoveries 900-1800 

(c) Total of recoverable reserves originally in place on the. UK 
Continental Shelf (mill ion tonnes) 

(1) Cumulative production to the end of 1978 106 

(2) Remaining reserves in present discoveries (from Table2a) 1397-2511 

(3) Total of reserves originally in place in present discoveries 1503-2617 

(4) Reserves in future discoveries (from Table 2b) 900-1800 

(5) Total of reserves originally in place on the UK 
Continental Shelf (rounded) 2400-4400 

SOURCE : Ref. 39 

* The terms 'proven','probable' and 'possible' are given the internationally 

accepted meanings in this context-

(i) Proven- those reserves which on the available evidence are 

virtually certain to be technically and economically producible. 

(ii) Probable - those reserves which are astirnoted to have better 

than a 50% chance of being technically and economically 

producible. 

{iii) Possible- those reserveswhich at prese~t are estimated to have 

a significant but less than 50% chance of being technically and 

economically producible. 

Odell (Ref. 40 ) has made an estimate which presumes some 

•appreciation• of oil reserves due to oil company conservatism in appraising 

investment policies. Odell's total for the U.K. North Sea basin is 6000 mt./oil. 

Although ~his is generally regarded as optimistic, it is feasible that oil reserves 

could rise to this level. A production curve for this estimate, together with 

those for upper and lower estimates by the Department of Energy ore 
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FIGURE 6: U.K. INDJG ENOUS Oll....PRODUCIJON Ac.c.oRDING 

TO VARIOUS ESTitv\ATES 
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combined in Figure 6. Each curve indicates zero production of indigenous 

oil by 2025. These production curves ere based on the assumption that 

commercial factors will determine consumption rates (coupled to a fixed 

reserve/production ratio after the peak production plateau is finished}. 

Official scenarios ~Ref. S9 ) show a peak production of 140-150 m. t. 

of oil per year and a residual production of 30 :n .. t.o./year in 2025. 

This may build up as follows : 

TABLE 30: FORECAST OF U.K. CONTINENTAL SHELF OIL PRODUCTION 

Year 1979 1980 1981 1932 1983 

Forecast 
production 70-80 . 85-105 95-115 115-140 115-140 
(million 
tonnes) 

Source : Ref. 39. 

3~ 2. 2. .Oil and the U.S.A. 

· America's huge energy demands {about one third of total world 

consumption) have until recent I y been supplied from domestic sources. 

U.S. oil reserves amount to some 50 x 10
9 

barrels (7 x 10
9 

tons)- less than 

ten years supply at existing consumption rates, and progressively greater 

oil imports have bec~me necessary to satisfy the growth of oil demand. 

Oil imports ac5=ounted for 18% of total oil consumption in 1960, 21% in 

1970, and 42'/o in 1976 (Ref. 41 )o By 1985, dependency on imported 

oil may jump to between 50% and 65%. putting strain of the U. S. Balance 

of Payments and boosting world energy prices. 

These unpalatable facts, together with the political implications 

of dependence on imported oil (the Middle East is expected to supply more 

than 61% of total imports in 1980}o were largely responsible for the 

launching of 'project independence'. The general goal is to reduce energy 

consumption growth from the recent 4-5% ?er year to about 2'/o a year, and 

at the same time, to increase domestic energy production by 4. 7% a year 

to 1980, eliminating the need for imports. 



Increasing the yield of diesel fud from C'T1:o.de oil by refinery changes 

When t"il supply is stable the significant diffe~ences in the yield and quality 

of the principal refinery products (e.g. petrol, diesel, heating· 

and fuel oil) obtained from the distillation of various types of crude oil 

provide an inherent flexibility for the refiner. He is able, by blending 

fractiorts from various crude oils to manipulate these variations in order to 

minimize any imbalance which occurs between the manufacture and demand 

patterns for finished fuels. 

In the past, the proportions of diesel, heating oils and fuel oils demanded 

by the product trade in Europe were, in general, similar to the proportions 

of those products available in the major Middle East crudes; in other words, 

demand and supply have been satisfactorily balanced. The proportions of the 

various products produced from UK refineries are currently as follows: 

motor spirit 12 per cent, gas/diesel oil 24 per cent, fuel oil 40 per cent, 

refinery fuel oil 6 per cent, and others 18 per cent. (Ref. 42). In America 

gasoline (motor spirit) accounts for about 49 per cent and gas/diesel oil for 

about 20 per cent (Ref. 43 ). 

lt can be convincingly argued that since road vehicles wilf, for the foreseeable 

future at least, be dependent upon portable liquid fuels, these fuels should 

be reserved as much as possible for transport applications. If this were to be 

enforced by government policy (or by any other means), then a greater proportion 

of crude oil would need to be made available for gasoline and diesel fuels. 

In other words, the historical balance between product demand and supply 

would be upset. 

The yield of diesel fuel of a specified quality from a b~rrel of crude oil 

may be increased up to a point by raising distillation temperatures. Beyond 

this limit, more expensive cracking equipment is necessary, as discussed below. 
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Alternatively, output may be increased by relaxing certain of the specifications 

controlling fuel quality, as discussed in section 3.4. 

Distillation Changes 

The amount of gas oil (of which diesel is a part) obtainable from crude oil 

by distillation is limited by the maximum boiling point (known as the 'cut 

point') compatible with the distillate quality required •. The yield can, in 

some cases, be increased by raising the cut point, but this additional distillate 

recovery is usually gained at the expense of quality. For example, approximately 

10 per cent more middle distillate could be obtained from typical Middle 

East crude by raising the cut point from 350 degrees C. to 370 degrees C. 

By so doing, the cloud point, specific gravity and sulpur content of the 

recovered distillate are changed unfavourably and the extent to which such 

increased yields may be obtained will be constrained by the degree of upgrading 

of the distillate that is possible in order to meet the quality requirements of 

the market. (Ref. 44). 

Conversion Processes 

If the distillation units-are producing _the maximum quantity of middle distillates 

possible, then the only other means of achieving an increased production of 

specified quality is by introduction of process plant which will produce the 

desired product from a higher boiling distillate or a residue. The principal 

conversion processes which are used to promote a significant product shift, 

either as a main objective or as a subsidiary effect, are: catalytic cracking, 

thermal cracking, and hydro cracking. 

Catalytic cracking is primarily intended to increase the amount of motor 

gasoline available to the refiner (by molecular breakdown of heavy distillate). 

The process does, however, produce some middle distillate of rather poor 

quality which requires upgrading before use as a blending agent for finished 

diesel oil production. The'amount of gas oil currently produced in Western 

Europe by this method is relatively small. 
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Thermal cracking again produces middle distillates of relatively poor quality, 

but in larger q~antities, whereas hydrocracking (i.e. rupturing the larger 

molecules in the presence of hydrogen) may be employed to produce good 

quality middle distillate or good quality motor spirit. 



3.4. Increasing diesel availability by change~lo fuel specification 

Fuels for high speed diesel engines are typically middle distillates of 

petroleum crudes, and most industrial countries have· remarkably similar 

specifications covering the cleanliness, physical behaviour, chemical and/or 

combustion properties of the fuels. Historically, these specifications have 

been designed to ensure high quality rather than to encourage maximum yield 

of a fuel, and it is possible to increase yields quite substantially by modifying V 

these regulations. 

A recent study conducted by the British Technical Council of Motor and 

Petroleum Industries (B. T. C.) examined the effects of possible specification 

changes on yields, engine performance and environmental aspects. Their 

results, upon which a paper by Spiers {Ref. 45 ) has been partly based, are 

encouraging. Some of the possible modifications to BS 2869 : 1970 detailed 

by Spiers are discussed below. 

Viscosity. A reduction in the present minimum allowable value of 1.6 to 

1.4 eSt could give a small increase in diesel at the expense of the kerosine 

range. {eSt. =centistoke, a measurement of kinematic viscosity). 

Low temperature fluidity of diesel fuel is conventionally measured by Cloud 

Point (C. P.) and Pour Point (P .P.) temperatures, but a temperature known as 

the 'Cold Filter Plugging Point' (CFPP) is in some ways more suitable, and is 

becoming widely accepted in Europe. In a given fuel CFPP is normally three 

degrees to six degrees below CP and, if adopted in· the standard specification 

using the presently specified values as for CP, it is estimated that up to three 

million more tons of diesel/fuel would be available (Ref. 45). In some cases 

this could require changes in fuel system layout, but no severe problems 

are anticipated 

flash Point ~ Although the BS minimu.n is 55 degrees C. most Local 

Authorities insist on 66 degrees Cas a minimum. A reduction in this , 

requirement to the BS value would be consistent with the European 'Model 

Code of Practice in Storage and Handling of Petroleum Products'. Apart 

from giving greater flexibility in refinery ope~ation, if the lower value 

were adopted, some 3.5 million tons of product would become a·vailable. 

Such a change would of course not affect engine operation. 
, . 
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Suip!wrlcvels.T~e amount of sulph1Jr in crude oil is reduced b}' hydro treating, 

the n.:guired hydrogen being obtained from the hydrocarbons of the crude. 

This treatment could be· avoided if higher sulphur levels were permitted, thereby 

giving an overall oil_ saving. (This is the only way in which overall yield 

from crude oil may be increased, other relaxations merely increase availability 

.of diesel fuel at the expense of some other usage). lt has been suggested 

that raising the sulphur levels, from 0.5 to 0.75 per cent by mass for Class 

·A 1 fuels, and from 1.0 to 1.2 per cent by mass for Cl ass A2 fuels, would 

cause no difficultyo This is disputed by engine makers who consider the 

possible increase in corrosive wear, engine deposits, and ring sticking 

tendency to be totally unacceptable. The effects could be mitigated, however, 

by the use of high grade lubricating oils. An increase in sulphur levels would 

lead to increased- sulphur dioxide emissions, and may therefore be environmentally 

unacceptable. 

The Cetane Number (CN) is a measure of the ignition quality of diesel fuels. 

Many engines built in this country have been qesigned to run on fuels of 

50 to 55 CN (i.e. on higher grade fuel than·the B.S. minimum of 45 to 50 CN). 

In many other countries, including the USA, fuels of 40 CN are not uncommon,· 

but engines designed for higher quality fuels would experience starting, noise 

and wear problems if such fuels were used. If CN limits were lowered to 

give refineries a greater flexibility in using a wider variety of crudes, some 

development would be necessary unless the use of cetane improving additives 

is accept~ble. 

Spiers adds that many of fuel properties discussed connot be treated in isolation, 

since a relaxation of limits in one may introduce undesirable properties in 

another. He concludes that although, with the exception of increased 

sulphur, relaxation of specifications would not increase the overall output 

of fuels, changes that allow a greater 'slice' of the fuel 'cake' to be made 

available to the diesel engine are desirable. 
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3:5. Natural Gas 

Natural gas c;:ontributes a small but rapidly increasing proportion 

of world energy consumption. Hubbert (Ref. 28 ) states that natural gas 

reserves are roughly proportional to those of crude oil and so ultimate gas 

reserves may be about 8-12, 000 x 10
12 

cubic feet (based on Hubbert' s 

ultimate oil reserve figure of between 1,350-2,000 x 10
9 

barrels). The 

Institute of FUel (Ref. 29) also estimate gas reserves to have a reserve life 

similar to that of oil. However, it must be noted that:-

1. These figures do not have the degree of accuracy 

associated with oil and coal reserves simply beca'Jse 

the geological work has not been undertaken. 

2. A large percentage of oil, and therefore considerable 

quantities of gas, are found in the Middle East where 

the practice has been to 'flare off' the gas at the 

wellhead instead of liquefying and transporting it to 

markets. 

3. Natural gas has also been found associated with coal 

measures (as in the Southern North Sea), but data 

·about such reserves are presently limited. 

Natural gas is relatively new to the energy league. International 

movements are still relative! y small but home produced supplies are of 

increasing significance in several countries. Transportation is a major 

difficulty. lt was not until the mid 1960's that specialised tankers 

capable of transporting liquified natural gas began deliveries from North 

Africa to Britain and France. International movements are now of growing 

significance and both the U. S. A. and Japan have long term contracts to 

import gas from the Middle East, thereby further strengthening that area's 

dominance of world energy supplies. Governments of gas-consuming countries 

seeking increased supplies will need to take account of the full economic 

and political implications. 
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Britain's reserves or gas in the North Sea ore estimated to lie 

between 1000 and 2300 billion cubic metres (35-80 trillion cubic feet) 

(Ref. 36 ). Such reserves might support the production profiles shown in 

Figure 7. Natural gas accounted for 5% of U.K. 'primary energy 

consumption in 1970, (equivalent to approximately 11 million tons of 

oil), 11% in 1973 and 19% in 1977. By the early 1980's deliveries may 

be up to 8, 000 cu. ft. a day; this comperes with deliveries of 3, 000 cu. ft. 

a day in 1973 and Government forecasts of 6,000 cu.ft. a day by the late 

1970's. If, as according to Hubbert (Ref. ~) ) the larger gas fields are 

linked to oil deposits then further gas fields remain to the tapped in the 

northern North Sea and off the west coast. By the mid 1980's the present 

gas fields are expected to reach peak production and unl~ss substantial 

fields or other methods of producing gas are found it is possible that both 

domestic oil and gas supplies could peak and begin to decline together. 

Over the next ten or twenty years gas could provide an alternative fuel 

source for industry but any direct effect upon transport is likely to be very 

small.- However, it is a major fuel in Britain (and was recognised as such 

by the 1967 White Paper) and must be viewed with oil, coal and electricity 

as the basis of an overall energy policy. 

In Eurcp-t the E. E. C. Commission expects natural gas production 

to reach 207 million tons of oil eq'Jivalent in 1985 (Ref. 46) and therefore 

provide 15% of the Communify's energy consumption. France, Germany 

and the Netherlands already have substantial gas supplies and gas move-

ments between the E. E. C. countries are well established. Future development 

~ffort is concentrated around the North Seao Although the Commission does 

not expect gas to supply as largar share of the energy market as in the U.K. 

it does recognise that the available and potential supplies provide a secure, 

low cost and home produced energy base. 

77. 



Gas 

Production 

(1012 cubic 

feet/ 
3 

· year) 

2 

(ll 
• 

1 

f1GURE7:. UK INDIGENOUS GAS PRODUCTION PROFILES 

M:.T.C.E/Year 

1~0 

90 

-------
60 

5.0 trillion 

cubic feet 

1980 1990 2000 

Source Modified from Ref. 36. 

~ 80 trillion cubic feet 

...... 

2010 2020 

'\ ..,.......so trillion cubic feet 

' \ with production extended by 
\ 

\ a gas tax 

' \ 
' ' 

2030 

' \ 
' ' 

---1 



3 .. 6. World Coal Reserves 

Since coal occurs in sedimentary basins in strata that are 

commonly of a large area I extent, reasonably rei iable estimates of the 

coal resources in a basin can be made. 

Averitt {Ref. 47) has estimates that the total original coal 

resources of the world in seams with a minimum thickness of 0. 35metres up 

to a maximum depth of 2 km:>. amount to about 15.3 x 1012 tonnes. 

Appr9ximately 50% of this total is considered recoverable, i.e. 

7,7 x 10
12 

tonnes (this figure, equal to 201 x 1021 J. of energy is 

equal to 88.8% of fossil fuel energy. reserves). 135 x 109 tonnes had 

been mined by December 1969. Averitt's figure of 7.7 x 1012 tonnes 

{see Table 31 below) has been viewed by M. K. Hubbert {Ref. 28) 

TABLE 31 :WORLD OF ULTIMATELY RECOVERABLE COAL & LIGNITE 

1012 Tonnes 1Q21 J % 

USSR 4.3 114 56 

North Amer ice 2. 1 56. Z1 

Asia {Exc. USSR) 0.7 18.4 9 

Western Eur ope 0.4 10.6 5 

Remainder 0.2 5.0 3 

TOTAL RES ERVES 7.7 '204 100 

SOURCE: Ref. 47. ---
·- -------·-

as over-optimistic and a lower estimate of 4. 3 x 1012 cited as more 

appropriate in view of the thinness and depth of some seams included in 

Averitt's estimate. Recent price rises will however have increased 

recoverable reserves substantially. 1.Armstrong (Ref.48) estimates that a 
doubling of coal prices would increase recoverable reserves by 40%). 
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The I ife expectancy of world coal reserves will of course 

depend on the assumptions made about future consumption rates. If 

the present exponential growth rate of 3. 56% is continued, Hubbert 1 

(Ref. 28 ) predicts exhaustion before the year 2100, if consumption 

remains at around the 1971 level (i.e. 2140 m. tons) then several 

thousand )'ears I ife may be expected. 

U.K. Coal Reserves 

Known reserves of coal in the United Kingdom are massive, 

a rn·ounting to about 100 x 109 tons in known coal fields and a further 

60 x 10
9 

tons which could exist elsewhere on the basis of current 

geological knowledge. This total is equivalent to about 2. 5% of world 

reserves. (Ref • 49 ) • 

Reserves which could be recovered using present technology 

are of the order of 45 x 109 tons, sufficient, at current rates of 

production, for about 300 years. (Ref. 50 ) • 

Those collieries already in existence contain some 4 x 109 

tons of recoverable coal and a further 2 x 109 t:ms are estimated to be 

available at collieries now being planned. 

Major new possibilities already identified and their possible 

recoverable resources are: Vale of Belvoir and East Leicestershire, 

500 million tons; Margam (South Wales), 30 million tons; Musselburgh 

(Scotland), 50 mill ion tons. Exploitation of these reserves would 

depend, of course, on planning permission being obtained. 

The Coal Board's own Plan for Coal (Ref. ~n) anticipates 

a~expan~ion to 150 mt/year by 1985 and the NCB has suggested a possible 

target of 200 mt/year by 2000. The Department of Energy tends to put 

the maximum coal output below this figure, although substantial increases 

are possible. The future productivity of the coal industry could be 
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significantly improved if most of the old mines were closed and new fields 

developed. (The Selby field development has c planned output of 2500 

t./man/year, some five times present average productivity}. The 'Plan 

for Coal' requires about 300i£m(1970) up to the yaor 2000, the cost of about 

10 GW of nuclear capacity. The size of the coal industry will ultimately 

be determined by the availability of other fuel supplies since this will 

dictate the price of coal and hence miners' wages. 
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3.7. Nuclear Energy Resources_ 

3.7. 1. . Fission 

Since the first industrial sized nuclear power station was installed 

in 1956/7 technical progress, based on the principle of fissioning Uranium 

235, has progressed steadily, and various reactor systems have become 

acceptable as proven designs. In 1969 nuclear power capacity in the non

communist world stood at 20,000 megawatts and was doubling every two 

years. The present proved reactor systems ore dependent upon the use of 

either natural or si ightly enriched uranium os a fuel. 

The European Nuclea: Energy Agency (E. N. E. A.) and the 

International Atomic Energy Agency (I. A. E. A.) estimated that reserves 

of u3 0 8 in the non-communist world that ore producible at $10/1b 

amounted to 866,000 short t.:>ns in 1972 (Ref. 52) (compared with 700,000 

short tons in 1969 (Ref. 52) ) and in the $10- $15 /lb ranges equal to 

another 700,000 short tons (1972). Consumption in 1972 was 19,000 tonnes 

and estimates for 1980 are put at 60, ')00 tonnes with a f:.~rther doubling 

by 1935. Uranium resources are therefore known to the adequate for the 

requirements of the 1970's but, although new reserves will undoubtedly 

be found uranium will remain a comparatively rare element and deposits 

producible in the low-cost range will occur in strictly limited c;uantities. 

If nuclear reactors of the future were to consume only 1 or 2<'/o_of the 

natural uranium, like those at present, it is doubtful whether supplies could 

lost a century. This consequence could be avoided if the present low 

. conversion reactors based on the isotope uranium 235. were superceded by a 

breeder reactor capable of consuming the whole of the natural uranium and 

thorium(238 and 233 respectively). With this process the supplies of high 

grade uranium would be increased by a factor of 50 or 100 a:1d much 

larger supplies of low grade uranium and thorium would become availabl~. 
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Nuclear power progress has been much sl~wer tha:1 originally 

fo1·ecast and some caution is req•Jired when estimating the future short

term contribution. In 1977 nuclear power provid~d 3% of the U.K. 

primary energy input and i11 the s.ame year generated about 15%. of 

electricity produced. (Ref. 53). At pres~nt power is provided 

exclusively by thermal reactors, largelybased on American light water 

designs, although steam generating heavy water moderated reactors have 

been developed by Canada. The U.K. programme is based on gas cooled 

reactors (mainly Magnox). The first controlled fission chain reaction was 

achieved in December 1942 and despite detailed research serious technical 

problems are still encountered with all the reactor types. Running costs 

are now lower than for fossil fuel stations but capital costs are significantly 

higher and with high interest rates this serious! y affects the overall costs. 

The initial aim of prod·Jcing electricity from nuclear fuel more cheaply 

than from fossil fuels was rarely, if ever, achieved prior to the oil crisis, 

but recent oil and coal price increases have put nuclear station running 

costs in a favourable light. Overall costs remain dependant upon the 

interest rate payable upon borrow~d ca?ital and hereby dependant upon 

government fiscal and monetary policy. 

Problems of safety remain paramount in constraining rapid 

expansion of nuclear power production, both in this country and elsewhere. 

Opposition to new installations is becoming mqre vocal both on the 

grounds of operational safety and problems of the safe containment, 

transport and disposal of the various radioactive wastes produced by the 

reactors. 

We have already seen that there could be a uranium shortage 

due to the proliferation of low conversion reactors, a situation that may 

be exacerbated in the coming decade H existing exploration levels do 

not impr:>ve since the lea~ time between discovery and actual production 
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is 8 years.· The assumed predominonce of I ight vtater reactors in nuclear 

growth over the next 10-15 years wii I impose an annual demand for 

separative work of the order of 30-40,000 tonnes by the early 1930's. 

Existing and currently (1973) planned separative work capacity is almost 

certainly to be saturated within 10 years. The lead time necessary to 

construct additional plant is running out yet if work capacity is not 

provided operators may be led to favour plutonium or reactor types which 

minimise separative work req-:.Jirements. This, combined with the fact 

that there may be a physical uranium shortage makes it doubtful whether 

existing nucl ea•· reactors can prove to be a long te;rm answer to future 

energy demand. lt is important that present reactors be superseeded by 

a breeder type reactor capable of consuming completely the fertile 

isotopes. If this were successful . available energy from present uranium 

supplies would be greatly enhanced and large low-grade deposits wou!tf become 

economic. 

The early construction of a full-scale breeder reactor system 

for detailed evatuation is urgently required. Already the rising demand of 

electricity into the late 1980's must be met by a mix of thermal reactors 

and fossil fuels. As it takes 8-10 years to construct a station the choice 

of oil, coal or gas must be made bearing in mind cost changes likely over 

the next 20-30 years. 

~ .. 7 .2. Fusion 

Considerable work is being ca!·ried out on the development of 

a system which would utilize the energy of the fusion process. The use of 

this reaction depends on the availability of supplies of deuterium and 

I ithium. The former is found in reasonable quantities in sea water. The 

e-ntire oceans contain 15 x 1043 atoms of it (Ref. 28 ) and o large fraction 

of this could be extracted by methods now available and at an energy cost 

of a fraction of that releasable by fusion. Lithium occurs on land and · 

although it is less plentiful few supply problems are foreseen. 
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3.8 Water, Solar and Geothennal Power 

Although currently accounting for a tiny proportion of total w':lrld 

energy consumption, the so called renewable {and therefore inexhaustible) 

energy sources of water, wind, sun and geothemal power are locally important 

in the energy mix. Research on a vast scale into these sources may raise the 

effectiveness with which they can be employed. 

3.8.1. Water Power 

The total world potential water power capacity has been estimated 

by Hubbert{Ref. 28) at 3,000 x 10
9 

watts, of which only 8.5% is at present 

developed. This capacity is of course spread most unevenly around the world: 

it has been estimate~ for instance that about 60% of the potential water power 

capacity in Western Europe had already been developed and expansion of this 

energy source in Europe must be limited. The potential for H.E.P. develop

ment is greatest in South America and Africa where exploitation is still very 

limited. Lack of large fossil fuel reserves in these areas will place increased 

emphasis on water power. 

In the U.K. hydoelectric energy accounts for about 1% of current 

energy requirements,(approx. 2 M.TO.E.). The majority of sites are located 

in Scotland with some smaller sites in Wales. The amount of electricity gener

ated is lagging behind the increase in total energy supplied and may be well 

below its present 1% share by 1980. 

Viewed superficially water power does have the appearance of 

being essentially inexhaustible, or gov.erned by a time scale linked to the 

earth's powers of erosion. This however is not always true. Most hydro

electric projects involve the damming of rivers and the construct ion of reser

voirs. The time required for these res1~rvoirs to become filled with sediment 

may be as short as one to two hundred years, and unless a solution is found 

to the sediment problem most of the world's water power capacity may prove 

to be s·hort lived. 
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The possibility of harnessing tidal power has attracted much 

interest but the potential is relatively small, -estimated by Hubbert. (Ref • .28) 

to be equal to about 2% of HEP potential on the basis of all sites so 

· far studied. 

The only operational installation,in the Ranee Estuary (France) 

has an initial capacity of 240 MW (to be increased to 320 MW), Being 

the first full-scale operating station the cost of producing electricity is 

high but within easy reach of conventional fuel costs. Severe problems 

with sand and salt require further research but its feasibility as a potential 

power source is now without doubt. 

In Britain only the Severn Estuary has been extensive! y studied 

as a tidal power site, although Morecambe Bay and the Solway Firth are 

possible longer term projects. 

·s.B.;2. Solar Energy: 

~lar energy, with a thermal power influx of 178,000 x 10
12 

watts dwarfs the production of industrial energy of 5.7 x 10
12 

watts by 

31,000 times. The maximum conversion factor may be only O. 1 (Ref. 30), 

however and values down to 0.01 are quoted. 

As a contrast to previous energy sources, solar energy must be 

viewed as the energy of the future. Its low area density makes the direct 

use of solar power presently impractical and cost-prohibitive for other than 

small-scale, special purpose heating plants. By means of present day tech

nologies eletricity would only be available from sunshine in places where 

it is least required and at only low voltages. (No one is going to move from 

London to the Sahara~) For many decades the main method of capturing 

solar energy will remain through vegetation in areas already well endowed 

with water. Solar power is, however, a good example of how scientists 

can isolate and attempt to solve a problem. TheN SF/NASA solar energy 

panel (Ref. 54) has concluded that given a relativeiy modest i)'vestment 
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good in perpetuity, of about $2i billion, over a 15 year period, in solar 

conversion and collection technology, vast amounts of clean thermal 

energy and clean gaseous, I iquid and sol id fuels will be mad~ available. 

By the year 2,020 almost 20% of the US energy needs could be met by 

solar energy processes. Such a claim certainly looks ambitious and would 

require terrestial solar powerplants covering IJP to 1~% of the land area 

of the US and probably a system of space stations. Even with such a large 

scientific and financial initiative it would remain a new technological 

field open to numerous problems and misgivings. lt is an interesting and 

most promising future energy source but will have no direct contributing 

impact upon the British energy scene for at least 25 years. 

3.8.3. Geotherma I PO'."'er 

Unlike water and tidal power which depend upon a continuing 

flow of water, geothermal depends upon 11 tapping" temporarily stored 

quantities of volcanic heat which eventually depleteo These sources of 

en.ergy ore therefore generally associated with volcanically active regions. 

In 1975 the total installed capacity for both electric generation and for 

direct use as heat amounted to 828MW, with additional planned capacity 

of 514MW (Ref. 55). Thermal energy stored in the earth's crust may 

exceed all the fossil and fissionable nuclear reserves by orders of magnitude. 

After extensive studies White (Ref. 55) estimated .stored thermal energy in 

selected areas to a depth of lOkm to be about 4x 10
20 

thermal joules and 

that a technical conversion factor (efficiency) would be 0.25. But the 

areas concerned cover only a small part of the total land area. The ultimate 

amount of heat recoverable economically may be large but according to 

Hubbert (Ref.28) this source will be largely depleted within a hundred 

years. The quantity of 4 x 10
20 

thermal joules represents less than 2% 

of the energy in fossil fuels and only 200/o of that of petroleum and natural 

gas combined. 

No geothermal energy installations exist in Britain but Italy 

has established I imited supplies since 19J4. The possibility of future 

developments in Britain are remote but in countries bordering the worlds 

volcanic regions geothermal energy may supplement or even replace fossil 

fuels. 
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3.9. Trends in U.K. Energy Consumption 

The pattern of growth of U.K. energy consumption is shown in 

Figure 8, from which it may be seen that total energy consumption of 

primary fuels has grown by about 1._9% per year o~er the last twenty years 

and is now equivalent to some 333.4 million tonnes of coal or l19 million 

tonnes of oil. Growth rates of individual fuels ha•:e varied markedly, however, 

Coal consu!'nption has declined more or less continually over the period in 

sh::~rp contrast to the steady gro·Nth of oil and the dramatic rise in natural 

gas usage. During the same twenty year span, Gross Domestic Product (GDP) 

has grown more quickly than total energy needs, by about 2. 7 per year on 

average (Ref. ~53). (The ratio of GDP to piimary energy has shown a ;teady 

fall over the years as service industries form an increasingly large proportion 

of GDP and as energy efficiencies have improvedo In 1950 this ratio stood 

at 117,4comparedwitn 100.0 in 1970and90o2 in 1977)o 

The breakdown by primary fuels in 1967 and 1977 in Figure 9 

reveals that coal's share has fallen to a little over one-third of the total 

whilst petroleum's share has remained virtually unchanged. Natural go$ 

has expanded to capture nearly 20% of the market o 

About 25% of ::~11 r>rimcry energy is lost in the conversion and 

distribution processes. Tha pattern of consumption by final users i;, lq:?: 

after allowing for these losses is illustrated in Figure 10. The pie graphs 

on the left show the constituent parts of the energy mix, and transport's 

virtually complete dependence upon oil sta:1ds out in contrast to the diversified 

mix consumed by ind•Jstry and the domestic sectoro ihe diagrams on the 

right show that transport by all m·:>d~s a·:counted for 2?'/o of all energy 

reqrJirements, but for nearly half of pet;oleum consumption, 

lt is clear from these figures that transport is a major consumer of 

energy and that it is particularly vu!nera~le to any interruptions in oil 

supply. The pattern of direct a~d indirect energy consumption by the 

transport industries is explored in some detail in the section Transport and 

Energy. 
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FIGU~E 8 : TOTAL INLAND CONSUMPTIOI'~ OF PRI~AARY FUELS 

Log. Scale Log. Scale 

350 Total 
90 

200 ------ - -- 80 

·----- 70 
~ 

150 60 

50 ··-
100 150 40 

150 

75 30 

100 100 

.... so 75 
20 

c 
~40 

.... -· -I c 
0 Q) ,, 0 :::r-
> ...... :J 0 

·- 0 
..,..,. c 

6- 30 .?: 50 
,,. 

"' ,. 0 

Q) ::l 
, 

:J 
tT' ,," a. 

·o Q) 

-40 
.,-

10 ~ I ., 8 ,. 
C> I c 20 0 Increase 1 Nc:tural 8 a· 
c a; 30 0 2!% per 1 Gas ::J ·- c -I 

t: c annum I :::r-

.~ .E -2! decrease 1 
I 6 ~ - r::: 3 

~ .~ 20 %Rter 
en 

10 

en urn ,' 
4 

15 
I 
I / 

. 
I 

,._ . 
·/ ,.. . .... , ... ·--·--. .,.-."'-.. . ..,.· 

10 
/ I 

/ I 10 ,. . I 

5 r· I . 2 
I I 

I 
I I 

I I 

5 I 5 
3 1960 1 2 3 4 5 6 7 8 

SOURCE: Ref. 53. 

89. 



FIGURE 9 TOTAL INLAND CONSUMPTION OF PRIMARY FUELS 1967 & 1977 
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FlGU!~E 10: ENERGY CONSUMPTION BY FINAL USERS IN i9i7 (HEAT 

SUPPLIED BASIS) : PERCENTAGE SHARES BY SECTOR. AND 

FORM OF ENERGY 
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3. 10. Future Energy Needs 

For the purpose of this thesis, we req'.Jire forecasts of energy 

needs in this country, in total and for the freight transport sector, to the 

year 2025. 

There are two obvious difficulties in trying to estimate energy 

needs so far hence. The first is that we are reliant upon historical trends 

which arose during a period when the relative cost of fuel was declining. 

This slow decline has been dramatically reversed since 1973 and is most 

unlikely to recur (except for short term over-supply) in the future. The 

second problem lies in the high degree of substitution of fuels generally 
/ 

available to the non-transport sector. Over the past 50 years,_. the pattern 

of fuel supply has changed very dramatically in this country and the world -

with a rise in oil, nuclear and natural gas at the expense of coal. This 

means that the chosen method of projecting energy demand must be able 

to accomodate large scale substitution of one fuel by another. 

The Department of Energy has engaged in the forecasting of 

energy supply and demand for a number of years. Their present approach 

dates from the late 1960's when problems associated with the decline of the 

coal industry, rapid growth of electricity consumption, and the beginnings 

of development in the North Sea were predominant. The Fuel Policy White 

Paper of 1967 represented a major landmark in the forward planning of the 

time and in the same year the Energy Model Group was formed in the then

Ministry of Power (Ref. 56). Their forecasts oredesignecf to assist in the 

formulation of energy policy and ore an attempt to explore specific_ 

futures in terms of cost and energy planning requirements. These futures 

are defined by making a number of explicit assumptions and the forecasting 

process turns these into a set of quantified statements which .follow from 

those assumptions (including economic growth and energy prices, conservation 

measures and energy efficiencies). 

The approach taken by the Department 1 and by Chapman and 

others (Ref. 36 ) - whose forecasts are discussed in some detail below 1 is to 

establish a view(s) about tre growth in the economy (Gross Domestic Product, 

GDP) over the forecast period. This growth in GDP can be related in 

various ways to energy demand. At its simplest, the relationship between 
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energy consumption and economic activity is to be found in such concepts 

as the "energy coefficient" - in which the percentage rate of growth in 

energy consumption is compared with the percentage rate of growth of 

GDP - or the "energy ratio11 which is the ratio of energy consumption to 

GDP. Over the past 25 years, the primary energy coefficient has averaged 

about 0.55, i.e. energy consumption has grown at just over half the rate 

of GDP (Ref. 56). lt has however fluctuated very widely from year to 

year and during the late 1960's showed a tendency to approach unity 

(as has been observed in a number of other countries) but it has since 

declined again and with very low or negative economic growth such as 

has been experienced in the past few years the relationship has become too 

unstable to be of very much practical value. 

The average energy ratio has more stability, showing a steady 

decline from about 8.5 m.t.c.e. per £1 billion of GDP in the middle 1950's 

to a little under 7.0 m.t.c.e. in 1976. Since 1900 the amount of energy 

per£ of GDP has fallen by about!% per year. GDP itself, however, has 

risen on average by about 1 !% annually, so that there has been a steady 

increasing total consumption of energy over the· whole period (Ref. 56). 

In addition to its relationship with GDP, energy demand is 

closely associated with energy prices. lt has been estimated (Ref. 56 ) 

that crude oil prices could rise to between two and three times their 

March 1978 real level by the end of the century. So long as imported oil 

provides the marginal fuel in the UK economy, this price represents the 

marginal resource cost of primary energy to the UK, and it is the price 

towards which other primary fuels will tend to move. In a simplified 

economic system supply and demand would be matched by consumers 

choosing the quantity and mix (where alternatives exist) of fuels which 

maximise their satisfaction while fuel producers charged the marginal costs 

of meeting these levels of demand. Thus, attempts have been made to 

establish price elasticities of demand and supply for various fuels, but these 

have to date proved largely unrewarding (Ref. 56_). This is largely because 

the energy sector is characterised by many rigidities, lags and imperfections 

in the adjustment of prices. 
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The forecasting system developed by the Department of Energy 

in essence relates the demand for useful heat for various purposes in various 

markets l"o the movements of the appropriate economic indicators and other, 

non-price, variables on the basis of past statistical relationships along 

conventional econometric lines (Ref. 56 ) • 

Chapman, in his study 'Future Transport Fuels', has projected 

energy dema·nd for seven sectors of the economy to the year 2025, for three 

levels of GDP. Using the concept of 'useful energy' this study takes the 

following GDP projections as its starting po~nt : 

TABLE 32: GDP PROJECTIONS 

I Average percentage 
Growtn per annum 

1975- 2000 

2000 - 2025 

GDP in 109 1970£'s 
1975 
2000 
2025 

SOURCE : ReJ. 36. 

High 
Growth 

3.5 

3.0 

47.5 
112.3 
235.0 

Medium 
Growth 

2.5 

1.5 

47.5 
88.0 

127.8 

Low. 
Growth 

1.5 

1.0 

47.5 
68.9 
88.4 

The results given in Table 33, , show a range of energy demands 

by the different sectors for the two years, 2000 and 2025. Transport energy 

needs are estimated to increase by more than 50% in 2000 and to double by 

2025 in the medium GDP growth case. Assuming high GDP growth, energy 

demands may dooble by the turn of the century 1 and quadruple by the later 

date. 

The primary fuel demands ar-ising from ·.these projected useful 

energy demands are shown in Figure 11 , together with some produced by 

the Department of Energy (Ref .58 ) • Possible savings in future needs are 

also illustrated in this Figure, for high and low growth assumptions. 
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TABLE 33 PROJECTED USEFUL ENERGY DEMANDS (10
15 J) 

----~~~~~~~~~~~~~~~~--~ 

·-
1974 2000 2025 

(data) ·~ 

High Medium Low High Medh1m Low 
Growth Growth Growth Growth· Growth Growth . 

Car transport 9.5 19.5. 17 15 23 19 16.5 

Domestic 1000 1400 1350 1300 1910 1740 1570 

Industrial 3400 2670 2080 6300 3410 2350 

Other services 230 500 400 330 980 560 400 

Public services 225 660 530 420 1660 930 650 

Agriculture 34 90 70 50 . 190 100 70 

TOTAL 3248.5 6369.5 5277 4395 11673 7099 5296.5 

(with car transport 
at conventional efficiency) (3334) (6545) (5430) (4530) (11880) (7270) (5445) 

I 

SOURCE: Ref. 36. 
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The projected primary fuel demands in the high and low GDP 

cases ore compared with the indigenous fuel supplies in Figures 12 aod 13. 

In the low growth case, shown in Figure 12 , there is a very large fuel 

surplus from 1980 to 2010. This surplus of indigenous supplies is likely to 

be exported. However, export of fuel in this quantity will have a sub

stantial imr-'Clct on GDP and will provide funds for increasing GDP (which 

will be increased by the multiples effect). Thus the fuel surplus arising 

from a low GDP projection is likely to increase GDP. 

In the high growth case there is a significrmtly smaller fuel 

surplus, especially after 1990, and a very large fuel deficit, ofter 

2010. Also shown in Figure 13 are the nuclear capacities required to 

make up this deficit, and at the top of the graph the average rote of 

construction of nuclear power stations. Chapman (Ref o 36) concludes 

that if nuclear capacity were to be expanded upon the scale shown, then 

the nuclear industry would absorb 20~30% of all industrial investment, which 

would significantly reduce the prospects for GDP growth. Were the gap 

in fuel supplies to be made up by large scale fuel imports this would alsG 

decrease GDP and carry additional penalties. Thus the high GDP 

projection leads to a situation in which GDP growth is curtailed. 

3"' l.L Projections of road freight vehicle fuel usage 

·For this thesis, a further approach was explored involving 

extrapolating historical trends by means of various trend-fitting curves 

in an attempt to estimate future fuel needs of road goods transport. Seven 

such curves were applied to road freight fuel usage data for 1950 to 1974 

and 1950 to 1977 o The co-ordinates of the equation best fitting the past 

pattern of demand were projected in each case to 2025 and the results shown 

in Table 34 ar:d ·in Figure 14 •• (and detailed in Appendix 6 ) • 

Although statistically sound, the results ore rather unsatisfactory on a priori 

grounds, in that total road freight fuel consumption is projected to increase 

more quickly than derv. In other words, motor spirit, (for wh i eh no 
~ 

statistically suitable projection emerged) is by implication increasing its 

sh~re of the total. (Alternatively, it may be that the apparent fuel gap 

will be made up by battery vehicles by 2025. -but this possibility lies 

outside the scope of the method adopted here). 
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TABLE 34TREND EXTRAPOLATIOf'~S 

'Best' forecasts of fuel usage by goods vehicles in the UK, 1980-2025 

('000 tons) 

1 Motor 
Spirit 

2• Derv 

Total Fore-
cast 

Note: 

1980 1990 2000 2010 2020 2025 

Forecasts statistical! y unsound 

5085 5561 5729 5785 5804 5808 
(5392) (6073) (6351) (6459) (6500) (6509) 

7865 9004 9767 10256 10562 
(8004) (9357) (10238) (10752) (11035) 

(1) Figures in brackets ( ) refer to forecasts based 

upon 1953-1974 data. Figures without brackets 

refer to for~casts based upon 1953-1977 datao 

10668 
(11121) 

{2) 'Best' forecasts shown above have been se I ected on 

joint statistical and intuitive grounds from the 

forecasts produced by the seven trend fit curves 

shown in Appendices. 

(3) The equations used here were developed 

by Dr. D. Pitfield of LoutJ!1borough University 

and run on rhe University's JCL Computer. 
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FIGURE 14 :FORECASTS OF FUEL USED BY ROAD FRF.IGHT VEHICLES IN GREAT BRITAIN 1970 to 2025 
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SECTION 4 

ALTERNATIVE FUELS FOR GOODS TRANSPORT 

Given that conventionaL fueLs wilt be depleted at some time in 

the future, and aLternatives .must be developed if freight 

transport and distribution are to continue, which. of the possibZe 

future fueZs are most promising economicaLLy, technically, 

enviro~~entaZly and strategicaZZy? 
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Section 4 . ALTERNATIVE FUELS FOR GOODS TRANSPORT 

4. 1 o Introduction 

Given that conventional petroleum will be in short supply, and hence 

expensive, by the turn of the century (as discussed in Section 3 ), 

supplementary fuels may be needed within the next 25 years if transport 

is to continue functioning. With sufficient time and expenditure, almost 

any high-energy chemical compound can be manufactured from abundant 

resources of ene;gy and raw materials and, in turn, engines can be 

developed to burn almost any conventional fuel o Long lead times and 

technological and capital constraints will make the substantial replacement 

of petroleum by synthetic fuels improbable before about the y~r 2000. 

Rather, it appears that synthetic fuels will be introduced gradually, perhaps 

being blended with existing fuels to prolong their availability, and that 

replacement will be evoluntionary. 

At some future time, when existing oil supplies are depleted transport 

systems, both freight and passenger, will be powered by a combination of 

synthetic liquid fuels and by electric batterieso Battery vehicles are 

considered later in this thesis, in Section 5. 

Of the many potential fuels that could be manufactured from a wide variety 

of energy sources (Shown in Table3$, those derived from coal and oil 

shale may, be developed most quickly, with hydrogen from water, ammonia, 

and ethanol and other alcohols from crops being long term possibilities. 

Several of these possible fuels are discussed in the following section, together 

with natural gas and liquefied petroleum.gas (L.P.G.) which may be short

term alternatives to conventional fuels. 

Before a dispassionate choice of fuels can be made from the many possible, 

objective selection criteria based on economic, technical, environmental 

and strategic factors must be developed and applied. Hagey and Parker · 

(Ref. 59) and Farmer (Ref.61 ) have attempted to do this, cl though the necessary 

data are very far from complete. Bearing in mind the speculative nature of 

·many assumptions, the following general comparisons may be made. 
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4. (.. . Economic Criteria 

In considering the cost of fuels, published information on manufacturir;g cozts 

~as converted to a common basis. Estimates of distribution costs were based 

on analysis (or similarities to, or departures from) the system presently used for 

.p~troleum fuels. This initial screening divided the fuels into two groups 

with respect to price at the pumps (in 1973 doflars per million, Btu, including 

a 10 per cent discounted cash flow (D. C. F.) return, ex tax). Those costing 

less than $4 per million BTU include: 

Distillate from oil shale 

Gasoline from oil shale 

Distillate from coal 

Gasoline from coal 

Methanol from coal 

Those costing more than $4.50 per million Btu include: 

Oxt-compounds from coal 

Methane from coal 

Fermentation alcohol 

Ammonia 

Hydrogen from coal 

Hydrogen from water 

Hydrazine 

A comparison of the estimated costs of the first group of fuels for 1982, 1990 

and 2000 is shown in Table .37. lt is unlikely that fuels from American oil 

shales would be available in large enough quantities for export, and thus the 

oil shale costs are perhaps academic for Britain. Since American coal, 

particularly the open cast coal from the Western States, is much cheaper than 

· its British equivalent (the above prices are based on coal at $3 per ton), the 

cost of gasoline and distillate made from British coal would presumably be higher 

than the figures given above. 
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4. 3 •. Technical Criteria 

The compatibility of the different fuels with existing engines ranges from high 

for petroleum-type fuels in all engines (except those powered by fuel cells) 

to moderate for oxygenated compounds and methane in Otto cycle engines, 

to low for hydrogen and ammonia (Ref. 61 ). Other things being equal, the 

high compotibil ity fuels will be adopted first. 

The heat content, octane and cetane numbers (Table36), flammability limits,. 

heat of vaporization, etc., vary markedly. The relatively low volumetric 

heat of combustion (BTU/gal o) of the alcohols, hydrogen, ammonia, methane 

and hydrazine is a significant disadvantage, implying that relatively large 

volumes of these fuels will be needed to be stored on the vehicle to give 

adequate range between refilling. 

The high octane numbers of ammonia, methane and methanol indicate that 

design of a modified Otto cycle engine with a higher thermal efficiency than· 

that possible with conventional fuels should be practicable. (The combustion 

characteristics of hydrogen are such that a rating by the accepted anti-knock 

methods is difficult, and no octane (or cetane) numbers have been published). 

The Cetane Number of all the fuels shown in Table36, except for the distillates 

of petroleum, shale and coal, are too low to allow their operation in a compression 

ignition engine. Use of Cetane-improving additives, supplementary sources of 

ignition (glow-plug, pilot injection or spark plug) blends with high-cetane number 

fractions, or of exceptionally high compression ratios (say greater than 22) would 

probably circumvent this problem. 

The low boiling points of hydrogen, methane and ammonia indicate that storage os 

cryogenic liquids or pressurized gases may be necessary, both of which would be 

serious disadvantages. 

Toxicity varies from high in the case of hydrozine and ammonia, to intermediate 

for shale and cool hydrocarbons and alcohols, to low for methane and hydrogen. 
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4. 4; Environmental Crit~ria 

Fuels that become widely used musi· be environmentally acceptable, both in 

production and operation. Opposition to iarge-scale despoilation and river 
I. 

pollution caused by open cast mining of coal and shale in America has slowed 

exploitation and could halt it completely. Similarly, potential radiation leakages 

have delayed nuclear programmes in several countries. Solutions may become 

apparent, but will add to the final fuel costs. In operation, minimal emissions 

of pollutants are desirable. Hydrogen combustion produces only \Vater, whereas 

ammonia may be unacceptable on poll ut ion considerations. Information on 

pollutants from other fuels is limited (although being researched). lt is probable 

that the petroleum-type fuels will have similar characteristics to conventional fuels, 

whereas methanol may give lower nitrous oxide emissions. 

4:5. Strategic Criteria 

Availability of source materials will influence long term use and initial acceptance. 

Alcohols from crops represent a renewable fuel; hydrogen and ammonia could be 

produced from non-fossil fuel sources; coal and·shale derived fuels, although limited, 

will be available for much longer than such 11 alternative fuels 11 as natural gas and 

liquefied petroleum gas. 

The ease with which a fuel can be introduced will affect its acceptance and wiil 

be determined by such factors as compatibility with existing engines and distribution 

systems, ease of blending with conventional fuels, and the speed with which it 

can be manufactured. On each of these points, the coal and shale dervied fuels 

score more highly than, say, hydrogen, ammonia or alcohols from crops. 
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4. 6. Hydrogen 

Production 

The supply of hydrogen is virtually unlimited, but since it is n~t a primary source 

of energy, its production will I ead to an overall increase in energy demand. 

However, because hydrogen may be obtained from water by electrolysis using 

nuclear or solar power, no fossil fuel source need be involved. Moreover, 

electrolysis produces hydrogen of high quality, together with the exact amount 

of oxygen required for its combustion. In addition, the product of combustion 

(water) is the same as the original resource. 

An alternative, and current! y cheaper. source of hydrogen is coal, and other 

hydrocarbon fuels (Ref.65). Partial oxidation of hydrocarbons yields mainly 

hydrogen and carbon monoxide. Further reaction of the latter with steam can 

yield more hydrogen and carbon dioxide. Similarly, the reaction of steam with 

heated carbon, or directly with a hydrocarbon, yields mainly hydrogen and carbon 

monoxide which may be treated in the same manner as above. The advantage 

of these processes is. that poor hydrocarbons could be used as a clean burning fuel. 

As fossil fuel supplies become depeleted, processes such as these will become 

more important. A disadvantage of obtaining hydrogen from fossil fuels is that 

the carbon from the fuel •uould ultimately form carbon dioxide, an undesirable, 

but unavoidable by-product. Other processes are available for hydrogen production, 

but generally ore not so attractive because of low yields or undesirable by-products. 

Suitability and advantages 

Hydrogen is a suitable fuel for many power plants, including internal or external 

combustion engines (both reciprocating and rotary) and fuel cells. Limited 

modifications ore necessary to the internal combustion spark iginition engine to 

allow for the combustibility and high flame· speed of hydrogen. Possible remedies 

for pre-ignition and knock probkms (which were considered major disadvantages 

in early research) have been suggested by Karim and Taylor (Ref. 65) and others 

(Ref. 59). Much less is known about the use of hydrogen in compression ignition 

engines although Karim and Klat (Ref.64) have recently undertaken experimental 

and analytical studies with hydrogen in such an engine. lt appears that operation 

on hydrogen/air mixtures is possible in compression-ignition engines, but that 

ignition is assisted by the injection of a small quantity of another fuel, such as 

methane. 
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Extremely low exhaust emission levels are obtainable, with practically no 

hydrocarbon or carbon monoxide emissions, and owing to the wide flammability 

limits of hydrogen - air mixtures, low emissions of oxides of nitrogen are also 

obtair~able. Emissions of lead, sulphur diox'ide and smoke are eliminated. 

Disadvantages and problems 

Storage, both on and off the vehicle, is undoubtedly the major technical 

·problem to be overcome before hydrogen could gain acceptance as a fuel. In 

a compressed gas form, hydrogen's sheer bulk makes it completely impracticable, 

and even in a cryogenic liquid form the complex and expensive storage requires 

a tank capacity 3. 5 times that needed for gasoline on an equivalent energy 

basis (Ref.63). Moreover, storage temperatures of under -233-o C must 

be maintained, much lower than for natural gas. -130° C. Under 

such circumstances provision must be made for either energy input or vapour 

boil off. Research into the feasibility of storing hydrogen in metal hydride 

beds is being undertaken, but a reduction in the large weight and expense of the 

beds and their associated heat exchansers will be necessary before this technique 

can be considered practical (Ref.63). Phi I ips Research laboratories are reported 

to have developed a means of hydrogen storage in certain intermetall ic compounds. 

At room temperature and a pressure of 2. 5 atmospheres, one such compound (LaNi5 
is claimed to store hydrogen at near! y twice its density in I iquid form (Ref. 64). 

Another disadvantage is that although internal combus~ion engines will run on 

hydrogen fuel with a fuel economy on an energy expended per mile basis better 

than that for gasoline, maximum engine power output for a given engine size 

is reduced significantly. In order to maintain power output levels, substantial 

re-design of power plants will be needed, particularly with respect to fuel/ 

air metering and distribution, ignition and exhaust systems for hydrogen fuelled 

operation (Refo63). 

Future prospects 

. Hydrogen's low volumetric energy density (Table'3~ poses a serious obstacle to 

its general use, but this may be I ess severe for trucks (where more space for 

fuel storage is available) than for cars. The price of hydrogen per unit of 

energy is likely to remain signifantly higher than fossil fuel derived sources 
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of energy, at least in this ceni·ury (Ref. 6"-J). Whilst this cost penal t)' exists, 

hydrogen will probably not gain wide acceptance. In the more distant future 

however, hydrogen's non-fossil fuel source, together with its low pollution · 

characteristics may make it a ver; aHractive fuel. 

4. 7. Methanol 

Production 

I 

Methanol is an alcohol that can be produced from a variety of sources, e. g. 

coal, natural gas, wood and refuse. In the long-term, coal is the most promising 

source (probably using the Lurgi method of gasification followed by methanol 

synthesis from carbon monoxide and hydro.gen (Ref. 60). A maximum thermal 

efficiency of about 50 per cent is envisaged (Ref.67). 

eompanies are interested particular! y in methanol production from oil well methane 

gas {instead of flaring the methane, it may be converted to methanol). .(Ref. 63). 

This will certainly be cheaper than the coal method, but is, of course, dependent 

on a relatively scarce resource. Production ofmethanol from natural gas results 

in an energy loss of about 40 per cent (Ref.66). California and Maine are 

proposing to manufacture methanol from forest wastes for use as blending ingredients 

in gasoline, whilst the city of Seattle has planned to produce methanol from 

municipal wastes, again forgasoline blends. (Ref.67). 

Suitability and advantages 

Methanol (together with methane, ammonia, ethanol and high oxygenated compounds) 

has a Cetane Number (Table 3~ too low to make it attractive as a fuel for compression 

ignition engines. The use of Cetane-improving additives, supplementary sources 

of ignition (eog. a glow plug, pilot-injection, spark plug), blending with high

Cetane Number fractions, or of exceptionally high ratios {say greater than 22) 

would probably circumvent the problem. {Ref. 59). 

With slight modification to carburation and induction systems, to permit greater 

fuel flow rates, avoid cold starting difficulties and prevent icing, conventional 

spark ignition engines will operate on methanal fuel. The a.dvantages are mainly 

reduced exhaust emissions due to the lean methanol/air ratio operation allowed 

by the wider flammability limits of the mixture, and its inherently clean running 

nature,as methanol possesses a lower proportion of carbon in the fuel molecule 

than gasoline. (Ref.63). 
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Neat methanol is, in many respects, a desirable fllel. lt has been extensively 

used in motor racing because, among other things, it provides about 10 per cent 

more power than petrol (due to its higher latent heat of vaporisation wi1ich cools 

incoming air, making it more dense and increasing rross flow). (Ref.67). 

Methanol has been widely tested as a blending agent in petrol. Banks and Barker 

(Ref. 66) using cars adjusted for normal petrol running, found that the presence 

of methanol resulted in both power and fuel consumption penal ties (but reduced 

carbon monoxide emissions). Adding 20 per cent methanol to petrol should 

impose a 10 per cent fuel economy penalty on a volume basis since the heat content 

of methanol is only about half that of petrol by both weight and volume (Toble36). 

American research (Ref. 68) however, indicates that the penalty may be somewhat 

lower than that expected on a heat content basis. The reason for this is not certain, 

but is probably due to dissociation of some methanol during the compression stroke 

into carbon monoxide and hydrogen, thereby providing more energy. 

Disadvantages 

Methanol suffers from a number of disadvantages in addition to poor fuel economy • 

. These include poor cold-starting, a solvent action, on affinity for water and 

phase separation. 

Poor cold starting results from a high heat of vaporisation requiring large amounts 

of heat which may not be available when the engine is cold, unless external heat 

is supplied. 

The solvent action will require changes to material specifications of fuel tanks, 

pipelines, gaskets, floats and diaphragms to prevent damage. AI though not a 

serious problem for new vehicles, retrofitting would be expensive. 

Phose separation (i.e. the separation of a petrol/methoonol blend into its 

components) may be a serious problem, particularly since the presence of 0. 1 

per cent of water may cause it, and methanol attracts water. The addition of 

isobutanol to the blend may be an effective remedy. (Ref. 66). 

Methanol's affinity for water, besides leading to phose separation of blends, 

may cause volumetric metering problems. 
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~uturc prospects 

Future prospects appear promising, at least for use with design-stage-modified . 

spark ignition engines, gas turbines and fuel cells. Estimates of the comparati~e 

costs of petrol and methanol vary quite widely. Gregory and Rosenburg 

{Ref. 68) suggest a similar cost per gallon for the two fuels (i.e. on an energy 

basis methanol would be about double the cost of petrol). Another source (Ref.67) 

estimates that the cost of methanol will be nearly double that of petrol on a 

volume basis (i.e. four times on an energy basis). Cost projections for the year 

2, 000 indicate that methanol may be more expensive than gasoline or distillate 

derived from either coal or oil shale (Table37), but since the technology for 

methanol production is available, methanol may have the advantage over other 

coal-derived liquids (Ref.67). 

4~8.. Ammonia 

Production 

Ammonia is produced commercially from nitrogen and hydrogen. Whilst nitrogen 

is readily available from the atmosphere, hydrogen must be manufactured by 

the methods discussed in section 4. 6. Thus, I ike hydrogen, ammonia is potentially 

obtainable from non-fossil fuel sources. 

Suitability and advantages 

Ammonia may be burned in a range of engines similar to that for hydrogen, but 

low flame speeds, relatively high heat of vaporization and low heat content 

imply that changes will be necessary to fuel/air metering and distribution and 

compression ratios to obtain optimum conditions. (Refs. 63and 59). 

The high octane number of ammonia (in common with metliane and methanol) 

5Uggests that it should be feasible to design an ·atto cycle engine (high compression 

ratio) that would have a higher thermal efficiency than that possible with lower 

octane fuels (such as petroleum derived fuels). 

Disadvantages 

Although hydro carbon· emissions are eliminated when ammonia is usedas a fuel, 

emissions of oxides of nitrogen would be increased. Moreover, some unburnt 

ammonia would be exhausted, with potentially serious effects. 
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TABLE 35 INITIAL LIST OF POTENTIAL FUELS 

Energy Sources Auxiliary Material· Potential Automotive 
Sources 

Coal Air 

. Shale oil Limestone 

·Tar sands Water 

Uranium and thorium 

Nuclear Fusion 

Solar radiation 

Sol id wastes 

Animal wastes 

Wind power 

Tidal p9wer 

Hydropower 

Geothermal heat 

'-

FINAl liST OF POTENTIAL FUELS 

1. Coal derived fuels : gasoline 
middle distillate 
!lll'ethanol 

Fuels 

Acetylene 

Ammonia 

Carbon Monoxide 

Coal 

Distillate oils 

Ethanol 

Gasoline 

Heavy oils 

Hydrazine 

Hydrogen 

l. P. G. (synthetic) 

Methanol 

Methyl Amines 

Natural Gas 

Napthas 

Vegetable oils 

oxygenated compounds 
hydrogen 

2. Shale derived fuels: gasoline 
middle distillates 

3. Ethanol via fermentation 

4o Hydrogen from water by electrolysis 

5. Ammonia from coal or water derived hydr~gen 

6. Hydrazine 

Source: Ref. 59 
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---- -- -- -- --- - - -- -- ----

TABLE 36 . COMPARISON OF SELECTED PROPERTIES OF ALTERNATIVE FUELS I . -

-- -- ---
Coal Shale Petroleum 

Hydrogen Methane Ammonia Hydrazine Methanol Ethanol High Gasol. Distill. Gasol. Distill. Gasol. Distil! 
(liquid) Oxyg. 

·-- ---

Energy density 51,600 21,500 8,060 7,294 8,640 11,550 (11, 500) (18, 200 (17, 900) (18, 200) ( 18, 300) ( 18, 650) ( 18, 4q 
BTU/Ib 

Energy density 
BTU/cu. ft. (1) 85.2 90.9 83.5 104 95 95 (97) (105) ( 101) (100) (102) (100) (102) 

-
Research octane 130 130 106 106 (105) 82-98 35-91 86-93 -- number -w . 
Cetane number c:;Q <a (10) ( 15) ( 15) (0-5) (40) ( 12) (40-45) (0-5) 48 

' --
Fire hazard (2) p F G E G G F F F F F F 

Toxicity (2) E E-G p p G-P G-F G-F F F F F F F 

Hand! ing and storage p F P-F P-F F-G G-E E E E E E E 
characteri sties (2) 

Notes (1) -- Energy density at stoichiometric mix (i.e. at the chemically "ideal" air/fuel ratio) 
(2) Code= E = Excellent, G = Good, F =Fair, P = Poor 
(3) Blank spaces indicate lack of information 
(4) Figures in parentheses have been estimated by Hagey and Parker (Ref. ) 

Refs. 61, 59, 68, 63, 71. -- I 



TABLE 37 COMPARATIVE COSTS OF POTENTlAL FUTURE FUELS 

-
$per million BTU's 

1982 1990 

Coal: --
Gasoline 3.35 3.15 

Distillate 2.75 2.50 
I 

Methanol 3.85 3.40 

Shale: --
Gasoline 2o65 2.60 

Distillate 2.05 2.00 

NOTE: Calculated cost at the pump, in 1973 dollars per 
million BTU, including a 10 per cent DCF return, 
ex tax 

Source: Ref. 60. 
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2.65 

2. 10 

2.95 

2. 15 

1.65 
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The c<?st of ammonia is likely to be high, both because production costs will 

be high, and because of its low energy content. In ad•:!Hion, storage problems 

would be severe {as with L.P.G. (Liquefied Petroleum Gas), pressures of 200 p.s. i. 

at 100 degrees F are needed to maintain a I iquid state). 

Future prospects 

Ammonia and hydrogen are similar in that both may be potentially made from 

non-fossil fuel sources. Ammonia has the higher volumetric energy density but 

suffers from being highly unpleasant and toxic, and at this stage it would appear 

preferable to use hydrogen directly rather than as a constituent in am~onia. 

4.9.. liquefied Petroleum Gases (L.P.G~ 

L. P. G. which consist largely of butane and propane, are not strictly alternative 

fuels since their use would not in any way reduce dependence upon crude oil. 

Rather, their widespread use would merely cause. a different emphasis to be placed 

upon the various products of the refinery process. 

L. P. G. may be used, with relatively minor modifications, in both spark ignition, 

and compression ignition engines. In the former, they may be used either alone, 

or as a dual fuel with petrol; in the latter, only in combinatio·ns with diesel. 

(Ref. 62). 

Advantages include reduced exhaust emissions, longer engine life and lower 

maintenance costs. Fuel costs can also be significantly lower, but this will 

depend upon the price and taxation structure of the market. 

Disadvantages include the heavy and bulky pressure vessels necessary for storage, 

and a reduced power output (caused by decreased volumetric efficiency due to 

the completely gaseous nature of the inlet charge. This may be overcome by 

cooling, and hence increasing the density of the inlet charge). 
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4. 10, Natural Gas 

Natural gas consists largely of methane and ethane, and although an alternative 

to petroleum fuels, reserves ore insufficient to sustain a major demand by transport 

much beyond the turn of the century. 

With relatively minor modifications to ignition and carburation, spark ignition 

internal combustion engines can use the fuel with reduced exhaust emissions 

(its cetane number, however, is too low to permit its use in compressio~ ignition 

engines. Disadvantages include problems with storage, either in pressurized 

or cryogenic ( -260 degrees F) tanks, and a reduced power output compared 

to petrol (a result of decreased volumetric efficiency due t0 the campi etely 

gaseous nature of the inlet charge. This may be overcome by cooling and hence 

increasing the density of the charge). 

Because of the problems associated with storage, natural gas is suited more to 

commercial vehicle than to car operations. 

4. 11. Other Potentia! Fuels 

Groham (Ref.69) discusses fuels manufactured from crops by fermentation, pyrolysis 

and hydrogenation of cellulosic material. He suggests that cellulose from trees 

and shrubs would be more suitable than that from crops, since thelatter would be 

grown on land needed for food crops. Both I iquid and gaseous fuels may be obtained, 

at a cost, on preliminary estimates, of the same order as conventional petroleum 

fuels. Ethanol derived from crops (or any other source) could be burnt in spark 

ignition internal combustion engines (it has a higher octane number than petrol), 

but will be unsuitable for compression ignition engines (having a cetane number 

too low). 

Tipler (Ref. 70) discusses the use of pulverised coal in diesel engines. He 

concludes that severe wear of engin~ components by particle abrasion, together 

with combustion and other problems make the use of such a fuel unlikely in the 

foreseeable future. If these problems were solved, then the overall thermal 

efficiency would be equivalent to that of a petroleum fuelled diesel engine. 
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Acetylene, produced either by the thermal cracking of hydrocarbons or by the 

reaction between water and calcium carbide, has a heat value of 21,600 B. tu•sjlb 

- higher than that of gasoline and about the same as methane. The compound 

has wide flammability limits and an explosive behaviour, and for these reasons, 

together with the problem of either generating or storing the gas on the vehicle, 

make it impractical as a vehicle fuel. (Ref.63). · 
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SECTION 5 

MOTIVE POWER UNITS 

How much fuel could be saved by replacing·existing petrol engined 

vans and trucks by vehicles powered by diesels? What other · 

engines can be considered for road vehicles? What contribution 

can electric vehicles make to freight transport - can they ever 

be practical options for heavy vehicles? This section attempts 

to assess these and other questions related to future power units. 
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Section 5 .. MOTIVE POWI:R UN ITS 

In this section, the relative efficiencies of the diesel and petrol 

engine ore outlined and the potential development of others- such as gas turbines, 

rankine and stirling engines- are discussed. Finally, the scope for battery 

electric road vehicles is discussed in some detail. 

5. 1. Diesel and Petrol Engines 

Of the motive power units currently available, the diesel engine 

.-- offers the highest energy efficiency, and for many years has been almost 

universally crlopted for vehicles of over five tons unladen weight (99% of 

these are diesel powered {Ref o 72) ).. In the lower weight ranges - particularly 

for light vans, the petrol engine's cheapness, better acceleration, and 

lower weight make it the preferred engine for about two-thirds of all goods 

vehicles, as the table below shows : 

TABLE 38 VEHICLES REGISTERED FOR THE FIRST TIME : BY MOTIVE POWER 

UNIT (!OOO's) 

1966 % 1971 %· 1976 

Electric 1.9 Oo9 1.6 Oo7 1.2 

Petrol 137.7 62.3 153o5 66o7 137 o6 

Diesel 80o5 36o6 75~ 1 32o6 64o8 

All Vehicles 
I 

220o2 100 230.2 100 203o6 

Source: Transport Statistics, Great Britain 1966-19760 HMSO 1978o 

Diesel engines have an ove.rall gross energy conversion eff}ciency 

of about 26%, compared with.about 18% for petrol engines. {Bouladon 

(Ref. 17) quotes very different figures - 30-38% for diesel engines and 

. 12-14% for petrol). Bearing in mind that in urban conditions up to ha If the 

enel'gy supplied at the wheels is dissipated in braking the range of overall 

gross efficiency for diesels becomes 13-26% and for petrol engined vehicles, 

9-18%. Diesel engines in other words have a considerably higher energy 

efficiency than petrol units o This is confirmed by the detailed research 

. findings of Kent {Ref. 73) presented in Table 39, and Figure 15., 

which show that petrol vehicles require between about one-sixth and one

half as much fuel as diesel vehicles to perform the same work over both 

ruruat and urban routes inAmerica, and at various vehide weights. 
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TABLE39 PETROL AND DIESEL FUEL CONSUMPTION RATES FOR RURAL 

AND URBAN TRUNKING OPERATIONS 

. FUEL CONSUMPTION RATES (LITRES PER 1 OOKM) 

Gross vehicle Petrol Vehicle Diesel Vehicle 
weight (ib) Rural Urban Rural Urban 

17000 35.31 41 .24 - -
21300 38.98 31.30 - -
27000 43.22 54.59 - -
34500 48.59 61.88 41.52 34.46 

42000 53.95 68.47 41.52 42.12 

51200 57.06 78.12 38.59 46.59 

59500 65.82 85.89 44.47 52.71 

67900 72.60 92.94 50.00 58.83 

Source : Ref. 73. 

Note: Data converted from U.S. gallons per mile to litres per 100 km. 

by multiplying by factor of 235.3 

Replacement of petrol engined light vehicles by diesel powered 

units could give potential fuel savings equal to perhaps one third of the 

present motor spirit consumption - amounting to 750,000 tons in recent years. 

Diesel engines have other apparent advantages, including lower 

carbon monoxide and hydrocarbon emissionsand no lead pollution 

(Boulcidon, Ref. 17). Further, from a tonne of crude oil itis usually 

only possible to obtain 250 kg. of petrol cs compared with 350 kgs. of 

diesel fuel. {Ref. 17). (The theoretical maximum for motor spirit and 

diesel is about 75% of end products, but the process involved produces no 

. other usuab le end produ et { Harman, Ref. 7 4 ) ) • 

. In recent years, the proportion of diesel vehicles in the total 

number of registrations has actually fallen (from 36% in 1966 to 32% in 

1976- Table 38). What then are the prospects for greater 1dieselization 1 
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FIGURE 15: COMPARISON OF RURAL AND URBAN FUEL CONSUMPTION. 
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SOURCE : Ref. 73. 

NOTE: Data converted from U.S. gallons per mile to litres per 100 kms. 
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of lorries? As fuel costs increase -as they must in future -as a proportion 

of toto I operating expense:; 1 then the greater first cost of diesel 

engines will be offset by petrol vehicles• higher flJel costs (except for 

very low mileage 1ight vans) o From the figures presented below, it may 

be seen that in the case of a 35 cwt. unladen weight vehicle, the operating 

costs structure is such that at current fuel prices (£1 o 10 per gallon, August 

1979) diesel and petrol vehicles givepracticail_y ld:mticai cperating costs per 

mile (assuming a 300 mile/week regime). If a 50% fuel price increase 

were to be imposed (other things remaining equal) then the diesel vehicle 

would have more than a one penny per mil-e cost advantage : 

TABLE40 THE EFFECT OF FUEL PRICE INCREASES ON THE OF£RATING 

COST STRUCTURE OF PETROL AND DIESEL ENGINED LIGHT 

VEHICLES (pence per mile) 

PETROL 

Miles per week 100 mpw 300 mpw 500 mpw 
Pence per gallon ao 165 100 165 100 165 

I .. 
15cwt 102.9 105.1 43.7 45.9 31.8 34.0 

35cwt 117.6 121.0 53.3 56.7 40.4. 43.7 

DIESEL 

Miles per week lOO mpw 300 mpw 500 mpw 
Pence per ga lion• 110 165 100 165 100 165 

15cwt 104.7 106.0 43.8 45.2 31.6 33.0 

35cwt 121.5 124.0 53.4 55.8 39.8 43.2 

Source : Commercial Motor Tables of Operating Costs, 1979. 

This cost advantage will undoubtediy encourage greater adoption 

of diesel vehicles in the future, but is probably insufficient in itself to 

encourage a wholesale switch to the more efficient engine. 

A highe~ level of duty upon petrol than upon diesel would widen 

the price differential and speed the change to diesel engines. The rate of 

duty on diesel fuel as a proportion of selling price in the United Kingdom 
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is i"he highest among EEC members, and we are the only country with a higher 

levy upon diesel than petrol : 

TABLE41 DUTIES AS A PERCENTAGE OF SALES PRICE 

4 Star Petrol Diesel 

1970 1973 1976 1970 1973 1976 

U.K. 69 54 49 71 54 57 

Belgium 69 69 57 55 52 42 

Denmark 58 48 44 - - -
Germany 67 63 59 70 63 57 

France 73 67 54 66 60 50 

Irish Republic 64 56 51 - - 37 

Italy 70 69 64 70 55 43 

Luxemburg 64 61 48 36 30 21 

Netherlands 69 67 58 26 42 37 

Source : Ref. 7 

Existing diesel engines are no doubt capable of further development 

to improve energy efficiencies, and so-called •economy• engines, such as 

the Rolls Royce 265L will become the standard. According to the National 

Freight Corporation (NFC) (Ref. 75) vehicles fitted with this high torque, 

lows~ed engine indicate an average improvement of approximately! mpg. 

when compared with similar vehicles fitted with the 220 normally aspirated 

engine on the same operation. Turbo-charging in this case allows the 

required power output to be achieved at a lower engine speed, thereby 

a~oiding the high frictional and pumping losses which cause the rise in 

specific consumption at high speeds 0 

One of the disadvantages of the nigh torque low speed engine 

is that to obtain the most efficient final drive ratio with a power to weight 

ratio of around 8BHP/ton,. maximum road speeds could be in excess of 70 mph. 

As discussed in the section dealing with aerodynamic drag, the force needed 

to overcome air drag resistance increases with the square of velocity, and 

thereby offset part of the economy gained. 
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One way of overcoming this is to fit a road speed governor 1 · 

and NFCfigures indicafc improvemen~s of at least! mpg. on vehicles 

1 imited to 60 mph. Driver resistance to speed governors is of course a 

potentially serious problem, but NFC experience shows that providing 

the speed is not restricted to less than 60 mph. and that there is adequate 

bottom end torque, resistance is minimal. Thb is especially so if the 

alternative is a lower po~ered engine~ 

The company also emphasizes the importance of the choice 

of final drive ratio on the economy of the engine. 

Any method of reducing parasitic losses on an engine ought 

to result in improved fuel consumption. One relatively simple way of 

achieving this is by the fitment of a. viscous fan - a modification tested 

by the NFC (Ref. 75) who found however that no measurable improvement 

in fuel consumption is-apparent. lt was concluded that either the 

improvements were so small that they were hidden by the normal variations 

that occur, or that any savings in energy were used to provide small im

provements in acceleration rather than fuel consumption. 
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5. 2. Gas Turbines 

In many respects the gas turbine appears to be an ideal vehicular power 

plant: it is long-lived ancl relatively lightweight, produces a smooth and 

vibrationless rotary output, is low in pollutant emissions, has a high order 

of mechanical efficiency (up to 98 per cent) and may operate successfully 

on a variety of fuels (Ref. 76 ). There are problems, however, and their 

solution add significantly to the complexity and cost of the gas turbine. 

In its simplest form, the gas turbine comprises a compressor, a combustor and 

a turbine I inked to the compressor by means of a shaft. In operation, the 

shaft rotates, the compressor increases the kinetic energy of the air, which 

diffuses to the top operating pressure at which fuel is burned at constant pressure 

conditions to further increase the kinetic energy of the air. The high pressure, 

high velocity combustion products then drive the turbine and the surplus energy 

delivered to the shaft, over that required by the compressor, is avail ab I e to 

do work. 

The simple cycle has the obvious appeal of having very few components, 

but has limitations as an automotive engine where shaft power is required over 

a wide range of power and speed levels. At low shaft speeds the torque from 

the single turbine is very low, precisely when high forque is most needed. 

The addition of a second turbine rotor on a "split-shafe' driven by the exhaust 

gases from the compressor turbine overcomes many of the disadvantages of the 

simple turbine, but increases complexity and cost. Most engine manufacturers 

have selected this regenerative, free power turbine cycle (R. F. T. C.) for their 

development programmes (Ref. 77). 

The major disadvantage of the gas turbine (both simple and R. F. T. C.) shown by 

bench tests is its extremely low efficiency and high fuel consumption under 

zero load or under partial load conditions. A full match study between engine 

and load shows that the true situation is rather better however (Ref. 81 ) 
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A comparison of the characteristics of the diesel engine, the spark ignition 

engine and the conventional gas turbine engine shows that, of the three 

engines, the gas turbine engine demonstrates the greatest rate of increase in 

~ecific fuel consumption (S. F. C.) as the power output drops below the 

maximum,. but that the relative changes do not become significant until the 

level reduces below 30 per cent of full power. At 20 per cent of full power, 

the gas turbine engine has a S.F.C. nearly twice that of the other two engines, 

and below this, its S. F. C. rises very rap id I y (see figure 16 ). Several 

methods have been suggested to improve part-load S. F. C., including variable 

area nozzles to modify the approach velocity of the air entering. the turbine 

and compressor, and a differential gear system that permits the compressor 

speed to remain more nearly constant even when the power turbine speed 

varies from zero to the maximum operation speed (Ref. 77 ). Field tests· 

by General Motors, whose GT 309 gas turbine uses a power transfer system 

similar to the differential gear system, indicate that at 65 m.p.h. the turbine 

gives about the same fuel mileage as an equivalent diesel engine, but at low 

speeds the diesel is more efficient (Ref. 76 ). 

Some operating characteristics of the General Motors gas turbine and other turbines 

currently under development, are shown below. 

Table 42 : Operating characteristics of some automobile gas turbines 

Characteristic Chrysler G. M. Rover Volvo UACL 
(A-831) (G. T.305) (25/140) sss- 12 

Rated output, bhp 130 225 150 250 150 

1nl et temperature 
2167 2057 1998 2022 2410 

deg. R 

Specified fuel 
consumption 0.51 0.535 0.55 0.401 0.51 

lb/mph 

Source : Ref. 77 

126. 



Further improvement in turbine fuel efficiency may have to await advances 

in materials technology. The fuel efficiency at maximum power is highly 

dependent upon combustor- in I et temperature, and as present systems operate 

at the limit of combustor materials currently available, this will require 

that new materials are developed. The most interesting materials that are 

being studied are the ceramics, and of these, silicon nitride appears to offer 

the promise of operation at temperatures up to 3000 degrees R without any 

wall cooling. An increase to 3000 degrees R from present· maximum 

temperatures of about 2100 degrees Rat turbine entry, would have the 

effect of doubling developed horsepower or halving engine size in addition 

to reducing sp~cific fuel consumption. Until such a breakthrough occurs, 

several engine manufacturers have stated that their turbine development 

programmes will be de-emphasised. A senior British leyland executive has 

been recently quoted as saying, 11 We're waiting for a breakthrough in just 

the same way that Whittle needed high temperature nickelalloys, we need 

high temperature material for automotive turbines. 11 (Ref. 78 'j 
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Figure 16: Typi:al part-load operating characteristics 

of gas-turbine, diesel and spark-ignition engines 
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5.3. . The Stirling Engine 

The Stirling engine is a non-condensing gas cycle-external combustion engine. 

The cycle consists of : 

1. an isothermal compression via a coolant bath or the equivalent 

2. addition ofheat with the working fluid held at constant volume 

3. isothermal expansion, during which time the gas expands against 

a piston but does not cool because it is in thermal contact with a heat 

reservoir (e. g. a burner) 

4. the gas remains at constant volume while it is physically transferred 

to a 11 cold" space where it loses heat and drops in pressure to the 

original condition. (Ref. 76 ) 

In the original design, patented in 1816, Stirling used hot air as the working 

fluid, but research by the Philips Company in the late 1930's showed that much 

higher thermal efficiences (over 40 per cent) could be obtained by use of helium 

or hydrogen as the fluido 

The engine is inherently rather costly because it operates at high temperatures and 

pressures, requiring expensive materials, and because it has a complex drive 

mechanism and piston-displacer combination. Doubling the mean operating pressure 

to 200 atmospheres and raising the burner temperature are being considered as 

a means of increasing efficiencies still more, but this would also increase the 

materials cost. Rice (Ref.80) suggests that commercial Stirling engines may 

cost between 1! and 2 times as much as an equivalent rated modern diesel engine. 

One of the Stirling engine's greatest advantages over the diesel engine is its 

extremely low emission of pollutants. In terms of size, weight, efficiency and 

torque-speed characteristics, the two engines are rather similar. For equal 

continuous power outputs, the Stirling engine would offer greater efficiency and 

smaller bulk (but higher cost) than the diesel, although there are some trade

offs between size and efficiency for a given power level. Alternative I y, if a 

given size (bulk) Stirling engine is specified, one may trade greater efficiency 

for smaller horsepower and vice-versa. (Ref.76). 

Power to weight ratios appear to be relatively poor for the Stirling engine, but 

further development will almost certainly reduce weight to a level comparable 

with diesel engineso 
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SA. Ranking Cycle Engine 

The Rankine cycle is a thermodynamic cycle adapted to condensing fluids such 

os steam. The six basic steps, which vary slightly depending on the fluid, ore: 

1. adiabatic compression (in the liquid phase) 

2. heating 

3. further heating (and boiling) at constant temperature and pressure 

4. superheating of the vapour at constant volum·e 

5. adiabatic expansion during which work is done on a piston or turbine 

6. condensation and heat rejection at constant pressure and temperature (Ref. 76) 

Several different fluids may be considered for use in a vapour cycle : water has 

many advantages, but lubrication and freezing problems hove encouraged 

. development of other fluids. The choice of expander is very much linked with the 

choice of the working fluid; for steam in small powers, a reciprocating engine 

shows appreciably better isentropic efficiency, e. g. 75 per cent, compared with 

50- 60 per cent for a turbine. With a heavy-molecular weight fluid the turbin~ 

efficiency can be equal to that of a reciprocotor (Ref. 79 ). 

An engine based on the Rankine cycle has several inherent advantages, including 

lower atmospheric and noise pollution than on internal combustion engine and a 

a high work ratio (i.e. the ratio of work done in the cycle to positive, expander 

work)o Since the feed pump is pumping only liquid, of small volume compared with 

the vapour, little of the expander work is lost in compression. The achieved 

efficiency is therefore close to the ideal cycle efficiency, and in contrast to the 

gas turbine the Rankine cycle engine maintains a reasonable efficiency over a wide 

range of loads and sizes. (Ref.79 ). 

Maximum thermal efficiencies of modern reciprocating vapour engines, excluding 

auxil iory loads such os fans or feed pumps, very from about 17 per cent to 26 

per cent (Ref. 76) : in other words, they are less efficient than present diesel 

engines. Efficiency may be potentially improved by : 
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1. Raising the average temperature at which heat is added to the working 

fluido 

2. Reducing the average temperature at which heat is rejected by the 

fully expanded vapour, and 

3. Reducing irreversible I osses. 

Specfically, the design objectives giving the best increases in e~ficiency 

are firstly, to raise the temperature at which vapourization takes place 

(involving operating at the highest possible pressures) and secondly, to 

achieve low exhaust pressure thereby permitting a low temperature for the 

rejection of waste heat. Adopting such conditions could raise the theoretical 

thermal efficiency of a Rankine engine (using steam) from 23.3 per cent 

to 46 per cent (Ref. 76). The unfavourable trade-off between increased 

thermal efficiency and increased mass of the structures required to withstand 

pressures above 1000 psi or so, on the one hand, and the increased condenser 

volume needed ~o accommodate the very low pressure (less than 15 psi) steam, 

on the other, mean that both very high and very low pressures are probably 

impractical for goods vehicles. 

The future prospects for Rankine engined road vehicles ·are presently uncertain : 

Ayres and McKenna (Ref. 76 ) suggest that with large scale production, the 

steam engine may be competitive in cost with the internal combushtion 

engine, but Wilson (Ref. 79) conclues that it is unlikely to compete on 

grounds either of cost or full load economy. 
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5.5. . Battery Electric Road Vehicles 

5. 5. 1. Potential and Costs 

Much has been written about the prospects of improved battery 

vehicl~s providing the long term sol uti on to the transport of both goods and 

people, and in this section we briefly review some of the arguments for and 

against these pros?ects. In pa1ticular we look at the advantages and the 

prob!ems associated with .electric vehicles, possible developments in 

battery performance, the potential penetration of the future goods vehicle 

market and at the energy and raw material implications of their widespread 

introduction. 

There are about 400,000 battery electric road vehicles in 

Britain at present, with an annual market of some 1500 units (less than 

one per cent of total goods vehicles). Nearly all of these vehicles are milk 

floats which have anoperathgregime ideally suited to the characteristics 

of battery trucks. 

Electric vehicles have to date met with limited success, except 

in the specialised market for milk floats largely because : 

1. Initial costs of electric vehicles are significantly 

higher than those of equivalent internal combustion 

engined vehicles. 

2. Electric vehicles can provide only a relatively limited 

range on a single battery charge and, 

3. The performance of contemporary electric delivery 

vehicles is quite inadequate for modern rrod conditions. 

On the other hand, electric vehicles do possess a number of real 

advantages over internal combustion engined vehicles, including : 

1. They are not entirely dependent upon oil, since 

electricity can be generated from coal, nuclear, 

hydro and gas, etc. in addition to fuel oil. 
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2. They are generally reliable and long lasting. 

3. They are non-polluting (ignoring power station aspects). 

4. They are significant! y guieter than i .c. engines. 

5. They are simpler to drive than internal combustion 

engined vehicles (there is no starting problem and 

general! y no clutch and gearbox), and 

6. Electrical braking, which is not subject to wear, can 

usually be readily incorporated (the conventional 

hydraulic system would still be retained, mainly for 

use for emergency braking.). 

With regard to the cost disadvantage, the Table below shows clearly 

the economic strengths and weaknesses of electric vehicles, namely low 

running costs but very high capital costs. While operating costs per mile 

ore only about two-thirds of the petrol or diesel equivalent, most of this 

gain comes from differences in cost of fuel - and this is comparing a 

highly taxed petroleum product with an off-peak electricity charge. The 

first cost of the electric vehicles on the other hand is about double that of 

its internal combustion engined equivalent, although its longer life C12 

years against 5) prevents this outweighing the lower fuel costs • 

. TABLE 43: TYPICAL OPERATING COSTS OF H TON PAYLOAD MILK FLOATS 

Capital costs 
Vehicle less tyres 
Tyres (4) 
Battery, 36 cells 423 Ah 
Charger, single rate taper 
36 cells 50A 

Electric 
£ 

2,603.00 
130.00 

2,069. 28 

423.00 

5, 225.28 

133. 

Petrol 
£ 

3,724.17 
115.80 

3,839. 97 

Diesel 
£ 

4,191.53 
115.80 

4,207.33 
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Standing charges (each year) 
Depreciation of vehicle 
Depreciation of battery 
Depreciation of charger 
licence · 
Insurance 
Interest on capital cost 

Running costs each mile 
Electricity at 2. 5p per kWh · 
Fuel 
Tyres 
Maintenance 

Total operating costs each week 
Standing charges 
Running costs 

Total YEARLY operating costs 
Cost per mile 
Comparison index 

NOTES: 

Electric 
£ 

195.23 
395.35 

35.25 
.55.00 
55.50 

306.99 

1,043.32 

p 
2.5 

0.86 
7.4. 

10.76 

£ 
20.06 
21.09 

41.15 

£2,139.80 
21p 

100 

Petrol 
£ 

670.35 

84.00 
74.00 

245.76 

1,074.11 

p 
-

5.9 
0.77 

18.94 

28.01 

£ 
20o65 
54.90 

75.50 

£3,928.60 
38.5p 

183 

1. The vehicle used for this comparison were : 

Diesel 
c ... 

754.48 

84.00 
74.00 

275.67 

1~ 188.15 

p 

5.9 
0.77 

17.28 

23.95 

£ 
22.85 
46.94 

69.79 

£3,629.08 
35.6p 

169 

Electric- 75 cwt. GVW float with cells at 423Ah battery and 36/50 toper 
charger. ' 
Petrol and diesel - Ford Transit 130 floato 

2. Useful lives of the vehicles used in· the calculations were :· 
Electric- 12 years 
Petrol and diesel - 5 years 

3. Fuel costs : 
Electric- electricity used for charging. at 2.5p/kWh. 
Petrol - two star at 83p/gal including VAT o 
Diesel - Derv at 88p/gal including VAT. 

4. Energy consumption (stop/start duty) : 
Electric - lkWh per mile 
Petrol - 8-12 mile/gal 
Diesel - 15 mile/gal 

5. Tyre life : 
15,000 miles (radial ply) 

6. Mileage : 

28 miles, undulating terrain with 200 stops and starts and maximum payload. 
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To illustrate the costs of a heavier electric vehicle we can 

take the example of the vehicle built as a development project and 

financed jointly by the National Freight Corporation (NFC), Chrysler 

and Chloride to the following specification, in order to assess its potential 

as: an urban collection and delivery vehicle {Ref. 75 ) : 

Type 

GWI 

Payload 

Range 

Maximum speed 

Maximum 
Acceleration 

4 wheel rigid integral van 

5 tons 

1.75- 2 tons 

40 miles 

40 mph. 

0_:_30 mph. in 17 seconds •. 

Fuel costs of this vehi~le {as at August 1977) were 4.25p. per 

mile compared with 4.75p. per mile for on equivalent diesel engine vehicle. 

The figure for the electric vehicle bears no element of tax 1 and makes no 

provision for depreciation of the batteries which should also be included. 

If the batteries ore depreciated over the 5 years of their replacement I ife 

cycle, it is estimated that this would increase the effective cost to 7. 5p. 

per mile. As a means of reducing fuel costs the battery electric vehicle 

at its present state of development offers no solution. 

Mass production of battery vehicles would no doubt substantially 

· reduce the capital cost, but by how much is unknown. A 25%- SOO!o re

duction in real first cost is not an unrealistic assumption, however. With 

regard to battery cost, it is unlikely that the lead acid battery will fall in 

pricf>1 si~ce this is largely determined by the row materials therein. Of 

the other materials suggested for battery coup! ing, the iron/air and . 

sodium/sulphur variants may offer lower costs because of cheaper materials, 

but this is by no means certaino Electricity costs will of course keep pace 

with increasing costs of the primary fuels used in its generation. If the price 

advantage enjoyed by coal and nuclear fuel compared with oil continues 
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to widen, then battery electric vehicles may prove competitive with their 

i .. c. equivalents in terms of fuel costs. The overall cost disadvantage howe~er 

will persist et least for low mileage vehicles (where fuel costs account for 

a moderate proportion of the total) for the foreseeable futureo 

Wilh regard to performance- both range and speed - the major 

differences between electric and i.c. vehicles follow from the very different 

energy densities. of the fuels concerned. These energy densities ere summarised 

below for four types of battery and for petrol used at 20% efficiency : 

TABLE44COMPARISON.OF THE ENERGY STQRAGE CAPABILITY OF 

VARIOUS BATTERIES WITH PETROL 

Conventional lead/acid traction battery 

Improved lead/acid (ILA) 

Metal/air (lrory'cir) 

High temperature (Sodium/Sui phur) 

Petrol 

Source : Ref. 83. 

20 wh/kg 

·so wh/kg 

100 wh/kg 

200 wh/kg 

2500 wh/kg 

The low maximum speed (around 30 mpho} and short range (about 

40 miles) of the conventional lead/acid battery limits its use to the milk 

float type of vehicle. lt is not suitable therefore for any but the most local 

of urban vehicles. The prospects of improving conventional batteries by 

increasing their energy storage appear to be good : Lucas, for instance, have 

demonstrated a veri with a performance similar to the ILA vehicle noted 

in the above Table (Ref. 82 }, but speed and range would still severely restrict 

such a vehicle's flexibility. 

Considerable experimental and development work has been carri~d 

out on zinc/air and iron/air batteries. Both types offer higher energy storage 

than lead/acid types, but at higher first cost and at a low efficiency of the 
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electrical charge/discharge- process. (Ref. 83 ). General Motors have 

recently claimed (Ref. 89 ) a "major breakthrough11 in the development 

of a zinc-nickel oxide battery for use in private cars {but no doubt also 

applicable to light goods vehicles as well). Designed to give a range of 

100 miles or more on an overnight charge {double that of lead acid batteries), 

it is said to have a life of 20,000 to 30,000 road miles. Whether or not 

this battery overcomes the problems of zinc batteries so far developed -

particularly the unpredictabil ity of the zinc during recharging, and the 

continual danger of short- circuiting, remains to be seen. 

· Many observers (Refs. 83 and 36 ) believe that of the various 

battery types under development, the 11 high temperature" sodium-sulphur 

variant is the most promising for the long-term future of battery electric 

vehicles. A typical•cell consists of a sodium anode and sulphur cathode 

separated by a solid (permeable) electrolyte ( j3 alumina) : the cells are 

contained in stainless steel cans. The reaction temperature for discharge 

is around 300°C, and once started sufficient heat is generated by the cell 

assembly to maintain this temperature within an insulated battery container. 

Such a battery clearly poses major questions of safety in the event of an 

accident, but if safety problems can be resolved, then the battery could 

provide the motive power for at least short and medium range goods vehicles. 

(Ref. 88). 

The technica~ operational and economic practicability of applying 

_battery power to heavy duty haulage has however been dismissed (Ref.83 ) 

in the following terms : 

11 )t is worth referring to another class of vehicle, if only to 

reject it as a possible market prospect for battery power. This is the heavy 

goods vehicle, typically carrying a payload of 10-30 tons. These lorries 

are essentially concerned with efficient carriage of payloads over distances 

of 100-800 kms. As far as can be foreseen, no battery development in the 

near future will enable a satisfactory long distance load-carrying vehicle to 
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be a pos·sibility which is sensible on technical or cost grounds. If it is 

. required to replace the present diesel road vehicles, the obvious competitor 

is the electrified railway". 

Nevertheless Chapman and others (Ref. 36 ) have tentatively 

calculated for instance that a 32 ton GVW lorry with 5 tons of sodium/sulphur 

batteries would have a range of over 400 km., which would permit it to 

cope with a substantial fraction of HGV traffic. Vehicle payload #Ould 

necessarily be reduced by roughly the battery weight (assuming unchanged 

gross tonnage} and hence an increase in maximum capacity vehicle numbers 

by perhaps 25% might be req.~ired to service present demando 

In addition to the battery types briefly discussed above, several 

other possibilities for future electric propulsion of goods vehicles have been 

advanced. These include the fuel cell, in whi·ch, for example, hydrogen 

and oxygen are combined, with a catalyst to form water and produce 

electricity. (Strictly this a primary, producer of electricity rather than a 

. battery). Waters and Porter (Refo 83) cite two major disadvantages of the fuel 

cell : the first is that experience to date indicates that fuel cells are very 

expensive, and they rely for their functioning on scarce and expensive 

metals, such as platinum for catalysts. (Platinum supply is discussed in the 

section 'constructional raw material resources and consumption). The other 

objection to fuel cells is more fundamental : if hydrogen is to be used in 

vehicle propulsion, it seems likely to be considerably cheaper to burn it 

in an internal combustion engine direct, rather than to use it in a fuel cell 

to produce electricity and then drive an electric motor. The same arguements 

would apply to other fuel cells like hydrazine or methanol/air. 

A second possibility for future electric propulsion is the so-called 

'slurry' battery (Refso 83, 85, and . 86 ) which is similar to the metal/air 

battery except that the metal anode is in particulate form in suspension in 

the electrolyte. 'fhis gives the advantage of rapid 'recharging' of the battery 
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by drawing off the used metal slurry and replacing it with new. The used 

slurry would then be reconstituted electrically at a central or local recharging 

point. The slurry battery resem?les the metal/air battery in that it would 

have an air cathode, and auxiliary circulating pumps for the slurry. lt is 

thus unlikely to be better in performance or cheaper in first cost, but may 

of course have the advantage of rapid recharging. 

Finally, there have been various proposals and experiments with 

so-called hybrid electric vehicles where battery propulsion is augmented 

by cm on-board generator powered by an internal combustion engin~ (Ref. 83 ) 

There are a number of variations on this theme, from the hybrid where the 

(small) internal combustion engine generator runs continually to provide 

the average output, using a battery pack to provide peak power, to the 

version where an alternative internal combustion engine drive is provided 

for use outside towns - the battery propulsion being reserved for use in 

environmentally sensitive areas. Whilst some of these variants may find 

some limited use, they are unlikely to be effiCient in their use of fuel (because 

of the number of stages through which the energy is transmitted) and they 

are likely to be expensive both in first cost and in maintenance (Ref. 87 ). 

To a large extent, the compet~tiveness and acceptability of electric 

vehicles - even of advanced varieties- will depend upon whether the 

vehicle is operated singly or as a member of a fleet of several vehicles. If 

it operates in a fleet, this means that some long range vehicies con be 

reserved for the occasional long journey. Without such operatinj flexibility 

the limited range of even advanced vehicles will be very restrictive. 

5.5.2. Refuelling electric vehicles 

Three possible options exist, namely : 

(a) Recharging batteries in-vehicle 

(b) Refilling 'slurry' batteries 

(c) Exchanging batteries 
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Time is the limiting factor to the first option, since maximum 

recharge time for abattery is governed by the maximum tolerable heat 

build-up in the battery. In addition, as charge time decreases, the efficiency 

of recharge decreases. Overnight charging is of course available to vehicles 

not used at night and is the chosen method for milk floats, etc.-

Refilling. the so-called slurry batteries would be far quicker than 

recharging conventional batteries (using a domestic 13 amp. outlet is about 

2500 times slower than a petrol pumpfor the same amount of energy (Ref. 88 ) ). 

but as discussed earlier, the high capital cost of these batteries may preclude 

their widespread adoption. 

Battery exchange (the third option) will almost certainly be required 

to extend vehicle range before widespread use of battery vehicles becomes 

a feasible proposition. Chapman and others (Refo 36 ) have estimated th~t 

a complete change to battery cars would require that the number of battery 

exchange stations would number between 5% and 15% of the present petrol 

station population (since much 'refuelling could be done at 11 base" overnight'). 

If all goods vehicles (both light vans and heavy lorries) were to 

be battery powered by say the year 2025 (the time 'horizon' assumed in 

this thesis) then the additional load upon battery exchange J:Dints would 

require more stations. Vehicle operators with a network of depots would 

undoubtedly use these as battery exchange points. 

Most 11 public11 battery stations would be located on trunk routes, 

at perhaps 80 km. intervals (Ref. 36 ) ( i. c •. every alternative motorway 

service area)- to allow reasonable journey flexibility. Such stations would 

not need ~o store as much energy in batteries as a petrol filling station 

does in petrol because petrol filling stations have deliveries once a week 

and must therefore have to carry a larg'er stock of stored energy. lt is' 

estimated (Ref. 36 ) that the capital cost of a battery exchange station is 

3-4 times that of a petrol station. This increase in cost will be reflected in 

the cost to the consumer of exchanging a battery. 



5.5.3. Electric vehicles, energy efficiencies and resources 

Electric vehicles can be powered by electricity produced from a 

variety of fuels burned in power stations (or from wind, wave or solar 

sources) and therefore are not dependent upon oil supplies as is the present 

vehicle fleet. In terms ofenergy efficiency, however, electric vehicles 

are at a disadvantage in their current form compared to conventional vehicles, 

as shown below by Waters and Porter (Ref. 83 ). 

For conventional internal combustion engined vehicles, the stages 

from crude oil at the refinery to useful work at the vehicle wheels can be 

summarised as a series of efficiencies :-

Refinery and distribution 

Thermal efficiency of engine 

Transmission 

82% 

25% (petrol); 35% (diesel) 

900/o 

Overall gross conversion efficiency is then 18% for petrol engines and 26% for 

di;sel •. Noting· that in urba_n conditions up to half the energy supplied at 

the wheels is dissipated in braking, the range for overall gross efficiencies 

in internal combustion engined vehicles becomes 9-18% petrol and 13-26% 

for diesels. 

For battery electric vehicles, from the fuel burned in the power 

station to useful work at the wheels, and taking the improved lead/acid 

battery in a light goods vehicle as an example, the equivalent efficiency 

figures are : 

Power Station Generation 30% (40%) * 

Transmission from Power Station 93% (93%) 

Battery Charge/Discharge 80% (800/o) 

Electric Motor, Controls, 
Transmission 70% (70%) 

(*the figures in brackets assume the high efficiency of a large 

modern power station working as base lead). 
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The overall gr~ss efficiency thus becr;;mes 16% (21%)o Again, half the 

energy maybe dissipated in braking, but if it were possible to provide 

regenerative braking at 50% efficiency, the range of overall gross efficiency 

becomes 12-16%. (16-21%). But the battery vehicle will be heavier by nearly 

20<'k for the same payload capacity as an i. c. e. light goods vehicle : its 

effective overall energy efficiency range will thus be 10-13%(13-17%). 

{When standing stationary in traffic, however, the electric vehicle 

does not use fuel (unlike the i.e. e. vehicle), but devices are available to switch 

off i.c.e. vehicles under these conditions). 

Chapman (Ref. 36 ) has shown that the energy efficiency dis

advantage of electric vehicles may be reduced or reversed in future. He 

assumes for his calculations that sodium-sulphur batteries are successfully 

developed with an energy density of 550 MJ/t, and estimates that in the year 

2025 (the time 'horizon' selected for this thesis) ·electric vehicles will be , 

more energy efficient than the equivalent i.c.e. vehicle developed by then. 

This is reinforced if it is assumed that by the year 2025 stocks of crude oil 

are depleted and oil is synthesized from coal. 

The ·raw material implications of a large-scale change to battery 

electric vehicles will depend crucially of course upon the batteries chosen. 

lt is unlikely for instance that even a 50% change to I ead/acid battery cars 

worldwide could be supported by present lead reserves - (this is discussed 

at length in the sections dealing with raw material supply). On the other 

hand, use of sodium/sulphur batteries should present few problems in terms 

of raw materials. Demand for copper could rise very sharply with the needs 

of electrical conductance but, as discussed elsewhere, substitution of copper 

by aluminium is increasingly apparent in many applications. 
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SECTION 6 

THE SCOPE FOR TR4.NSFERRING TRAFFIC FROM ROAD 

TO OTHER MODES 

A criticism often ZeveZZed at road vehicZes is that they are Zess 

energy - efficient than raiZ~ays~ pipeZines and ~~ter transport. 

This assertion is examined here~ and potentiaZ savings discussed 

assuming the practicaZity of 'transferring' traffic to raiZ. 
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Section 6 THE SCOPE FOR SAVINGS BY TRANSFERRING TRAFFIC 

FRCM ROAD TO OTHER MODES 

lt is shown in section 2 that road freight transport can be less 

efficien~ in energy terms than rail, water or pipeline transporto This fact, 

togetherwith the perceived environmental benefits of lower congestion, noise, 

pollution, danger and road damage associated with these modes have 

encouraged the view that traffic should be "transferred" from road wherever 

practicable. 

If considered in more detail, however, it may be seen that the 

claimed advantages of rail, road and pipeline are far from clear-cut. In 

environmental terms for instance, the location of the majority of rail terminals 

in built:-up areas may well result in increased congestion and the other problems 

noted above by bringing in traffics which previously skirted these areas. {Ref. 9) 

Similarly, substantial energy savings, although potentially available, are by 

no means a certain consequence of a shift away from road freight transport. 

Rail, water and pipeline transport are not practicable alternatives 

to road transport for distribution in the main : they are essentially trunking 

modes whose strengths lie in bulk movement. lt is therefore misleading to 

compare the energy efficiency of a freight train with that of a van, or even 

with the "average 11 energy efficiency of road transport in general, simply 

because they are not direct competitors. When a comparison is made between 

th~ fuel efficiencies of heavy lorries and freight trains, it can be seen 

{Table 20 ) that .ranges of efficiencies may overla;>. Nevertheless, fuel savings 

are realisable, but more important still in the long term is the ability of an 

electrified railway network to function without liquid fuels. (When transport's 

oil demand exceeds available supply, freight transport must be largely powered 

by electricity or by fuels manufactured from coal and other hydrocarbons). 

In this section an attempt is made to estimate in very general 

terms the scope for rail to advance its market share at the expense of road, 

to assess the means by which this may be achieved and to discuss what fuel 

savings could be realised. 
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·The availa'ole rail network has shrunk continually to its present 

level of l8000kms. of routes (or 36000 kms. of track plus 10000 kms. of 

sidings) compared to 333,400 kms. of roc:ds, serving every factory, depot, 

shop and home in the country (Refo 7). Clearly then, a wholesale move 

to rail is physically impo'ssible with the present network and would require 

capitol investment on a massive scale in track, sidings, stock and other 

equipment. 

Assuming, probably unrealistically (particularly under the 

present government) that such investment would be forthcoming if required, 

what factors governing transport users• choice of mode may cause an increase 

in rail usage? 

The structure of rail costs, with high terminal expenses,·is such 

that rail can rarely compete on price terms with road transport under a 

certain minimum distance. (Wi~h the exception of 11 merry-go round 11 trains 

etc., which may move up to2000tons of coal or ore per train). This minimum 

distance is certainly well a'oove the average length of haul of UK domestic 

freight of 80 km. (Table 4). Assu~ing that fuel cost increases must out-

pace other operating costs in future with progressive shortages, then higher 

fuel costs may adversely affect the competitiveness of long distance road 

haulage. Fuel costs may account for about 20% of the total operating costs of 

a heavy lorry, as may be seen from Table 46. This compa;es with about 

7% in the case of British Rail : 

TABLE 45: BRITISH RAILWAYS OPERATING COSTS 

1966 1970 1976 

£m % £m % £m 
Expenditure on railway 
operations 542. 1 100 532.0 100 1255.7 

Staff 351.4 64.8 338.5 63.6 837.6 

Fuel, power, oil and 
electricity 29o8 5.5 25. 1 4.7 85.0 

Materials, supplies and 
services 100.6 18.6 126.5 23.8 309.5 

Depreciation and 
41.9 7.9 24.6 amortisation 60.3 11. 1 

• Ref. 7. SOURCE. 145. 

% 

100 

66.7 

6.8 

24.6 

2.0 



TABLE 46 COMMERCIAL VEHICLE OPERATING COSTS AND RATIOS, SELECTED VEHICLES 1970, 1975, 1979. 

Carrying capacity 1! ton 1! ton 1! ton 
Unladen weight 28 cwt 30 cwt 
Fuel Petrol Diesel Electric 

{300 miles/week) (300 miles/week) {300 miles/week) 
1970 1975 1979 1970 1975 1979 1970 I 1975 1979 

Operating costs per 44.5 84.4 131.0 42.2 81.31 156. 1 39.07 71o04 N.A. 
week{£) 

Fuel costs (£) 5.50 9.00 18.3 3.54 5.64 13.2 1.50 2.73 N.A. 

Fuel % operating 12A 10.7 14.0 8.4 6.9 8o5 3.8 3o8 N.A. costs 

labour% operating 52.0 52.2 53.6 54.5 54.2 44.9 59.4 59.6 N.A. 
costs 

/ Continued •••• 



-Carrying capacity 5 ton 10 ton 14 ton 22 ton 
Unladen weight 2~ ton 4 ton 5 ton 10 ton 
Fuel Diesel Diesel Diesel Diesel 

(600 miles/week) {800 miles/week) {800 miles/week) {800 miles/week) 
1970 1975 1979 1970 1975 1979 1970 1975 1979 1970 1975 1979 

1-· I 

Operatfng costs per 61.9 132.3 307o2 91.6 186.12 451.5 113.0 225.19 506.1 152.6 303.03 674.1 
week(£) 

Fuel costs (£) lOoO 20.5 41.3 18.6 31.3 73.4 24. 1 37.6 88.0 30. 1 53.7 125.7 

--~ 
• Fuel % operating 16.2 15o5 13.4 20.3. 16.8 16.2 21o3 16.5 17.4 19.7 17.7 18.6 

costs 

Labour% operating 37o5 33.3 37o6 26o0 25.2 33.1 21.7 21.1 29,5 17.3 16.9 25.9 
costs . 

SOURCE : Commercial Motor, Tables of Operating Costs, 1970, 1975 and 1979. 



A 50% fuel increase would therefore raise total road haulage 

costs by 1001<> but raise rail costs by only 3.5%. (Interestingly enough, it 

appears that fuel costs for road vehicles remain below their 1970 level as a 

proportion of total costs). 

The relative cost of the different modes is clearly of only 

academic interest and importance in influencing choice of road or rail when 

rail is physically una::,le to compete. Where both modes are available to 

the transport us-er, it is apparent that the price of transport may be secondary 

to the quality of service (Ref. 9). Of particular importance are speed 

(door to door), convenience, control, damage and loss, and the mileage and 

consignment size. 

lt is unlikely therefore that even substantial rises in the cost 

of fuel will sufficiently narrow the price differential to make rail an 

acceptable alternative for many traffics without service improvements at the 

same time. 

To meet more effectively the challenge from road transport, 

British Rail has already made determined efforts to improve its attractiveness. 

Measures token include m.xlernisation.of rolling stock (particularly with 

regard to braking (Ref. 92 ), to arrest the decline in wagon load traffic. 

In the ten years to 1976, the number of wagon movements fell steadily to 

less than half the 1966 level (the fall was especially dramatic for 'agriculture, 
I 

food and drink, where the number of wagons forwarded fell from 869,000 

to 120,000). At the same time, average wagon and train loads improved 

by 130% ~nd 50% to 23 tonnes and 331 tonnes respectively. Virtually all 

.train load traffics, and some 90% of wagon load traffics, originate in private 

sidings. (Ref. 21 ). (In Europe more than half of rail traffic originates or 

terminates in private sidings (Ref. 21 ) ). In order to encourage companies 

to invest in these highly expensive facilitie.s, Government grants are 

available to half the total cost. Cory Distribution- a major public 
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transport concern - has recently taken advantage of these grants and is to 

build 16 freight centres and start a nationwide transport network aimed at 

shifting traffic from road to rail (Ref. 91 ). (lt is claimed that the first 

depot alone will save over three mil.lion road miles a year - possibly increasing 

to twenty mill ion road miles a year as the network expands). Cory provides 

storage and short - distance road links to the fast trains of Speedlink, the 

British Rail development intended to attract general merchandise traffics 

back to rail. 

Control of wagons has been improved by a computer based 

system known as "TOPS" capable of continuously monitoring, recording and 

reporting every detail of freight traffic throughout the entire railway network. 

(Refs. 93 1 and 94 )o The comparable American system which would have 

been a major improvement to U. S. rail freight services has been abandoned 

because of policy differences between individual railway authorities. 

(Refs. 96 and 97 )o 

Electrification of all but minor routes is seen by many observers 

to be essential to reduce dependence upon oil (Ref. 98 ). lt can also lead 

to a faster, more reliable service, for both freight and passengers. To date, 

electrification has proceeded slowly- the 3735 kms. of electrified route 

represents about 20.7% of the total, com;:>ared with 3064 kms. in 1967. Major 

increases in the electrified route mileage are planned by British Roil, but 

must depend to a great extent upon funding from, and hence the attitude of, 

the Government. (Refs. 99, 100, and 101). 

Perhaps the major disadvantage of roil compared with rood 

is the need to transfer rail freight to rood to perform the collection and 

delivery stages at each end of the roil haul. Transfer costs are high and 

uneconomic below a minimum distanceo The Freight! iner service has been 

reasonably successful in facilitating intermodol transfer, and the com;:>any 

plans to moke itself more competitive by using physical distribution 

techniques to combine warehousing and break-bulk functions with the 
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i.1termodal read/rail transfer (Ref. 102 ). A second- generation freightliner 

service has been proposed by BR's Resea~ch Division to capture medium haul 

merchandise by building a network of fast container trains linking 300 

terminals through sorting centres based on automated warehousing principles. 

(Ref. 103 ). Other innovations, such as 'SCJDS' (Ref. 104) (small containers 

intermodal distribution system) and 'autowagon' (Ref. 105) are designed to 

reduce the expense of the essential transfer between modes. 

'Piggy-back' vehicles (known as Trailer on Flatcar, or T.O.F.C.) 

are-a means of speeding the transfer, but are not practicable en the British 

R~il system without expensive modification to bogies (both height and width) -

(Refo 106). A recent report (Ref. 107) suggests that the British Government 

is to reject substantial EEC grants and subsidies aimed at establishing a 

European T. 0. F. C. network. 

Assuming that rail freight does become more competitive, by 

whatever means, what is its potential market? In round terms, 70% of read 

ton-kms. is moved less than 150 miles and is probably not an economic 

proposition for rail in the foreseeable future. The balance- 28 million ton

kms. in 1976 is potentially moved far enough to be competitively carried 

by rail, given an efficient transfer operation. (This tonnage may roughly 

equate with that carried by the vehicles in Section 'B' of Table 23 whose 

traffics may be suitable for carrio3e by rail and water as well as by rood). 

Various constraints would of course reduce this amount drastically, but as 

an upper I imit if we assume the entire 28 mill ion ton-kms. were to be 

captured by roil, then roil's freight would be more than doubled (in 1976 

goods moved by roil totalled 23. 1 million ton-kms). Ignoring for the moment 

our own warnings about the impossibility of comparing modal energy efficiencies, 

we can estimate from the data given in SecHon 2 that one tonne of fuel is 

required to perform very opproximately74,000 tonne kms. by rail, or 13,500 

tonne kms. by rood. Thus, a tronsf~r of 28 .mill ion ton kms. might, within 

very large margins of accuracy, save about 1700 tons of diesel fuel per year, 
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or 0. 03% of the total 7 mill ion tonnes of fuel used by road good:; vehicles 

in 1976. Thus, although potential savings should not be dismissed as in

significant, they are clearly extremely 5mall. 
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,'SECTION. 7 

REDUCING ENERGY LOSSES IN COMMERCIAL VEHICLES 

Significant savings ·can be made in fuel consumption by reducing 

air and rolling resistance, and through road improvements. Here 

we assess th~ scope for such savings for particular vehicle 

operations. 
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Section 7 REDUCING ENERGY LOSSES IN COMMERCIAL VEHICLES 

7. 1. Introduction 

In this section, attention is focussed upon ways by which the 

losses due to vehicle resistive forces may be lessened. Road vehicles only 

are discussed because of their dominance in the freight market, although 

these forces are major causes of energy losses in air and water transport. 

as: 

The total energy equation for a commercial vehicle can be written 

Energy Usage= Engine loss+ ancillary component 

loss+ transmission loss+ aerodynamic loss+ tyre rolling 

loss+ braking loss+ gradient and cornering loss. (Ref. 108 ). 

The most important of the resistive forces to be overcome by a moving 

vehicle are air" resistance, rolling resistance, inertia, and gradient resistance. 

A reduction in any of these may potentially result in fuel savings (provided 

that the power saved by such a reduction is not used to increase the vehicle's 

speed). Of the four forces noted, air and rolling resista·nce are largely _ 

dependent upon vehicle weight, speed and design; the remaining forces are 

more related to vehicle externalities, such as road end traffic conditions and 

may thus be less amenable to reduction. For this reason, the present discussion 

is mainly limited to an assessment of the potential fuel savings due to reduction 

of air drag end rolling resistance. 

The proportions of total fuel consumption used to overcome the 

·various resistances to motion under different driving conditions are illustrated 

in ·Figure 17. The estimates refer to a 38 tonne g. t. w. truck rated at 320h. p. 

and I imited to 80 km. per hour. lt may be seen that air resistance accounts 

for betwaen two per cent and 35 per cent of total fuel, rolling resistance for 

between 25 per cent and 65 per cent, and hill climbing and acceleration for 

the remainder (Ref. 169 ). 
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Although information about rolling resistance is very limited, it is estimated 

to be directly proportional to vehicle· weight and to increase I inearly with 

speed (at least in the speed range relevant to commercial vehicles). At 

speeds higher than 112- 128 km. per hour, it may rise sharply (Ref. 1 H). 

Aerodynamic drag is a function of vehicle size and shape, and increases with 

the square of the airspeed relative to the vehicle. (Ref. 111 ). 

From Figures :19 1 '19 , it may be seen that the rolling resistance and air 

resistance assume equal importance at about 80 km. per hour and 110 km. 

per hour respectively for the two vehicles il-lustrated. 

The relationship between fuel consumption_ and air resistance 

for vehicles for different weights is shown in Figure 20 • Similarly, the_ 

relationship between fuel consumption and air resistance as a function of 

speed is plotted in Figure 21 • _}.... 
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FIGURE 17: THE PROPORTION OF FUEL USED TO 
OVERCOMF THE VARIOUS 
RESISTANCES TO MOTION ON 
DIFFERENT TYPES OF ROAD 
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FIGURE 18: THE P0'/1/ER REQUIRED TO OVERCOME 

AIR RESISTANCE AND ROLLING 
RESISTANCE AT VARIOUS SPEEDS 
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FIGURE 19 :VARIATION OF RESISTANCE FORCES 

WITH SPEED 
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FIGURE20:FUEL CONSUMPTION DECREASE VS. DRAG 
DECREASE AS A FUNCTION OF \'1/EIGHi. 
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FIGURE 21: FUEL CONSUtv1PTION DECREASE VS. DRAG 

DECREASE AS A FUNCTION OF SPEED 
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7.2. Rolling resistance 

Deformation of the tyre accounts for some 90 to 95 per cent of the 

rolling resistance of a vehicle (wheel windage and si ippage losses are small 

by comparison)~ The distortion of the tread os it passes through the contact 

area results in a hysteresis loss wh·ich manifests itself as heat, raising the 

temperature of the tyre.(Ref. 112 ). 

The factors affecting rolling drag include the tyre design (radial 

or cross-ply, reinforcing material and tread pattern, (etc.), tyre temperature 

and pressures, vehicle speed, and the type of road surface. 

Radial tyres have lower rolling resistances and better wear 

characteristics than cross-ply tyres. Whereas the radial tyre lays its tread 

squarely on the rood, with very little lateral constraint offered by the· 

walls of the tyre {resulting in very little lateral slippage between the tyre and 

the road), the cross-ply distorts, leading to hysteresis losses and some 

slippage. Tests by Scab Scenic have shown that, depending upon the tyJ=e 

of operation, savings of between five and ten per cent in fuel consumption 

could be achieved by using tubeless radial tyres rather than cross-ply tyres 

on a large truck. (Ref.113 ). Williams (Ref. 108) shows that the difference 

in rolling resistance between the two tyres can be as much as 20%. 

According to Genera I Motors research, rolling resistance is nearly 

independent qf load distribution and the number of tyres carrying a given 

load. In contrast, Scab Scenic suggest that the minimum number of axles 

with respect to the total train weight would give the lowest resistance (Ref.113). 

This cone Ius ion is supported by a study of the fuel conc:•Jmption characteristics 

of an articulated vehicle fitted with a lifting axle on the trailer (Ref. 114). 

When the vehicle Js in the unladen condition or in the port-load condition 

{up to 10 tons on the single axle), the semi-traiier can be operated on one 
) . 

axle by raising the other axle. The study suggests that in addition to reduced 

tyre wear, the device may lead to a fuel saving of 4.11 per cent to 4.25 per 

cent in the single axle unladen condition compared to tandem unladen operation, 

and a saving of 3.66 per cent in the laden single axle condition compared to the 

tandem. A small W'3ight penalty will be incL•rred in trailers fitted with the 

device, but worthwhile fuel savings appear to be realisable. 
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7. 3. Air resistance 

The subject of aerodynamic drag and its importance for goods 

vehicle performance first received serious attention in the 1950's, when 

exhaustive study was undertaken by the University of Maryland. More 

recently, the National Science Foundation (N. S. F.) has been active in 

promoting research, and estimates that even "add-on" aerodynamic drag 

reducing (a.d.r.) devices could result in savings of the order of one billion 

gallons of fuel per year in the United States. 

In this section we review some techniques for reducing air drag 

on goods vehicles and estimate the scale of potential fuel savings in this 

country. 

'· 0 Airflow around a vehicle 

Aerodynamic drag is conventionally divided into three separate 

components, namely normal pressure drag, induced drag, and skin friction 

drag. The relative importance of these components varies according to 

vehicle design; for goods vehicles which may be classed as either blunt 

bodies or bluff bodies (depending on the "roundedness" of the front), 

normal pressure drag is by far the largest factor, accounting for up to about 

90 per cent of the total. The pressure drag caused by flow separation due 

to the bluntness of the front of the truck (termed forebody drag) may amount 

to b~tween 30 and 50 per cent of the total, whilst that associated with the 

blunt tailgate. (termed base drag) may amount to between 20 and 60 per 

cent of the total (Refs. 111 and 115 ). 

The induced, or trailing vortex, drag component is related to lift, 

and is very smad for most goods vehicles (perhaps up to five per cent of 

the total). 

:. 
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Skin friction drag is caused by fluid shear in the boundary layer, 

i. e~ in the limit region close to the body, where the velocity changes from 

zero (relative to the body at the surface) to the external flow velocity. 

The boundary layer is normally laminar for a short distance along the vehicle 

side, followed by a transition to a turbulent flow which is eddying in 

character and has a higher drag value. With the exception of smooth 

uncomplicated vehicle shapes, such as long coaches and some sports cars, 

skin friction drag forms o~ly a small proportion of the total (about ten per . 

cent for goods vehicles. (Ref. 111 }. 

The design of most goods vehicles, leaves a lot to be desired from 

the viewpoint of aerodynamic efficiency. For load maximatization within 

the legal dimensions, a box like shape with square corners is clearly the 

most profitable, but such a shape leads to flow separations and turbulence 

that detract from fuel economy. Drag coefficients are consequently sub

stantially higher for trucks than for cars, typically in the range 0.65 to 

1.1 comparedwith 0.30to0.60(Refs. '115 and 116 ). 

lt is estimated that (Ref. 117 ) : 

(a) Drag coefficient for articulated vehicles are primarily 

determined by the unit with the larger frontal area. 

In other words, streamlining the tractor (as Volvo and 

Ryder have recently done) may not reduce air drag 

with a van trailer. 
? . 

(b) Double trailers create no appreciable increase in air 

resistance compared with a single trailer with a frontal 

area equal to the larger of the doubles. 

(c) Car transporters have 40 per cmt higher drag than van 

trailers with the same •outline• projected area (i.e. 

about 1.0). 
/ 
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Articulated vehicles, especially those pulling trailers that protrude 

above cab heights, have particularly complex aerodynamic characteristics : 

the airflow separates at the front of the cob and impinges upon the front of 

the trailer, port passing downward through the gap between tractor and 

trailer, and port passing over the top of the trailer. The flow passing over 

the trailer separates at the top corner, and considerable turbulence occurs 

os the flow moves downstream. At the rear end of the trailer, a low pressure 

area results from flow separation, causing base pressure drag. 

Techniques for reducing aerodynamic drag 

Much attention has recently been focussed upon reducing the effects 
• 

of air drag on trucks, particular efforts being centred upon articulated 

vehicles since, not only do these vehicles hove higher drag coefficients 

than most other trucks, but also because they travel a significant proportion 

of their total mileage upon motorways and trunk ·roads at speeds high enough 

to coose severe air drag problems. 

The comprehensive study by the University of Maryland, started in 

1953 concentrated upon improving the drag characteristics of this class of 

vehicle : the researchers tested some 7, 000 different models, and tried 

many modifications to explore. the limits of drag reduction. {Refs. 118 and 

119 ). Not surprisingly, the optimum shape was unrealistic for commercial 

operations, being closely akin to that of an aircraft fuselage, with a highly 

streamlined front and 11 beovertail 11 rear end. (This design gave a drag 

reduction of more than 80 per cent over conventional shapes). 

One relatively simple recommendation made by the study group- that 

trailer front corners should be rounded to allow for· the rapid reattachment of 

separated airflow has been widely adopted in America -although not in this 

country. The effect of rounding is significant and is shown on the next page. 
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Table47 : The effect of rounding trailer corners 

Corner radius (ins.) 

12 

18 

6 

18 

Oval front 

Source : Ritchie, Ref. 118. 

Roof radius (ins.) 

6 

6 

Drag reduction (%) l. 
11.8 

13.9 

14.8 

21.1 

23.5 

28.5 

Similar results were obtained by Kirsch and Bettes (Ref. 111 ) 

using a scale model of a 40 fc;>ot trailer : they found that replacing ten

inch radius edges with sharp corners produced a 21.2 increase in drag over 

the base line coefficient of 0.727. 

The University group concluded that a six inch radius and roof 

achieved the best balance between drag reduction and cargo capacity 

(Ref. 118 ). General Motors have also researched the scope for drag 

reduction by rounding trailer corners, and estimate that a corner radius of 

one-tenth of the trailer width (i.e. about ten inch) gave the optimum trade

off (Ref. 118 ). About 90 per cent of American trailers now have rounded 

vertical corners (Ref. 119) in contrast to the predominantly square-cornered 

trailers in this country. Although it seems probable that rounded-corner 

trailers will gain increasing acceptance in this country in future, despite 

their higher constructional costs, a growing proportion of body designs are 

not amenable to such modification. The I. S.O. container, for instance, 

is uncompromisingly square, whilst constructional difficulties may hamper 

rounding of corners on the T.I.R. tilt trailer and other specialised trailers. 
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(With the introduction of module boxes for operation with the demountable 

body system, Raleigh Industries Ltd. have abandoned round cornered trailers 

in favour of conventional square body design, mainly to save constructional 

costs. (Ref. 120) ). 

lt is possible to reduce flow separation on existing square-cornered 

trailers by attaching a semi-circular fairing of generous radius (approximately 

12 inches) to the forward face of the trailer (Ref. 111 ). Similarly, a 
-

"blister", such as that produced by York Trailers, when fitted to the trail er 

front, reduces separation with no loss of load space. The York Company 

claims a fuel saving of between five and fifteen per cent, depending on 

the weight of the load (Ref. ·121 _). A similar device, tested by Montoya 

and Steers (Ref. 111) with a 14 t.g.t.w. vehicle travelling at 55 m.p.h. 

gave a reported 11 per cent drag reduction over the base- I ine total drag 

coefficient of 1 .06. 

A variety of techniques have been developed to reduce the fore

body pressure drag associated with the gap between tractor and trailer. The 

most widely adopted of these appears to be the cab-mounted deflector plate, 

whose purpose is to reposition the attachment point of th~ separated airflow 

from the cab roof to the top forward edge of the trailer and to shield a 

large part of the trailer front from direct air blast. When operating in 

conditions of zero yaw (i.e. zero wind angle) the stagnant air in the gap 

acts as a fairing, and thus the main air stream jumps tlie gap and proceeds 

more smoothly down the sidesand top of the trailer. The first commereiall y 

produced deflector of this type, known as the Air Shield promised a drag 

reduction of the order of between 25 and 30 per cent based on wind tunnel 

tests, indicating a fuel saving of between 10 and 15 per cent (Ref. 119 ). 

Vehicles normally operate at angles of yaw, however, and under such 

conditions the value of such deflectors is much reduced, since the stagnant 

air in the gap is constantly replaced by moving air. lt is estimated, for 

example, that at a ground speed of 55 m.p.h., the statistically expected 
l 
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yaw angle will be about four degrees, while the maximum yaw a~gle will 

be about six degrees (Ref o 122). Another source suggests that the average 

yaw angle encountered by a truck is 11 degrees and overage wind speed 

is about 9.5 mph (Ref.l23 ). (A six degree yaw angle can increase drag 

by 40 per cent (Ref. lll) ). Several techniques to block the cross-

flow through the gap whilst not interfering with low-speed vehicle man

oeuvrability have been develop~d. These include the 'Airshield Vortex 

Stabilzer' (Ref 113 ) (a vertical fin mounted on the trailer), a flexible 

air bag, inflated by the forward air pressure, and an ~irshield' - type 

device with automatically air deployable vertical. plates to partially 

block the gap at high speeds. Used in conjunction with deflectors, these 

devices appear to give worthwhile drag and fuel savings and be cost 

effective for many vehicle operating regimeso For use with a solo tractor 

or with a variety of trailer types (ioeo including those which are lower 

than the tractor unit and those which are not), the deflector should obviously 

be capable of being folded flat, otherwise a ~arger than n~cessary frontal 

area will result o 

· Many companies ore presently appraising the effectiveness of 

'Airshield' type deflectors in actual operation, and reported fuel savings 

range between two per cent and twenty per cent, the majority being five 

and ten per cent (Refso 124, 120, 125, 130}. 

As previously noted, the low pressure area at the rear of vehicles 

is a major source of pressure drag and neither the use of deflectors or 

rounded corners can eliminate this •. Several methods of partially over

coming base pressure drag have been suggested and tested, and they may 

be divided into two groups : passive systems and active systems. 

Passive systems are designed to direct high energy air into the 

wake and reducing this cause of drag by energizing the wake and 11 blowing 11 

out the recirculation area with its accompanied low pressureo · Jacobs 

(Ref. l'f'.31 ) has wind tunnel tested two ducted trai'ler designs. In both 

cases the six inch high duct along the top of the trailer extended downwards 
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for two feet at an angle of 30 degrees to the vertical into the rear of the 

irailer. One version had the duct flush with the front of the trailer; the 

other had a three foot overhang in front of the trailer. The first version 

gave a drag coefficient, whilst the second was equal to 53 per cent of 

the base coefficient. 

Wright (Ref. 132 ) has proposed a similar arrangement except 

'· 

that, instead of the ducting running along the top of the trailer, the ducting 

is formed by boxing in the chassis girders and is fitted with a scoop at the 

front. Air is exhaused through perforated doors or panel at the rear. 

The active system, such as that suggested by Palmer (Ref. 111) 

would involve having a blower unit to discharge air into the wake. Palmer 

believes that a passive system would be ineffective in re-energizing the 

wake because 11of the rear end size and the low energy around the perimeter 

of the aft end of the trailer 11
• The blower unit would be mounted under the 

rear of the trailer and discharge air through plenum chamber rear doors. 

The possible application of boundary layer control to goods vehicles 

is discussed by Buckley and others (Ref. 111 ). Flow separation occurs when 

the actions of shear and pressure decelerate the flow in the boundary layer 

sufficient to cause a backflow in the region adjacent to the surface. The 

objective of boundary layer control is the elimination of flow separation 

either by removal of the boundary layer with suction, or by energizing the 

·boundary layer flow with another flow blown downstream in the direction of 

the surface. When the blowing or suction flow-rate exceeds the value 

needed to maintain unseparated flow, circulation can be increased beyond 

that predicted by ideal flow theory. 

If applied to articulated vehicles, then the resulting decrease in 

flow separation at the front of the vehicle should result in considerable drag 

reduction both at zero degrees yaw and also at different degrees of yaw. 

Buckley argues that it is in fact theoretically possibfe to decrease the body 

axis drag as yaw angle increases. (Ref. 111 ). Water table tests with small 

scale modelS gaye encouraging preliminary results, and the technique may be 

suitable for large inter-city trucks. 
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Estimation of potential fuel scvings 

A recent survey in the United States (Ref o 133 ) has estimated the 

savings possible by adopting aerodynamic drag reducing (a. d. r o) devices. 

lt identifi~d large inter-city articulated vehicles as offering the greatest 

scope for fud savings and concluded that A. D. R. could reduce the fuel 

needs of this category of vehicle by 4. 1. per cent by 1980 (a saving of 

over 400 million gallons). 

In addition, 'pick-up trucks', which comprise about 75 per cent 

(or 11 million ··ehicles) of the 'light truck' category in Table 48, 

also offer scope for sizeable savings of about 200 million gallons a year. 

Total combined savings for the above vehicle categories could, 

therefore, amount to 600 mill ion gallons a yellr 1 or 0. 2 per cent of the 

of the 318,000 million gallons estimated to be required by all US goods 

vehicles in 1980. 

Table 48: Classification of goods vehicles in the USA 

Class Weight (govowo) Number Miles Fuel 
(lbso) (% of total) (%of total) (%of total) 

(1) (2) (3) 

light 10,000 74 63. 1 56.7 

Medium 10- 20,000 14.2 12.0 10.0 

light-heavy 20- 26,000 4.2 3.6 8.3 

Heavy-heavy 26,000 7.6 21.3 25.0 

TOTAL 100 100 100 

Source : · Ref. 1 33 
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Fuel savings resulting from the adoption of aerodynamic drag 

reducing devices may similarly be estima.ted for this country. The 

assumptions upon which the estimates are based are as follows : 

{a) Significant fuel savings will be obtainable only at 

X speeds in excess of about 50· m.p.h. 

Since present speed limits restrict vehicles over 30 cwt. 

U. LW. to only 50 m.p.h. on all roads other than motor

ways, savings will only be legally realisable on 

motorways. In 1978, vehicles other than light vans 

{classified as 'other goods vehicles') travelled a total 

of about 13,000 million miles on all roads in this country. 

Of this, about 17 per cent, or 2, 200 million miles was 

on motorways {Ref. f34 ). 

{b) Articulated lorries probably pre~ent the largest potential 

for fuel savings of any vehicle category in this country. 

In 1978, articulated vehicles travelled about 3,000 . ' 
million miles in total {Ref. 134). If articulated vehicles 

performed a similar proportion of motorway miles as 'other 

goods vehicles', i.e. 17 per cent, then this would equal 

about 511 mill ion miles (this figure is probably an under 

estimate of their real motorway mileage). 

(c) Although meaningful fuel savings may be achieved by fitting 

drag reducing devices to various types of articulated vehicles, 

including flat trailers with high loads, large savings may_ be 

limited to boxed bodied units. A small survey conducted 

for the present study suggested that the proportion of 

boxed~bodied articulated vehicles has risen to about 25 per 

cent of the total. Assuming that these vehicles performed 
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a proportion of total miles on motorways similar 

to 'other goods vehicles' (i.e. 17 per cent), then 

their motorway travel would be about 128 mill ion 

miles per year. 

(d) The average fuel consumption of articulated vehides 

varies between about 7 m.p.g. and 12 m.p.g. (Ref.135 ). 

lt is assumed for this exercise that the average for 

articulated boxed-bodied vehicles is 9 m.p.g. On 

this basis, the total fuel consumed by these vehicles 

in 1978 was about 14.2 million gallons (nearly all 

diesel). 

If A. D. R. devices resulted in a 5 per cent fuel saving for boxed

bodied articulated vehicles, total savings would equal 700,000 gallons 

per year, equal to about 2,620 tons of diesel or about 0.06 per cent of 

the 1978 total goods vehicle consumption of 4.5 million tons (Ref.
1T3o ). 

Even at a 10 per cent fuel saving level, A. b. R. devices fitted to this 

category of vehicle would only save just over 0. la per cent of goods 

vehicle fuel consumption. 

A continuation of the following trends would increase the potential 

sav.ings considerably : 

(a) An increase in the proportion of articulated vehicles 

in the total fleet. 

(b) An increase in the proportion of boxed-bodied vehicles. 

(c) An increase in the proportion of motorway miles 

travelled. 
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The National Freight Corporation (NFC) has investigated the 

potential for air deflectors, and has concluded that some 28% (around 5250 

vehicles) of its total fleet cou)d benefit from this equipment. The average 

annual distance covered is 51,200 kms. (32, 000 miles) per vehicle with a 

fuel cons~mption of 23.8 lit./100 km. (11 .? m.p.g.). This gives a total 

fuel usage of 63,080,000 litres or 14,400,000 gallons (Ref. 137 ). 

NFC tests have shown that a 10 per cent saving in fuel consumption 

is_ possible under the combined effects of deflectors and road speed governors 

(and 3-5% savings with deflectors alone (Ref. 138) ). Thus the predicted 

saving would be in the region of 6,408,000 litres (1,440,000 gallons) 

which otherwise would have cost some £1,728,000. The cost of fitting 

the devices is estimated to be £2,887,500, giving a pay back time on 

this investment of only 1.67 years. 

The NFC are also planning to specify the largest practicable 

radius on front corners of van bodies to reduce drag. 

Conclusions 

(a) Aerodynamic drag may account for up to about 50 per cent 

of the total fuel consumption of a goods vehicle. 

(b) Substantial reductions in pressure drag are possible within 

the governmental and economic constraints imposed on 

vehicle design. Short-term 'add-on' devices are available 

that may decrease a truck's drag coefficient by abou~ 20 

per cent, giving fuel savings of between five and ten per 

cent. long-term techniques, presently being considered 

or under development may give lcrger reduction.s in drag 

and fuel consumption. 
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.(c) Unless vehicle speeds are controlled- either voluntary 

or by speed governors, much of the potential saving 

will be lost by increased speeds. 

(d) Potential fuel savings, while being substantial for certain 

types of vehicle operation, are small in the context of 

total goods vehicle fuel consumption, but nevertheless 

worthwhile for particular vehicles. 

(e) A continuation of existing trends in road goods transport 

would increase the significance of drag. 
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7.4. The effects of road improvements upon goods vehicle fuel consumption 

The ideal road, from the fuel saving point of view, would be straight and level, 

have a smooth surface, end be so designed that the movement of each vehicle 

would be completely unaffected by the presence of other vehicles. All improvements 

that lessen travel distance and the resistances to movement at constant speed 

together with those which reduce the frequency of stop-start and slowdown 

operations will result in fuel savings. 

A reduction in fuel u~e et uniform speeds may result from each of the following 

types of road improvement : reduction in surface roughness, reduction in 

the rate of rise and fall, and reduction of curvature. These improvements will 

frequently permit higher operating speeds which, due to greater air and rolling 

resistances at higher speeds, will result in an increased rate of fuel consumption; 

but for the same speed before and after improvement, fuel consumption will be 

redJced. The construction of motorways, trunk routes and by-passes will 

therefore decrease the fuel needs and/or reduce journey times of goods vehicles. 

A reduction of congestion either by improving roads or by diverting traffic 

from one route to another will reduce the number of speed changes necessary 

and thereby give potential fuel savings. 

The Heavy Commercial Vehicles (controls and regulations) Act, 1973 (the 

11Dykes11 Act), which empowered local authorities to specify through routes 

for heavy vehicles and to prohibit or restrict their use on particular 

'l'ocds may influence fuel consumption in two ways. Firstly, by directing 

lorries away from congested roads, the number of stops Jnd starts and slowdowns 

necessary during a journey may be decreased, thereby reducing fuel consumption. 

Secondly, since the designated routes may involve greater distances than 

those used previously, the potential fuel savings from reduced congestion 

may be offset o 
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Since few lorry routes have been designated as yet, it is not possible to 

estimate the fuel cos~lbenefits accruing to such schemes. Studies in the 

USA (Ref. 139 ) however, indicate that substantial fuel savings may be 

possible by reducing the number of start-stop and slowdown operations. 

Kent (Ref. 139 ), for instance, has estimated the additional fuel cost 

brought about by frictions in the traffic stream for. various types of goods 

vehicles. Although his results refer to American road conditions and are 

based on petrol engined trucks, they still have relevance for the different 

conditions prevailing in this country. Using the number of speed changes 

necessary per mile(NOTE) as a measure of congestion, Kent found that fuel 

consumption increased considerably as congestion increased. His results are 

presented in Table 49 and Figure 22. It may be seen that in the case 

of rural trunk vehicles, the average fuel consumption of all the trucks 

studied rose from 46 litres/lOO km. (0. 197 US gals./mile) to about 66 litres/lOO km. 

(0.279 us gals/mile), as the number of speed changes per mile increased 

from one to seven. For trucks involved in urban trunking, the influence of 

speed changes on fuel consumption was more marked, whilst for urban 

collection and delivery work, a lower fuel cost penalty was incurred due to 

the lower speeds involved in this type of operation. Also confirmed was that 

heavy vehicles incurred a heavier fuel cost penalty than light ones as the 

number of speed changes increased. 

The Freight Transport Association (F. T .A.) in this country is strongly opposed 

. to lorry routeing schemes such as those introduced at Windsor, Leeds and USK 

(Ref. 140). The FTA claims for instance that the diversions caused by the 

Windsor rerouting have cost vehicle operators £500,000 in the 18 month trial 

to date. 

NOTE : A speed change is defined as all accelerotions and decelerotions 

effecting a speed change of more than 3 m.p.h. 
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Table 49 : Fuel consumption rates fer goods vehicles related 
to various rates of speed change per mile, for 
different types_of vehicle operation. 

-
erage Fuel consumption rates in litres per lOO kms. for indicated number of speed changers per mile 
ISS 

1icle 1 3 4 5 7 9 12 
~ight 

I b) 

1l - trunk 

000 31.53 33.41 37.65 42.59 - -
500 42.35 46.59 53.18 58.83 - -
000 47.06 52.24 60.00 65.65 - -
000 53.65 60.47 70.59 75.77 - -
000 56.24 63.53 73. 18 / - - -
000 63.06 71.77 - - - -
~rage 46.35 51.77 59.06 65.65 - -
an - trunk 

000 33.65 35.06 36.00 .- - -
000 37.41 42.35 46.59 - 76.24 -
000 - - - 57.88 - -
000 48.47 63.06 77. J8 96.24 100.24 -
000 51.06 - - - - -
000 - 68.71 - 107.5 - -
000 - - 87.77 - - -

I 

000 - - - - 109.42 -
rage 43.53 52.71 63.30 78.36 89.89 -

an 
I ,.---- . 

·ectton ·I 

delivery 

poo - - 26.12 ":' - -. 34.12 
500 - - 30.82 - - - 39.30 
500 - - 38.82 - - - 48.47 
500 - - 48.00 - - - 58.83 
300 - - 53.88 - - - 65.65 

rage - - 33.65 - - - 39.53 

Source : Ref. 139. .. . 

Note: Data converted from US gallons per mile to litres per 100 km. 
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FIGURE 22:FUEL CONSUlv1PTION fV.\TES,FOR GOODS 
VEHICLES RELATED TO VARIOUS RATES OF 
SPEED CHANGE PER MILE,FOR DIFFERENT 
TYPES OF VEHICLE OPERAnONS 

eo 

70 

"' E 
.X 60 
0 
0 .-
~50 
w 
ll.. 

V) 

w 40 er ..,_ 
::i 

30 

20 

10 

110 

100 

90 

80 

70 

"' E 
.X 60 
0 
0 ..... 
er 50 
w 
ll.. 

~ 40 
er ..,_ 

::i 30 

20 

RURAL TRUNKING 

SPEED CHANGES 
PER MILE 

I 
0 10 20 30 40 50 60 70 

GROSS VEHICLE WEIGHT- THOUSANDS OF POUNDS 

9 

URBAN TRUNKING 

5 

SPEED CHANGES PER MILE 

10~----~------~------r-----~.-------r------~----~ 

0 10 20 30 40 50 60 70 

GROSS VEHICLE. WEIGHT- THOUSAN OS OF POUN OS 

176. 



FIGURE 22 (CONTINUE D) 

URBAN COLLECTION AND DELIVERY 
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SECTION 8 

T.HE GROCERY DISTRIBUTIVE INDUSTRY AND 

ENERGY USAGE 

Rather than talk in generalities about so nebulous an area as 

operational and organizationa~ changes~ the subject is discussed 

from the specific viewpoint of the grocery distributive industry. 

Possib~e approaches to energy savings ar~ 2ssessed within the 

context of this industry~ including fuel needs in retail outlets 

and by shoppers. 

Var~ous trends apparent within this industry are discussed ar~ 

their energy implications examined. 

Finally~ the possible future development of retailing is discussed 

with particular attention to the implications of electronic ordering 

from home. 
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Section 8 THE GROCERY DISTRIBUTIVE INDUSTRY 

8 .. 1. Introduction 

For the purpose of this thesis, the grocery distributive industry 

has been selected as a 'case study' to illustrate ways by which energy 

may be saved by operational and organizational changes ·and to e.xp[ore 

how current trends and future developments may influence energy consumption. 

The grocery industry has been chosen for several reasons : 

In the first place, the author has been closely involved in its 

operations for several years and has access to information and contacts. 

not otherwise available to him. 

Secondly 1 it is one of the l<:Jrgest and most important sectors in 

the economy. lt employs more than 500,000 people and accounts for more 

than one quarter of all retail sales - the largest single retailing sector. lt 

is responsible for more than half of all food sales in this country, together 

with a wide and increasing range of non-foods .. 

Thirdly, the food, drink and tobacco sector generates a large 

and growing proportion of the total quantity of goods moved in this country. 

In 1976 (the latest year for which detailed figures are available) this sector 

accounted for 17.6% of the total tonnage distributed in Great Britain, and 

was second only to minerals. (Section 1). 

Fourthly, the distribution of groceries is more dependent than 

practically any other busifless upon road transport: more than 99.5% of the 

306 million tonnes cf food, drink and tobacco moved in 1976 was carried 

by road. (Section 1). lt is therefore more vulnerable than most to oil 

price rises and shortages. 

Fifthly, the perishable and temperature-sensitive nature of 

many foodstuffs, together with increasing emphasis upon speed and economy 

in a fast-changing and highly regulated environment means that the industry 

is dependent upon reliable distribution systems. 
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Finally, shopping generates a large number of car journeys 

and any changes within the trade may t~erefore have implications for 

private energy usage. 

Any disruption in the supply of grocery shops has an immediate 

effect upon the consumer - a 11 the more apparent because of the media's 

acute interest in the industry's activities. 

lt is difficult to estimate the energy required to distribute 

food and grocery items in this country 1 but it will have the following 

components : 

Energy used in the storage, handling and transport 

of goods in the various channels of distribution 

servicing shops. 

Energy usage in-store 

Energy used by the consumer in shopping 

Energy osage in preparing the food, etc. in 

the home. 

lt is upon the first three of these that we concentrate here, 

and more particularly upon the first. (This is not to say that energy usage 

in the home in preparing food is unimportant - far from it. Rather it 

outside the sccpe of the present discussion). 

A first approximation of energy usage in the transport of groceries 

may be made by assuming that the 306 million tons of food, drink and 

tobacco moved in 1976 had identical fuel needs to the total 1516 mill ion 

tons of goods moved in that year (which required 7.2 million tons of .fuel, 

or 210.6 tons/ton fuel). Bearing in mind the temperature controlled and 

the urban delivery nature of much food transport it may well be that the 

transport of food to retail outlets required more than 1 .5 mi11ion tons of 

derv. and motor spirit suggested by this calculation. 
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In-store energy needs are small in relation to transport usage 

but nevertheless are significant in retailers• costs, as may be judged from 

Marks and Spencer's claims to have reduced energy costs in their shops 

by more than £2 mill ion per year o 

Total fuel usage in food distribution is very sensitive to the 

amount of car usage for shopping. Moreover 1 there may well be an 

inverse relationship between the fuel efficiency of supplying shops and the 

· fuel efficiency of customers• purchases. If so, retailers• efforts to conserve 

fuel may lead to an overall increase in fuel used o This is discussed in more 

detail in Section 8.3o 
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8 o2 o Operationa I and organizational changes 

We have already discussed fuel conservation with regard to vehicle 

resistive forces, motive power units and moda I transfer 1 and now look at 

various operational and organizational aspects of the subject, from the 

viewpoint ~F grocery distribution o 

Many factors of course affect the efficiency of energy usage 

in distribution and here we discuss some of the more important influences. 

In particular 1 the benefits to be gained from consolidation, From ~mproved 

urban deliveries, and from larger vehicles are assessed in this section. 

Later, when attempting to identify the implications for energy consumption 

of trends in retailing we touch upon other factors of importance, including 

increased car usage and higher service levels Q 

The motivation for reducing fuel consumption within the 

grocery trade, as elsewhere, will come from two, or perhaps three, 

major sources o In the first place of course, will be the desire to maintain 

profitability despite higher fuel costs. Where these higher costs cannot 

easily be passed on as higher prices (as for instance in the highly 

competitive grocery trade) then there will be a powerful incentive to contain 

these costs by reducing consumption o The profitability and cost structure 

of the company will of course be of paramount importance in its attitude 

towards fuel saving. .In the grocery industry, distribution costs Frequently 

exceed the 2-3% net margins typical of recent years, and so a cost' 

increase in fuel may have a large in:'pact upon profitability. 

A second, and perhaps more potent stimulus in motivating companie~ 

to take fuel conservation seriously is the Fear of the disruption and loss of 

business caused by reduced or interrupted supplies. 

Finally but more doubtfully will be the moral pressure exerted 

by Government and other bodies to conserve a scarce resource. In the 

absence of convincing economic arguments moral exhortations are likely 

to faH upon deaf ears in a hard pressed industry. 
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8.2 o 1 o Traffic congestion and retail deliveries 

Traffic congestion is a major cause of inefficiency in our 

distrihution systems and an irritant to all road users o From the viewpoint 

of fuel usage, traffic delays mean fewer miles per gallon (as discussed 

in Section 7. 4.) and require more vehicles than would otherwise be 

necessary, thereby increasing the 1indirect 1 energy used in manufacturing 

vehicles (Section 2 ) o The vast amount of literature relating to the 

problems of congestion and their solution (for example Refs. 14l, 142, 143, 144,145, 

146,and 147') testify to the high economic anrl social costs of congestion 
in addition to the energy wastage addressed here. · 

Nowhere is the obtrusive presence of goods vehicles more apparent 

than in urban delivery work (whe.~e it is estimated that supermarkets account 

for about 20% of deliveries (R. 147) and this has led to many demands for 

lorry bans, special lorry routes, transhipment centres, night deliveries and 

various other measures to restrict the number of vehicles entering town 

centres. The report 1Lorries and the World we live ln 1 (Ref. 147) 

requested by the Transport Minister in response to such demands discusses 

nine approaches to alleviating the impact of lorries by their segregation 

from other traffic. These include : 

Segregation by time (including night, off-peak, weekend 

and vehicle 11 booking-in11 schemes). 

Segregation by specific route {including for instance 

the lorry route approach enabled by the so called 

Dykes Act, and referred to in Section 7. 4.). 

Segregation by consolidation - involving the promotion 

of schemes for composite delivery through distribution 

and transhipment centres, as discussed in Section 8.2.2.). 

Segregation by traffic management - including loading and 

unloading restrictions, freeways and route scheduling, and 

special permits •. 

lt is upori the first of these approaches, name Iy the temporal 

segregation of flows, that we concentrate here, with particular reference 

to night deliveries and to vehicle appointment or "booking-in" schemes. 
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Both can potentially reduce conge$tion -and hence fual usage - in two ways, 

firstly by 'evening-out' ·peak traffic flows and secondly by reducing the 

delays incurred in goods reception and delivery • 

.- As an indication of the potential savings available by reducing 

queue ins at supermarkets and other retail outlets, Bowen {Ref. 149 ) 

estimates that the cost of an effective day's work for a delivery vehicle 

is increased by no less than 59% by queueing. Rushton (Ref.150) calculates 

that eliminating delivery delays is the single most important contribution 

to reducing operating costs : his vehicle scheduling model suggests savings 

of the order of 12!% by introduction of appointment schemes. An 

Institute of Food Distribution working party (Ref 151) identified queueing 

as major cost area, whilst individual food manufacturers have cited-delivery 

delays as their most difficult and expensive distribution problems (Ref. 152). 

Turning now to the first of these - night deliveries, the experience 

so far has not been encouraging. Two such sche:nes have been attempted 

on an experimental basis in the grocery industry, in 1966 and 1968. In 

the 1960's, many food companies were becoming concerned at the growing 

costs of retail delivery and also at the prospect of increased traffic· 

regulation and restriction. In addition many retailers were reducing the 

number of hours during which they would accept delivery. As a resuH 

of an initiative by the Food Manufacturers Federation, a pilot out-of-hours 

scheme was operated for some five months in the Summer of 1966. In this 

scheme 12 large manufacturers delivered to 30 Tesco stores in the London 

area on Monday evenings between -1730 and 21 00·. The rather limited 

evaluation showed that the concept of making out-of-hours deliveries 

was feasible, although the number of participants was too small to allow 

the scheme to be profitable {Ref. 153). 

By the following year, 1967, the problems of coping with traffic 

had become a major political issue, and the then Labour Minister of 

Transport, Barbara Castle, jointly sponsored with the GLC Highways and 

Transport Department and. the Distribution NEDC, research upon an 

enlarged scheme. This second scheme, which became known as "Moondrop", 

ran for six months from January to June 1968. It operated on· four evenings 
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of the week, Monday to Thursday 1 from 1730 to 2200 with 20 manufacturers 
using some 70 vehicles delivering to 100 shops a~d five warehouses 

belonging.to 12 retail companies. Again the scheme was based in London, 

although it had been hoped that other cities, particularly Manchester, 

Liverpool, Birmingham and Glasgow might also be the subjects of similar 

experiments. 

Moondrop was intended and designed to be permanent and it 

ytashoped that many other retailers and manufacturers would join the 

initial nucleus·, but despite great efforts this never happened. Among the 

many reasons for its failure the following have been suggested (Ref. 153) : 

1 • Lack of Volume -

(a) Retailers' staff could have coped with at 

least twice the actual volumes. 

(b) Suppliers' vehicles were underutilized due 

to the wide geographic spread of calls 

aggravated by the restricted time permitted 

for delivery. 

2. The hours of operation -

(a) Retailers found difficulty in retaining staff 

until 2200. 

(b) Manufacturers' vehicles were committed for 

only four nights per week and had great 

difficulty finding work for the fifth night_. 

In addition 11 bunching 11 of vehicles led to 

delays. 

3. Costs 

Evening deliveries cost the retailers approximately 

twice as mu.ch as normal day time deliveries. For · 

suppliers the oncost was about one third above day 

costs. 
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4-. Alternatives 

Many companies found that they were able to 

introduce more effective day delivery arrangements, 

including the use of vehicle appointment systems 

at lower cost. 

On the other hand evening deliveries to warehouses proved more 

successful, mainly because much larger volumes were handled and tighter 

control of the system was possible. In addition night deliveries of con

solidated leads from retailers' depots were found to be practicable, largely 

because vehicles could be precisely scheduled. 

Bannister (Ref. 153) concludes that night deliveries would in

evitably be more expensive than day deliveries unless the following 

conditions could be met : 

1. Elimination of the nee-d for staff to receive night 

· de liveries. 

2. Solving the problems of security and control that 

would follow from having no staff to unload and 

check the deliveries. 

3. Restricting the scheme to large outlets whose volumes 

would justify the additional costs. 

If the scheme were more expensive than normal deliveries, then 

to succeed it wou Id have to be compulsory. Bannister considers that the 

problems of enforcement and special cases would be so intractable as to 

re rider the system inoperable. 

One approach to resolving some of the problems cited was 

subsequently developed by British Road Services ltd. and marketed as 
' 

'Nightpac' • Under this scheme, small containers were to be packed with 

goods for delivery at either the manufacturer-'s premises or at a depot 

consolidating deliveries for a number of manufacturers (Ref. 154). The 

containers were then to be delivered to especially constructed 'safes' built 

into the outside wall of the shop during the evening and night. Retail 

staff would then unpack the containers during the day and place empty ones 

in the safe for collection the next night. 
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'Nightpac' was not a success - in fact it never developed 

beyond the demonstration stage (Ref. 154). A number of factors may 

account for its lack of acceptance, including the cost of the equipment 

required, the inflexibility of the sysl"em,difficulties of standardization 

and problems of security (Ref. 154). 

A recent 'Delphi' survey of nearly 100 experts in the grocery 

industry asked the question 'when will out-of-hours become generally 

accepted by most major manufacturers and multiple chains in the grocery 

industry"?. (Ref. 155). The median date given by the panel consulted 

was 1989, the mid-point in the range 1984 to 1995. ·In support of their 

answers, those responding made the following observations; "Increasing 

traffic congestion will make this (night deliveries) inevitable, on some 

scale at least; (and it) would fit in well with night replenishment of shelves •••• 

Distribution service companies would welcome the opportunity to deliver 

out of hours since it would provide improved utilization of truck fleets. 

lt would be quite feasible to deliver to major outlets since night deliveries 

are already common to retailers' depots. Deliveries to out-of-town 

superstores would not pose the same problems as those adjacent to residential 

areas". 

From these replies, and from the experience gained by the two 

schemes in London, it appears that there is little future for night deliveries 

to urban centres, except in the important case of supermarkets serviced by 

the retailer's own depot (discussed in Section 8. 2. 2).Large out-of-town 

superstores however may increasingly be serviced at night, both by 

retailers' own depots and by manufacturers and distribution companies. 

The introduction of such systems must undoubtedly improve the energy 

efficiency of retail deliveries, although the many unknowns make it 

impossible to estimate the scale of savings available. 

One alternative to out-of-hours deliveries as a means of re

ducing to problems of retail delivery noted earlier is that of vehicle 

appointment schemes, or V.A.S. Such schemes may take various forms, 

namely the Fixed Day, Fixed Half-Day and Fixed Time Systems (Ref.156). 
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Although many retailers at present operate booking-in systems 

for their central warehouse deliveries, the daunting complications of 

their introduction to high street outlets has retarded their adoption. A 

survey in 1970 revealed that of the 44 distributors who participated, 27 

operated vehicle appointment schemes for their depots. About 36% of 

the tonnage received by these depots was delivered by booked-in vehicles, 

roughly evenly split between 1Fixed Day• and 'Fixed Time• appointments 

(Ref. 156). The application of such schemes to retail outlets (as opposed 

to depots) is very much lower in general, but is more widespread in 

large shops (with higher volumes) than small shops. Jobson (Ref. 157) 

comments 1Doubtless where a company delivers in on own transport from 

own central warehouse, an efficient scheduling of incoming loads is 

possible. One supermarket can schedule the input of a dozen vehicles 

a day. But how can those 12 vehicles from 12 different companies each 

delivering to 12 different shops be scheduled so that they do not chase 

one another from one queue to the next? lt is a scheduling impossibility 

and we should recognise the fact 11
• Jobson anticipated instead that in 

future manufacturers will have a three-tier distribution system: 11At the 

top end wili be a highly personalized fast service to superstores and main 

warehouses with linked inventory control and inter-linked handling units 

right through to the store. In the middle will be the large drop conventional 

service to consolidation points, cash and carrys, etc., and at the bottom 

will be the same old van delivery service based on five regional stock 

centres delivering to all the other majority of outlets, which are neither 

High Street nor superstores 11
• 

If the difficulties acknowledged by Jobson in establishing 

·appointment schemes could be mastered, then substantial savings may be 

anticipated. Rushton (Ref. 150) as noted above has calculated that 

elimination of queueing at retail outlets could reduce vehicle operating 

costs by a larger amount than by any other single measure. Using a computer 

scheduling programme he estimates that the saving could be some 12!% of 

total costs. Low (Ref. 156) has used a computer simulation model to compare 

the effectiveness of various appointment schemes with that of i11creasing 

reception bays in reducing vehicle queueing. He found that 11 the annual 

lorry wcsiting costs to operators decreased by 24% under a .Fixed Day System, 
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54% under o Fixed Half-Day System end 68% under o Fixed Time System 

(where the planned delivery time slot given was equivalent to twice 

the mean weighted unloading time). The operating costs to supermarkets 

was found to be quite insensitive to the introduction of V.A.S. Overo11 

the total annual cost of the existing system drops by 11% with the 

introduction of o Fixed Day System, 23% with o Fixed Half-Day system 

end 30% with o Fixed Time System'. He concludes that the Fixed Time 

System is the most cost effective, but the least feasible, of the three 

types considered. 

Porti ciponts to the I. F. D • study noted above (Ref. 151 ) were 

asked to identify advantages of deliveries by appointment to retailers' 

depots (a !though the same benefits presumably accrue to retail outlets). 

Some of the more te11ing comments ore given below : 

'Cuts suppliers' delivery time by approximately nine tenths 1 

'Must mean better vehicle utilization achieved'. 

'Appointments fixed on a day basis should help to 

reduce the need for costly night deliveries'. 

'Easier route planning of journeys providing a more 

economic operation'. 

'Fewer refusals end wasted journeys'. 

'Much greater co-operation between our staff and 

delivery drivers. The difference this. makes in 

vehicle turn round has surprised us'. 

lt is clear from these comments and from the simulations noted 

that benefits are ovoiloble; the scale of fuel savings is difficult to quantity, 

but wou Id stem from 

a reduction in wasted vehicle trips 

higher vehicle utilization 

fewer vehicles end hence o reduction in energy 

required for making vehicles 

reduced "idling" while awaiting unloading et 

retail outlets. 
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The practical difficulties in operating effective: appointment 

schemes are numerous and intransigent. Among the most troublesome 

may be included the the 'domino effec~' of one delivery being delayed 

to the detriment of subsequent vehicles and retailers' own vehicles 

'queue jumping' and being unloaded before those of waiting suppliers'. 

Whilst better communications must, as always, improve matters, 

mechanical unreliability, weather conditions and human fallibility will 

continue to exasperate the best made plans. 
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8.2.2 •. Consolidation of deliveries 

Consolidation of deliveries, defined as the combination of the 

products of two Oi more companies for delivery, potentially offers substantial 

fuel savings, together with reduced congestion and other environmental 

benefits. These can be achieved by reducing the number of vehicle trips 

necessary to move a given tonnage, and by permitting larger, more fuel-

' efficient vehicles to be used in place of smaller ones. 

In this section, an attempt is made to assess the present extent 

of consolidated deliveries, and to estimate the scope for possible fuel 

savings within the grocery trade. 

Various means of consolidating deliveries to grocery outlets are 

available, and these include 

retailers' distribution systems 

services offered by specialist distribution companies 

and parcels carriers 

wholesalers'cash and carry outlets and brokers 

local authority transshipment centres(this route has been 

much debated and researched in recent times but none 

as yet have been established) • 

The extent of consolidation 

lt is estimated (Ref. 158) that a high proportion of all retail 

de I iveries are consolidated to some extent, by rete ilers, by wholesalers 

or by distribution companies, as shown in Table 50 • In addition a 

sfr!.all part of the total delivered by manufacturers is also consolidated in 

some way, thereby raising the proportion of consolidated deliveries to about 

76% of the total. (This analysis is based upon a survey of the channels 

used to service Bradford's central shopping area, and these results have 

been extended to the national position by means of the 1971 Census of 

Distribution updated to 1977 levels using the Trade and Industry Index 

of Retail Sales (Ref. 158 )o)o 
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lABLE 50 :SALES MOVED PER TYPE OF DISTRIBUTION CHANNEL 

Total sales for · %value of sales Est. degree %value of 
a 11 businesses moved per type of consoli- sales thatare 
(£m) of distribution dation per consolidated 

channel (%) channel deliveries % 
type(%) 

Retailers own account 16458 46o4 100 

Distribution services and 4388 12.4 100 sma 11 parce Is 

Wholesalers, brokers 5103 14.4 100 

M a nu fa cturers 9550 26.9 10 

TOTAL 100.0 

SOURCE Ref. 158. 

Within the multiple and co-operative sectors of the grocery trade, 

most companies have established centralised systems to control many aspects 

of their business, including physical distribution. A 1967 Survey (R~f. 159) 

estimated that 60% of all manufacturer's grocery deliveries were made to 

retailers' own depots, the balance being delivered direct to store. A later 

survey of fifteen multiple grocers (Ref. 160) revealed that the proportion of 

goods moving through retailers' central depots 'laried from 25% to 67~io with 

a mean weighted average of 42% and a median average of 58%. 

Of the 'top ten' grocery multiples, Tesco, International Stores, 

Allied Suppliers, Fine Fare, Safeway and Key Markets each channel 

between 40% and 60% of their sales via their own depots (Ref. 161 ). Asda 

in contrast, has no depots of its own - but deliveries to its 70 or so stores 

(which in 1978 accounted for about 5% of all grocery turnover (Ref.l62)) 

are increasingly consolidated via distribution companies depots. At the 

other extreme Sainsbury and Kwik Save (who in many ways could not be 

more dissimilar), rely on their own distribution systems to the extent of about 

80% of throughput. 
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Overall 48% of the 'top ten' multiples turnover moves via retailers' 

depots: 

Table 51 leading Grocery Multiples 

No. of l' urnover (£m) ~·(, of Approx. value 
Company Stores latest year. deliveries depot deliveries 

(Ex. VAT) made via 
own depots 

Tesco 571 1202 40 
' 

J. Sainsbury 231 989 80 

International 793 543 50 

Asda 70 536 0 
·• 

' 
Allied Suppliers 1030 448 40 

Fine Fare 680 425 {est) 50 

Waitrose 67 211 60 

Safeway 84 205 50-60 

Kwik Save 205 189 70-80 

Key Markets 126 186 45 

TOTALS 4934 48 

Source : Ref. 161 • 

In the United States, an estimated 70% of the grocery turnover of 

supermarkets is consolidated through retailers' or wholesalers' depots and 

about 30% delivered direct to store (Ref. 163). 
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The development of multiple retailers' distribution systems dates back 

to the middle of the last century, when many grocers- such as Allied 

Suppliers, International Stores and David Greig were first established. The 

impoM:ance of these systems in the national distribution picture has increased 

with the growth of the grocery industry and of the multiple sector within it. 

For the company concerned they permit control of quality (particularly of 

fresh foods) and sto:k levels, facilitate the intr_oduction of sophisticated 

ordering and control systems, reduce pilferage and branch accounting 

in addition to their energy saving potential. 
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The benefits of consolidation 

Consolidation can potentially reduce vehicle numbers and allow 

the economic use of larger, more efficient vehicles, thereby reducing 

fue I costs. The average volume per de livery is higher for consolidated 

flows than for others, as shown by the Bradford survey referred to earlier : 

TABLE 52: THE RELATIVE EFFICIENCY OF DIFFERENT DISTRIBUTION 

CHANNELS 

Method of No. of Total Vol. No. of Vol del. I Ave. vol. 
distribution dels. del'd {cu.ft.) dels. as as% of per del. 

I 
%of total total (cu .ft .) 

Rete iler own 1108 72220 21.4 41.8 account· 

Distribution 1577 19497 30.4 11.3 Service 

Manufacturer 1775 54850 34.2 31.8 

Other (mainly 
wholesaler or 723 26035 13.9 15.1 
broker) 

TOTAL 5183 172602 (99 .9) 100 

SOURCE : Ref. 158. 

From this comparison it may be seen that retailers• deliveries are 

about twice the average volume (65 cu .ft. compared with 33ft.), whilst 

those made by manufacturers are below the average. (The very low figure 

for distribution companies of course reflects the 1parcels 1 nature of much of 

this work which does not lend itself to large volume drops}. It is clear from 

the above that retailers• own distribution systems are more efficient in terms 

of average delivery size than those of manufacturers. 

Details of average volumes are also available for a sample of 

grocery and provision dealers included in the Bradford survey. From analysis 

of 708 deliveries presented in Table 53 , it is apparent that the disparity 

between the relative efficiency of retailers and manufacturers k even more 

marked. 
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1ABLE 53: THE RELATIVE EFFICIENCIES OF DIFFERENT GROCERY 

DISTRIBUTION CHANNELS 

Retailer Distribution Manufacturer 
Service 

Number of deliveries 85 45 441 

Volume (cu.ft.) 11130 1630 24345 

Volume per delivery 131 36 55 

SOURCE : Ref. 158. 

Other 
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The above sa_mple was quite small : of the total of 12 grocery and 

pr·ovision dealers surveyed, two were multiples, five were small independents 

and the balance were the food sections of five of the department and variety 

stores. The small number of multiple grocers in the sample is reasonably 

representative of the total population of grocery outlets (1. G.D. estimates 

that about 10% of these are multiple owned (Ref.l64) ). Untypically, 

however, the sample contained no examples ?f 'symbol independents', and 

moreover the two multiples examined made less than average use of their own 

distribution systems. 

Smith (Ref. 165) has also sampled the distribution characteristics 

of grocery companies, and his findings again confirm the potential benefits 

of consolidating suppliers' deliveries by use of wholesaler or retailer systems. 

From Table 54, it can be calculated for example that t~e average weight of 
a manufacturer's delivery is 583 lbs.,compared with 3.:392 lbs. for a 

·wholesaler and :i6880 lbs. for the supermarket group represented. 

J. Sainsbury: a case study in consolidated distribution 

As mentioned above, J. Sainsbury Ltd. are leading 

practitioners of consolidation in the grocery trade, with about 80% of 

their sales being delivered via their own·and their contractors' depots. 

Since the company is also one of the largest grocery retailers in the country 

(Table 51 ) , (claiming to be the country's largest greengrocer and wine 

merchant), a more detailed look at its distribution system may conlribute 

to an examination of consolidation techniques. 
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Companies 

Food Processor 

Food Processor 

Cereals 
manufacturer 

Tea & food man. 

Coffee & foods 
manufacturer 

Wholesale grocer 

Wholesale grocer 

Wholesale grocer 

Wholesale grocer 

Supermarket 
?,peration 

SOURCE ! Ref. 165 

TABLE54:CHARACTERISTICS OF DIFFERENT GROCERY DISTRIBUTION CHANNELS 

---
Turnover No. of No. of % of outlets supplies av. size % of full % of delivery vehicles 

£m fact- ware- which are : of drop loads to which are : 
ories houses Retail Wholesale (Ibs.) shops Own •. Carriers 

I 

N.A. 4 49 N.A. N.A. 84 0 - 5 100 0 

N.A. 2 22 89 11 560 20 - 40 45 55 

56 1 13 67 33 120 0 - 5 100 0 

69 2 2 74 26 3l!cu. ft. 0 - 5 20 80 

N.A. 13 16 80 20 1568 0 - 5 78 22 

5.5 0 1 100 0 3808 0 - 5 98 2 

1.4 0 1 100 0 1680 0 - 5 100 0 

13.5 0 5 95 5 5600 0 - 5 lOO 0 

10 0 1 100 0 4480 10 - 20 lOO 0 

120 0 3 I I 26880 40 - 60 88 12 



. The average sales area t'f Sain:;bury's supermarkets is about 

13,000sq.ft., which is 2.6 times greater than the average for the ten 

principal multiples. Takings per square foot are l o8 times greater at 

£6.34 (1977 /78) and these hvo factors .together indicate a volume of 

trade per store of 4o7 times the average o The distribution task in the 

company therefore involves moving very large quantities of goods to 

relatively few ou-tlets. The four distribution depots operated -at 

Basingstoke, Buntingford, Charlton and Hoddesdon - employ 3,300 staff

(roughly 10% of total J. Sainsbury staff), and have 1o5 million square 

feet of floor space, of wh i eh some 300,000 square feet is refrigerated. 

420 refrigerated vehicles are owned by the company (8- 10 pallet 

rigids and 12- 16 pallet articulated lorries) and these are supplemented 

by a further 120 others on permanent contract hire (mainly 10 pallet rigids). 

The company specification for distribution requires that every 

store shall have daily deliveries of virtually the full product range and that 

certain specified commodity groups·shall be delivered at 0730 hours every 

. morning to every store. Sainsbury uses each of the three basic sy~tems 

available - own depots, contract depots and direct delivery, but claims 

it does not yet receive all the possible benefits of the economics of depot 

deliveries 11 because the majority of manufacturers have not isolated in their 

pricing structure the true costs to them of making bulk deliveries to 

retailers' depots ~ompared to the costs of assembling detailed orders and 

making multi-drop deliveries direct to store 11
• (Ref. 161 ) o In support 

of this view, Sainsbury claims that an average store will receive 24 

deliveries per week from depots, compared with 75 deliveries. directly 

from manufacturers. The 75 direct deliveries however account for only 

20% of the volume. (A survey by the Multiple Shops Federation (Ref.16~ 

underlines the disparity between depot and direct deliveries. lt was 

found that at one supermarket 50% of goods came from the retailer's 

depots in two 32 ton articulated vehicles, whilst the other 50% was 

delivered direct,..by suppliers in 130 different vehicles. lt was estimated 

that the two large vehicles took just 45 minutes to unlocd and the suppliers' 

vehicles a total of about 25 hours). In addition to the distribution savings 

for manufacturers delivering in bulk to retailers' depots, Sainsbury also 

197. 



poin\· out that the expenses incurred by suppliers in promotional, 

merchandising and administrative activities should not be charged on 

depot deliveries (Ref. 161 ). (Key Markets, another of the top ten 

multiple grocers listed in Table 51 , also claims that suppliers in general 

do not fully deflect the very substantial benefits of centralized deliveries 

in their terms of trade. As a result the company has shifted the balance 

between depot and direct delivery back to direct': .. 
Most of the increase in Sainsbury's business in recent years 

has been handled by distribution service companies, particularly Cory 

Distribution Ltd. Use of contractors has a number of benefits, including 

lower capital co~mitment, 'insurance' against strikes in depots, evening · 

out peaks in the distribution year, use of the contractor's specialist skills 

and flexibility both in geographical terms and in business terms. (As the 

retailer grows, contractors 1 facilities can be taken on as required, without· 

a massive commitment in buildings, land and vehicles). There has been a 

tremendous growth over the past twenty years - and more particularly over 

the last ten years - in the use of specialist distribution companies by 

retailers and suppliers. 

Sainsbury1s Hoddesdon depot in Hertfordshire affords an insight 

into the role of retailers• distribution systems. lt is responsible for delivering 

produce (fruit and vegetables) to 93 branches, beers, wines and spirits to 

132 branches and confectionery, cereals and paper products to 164 outlets. 

A small warehouse adjacent to Hoddesdon delivers health and beauty aids, 

stationery and other items to 103 branches (Ref. 167) • 

Broadly, the Hoddesdon depot serves an area stretching from 

Kings Lynn to Poole in Dorset. Stores in the Midlands, West and South 

West are served by a contractor's depot at Elmdon, and another contractor, 

based at Canterbury, serves the South coast shops. Although Hoddesdon 

carries the lion's share of perishable products, the Basingstoke depot serves 

20 outlets. 

Sainsbury plan to reduce the delivery radius from Hoddesdon 

and other depots to the stores as far as is practicable, in order to reduce 

distribution and fuel costs. If this distance aould be decreased to under 
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50 miles, then more efficient vehicle and labour usage would be possible, 

with every driver making two deliveries per day. (Ref.l67). · 

Thorpe has found that retailers' transport costs are highly 

sensitive to the average distance between depot and branch - 11For 

those with journeys averaging 100 miles, costs appear to be over 50% 

higher than for those where journeys average 60 mi1es11
• (Ref .160). 

This may be achieved by introducing more depots (probably 

contractors') into the system- which would cut delivery distance but 

increase trunking needs and possibly raise stockholding levels o (Doubling 

the number of points at which stocks are held will more than double 

stockholding required) o 

If it is accepted that consolidation can bring benefits in 

terms of higher fuel efficiencies, and secondly that there is some scope 

at least for increasing consolidation in the grocery trade, then the question 

arises of ha\{ this may be achieved. How are decisions relating to the 

choice of delivery mode arrived at in the grocery trade? What has 

prevented the greater development of consolidated facilities in the past? 

Thorpe and others (Ref .160) have examined the reasons for choice 

of delivery mode and found that the follow.ing factors were of particular 

importance in explaining the extent of development of retailers' depots : 

the number dispersal, size and occupancy costs of branches, together 

with the pattern of growth experienced by the chain, its commodity range, 

its degree of vertical integration and the density of sales achieved in its 

branches. Some of these relationships are illustrated in Figure 23 • 

The most important single determinant of modal choice, however 1 

is the terms of trade offered by supplters, particularly the extent to which 

real distribution costs are reflected in discounts given to retailers. 

Thorpe (Ref .160) argues that theoretically the e~ficient movement 

of goods from supplier to customer through a distributive system can be 

achieved by well-constructed discount structure .sand by bringing to bear 

199. 



Figure 23: Generalised Long Term Factors Influencing Importance of 

· Multiples• Depots 
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the consequences of inefficiency on those who cause such inefficiencies (e.g. 

thus delays should be charged for).; Such a theoretical position does not 

exist because the problems of determining the causes of inefficiencies 

like delays are often too great. More fundamentally, discount structures 

are now seldom fully meaningful in distribution terms •• o o If distribution 

is isolated from overall marketing strategies sub-optimal arrangements 

may appear. o.. The effective integration of ~istribution into a full 

marketing strategy involves far more careful study than many organizations 

have as yet attempted. Averages of the rort often used in traffic 

management are too broad to provide meaning. Suppliers must isolate 

different customers, or types of customer, and evaluate their implications. 

Retailers must evaluate the total impact of distribution on their shop 

t o 11 opera 10ns • 

. There is some evidence that an increasing number of suppliers 

are more fully costing distribution alternatives and reflecting these' costs 

in their terms of trade, for a number of reasons. These include the 

climate of opinion about discounts unrelated to cost savings. 11The 

Robinson-Patman and Clayton Acts in the USA and the Irish Fair Trade 

Commission have focussed attention on the differential buying power of 

the large retailers and the better terms they are frequently able to obtain 

from suppliers. In the case of the USA such terms have to be cost

justified (Ref o 160) 11
• In this country the late Price Commission was 

critical of a large food supplier giving discounts according to buying 

power rather than cost savings, and.there have been calls for the 

introduction of Robinson-Patman type legislation to protect the small 

retailer against unfair competition. -s ~vera I major grocery suppliers, 

including Proctor and Gamble, have recently moved to a cost-related 

discount structure based upon the si:ze of individual rather than total 

orders -a change of policy which led in the summer of 1977 to a 

confrontation with Tesco Stores. 

Recent and anticipated fuel price increases have prompted many 

companies to impose "minimum drop sizes" which they are willing to 

deliver. The larger the minimum imposed the larger wiJJ be the number 

of small retailers who ore forced to find other sources of supply, commonly 

the Cash and Carry outlet. 
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Many companies however do not know their real distribution 

ccsts and therefore cannot isolate the effect of various options such'as 

a change from direct to depot distribution. Thomson (Ref. 169) has 

examined decision making in such matters in greet detail and points to 

the complex relationships involved and the frequent Jack of appreciation 

of the comequences of a change in say delivery mode upon distribution 

and other costs, including sales and marketing. (This supports the views 

of Sainsbury and Key Markets, noted earlier who claim that suppliers 

donot fully reflect cost savings in their trade terrrts). 

Rushton (Ref. 158) identifies many other reasons in addition 

to lack of detailed costing to expla·in why manufacturers continue to 

service shops directly even when offerred a lower cost alternative. Perhaps 

paramount among these is the fear of losing instore influence if calls 

are restricted to depots or if distribution were to be handled by a third 

party. Certainly in these days of fighting for shelf space, an instore 

presence may boost sales, albeit at higher cost • 

Public transshipment depots (TSDs) 

So far, we have concentrated upon the use of retailers• and 

distribution companies• depots in discussing consolidation. An alternative 1 

namely the public transshipment depof has however been frequently 

proposed as a means of improving urban environmental conditions by 

reducing, where possible, the size and number of lorries that enter urban 

areas. Each depot on the periphery of a town would provide a consolidation 

service for the goods intended for delivery in the town. Thus, where 

necessary, goods would be transshipped to make up a fully-laden lorry 

which would deliver within the urban area. Beginning in 1973 with the 

Metra Consulting group, many studies of TSDs have· now ~een conducted 

in this country (and these are summarised by Smith (Ref .165) ) • lt is 

generally agreed that whilst there may indeed be environmental benefits 

and possibly savings in operating costs, including a reduction in fuel costs, 

the capita I and depot running costs wou Id be very high. In addition many 

companies feared local authority intervention in their business might be 

detrimental, for many reasons. lt now seems that the climate of opinion, 

together with economic difficulties and spending cuts, have moved against 

the development of public transshipment depots. Instead, voluntary use of 

existing commercial facilities is generally preferred. 
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To conclude, we have seen that consolidation potentially 

offers substantial fuel savings, and that although a high proportion of 

retail grocery deliveries is already con::olidated by one of several means, 

there is still scope for further development. As distribution costs rise, 

manufacturers will develop more sophisticato;:d account pr::>fitability 

studies and be increasingly able to present retailers with detailed alternative 

costings instead of a single 'all in' price. This should encourage more 

use to be made of retailers• depots. At the same time, rising distribution 

costs will persuade more suppliers to use specialist distribution companies 

for all or part of their needs. There may also be a rise in manufacturers 

sharing facilities. lt is however unlikely that public transshipment depots 

will appear. 
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8.2 .3. Application of computers to reducing vehicle. mileage 

In this section we look at ways in which recent developments 

in computing may help to reduce vehicle fuel requirements and generally 

improve vehicle operations. 

As yet, the computer has made little contribution to the 

planning and control of road transport. In the 1960's there were several 

renowned failures in this field, and although advances have been substantial 

since then, particularly with regard to strategic planning, the use of 

computers is still limited (Ref. 170). A recent survey of major grocery 

companies showed for instance that wher~as 86% of the sample, ha:! systems for 

warehouse stock control, only 30% used computerised vehicle scheduling/ 

route planning aids and only 20% made use of depot siting techniques : 

TABLE 55: THE APPLICATION OF COMPUTERISED SYSTEMS TO DISTRIBUTION 

IN THE GROCERY INDUSTRY: PERCENTAGE OF SAMPLE 

SURVEYED 

Distributors Manufacturers Total 

Warehouse stock control 87 85 86 

Branch stock control 65 48 56 

Direct delivery accounting 74 74 74 

Invoice-delivery note matching 65 74 70 

Customer invoicing 65 96 82 
' , 

Sales analysis 
, 

87 100 94 

Vehicle scheduling 20 37 30 

Depot siting 10 27 20 

SOURCE : Ref. 171. 
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Despite the slow acceptance of the computer as a distribution 

tool, there hod br~en growing ·interest. recently, particularly in the 

follo1..ving areas : 

1. Strategic planning of :routes 

: location of depots, factories 

: fleet size and composition 

2. Day to day planning of vehicle routes and loads. 

A recent survey ·showed that 27 co.npanies now offer computer systems 

designed for these problems, and nearly 750 users are claimed (Ref. 172) 

Improvement by whatever means - manual or computerised - to the above problems-· 

could potentially reduce fuel needs. Mileage optimization however is 

only one of several possible goals, and historically it ·has often been 
' 

secondary to other objectives including speed, service levels and a reduction 

of stocks. The interpla)' of these factors is discussed later in the section 

dealing with consolidation. 

For the purpose of strategic planning, it is possible to represent 

the entire distribution system of a company upon computer and use math

ematical techniques to evaluate alternative strategies, not in isolation, but 

in the context of the company•s needs, to obtain the best possible method 

of distribution. This will involve modelling the flows between factories, 

depots and customers in the case of a manufacturer, or between depots and 

shops in the retail industry. Typically, a manufacturer may ha·te a number 

of factories, each manufacturing several products with some overlap of 

product types. Warehouses receive goods from the factories for distribution. 

More than one factory may serve a warehouse, and inter-warehouse trunking . -
can take place. Goods are then trunked from warehouses to field d0pots 

for final distribution to customers. In addition, however, certain large 

customers may receive deliveries direct from a warehouse. This pattern 
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is illustrated in the diagram below : 

Distribution System Schematic 
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Such modelling can be enormously complex and would dearly 

be impossible without data processing. Among the many factors required 

by the model will be (Ref. 173) : 

Size, location and number of factories, warehouses, 
and depots 

Production capabilities and capacities at fac.tories 

Fixed and unit costs of factories, warehouses and 
depots 

Throughput capacities of warehouses and depots 
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Transport costs and f.leet limit-ations 

Qutside st-orage costs 

Depot delivery areas 

Product flow patterns 

The experience of a national brewery company which has recently 

conducted this type of exercise illustra~es the possible savings in terms of 

vehicles, mileage and fuel. The company had grown quickly in recent 

years by means of mergers and aquisitions and it had been the company's 

policy to allow a large degree of independence to its new members. The 

position therefore was that production points were responsible for the move

ment of their own products. As most products were distributed nationally, 

whether direct to secondary distribution depots or via intermediate bottling 

or canning plants, this inevitably meant that inefficiencies occurred in the 

transport system as routes were duplicated and a g·:>Od dc·:JI of empty running 

tookplace. Sa•tings resulting from the implementation of the consultants' 

recommendations in this case amounted to more that £250,000 per year. 

(Ref. 174 ). 

lt is therefore clear that computers can be of great help in the 

strategic planning of distribution- including the location of depots and 

other facilities. In contrast, they have been conspicuously unsuccessful 

to-date in ~l'Jndl ing day to day vehicle operations. Manual methods have 

invariably proved super~.:Jr to computer solutionsj simply because computers 

were not able to balance imponderables, drivers' preferences and 

experiences and could not take account of last minute changes. Fine Fare, 

for instance, tested manual and computerised route planning and load 

scheduling systems a few years ago, and proved human experience could 

not be bettered (Ref. 175 ). With the great! y increased performance of 

interactive mini and micro computers, together with improved softwar:~ and 

a realistic appreciation of their potenti:JI as aids to, and not repl:lcements 

for, human load planners, it seems that computerised syst~ms may soon be 

widely adopted for day to day operations (Ref. 176). The reported recent 

brea'<through in solution of the long-standing "tra'lelling salesman" problem 

can only sp·~ed the spre:::~d of such systems. (Ref. 177 ). 
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8.2~4~' The effect of increasing maximum vehicle wcights upon 

fuel consumption 

Large vehicles, if fully utilized, can offer a higher fuel 

productivity (in terms of ton-miles per gallon) than ~an smaller ones. The. 

potential fuel productivity of various vehicles is given in the Table below : 

TABLE 56: FUEL PRODUCTIVITY AND VEHICLE SIZE 

Truck size Maximum carrying Fuel consumption Potential fuel 
(Unladen weight, capacity (tons) (mpg) productivity (ton 
tons) miles/gallon) 

2 ton 3 20 60 

4 ton 10 12 120 

10 ton 22 7 t 154 

SOURCE : Commercial Motor, Tables of Operating Costs, 1979 

In addition, any given tonna3e may be moved by fewer large 

vehicles than small ones, thereby affording savings in the energy required to 

manufacture the vehicle fleet- and potentially reducing congestion. These 

two arguments have been cited in support of raising the maximum permitted 

weight limit of British vehicles from the present 32 tons g. v. w. limit to those 

common elsewhere. France, Spdin and Ger:mony, for instance permit. 

trucks of 38 t.gqv.w., Denmark and Italy have a 44 t.g.v.w. limit, Holland a 50 

· t.g.v.w. limit and S-.yeden a 52 t.g.v.w.lim~t (Ref.178 ). A Swedish study (Ref.179) 

claims that raising the British limit to the Swedish level could increase fuel 

productivity by 27%. A recent rigorous British study :~.c:. 1 0~ ;: CGilciuded ;·[,at 

"the use of vehi~les in the gross weight range 32.5- 44 tonnes could produce 

significant improvements in fuel utilization compared with the 32.5 tonne 

vehicles of to-day, providing that existing load factors were maintained. The 

potential saving was estimated to be 7-10 per cent for vehicles of 38 tonne and 

12-15 per cent for 44 tonne vehicles". 
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With regard to the potenHol reduction in vehicle numbers os a result 

of raising weight limits, the some study demonstrated that an increase in 

maximum weights to 38 tonnes could redllce the number of heavy vehicles 

required by 15%, with an 8.4% fuel saving, and that if 44 tonnes were 

adopted, the heavy vehicle fleet could be cut by 28% with a 12.5% fuel 

saving : 

TABLE 57: MAXIMUM PERMITTED WEIGHTS, VEHICLE N UM13ERS AND 

FUEL CONSUMPTION 

Vehicle Number of Number of Amount of fuel 
options vehicles tonne-kmso used (mill ion I itres) 

(million) 

'32 ton' artic, 1211 1865 36.9 

36 tonne artic. 1066 1798 33.8 

38 tonne artic. 1028 1849 33.8 

40 tonne artic; 

4 x 2 tractor 
972 1827 32.7 

40 tonne artic : 

6 x 4 tractor 
992 1868 34.3 

44 tonne artic. 872 1800 32.3 

SOURCE : Ref. 180. 

Note: The tab I e compares the number of vehicles, tonne-kms., and "Omount 

of fuel used when six different articulated vehicle fleets pe;form 

10
9 

tonne-kmso of work, each with the same payload factor. 

In the United States, the American Trucking Association (ATA) has 

lobbied to raise vehicle gross weights and increase overall vehicle lengths, 

citing similar evidence of fuel savings (Ref. '181 ). The ATA calculates for 

instance that raising limits from current to proposed levels could reduce fuel 

usage by over 12% by reducing vehicle trips. 
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There is much opposition to any increase in vehicle sizes from 

local authorities, conservation groups and others w!1o fear greater rood 

damage, danger, and general environmental impact from : "juggernauts11
• 

Gyenes (Refo 180) points out that road damage need not be increased with 

a rise in w-aight limits, providing that 38-40 tonne vehicles have five axles, 

assuming that damage is related to the fourth power of axle weighto 

At the time of writing the .issue is being actively debated and the 

outcome is by no means clear. A factor in favour of higher limits however, 

which might perhaps persuade the minister is the growing number of vehicles 

in use in this country capable of operating at 38 t.g.v.w., in anticipation 

of harmonisation with the EEC. 
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8.2.5.· Energy usage in retail outlets 

The energy used in retail outlets is but a very small proportion 

of the total consumed in the entire distribution channel. lt is however 

growing rapidly, particularly as temperature controlled foods increase in 

popularity, and approaches to its conservation have attracted the attention 

of retailers in Britain, Europe and America. 

The retail distribution of food, together with food storage and 

preparation in the household and in catering establishments consumes about 

5.5% of total U.K. energy (Ref. 182}. Details of the amount actually 

used in retail outlets are not available for this country, but some 4% of 

U. S. energy requirements are accounted for by supermarkets, which 

consume about 80% of all the energy used by U. S. shops (Ref. 183 ). 

How much energy a store requires will clearly be influenced 

by a multitude of factors, including its size, equipment, product range, 

opening hours, insulation standards and location. Similarly the usage by 

different sectors within a store will show wide variations according to the 

above factors. Thus the figures shown below which compare a typical 

American supermarket with the average for Marks and Spencer's shops in 

Britain can be no more than broad guide I ines. 

TABLE 58: COMPONENTS OF STORE ENERGY USAGE 

u. s . .. 
Refrigeration 

lighting 

t:Jeating and air 
conditioning 

Other 

SOURCES: (1) Ref. 184. 

(2) Ref. 185 

Supermarket (1) Marks and Spencer (2) 

45% 24% 

16% 32<'k 

l:l<'k 14% 

-
27% 30% 

(Note that these proportions have altered 

as a result of Marks and Spencer's energy saving campaign}. 
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Companies on both sides of the Atlantic have been actively 

exploring energy conservation methods to reduce high energy bills in 

store. Utility costs as a per cent of sales have risen from 0. 6 to 0. 9 in 

U. S. stores, and freqrJently exceed site rE;nts and net margins (Ref. 186 ). 

In Britain, electricity costs per unit have risen more rapidly than the 

retail price index (nearly trebling in the last 5 years (Ref. 53 ). In 

America, a further incentive has been avoidance of the crippling natural 

gas shortages during the winters cf 1976 and 1977 when food shops were 

forced by law to reduce opening hours by up to 60%. (Ref. 183 ). Energy 

saving in'· fact has become a major preoccupation of the American grocery 

trade press. The Federal Energy'Authority (F. E. A.) has proposed a 20% 

reduction in supermarket energy usage and its suggestions for achieving 

this include 'good housekeeping', technical and structural changes, and 

energy auditing (Ref. 186 ). 

Major savings have been made in this ·country by Marks and 

Spencer, Tesco, Fine Fare and other maior retailers, using ~imilar approaches 

to those noted above. In addition, Marks and Spencer, who claim that 

energy savings are equivalent to £2 million a year (Ref. 185) have installed 

solar panels for preheating of water, but attribute most of their success 

to a wholehearted commitment from the Chairman downwards. 

Differ~nt products have very different energy derna:1ds; frozen 

foods for instance clearly require a higher energy expenditure than dry 

groceries. Future energy requirements by food retailers will therefore be 

influenced by the growth of energy expensive frozen foods. In recent 

years, this growth appears to hav~ been slowed by rising costs and ?rices, 

and this may be expected that the energy used for ware!1ouse, transportation 

and store costs of handling $1 worth of dry groceries totals 19.7 BTU's- an 

insignificant amount too small to quantify in money terms. In contrast, 

the BTU's used to handle Sl 'N::rth of frozen food total 31,403 -or ab(Jut 

10.5 cents for each dollar of produc:- :Ref.186 ). 
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8.3. Grocery retailing trends influencing fuel_ consumption 

Many trends, structural, organizational, operational, social, 

economic and political, may be identified in the grocery industry, and 

most of these will hava some, albeit small, bearing up?n tra~sport and 

distribution, and energy needs. The Delphi Study (Refo 155) referred 

to earlier, for instance,_ asked participants to address themselves to 44 

possible future trends or events, all with distribution imp I ications. Here, 

however, we rather arbitraiily select just three of the very many trends 

apparent to see what implications they may hold for fuel usageo These are : 

Retail outlets 

Structure of the trade 

Service levels and article numbering 

Among the many topics not covered in any detail, therefore, 

but which have substantial energy imp I ications may be numbered the 

broadening product mix of large stores (Ref. 164 )(implying increased 

transport demands,), more frozen and temperature controlled foods (some 

40% of British households are estimated to own a freezer (Ref. 162 )~), 

returnable versus non-returnable containers (the subject of a major study 

recently (Ref. 187 ) and trends in bulk packaging including the use of 

cage pallets (Refs. 188 ) half pallets, roll pallets and others (Refs 189 ). 

8.3. 1. Retail outlets 

The general trend towards larger outlets, illustrated below, 

reflects in part the economies of scale available (Ref. 164) and the 

importance of price as a determinant of customers' choice of shop (Ref. let\. ). 

TABLE 59: SIZE OF NEW GROCERY SHOPS (Square feet of sales area) 

1969 1970 1972/73 1974/75 1976/77 

6500 7000 8000 9300 1.3000 

SOURCE : Ref. 164 
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NOTE : the figures refer to the multiple and co-operative sectors of the 

trade. 

Grocers shops form the largest single category of retail outlet, 

accounting, in 1971 for about 22<'/o of the total number but an inevitable 

consequence of the changing economics of retailing and the growth in 

shop size in a static market (the index of food sales in constant 1975 prices 

remains below its 1970 level) has been a fall in the number of shops. Between 

1961 (about the start of the self-service and supermarket boom) and 1977, 

widespread closures of small shops reduced their number by 40% : 

TABLE 60: NUM3ER AND CATCHMENT AREA OF GROCERS' SHOPS ('000) 

1950 1961 1966 1971 1977 

Grocers' shops 146o0 146.8 123.4 105.3 86.0 

Population per shop 344 359 436 527 650 

SOURCE : Ref. 164. 

Such a start! ing reduction in the number of shops is unprecedented, 

although the underlying trend is far from new; as long ago as 1897 Marshall 

(Ref.· 192 ) remarked "In particular the retail trade is being transformed and 

the small shopkeeper is losing ground daily". 

·A necessary consequence of the decline in numbers, and growth 

in size of shop, has been an increase in the catchment area of remaining 

outlets. This in turn imp! ies an increase in the average distance travelled 

to shops and has created pressure towards greater use of private cars for 

shopping. M::lre than 40% of 'shopping and personal business trips' are 

over 3 miles- an ~xcessive walking distance : 
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TABLE 61: SHOPPIN 3 AND PERSONAL BUSIN ~SS TRIPS, BY LENGTH, 

1975/76 

Under 3 miles 

3-10 

10-15 

15-30 

30-100 

SOURCE: Ref. 7. 

But for the opposition shown to out-of-town davelopments by 

central and local government, this figure would ne doubt have been 

considerably higher. As it is, the vast majority of new shops are developed 

in town centres, with very few 'greenfield' sit~s (unlike retail developments 

in Europe and America)o Thus in 1977 only 1% of new openings were 

out~of-town, 47% were in town centres and 44% in Suburban or peripheral 

locations. (Ref. 164 ). 

Certainly, the number of superstores has grown sh~rply, their 

mo~e rapid expansion hampered only by difficulties in obtaining planning 

permission. Nevertheless the vast majority of the present 200 or so outlets 

of 25000 sq. ft. or more of selling space (Ref. 164) are concentrated within 

urban areas. Moreover, the two :argest superstore operators, name I y T esco 

and Asda have both proclaimed themselves committed to redeveloping urban 

sites (Refs. '193 and 194 ), even though the cost per square foot of urban 

stores can be roughly double that of out-of-town sites (Refs. 195 ). 

From the viewpoint of the distribution efficiency - and hence 

fuel productivity- of retailers and their suppliers, the trend towards larger 

stores is entirely favourable. Large outlets, particularly those located away 

from congested town centres offer the potential for deliveries in maximum 
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capacity, energy efficient vehicles, provision of mechanical handlina 

facilities, palletized loads and minimal delays. 

However, if the fuel productivity of the food distribution channel 

as a whole is examined - including petrol usaae by shoppers' cars, then the 

benefits of large stores are more dubious. As noted earlier, the trend 

towards larger shops necessarily entails an increase in the averaae distance 

travelled for shopping, and hence inipl ies an increase in car usage. This 

is accentuated by the observed reduction in freGuency of shopping trips 

and increased avera3e purchase in large shops. 

Overall, for all types and sizes of shops it is estimated that for 

the majority of shoppers the main mode of travel is walking - 40% on the 

principal sho?ping day, and 73% on secondary days, ea: travel accountina 

for 26% and 16% r·espectively of trips (Ref. 196 ). 

In contrast, surveys of superstore shoppers reveal very much · 

higher levels of car transport : 

Sainsbury's at Bretton, Peterborough - 72"/o car, 9% bus, 

17% walk. (3 new bus services were inaug•.:rated when. the 

store opened which led to increase::! use on journeys to the 

city centre as well as to the store) (Ref. 197 )o 

Carrefour, Caerphilly- 90% plus by car (Ref. 198 ) 

Asda, Castleton- 91% car, 3% !YJS (Ref.197 ). 

Asda, Chadderton- 76% car, 7% bus (Ref. 197 ). 

Asda, Aberdeen.- 75% cor, 9% bus (Ref.l97). 

Kwik Save, Rochdale - 74% <:or, 8% bus (Ref. 197 ). 

Carrefour (Poitiers) - 94% car, 1% bus (Ref. 197). 
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The total fuel consumption of the grocery distribution channel 

is v~ry sensitive to the level of car usag'3; as may be expected, the fuel 

saving in distribution to large sho?s may easily be outweighed by higher 

petrol usage by shoppers• cars. This is illustrated by the hypothetical figures 

shown below·: 

TABLE 62: TOTAL FUEL REQUIREMENTS OF DlSTRIBUTING FOOD VIA 

(G) A CORN ER SHO? AND ~b) A SUPERSTORE, PER lOO TONS 

(a) Corner Store 

1. Delivery lOO tons in average~ ton (approx. 22 cases) lots= 400 deliveries 
Vehicle - say 5 ton diesel van, 15 mpg. av- distance, round 
trip - 50 miles 

Fuel used/lOO tons= 400 (dels) x 50 miles 

15 mpg 
= 1333 galls. 

2. Collection by customer 

100 tons in average lOib. lots 
= 22400 trips 

lOOk of customers use car. 10 miles round trip, 30 mpg. 
= 2240 car trips 
= 2240 X lQ 

30 
galls. = 746 galls. 

Total fuel usage for delivery and collection: 2079 galls./100 tons or 20.79 g.:~lls/ 
ton 

(b) Superstore 

1 • Delivery say 100 tons in 5 x 20 ton lots. 
vehicle= 20 ton artic, 10 mpg. av. round trip say 50 miles. 

Fuel used for delivery= 
5 X 50 

galls. 
10 

= 25 galls. 
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2. Coli ecti on by customer 

100 tons in av. 30lb./customer = 7467 trips 
80% customers use a car. 20 mile round trip, 30 mpg. 

= 5974 trips by car 
= 5974 X 20 ll ga s. 

30 
= 3982 galls. 

Total fuel usage for delivery and collection : 25 galls. + 3982 galls./100 tons. 
= 4007galls(100 tons or 40.07 galls/ton. 

On the above assumptions, the total fuel requirements per ton of food sales are double 
for a superstore compared with a corner store. 

N.B. The above assumptions are for illustrative purposes only. They are 

simplistic - (ignoring for instance the number of deliveries per 

vehicle and the role of retailers' depots) and open to wide variations. 

Generally however, they favour the su?erstore- e.g. average delivery 

will be less than 20 tons. 

Th.e two examples given here of course represent extremes between 

which most retail outlets will be found. 

The location of shops is obviously a major factor in the choice of 

of transport mode : the more residentially orieni·ed the outlet, the lower 

will be the need for motorised transport. Maclaurin, (Ref.199 ) Managing 

Director of Tesco, has a;gued the need for centralised locationof new outlets 

"The traditional; peripheral location of large stores has generally been of 

most benefit to those people with easy access to a car. For all the growth 

in public mobility however, one family in three in Britain is still without 

a car and it is these people who would 3ain most by convenient access to 

large stores. As I see it therefore, the established need is to centralise the 

development of large stores in order to minimise energy consumption (thus 

containing inflation in the distribution sector) and to ensure that such cost 

effective units are easily accessible". 
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Provision of adeq'Jate public transport fa.:ilities can reduce 

car usag-e substantially a:> shown by: 

Arnd.:Jie_. Middleton- 43% bJs, 36% car, 2C'Io w~lking (Ref. 197) 

Victoria Centre, N·Jttingha.11 - 59% bus, 29% car, 10% walking 

(Ref. 197 ). 

In towns with inadequate public transport facilities. Asda operate 

their own bus services between residential areas and their stores. In Wrexham, 

for instance, the company runs four buses per day to their supsrstore (Ref.201 ) 

thereby reducing car usage. 

To conclude, it appears that current trends towards fewer, 

larger stores will inevitably lead to greater dependence upon cars for shopping 

trips, thereby reducing the overall fuel productivity of the grocery 

distribution channel. The decline in ,pubiic transport availability can 

only ·exacerbate this move, and may encourage greater particip~tion by 

privat~ retailers such as Asda in providing bus services. Car-borne shoppers 

may react to high·~r fuel costs by reducing the frequency of trips (a:; may 

independe.nt grocers purchasing goods from Cash and Carry out I ets). Such 

a reaction how~ver has been disputed by A::da : 11There has been much 

conjecture in th~ media that the current energy crisis and the price of fuel 

will affect the car-borne shopperc We can find no evide:1ce whatever that 

this is so. Indeed, a check of our trading figures covering the last five 

years or so when petrol prices have risen sha:-ply confirms that our customers 

do. not stop using their cars for essential shopping 11
• (Ref. 202 ). 

219. 



8 • 3o 2. Structure of the trade 

Three type!: of operatc)r-mc...,- be identified within the grocery trade, 

namely multiples, independents and co-operative societies. (Multiples 

have more than 10 shops, independents less than 10 shops, whilst co

operatives are defined as organizations registered under the Industrial 

and Provident Societies Act)o The number of shops operated by each type 

has fallen drastically- and by 40% overall - in the last 16 years. 

Number of Grocers' Shops 

%Decline 
196' 1966 1971 1977 1961-1977 

Independents 116,336 96,451 86,565 73,000 

Co-operatives 16,522 14, 115 10,973 6,000 

Multiples 13,919 12,819 7,745 7,000 

TOTAL 146,777 123,385 105,283 86,000 

Source : Census of Distribution (Ref. 191) and Institute of Grocery 

Distribution (Ref. 164 ) estimat_es. 

ln·terms of sale.s, the multiples market share has grown from 200/o 

37.3 

63.4 

49 .• 7 

41.4 

in 1950 to over half the total in 1978 whilst the other two types of organization 

have declined in relative importance. 

% Share of the U. K. Grocery T rode 

Multiples Co-operatives I Independents 

1950 20 23 57 

1957 22 23 55 

1961 27 \ 21 53 

1966 36 17 47 

1971 43.5 15 41.5 

1977 50.2 15.5 34.3 

1978 52. 1 15.4 32.5 

{£4987m) 
I 

{£1751m) {£3724m) 

Source : Ref. l62 ~ 220. 

l 



Multiples now control about 52"/o of the total grocery trade and 

the 'top ten' groups together account for over 40%. (The two largest 

companies, Tesco and Sainsbury, each with sales of about £1000 million 

per year, clone account for nearly 20% of the total). This is illustrated 

in Table 51 • 

The decline in the market shares of independ·.:mts end co

operatives has slowed in rece_nt years with the formation of 'symbol voluntary 

groups' (such as Mace, V. G. and Spar) and by the reorgcni5ation end 

improved marketing of the co-operative societies. (The number of societies 

has fallen from 1400 in 1900 to about 200 now - end further mergers ere 

certain (Ref. 162). Independent grocers have also been helped by the growth 

of cash and carry outlets, which now account for more than half of wh·:>lesole 

business (Ref. 162 ). These outlets have enabled independents to obtain 

suppliesvon competitive terms despite the decline in manufacturers' direct. 

delivery services. 

Each of these noted trends has developed in part in response to 

the economies of distribution and each in turn has permitted higher fuel 

productivity in delivery to retail outlets. As shown earlier (in Section 8. 2. 2.) 

consolidation of flows can reduce fuel usage by allowing the some work to 

be performed by fewer but larger vehicles. Growth of multiple organizations . 
has encouraged consolidation by retail depots, whilst cash and carry outlets 

allow consolidation, albeit on a much smaller scale by independent retailers' 

cars and vans. 

From the overall fuel usage point of view, however, the advance 

of multiples at the expense of independents may not be entirely advantageous. 

As shown in Section 8. 3. 1., large shops encourage higher car usage for 

shopping trips. The average size of multiples' new shops is many times that 
-

of the other sectors. lt is calculated for instance that the average size of 

mu I tiples' shops opened in l978/79 was 21,000 sq. ft. compered to 9, 000 sq. ft. 

or so for co-operative societies (Ref. 162) and an average for ell supermarkets 

of5,700sq.ft. (Ref.164 ). 
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8. 3. 3. Service levels and article numbering 

11 ~rvice levels'i can mean many different things. Here we use 

the phrase to refer to the quality of service given by suppliers and distributors 

to retail outlets in terms of the speed, size and frequency of deliveries and 

the incidence of orders met from stock. 

In recent years, there has been a general increase in service 

levels prom1~ted by greater retailer influence (particularly as a result of 

the concentration of buying power in few hands, noted earlier) reduced 

stock holding at retail outlets and more advanced electronic and comp

uterised ordering and stock control. By reducing the quantity of stocks 

at retail outlets, an increase in the proportion of total shop space used for 

selling (as opposed to warehousing} may be achieved, and working capital 

requirements minimized. This has required -that transport systems become 

more responsive to prevent loss of sales through 'out-of-stocks' and, 

manufacturers claim, has pushed stockholding back down the distribution 

channel to them. 

There is much discussion in the grocery trade at tbe present 

time about a possible concerted approach by manufacturers to reduce delivery 

frequencies and raise the average size of drops {Ref. 211 ); Such a move, 

prompted by the desire to contain rising fuel and other transport costs cannot 

be taken lightly since distribution is a vital element in the marketing mix of food 

companies. Any reduction in service levels may have major implications 

for the company concerned including loss of business, changes in the 

org~nizational structure, the number and type of staff (particularly salesmen), 

promotional policy and production scheduling. Nevertheless the recent 

and anticipated rises in distribution costs (Ref. 212 ) must ma1<e suppliers 

look very seriously at reducing service levels. (Trade terms and other related 

aspects of service levels are discussed in more detail in Section 8.2.2.). 
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The intro~uction of article numbering and computerised point

of-sale units into the retail grocery trade may strengthen this trend towards 

lower stockholding at branch. Article numbering refers to the unique 

numbering of products for retail sale and the representation of these 

numbers as machine-readable codes. The progress of coded items may 

then be recorded by scanners built into the checkout. The ·system has 

been compared in its potential impact upon retailing with the self-service 

revolution of the 1960's (Ref. 203 ) and has been claimed to offer retailers 

potential stock reductions of 20%. In America where Uniform Product 

Coding (the equivalent system to our own article numbering) has been 

in operation since 1974, more than 1000 supermarkets now have laser 

scanners at the checkout and about 90% of all grocery items are bar coded 

(Ref. 204 ). Although the shops actually scanning represent but a small 

proportion of the total 33000 supermarkets in the United States, the pace 

of installation is qukkening, and scanning stores have doubled in number 

for each of the last three years (Ref. 205 ). In this country, the first scanning 

store- Key Markets in Spalding opened in October 1979 and trials by most 

other leading retailers are proceeding well. From 1930 onwards, many 

anticipate that scanning will 'take off'. and that several hundred units could 

be in operation within a few years. (The high capital cost of these units -

between £5000 and £10000 per checkout lane - will probably restrict their 

installation to large supermarkets of say 10,000 sq.ft. or more. This would 

suggest an upp-er limit of 800 or so at the present time (Refo 206 ) ). Much 

will depend upon the speed with which suppliers bar code their products 

since scanning is generally thought to be viable only when 75-80% of items 

are 'source- marked' in this way. Very few manufacturers- perhaps only 

a dozen or so are bar coding products at the time of writing, but a major 

expa:1sion is expected during 1980. This may be led by retailers such as 

Sainsbury, Fine Fare, Tesco, International and Key Markets bar coding their 

"own label" lines. Sainsbury for instance plan to bar code a high proportion 

of all their own label lines by March 1980. Since own label business accounts 
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for about 55% of that company's turnover, its minimum scanning 11 threshold11 

will be achieved very soon. (Ref. 207 ). 

Article numbering and electronic point-of-sale developments 

offer retailers many potential benefits, including faster, more accurate 

checkouts, better cash control, higher laoour productivity and automatic 

reordering of some linas. Most importantly of all is the ability to record 

the progress of every coded item throughout the distri~ution channel. Portable 

data capture units have been successfully used by many grocery companies 

(Refs.208 and 209) to improve vrdering, and these may be used to record 

the movement of outer cases as well as individual items for retail sale. The 

Article Number Association - the co-ordinating body for article numbering 

in this country - believes substantial benefits will come from numbering 

and coding outer cases since most transactions between supplier and retailer 

are in these units. As yet how.ever, no numbering system has been adopted 

for numbering outer cases (Ref. 210 ). 

The improved information resulting from the introduction of 

article numbering and such systems will permit the stockholdint~ at branch 

to be reduced because much of the uncertainty will have been removed from 

forecasting rotes of sale. Lower stock ·holding, as noted earlier generally 

implies that transport must be more responsive to meet orders and prevent 

out of stocks. Conversely however it may be argued that better information. 

should allow better vehicle utilization because 'pre-planning and scheduling 

should be easier. On balance however, the author'! opinion is that this 

trend will lead to lower transport efficiency and higher fuel usage. 
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8 .4. The future development of retailing 

If we look ahead beyond the turn of the century towards 

our chosen fifty year horizon, then the pattern of retailing may be very 

different from the one we know to-day. The interplay of many f~ctors -

economic, social, environmental, technological and others- will of 

course influence the development of this pattern, but here we focus 

upon just one of these, to examine how advances in electronics may affect 

grocery shopping and fuel usage. 

We are at present standing on the edge of a virtual revolution in 

the use of computers- a revolution which will bring the power of a main

frame computer to the home of everyone with a telephone and modified 

television. Among the many uses- educational, leisure and information 

to which these developments can be put will be shopping. It will soon 

be possible to shop from _the home. electronically -a develo!"mer.t which must 

hold for reaching implications for shopping habits, car usage and the 

structure of retailing. 

The concept of "push-button shopping" is far from new, and in 

fact was discussed as long ago as 1888_.by Edward Bellamy (Ref. 213 ) who 

foresaw customers visiting centralised department stores to select goods: "The 

orders as they are being taken by the different departments in the store, 

are sent by transmitters to the despatching clerk •••• He drops the box of 

orders into the tube it calls for and in a few moments later it drops in the 

propar desk in the warehouse, together with all the orders of the same sort 

from the other sample stores.. The orders are read off, recorded, and sent 

to be filled, like lightning •••• The packcg~~s are then delivered by larger 

tubes to the city districts, and hence distributed to the houses. You may 

understand how quickly it is all done when I tell you that my order will 

probably be at home sooner than I could have carried it from here". 

Since Bellamy's time the technology to fulfil his vision has become 

available, and many other views of possible retailing futurers have emerged . 

Padberg's (Ref. 214) view of the future of shopping is in many respects 

similar to Bellamy's, with selection via plastic cards in a "selection parlour". 

Each card would represent a particular item- a particular joint of meat, 

for instance - and when the customer had chosen her purchases, the plastic 

cards, together with her credit card would be 'read' by machine. Doody 
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and Davidson (Ref. 215 ) envisaged the placing of orders from home 

(perhaps in the middle of the night) via a 'direct shop console' which could 

be linked to a distribution centre. Payment would be by electronic 

funds transfer {so that the customer's bank account w·outd be automatically 

debited by the amount of purchase) and delivery would be undertaken -

perhaps at an additional charge - by the distribution centre. Other 

commentatcrs have described 1teleshopping
1 
as the next revolution of the 

'wheel of retailing' (Ref.217). McNair and May (Ref .218) for instance 

comment that 11 technology has developed to a position where it can be a 

major determinant of retailing structure. The age of electronics is 

succeeding the age of the automobile as a primary influence in shaping 

life conditions 11
• They conclude that 11 we feel consumer acc{i'ptance of 

teleshopping will be fourthcoming. The need seems clear : consumers 

have the required confidence in the consistent quality of packaged goods; 

consumers rapidly are becoming sufficiently knowledgeable and sophisticated 

to have confidence in their ability to manage household procurement 
• 11 1n a new way ••••• 

Rosenwald (Ref. 219) takes an essentially similar view of tele

shopping, and forecasts that "the television and the credit card will become 

the critical facilities for retail purchasing between the middle of the 

eighties and the end of the century11
• He sees direct marketing (in 

other words selling directly to the final consumer without the. conventional 

retailer) rapidly expanding in future Partly in response to the energy crisis. 

Consumers, he believes, will find the prospect of having regular purchases 

of, say dog food, delivered to the home more attractive than using their 

own cars and petrol to buy from the supermarket. N\anufacturers will 

look upon direct marketing as a means of maintaining their customers' 

loyalty to a particular brand and therefore use the medium more and more. 

Bloom (Ref. 220) foresees the rise of warehouse to consumer 

systems 'to eliminate the retail store altogether'. This may happen, he 

believes, because 'the supermarket in its present form cannot adapt to 

various economic, environmental and technological factors and new forms 

of distribution, posing a major threat to c~nventional supermarkets'. Energy 

usage in shops may be one of the environmental factors causing a decline 

in conventional outlets. Several warehouse to consumer systems have been 

introduced into American retailing, but general1y have not been a success. 
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Among the failures were 'rele-Mart'in San Diego, 'Store-to-door'in 

Sacremento, and 'Caii-A-Mart'in lonisvi11e, Kentucky. On the other 

hand, two successful operations, one in Minneapolis and one in New York 

City 1 have been operating for over a year. Bloom anticipates that •consumers 

will be able to view special offers on their television sets; they will place 

their orders on touch-tone telephones direct!/ into the warehouse computer. 

At the warehouse individual items will be automatically selected from 

cases placed in sliding racks, assembled into orders and placed by pre

programmed robots into containers for home delivery'. Such systems will 

become cost competitive in the latter part of the 1980's and will supple-

ment rather than replace existing supermarkets. 

These visions of the future development of retailing may not be 

as futuristic as they might appear at first sight : the technology to make 

them possible is already with us. Innovative systems such as Prestel, Oracle 

and Ceefax for. instance will permit retailers and suppliers to provide a 

catalogue of goods via the television screen. Under the Post Office Prestel 

system,. which links the television set to a very large computer via the . . 
telephone, the customer can interact with the computer and request 

progressively greater detail about a subject. If linked to the distribution 

centre envisaged by Bloom, Doody and Davidson and others a shopper 

could select goods from home and pay for them by use of a credit card 

number. 

Prestel is at present restricted to the London test area, but will 

be extended to give. national coverage within a year or so. Electronic 

fund transfer systems - a further necessary link in the chain have been 

tested in America and this country as extensions of computeris.ed checkout 

equipment (which can incorporate scanners to 1read 1 bar codes and other 

machine readable symbols upon individual items). Given the structure 

of British banking.- dominated as it is by a few large banks with very 

advanced systems, the introduction of electronic fund transfer systems 

to the home would be technically and organizationally straightforward 

(Ref.216). 
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Thus the technical systems necessary to support electronic 

shopping are almost complete. ·The questions of ccurse are will it happen -

and if so to what extent, for what goods, and how will it affect fuel usage 

in the grocery distribution channel? 

Teleshopping might be argued to be no more than a futuristic 

mail order system : instead of the goods being selected from a book, they 

would be selected from the television screen. Given the limitations to 

'browsing' through the images displayed upon a screen compared with a book, 

it may be that the new is but a poor substitute for the old - at least in terms 

of selection and information given o From the suppliers' point of view, the 

ability to modify the catalogue easily and cheaply, and to have it available 

in every home equipped with a Prestel set, make 11 teleshopping11 an option 

to be considered seriously o Although mail ordering is growing in this 

country and in Europe and America, it accounts for a minute part of the 

grocery trade and only about 5% of all retail business. Since teleshopping 

would be essentially similar to mail ordering, even though the medium would 

be different, its market share may be similar to that of mail order : in other 

words it would not compete for grocery business and. other high volume trade. 

This view is shared by the participants in John Gattorna's 'Delphi' Survey 

who were asked 'when will non-store shopping from home be introduced into 

the U.K. grocery industry (Ref. 155). Half the panel of nearly 100 grocery 

trade experts agreed that this would never happen, and most of the 

remainder thought the scale would be insignificant since the social aspects 

of shopping would be lost. 

An even more serious drawback to the widespread introduction of 

teleshopping would be the impossibility of close inspection of articles before 

purchase. Whilst this may be acceptable for basic commodities - bread~-; milk, 

vegetables, canned food and known brands in general, it wou Id a I most 

certainly be dismissed, given choice, for variable items. 

Further problems would be encountered in delivery to the home, 

since if the customer was out for any reason, then security and protection 

against dai'TY.lge would have to be provided perhaps by means of a food 

'safe' of the type marketing by British Read Services Ltd. for night delivery 

to shops (see Section 8. 2. 1. ). 
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If these various obstacles were overcome and teleshopping 

became an acceptable alternative - if not replacement - for existing 

food $ho.ps, then the implications for fuel usage are unclear but may be 

substantial. For those customers who order remotely but collect their 

shopping in person, then the fuel usage will be virtually unchanged, 

providing that the shop or warehouse is the same distance away as before. 

lt may be however, that such distribution centres would become more 

centralised, with each serving a larger populace than present - day 

supermarkets. If so·, then the fuel required would of course be increased 

- particularly if the new sites were edge-of-town or out-of-town. 

Fuel usage by vans delivering customers• orders would be 

dependent upon the size of vehicle, density of drops, average purchase 

and average distance to depot. lt would however almost certainly be more 

expensive in fuel terms than existing methods. 

The above observations about fuel usage assume of course that 

the ~nternol combustion engine is still the basis of our transport systems. 

A fifty year horizon however was chosen arbitrarily on the ·assumption 

(supported by the evidence shown earlier) that oil will be in short supply 

towards the end of this time. Heavy vehicles and long distance road 

traffic will have to be fuelled by synthetic fuels,and light goods vehicles 

and cars by a combination perhaps of syn~heti c oil and battery power. 

Transport - both passenger and freight will certainly become more 

expensive in real terms. Home oraering and delivery may well hove a 

place in such a future : electric delivery vans could follow regular 1milk 

rounds 1
, based in distdbution depots of optimum size and in optimum 

locations to minimize fuel ·usage by trunk vehicles. Private car usage 

for shopping at least could be reduced markedly. 

To conclude, it seems that teleshopping will develop over the 

next few years with the introduction of Prestel and electronic fund transfer 

systems. In the short and medium term it will probably be limited to the 

type of market now serviced by mail order companies (who will almost 

certainly be users of the new approach) togeth~r possibly with regular 
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replenishment of branded goods. The effect upon fuel usage will be 

very minor if its application is limited, but rr.ay well increase the 

energy required in grocery distribution if it became widespread. 

In the long term electronic ordering and home delivery may 

become an important, although not all embracing, method of shopping. 

Many imponderables are involved in estimating the future of developments 

such as these and the problems are nicely summed up by a comment 

made recently by the Chairman of Asda Stores (Ref. 221 ) who said 

'Retailing prophesy is fraught with the same kinds of hazards that face 

lo.ng range weather forecasts, and normally is considerably less successful~ 
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SECTION 9 

S~RY AND CONCLUSIONS 
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Section 9 SUMMARY AND CONCLUSIONS 

For this discussion, which is intended to draw together the 

many threads of the preceding wide - ranging thesis, a perspective may 

be lent by defining four rather loose time spans, namely 

'the short term' during which crude oil supplies 

are plentiful. This period is now virtually at an end. 

'the medium term' from now until about the turn of 

the century. Oil production will continue to 

increase, but oil prices will rise to perhaps two to 

three times their present levels in real terms. On 

the world stage, interruptions to supply through 

political manipulation may become progressively 

more disruptive, although Britain's indigenous 

resources will give us assured supplies. 

'the long term' from 2000 to perhaps 2050. Oil 

supplies will gradually decline and the increasing 

gap between availability and demand must be met 

by coal, nuclear and other sources. Transport will 

depend upon a combination of liquid fuels from 

natural crude oil together with synthetic I iq'Jid 

fuels from coal (syncrude) and electric traction. 

'the very long term' will begin when all hydrocarbon 

sources are in short supply. Nuclear breeder reactors -

or perhaps fusion - will be supplemented by 

renewable energy sources. Non-fossil fuels for 

transport may include methanol synthesized from 
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carbon dioxide extracted-from the atmosphere and 

hydrogen obtained by thermal dissociation of sea 

water using the heat output of a nuclear reactor. 

Our cho!:en fifty year time horizon extends about half-way 

through the 'long term' period as defined above, and allows discussion 

of alternative fuels for transport as well os the anticipated effects of higher 

priced oil. Projections this for hence must of course be speculative : the 

interaction of the many factors, including economic conditions, the pattern 

of demand, conservation measures, pricing and supply policies of the major 

fuel producers, must create ~ range of possible futures, any one of which 

may come about. (This uncertainty is nicely underlined by a recent 

compilation of some of the more important recent American energy fore

casts- 78 in all~ (Ref. 298) )o 

The fligh concentration of oil reserves in areas of actual or 

potential political instobil ity make scenarios based upon a 'surprise free' 

future even more suspect, particularly in view of recent events in Iran and 

othei Islamic countries. 7~/o of known oil reserves in non-communist areas 
' are to be found for instance in Islamic states (Ref. 299 ), with 30% in Saudi 

Arabia alone. { It does not require much imagination to think of the 

possible consequences toAmerica and Europe of Saudi Arabia oil being 

denied to importing states). Two thirds of supplies lie within the Middle 

East and over 800/o within OPEC membi3r countries. The scope for political 

manipulation is clearly immense. 

Britain is alone among the industrialized countries of the world 

in having secure oil (and other fossil fuel) reserves. North Sea oil may 

make us self-sufficient until well into the 21st century, whilst our coal 

deposits should last for perhaps 300 years. Why then, need we be concerned 

about energy supplies, at least within the 50 year period in question? In 

the first place of course we cannot be insulated from world prices and 

problems. Crude oil prices have risen from about $3 a barrel 10 years 
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ago to some $23 a barrel now, and are forecast to rise to between $45 

and $65 a barrel by 2000. (Ref • 300). Secondly, our control over North Sea 

reserves may not be as secure as we may think. Pressure from the other 

members of the European Community for a so-called 11 integrated energy 

policy11 may prove difficult to resist and our balance of payments problems 

may demand more rapid exploitation and export of oil than we woiJid wish. 

Finally, the transition to a non-oil based economy will take a long time. 

We are most fortunate to be granted this breathing space to carefully 

consider the options and learn by others' mistakes, but the shadow of 

impending crisis is long and plans must soon be laid. 

Of those non:-renewable resources with important transport 

applications, oil is certainly the most vital and the most threatened - by 

both physical depletion and by potential uncertainties. Some would 

however argue that reserves of other minerals and materials may be in

sufficient to meet the needs of transport and other users for long beyond 

the turn of the century. Known uranium reserves, for instance, are 

relatively small in relation to predicted future demand, but if the 

frightening risks associated with breeder reactors and plutonium are 

acceptable then effective reserves are multiplied 50 fold. Fears have 

also been expressed about future supplies of asbestos, platinum, copper 

and lead : known reserves of each of the:;e have been claimed to be in 

danger of physical depletion within our chosen time span. Moreover, 

large scale introduction of electric vehicles in response to oil shortages 

would make additional demands upon platinium (which is a most important 

catalyst), copper and lead. Aluminium however is an adequate substitute 

for copper in many applications, and lead is efficiently recycled from 

lead batteries. Asbestos is under attack on health grounds and synthetic 

friction materials are under active development. This therefore leaves 
r • 

platinium with the biggest question mark hanging over its future. 
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Perhaps more signifiCant than the threat of physical shortage 

of these and other materials is the link between them and energy. Energy 

is of course required at every stage of mineral production and product 

manufacture, and the amount of energy required to extract vary low g;ade 

materials like copper may be prohibitive in hJture. 

Energy consumption in the manufacture of vehicles and 

infrastructure may form up to 400/o of the total energy required by transport 

systems, and no discussion of energy and transport would therefore be complete 

without reference to the various "trade-offs" available between this "i'ndirect" 

use in manufacture and "direct" usage in vehicle propulsion. There is 

for instance, a strong argument forusing aluminium and other lightweight but 

energy-costly materials such as magnesium and titanium in many transport 

applications. By doing so, the manufacturing energy will be increa:;ed but 

propulsion energy will be reduced. Since the former is genera !I y in the 

form of electricity produced by non-oil sources if is not so critical as oil. 

(Aluminium is an interesting material from the energy viewpoint : when 

recycled, its energy needs are far lower than in virgin form. Therefore 

as the "stock" of aluminium in circulation increases, its energy demands will 

fall). 

Oi·her material substitutions may also be advisable to reduce 

weight or extend the useful lifetime of vehicles, thereby reducing energy 

consumption in vehicle manufacturing. Such an argument is unlikely 

to meet with much sym?othy howe·1er in the present British cor and truck 

industry, threatened as it is by cut backs os a result of foreign imports~ 

Transport is a major 'direct• energy consuming sector in this and other 

industrialised countries, accounting for about 22% of our total usage and 

47% of oil consumption. Freight transport accounts for some 35% of the 

total energy consumed by all transport and is almost completely dependent 

upon oil - to the extent of 99<'/o its needs, and must therefore ~e extremely 

vulnerable to price rises and interruptions to supply. This is particularly 

true of course of rood transport, where oil dependence is virtually complete. 
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No other sector in the economy is so reliant upon petroleum products and 

there is obviously a strong argument for directing non-essential users 

towards other sources. Market forces will go a long way to achieving 

this aim, of course. Thus oil fired central heating has been priced out of 

domestic heating and costs several times as much as gas. Power stations 

have reduced consumption from 20% of all oil used in 1972 to some 13% 

now, partly in response to price and partly through policy change. (lt is 

presently impractical to turn crude oil entirely into usable road transport 

fuels - the heavy residual portion may always be used for power generation). 

Transport will therefore consume an increasing proportion of the total 

oil by displacing all non-premium users. 

Towards the end of the chosen fifty year period, it will 

probably be necessary to complement. oil for road transport with other 

energy sources. Altho~gh many possibilities have been suggested, 

including hydrogen, methanol and natural gas, many experts believe that 

the choice lies basically between synthethizing liquid fuels from coal 

and other hydro~arbon sources (11syncrude11
) and using electric vehicles. 

Research work to-date indicates that the advantages and disadvantages 

of the two approaches ore complex and far from clear cut. The choice 

of either or both will have ramifications beyond the transport sector 

and will be a major influence upon total energy demand, In many 

respects batteries offer the better solution, particularly for light vehicles 

and especially so when improved battery types are available. High energy 

density batteries are thought to have a higher overall energy efficiency 

than synthetic oil and there are two other factors in addition which may 

significantly reduce the energy requirement of a future based upon 

electric vehicles. The first is that coal can be used to make synthetic 

gas (rather than synthetic liquid fuel), which is a more efficient heating 

source than electricity. The second is that electric vehicles can make 

better use of off-peak electricity than heating or industrial loads due to 

the summer peak in transport demand. Together these three factors mean 

that the adoption of electric vehicles leads to a smaller installed generating 

capacity than that required for syncrude powered vehicles. 

lt is possible that advanced batteries may be suitable for long 

distance heavy vehicles as well as light vans and medium weight trucks. 



Much wiil depend upon the energy densities of new battery types and 

arrongements for "refuelling" or battery exchange stations. More 

probub I y, however, heavy vehicles w i11 be powered by 1iqu id fue Is 

and be supplemented by electric rail trunking. 

The twenty member countries of the International Energy 

Agency hove recently, and for the first time, espoused energy conservation 

as an essential and integral part of their future policies o The 5% 

reduction in consumption agreed by Britain and the other members during 

the 1979 meeting is recognition that active conservation must be a 

prerequisite for growth :11 we have to choose between forgoing economic 

growth or starting to grow without more oil" o (Ref o 301 ) • 

In the freight transport sector, as elsewhere, there are but 

two avenues offering reduced energy consumption. These are of course 

doing less work or doing the same amount more efficiently. 

With regard to the former, the future demand for freight 

transport and hence for vehicle fuel, will be related to general economic 

growth and more specifically of course to the output of certain industrial 

sectors. Of these the most significant in terms of demand ore minerals, 

food drink and tobacco, and energy. Any change in the tonnage produced 

by these industries, or an alteration to the average length of haul, will 

influence the demand for transport. 
I 

The food, drink and tobacco sector (which roughly equates to 

the grocery industry) is very stable and almost static. In contrast the 

demand for minerals and fuels derives from the demand for other goods 

and services and fluctuates considerably. During recession, the demand 

of transport by these sectors does, and has, fallen sharply. 

With regard to 'doing the same work more efficiently' the 

stimulc.ts for commercial businesses to reduce energy demand for transport 

will come from three basic mechanisms. First and foremost of course will 

be the desire to maintain profitability despite higher costs. This will vary 

from industry to industry, and between companies in the same industry 

according to the structure of costs, levels of profit and degree of competition. 
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In the grocery distributive industry, for instance, transport costs generally 

account for about 5% of sales value, and fuel may be 10-20% of 

transport costs. An increase in the price of derv. or petrol may therefore 

make considerable impact upon the 1~3% retail net margins typical of recent 

years. ·~ompetitive conditions wil~ lead to strong efforts to contain costs. 

A second, and perhaps even more potent stimulus to reduce 

consumption and secure supplies wi11 be the threat of reduced or inter-

rupted availability of fuel o This may for instance encourage firms to I:!Xamine 

the balance between their own and their hired transport 1 including rail. 

Finally, the moral pressure exerted by Government and 

other bodies to reduce consumption will have some bearing o Unless 

reinforced by incentives, however, moral exhortations alone are likely 

to fall upon deaf ears. 

Three basic options are available for companies wishing to 

reduce energy consumption in freight transport. In the first place, the 

design and specification of vehicles and infras~ructure may be modified 

to minimize the effects of air and rolling resistance to be overcome, or 

by attention to engine and transmission efficiencies. 

Diesel engines for instance offer higher thermal efficiencies 

than petrol engines, albeit at greater first cost. Rising fuel prices may 

be expected to offset this initial outlay and encourage their adoption 

even for light vans. 

A further aspect of vehicle design may be the greater use of 

large vehicles- which offer lower fuel costs per ton if fully utilized. 

Lifting the present maximum permitted weight level in this country could 

give substantial fuel savings, but may meet with vigorous environmental 

opposition. 

Secondly 1 it is claimed that the greater use of re i1 and other 

modes more energy- efficient than road could reduce overall fuel 

consumption. Whilst this assertion is most debatable, it is clear that 

electrified rail trunking of freight offers the potential for reduCing 

dependence upon oil products. 
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The third route to fuel conservation may be d-Jfined as 

operational and organizational changes. This nebulous grouping may 

include more efficient routeing, reducing the effects of congestion, 

greater consolidation of flows, relocation of factories, depots and outlets, 

and improved driving techniques o In the grocery industry such options 

may result in a wider acceptance of computers as aids to distribution 

planning - both strategic and day to day, out-of-hours deliveries, more 

use of distribution service companies and shared operations, and 

increased stockholding {to a How transport to be less responsive) o Locations 

and sizes of new shops may also be strongly influenced, with large units 

in redeveloped urban and suburban sites rather than out-of-town o Petrol 

usage by car-borne shoppers will be taken into account by retailers, who 

may be forced to provide public transport services where these are 

inadequate o 

lt is of course impossible to accurately estimate the size of 

fuel savings available to companies, industry and the country as a whole 

as a result of these various approaches, but they may clearly be substantial. 

Some may be gained with no reduction in service levels whatever. Others 

may result in slower or less frequent deliveries, for instance, and in these 

cases companies may be reluctant to act" unilaterally for fear of the 

commercia 1 consequences. 

Reduced availability of resources, and most .. particularly oil, 

must influence- many aspects of o•Jr lives within the next fifty years. Transport 

users will necessarily be to the fore of those from whom adjustments to 

higher priced and less secure supplies of fuel will be demanded. 

239. 



References used in the Section One - "Freight Transport and Distribution" 

l. . Drucker P. 

2. Christopher, Dr. M. 

3. Petit, Sir D. 

4. Wentworth, F. · 

5. Mintel 

6. Wilcock, G. 

7. Department ofT ransport 

8. Simper, J.l. and Baker, P. J. 

9. Sharp, C.H. 

10. Tulpule, A. H. 

n. T J c anner, • • 

' 240. 

'The Economy's Dark Continent 
Fortune, 1962. 

Totai Distribution. Gower Press 
1971. 

Paper given at the Centre for 
Physical Distribution Management 
1978 Conference, London. 

The Handbook of Physical 
Distribution Management, 
Gower Press 1970 

Grocery Physical Distribution, 
Mintel Frebruary 1977. 

Food Distribution - Performance and 
Prospects. Institute of Grocery 
Distribution, 1978. 

Transport Statistics,· Great 
Britain, 1966-1976. · 

Pneumatic Pipeline Capsule 
Systems - The Future Potential 
BHRA Conference, September 
1973. 

living with the lorry. Freight 
Transport Associ~tion 197~ 

Trends in the transport of freight 
in Great Britain, Department 
of the Environment, TRRL Report 
LR429 Crowthorne, 1972. 

Forecasts of vehicles and traffic 
in Great Britain, 1974 revision. 
Department of the Environment 
TRRL Laboratory Report 650. 
Crowthorne, 1974. 



------------------------------------- --

12. McKitterick, T. E. M. 

13. Pitfield, Dr. D. 

14. Brown, A. H. and Maultby, A. S. 

241. 

The Effect of Energy Price Changes 
on Transpqrt. Notional Westminister 
Bank Review, August, 1974. 

Model I ing National Freight Tonnage 
Generation, Problems and Prospects. 
Unpublished Monograph , Loughborough 
University, July 1975. 

Methods of forecasting the 
quantities of freight in Gre::~t Britain 
Statistical News, 25. London 1974 
(HM Stationery Office). 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

References used in Sect~n Two- 11 Energy and Tromport 11 

Grimmer, D. P. and luszcynski,K. 

Hirst, E and Herende.en, R. 

Bouladon, G. 

Hirst, E. 

Mooz, W. E. 

Rice, R. 

Adv!sory Council on Energy 
Conservation 

Berry, R. S., M. F. Fels and 
H. Makino 

Tien, J. K., R. W. Cl ark, and 
H.K. Malu 

Hirst, E. and Herendeen, R. 

242. 

Lost Power 
Environment, April 1972. 

Total energy demand for 
automobiles. Society :of 
Automotive Engineers 730065·. 

Towards a better uti I ization of 
energy in tramport. Royal 
Aeronautical Society. Spring 
Convention 1974. 

Energy Intensiveness of Transport 
Transport Engineering Journal, 
Feb. 1973. 

The effect of Fuel Price lncrea:>es 
on Energy Intensiveness of Freight 
Transport. · 
Rand R. 804 NS!= Dec. 1971. 

Energy Efficiencies of the Transport 
System. Society of Automt;)tive 
Engineers, 73066. 

Freight Transport : Short and medium 
term considerations. Paper 6, 1976 

A thermodynamic Valuation or 
Resource Use Ma1<ing Autos and 
Other Processes. 
M. I. T. Conference 11 Energy, Demand 
Conservation and Institutional 
Problemsn 1973. 

Reducing the Energy Investment in 
Automobiles .• 
Technology Review, Feb. 1975. 

Total Energy Demand for Automobiles. 
SAE Paper 730065. 



25. Cochran, C. N. 

26. Automotive Engineering 

243. 

Aluminium - Villain or Hero in 
Energy Crisis. 
Automotive Engineering, June 1973. 

How much Energy to Produce · 
Reinforced Plastic Pa;-ts? 
Automotive Engineering, Feb. 1975 
based upon SAE Paper 750155 by 
E. D. Truman. 



27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

·References used in Section Three- ·~Energy Availability and Demqnd" 

British Petroleum 

Hubbert, M. K. 

Institute of Fuel 

Over, J.A. (edo) 

M:1sefield, Sir P. 

H!.!bbert, M. K. 

Done, K. 

Guardian 

United Nations 

Chapman P., Charlesworth, G., and 
Baker, M. 

Duncan, D. C. and Swanson, V. E. 

International Management and Engineering 
Group 

244. 

Statistical Review of World Oil 
lndustryo · 

Resources and Man. 
W.H. Freeman and Co. 1969. 

Energy for the Future. 1973. 

Energy Conservation, Ways and Means. 
The Future Shape ofT echnology 
Foundation Pubo N ::>. 19, N0therlands 
1974. 

Fuel State Expenditure 
Flight International. 27.6. 1974. 

Energy Resources for Power Production 
Institute of A~omic Energy Authority, 
S. M. 146/1 Vienna 1971. 

North Sea Oil Price Rise Expected Soon 
Financial Times, 12.7. 1979. 

Review of World Bank Study. 29.7.74 

World Energy Requirements and Resources 
in the Ya:~i 2TJ). 
U. N. Resources and Transport Division, 
Department of Economic and Social 
Affairs, New York, Invited Review Paper, 
A/Conf. 49/p.420. 

Future Transport Fuels. TRRL 
Supplementary Report 251, Crowthor~e, 
1976. 

Organic-Rich Shales of The United States 
and World Land Areas. U. S. Geological 
Survey C.I.R. 5231, Washington 1965. 

Study of the Potential Benefits to 
British lndust~y. HMSO, London. 



I 

39. Department of Energy 

40. 'Odell, P. R. and Rosing, K. E. 

41. International Energy Agency 

42. Harman, R. G. 

43. Cahill, E. J. and Grosberg, A.l. 

44. Howells, H.E. 

45. . Spiers, J. 

. 46. . Commission of the European Communities 

47. Averitt, P. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

Armstrong, G. 

Department of Energy 

Advisory Council on Energy Conservation 

National Coal Board 

European Nuclear Energy Agency/ 
International Atomic Energy Agency 

Department of Energy 

NSF/NASA 

245. 

Development of the oil and go; 
resources of The United Kingdom 1979. 

The North Sea Oil Province. Kogan-Page 
1975. 

Energy Statistics 1974/1976. OECD 
Paris, 1978. 

Fuel in Transport. Traffic Engineering 
and Control February/Morch 1974. 

Current and Future Trends in United 
States Gasoline Supply. SAE Paper 
No. 730516. 

Diesel Fuel Availability- Stretching 
the Barrel.· The Transport Engineer 
January 1975. 

Diesel Fuel Specifications for Maximum 
Overall. The Transport Engineer, 
January 1975. 

Problems, Resources and Necessary 
Progress in Community Energy P.Jiicy 
1975-85. EEC Commission Brussels 1975. 

Coal Resources of The United States. 
U. S. Geological Survey B•JIIetin 1275, 
Washington. 

Discussion During Conference. Institute 
of Fuel 1973. 

Coal in the U.K. D. of. E. Fact 
Sheet 4~ February, 1977. 

Energy Prospects Paper 3.· Department 
of Energy. 1976. 

Plan for Coal. 1974. 

Uranium : Resource Production and 
Demand 1975. 

Digest of U.K. Energy Statistics 1978. 

Solar Energy, Washington 1975. 



55. White, D. E. 

56. Department of Energy 

57. qepartment c.f Energy 

58. Deportment of Energy 

246. 

Geothermal Energy. U. S. 
Geological Circular 519 Washington. 

Energy Forecasting Meth.:Jdology. 
Energy Popero Number '29, HMSO, 
1978. 

Report of the Working Group on 
Energy Elasticitie~. Energy Paper 
Number 17, HMSO 1977. 

Energy R. & D. in the U.K. : A 
Discussion Document. June 1976. 



References used in Section Four- ".Alternative Fuels- for G-Jods Tran3port11 

59. Hagey, G. and Parker, A. J. 

60. Automotive Engineering 

61. Farmer, M. H. 

62. · B. p. 

63. B. p. 

64. Karim, G. A. and Taylor, M. E. 

65. Karim, G.A. and Klat, S. R. 

66. Banks, F. R. and Barker, D.· 

67 ·· Burke, D. P • . 

68.· Gregory, D.P. andRosenburg, R.P. 

\ 

69. Graham, R.W. 

247. 

Technical end Eco,,omic Criteria 
for the Se!ection of Alternative 
Fuels for Personal Automotive 
Transportation. 
S.A.E. Paper 74~163. 

Automotive Fuels from Coal and Oil 
Shale. November, 1975. 

Fea.;ibil ity of Automotive Fuals from 
Coal and Oil Shale. 
S.A.E. Paper 759129. 

liquefied Petroleum Gases as 
Vehicle Fuels. Ma~ch 1974. 

Alternative Fuels. 
Technical Bulletins Transport 6/74. 

Hydrogen as a Fuel. The Feasinilhy 
of a Hydrogen-Oxygen Engine. 
S. A. E. Paper 730089. 

Experimental and Analytical Studies 
of Hydrogen as a Fuel in Co:npression. 
ASME 75-DGP-19. 

Ignition Engines. Met~anol as a Motor 
Fuel. 
Institute of Machanical Engineers Conference 
"Power Plan~s and Future Fuels ... 
21/22. 1. 1975. 

· Methanol.· 
Chemical Week 24.9.75. 

Synthetic Fuels for Tra:1sportation a~d 
National Energy N ~eds. S.A.E. Paper 
730520. 

Fuels from Crops: Renewable and Clean 
Mechanical Engineering MrJy 1975. 

,-



70. Tippler, W. 

71. McGillivray, R. G. and Kemp, M. A. 

248. 

Pro5pects for the OrJeration of 
Diesel Engines on Coal or its 
Dcrive~tives. Institute of Mechanical 
Engineers Conference "Po"M'Jr Plants 
and Future Fuels11

• 21/22. 1. 1975. 

Alternative Strategies for .Reducing 
Gasoline Consumption by Private 
Automobiles. T ramportation Re5earch, 
Vol. 8, pp. 219-361. 



References used in Section Five- "Motive Power Units11 

72. 

73. 

74. 

75. 

76. 

77. 

78. 

79. 

80. 

Edwards, S. L. and Bayliss, B. T. 

Kent, M. F. 

Harman, R. G. 

Rattenbury, J. (National Freight 
Corporation) 

Ayres, R. U. and McKenna, R. P. 

Fletcher, Pro_f. R. S. 

Dickson-Simpson, J. 

WHson, S. S. 

Rice, G. 

81. . lucas, Dr. G. 

82. .6.rrol, W.J. 

. .. ---· 249. 

·-

Operating C-osts in Road 
Freight Transport. 

Highway Research Board 
Bulletin 276, 1960. 

Fuel in Transport 
Traffic Engineering and Control 
Feb/March 1974. 

Energy. Saving -Transportation 
Engineering. Paper in 'Energy
A Diminishing Asset', IGD 
Research Pub I ication 1977. 

AI ternatives to the Internal 
Combustion Engine 
Published by Resources for the 
Future In. 1971. 

The automotive gas turbine 
Conf. Vehicle Engines and Fuel 
Consumption and Air Pollution 
Ed. M. S. Janota Pub. by PPL,· 
1974. . 

Gas Turbine Makes Waiting 
for Metallurgical Breakthrough 
Motor Transport 20.9.74. 

The vapour engine 
Vehicles Engines and Fuel Consumption 
and Air Pollutiop. Ed. M.S~ Janurta 
Pub. by PPL 1974. 
The Stir! ing engine 
Vehicles Engines and Fuel Consum?tion 
and Air Pollution. Ed. M. S. Janurta 
Pub. by PPL 1974. 

Vehicle Performance Calculations 
PhD The~is Loughborough University 
1970 • 

. Prosp~cts for electrically propelled 
light goods vehicles. Proceedings 
of a symposium on battery electric 
rood-vehicles. TRRL Supplementary 
Report 54 UC. 1974 • 



83. 

84. 

85. 

86. 

87. 

88. 

89~ 

Waters, M. H. L. 1 and Porter, J. 

Hobbs, B. S., Tantram, A. D. S., and 
Hadlow, M. E. G. 

Appleby, A. J., Pompon, J. P ., and 
Jaquier, M. 

Hideo Baba 

Lapedes, B. E., and Meltzer, ). 

Ratcl iff, G. 

Ball, I. 

250. 

A review of the market prospects for 
batte:-y electric ro~d vehicles- Part 1 
TRRL laboratory Report 630 1974. 

Study of iron air batteries for a 
Public Service Vehicle. TRRL 
Supplementary Report SR 67UC. 1974. 

Zinc-air batteries in vehicular 
applications, Paper no. 7430 
presented at 3rd International Electric 
Vehicle Symposium sponsored by the 
Electric Vehicle Council ~USA) and 
UN !PEDE), Wc~hington DC 19-21 
February 197 4. 

A new zinc air battery system. Research 
Centre Sony Corporation, SAE Paper 
710237 1971. 

An evaluation of hybrid heat engine 
electric S}'stems for low exhaust 
emission potential in autom;:,tive 
cpplications. SAE Paper 719151 1951. 

Advanced Batteries and the Electric 
Car. Paper in 'Proceedings of a 
symposium on battery electric road · 
vehicles'. TRRL Supplementary Report 
54UC. 

. Electric Cars "In 5 years". Daily 

Telegraph, 24.9. 79. 



References used in Section Six - 11The sco~or transferri~g traffic from rood 
to other modes11 

90. Railway Gazette 

91. J. Petty 

92. Railway Magazine 

93. Modern Railways 

94. Railway Gazette 

95. Modern Railways 

96. Traffic Quarterly 

97. SCAN Newsletter 

98. Railway Gazette 

99. Modern Railways 

100. Transport 2000 

·101. Institute of Mechanical Engineers 

102. Railway Gazette 

251. 

Private sidings encourage freight 
growthinEurope. Vol. 130 
April 1974. 

Ocean gets state aid for road to 
rail freight plan. Daily Telegraph 
8.9. 1979. 

Fast freight : new start for wagon 
load traffic on British Railways~ 
Volo 122, September 1976. 

TOPS - on I ine- on time. 
Vol. 33 January 1976. 

TOPS takes over in the West of 
England. Vol. 129, October 1973. 

B. R. goes for TOPS. Vol. 29, 
March 1972. 

A national freight car information 
system January 1976. 

October 1979 

long range planning and the energy 
crisis. Vol. 129 December 1973. 

British Rail : the time scale for a 
strategic electrification programme. · 
Vol. 31 November 1974o 

An electrifying case,{london, 1974) 

Discussion on a railway design for 
energy conservation,(London, 1976)o 

Freight! iners' second assault on the 
domestic market, Vol. 131 August 
1975. 



103. Railw'Jy Gazette Second-generation freightliner proposed 
to capture mediurn-haul ~erchandise, 
Volo 132 February 1976. 

104. Modern Railways Freight by rail, Part 2 Distribution 
by SCJDS, Vol. 33, February 1976. 

105. Railway Gazette Can autowagon beat the lorry?, 
Vol. 128, September 1972o 

106. Railway Age TOFC COFC : A total dedication 
of intermodal operations, Vol. 177 
31.5.1976 • 

107. Hencke, D. . Cabinet may veto juggernaut curbt 
Guardian 9 .8. 1979. 

252. 



108. 

109. 

110. 

111 ~ 

112. 

113. 

114. 

115. 

116. 

117. 

118. 

References to Section Seven- 11 Enzrgy" losses in commercial vehicles11 

Will iams, T. 

Strifler, Dr. I.P. 

Cas~in, F. 

Buckley, F.T., Marks, C.H. and 
Walston, W.H. 

Lucas, G. 

Commercial Motor 

Robertson, A. J. 

Maccabee, F. G. 

Over, J ~A. 

Smith, G. L. 

Ritchie, D. 

253. 

Energy losses in heavy commercial 
vehicles • 

. TRRL Supplementary Report 329, 
Crowthorne, 1977. 

Paper Presented at the Daimler 
-Benz Seminar, Eastbourne, June 
1975. Commercial Motor 27. 6. 1975. 

Automotive Engineer Volume 1 No. 1, 
October 1975. 

An Assessm-ent of Drag Reduction 
T echniquss Based on Obse;vations 
of Flow Past Twe-Dimensional 
Tractor-Trailer Models. Paper given at 
~SF/U;S. Dept. of Trans. Conference, 
Caltech, October 1974. 
Private Communication, Loughborough 
University, June 1975. 

Easing the Pressure Cuts Fuel Bills. 
Commercial Motor 6.2. 1976. 

An investigation into the fuel 
consumption of an articulated vehicle 
with a semi-trailer fitted with a 
lifting axle. 
Cranfield Institute of Technology, 
January 1976. 

Private Communications, Loughborough 
_University. 

Energy Conservation Ways and Means. 
TF:e ffumr~ Sha?e a~ T cdmdo;y 
Foundation Publication No:>. 19. 
Netherlands, 1974. 

Commercia[ Vehkle Performance 
-and Economy. 
S.A.E. Paper (00194. 

Beat the Built-In Headwind (and 
save SS on fuel). 
Commercial Car Journc;:ll, September 1973. 



· 119. Wallage, P. 

120. Bettesworth, R. G. 

121. York Truck Equipment Division 

122. Lissaman, P. B. S., and lambie, J. H. 

-123. Rocheford, l.J. 

124. Burrows, N. 

125. Rivers, P. · 

126. Cunningh::~m, M. 

127. Anon 

128. Anon 

1'E. Anon 

130. · Montgomerie, G. 

131. Jacobs, H. R. and Van Winkle, R. 

132. Wright, D.W. 

, 
254. 

Cut Drag and Cut Fuel Bills 
by 10 Per Cent - on M::>torways. 
Motor Transport 28. 2. 1975. 

Private Communication with Raleigh 
Industries Ltd. 12.9.1975. 

Advertisement 
Commercial Motor 24. 10.1975. 

Reduction of Aerodynamic Drag of 
large Highway Trucks. 
Paper in Ref. 111. 

Reduce Air Drag : Increase Profits 
Fleet Owner, Jan. 1975. 

Private communication with the 
Company Engineer, Eastern B. R. S. L., 
'EJ 0 9. 197 5. 

Private communications with Rivers 
Trustop, Ltd., Barnsley, July 1975. 

Which Way's the Wind on Deflectors. 
Motor Tra:1sport 11.7. 1975. . 

Home-Made Drag Deflector gives 15 
Per Cent Saving. 
Motor Transport 30. 1. 1976. 

Deflect Fuel Costs 
Commercial Motor, 5. 12.1976. 

Motorway Drag Reducer Could Save 
10 Per Cent of Fuel. 
Com~ercial Motor 13. 12. 1974. · · 

Crisp Appraisal of Wind Deflectors. 
Commercial Motor 13.2. 1976. 

Ducted Trailers for Semi-Trucks 
Paper in Ref. 111. 

Cut Trailer Drag For More M.P.G. 
Commercial Motor 23. 1. 1976 



133.~ lrmocept Inc. 

134. Dept. of the Environment 

135. Commercial Motor 

136. Dept. of Eneigy 

137. Montgomerie, G. 

l39. Kent, M. F. 
:_ ... --. 

140. Gideon, D. 

255. 

An Evaluation of Truck· 
Aerodynamic Drag Reduction 
Devices and Te5ls. 
lnnocept, Inc., June 1975. 

HighWay Statistics 
H. M. S.O. 

Tables of Operating Costs, 1979 

Digest of Energy Statistics, 1978 
H.M.S.O. 

NFC goes flat out for 5pc fuel 
saving. 
Commerical Motor 17o8. 1979 

·-·--Paper in lnstttute ot Grocery 
Distribution Report • Energy - A 
Diminishing Asset?•, IGD, 1977. 

Fuel and Time Consumption. 
Rates foi Trucks in Freight 
Service. 
Highway Research Board 
Bulletin, Noo 276, 1960. 

Private Communication with 
Freight Transport Association, 
September, 1979. 

\ ·" 

\ 



References use~-J~-~ectlon Eight - 1.'The Gr9cery Distributive Industry l1_nd Ener~' . 

141. Greater London Cocncil 

142. Transport 2000 

143. Department of the Environment 

144. Department of the Environment 

145. Standing Conference on London 
and South East Regional Planning 

146. Transport and Road Research 
Laboratory 

147. Department of the Environment 

148. Thorpe, Dr. D. Kirby, Dr. D.A. 
and Thompson, C.H. 

149. Bowen, J. 

150. Rushton,A. 

151. Institute of Food Distribution 

152. Institute of Grocery Distribution 

153. Bannister, R. J. 

Usage" 

154. Kite, P. (Product Manager, BRSL) 

155. Gottorno, J. 

256. 

Lorry Routes and Bans. GLC 1975. 

Routes for heavy lorries : a consultation 
paper. (Lend en 197 4) • 

Outline of a possible lorry route 
policy (London 1976). 

Routes for heavy lorries : a consultation 
paper. (London 197 4) • 

Lorry routeing: report by the Technical 
Panel. (London 1974). 

An analysis of the study by Hertfordshire 
. County Council for the Heavy Commercial 

Vehicles Act. TRRL LR 759, Crowthorne 
1977 •. 

Lorries and the world we live in. HMSO 
1973. 

Channels and costs of grocery distribution 
Retail Outlets Research Unit, Manchester 
Business School, May 1973. 

Paper in Institute of Food Distribution's 
'which and 'why' seminar. 

Improving goods reception for urban 
delivery. Physical Distribution 
Management, Sept/Oct. 1979. 

Report of the Deliveries Working Party. 
October 1970. 

Distribution Case Studies, Mtmufoch.:rers 
Volume 1 and Volume 2, 1979. 

Out of Hours Deliveries. Physical 
Distribution Monograph Volume 4. 
Number 2 197 4. (Bradford 197 4) • 

Private Communications, 1978. 

Innovative Developments in the Distributive 
Sector of the U.K. Grocery Industry: A 
Delphi Futures Forecast. Cranficlcl 
School of Management, September 1977. 



156. Low, K.F. 

157. Jobson, R. 

158. Rushton, A. 

159. Supermarket Association. 

160. Thorpe, Dr. D., Kirby, Dr. D.A., 
and Thompson, C.H. 

161. Institute of Grocery Distribution 

162. Institute of Grocery Distribution 

163. Food Marketing Institute 

164. Institute of Grocery Distribution 

'165. Smith, K. J. G. 

166. Multiple Shops Federation 

167. Darker, J. 

168. Stewart, W.M. and Hill, G.V·. 

169. Thompson, C. H. 

257. 

An appraisal of vehicle cppointment 
systems in solving queueing problems 
of delivery vehicles at 'supt.:rmarkefs • 
Cranfield Institute ofT echnology, 
Centre for Transport Studies t•llsc. Thesis 
1978. 

A manufacturer 1s view on servicing. 
Physical Distribution Monograph, 
Bradford, 1973. · 

Increased goods consolidation. Lorries 
and the Environment Committee. National 
Materials Handling Centre, Cranfield 1978. 

Survey, 1967. 

Channels aod costs of grocery distribution. 
Retail Outlets Research Unit, Manchester 
Business School, May 1973. 

Distribution Case Studies: Retailers. 
IGD ., 1979. 

Introduction to the Grocery Industry. 
IGD 1979. 

Direct Delivery Handbook, Washington 
USA. 1978. 

Retail Grocery Trade Review 1978. 

Constraints affecting the use of a Public 
Transshipment Depot. Transport Operations 
Research Group, Working Paper Number i 9. 
University of Newcastle Upon Tyne. 
March 1976. 

Distribution in Inner Cities. Physical 
0 istribution Management. September/ 
October, 1 977. · 

Feeding the Nation is a Tdxing Task.· 
Freight Management, November 1979. 

Service at Any Cost? ·Evaluating 
Profitability by Customer. The Transfleet 
lecture 1978. · 

(Oxford Centre for Management Studies)" 
Private communications, 1979. 



170. Oyez ln~ermltional Business 
Commu:1ications Limited 

171. Hemingway, R. 

172. Which Computer 

173. Scicon Cor:nputer Services 

174. Marsden, A. 

175. Baker, A. S. 

-
176. O'Brien, H. 

177. Jackson, H. 

178. freight Transport Association 

179. Commercial Motor 

180. Gyenes, L. 

181. Wade, R.J. 

258. 

The Computer in Road Transport 
Planning? 
Conference September, 1979 
London. 

Data Processing in the Grocery Trade. 
IGD Report 1977. 

Moving Freight, August 1979. 

Strategic Distribution Planning. 
1978 

BRS Trunking Case Study. 
Transportation and Distribution Seminar, 
Scicon, October 1978. 

Private Communication with Distribution 
Director of Fine Fare Limited. 
March 1979. 

Load Planning - Can the Computer Assist? 
Paper given to Freight Transport Association 
Mc~ting, London September 1978. 

Russian way with the travelling salesman: 
Guardian, 2?.10.79 

Private communication October 1979. 

light foot for fuel costs 
I 

1. 9.1978 

Fuel utilization of articulated 
vehicles : effect of gross 
vehicle weight, TRRL 
Supplementary Report 424, 
1978. 

Road transport's long-term 
fuel problem, 
Unpublished monograph, 
Shrivenham 1974. 



182. Hul:bard, A.W., Singer, D.D., and 
Smart, G. A. 

183. Chain Store Age 

· 184. Food Distribution Information Council 

185. lubert, B. 

186. Resource Planning Associates 

187. Bousted, 1., and Hancock, G. F.· 

188. Christopher, M., Gattorna, J., Ray, D., 
and Wal ters, D. 

189. Hemingway, R. 

190. Institute of Grocery Distribution 

191. Department of Trade 

192. Marshal!, E. 

259. 

Energy : A Food Industry 
Perspective. 
Paper in 'Energy- A 
Diminishing Asset', I. G. D. 1977. 

Supermarkets and the energy 
crisis. 
CSA, April· 1977. 

Key Costs Behind Supermarket 
Prices. 
Super Market 1.1stitute, Chicago, 
April 1976. 

The Management of Energy 
Paper in 'Energy - A Dir.1i;1ishing 
Asset', I. G. D. 1977. 

Guide to Energy Conservation 
for Grocery Stores 
Federal Energy Administratio;-1, 
Washington, 1977. 

Beverage containers and resources. 
An examination of the resources 

· required for the delivery of beers, 
ciders and carbonated soft drin~s 
in the United Kingdom. Open 
University, August 1979. 

Cage Palletization in the U.K. 
Grocery Industry. Cranfield School 
of M·:magement 1977. 

Unit load develcpm•3nts. Institute 
of Grocery Distribution, April 1978. 

Customer loyalty. Research Report, 
1979. 

Census of"Distribution, 1971. 

Quoted by.M. lee and E. Kent in 
Caerphilly Hypermarket Study, Year 
Five, Donaldsons, March ·1979. 



193. !vbcb::;uri n, I. C. 

194. A~da Stores 
195. Maclcurin1 I. C, 

196. Brodley, ''"· and Fenwick, 

197. lambert, G. 

198. lee, M., and Kent, E. · 

199. Maclaurin, I. C. 

200. Barrett, R. 

201. Sounders, P. 

202. Firmston-Will iams, P. 

203. Hemingway1 R. 

204. SCAN New;)letter 

205. Food M.:~rketing Institute 

206. Skuce, J. 

207. Bell, J. 

208. Vanstor.e,. R. 

D. 

260. 

The past is b~guilir.g - but could 
W-~ live there? Gt"ocer Jun-e, 6th 1979. 

Pub! i city brochure 

The Relaili"rade and the planned 
environment. October 1975. 

Shop?ing habits v. attitudes to shop 
hours in Great Britain. Gi·eat 
Britain Office of Population Censuses 
and Surveys Social Survey Division. 

Developments in retailing and their 
demands on customer transport. 
Institute of Grocery Distribution, 1977. 

Caerphilly Hypermarket Study, Year 
Five. Donaldsons, London, Mcrch 
1979. 

full Circle, Supermarketing, 
12 October, 1979. 

Trip G::meration and Modal Split of 
Shopping Trips. Traffic Engineering 
and Control, Volume 16, Number 2, 
1975. 

(Lecturer in Planning Studies, liverpoo! 
Polytechnic). Private Communications 
1979. 

Chairman's Statement, Asda Stores 
Annual Report 1978/1979. 

Article N~.1.nbering : A brief summary. 
Market Place. Mcrch/April, 1979. 

November, 1979. 

Newsletters 1978, 1979. 

{I CL) Private communications 1979. 

{J. Sainsbury) Private communications 
1979. 

(M SI) Private communications 1979. 



209-.: T . . A r1Ck 1 t-> •• 

210 • Article Number As:;cciation (UK) Ltd 

211 • Various ccmp:mies have exFressed such 
opinions but wish to remain anonymous. 

212. Morrell, J. 

2l3. Bellamy, E. 

214. Padberg, Dr. D .I. 

215. Doody 1 A .F. and Davidson, W .R. 

' 216. Simon Evans of lnterbank Research 

(UCSL Micronics) Private 
communications 1979. 

ANA Newsletters 

Which fac!"ors are most critical 
to your future costs? Storage Handling 
Distribution, August 1979. 

looking backward, 2000- 1887 ~ 
Ticknor and Comoany, Boston, 1888. 
(cited by Ref. '218). 

Food distribution research approaches _ 
for the 1970's. Food retailing beyond 
the supermarket. Chapter 41 in Food 
Marketing and Distribution, Edited 
by D. J. Mclaughlin and C.A. Mallowe, 
Chain Store Age books, New York 1971, 

Next revolution in retailing. Harvard 
Bank Review. May-June 1967 o (Cited 
by Ref. 218) • 

Private communications, 1978/79. 

---~----- ~-
---------- - ..... -

217. McNair, M. P. 

218. McNair, M.P. and May, E.G. 

219. Rosenwald, P. 

220. Bloom, G.F. 

221. F irmston-Will icms, P. 

261. 

Competitive distribution in a free high -
level economy and its implications for 
the University. Ed. Albert B. Smith 
{Vniversity of Pittsburgh Press, 1958) o 

(Cited by Ref. 218 ) • 

The next revolution of the retailing 
wheel. Harvcrd Business Review, 
September - October 1978. 

Where direct marketing is leading. 
Marketing. October 1979 • 

. The future of the retail food industry : 
another view. CIES Ouarf'erly 

· Newsletter. Third Quarter 1979. 

Campaign, November 18, 1977. 



298. 

299. 

300. 

301. 

References used in Section Nine : 11 Summary and Conclusions 

Brodman, J.R., and Hamilton, R.E. 

Dafter, R. 

Department of Energy 

British Petroleum 

262~ 

A Comparison of Energy Projections 
to 1985. International Energy Agency 
Monograph 1979 ~ · · 

Key to Economic Stability. 
F inancia I Times 20.9.1979. 

National Energy Policy. Energy 
Paper Number 41. 1979. 

11 0il Crisis-Again?". BP 1979. 



222. 

223. 

224~ 

. 225. 

226. 

227. 

228. 

229. 

230. 

231. 

References used in Appendix 1 - Present M-"iarial s Usage T ranspor: 

Kay, J.A. and 
Mirlees, J .A. 

Leach, G. 

MotorVehicle 
Manufacturers 
Association of the 
U.S., Inc. 

Harrison, D .A., 
Newdick, P.C. and 
Bowles, P .J. 

. A.A. 

U.N. 

Yasnowsky, P. and 
Colby, D. 

Armco Steel Corp. 

S.M.M.T. 

Anon 

. 263. 

"The Desirability of Natural 
Resource Depletion." Chap. 9 in 
D .W. Pearce, 11 The Economics of 

.. Natural Resource Depletion ... 
MacMillan, 1975. 

11The Motor Car and Natural Resources •11 

O.E. C.D. Environment Directorate 
Div. of Urban Affairs, paper No. 4, 
Oct .• 1972. 

11Automobi1e Facts and Figures, .. 
1972 and 1975. 

11Recovery of Non-Ferrous Metals from 
Car Scrap. 11 Meta Is and Materia Is 
(M. &M.} Jan. 1974. 

11 Scrap Cars : The Waste That's 
Wanted. 11 Drive Magazine 
Summer 1974. 

11Aspects of Competition Between 
Steel and Other Materials." U.N. 
Economic Commission for Europe 
66 UE 11 • N. Y. 1966. 

110etermining the Effects of Gasoline 
Price on Use of Metals in Automobile 
Manufacture. 11 U .S. Dept. of the 
Interior, Bureau of Mines Report 
R .I. 7871 

11 Stripped Car Reveals lv\aterial 
Secrets. 11 Transport Dev. News, 
June, 1974. 

11 The Motor Industry of Great Britain 
1973.11 

11The Prospects for the Motor Industry 
in 1975. 11 Motor Business, Dec. 1974 • 



232. 

233. 

234. 

. 235. 

236. 

237. 

238. 

239. 

240. 

241. 

242~· 

Moore, D .C. 

Edwards, Sir G. 

Alexander, W. and 
Street, A. 

Goldsmith, H .A. 

Iron and Steel 
Statistics Bureau 

Japanese ir::'ln and 
Steel Federation 

Munro-Smith, R. 

Anon 

Chapman, P .F. 

Lloyds Register of 
Shipping 

James, J.G. 

264. 

"Metallic and Other Mineral 
Resources. 
Royal Aeronautical Soci~ty (R.A~S.} 
Spring Convention, 197 4. 

11Air Transport, A Changing Scene." 
M. & M. Vol. 4, 1970. 

11 Metals in the Service of Man." 
Pelican, 1972 • 

11The Development of Aircraft as· 
Influenced by the Shortage of· 
Materials and Fuels. 11 R.A.S. 
Conference, 197 4. 

Annual Statistics 1968 and 1973. 

Iron and Steel Statistical Report 
March 1975. 

"Merchant Ship Design." Hutchinson 
1967 •. 

11Scrap is Valuable Source of Raw 
Materials ... C.M.E. July 1975. 

"Energy Conservation and Recycling 
of Copper and Aluminium. 11 Metals 
and Materials, Vol. 8 No~ 6, 1974. 

Statistical Tables 1974 and Annual 
Reports 1973 and 1 97 4. 

"Quantities and Prices in New Road 
Construction, 1969 ." T .R .R. L. 
L.R. 513. 



243. 

244. 
245. 

Please, A. and 
Pike, D ~C. 

Earle, J.B.F. 

Building Research 
Establishment 

265. 

11The Demand fer Rood Aggregates •11 

T • R • R • L. L. R • 185 • 

"Blacktop" 1 B1ackwel1 1 1971 • 

"Report of Aggregates and Waste 
Materials Working Group. 11 B .R. E. 
Current Paper CP 31/73 • 

. ' 



References Appendix 2 

246. Dunham, Sir K. 

247. Roberts, F. 

248 •. Michalski, Wo 

249. Meadows, D.l. et al 

250. OECD 

251. Malenbaum, W. 

252. Kay, J.A. and Mirlees1 J.A. 

253. landsberg, H. 

254. Cheeseright, P o 

266. 

"Non-Renewable Mineral Resources11
• 

Proc. af Conf. "The Conservation 
of Materials". Harwell, March 1974. 

Paper given at a Symposium "Material 
Resources of the Future - the 
Widening Gap". Conf. Aston University 
Nov. 1974. 

"Industrial Raw Materials, Physical 
vso Political, Economic and Social 
Scarcity of Minerals". OECD 
Observer, July 1978. 

11 Dynamics of Growth in a Finite 
World11

• Wright Alien Press. Inc. 
Cambridge, Mass. 1974. 

11The Future Developme,nt of Advanced 
Industrial Societies in Harmony with that 
of Developing Countries". (Inter 
Futures). 

Paper in "Mineral Resources and the 
Environment11

• Committee on Mineral 
Resources and the Environment 
(Comrate), Commission on Natural 
Resources, National Research Council, 
N.A. S. Washington DC 1975. 

11The Desirability of Natural Resource 
Depletion". Chapter 9 in D. W. 
Pearce, 'The Economics of Natural 
Resource Depletion•, Mac Millan, 1975. 

'Policy Elements of U. S. Resource 
Supply Problems• •. Resources Policy 
De .• 1974. 

11 U. K. Mineral Supplies : The Threats 
and The Remedies". 
Financial Times 19.7.1979. 



255. Royal Institute of Economic Affairs 

256. Metal Bulletin Handbook 1974 

251. Asbestos Council 

258. Chapman, P. F. 

259. Iron and Steel Statistics Bureau 

260. U. S. Bureau of Mines 

261. Nickel Institute 

262. International Tin Council 

263. Zinc Development Association 

267. 

"British Foreign Policy to 1985". 
"Non Fuel Minerals and Foreign 
Policy, Data Base" i 

Metal Bulletin Ltd. London 

Private Communication August 1979. 

"Energy Conservation and Recycling 
of Copper and Aluminium". Metals 
and Materials. Vol. 8, No. 6. 1974. 

Annual Statistics 1968 - 1973. 

"Mineral Facts and Problems, 1974". 
Washington DCo 1974. 

Private Communication August 1979. 

Private Communication, August 1979. 

Private Communication, August 1979 



264. 

265. 

'266. 

267. 

268. 

269. 

270. 

271. 

272. 

273. 

274. 

References used in ·A_pp_!)ndix 3 - 11 Conservation of Materials 

Berry 1 R • S • , 
Fels, M. F. and 
Makino, H. 

Bishop, R.R. and 
Mutch ins, J.S. 

Weighell, H. J. C. 

Schaefer, R. 

Wrigley, A. 

Automotive 
Engineering 

Chapman, P .F. 

I. Mech. E. 

Robinson, A. J o 

Over, J.A. 

Pavoni 1 Jol., 
Heere, J.E. and 
Hagerty, DoJo 

268. 

"A Thermodynamic Valuation of 
Resource Use Making Autos and 
Other Processes o 

11 M.l. T. Conf. 
11 Energy 1 Demand Conservation and 
Institutional Problems 11 1973. 

11The Use of a Corrosion Inhibitor 
az a Car Washing Additive 0

11 

T.R.R.L. Report l.R 620 1 1974. 

"Economic Philosophy of the Vehicle 
Manufacturer as Regards Corrosion. 11 

L.M.E. Conf. 11 Corrosion of Motor 
Vehicles, 11 Con. Pub. No. 16, 1974. 

Long Life Car Research Project 
Study. I.M.E. Conf. Pub. 16, 
1974. 

"G .M. Using Zinc Precoated Parts in 
Small Cadillac. 11 A.A.M. - Lead and 
Zinc Supplement, 9 .4. 1975. 

"Aluminium vs. Steel for Auto Bodies 
A.E. Feb. 1974. 

''The Energy Costs of Producing Copper 
and Aluminium from Secondary 
Sources. 11 Open University, Report 
ERG 002, 1973. 

"Scrap is a Valuable Raw 1\o\aterial." 
C.M.E. July 1975 pp. 73-74. 

Recover and Recycle, Conf. 11The 
Cqnserwtion of Materials, 11 

Harwell, March 1974. 

"Energy Conservation, Ways and Means. 
The Future Shape of Technology Pub. 
No. 19, Netherlands, 1974. 

Handbook of Solid Waste Disposal. 
Van Nostrond Reinhold Environmental 
Engineering Series, 1975. 



275. 

276. 

. ' 277 • 

279. 

280. 

281. 

282. 

283. 

British Steel Co. 

Kiessling, R. 

Modern -Plastics 
International 
(M.P.I.) 

N.E.D.O. 

Mahoney, l.R. and 
Harwood, J.J. 

Finniston, Dr. Monty 

Roberts. F. 

Bollard, D .W. 

National Academy_ 
of Sciences 

269. 

"Nevt Move to Save Dwindling 
Resources., British Steel, 
Summer 1975. 

11Will Steel Appeal in Ad 2000?" 
Metals and Materials, Feb. 1974. 
pp 0 112-116. 

"Recycling, Refuse and Recovery of 
Plastics." The British Plastics 
Federation, "Plastics and the 
Environment'' Series, 1973. 

"The Plastics Industry and Its 
Prospects." H.M.S.O. 1972. 

11The Automobile as a Renewable 
Res.ource." Resources Policy 1 

Septo .1975. 

"Fewer Joules for Steelmaking. 11 

New Scientist, 11.7. 1974. 

"Material Resources Conservation -
A-Strategy for Action. 11 Resources 
Policy, June 1975. 

"Materials Substitution - Panacea 
or Fallacy?" Design Engineering, 
Sept. 1974. 

11 Mineral Resources and the Environment." 
Committee on Mineral Resources 
and the Environment 
(Comrate}, Commission on Natural 
Resources, National Research 
Council, N.A.S. Washington D .C. 
1975. 



~efcrcnccs Appendix 4 

284. Roberts, F. . 

285. Wright, D. J. 

286. A.l.choE. 

287. · Berry, R .S., Fels, M.F. and 
Makino, H. 

288. Alexander, W.O. 

289. Mjdjenovich, R. 

290. Rubber Developments 

291. Kellogg, H. H. 

292. Automotive Engineering 

293. Sambell, R.A.J. and 
Davidge, R .W. 

294. · C.E.G.B. 

295. Peacey, J.G. and Davenport, W.G. 

270. 

"Energy Consumption in the Production 
of Materials 11 o Metals and Materials, 
March, 1974. 

"Calculating Energy Requirements of 
Commodities from the Input-Output 
Table". Paper at Conf o Imperial 
College, London 1973. 

"Energy and The Environment". Proc. 
of 1st Annual A.l.choEo Southwestern 
Ohio Conf., 25. 1 0 o 1 973 o 

"A Thermodynamic Valuation of 
Resource Use Making Autos and Other 
Processes 11

• · M.l. T. Conf. 11 Energy 
Demand Conservation and Institutional 
Problems11 o 1973 o 

"Energy Content: A Vital Factor in 
Assessing Materials. Demand and Use 11

• 

Metals and Materials, Oct. 1974. 

"Lightweight Castings Can Save Energy". 
Automotive Engineering, June, 197 4. 

"Making the Most of the World 1s Natural 
Resources 11

• R.D. Vol o 28, No. 2, 1975. 

"Energy Efficiency in the Age of Scarcity11
• 

Journal of Metals, June 197 4. 

"How Much Energy to Produce Reinforced 
Plastic Parts? 11 A.E. Feb. 1975, based 
on S.A.E. Paper 750155 by E.D. Trueman. 

"Ceramics - Materials with an Engineering 
Future? 11 Conference .. Conservation of 
Materials 11

, Harwell, March 1974. 

Annual Report and Accounts, 1973/4. 

11 Evaluation of Alternate Methods of 
Aluminium Production 11

• Journal of 
Mete Is 1 Ju I y 197 4. 



296. 'Bravard, J.C., Flora, H.B. and 
Portal, C. 

297. Finniston, Dr. Monty 

/ 

271. 

11 Energy Expenditures Associated with 
the Production end Recycling of Matcrials 11

• 

Oak Ridge !'~at. Lab. Report O.R.N.L.
N • S • F • - E. P. - 24, 197 4. 

11 Fewer Joules for Steelmaking 11
• New 

Scientist, 11.7 .1974. 



listing of Tables 

Table No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Title 

Physical distribution costs as a % of retail turnover. 

Users' Expenditure upon transport, 1966-1976 {£m). 

Employment in transport and communications U.K., 
1974 (OOO's)o . 

Domestic freight movement in Great Britain by mode 
1966 and 1976. 

Analysis of the goods moved by different modes in 
Great Britain in 1976, in terms of tonne-kilometres. 

Commercial vehicle popu.lation, 1975, by G. V. W. 

Analysis of ton-kms. by vehicle size and by 'own 
account' and 'third party'. (000 million)o 

Ton-kms. performed by "own accounf'and "third 
party" transport,- analysed by length of haul 
(000 million)o 

Analysis of road freight traffics by commodity and 
length of hauL 

Roil freight lifted and moved 1976. 

Rail freight lifted and moved: other train/wagon 
load details. 

British Roil : average length of haul 

Container movements by mileage bands, 1975. 

Coastal shipping traffic by tonnage and ton miles, 1974. 

Tanner's forecasts of tonne-km (thousands of millions), 
Great Britain. 

Trend extrapolations : goods moved 

272. 

Page N·'). 

7 

8 

8 

12 

14 

15 

16 

17 

18 

19 

20 

20 

21 

22 

27 

30 



Table No •. 

17 

18 

19 

20 

22 

23 

24 

25 

26 

27 

28 

'19 

30 

31 

32 

33 

34 

Title 

Trend extrapolations : goods I ifted 

Energy consumption by class of consumer, U.K., 
1967 and 1977. (Heat supplied basis). 

Inland deliveries of petroleum products used as 
fuels. 

Energy consumption by transport mode, U.K., 
1967 and 1977. 

Energy intensiveness of different freight modes, 
expressed in BTU per-ton-mile and as ratios of 
truck energy intensiveness. 

Fuel productivity of road freight transport in 
U.K.,1967and1977. 

Estimated fuel productivity of various road vehicles 
and traffics. 

The energy required to manufacture on "average" 
road goods vehicles. 

Calculation of the energy "rebate" due to the 
an average U.K. road goods vehicle. 

The energy cost/benefit of producing a panel from 
various materials 

W_orl d energy reserves 

World crude oil reserves (10
9 

barrels) 

Estimated oil reserves on U.K. continental shelf 
as at 31 December 1978 • 

. .: 

Forecast of U.K. continental shelf oil production 

World resources of recoverable coal and lignite 

GDP projections 

Projected useful energy demands (10 
15 

J) 

Trend extrapolations 

273. 

Page No. 

31 

36 

37 

38 

40 

41 

43 

52 . 

55 

57 

61 

63 

67 

70 

79 

94 

95 

100 



Table Ne. Title Page No. 

35 Initial list of potential fL•els. 112 

36 Comparison of selected properties of alternative 113 

fuels 

37 Comparative costs of potential future fuels 114 

38 Vehicles regis~ered for the first time : by motive 119 

power unit ('COO's). 

39 Petrol and diesel fuel consumption rotes for rural 120 

and urban trunking operations 

40 The effect of fuel price increase on the operating 12? . 
cost structure of petrol and diesel engined I ight 
vehicles (pence per mile) 

41 Duties as a percentage of sale priceo 123 

42 Operating characteristics of some automobile gas 126 

turbines. 

43 Typical operating costs of H ton payload milk 133 

floats 

44 Comparison of the energy storage capability of 
various batteries with petrol 

136 

45 British railways operating costso 145 

46 Commercicl vehicle operating costs and ratios, 146 

selected vehicles 1970, 1975; 1979 o 

. 47 The effect of rounding trailer corners • 164 

48 Classification of goods vehicles in the U. S.A. 168 

49 Fuel consumption rates for goods vehiCles related 
but various rates of speed change per mile, for 

175 

different types of vehicle operation. 

50 Sales moved per type of distribution channel 192 

51 Leading grocery mu I tip I es 
193 

52 The relative efficiencies of different 194 

distribution channels. 

274. 



Table No. 

53 

54 

55 

56 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

Title 

The relative efficiency of different distribution 
channels. 

Characteristics of differentgroce-ry distribution 
channels. 

The application of computerised systems to 
distribution in the grocery industry: percentage 
of sample surveyed. 

Fuel productivity and vehicle size. 

Maximum permitted weights, vehicle numbers and 
fuel consumption. 

Components of store energy usage. 

Size of new grocery shops (square feet of sales 
area). 

Number and catchment area of grocers' shops 
('000). 

Shopping and personal business trips, by length,· 
1975/76. 

Total fuel requirements of distributing food via 
(a) a corner shop and (b) a superstore, per 100 tons. 

The consumption of various materials by transport 
in the U.K. 

Resource use by transport industries in the U. S.A. 

Materials consumption by the U. S. automotive 
industry (metric tons). 

The material consumption of various cars (kgs). 

Estimates of annual raw material demand of the 
U.K. car manufacturing industry, selected years. 
1960-1973. 

Estimate of the weights of materials contained in 
U.K. goods vehicles. 

275 •. 

Page No. 

195 

204 

208 

209 

211 

213 

214 

215 

217 

281 

283 

284 

285 

289 

291 



Table No. Title Page No. 

69 Goods vehicle registrations, by type of body, 292 
selected years. 

70 Estimates of the approximate annual consumption 293 
of various materials by British Rail engines and 
rolling stock. 

71 The composition of various aircraft. 295 

72 The weight of materials in various ships. 298 

73 Steel consumption by shipbuilding, 1967-73o 299 

74 Amounts of material used in carriageway 302 
construction. 

75 Estimates of the quantities of bituminous mixtures 304 
required in various classes of roadworks (million 
tons per annum)o 

76 Natural aggregates used in road construction 305 
during 1968. 

77 Industrial raw materials with important transport 308 
applications: resources, demand end lifespan. 

78 Industrial raw materials with important transport 316 
applications : geographical distribution. 

79 Industrial raw materials with important transport 320 
applications, U.K. consumption imports and 
estimated usage by transport industries. 

80. Estimates of the importance of recycled materials in. 
329 

U.K. consumption. 

81 The importance of recycled aluminium in present 329 
consumption in various countries. 

82 Relative costs of primary and recycled materials. 330 

83 Efficiency with which "old scrap" is recycled 330 
in the United States. 

276. 



Table No. Title 

84 U. S. consumption of selected recycled materials. 

85 Estimates of the energy required to produce various 
materials. 

86 Process evaluation and comparison with the best 
!.:trayer-Hall technology. 

87 Energy consumption related to material propertieso 

277. 

Page No. 

332 

342 

347 

350 



Listing of Figuras 

Figure No. Title Page No. 

1 Tonnes lifted by various modes, Great Britain 10 
1953-1977 (million tonnes)o 

2 Goods moved by various modes, Great Britain 11 
1953-19770 

3 Forecasts of goods moved in Great Britain, by mode, 32 
1978 to 2025 ('000 million tonne kilometres), compared 
with forecasts by T.R.R. L. to 2010o 

4 Forecasts of goods lifted in G. B. by mode, 1978 to 33 
2025 (mill ion tonnes) 

5 Possible future world oil production profiles 66 

6 U.K. indigenous oil production according to various 69 
estimates. 

7 U.K. indigenous gas production profiles. 78 

8 Total inland consumption of primary fuels. 89 

9 Total inland consumption of primary fuels 1967 to 90 
19770 

.10 Energy Consumption by final users in 1977 91 
(heat supplied basis) : percentage shares by sectors and 
form of energy. 

11 Future energy scenarios including those published 96 
recently by the Department of Energy, 

. . 

12 The primary energy demand in the low GDP projection 97 
compared to indigenous supplies and a long term nuclear 
component of 75 GW. 

13 The primary energy demar.td in the high GDP projection 98 

14 Forecasts of fuel used by road freight vehicles in Great 101 
Britain, 1979 to 2025. 

15 Comparison of rurol and urban fuel consumption rates 121 

for goods vehicles • 

. 278 •. 



Figure No.· Title Page No. 

16 Typical part-load operating characteristics of gas- 128 
turbine, diesel and spark-ignition engineso 

17 The proportion of fuel used to overcome the various 155 
resistances to motion on different types of road. 

18 The power required to overcome air resistance and 156 
rolling resistance at various speeds. 

19 Variation of resistance forces with speed. 157 

20 Fuel consumption decrease vs. drag decrease as a 158 
function of weighto (at 90 km/h). 

21 Fuel consumption decrease vso drag decrease as a 159 

function of speed (32To G. T. W. ). 

22 Fuel consumption rates, for goods vehicles related 176 
to various rates of speed change per mile, for 
different types of vehicle operation~. 

23 Generalised long term factors influencing importance 200 

of multiples' depotso . 

24 An illustration of grade and quantity of a hypothetical 309 
I 

mineral. 

279. 



APPENDIX 1 

PRESENT MATERIALS USAGE BY TRANSPORT SYSTEMS 

Transport systems are major consumers of many raw materials. 

Here we assess the present pattern of con~umption, not only 

for materials required for vehicles, but also for those used 

in transport infrastructure . 
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Appendix 1 

PRESENT MATERIALS USAGE BY TRANSPORT SYSTEMS 

Transport' systems annually consume substantial quantities of a 

wide variety of constructional raw materials as may be seen in Tables ~3~ and 

64 • For some materials, such as rubber and lead, transport is the largest 

consuming sector, whilst for others, such as plastics, tfansport's needs are 

modest at present, but growing quickly. 

Transport systems c~msist of vehicles, infrastructure and 

other equipment. . On the basis of materials usage, however,infrastructure 

and ancillary eq'Jipment may be taken as a single category, :,eing based in 

general on relatively abundant non-metallic minerals in contrast to the 

vehicle, whose construction is largely based on less abundant metals. 

TABLE 63 THE CONSUMPTION OF VARIOUS MATERIALS BY 

TRANSPORT IN THE U.K. 

% of Total Consumption 

Material Road Rail Shipbuilding Air All Trans. 

Steel 13.7 2.0 3.5 0.2 19.3 

Aluminium 21.3 5.6 ) 26.9 

Copper 4. 1 3.7 ' 7.8 -, 

- Leqd 50+., - .. -. ... ~ . 
:50f'" ·-

- ' 
-. 

Rubber 50+ 50+ 

Plastics < 7.0 ' 2.0 9.0 ; 

' Note : the figures quoted have be-en extracted from other sections of the thesis. 
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The overage weight of all European cars has been calculated 

to be 886 kgs. whilst the overage weight of all U. S. cars manufactured 

between 1954 and 1965 was 1.623 tonnes (Leach, Ref.223 ). 

U.3ing the noted composition and weights of cars, it is straightforward 

to estimate the annual demand for various materials by the U.K. cor industry 

{Table 67 ). The figures for the U.K. ore based on the 1500/1600 cc. saloon 

car, weighing 867 kgs. shown in Table 66 • This model, whose weight 

is a little less than the European overage noted above, may be considered 

reasonably typical of British cars. 
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TABLE 64 

Motor Vehicles 

Aircraft 

RESOURCE USE BY TRANSPORT INDUSTRIES IN 

THE U.S.A. 

0 

Steel Aluminium Copper Lead 

19.6 11.2 8.2 11 .Om 

2.2 6.1 3.0 ~.3 

Zinc· 

19.5 

4.1 

Shipbui Iding & Repairs 1.0 0.8 1.2 

Other Transport 

Total 

SOURCE: 

4.0 4.6 

26.8 21.9 12.0 16.5 23.6 

Kay J.A. and Mir.·le5, J.A. 11 The Desirability of Natural 

Resource Depletion". Chapter 9 in Pearce D. W. "The 

Economics of Natural Resource Depletion11
, (Ref. 222) 

based upon U.S. inpu.t-output tables. 

PRESENT t-AATERIALS USAGE BY ROAD VEHICLES 

Road transport is the principal mode for t"he carriage of both freight 

and passengers in most industrialized countries. Road motor vehicles also 

constitute the bulk of demand for constructional materials within the transport 

vehicle sector. In the U.K., for instance, motor vehicles account for 13% of 

steel, 21% of aluminium, 4% of copper and more than 50% of rubber 

consumed {Table 63). A similar situation is evident in the United States 

where more complete data are available. lt may be seen from Table 64 

that the U.S. Automotive Industry takes about 20% of the steel, 12% of the 

aluminium, 33% of the zinc and 63% of the lead and rubber consumed in the 

. cou11try. The car is of course the dominant veh~cle. in its. materia.l de111ands 

within the road transport s~ctor. Since data ere more widely available for 

the car than for freight vehicles, we take the car as 'base• and estimate 

commercial vehicles• materials needs from this base. Turning first to the car, 

therefore, we can see that iron and steel account for between 74% and.85% 

of the total weight of the vehicles shown in Table 66. , copper and brass for 

1%, aluminium for 1 .2% to 2.7%, zinc for 0.7% to 2.8% and lead for 0.6% 

to 1%. The remainder includes glass (about 4%) and plastics {about 4%). 
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JABLE 65: MATERIALS CONSUMPTION BY THE U. S. AUTOMOTIVE INDUSTRY 

(metric Tons) 

------------
Steel 20.445 18.569 21.059 21.7 
Iron :Grey & Ductile 2.811 2.764 17.6 

: Malleable O. 549 O. 487 O. 437 47.6 
Aluminium 0.459 0.484 0.780 12.4 
Copper & Alloys 0. 264 0. 261 0. 295 9. 2 
Zinc 0.552 0.526 0.454 35.5 
Lead (see notes) 0.579 0.881 51.4 

19.5 
17 01 
41.7 
9.9 
8o3 

32o5 

Nickel 0.024 0.021 14.9 1L2 
·Rubber: Natural 0.361 0.436 0.515 69.0 71.7 

Reclaimed 0.164 0.140 60.0 59.4 

20.8 

46.8 
11.8 
8.8 

33.3 
63.0 

74.0 

1849 
254 
50 
42 
24 
50 
52 

2 

1830 
272 
48 
48 
26 
52 

2 

1666 

35 
62 
23 
36 
70 

41 

. Synthetic 0.996 1.313 1.506 61.7 63.9 6L8 119 
186 All Rubber (see notes} l. 491 l. 889 63o 1 65o 1 135 

L-C-ot_to_n ______________ ~_o_o_o3_.~s _____ o_o_o4_o _____ o_oo_3_o ____ ~_1._9 _______ 2_._2 _______ 1._8 __________ 3 ______________ 2_.~ 
SOURCE : 1965 and 1969 Figures from G. Leach, Refo223 o 

1973 Figures from 11 Automobile Facts and Figures, 1975", Ref.224 • 

NOTES: For most materials listed,, the automotive consumption includes materials for cars, trucks and buses and replacements. Lead 
consumption includes amount used in anti-knock compounds and replacement batteries. . 
Rubber consumption incloqes all rubber products classified as rubber weather stripping, grommets and engine mountings used in 
cars. Vehicle production for the year 1965, 1969 and 1973 was as follows: 

MILLIONS 
TRUCKS & BUSES % TOTAL CARS % 

1965 1.752: 15.8 11.057 9.306 84.2 

1969 1. 923. 19.0 10.147 8.224 81.0 

1973 2.980 23.6 12.637 9.658 76.4 



TABLE. 66: THE MATERIAL CONSUMPTION OF VARIOUS CARS (Kgs) 

'Car Type Steel •Iron Copper ·. Aluminium Zinc Lead Magnesium Nickel 'Rubber Glqss Others Total 'Sourc• 

"UK 1500/ 62.1% . 15.9% (1 )1. 3% 1. 5% 0.7% 0.6% (2)8.0% 3. 20/o (3)6.6% 100% A 
1600cc 
saloon" 539 138 10.9 12.7 5.9 5 70.7 . 27.7 57.6 867.5 
11 UK average 80% 1% 1% 1% 1% 16.0% 100% .B 
size saloon 
«or" 640 8 8 8 8 128 801 

·-

"Average 71% 14% 1% 1. 5% 1.5% 0.5% 10% 100% c 
British car" 637 128 9 14 14 4.5 92 898 

"Typical 70.8% 14.JO/o 0.9% 1.4% 1.5% 0.6% 4.1% 2.4% 4.0% 100% D 
USA car 

e 1954-1965" 1149.4 232.2 14.5 23.0 24.6 9.3 65.8 39.6 6.7 1622.8 
---···---

(7h9 .6% 
. 

"US 6 cylin- 62.1% 14.4% 1.0% 1. 2% 0.7% 1.0% 100% E 
der 4 seat 
sedan 1965" 787.2 182.6 12.6 14.7 9.3 12.5 249.0 . 1267.9 

"US 8 cylin- (4) (5) (6) (7) 
der 4 seat 62.1% 13.7% 1.1% 2. 3% 0.7% 1.0% 0.04% 19. 20/o 100% F 
sedan 1965" 
Type A 944.0 206.9 16.2 34.8 11.2 14.6 0.6 291. 1 1519.4 

1----· 

"US 8 cylin- (4) (5) (6) (7) 
der 4 seat 60.5% 13.6% 1.0% 1. 6% 2.8% 0.8% 19.7% 100% G 
sedan 1965" 

'\ 

TYPE B 1223.1 274.5 19.7 32.8 56.2 17. 1 399.4 2022.8 

"US stand- 74.8% (6),. 1% 1. 9% 2.0% 0.7% 0.1% (S)12.7% 2.7% 4.0% 100% H 
ard car" 1 'E2. 8 19.5 32.7 21.3 11.8 1.8 218.6 46.3 69.9 1728.2 

1---· 
(6>1. 1% (8)12.7% 

·-
"US econ- 74.8% 1 .. 9% 2.0% 0.7% o. 1% 2.7% . 4.0% 100% I• 
omy car" 760.7 11.8 19. 1 20.4 6.8 0.9· 128.8 27.2 41.3 1017.0 
~-· 

~6)1. 4% (9)11.8% "US car" 61.4% 17.7% 2.7% 0.8% 3.0% 2.5% 100% J 
1158.9 323.0 25.4 49.0 15.0 54.4 45.4 215.7 1837,0 



SOURCES AND NOTES FOR TABLE 66 

Sources: 

A. Private communication with British Steel Corporation, 

July 1975o 

B. D.A. Harrison, P.C. Newdick and P.J. Bowles, 

"Recovery of non-ferrous metals from car scrap". 

Metals and Materials, January 1974o (Ref.225 ). 

C. "Scrap Cars: The waste that's wanted", A.A. Drive 

Magazine, Summer1974. (Ref.226)o 

D. Go Leach, "The motor car and natural resources", 

OECD 1972, page 39, Citing U. S. Bureau of Mines 

Report of Investigations Noo 7350. (December 1969)~ 

(Refo223)o 

E. F. G. United Nations, "Aspects of competition between 

Notes 

steel and other mat·~rials", U. N. Economic Commission 

for Europe 66 UE 11. New York 1966. (Refo227)o 

H, I. P. Yasnowsky and D. Col by, "Determining the effects 

of gasoline price on use of metals in automobile 

manufacture ", U. S. Depto of the Interior Bureau of 

Mines Report R1 7871. (Weights converted from original 

pounds}. (Ref.228 ). 

J. ARMCO Steel Corporation investigation reported in 

"Stripped car reveals material secrets", Anon, 

. Transport Development News, June. 1974. (Ref.229 )~ 

(The numbers below refer to those in Table 66 ). 

1. The copper figure includes tin. lt may be inferred 

from the other car types I isted that copper accounts 

· for the bulk of this- say 1% or 8.7kg. 
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2. Rubber figure is the sum of: Rubber for tyres :-

40.8kg (4.7%) 

Other rubber-

29 0 9kg (3. 5%) 

3. Others include: Plastics and P. V. C. 

19. 5kg (2. 3%) 

Paint and undersea! ing 

13.2kg (1.5%) 

Other plastics, chemicals 

15.4kg (1.8%) 

Miscellaneous 

9. 5kg ( 1 0 1%) 

4. The steel figures for the three U. S. Sedans include 

the following grades : 

{Kg} 
6 Cylinder 8 Cylinder 8 Cylinder 

Sedan Sedan{A) Sedan (B) 

Ordinary Carbon Steel 705.8 850.0 1076.4 

Galvanised Carbon Steel 20.2 26.2 38.6 

Aluminiumised Carbon Steel 6.8 10.9 15.4 

Steel Alloy 50.8 53.5 78.5 

Stainless Steel 3.6 3.4 14.2 

787.2 944.0 1223.1 

5. The iron figures for the three Sedans include:-

6 Cylinder 8 Cylinder (A) 8 Cylinder (B) 

Cast Iron 

Malleable Iron 

159.7 

22.9 

182.6 

6. Copper includes brass and bronze. 

287. 

177.8 

29.1 

206.9 

244.0 

30.5 

274.5 



7. Others include the following: (Kg) 
6 Cylind.ar 8 Cylinder (A) 8 Cylinder (B) 

W~lding Wire: 2 .. 3 2.3 2.7 

Gross, Resin, Plastics & 

Soft Materials: 129.0 153.2 199. 1 

Silencers, Badges, Paper, 

Cardboard, Paint, Fuel & 

Lubricants: 117 .. 7 135.6 197.6 

249 .. 0 2910 1 399.4 

8 .. Rubber and plastics. 

9 .. Others. include: 

Plastics 86 .. 3kg (4.7%) 

Miscellaneous 68 .. 0kg (3.7%) 

Composite 56.7kg (3. 1%) 

Cardboard 3 .. 6kg {0. 2'/o) 

Fabric 0 .. 9kg (0.05%) 

Asbestos 0.3kg (O. 02'/o) 
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TABLE 67: ESTIMATES OF ANNUAL RAW MATERIAL DEMAND OF THE 

U.K. CAR MANUFACTURlNG INDUSTRY, 

SELECTED YEARS 1960-1973 

'000 Tonnes 
1960 1965 1970 1973 

Car Production (' 000) 1352.7 1772.0 1641.0 1747.3 

Steel (539kg) 7'E. 1 955. 1 884.5 941.8 

Iron (138kg) 186.7 244.5 226.5 241.1 

Copper ( 8.7kg) 11.8 15.4 14.3 15.2 

Aluminium (12.7kg) 17.2 22.5 20.8 22.2 

Zinc · ( 5. 9kg) 8.0 10.5 9.7 10.3 

lead (5kg) 6.8 8.9 8.2 . 8.7 

Rubber (70.7kg) 95.6 125.3 116.0 123.5 

Glass (27 .7kg) 37.5 49.1 45.5 48.4 

Plastics and 

P. V. C. (19.5kg) 26.4 34.6 32.0 34.1 

NOTE:. The figures in brackets refer to the weight of each material in a 

1500/1600 cc car, as shown in Table 66. The figure for copper 
has been estimated at 1% of the total vehicle weight of 867. 5kgs, 
whilst that for plastics excludes some plastics (see notes to Table 
and hence underestimates the total. 

SOURCE: Refs. 230, 231 .: 

289. 



\ 

GOODS VEHICLES 

The materials used in the construction of goods vehicles, buses 

and motorbikes are broadly similar to those used in car manufacture, being 

based on steel, aluminium, copper and rubber, etc. 

Goods vehicles, ranging in size from small vans to articulated 

lorries, form the second largest group of vehicles produced by the U.K. 

Motor Industry. (Table 68 ). Estimation of the material needs of this 

group is complicated by the extreme range of vehicle size, by the variety 

of materials used and by data limitations. As a first approximation for this 

thesis, it was assumed that the material composition of goods vehicles was 

identical to that of the 11 U. S. Standard Car11 shown in Table 66 • The 

weights of each constructional material contained in the registered goods 

vehicle population based on this assumption ore shown in Table 68 • The 

method is open to several criticisms, perhaps the most serious being 

that it almost certainly underestimates the amounts of aluminium, wood and 

reinforced plastics used in the fabication of van and trailer bodies. Aluminium, 

for instance, has become the predominant material for va=n body construction 

above the i5cwt size, both because of its properties (I ightness, strength 

etc. ) and because of the vigorous marketing policies of the aluminium 

co'mpanies, who have evolved sophisticated body-building kits. In addition, 

aluminium is extensively used in tbe construction of containers: of the 

20,400 containers produced in the U.K. in 1972, 12,000 were classified 

by the S. M. M. T as aluminium and 4, 200 as steel with the r~a.ining 21% 

being· "special· twes11 and "other materials11 
• Plastic· coated laminates- are . 

increa:;ing their market share for van bodies at the expense of aluminium, 

whilst glass-reinforced plastic mouldings have been introduced by two U.K. 

truck manufacturers (Foden and E.R.F.) for lorry cabs. The use of plywood 

as cladding on wood or metal frames in I imited to small and medium sized 

vans but is wide I y used as fl coring for I ight duty trailers. Timber remains 

the most popular flooring material for heavy duty trailers- a five ton trailer 

may contain more than one ton of timber. 
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TABLE 68 ·ESTIMATE OF THE WEIGHTS OF MATERIALS CONTAINED IN U.K. GOODS VEHICLES 

Oth•~ Class No. of Mid-Point Total Iron & Copper Aluminium Zinc Lead Rubber & Gloss 
u.w. Vehicles Weight of weight Steel Plastics 
Tons with class •ooo •ooo 'OJO •ooo ·ooo •ooo 'OOJ •ooo •ooo 

current tons tons tons tons tons tons tons tons tons tons 
licences (75%) (1%) (2%) (2%) (0.7%) (12.7%) (2. 7%) (3. 9%) 
(1976) 
('~~0) 

. Under 425 0.8 340 .255 3;4 
0.8 

6.8 6 .e 2 .•. 4 43 9 13 

0.8-1 176 0.9 158 119 1.9 3 .~ 3 .2 1 . 19 5 7 
1-1~ 509 1! 637 477 5.6 13 .13 4 81 .17 25 
li-2 62 1~ 109 1 '382 1 2 2 1 13 3 5 

~ 2-3 129 2~ 315 229 3 6 6 2 39 8 12 -. 
3-5 149 4 596 447 6 12 12 4 76 16 34 
5-B 127 6! 825 620 8 lp 16 6 100 20 32 
Over 8 103 10 1030l 773 10 20 20 7 127 .27 41 

1680 4000 3002 39 79 79 27 503 105 159 -

SOURCE :Ref. 7. 

NOTE: The vehicle population shown in this table refers to the goods vehicles with current licences in ;1_;.r,{>. The 

proportions of various materials in the "U. S. Standard Car" (Table 66} is taken as the basis for ccdculoting 

the weights of steel (etc.} in this estimate. 



If the proportion of van bodied vehicles, particularly refrigerated 

units, increases at the expense of op~n vehicles (as past trends in this 

country and the U.S.A. suggest) then the demand for reinforced plastics 

and aluminium by goods vehicles will increase.: 

TABLE69:GOODS VEHICLE REGISTRATIONS, BY TYPE OF BODY, 

SELECTED YEARS 

Type of body 1968 1972 
(Rigid vehicles) Number % Number % 

F lot or sided 20.7 51 20o4 .38 

Insulated or refrigerated 0.6 1 1.3 2 

Box body 9.4 23 14.0 26 

Others 4.3 11 4.8 9· 

Total 34.9 86 41.5 77 

Articulated units 5.5 14 12.4 23 

All vehicle types 40.4 100 53.9 100 

1976 
Number 

10.2 

1.0 

7.5 

2.8 

21.5 

7.5 

29.0 

SOURCE : Transport Statistics, Great Britain, 1966- 1976. HMSO 197Z. 

MATERIAL USAGE IN RAILWAYS 

The present composition of all engines and. rolling stock may be 

broadly similar to that of road vehicles, being based largely on steel and other 

metals. For this study, it has been assumed therefore, that steel accounts for 

about 85% of the total weight of all rail vehicles and that other mater ials are 

represented in similar proportions to those in road vehicles, i.e., copper and 

lead 1% each, aluminium and zinc 2%, glass· 3% and others (mainly. plastics, 

rubbers and composites) for the remaining 6%. 

If these assumptions are valid, by using the estimates of total steel 

consumption by British Rail shown in Table 63 , then a rough approximation 

of rail 1s other material needs may be made, as in Table 70 • This exercise 

makes no claims to be accurate, but provides an estimate probably of the 

right order. 
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Future trends in materials u~ge by conventional railway {as 

opposed to Light Railways, P. R. T. Systems, etc.,) may include: 

1. A fall in the total quantity of materials required in re~ponse 

to: a) A decline in demand for transport by rail for both passengers and goods. 

b) lmpr:wed efficiency with which traffic is carried. 

2. A diversification away from steel in rail vehicles particularly 

towards aluminium, but also glass reinforced plastics (G. R. P.) and ::>ther 

low density ·composites. The advanced passenger train (A. P. T.) for instance, 

uses an· aluminium shell with a G. R. P. frontal section to reduce overall 

weight. 

3. An increase in the proportion of ~rack electrified will 

necessitate greater use of copper and/or aluminium. 

TABLE 70: ESTIMATES OF THE APPROXIMATE ANNUAL CONSUMPTION 

OF VARIOUS MATERIALS BY BRITISH RAIL ENGINES AND 

ROLLING STOCK 

{'000 Tons) 

Material %of 1967 1969 1971 1973 
Total 

Steel 85 394.5 384.9 375.0 367.6 

Aluminium 1 4.6 4.5 4.4 4.3 

Copper 2 9.3 9 01 8.8 8.7 

Lead 1 4.6 4.5 4.4 4.3 

Zinc 2 9.3 9.1 8.8 8.7 

Glass 3 13.9 13.6 13.2 13.0 

Others 6 27.8 27.2 26.4 26.0 

TOTAL 100 464.1 452.8 441.2 432.5 

NOTES : :rhe Steel Figures are taken from Iron and Steel Statistics 
Bureai!J Annual Statistics. Other types are based on the 
assumption that rail vehicles as a whole have similar 
composition to the car, shown in Table 66. 
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MATERIALS USAGE IN AIRCRAFT 

The unique operoJting conditions of aircraft req:.~ire the properties 

of a wide range of specialist materials. Aluminium alloys account for more 

than 5CP/o of the composition of the BAC 1-11 and the (unnamed) Subsonic 

Airliner shown in Table71 and 71% by weight of Concorde. Special 

steels and alloys of titanium and magnesium are the other major constituents, 

but a variety of metallic elements are present in smaller quantities in a 

modern aircraft and indude molybdenum, vanadium, chromium, zinc, lead, 

tin, cobalt, beryll !urn, zirconium, cadmium, silver and gold. Similarly 

a listing of non-metallic elements would include a large number of adhesives, 

polymers and fibre reinforced composites. 

Materials form only a small proportion of the total cost of an 

airliner: a five-fold increase in the material costs of a Boeing 747, for 

instance, would increase the total cost of the aircraft by only 16% (Moore, 

Ref. 232 ). The choice of materials will therefore be influenced more by 

the technical properties of materials than by price considerations. Greater 

use of titanium and glass reinforced plastic (G. R. P.) and other composit-es 

at the expense of aluminium and steel may be expected in future. 

In terms of rr.aterials consumption, aircraft ferm a tiny proportion 

of U.K. demand- in 1977 we produced only 261 aircraft in all, compared 

with 500 in 1969. In recent years, aircraft manufacture has taken between 

0.2 and 0.3% of UK steel consumption. America of course is by far the largest 

aircraft producer in the Western World - but it still comes as something of a 

surprise to find that aircraft account for a larger tonnage of all metals 

consumption than shipbuilding. (Table 64 ) ~ 
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TABLE 71 : THE COMPOSITION OF VARIOUS AIRCRAFT 

MATERIAL 

Aluminium Based Alloys 

Steels 

Nickel Base Alloys 

Magnesium Alloys 

Titanium Alloys 

Copper 

Copper Alloys 

B.A.C. 1-11 

APPROXIMATE WEIGHT 
TONNES 

38 

17 

1 

0.8 

0.3 

1. 3 

0.2 

% OF AIRCRAFT 
WEIGHT 

54-56 

25-27 

1.0-1. 5 

1.0-1. 5 

0.1-0.5 

1.5-2. 5 

0.1-0.4 

NOTE: Figures refer to materials bought for the aircraft, and include that 
left on the floor as swarf. 

SOURCE: Sir George Edwards, Ref. 233. 

CONCORDE 

MArrERIAL 

Aluminium Alloy 

Steels (Undercarriage) 

Titanium Alloys (Engine. Nacelles) 

Nickel Alloys, Plastics, Glass & Other 
Materials 

%OF AIRCRAFT WEIGHT 

71 

16 

4 

9 

NOTE: The aluminium alloy is known as RR 58, and contains 2% copper, 
1. 5% magnesium and 1% nickel. 

SOURCE: Street and Alexander, Ref.234 • 

% BYWEIGHT 
MATERIAL SUPERSONIC SUBSONIC 

light Alloy 

Steel 

Titanium 

Exotic (Inc. Engines) 

Copper 

Non-Metallic 

SOURCE: H. A. Goldsmith, Ref. 235 • 
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lv\ATERIALS USAGE IN SHIPBUILDING 

A wide variety of metals and other materials are consumed 

annually by the shipbuilding industry and in many courttries ·~including the 

U.K.) shipbuilding is second only to car manufacturing in its material needs~ 

Steel remains the dominant material and accounts for between 

about 60% and 9001<:, of total hull w·.~ight, depending on size and type of 

ship, as illustrated in Table 72 o Between 1967 and 1977 the U.K. completed 

an average of 1 o 16 million gross tons of ships annually, which required en 

estimated average of 659,000 tonnes of steel or about 4% of total U.K. 

steel consumption and about 19% of steel consumption by the Transport 

Industries (Ref. 236), . During the same period, the Japanese 

Shipbuilding Industry annually completed an average 10.5 million gross tons 

{almost half the total world tonnage and consumed an annual average 

of 4.1 million tonnes of steel (Ref.237) .. 

In order to estimate the annual world demand for steel by ship

building, a circuitous ~ethod has been employ-3d. This. appronch 

which involves calculating the weight of steel in. an average ship, suggests 

that shipbuilding consumed 13.5 million tonnes of steel in 1973, representing 

about 2% of world raw steel output. This approach may underestimate ship

building's actual needs since no account is taken .of the steel used in repair 

o.- the steel that ends up on the shipyard "floor" as scrap. This may account 

forbetween 8% and 10% of the invoiced steelweight (Ref. 238 ), but with 

the introduction of computer-controlled cutting, scrap may be reduced to 

perhaps 2% of the total. 

Between 1% and 2% of the world's gross tonna3e is broken up 

annually, representing about 2. 5 mill ion tonnes of ferrous scrap (Ref.239 ) 

whilst only a small fraction of the world's merchant marine is "totally lost" 

each year (0.32% of gross tonnage in 1973, or about 0.4 million tonnes of 

·steel). If allowance is made for the steel recycled, the net demand for steel 

by shipbuilding was thus reduced to about 11.0 million tonnes in 1973. 
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Whilst the quantity of steel demanded by shipbuilding mc1y b~ 

estimated relatively·easily, if somewhat indirectly, from published statistics 

it is virtually impossible to estimate the amount of other materials used by 

the industry. Certahly, shipbuilding takes a significant proportion of the 

world's ou~put of copper cable and tubing for electrical and piping applications, 

but since non-ferrous metal statistics are regarded as commercial secrets and 

secondly are not compiled by end user, no meaningful figures are available. 

The only estimate found by the present author suggested that (in 

1968) "ships, aircraft, railways and tractors" consumed about 3.7% of U.K. 

copper and brass output (Ref. 240) and about 5.6% of UK aluminium demand. 
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TABLE 72 THE WEIGHT OF MATERIALS IN VARIOUS SHIPS 

Steel Wood & Hull Steel As 
L. B. p. Breadth Depth Weight Outfit Weight %of Hull 

Ship Type Ft. {MLD) Ft. (MLD) Ft. Tons Tons Tons Wc3ight 

Tug 120 31 14.5 210 90 300 70% 

Coaster 160 23.5 13.0 205 102 307 67% 

Trawler 170 30 15.5 380 190 570 67% 

Passenger 260 46 25 990 620 1610 61% 

Cross Channel 330 50 18.5 1075 685 1750 61% 

Cargo P.R.F. 430 56 32 2540 630 3170 80% 

Cargo She Iter-Deck 425 58 38 2480 600 3080 81% 

Passenger & Refrigerated Cargo 530 70.5 43 5960 3240 9200 65% 

Passenger & Cargo 450 66.0 36 4100 1790 5890 70% 

Oil Tanker 610 81.0 45. 6550 1600 8150 80% 

Oil Tanker 680 93.0 48 8550 1360 9910 86% 

Passenger 660 93.0 46 11400 7200 18600 61% 

SOURCE : R. Munro-Smith, "Merchant Ship Design 11
• Hutchinson, 1967, page 4 L (Ref. 238 ). 

NOTE 1 : In addition to the weight of steel in the hull, a varying amount of steel is included in the 11 wood and outfit 11
• The 

proportion of steel in 11 wood and outfit 11 may account for perhaps 75% for a tanker and 50% for a passenger ship. 
(Very rough estimates only). 

2 : The engines are excluded from hull weight; PRF =Partly refrigerated, LBP = Length between perpendiculars, 
MLD =Moulded. 
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TABLE 73 STEEL CONSUMPTION BY SHIPBUILDING, 1967-73 

WORLD 
GROSS TONNAGE EST. 

COMPLETED STEELWEIGHT 
'000 '000 tonnes 
(a) (o) 

6195 

7658 

10382 

13462 

64736 

9248 

U.K. 
G. T. COMPLETED 

'000 
(a) 

1188 

828 

1233 

1067 

7887 

1127 

STEEL 
CONSUMPTION 
•oao Tonnes 

(c) 

594 

681 

693 

645 

4616 

659o4 

SOURCES AND NOTES: a. Gross tonnages from Lloyds Register of Shipping, Statistical 
Tables 1974. (Ref. 241 ). 

b. Steel weight calculated by ci:rcuitous me'thod .. · ·. I .. . . , :"'. 

c. U.K. steel consumption extracted from Iron and Steel 
Statistics Bureau, annual statistics for 1968 and 1973. (Ref.236 ). 

d. Japanese steel consumption from "Iron and Steel Statistical 
Report", Japanese Iron and Steel Federation, March 1975. 
(Ref.237). 

JAPAN l 
G. T. COMPLETED STEEL I 

CONSUMPTION 

1

. 
'000 '000 Tonnes 

(d) ! 
7217 3424 

9168 3772 

11132 4097 

14751 5237 

73575 28759 

10511 4108 

I 

I 

I 
I 
I 
I 
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.INFRASTRUCTURE AND ANCILLARY EQUIPMENT 

Because of the virtually insurmountable problems involved in 

'estimating the material usage and needs of all transport infrastructure and 

ancillary equipment, we have discussed only roads in any detail. Generally,· 

however, infrastructure materials are either abundant and "lowgrade 11 (e. g., 

aggregates, cement) or easily substitutable. Steel rails are an exception, 

demanding high grade steel at busy junctions - some 10m tons of steel are 

contained in the British Rail Network (Ref.234 ), but the annual demand 

from this-sector must be very small. 

ROADS 

A bc.sic requirement of a road is that it should provide a uniform,· 

skid-resistant surface which has a longlife and needs little maintenance. The 

materials used in providing this surface vary with soils, climate and volume 

and type of traffic. 

Road pavements may be either flexible or rigid (the former pre

dominating in Britain) and are composed of several layers of material of 

differing quality; the strongest material being placed uppermost and forming 

the actual running surface. This layer may be subdivided into a waoring 

course and ::1 base course, whilst the other layers are termed the base and sub

base. (The sub-base is often omitted and in certain circumstances the base 

may also be omitted). 

Typical examples of flexible and rigid construcHon are shown below: 

8" (20.3cm) 
pre-mixed water-
bound macadam 
base. 

(15. 2cm} shale 
sub-base 

I 

FLEXIBLE PAVEMENT 

4" (lOcm) surfacing comprising 
1! 11 (3.8cm) hot rolled asphalt 
wearing course. 
2! :• ( 6. 4cm) close- textured bitumen 

macadam base course. 
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8" (20.3cm) 
concrete si ab 
surfacing 

3" f7. 6cm) crushed stone 
base 

RIGID PAVEMENT 



The materials used in the sub-base should be frost resistant, free 

draining and structurally stable. Crushed rock, crushed concrete, crushed 

slag or well-burned non-plastic shales are preferred in this country to the 

less stable (in wet conditions) natural sands, gravels and rock or slag fines. 

The large quantities peeded, especially on poor subgra:les, require a local 

source and {except in urban areas and areas ccvered by strict. planning 

legislation) the supply of natural aggregates presents few problems. 

Base materials for main road construction include crushed stone 

or blast-furnace slag, dry lean concrete, cement-bound granular material 

and bituminous-bound materials, whilst for secondary roads a less strong 

material such_as stabilized soil or stabilized P. F. A. can be used, normally 

without a sub-base. The material selected will depend on desired properties, 

cost and availability. Cost varies with location, of course, but generally 

hot-rolled asphalt base is the most expensive material, followed by bitumen 

macadam basa (reflecting their relative scarcity). 

A wide range of bituminous surfacing material exist, though all 

are similar in that each consists of particles of o~mregate (crushed natural 

rock, slag, gravel or sand) bound together by bitumen or tar. The difference 

lies chiefly in the type, viscosity and proportion of binder used, the 

mc:iximum size, grading and type of the aggregate, a.1d the presence o~ 

absence of a filler material such as limestone dust or Portland cement. 

Surfacing on lightly,;.trafficked roa:ls may be laid as a single course 

up to 2!11 thickness, but for main roads a 11wearing 11 course of stronger, denser 

material overlies a 11 base course 11 (distinct from the 11 road base 11
). 

Hot-rolled asphalt is generally accepted as the best surfacing 

material with an average life of 20 years or so in heavy traffic conditions 

before any treatment is needed. lt is composed of graded aggregate 

(crushed rock, slag, gravel or sand) in a bitumen binder. A higher proportion 

of aggregate is us~d in the base course than in the surface. The binder is 

frequently a mixture of equal proportions by weight of bitumen and refined 

lake asphalt, s.ince lake asphalt weathers to give a better skid resistance. 
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For some specialised purposes, such as in rubberised mastic 

asphalt for bridge deck sJrfacing, natural or synthetic rubber is added to 

the binder to improve cohesion strength and elasticity. The cost {an addition 

of rubber of 3% can increase the cost of the binder by 50%) is prohibitive 

for widespread useo 

Rigid, or concrete, pavements, are less common than bituminous 

surfaces, probably through a combination of higher initial cost and less 

satisfactory riding qualities. · The concrete pavement generally has a "longer 

·1 ife, can be bitumen coated when the surface becomes damaged and can be 

laid directly on to sub-base materials. 

An analysis of some 1969 rood construction contracts (Refo 242), 

showed that for on I y 4 of the 60 roads examined was it proposed to use 

paving-quality concrete for the primary roads carriageway. 

An idea of the relative proportions of material used in the sub

base, base and surfacing layers of roads can be gained from Table 74 , taken 

from TRRL LR513. (Ref. 242 ). 

TABLE 74: AMOUNTS OF MATERIAL USED IN CARRIAGEWAY 

CONSTRUCTION · 

SUB-BASE 

BASE 

SURFACING 

TOTAL 

Avo Amount Per Mile (Per km) of Primary 
Road in yd3 (m3) 

21,553 49% 
(10, 240) 

15,949 36% 
(7,577) 

6,624 15% 
(3, 147) 

44, 126 liDO% 
(20, 964 

SOURCE: T.R.R.L. Report L.R. 513 (Ref.242 ). 
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.The sub-b~se in 56 of the 60 cases examined was granular 

material: the exceptions being I ean concrete (2), soil cement (1) and 

. 
11 cement stabilized quarry waste" (1 ). The overall average thickness was 

about 10 ins. (255mm). 

The base types specified for the primary roads were as follows: 

No. of Cases % of Primary Road Length 

Lean Concrete 26 58o 1 

Coated Macadam 21 26o6 

Paving Quality ) 

Concrete ) 
4 7.1 

Wetrr.ix 4 2o2 

Dry Stone 3 1. 0 

Rolled Asp ha It 2 5.0 

The wearing course of the surfacing was rolled asphalt on all 

roads except 3 of the single-carriageway roads where it was coated macadam. 

The base course of the surfacing was often not itemised s~parately but it may 

be assumed to be rolled asphalt except where laid over a dense coated 

macadam base when it is likely to be also dense coated macadam. Thiswill 

also be generally the case on lean, concrete bases which require a 3 inch 

(75mm) covering layer of bituminous material (in addition to the surfacing) 

which is commonly dense coated macadam. 

Estimates of the quantities of bituminous mixtures required for 
. . 

roadworks are shown in Table 75 o lt is not surprising that main-

tenance and minor improvements to existing roads rather than new construCtion 

consume by fa;- the greatest portion of the total demand. 
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TABLE 75: ESTIMATES OF THE QUANTITIES OF BITUMINOUS MIXTURES 

REQUIRED FOR VARIOUS CLASSES OF ROADWORKS 

(MILLION TONS PER ANNUM) 

New Construction & Maintenance & 
1968 Major Improvements Minor Improvements 

Motorways, Trunk & 
3.5 (3.7m. tonnes) 11 (11. 7m. tonnes) 

Classified Roads 

Unclassified Roads 1 (1. 1 m tonnes) 5! (5. 9m tonnes) 

4.5 (4.8m. tonnes) 16.5 (17.6m. 

SOURCE : T. R. R. L. LR 185, "The Demand for Road Aggregates." 

A. Plea;e and D. C. Pike, (Ref. 243). 

ESTIMATES BASED ON THE FOLLOWING ASSUMPTIONS: 

1. 90% of new major roads and ·50% of new unclassified 

roads are surfaced with bituminous mixtures. 

tonnes) 

2. Tonnages for new construction and major improvements 

calculated on the following bases: 

1. Thi.ckness of bituminous mixtures: 

a. Major roads 7" 

b. Unclassified 3!" 

(17. 8cm) 

( 8. 9cm) 

A study conducted by the Building Research Establishf!lent (Ref.245 ) 

estimated that some 59m tonnes of natural aggregates were used in 1968: 

the breakdown by use is given in Table 

A mile of motorway consumes about 100,000 tonnes of a.:~gregate, 

equal to 4 acres of average grave!-bedring land in South East England. With 

a,;gregate demand growing at 7% per year and 2000 acres being worked out 

annually in the South-East, available sites "in the pipe! ine" are not currently 

keeping pa:::e - despite the South-East pla:1ning authorities attempts to make 
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TABLE 76 : NATURAL AGGREGATES USED IN ROAD CONSTRUCTION 

DURING 1968 

ROAD LAYER QUANTITIES IN MILLION TONNES USED IN: TOTAL IN 

MAJOR ROADS OTHER ROADS MAINTENANCE ROAD LAYER 

SURFACING 3 3 18 

ROAD BASE 6 4 6 

SUB-BASE 9 7 -
IMPORTED 
GRANULAR 3 - -
FILL 

TOTAL 21 14 24 

SOURCE: LR 647 quoting report of Aggregates and Waste Materials Working 

Group, D. of E. B. R. E. Current Paper CP 31/73 (Ref.245 ). 

further sites "available, the area will increase its imports of sand, gravel 

and crushed stoneo AI though transport costs for a~gregates d::>ubl e about 

every 20 miles, British Rail think H may be feasible to ship China clay 

sand waste to London from Cornwall (Refo 245 )o 

Eerie (Refo 244) states that about 24 million tons of natural 

roadstone and some 5 million tons of slag were consumed in flexible roads 

in 1970, apart from the uncoated sub-base in new construction or improvements 

which including slag, approached 20 m tons. 
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APPENDIX 2 

CONSTRUCTIONAL RAW MATERIAL RESOURCES 

AND CONSUMPTION 

Few~ if any~ of the materials ~ith important transport applications 

are in danger of physical exhaustion within fifty years. Several 

however are concentrated in areas of political instability or in 

countries hostile to Britain. In this section ~e discuss the 

possible availability problems of such materials. 
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!'ppendix 2 

CONSTRUCTIONAL R.A.W MATERIAL RESOURCES AND 

CONSUMPTION 

Raw materials may be conveniently divided into two classes : 

those which are renewable and those which are noto The first group includes 

materials produced from crops and animals, such as timber, natyral rubber, 

cotton and wool textiles, whilst the second group includes metals, minerals 

and oil-based plastics and rubberso 

The present section is chiefly concerned with assessing the future 

availability of constructional, non-renewable materials, particularly metals. 

Road building materials are generally abundant (although may locally be 

in short supply) and are therefore not discussed. Plastics are of course 

derived from oil and coal, and their supply is therefore linked to those 

energy sources discussed elsewhere in this thesis. Synthetic rubber is a 

similar case, whereas natural rubber, being renewable presents no problems 

of physical exhaustion (although its supply is concentrated in few hands 

and open to political action). 

Physical Availability 

Many minerals are present in the earth's crust in such vast amounts 

that they may be considered to be infinite in terms of human needs. There 

are an estimated 12000 x 10
13 

tonnes of aluminium and 7000 x lo
12

tonnes 

of iron in the outer 3o 5 km of the earth's crust, for instance, but only a 

small proportion of these quantities are recoverable. (Column 3, Table 77 .). 

Most metals, with the exception of lead, and zinc, show a regular decline 

in grade, from riCh through lean ores to "average rock", as illustrated 

in Figure 24 • Above a certain grade - say "a" in the figure, the resource 

will be economically and technically recoverable, and may be classed as 

a reserve.(The minimum exploitable grades of common metals are shown in 

Column 4 of Table 71 ). Below "a" but above "b" lie the resources that 

may, at some time, become profitable to mine, whilst below "b', the energy 

and environmental cost of recovery may be so great that future extraction 

is precludedo The relationships between raw materials and energy are explored 
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TABLE 77: INDUSTRIAL RAW MATERIALS WITH IMPORTANT TRANSPORT APPLICATIONS: RESOURCES, DEMAND AND 

LIFE SPAN 

1 2 3 4 

Quantity 
In outer Min. 
3.5km. Grade 
of Con- Workable 
tinental at 

%in CnJst present 
Average 1013 % 

Resource Rock tonnes 
' 

Aluminium 8.05 12000 30 

Asbestos 

Chromium 0.01 

Copper 0.0047 7 0.5 

Iron 4.65 7000 25 

Lead 0.0016 2.4 2.0 

Manganese 

Nickel 0.0058 8.7 1. 0 

Tin 

Zinc 0.0083 13 2.5 

Sources : Columns 2, 3, and 5 : S.l'r. K. Dunham, Ref. 246.., 
Column 4 F. Roberts, · Rcf. 247. 

Colu~ms 6-9 OECIJ OL~er·.:cr, Re .• 250 • 

5 6 7 8 

%of Resources Reserves 
Col.3 1975/76 1975/76 
in Solid 
Deposit Ratio of 
of min. Reserves to 
Workable 1975 Demand 
Grade metal conte[l 

· metnc 
in million onnes - in Years 

23 5,700 3,483 200 

249.4 145.1 35 

1,049 523.2 200 

0.4 1,500 408.2 62 

25 195,000 90,500 177 

4.0 300 150.0 49 

3,265 1,814 197 

1. 5 129.7 55.3 77 

37.0 10.2 44 

4.0 245 135.0 41 I . , 

-

9 
' 

Ratio of 
Reserves to 
Cumulative 
Demand 1974/2000 

-----·--1 
4.0 

0.9 

5.7 

1.3 

4.5 

1.2 

4.9 

2. 1 

1. 3 

1 • 1 



more fully in the section "Row Materials and Energy". 

Meadows (Ref. 249) in the now famous "Club of Rome' study 

of resoL•rces drew attention to the threats of physical exhaustion and their 

high enviionmental and energy costs. later studies - such as that produced 

by the OECD 'lnterfutures' project (Ref. 2.5(} ) discredited many of 

Meadow's assumptions and results, ~but the warning he gave was timely 

in forcing the world to 'take stock' of its mineral wealth. 

FIGURE 24 : AN ILLUSTRATION OF GRADE AND QUANTITY OF 

A HYPOTHETICAL MINERAL· 

GRADE OF 

MATERIAL 

a 

b 

I 
I ,----
X y 

QUANTITY OF MATERIAL 
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Resources and reserves are 1'floating figures" not only because of 

increasing knowledge about the composition and structure of the earth's 

crust but also because of the economic dimension of what is to be regarded 

as resources and reserves. If they are defined as the absolute quantities 

available (in metric tons of metal content, for instance), their amount is 

dependent also on the development of metal prices, on extraction, 

processing and transportation costs with given technologies and on relevant 

technological changes. If, on the other hand, they are defined in relative 

terms {such as foreseeable lifespans), the development of demand at given 

prices, the direct price elasticity, the development of relative prices and 

the elasticities of substitution have also to be taken into account. 

Bearing in mind these relationships, there is no doubt that the · 

statistical data given in Table 77 have to be looked at and interpreted very 

~arefully. 

Although these data are relatively reliable in the light of present 

knowledge, some of them need additional comments regarding the bandwidth 

of existing estimates. Most important in this context is the fact that not all 

the resource data presented in the tables include seabed deposits. ·Manganese in 

ocean floor nodules is reported to be more than 36,425 mill ion tons; the 

resources of nickel in the sea bed are estimated to be 1, 305 mill ion tons, 

those of molybdenum 78 mill ion tons and those of vanadium 107 mill ion tens. 

In all these cases .the increase in resources is far more than 150 per cent or 

even virtually unlimited as is the case for instance, with cobalt. Other 

minerals for which resource estimates are considerably increased if ocean 

floor nodules are taken into consideration are titanium, aluminium, lead, 

copper, and to a smaller extent zinc, iron and chromium. 

In the case of lead and zinc, one might add that "subeconomic" and 

undiscovered resources are not included in the above Figures. If already 

identified .but extreme~y subeconomic deposits such as the Kupferschiefer 
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in Germany and Poland are taken in~o account as well as some speculative, 

undiscovered deposits in areas of the world where rich deposits have yet 

been found, total resources of lead may be as high as 1. 5 bill ion tons. And 

if one does the same for zinc, the corresponding total would exceed 5, 000 

million tons which is more than 20 times the resource estimate normally used 

so far. (Ref.250 ). 

Not only the resource figures but also the reserve figures are based 

on average or even conservative assumptions. The data available for copper 

reserves range from 390 to almost 460 mill ion tons. The reserve figures for 

lead are between 130 and 173 mill ion tons. Data for zinc indiCate the 

reserves at 159, 185 or even 274 million tons .. · The estimates for aluminium, 

chromium and manganese also seem to be comparatively low. The figures for 

titanium, tantalum and asbestos are to be regarded as less conservative than 

other estimates. 

In any case, the conclusion to be drawn from the table is that, 

including ocean nodules there are only a very few materials for which the 

ratio between resources and reserves is less than 300 per cent; in many cases 

it is far higher. For most of them, the amount of potential reserves already 

identified indicates that current reserves will rise greatly.with the certain 

increase in metal prices and/or stepping up of technological progress. But 

even for those materials with a comparatively small margin between resources 

and reserves, the future development of the latter is not necessarily critical. 

On the one hand there might be successful prospection in the future, and on 

the other hand economic factors - of whi eh the development of demand is 

not the least - are of great importance. One of the best examples of this is 

aluminium. Here the ratio between reserves and consumption is so great 

that there is no strong incentive to intensify prospection today. 

Even if one admig that there was a boom in prospection and exploration 

in the Sixties, which may not be representative for the future, it is interesting 
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to look at the development of reserves over the last 10 to 25 years. In 

needy all cases where data are available {such as copper, lead, tin, 

zinc, bauxite and chromium), there have been considerable increases 

in recent years. And it should be particularly emphasised that these 

were the years of the highest raw material consumption in history. 

It would be interesting to know what part of the increase in reserves 

can be attributed to the discovery of new reserves, to price increases 

and to the development of new technologies in the field of mining, 

extraction, processing and transportation. But the available data do not 

answer this question. It is practically impossible even to estimate the 

price/tonnage elasticity of ore reserves with accepted econometric 

techniques. The time log between the decision to develop and the bringing 

of new capacity into operation differs greatly from project to project. More

over, the investment decision is normally based on a projected return and 

thus has only an indirect relationship to the price prevailing at the time of 
: 

the decision or to the actual price in effect when the new capacity comes 

cm stream. 

Reserves and Consumption 

Resources, and reserves, however, are only one side of the coin, 

and it may be argued that information about reserves without reference to 

consumption is somewhat irrel event. 

The assumptions made about future consumption levels will clearly 

affect the expected "lifetime .. of resources and influence the approach 

token by government towards policy making. Of the tools available for 

predicting future material consumption, consumption per capita has been 

dismissed as 11
0 purely descriptive variable 11 (Malenboum, Ref. 251 ), but it 

may nevertheless be useful for international comparisons. More useful is 

the relationship between income and row material consumption. Since the 

demand for materials is derived from the demand for the products in which 
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the materials are used, changes in demand for materials will thus be closely 

associated with changes in national product. Kay and Mirle's (Ref.252) 

have shown that between 1950 and 1969 U.K. Gross Domestic Product 

(G. D. P.) grew at about 3. 5% per year and that consumption of ten 

selected resources grew more slowly, at about 2. 20/o per year. Similarly, 

U. S. G. D. P. grew at 5. 3% per year and production at only 3.8% but in 

contrast, in West Ger.many, consumption of resources increased more 

quickly than did G.D.P., at 15.3% and 12.4% per year respectively. 

The "iht~nsity" of r~so~rce ~se- i.e., the. resource con~umption per 

unit of income, may weaken in future in response to many factors, 

such as the substitution of inputs, especially as a result of technological 

changes in producing and using different materials and changes in the 

relative prices of materials. A major influence will also be changes in 

~he structure of economies,· the observed trend t~wards service industries, 

for instance, would reduce the intensity of raw material usage in this and 

other developed countries. 

Whereas the relationship of materials consumption with income is 

(or has been) relatively straightforward, the rei ationship between materials 

consumption and the price of all materials is not, a consequence of the 
. ~ -

derived nature of materials demand. Malenbaum (Ref. 251) suggests that 

for total energy in the United States, long-term price elasticity may be 

about - 0. 25, ie., an increase of 50 per cent in the price of energy over 

a decade or so might be accompanied by a 12.5 per cent decline in energy 

use. There may be a similarity between energy and materials in their price 

responsiveness, even though a larger proportion of energy is consumed by 

non-industrial users, in contrast to materials. If this is so, large price 

increases for materials in future may substantially reduce the growth of 

total materials consumption. In addition, the cross-elasticities of demand -

i.e., the extent to which a price change in one product induces a demand 

change in another- may be quite high for materials like copper with clear 
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substitutes in some opplicationso (Landsberg, Ref. 253). These factors, 

taken together with the weakening in the income intensity of materials 

demand suggested above, may reduce the growth rates of al_l materials. 

Using projections of future economic development, it is also 

possible to derive estimates of future mineral consumption. These 

consumption figures give a dynamic impression of the lifespan of the 

different materials. A comparison between the given reserves and the 

~xpected cumulative demand up to the year 2000 (see last column of Table-

77) is highly interesting in this context. 

Even taking into consideration the uncertainty of these 11 floating 11 

figures on resources, reserves,lifespans and future demand, the 0 ECD study {Ref. 250) 

concludes that there is.n~ general problem of physical scarcity of minerals for 

the future. According to current knowledge, the situation is more critical 

for asbestos than for copper, lead, tin and zinc. And it may be added 

that for iron, aluminium, titanium, chromium and manganese, as to physical 

availability in a world-wide context, there are really no foreseeable 

problems at all. 

Asbestos presents more difficult problems : there are no substitutes 

available so far in many applications, particularly for friction materials 

used in vehicles and other transportation equipment. Technological 

advances in production of competitive synthetic asbestos would therefore 

be most important before the end of the century. 

There will be a transition process in which the relative price of 

the raw material will increase and substitutes will be sought where possible. 

Thus its use for non-essential purposes will cease first and this will stretch 

the material over a longer period for the essential uses. 
; . 

fn conclusion, it maybe argued th~t with regard to the physical 

availability of minerals for uses other than energy there really is no universal 
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or absolute scarcity. If the economic and technical transition process 

is not disturbed by sudden, unforeseeable breaks, there may be some 

specific difficulties but no insurmountable or traumatic problems. Thus, the 

serious concern so often expressed about the exhaustion of resources, which 

is based on the undeniable but too general and far-reaching assumption that 

our world is limited, is not relevant to policy decision-making within 

reasonable time-horizons. 

The Regional Distribution of Reserves 

Much more important than the question of worldwide scarcity of re

sources is the regional distribution of the reserves. In most cases the countries 

. in which there are reserves are not those which are the centres of consumption, 

and in some cases there is also a very high regional concentration of reserves. 

Therefore the question of access to the raw materials could be of much more 

importance than the overall physical availability. This is true for most minerals 

for this country and the EEC.. 

Table 78 presents information upon the Geographical distribution 

of major raw materials, from which it can be seen that as a rough description 

of the regional distribution of the reserves of the raw materials covered, 

just about 40 per cent of them are held by the industrialised countries, 30 

per cent by the Eastern countries and another 30 per cent by developing 

countries. More than 80 per cent of the reserves to be found in the industrialised 

countries are in the U. S., Canada, Australia and South Africa. The USSR 

possesses more than 80 per cent of the reserves of the socialist countries. In 

the developing countries too the predominant share of the reserves is held 

by a very limited number of countries. Consequently, not only Western 

Europe and Japan, but also most of the East European countries and about 70 

per cent of all developing countries have only very limited reserves of minerals. 

An analysis of the regional concentration of the reserves of specific 

metals is even more informative. For three of the commodities (chromium, 

manganese and asbestos) more than three-quarters of the measured and 
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TABLE 78 INDUSTRIAL RAW MATERIALS WITH IMPORTANT TRANSPORT APPLICATIONS: GEOGRAPHICAL DISTRIBUTION 

Regional Distribution of Measured and Shore of 3 · Share of 5 
Indicated Reserves - 1974.Country and countries countries 
Percentage Share 1974 1974 

Aluminium Australia (26.0) Guinea (26.0) Brazil _(15.6) 
Jamaica (6.1) Greece (4.4) Comeroor:tJ3.?) 67.6 78.1 
Surinom (3. 4) 

·· .... -·-
Asbestos Canada (45. 2) USSR (24.8) S. Africa (6. 9) 

Austral io (3. 6) USA (3.0) 76.9 83.5 

Chromium S. Africa (73. 9) Rhodesia ( 19. 7) USSR (2. 9) 
Finland (1. 2) India (O. 5) Madagascar (0. 4) 

w -~ Philippines (0.4) Turkey (0.4) Brazil (0.3) 96.5 98.2 
• 

Copper USA (18.4) Chile (18.4) USSR (7.9) Canada (6.8) 
Peru (6.5) Zambia (6.3) Zaire (5.6) 44.7 58.0 

Iron USSR (31.1) Brazil (16.6) Canada (11".7) 
Australia (10.2) India (6.4) 59.4 76.0 

Lead . USA (35.6) Canada (11.5) USSR (10.9) 
Australia (10. 9) Mexico (3. 9) 58.0 71.9 

Manganese S. Africa (45.0) USSR (37.5) Australia (8.0) 
Gabon (5. O) Brazil (2. 2) 90.5 97.7 

Nickel New Caledonia (43.7) Canada (16.1) USSR (9.6) 
Australia (9. 2) Indonesia (8. 4) Cuba (5. 7) 69.4 87.0 

Tin Chi no (23. 6) Thailand ( 15. 0) Malaysia ( 12. 2) 
Bolivia (9.9) Indonesia (8.3) Brazil (6.0) 50.8 69.0 

Zinc Canada (22.8) USA (20. 1) Australia (12. 1) ' 

USSR (8. 1) Ireland (5.4) 55.0 68.5 

I Platinum S. Africa (71. 3) USSR (26. 7) Canadf'l ll. 8) I I I l!-• '0 r)C l .. r 2) 99.0 100.2 ~· . : : ·. \ • . C C L .i) I 0 _ ~! ~- _ 
Source OECD Observer Ref. ·250. 



indicated reserves are found in only three countries. And, except for 

copper, there ore no minerals among those covered for which the five-countries 

share is less than 65 per cent. 

An interesting exercise in this context is the identification of those 

minerals for which there is both a high regional concentration of reserves 

and an extremely high dependence of western industria_! countries on supplies 

either from Eastern countries, from developing countries or from South Africa. 

The most striking examples seem to be platinum, chromium, manganese and 

vanadium in which South Africa and the USSR predominate and columbium 

and titanium in which Brazil has a strong position. 

As far as the platinum-group metals are concerned, 98 per cent 

of the world reserves are found in only two countries - South Africa and the 

USSR. Moreover, each of these two countries specialises in one of the two 

major metals of the group. South Africa produces more than two-thirds of 

all platinum and the USSR two-thirds of all palladiumo In most present uses 

- the automotive, chemical, eletrical and petroleum refining industries

substitution of other materials for platinum metals is theoretically possible. 

However, because of the high unit prices of the platinum metals, they are 

employed even now only when fully justified for technical and economic 

reasons. Thus, at least in the short-term, politically-caused interruptions 

to supply would be a problem for all OECD countries except Canada. 

More than 90 per cent of the reserves of chromium ore situated in 

only two countries - South Africa and Rhodesia. Chromium is mainly used 

for metallurgical, chemical and refractory purposes. As there is no known 

substitute for chromium in most metallurgical applications nor in certain 

chemical uses, chromium is a rather critical materal for almost all Industrial 

countries. 

Until the exploitation of seabed nodules is started on a large scale, 

manganese may also be regarded as a crucial material. Again South Africa 

and the USSR dominate the reserve position. Manganese is essential for the 

production of virtually all steels and in its main applications has no substitute. 
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United Kingdom and raw mate.rials 

Britain is in an exposed position with regard to many essential 

minerals. As may be seen from Table 79 } we import all our chromium, 

manganese, nickel, bauxite and zinc, and a high proportion of copper, 

iron and tin. Only lead of those I isted is more than 50 per cent home

produced. All of these materials have important transport applications. 

Preparatory work for a national minerals policy started some five_ 

years ago, in 1974- prompted perhaps by the Club of Rome Study (Ref .249). 

The recent economic recession has reduced consumption (and imports) of 

many materials and diminished the original urgency of the study, but some 

authorities (Ref. 254} claim that action is now needed to safeguard our 

mineral supplies. 

Assuming growth resources in the international economy, the 

possibility emerges of a shortage of supplies in the 198Q•s; because of 

a severe lack of investment in new mining capacity in recent years, as 

well the political instability of Southern Africa. 

To counter these shortages, several possible options are available 

nationally : 

Diversification of Sources of Supply 

Formation of a min~rals stockpile for a few key 

materials. 

Make the most of domestic resources (hence the 

recent National Enterprise Board1s involvement in 

titanium production) 

Recycling used materials 

Search for substitutes 

Reducing demand for particular materials by design 

changes. 
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British policy with regard to the first option may (Ref. 255) 

model itself on Germany's, namely to encourage mineral companies 

to expJore ne.w sources by means of official aids for exploration 

granted against an option to give priority to the domestic market. Stock

piling becomes less necessary. if suppliers are geographically so 

diversified that the loss of one source may be covered by the second. 

By these means, supplies may besafeguardedalbeit at a higher cost. 

The possible benefits of recycling, substitition o~ materials and 

design changes to reduce demand for materials is discussed at some length 

with reference to transport in the section 'Conservation of Materials'. 
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TABLE 79 ~NDUSTRIAL RAW MATERIALS WITH IMPORTANT TRANSPORT APPLICATIONS, U.K. CONSUMPTION, 

IMPORTS AND ESTIMATED USAGE BY TRANSPORT INDUSTRIES 

Consumption Imports as% of Approximate % used 

(tonnes} consumption by U. K. transport 
industries 

Aluminium 525,800 100 (as bauxite} '0 (1) 

Asbestos 125,000 100 20 t2} 

Chromium 35,600 100 10 (3) 

Copper 468,300 82 10 (4) 

Iron 11,590,000 89 20 (5} 

Lead 306,400 46 50-t{6} 

Manganese 'R5, 500 100 Less than 10 (7) 

Nickel '0,500 100 Less than· 10 (8) 

Tin 15,400 65 5-10 (9) 

Zinc 239,400 100 15-20 (10) 

Sources: British Foreign Policy to 1985, Non Fuel Minerals and Foreign Policy, Data Base; 
' ' 

Royal Institute of Economic Affairs (1977), (Ref.255 ). 
•, 

Usage estimates by transport as follows : 

(1} Metal Bulletin Handbook (Ref.2S6} • 
'; ~? 

(2} Asbestos Council {Ref. 257) 
(:;) Author's estimates. 

(4} Chapman, Ref.258 _;. 

(6) U. S. Bureau of Mines (Ref. 260) 

.(7) Author's estimate 

(8) Nickel Institute (~ef.J 261 );. '·, · 

{9) International Tin Council (Ref. 262} 
..... (5) Iron and Steel Statistics Bureau (Ref.259 }. 

(10) Zinc Development Association (Ret'.~63' ) 
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APPENDIX 3 

CONSERVATION OF MATERIALS 

· Conservation of materials is a worthwhile aim for two reasons. 

In the first place~ since all materials require energy at each 

stage of extraction~ processing and fabrication~ a reduction in 

the quantity consumed will reduce energy demand. Secondly~ 

although few materials are threatened by physical exhaustion 

within th~ fifty year time horizon selected~ some may be subject 

to· political manipulation. Lessening our dependence upon these 

will render us less vulnerable to such action. Here we explore 

the various ways by which conservation may be practised within 

transport systems • 
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Appendix 3 

CONSERVATION OF MATERIALS 

This section is intended to show how conservation methods may be 

applied to transport's demands for raw materials. The efficiency of 

materials usage may be generally improved in three major areas: 

1. Product design- particularly extending product 

life, designing for eventual recycling and 

reducing materials wastage; 

2. Recycling of the product; 

3. Substitution of one material for another. 

Each of the above approaches are discussed with reference to 

transport and with particular attention to the road transport sector. The 

cost/benefit .conclusions of the different methods are, however, applicable 

to other modes of transport. AI though a substantial reduction in the total 

consumption of materials in this country could be achieved within the 

transport industry, the efficiency of use is already quite high, and the 

greatest economies may be available outside the transport industry. (Any 

changes here would have some effect on total demand for transpoit). 

Transport systems make relatively heavy demands on a variety of 

materials in relatively short supply, such as copper and lead; these in 

particular require a conservation strategy. 

Product life Extension 

If the useful lifetime of any product is increased, then the demand 

for that product can be satisfied with a reduced outpuL The quantity of 

materials and manufacturing energy needed would be simlarly reduced. Thus, 

from the viewpoint of energy and material conservation, prod.uct I ife 

extension is a worthwhile end. 
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Within the transport sector, the usefui lifetime of all vehicles 

could certain! y be extended by different methods although in many cases 

an original cost of manufacture penalty would be incurred. The size of 

this penalty (which will vary from time to Jime} would of course determine 

whether such increased vehicle life would be viable for the user. 

Advantages of Long-life Vehicles 

Considerable savings in both raw materials and manufacturing 

energy are possible by the adoption of vehicles with longer service lives. 

The actual savings would, of course, depend upon the material composition 

of these vehicles and upon their market penetration. To illustrate the 

savings possible, suppose that, as an extreme example, the present useful 
I~ • 

lifetime of the "average" goods vehicle (described in Tobie 68) were 

doubled, with no change in its material composition, then the demand for 

replacement vehicles would be halved. If this happened, then the demand 

for raw materials and monufacturing energy would also be nearly halved. 

Berry and others (Ref.264) have estimated that the manufacture 

of a U. S. car requires about 37,000 kwht of energy. If car life were doubled, 

a~ energy penalty of 900-1000 kw\ would be incurred to make longer-lasting 

components, whilst to treble car lif~ would cost an extra 3,400 kwht for 

components. In addition, increasing vehicle life demands up to 1500 kwh 
. t 

extra energy for assembly. They calculate that, despite the increased energy 

cost ot manufacturing a longer life car, cons1derable energy savings (amounting 

to 23000 kwht per car} would result, since fewer cars would be needed. 

The Problems Associated with the Introduction of Long-life 

Vehicles 

The premises upon which the above example was based are clearly 

unrealistic. A number of problems of differing severity would have to be 

solved before long-life vehicles became possible. 
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If a vehicles lifetime is to be doubled then the problems of 

corrosion, material fatigue and friction wear need solution. Of these, 

corrosion may be the most serious in light vans, etc. 

Current corrosion protection methods, which involve a combination 

of spraying and immersion of the finished body in a phqsphate coating solution 

followed by electrophoretic coverage with a water based paint, are inadequate 

f~r a Ion~ life van. Corrosion inhibitors, discussed by Bishop and Hutchins 

(Ref. 265 ) depend upon.regular treatment for their efficiency and are 

unlikely to extend. vehicle life to 20 years. 

Alternatives to the above methods include the use of stainless steel~ 

aluminium or steel coated with protective finishes. 

Stainless steel, first used in car bodies in the U. S.A. in 1936, has 

the advantage of high tensile strength and is relatively easy to recycle. Its 

disadvantages include high price (due to the alloying elements of nickel and 

chrome) and deep drawing problems (Weighell, Ref.266). He estimates that 
- • * 

a stainless steel bodied vehicle would be 500k more expensive than one with 

conventional body, whilst Schaefer suggests that the material cost of stainless 

steel would be five times that of normal steel sheet. ~-~..e: ;2.67). 

Glass reinforced plastics (G.·R. P.) have been extensively used 

in low volume production veh~~les for many years. At first a mixed construction 

of steel load bearing members and G. R. P. bodywork was necessary, but the 

use of completely self supporting G. R. P. bodywork with satisfactory impact 

resistance has been made possible by sandwiching a layer of hard poly-

urethane foam between two outer layers of G. R. P. This technique avoids 

the problems caused by the different coefficients of expansion of steel and 

G.R.P., but mass production of bodies is more expensive than for ste~l. 

(Schaefer, Ref. 267 ), suggests that for a mixed G. R. P. and steel body, 

materia.l costs would be about one third more expensive than for a conventional 

mild steel bed~ 
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Plastic coated laminates are increasing their market share for can 

bodies at the expense of aluminium, whilst glass reinforced plastic mouldings 

have been introduced by two U.K. truck manufacturers (Foclen and E. R. F.) 

for I orry cabs. 

If the proportion of van bodied vehicles increases at the expense of 

open vehicles (as past trends in this country and the U. S.A. suggest) then the 

demand for reinforced plastics and aluminium by goods vehicles will increase. 

The major drawback to the widespread introd·Jction of G.R.P. in vehicle 

bodies from a r"!sources view-point is the fact that oil and other hydrocarbon 

feedstocks are in short supply. In addition, recycling plastic bodies is not 

profitable at present and the resultant scrap could only be used for lesser 

purposes, such as filling. (Alternatively, scrap G.R.P. could be burned as a 

__ fuel - see recycling sectio~· 

Galvanizing is perhaps the best availablei protective treatment for 

steel sheet and is gaining acceptance for use in body areas subject to severe 

corrosion. This is particularly true in the U. S.A. where all automotive 

industries accounted for over a million tons (15.6%) of total U. S. consumption 

of galvanized steel in 1973 (Ref. ·224). General Motor's Cadillac Seville, 

for instance, is the largest user of zinc precoated steel body components in 

,._ the U. S. automotive industry (Wrigley, Ref. 268 ). Galvanizing cannot 

provide complete corrosion protection since welds and edges are not fully 

protected. In addition, the re-use of scrap is rendered more drfficul t (and 

hence more expensive) by the zince impurities. (This is also true of steel 

sheet coated with a lead-tin alloy and with plastic). 

Aluminium's I ightness, corrosion resistance and ease of recyd bg 

make it an attractive material for vehicle bodies, particularly vans, where 

its use is virtually ubiquitous. lt has however severe drawbacks for mass 

production. Spot welding and deep drawing chara:teristics tend to be poor 

and (to give a strength and rigidity similar to that of steel) the aluminium 

sheet has to be thicker, reducing possible weight gains. (In an experimental 
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-· 
all-aluminium car, using special alloys, Reynold Metal used she0t i .4 times. 

as thick as sheet steal, but the car still weighed ali-nost 40% less than an 

equivalent steel version (Refo 269 )o In addition, although aluminium offers 

weight (and hence, fuel) savings over steel, primary aluminium processing 
-:"'( 

needs about six times as much en~rgy per tonne as mild steal (see Table 85 )o 

On the other hand, the amount of energy ~eeded to process secondary (or 

scrap) aluminium is much closer to that for steel and so, as the proportion of 

secondary metal in the total stock increases, this disadvantage is reduced. 

The use of aluminium instead of mild steel has been estimated to 

nearly double the current material costs of a caro Schaefar 

estimates that when all costs are taken into account (materials, manufacturing, 

capital etco) then setting up production for 100,000 aluminium bodied cars 

would be about one third more expensive than for the equivalent mild steel 
I 

car. (Ref. 267). 

lt is probable that all the above materials will be employed in 

various long life designs, the actual choice depending upon the car type 

and relative material priceso 

Ideally, the components of a longlife vehicle should be so matched 

that premature failure of any part becomes a rarity. In practice this would 

be unrealistic since the average American vehicle and~robably European as 

well) contains about 15,000 parts which in turn have an average of 100 different 

characteristics. This implies that there are roughly 1.5 million possibilities 

for error in designing and producing a new vehicle. (Ref.224). <:;!early, while 

longer lasting components are desirable, a further requirement for a 20 year 

life car should be ease of maintenance and replacement of units such as the 

engine and gearbox. If this need was satisfied, then two disadvantages of a 

long life vehicle, from a resources viewpoint, could be more easily dealt with. 

Firstly, unless engines Nere either reconditioned or replaced during their 20 

year life, then the specific fuel consumption of cars might be expected to rise 

_ through increased engine wear. Secondly, whilst the typical I ife cycle, from 

conception to death, of a present d:::~y vehicle may be about 25 years (Ref. 266), 

for a long life vehicle it would be perhaps 35 years. Design improvemen~s would 

therefore ta1<e a correspondingly lengt~y time to implement; if body parts 

were more easily exchangeable (perha;:>s by exploying a bolted, rather than a 

welded structure) then bodies could be updated during their lifetime. 
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Substantial market pene~iation by a long life vehicles would have 

enormous consequences for the motor industry and the national economy. In 

addition to the large scale re-eqrJipping that new designs and production 

method3 would dictate, the number of jobs in· the industry would be severely 

reducedo Even after taking into account the fact that producing a long life 

van may be more labour intensive than producing a current model {diesel vso 

petrol engines, bolted vso welded construction, G. R. P. vs. m"ild steel, etc.), 

large seal e structural unemployment would be a possibility. No doubt increased 

demand for maintenance and reconditioning facilities would create additional 

jobs, especially if vehicle updating (replace wings, doors, facia, etco, with 

modern units) became establishedo 

lt is probable that unemployment is the most serious obstacle to the 

universal adoption of a long life. vehicles. 
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The advantages of a closed system approa:h to resources management, 

with recycling as the feedback loop, are widely occ~pted and include a 

reduction in the rate of exploitation of non··renewable resources, avoidance 

of pollution and a saving in the energy required to process materialso 

The substantial contribution made by scrap to the present consumption 

of various materials in the U.K., Europe and the U.S.A. is illustrated in 

Ta'Jies 80 -' a:1d 81 • However, the time log bstwee:1 manufacture of a 

product and its potential recycling may be many years, and since the 

consumption of the majority of materials has grown steadily, even the most 

efficient racycl ing would be insufficient to ~upply present needs. Chapman 

(Ref. 259 ) describes a model to predict total potential scrap and suggests 

that increasing the efficiency of recovery to 100% for aluminium and copper 

st;:rap would mean that 50% and 75% respectively of the metal's consumption 

could be met by second-::~ry production (Chapman, Ref o 258 ). 

The energy saved by using recycled :naterial in preference to primary 

material has been analysed (Chapman, Refs. 258, 270) and the subject is 

discussed in the section 11 Raw Materials a:1d Energy". The savings 

possible will depend upon the purity of the scrap and upon the process used, 

but may be very considerable. The energy needed to prod•Jce aluminium from 

scrap, for instance, is only 2-5% of that required to produce the metal from 

bauxite (see Table 85 ). 

Since recycled material is in competition with primary material, 

price and/or quality have to be favourable for recycling to be economico Scrap 

metal prices are generally lower than those for primary metals (Table 82 ) 
although closely I inked to current prices q·Joted on the London metal exchange 

(Ref.271 ). 

The nearer to the source of primary production that waste occurs, the 

greater is the change of reC'-'"ery since contamination will be less and costs 

lower; at every sta~e of production, distribution and consumption, there is a 

decline in the quality of the scrap and a rise in the costs of recovery. For this 
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TABLE 80: ~STIMA TES QF THE IMPORTANCE OF RECYCLED •'0.ATERIALS 

LN U ._K. CONSUMPTION 

I Material Estimates of present Estimated 
consumption supplied value£ m. 

I 
Cast Steel 

Cast Iron 

Wrought Iron 

Refined Pig Iron 

Copper 

Aluminium 

Lead 

Zinc 

Tin 

Iron and Steel 

by scrap(%} 

75 {a) 

50 {a) 

80 (a} 

60 (a} 

42 (b); 39 (c); 40 (d) 98 (c) 

39 (b); 33 (c)- 30 (d) 51 (c) 

60 (c); 65 {d) 20 (c) 

29 (c); 25 (d) 16 (c) 

18 (c) 5 (c) 

35 (c); 50 (d) 160 (c) 

NOTES & SOURCES: a) ' 11Scrap is a valuable raw material 11 I.Mech .E., 

C.M.E. July 1975. (Ref .271). 

b) Chapman, Ref. 270 , citing D. Pearson & M. Webb, 
Chem. Engineer, 1973 Feb., ~. -·<· '·'. 

c) Harrison, D.A. et al, Ref..225(1972 data). 

d) Robinson, A.J., Ref. 272 

TABLE 81: THE IMPORT/\NCE OF RECYCLED ALUMINIUM IN PRESENT 

CONSU/-llPTION IN VARIOUS COUNTRIES 

Country '000 Tonnes 
Recycled 

West Germany 260,000 

United Kingdom 200,000 

Japan 320,000 

U.S .A. 870,000 

Netherlands 27,000 

SOURCE : J.A. Over 11 Energy Conservation, Ways and Means 11 

Page 50. (Ref. 30 ) . . 
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TABLE 82 RELATIVE COSTS OF PRIMARY AND RECYCLED MATERIALS 

£ Per Ton 

Material Primary Secondary 

Steel l12 14 

Aluminium 270 200 

Copper 1000 600 

Zinc 650 250 

Lead 290 270 

SOURCE : Ref. 226. 

NOTE : The second·::~ry metal prices refer to car scrap, which is generally 

contarninated and thus of low quality. 

TABLE 83: EFFICIENCY WITH WHICH "OLD SCRAP" IS RECYCLED 

IN THE UNITED STATES 

_ . ..;. 

'000 Tonnes %of Old Scrap 
Material Recycled Recycled 

Aluminium 182.3 15 

Copper 595,9 40 

Lead 450.8 38 

Zinc 37.2 4 

Nickel 22.2 29 

Stainless Steel 143.8 76 

SOURCE :J.L. Pavoni, Ref. 274, quoting National Association of Recycling 

Industries, Inc. "A Study to identify opportunities for increased sol id 

waste utilization", prepared by Battelle Memorial Institute, Vols. 1-9 

New York. 

NOTES : Figures converted from short tons to metric tons. Pavoni refers to 
110ld Scrap" as non-in-house scrap. 
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reason scrap may be conveniently divided into three types: "circulation 

scrap11
; 

11 process s.:rap11 and 11 old scrap" (these t~rms are defined in 

Appendix i ) . In the case of 11 circulaticn scrap 11
, recovery is 

relatively straightforward, purity is assured and labour and transportation 

costs minimal. Efficiency of recovery may therefore approach 100% 

(Pavoni, Refo274 )o For the "process scrap11 stage, Chapman estimates that .. 
in this country about 84% of aluminium and copper "p.rocess scrap" is 

recovered and that in the Uo S.A. about 700k of aluminium and 85% of 

copper is recovered (Chapman, Refo 258 )o In comparison, the recovery 

efficiency for "old scrap11 is very much lower- estimated to be 50% for 

aluminium and 300/o for copper in Britain and 20% - 45% respectively in the 

U. S.A. (Chapman, Refo 258 ). Chapman (Ref. 270 ) suggests that for 

aluminium and copper both the efficiency of metal recovery from new and 

old scrap and the proportion of consumption met by secondary production 

has remained virtually constant over the last 30 years, despite great advances 

iri recovery techn iq'Jes. 

Pavoni (Ref. 274 ) quotes U. S. recovery efficiency levels for a 

variet·'.of non-ferrous metals (Table- 84 ). Although a great deal of zinc 
•J 

is lost in sacrificial corrosion (a dissipative use) in galvanized steel products, 

the quoted recovery efficie:;cy of only 4% may be an underestimate, since much 

zinc is recovered and re-used after being made into brasso Pavoni 

partly attributes the low recovery efficiency of aluminium (15%) to the 

metal's extensive use in disposable packaging, such as the aluminium 

beverage cano To counter this wastage the Reynolds Metals Company has 

recently opened can reclamation centres in all major urban areas. The project 

has been very successful, with the number of cans reclaimed steadily increasing. 

In 1970, 1800 tonnes (80 million cans) of aluminium were reclaimed, in 1971 

about 17,000 tonnes (12% of total cans manufactured) and in 1972, over 

25,000 tonnes, or 18% of all cans (Pavoni, Ref. 274 ). 

The British tin canning industry annually produces about 10,000 

million cans, 80% of which are not recycled after use, thus causing a 

considerable loss of metal. A new company has been formed to attempt to 
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TABLE 84: U. S. CONSUMPTION OF SELECTED RECYCLED MATERIALS 

I Material 

Aluminum 

Copper and Copper 
Base Alloys 

Ferrous 

.Lead 

Nickel and Nickel 
Base Alloys 

Zinc 

Paper 

Textiles 

Consumption of Recycled MatE;rial as 
Recycled Material %of Total 

( '000 Tonnes) Consumption 

958 23 

1352 46 

58957 49 

531 38 

38.2 29 

16.5 12 

10340 19 

1270 27 

SOURCE : J.L. Pavoni (Ref 274)quoting National Association of Recycling 

Industries Inc. "A Study to identify opportunities for increased 

solid waste utilization", prapared by Battelle Memorial 

Institute, Vols. 1-9, New York, N.Y. 1972 

.. : .. 
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recover this tin plate and separate the tin from the steel, an o;:>eration 

nor previously economic (Ref. 275). Not only is the tin currently lost, 

but its presence in steel scrap is a positive embarrassment, resulting in a 

brittle steel, whilst the lead solder seem on the side of the tin can may 

damage the refractory material on the bottom of the furnace (Pavoni, 

Ref. 274 ). 

Plastics, with a growth rate of about 11% a year in Britain 

{Ref. 278 ) have incre~sing automotive applications. The present recovery 

efficiency of only about 10% (Kiessling, Ref.276) clearly offers great 

scope for recycling improvements. Thermoplastic materials such as poly

ethylene, polypropylene, polystyrene and P. V. C. (which account for 

about 720/o of U.K. plastics), retain their potential plasticity after manufacture, 

and can be re-formed by the use of heat. The other class of plastics, the 

thermosetting plastics, are made from resins often combined with fillers 

and, because they undergo chemical changes during manufacture, they 

cannot be melted and reformed at present (although progress is being made 

into their re-use {Ref. 277 ) ). -lt is estimated tliat of the 1."5 

million tonnes of plastics used in Britain in 1971, abol!t 0.5 million tonnes 

were potentially recyclable. Because of the wide variety of polymers in 

use and the problems of contamination, the scope for the direct recycling 

{-see below ) ?f plastics is probably limited to a small proportion of this 

figure. Indirect recycling has a much wider potential since contaminated 

mixed plastics waste ca.1 be uti I ized by a growing number of processes. 

The bulk of plastics waste is currently burned since, although plastics 

comprise on I y 2-3% of domestic wastes at present, they promote the combustion 

of other solid wastes and are of use. This is expected to continue 

for the next ten years (Ref. 277 ). The energy content of plastics may be 

extremely high - polyethyfene and others have an energy value of about 

10,000 k. col/kg, similar to that of Naptha or a good quality fuel oil 

(N. E. D.O., Ref. 278 ). 
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Research into the pyrolysis of plastics is proceeding rapidly, 

particularly in Germany, where a pilot plant designed to break plastics 

waste down into its constituent hydrocarbons is planned (Ref.277 ), and 

in Jat>'Jn, where Mitsui Petrochemical ln~rJstries claim an oil yield of 

about 90% and :1 residual gas yield of about 5% of the weight of the 

plastics waste. 

Recycling of Vehicles 

At least 700,000 vehicles (and probably nearer 1 million) are 

discarded in Britain each year (Harrison et al, Ref. 225 and A.A., Ref.226).· 

This represents an annual recovery potential of 640, 000 tonnes of iron and 

steel, 8, 000 tonnes each of aluminium, copper, zinc and brass, and 500 

tonnes of nickel and tin (based on 1 million cars of the U.K. 1500/1600 cc 

saloon car in Table 66 • Eventually, nearly all these materials should be 

recycled via the reclamation industries, although one source estimates that 

about one quarter of all the vehicles -discarded each year never reaches a 

scrap ycrd (Ref.226 ). Mahoney (Ref.279) comments that "the junked car 

is the most recyclable and recycled of post consumer products, and may 

legitimately be classified as a renewable resource". 

A well established system for the dis-assembly of scrap vehicles 

already exists; 800/o of the radiators reaching scrap yards are recovered for 

their copper, together with 50% of wiring, dyn-:~mos and starter motors and 

almost 100% of battery lead (A.A., Ref. 226 ). The quality of scrap has 

improved with the introduction of plants that carry out fragmentation and 

shredding operations, rather than pressing and baling. At least five of the 

dozen or so U.K. plants have these facilities (Harrison, Ref. 225 ). Vehicle 

shells entering such plants are generally stripped of at least their radiators, 

tyres, petrol tanks and batteries and shredded and separated into two or 

three fractions : ferrous, non-ferrous and sometimes an "air" fraction. 

The ferrous portion of this scrap is relatively homogeneous and 

accounts for more than 95% of the ferrous materials present in the original 

vehicle. Small amounts of impurities may still be present and cause problems 
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during steel-making. The presence, for instance, of a small percentage of 

copper (O. 2 to 0. 3%) introduces a problem of ''hot shortness" in steel and 

decreased ducti I ity resulting in ~racking and the formation of surface defects. 

Specially designed shredders can reduce the copper content to about 0. 12<'/o 

(Mahoney, Ref •. 279 ). 

Other techniques are being developed to improve the quality of 

steel scrap from vehicles. These include the cryogenic method by which 

vehicle shells (and other scrap} are sprayed with liquid nitrogen before 

shredding to produce much smaller (less than 50mm) more manageable pieces 

of metal. This method is very expensive but the· British Steel Corporation is 

presently developing a new closed loop process for producing low temperatures 

using methane as a coolant, and this approach appears promising. (Finniston, 

Ref. 280 ). 

Harrison {Ref.225) describes various ne:vv reclamation techniques 

for non-ferrous metals that are being investigated by Warren Springs Laboratory, 

The U. S. Bureau of Mines and elsewhere. In this country the non-ferrous 

portion of most car scrap is still subjected to dumping after a simple hand

sorting operation to remove the larger pieces of non.;.ferrous metal. Mahoney 

{Ref.279 ) describes previous work that shows that this method recovers only 

28% of the zinc and aluminium and 14% of the copper present in the non

ferrous fraction. In the U. S.A. considerable advances have been made 

since 1970 in separating the non-ferrous metals. The Huron Val!ey Steel' 

Corporation (H. V. S. C.) has developed a number of processes by which more 

than 95% of non-ferrous metals contained in the fraction are recovered for 

re-use. As a result H. V. S. C. has become the world's largest single producer 

of secondary zinc and :~luminium; approximately 25,000 tonnes per year of 

each of these metals is being recovered. 

Plastics represent the most potentially valuable portion of the "air 

fraction"; as Table 66 shows, about 3-4% of the weight of typical vehicles 

and cans is made of plastics (see also Ref. 279 ). Since scrap vehicles, 
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unlike domestic wastes, represent a concentrated and relatively easily 

separable source of plastics, there is a good opportunity for recycling. 

Mahoney describes a hydrolysis process for the isolation of varous 

chemicals from polyurethane foams (which account for the bulk of auto

motive plastics). A. B. S. plastics may also be relatively easily recovered 

(by flotation) and have comparable physical properties to virgin material. 

In the future, greater emphasis should, and almost certainly will, 

be placed on designing and manufacturing products (including vehicles) with 

recycling in mind. The ideal product from' the recycling viewpoint would 

be materially homogeneous and easily separable into individual components. 

Present trends may be running contrary to this ideal and towards greater 

variety in tailor-made materials. An increase in galvanizing for corrosjon 

protection, for instance, is probably unwelcome from the recycling viewpoint 

since "galvanized steel cannot be directly recycled but must be subjected 

to a chemical process11 (Pavoni, Ref. 274 ). The growing use of plastics, 

particularly thermosetting, fibre-reinforced-plastics in body panels is 

similarly unwalcome since such materials cannot at present be recycled. 

Designing for recycling, therefore, appears to be at odds with some of the 

solutions suggested for extending product life and reducing energy consumption. 

However, the widespread use of aluminium ... for bodies has been advocated 

for corrosion protection (Schaefer, Ref. 267) and is easily recycled (con

tamination problams are much less severe for aluminium than for steel, and 

composite wastes containing aluminium and another metal may be used again 

with few detrimental results (Pavoni, Ref. 274) ). Further, if as seems 

probable (Weighell, Ref.266 ), steel remains the dominant material for 

vehicle construction then development of high strength, low alloy, steels 

good corrosion resistance would facilitate recycling, lessen the pressure on 

the scarcer non-ferrous metuls, and reduce energy consumption (both direct and 

indirect). Kiessling (Ref.276) suggests that new ferritic elisteels with low 

carbon and nitrogen contents offer interesting possibilities, but much devel

opment will still be needed regarding their ductility, weldJbility, and price. 
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Mahoney (Refo 279 ) concludes that "the future of recycling and 

recovery systems for waste utilization and a widespread implem~ntation of the 

life cycle concert of materials depend upon social and institutional forces as 

well as technological and economic factorso o o 11 
o 
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Materials Substitution 

The replacement of one material by another in a particular 

application is a continuous process prompted by many stimuli including 

changes in relative prices, materials technology, product design, manu

facturing methods and legal and safety regulations. 

· Substitution of abundant for scarce resources (where possible} is 

an obvious route to easing future supply shortages and has been advocated 

as such by many researchers C281,282). Any changes in the material 

composition of a product may modify other properties of that product, 

including its energy needs, recyclability and service lifetime; consideration 

must therefore be given to the consequences of these interactions on a 

product's total resource usage in any useful discussion of materials substitution. 

Of the constructional materia.ls with transport applications, copper 

lead, platinum, and asbestos appear to be in the greatest danger of exhaustion 

(Table 77), and therefore present prime targets for replacement. ·Transport 

consumes about 9% of all U.K. copper (Table 63 ), mainly in electrical 

components, radiators and brasseso In the former application, aluminium, 

with about double copper's resistivity and a quarter of its density, is twice 

as good a conductor as copper on a weight for weight basis. Since aluminium 

requires about 65 kwhjkg in manufacture, compared to copper's 12.0 kwh/kg 

(Table 63 ) the substitution of aluminium for copper incurs an energy 

penalty of 53 kwh,/kgo Assuming that all the 32.7 kgs of copper used in 

the "average goods vehicle shown in Table 66 were used in electrical 

components its replacement by aluminium might thus add 650 kwh to the 

total energy cost of manufacturing the vehicle. Few technical problems 

should be encountered in replacing copper in the electrical components 

of vehicles and plans have been discussed for instance, for such a change 

in Porche's long life car project described by Schaefer (Ref.267 ). Perhaps 

the most difficult obstacle to overcome in eliminating copper's use in rood 

transport will be a replacement of copper radiators by aluminium ones. This 

is already technically feasible and-will no doubt be encouraged by higher 

copper prices. 
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With the possible excepNon of overhead railway power cables, 

where for technical reasons copper is preferred, aluminium may relatively 

easily replace copper in most trunsport applicationso Whether such 

replacement will come about in response to price, is however doubtful. 

For instance as pointed out previously, the total material cost of a Boeing 

747 is so srr:all that a five-fold rise in the total cost of materials would 

produce only a 16% rise i.n the cost of the aeroplane (Moore, Refo232 ), 

This situation with res?ect to CO?per is probably true also of shipbuilding : 

copper forms such a tiny proportion of total costs that price differentials 

alone may be insufficient to effect substitution. 

In contrast to copper, whose future depletion presents few problems 

for transport, the role of lead, particularly in batteries, is at present crucial 

to tronsporto The use of lead in batteries will almost certainly increase with 

the potentially widespread introduction of electric, vans, public utility 

v:ehicles, buses and urban corso Although it is v.irtually certain that lead 

resources ore insufficient to allow a complete 'change from the 1Jetrol engine 

to lead-acid battery vehicles, the future may not be os bleak os it appears. 

Firstly, the use of lead in•such applications os coSies, piping and sheeting 

is ste-adily declining in the United Kingdom, . being replaced by plastics, 

aluminium and other materiolso Secondly, tighter emission control regulations 

in many countries will reduce demand for lead compounds in onti··knock petrol -

a dissipative use from which there is no possibility of recyclingo Thirdly, 

batteries based on sodium-sulphur, etco, ore being developed and promise 

to provide the motive power for future all-elea::tric vehicles. lt therefore 

seems probable that substitution of other materials for lead in non-transport 

uses, together with the decline of Ieo dad petrol, will increase the proportion 

of lead used in cor batteries. Since a high proportion of all lead in cor 

batteries is recycled, the proportion of total lead consumption met by second:~ry 

metal will increase, thereby reducing the rote of virgin resource depletion. 
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APPENDIX 4 

RAW ,\1ATERIALS AND ENERGY 

Transport systems use energy indirectly in the manufacture 

of vehicles and infrastructure. as well as directly as fuels. 

In this appendix3 the energy costs of various constructional 

materials are noted and related to their characteristics. 
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Appendix 4 

·, RAW MAlERIALS AND ENERGY 

The production of all materials req•Jires the expenditure of energy 

a~ every stage from extraction to finishing. This specific energy cost varies 

consideiably between materials, is generally much lower for producing metals. 

from scrap than from ore, and will be responsive to process cha:1ges and 

variations in the grade of ore usedo These points are illustrated in Table·85 • 

The figures given must be qualified in view of the different methods and 

assumptions used by the various authors and it must be stressed that all the 

estimates should be treated with caution. 

ALUMINIUM 

Both Chapman (Ref. 258) and Roberts (Refo284 )have used process 

analysis and base their figures on a 50% A 1 C2 03 bauxite ore using the Bayer 

and Haii-Heroult processes. The difference in their estimates may arise from 

different assumptions of the efffciency of electricity generation in this 

country. Chapman's (Refo258) figure of91o0 kwht per kg., for example, is 

based on a conversion efficiency of 23.85%; at an efficiency of 33% estimate 

becomes 72.6 kwh/kgo If aluminium is produced from 100% scrap, the 

energy needed is less than 4% of that required using 100% bauxite. Most 

of this saving arises since the Haii-Heroult reduction cell, which ccccunts 

for 69% of the 91.0 kwhtfkg, is not necessary when scrap is usedo The energy 

presently used to produce aluminium from a mixture of bauxite and scrap will 

clearly depend on the ratio of the two materials. Roberts' (Ref o284 ) figure 

of 65.0 kwhtfkg is based on an 18% scrap recycle feed (and on lower 

estimates of energy needs than Chapman). Wright (Ref. 285) figure of 16.5 

kwh/kg is based on input-output analysis and therefore represents the average 

energy C?St to the U.K. of producing aluminium from scrap and bauxite. 

Since a proportion of the energy used will be consumed externally to the U.K. 

(in the bauxite producing countries), this method will not reflect the total 

average energy needs and is therefore misleading in this context. 
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TABLE 85 ESTIMATES OF THE ENERGY REQUIRED TO PRODUCE VARIOUS MATERIALS 

(kwh of The~mal Energy/kg = kwht/kg) 

1 2 3 4 

Material Energy needed for Energy needed for Average energy needed Projected future 

production from production from energy needs 

primary raw material scrap 

Aluminium 91.0 (a) 79 .o (c) 3.15 (a) 2.0 (c) 65.0 (c) 16.5 (f) 40.0 (c) 44.1 (g) 

Copper 17.3 (a) 16.5 (c) 2.72 (a) 2.0 (c) 12.0 (c) 14.5 (f) 18.0 (c) 

Lead 13.3 (b) 10.0 (c) 10.0 (c) 

Magnesium 115.0(c) 110. 1 (g) 67.8 (g) 

w Iron 6.0 (i) 5.2 (g) 
~ 
"'> 

Finished Steel 16.0 (c) 8.0 (c) 13.2 (a) 13.0 (c) 13.0 (c) .. 
Stainless Steel add B. 0 to carbon 

steel valve (d) 

Titanium 155.0 (c) 

Zinc 15.3-28.5 (b) 10.0 (c) 10.0 (c) 

Nickel. 38.0 (1) 

Chrome 40.0 (1) 

Cement 2. 3 (a) 2.3 (c) 2.3 (c) 

Glass Plate 7. 2 (a) 7.2 (k) 

Fibre Reinforced 

Plastics (FRP) 25.9 (j) 25.9 (k) 

Pol ypropyl ene 20.0 (e) 20.0 (k) 

Nylon 66 30.0 (e) 30.0 (k) 



TABLE 85 ·Continued 

1 2 3 4 

Material Energy needed for Energy needed for Average energy needed Projected future 

production from production from energy needs 

primary raw material scrap 

Polythene L. D. 25.0 (e) 25.0 (k) 

P. V. C. (Rigid) 30.0 (e) 30.0 (k} 

Pol yethyl ene 12-15 {c}25 (c) 12-15 (k) 25(k) 

Rubber 
(..) 

Natural 3o6 {h} 3.6 (k) 
.j:>.. 
(..) 
• 

Synthetic 42-6QoQ (h) 42.60 (k) 

Timber Oo5 (e} 

Silicon 30oQ (J) 

Nitrogen 1.7 (1) 



NOTES FOR TABLE 85 

SOURCES 

a. Chapman 1974 {Ref.258) 

b. J.\.I.Ch.E. 1973 (Ref.286) 

c. Roberts 1974 {Ref. 284 ) 

d. Berry et al 1973 {Ref.287) 

e. Alexander 1974 {Ref. 288) 

f. Chapman quoting Wright, 1973 {Ref. 258 ) 

g. Mrdjenovich {Ref.289 ) 

h. Rubber Developments, Vo. 28 No. 2 1975, quoting 

Unido Study by E. T. Marshall (Ref. 290 ) 

i. H.H. Kellogg {Ref. 291) 

j. Automotive Engineering, February 1975, Page 33 {Ref.292 ) 

k. Assuming that average needs are identical to primary raw 

material energy needs 

I. Sambell and Davidge (Ref. 293 ) 

COLUMN 1 : Refers to energy needed to produce metal from 100% ore. 

COLUMN 2: Refers to energy needed to produce metal from 100% 

scrap. 

COLUMN 3 : Wright's figures are based on input-output data for the 

U.K. and are thus estimates for the average energy cost 

of producing aluminium in the U.K. (and may therefore 

not reflect the total cost). Roberts' estimates are based 

on an assumed mix of primary metal and scrap, allowing 

for the difference energy needs of the two sources. 

COLUMN 4 : Robert's estimates based on those shown in Column 3 but 

modified where he assumes changes in process technology 

or grade of ore will lead to different values. 
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GENERAL NOTES 

1. The figures calculated by Chapman, Berry and Kellogg are based 

on the process analysis method, using an approach that Kellogg calls 

"Material Fuel Eq•Jivalent" (M. F. E.). This is a measure of the total energy 

resources used to produce the material (product of the processes from 

ultimate raw material (ore/petroleum/timber etc.). Wright's figures are 

based on the input-output method, whilst the approaches used by the other 

quoted sources is not described. 

2. The figures from different sources may not be strictly comparable 

since they are based on different assumptions. Chapman, for instance, 

assumes a thermal efficiency of electricity generation of 23.85%; Roberts 

uses a factor of 26.5% and Alexander uses 33%o (According to the C. E.G. B. 

(Ref. 294 ) the average efficiency for the year 1973/74 was 29 o83%). 

3. Many of the figures used in this tabl~ have been converted from 

their original units to kwhjkg. 

a. Berry's figures of 7, 645 kwh per short ton to 8 kwhjkg. 

b. The figures quoted from Kellogg, Mrdjenovich, 

Automotive Engineering and A. I. Ch. E. from B. T. U./lb. 

c. The rubber figures have been converted from tons of oil 

equivalent by the conversion Factor of 1 ton of oil = 12000 

kwh. 
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The energy need-ed to produce a tonne of aluminium is expected 

to fall since the required energy is relatively unaffected by ore qual ii"y, but 

is strongly influenced by process efficiency. Chapman (Ref. 258) estimates 

that a 300k bauxite would cost 96.4 kwht/kg and q•Jotes a U. S. Bureau of 

Mines estimate of 101.0 kwht/kg for obtaining aluminium from clays (which 

could supply all possible future needs). Process energy efficiency is almost 

certain to improve. Peacey and Davenport (Ref.295) have estimated the 

electrical energy needs of four processes presently under development, and 

their results show that the Alcoa ~nd Toth methods may show reductions in 

electrical energy needs of20% and 85% respectively~ compared to the 

Bayer-Hall process (Table 86 ). Roberts (Ref. 284) guesses that by 2000 AD 

increased process efficiency will have reduced energy consumption to about 

40.0 kwht/kg. This "guesstimate" assumes no incr·ease in the proportion of 

recycled metal in total consumption and may therefore underestimate the 

energy reduction. 

COPPER 

Copper's energy needs, unlike those of aluminium, are very sensitive 

to the quality of ore used. The figure of 17.3 kwht/kg is based on the 

estimated average grade of copper mined in the world, about 1. 5%. Cha,man 

{Ref.258) calculates that in the U.S.A., where the average grade may be 

only 0.6%, energy costs rise to 32.0 kwht/kg. Improved process technology 

is not likely to greatly offset this increase in req'Jired energy resulting from 

ore depletion, so that, by 2000 AD, Roberts {Ref.284) suggest the average 

required energy may be about 18.0 kwht;!Kg. 

STEEL 

Roberts' (Ref. 284) estimate of 16.0 kwhtfkg is based on 100% 

virgin mateiials and ::m estimate of the present "mix" of processes and :>res 

suggested by Bravard ~nd others {Ref. 296 ). He assumes that the energy cost 

of using entirely recycled material is about half of this (8 kwht/kg) and thus 

with a scrap input of about 40% an average world figure might be 13.0 

kwht/kg. This agrees very closely with Chapman's (Ref.258) figure ba;ed 
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TABLE 86 : PROCESS EVALUATION AND COMPARISON WITH THE 

BEST BAYER-HALL TECHNOLOGY 

Electrical 
Energy 
(kwht/tonne) 

Carbon 
Requirement 
{kg/tonne) 

SOURCE 

(Scale 100,000 Metric Tons Per Year) 

BAYER-HALL ALCOA ALCAN , MONOCHLORIDE 
'· 

1400 -20% -+80% + 5% 

450 -200,{, +1200,{, +70% 

Peacey and Davenport "Evaluation of Alternative Methods 

of Aluminium Production". Journal of Metals, July 1974, 

Page 28. (Ref .295 ). 
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-85% 

+1000% 



on "Annual Statistics 1970; Iron and Steel lnd:.Jstry11 
o Sir Monty Finniston 

(Ref. 297) has stated th::Jt the average energy cost of producing one tonne 

of liquid steel in the U.K. in 1973 was about 25 gigajoules (7 .0 kwhtfkg). 

This figure, which Sir Monty suggests will be reduced by about 10-12% 

in future with improved efficiency, excludes the energy cost of ore 

extraction and benefication and production of finished steel from the liquid 

steel. lt is therefore not comparable to the other estimates quoted above. 

The production of stainless steel may require about 8o0 kwht/kg 

in addition to the energy need.) of finished carbon steels (Berry,_ Ref. 2?7J 

whilst Chapman suggests that for 11 special 11 steels requiring heat treatment 

and work hardening, the energy cost may be as much as 60.0 kwht/kg , 

The energy used in mining and concentrating iron ores may vary 

f_rom about 70 kwht/tonne for high gra:Je hematite to 2000 kwht/tonne for 

iron laterites (Roberts, Ref. 284); in other words, the q'Jality of the ore is 

not a very strong determinant of the energy cost of finished steel o The 

future energy needs of steel may therefore fall with greater process efficiency, 

rather than remain at present levels as Roberts suggest. 

OTHER MATERIALS 

Lead and zinc are both modest energy consumers and no change in 

their needs is predicted by Roberts (ReL 284). Magnesium and titanium, on 

the other hand, are the most expensive structural metals in terms of energy 

usage. Since both are relatively new metals, advances in process technology 

may be expected, perhaps particular! y in the case of magnesium which faces 

no prospect of depletion since it is extracted from sea water. 

Plastics are something of a special case in terms of their energy 

consumption. lt may be argued a; Alexand=r (Ref. 288 ) does~ that their 

energy cost should include the intrinsic energy content of the crud= oil 

used as the raw material and this assumption gives value of 20.0-30.0 kwhtfkg 
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for some of the common plasticso On the other hand, it could be argued 

that since this energy may, in principle, be usefully employed at the end 

of a product's lifetime (by the methods discussed in Section 5. 3) the 

·intrinsic energy of oil should be excluded. Robert's lower range of 

12.0-15.0 kwht/kg is based on this assumption and the upper figure of 

25.0 kwht/kg on the first approach. The present author favours including 

oiPs energy for two reasons. Firstly, since it needs 1 o 2 kg of crud~ oil 

to produce 1 kg of plastics, 0. 2 kg is not available as useful energy. 

Secondly, most plastics waste is not usefully combusted, although in future 

the widespread introduction of pyrolysis may change this situation. 

SPECIFIC ENERGY AND MATERIALS' PROPERTIES 

Alexandar (Refo 288) has related energy cost to materials' 

properties and his results are shown in Table 87 o Using this method, the 

energy necessary to obtain a desired level of, say, tensile strength may be 

readily worked out by dividing a material's specific energy in kwh/m2 by 

its tensile strength in MN/m2. lt may be seen that, of tha materials 

suitable for car body construction, steel has the lowest energy needs for 

all three properties I isted. The relative importa,ce of the&e properties will 

of course vary with the application, but the table serves as a 3uide to 

comparative energy costs. 
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TABLE 87 ENERGY CONSUMPTION RELATED TO MATERIAL PROPERTIES 

Total Energy {kw h) Per Unit of: 

Material Specific Tensile Modulus of Fatigue Density Tensile Modulus of Faligue 
Energy Strength Rigidit~ Strength 

kg/m3 
Strength Rigidity . Strength 

kwhjkg MN/m2 MN/m MNjm2 

Steel 16.0 600 77000 390 7800 208.0 1.62 320.0 

Cast Iron 16.0 400 105 7300 293.0 1112.0 

Brass 16.5 400 37300 140 8360 345.0 3.70 985.3 

Aluminium 
Alloys 79.0 300 26000 90 2700 710.0 8.20 2370.0 

Magnesium 
w ,AI loys 115.0 190 17500 95 1700 1029.0 11. 17 2058.0 <.11 
0 . 

Titanium 
Alloys 155.0 960 45000 310 4510 730.0 15.53 2255.0 

Polypropylene 20.0 30 7.5 900 600.0 2400.0 

Nylon 66 30.0 80 20.0 1360 510.0 2040.0 

Polythene 
L. D. 25.0 13 3.25 920 1770.0 7075.0 

P. V. C. 
(Rigid) 30.0 50 12.5 1400 8400 3360.0 

Reinforced 
Concrete 2.3 38 10000 23~00 2400 145.0 0.55 240.0 

Timber 0.;5 11 4500 3.80 500 22.75 0.06 66.0 

SOURCE: W. 0. AI exander, 11 Energy Content : A Vital Factor in Assessing Materials Demand and Use11
• Metals and Materials, 

Oct. 1974, Vol .8 No. 10, Page 459. (Ref. 288 ). 
NOTES : The total energy per unit of, say, tensile strength for steel is calculated by: 

Densi!y 
X Specific Energy =7800 x16.0 108 kwh par MN/m2 

Ten si I e Strength = 
-600 



APPENDIX 5 

PROJECTIONS OF FREIGHT DEMAND 

These extrapolations of freight demand are based on two series 

of historical data, namely : 

(a) 1953 to 1974 

(b) 1953 to 1977 

In each case the projections are made to the year 2025, the time 

horizon chosen for the thesis. 

Seyen equations, developed by Dr. David Pitfield of Loughborough 

University tJere applied to these series to project freight moved 

and freight lifted to 2025 - the time horizon selected. 

The results produced by the trend curve best fitting historical data 

are graphed in Figure 3. (Page .32). 
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APPENDIX 5 FORECASTS OF FREIGHT MOVED, BY MODE, FOR G. B. BASED UPON 1953-1974 DATA 

A. GOODS MOVED BY All MODES ('x 108 tonne kilometres) 1974 = 138100 million tonne kilometres 

TREND CURVES STATISTICAL TESTS FORECASTS 

~SQUARES R2 RSS 1980 1990 2000 2010 

GOMPERTZ 45695 95 .00718 1672 1984 2261 2498 
S. M. E. 46861 95 .00767 1667 1990 2313 2628 
2nd DEG. POLY 50193 95 .00798 1588 1771 1961 2159 
LINEAR 50772 95 .00851 7645 1964 2283 2602 
LOG. PARABOLA 51284 95 .00757 1616 1829 2057 2300 
LOG. LINEAR 54703 94 .00765 1770 2363 3154 4209 
LOGISTIC 68853 89 0 0108 1500 1633 1712 1755 

B. GOODS MOVED BY ROAD (x108 tonne kilometres) 1974 = 89900 million tonne kilometres 

GOMPERTZ 13850 98 • 0091 . 1130 1346 1492 1585 
LOG. PARABOLA 14004 98 • 0073 1053 1145 1176 1141 
S. M. E. 16200 98 0 0110 1152 1458 1753 2037 
2nd DEG. POLY 17468 98 • 0118 1070 1230 1390 1551 
LINEAR 17469 98 • 0119 1149 1467 1786 2104 
LOGISTIC 27784 96 • 0118 1021 1141 1194 1214 
LOG. LINEAR 44563 96 .01425 .1439 2477 4264 7339 

2020 2025 

2694 2779 
2936 3089 
2363 2468 
2921 3081 
2555 2687 

. 5618 ;__j 1779 .., 

1642 1661 
1046 980 
2311 2445 
1712 1792 
2423 2582 
1222 1224 
12631 16571 
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C. GOODS MOVED BY RAIL (x10
8 

tonne kilometres) 1974 = 24200 million tonne kilometres 

TREND CURVES STATISTICAL TESTS FORECASTS 
' 

~SQUARES R2 RSS 1980 1990 2000 2010 

2nd DEG. POLY 3034 93 .0079 271 322 398 499 
LOG. PARABOLA 3379 93 .0084 263 306 387 528 
GOMPERTZ 14501 80 0 023 246 246 246 246 
LOG. LINEAR 8519 79 o0218 195 157 126 102 
S. M. E. 9337 84 0 017 247 247 247 247 
LINEAR 10146 78 .0269 177 114 51 NEG 
LOGISTIC METHC >D DOES f'.. OT ALLOW CALCULAT ON TO CO ~TINUE 

D. GOODS MOVED BY COASTAL SHIPPING (x10
8 

tonne kilometres) 1974 = 20400 million tonne kilometres 

LOG. PARABOLA 10000 .69 .0484 194 152 106 67 
2nd DEG. POLY 11171 .69 • 06 193 142 68 NEG 
LINEAR 16965 .53 0 070 275 321 368 414 
LOG. LINEAR 39780 .• 53 .0752 293 375 480 615 
LOGISTIC METH< )D DOES I' OT ALLOW CALCULAT ON 
S. M. E. NEGA TIVE "NO .. :...JN STRUC IVE" 
GOMPERTZ NEGA TIVE "NO .. IN STRUCl IVE" 

I 

I --

2020 2025 I ..,.1-
t-< 

626 I 698 
781 978 
246 246 

I 82 74 
247 247 I 

NEG I NEG 

I. 

37 27 
NEG NEG 

460 483 
787 891 

_j 
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E. GOODS MOVED BY INLAND WATERWAYS {x10
8 

tonne kilometres) 1974 = 163 million tonne kilometres 

TREND CURVES STATISTICAL TESTS FORECASTS 
' 

~SQUARES R2 RSS 1980 1990 2roO f 2010 I 2020· t 2025 I 
2nd DEG. POLY 3.56 76. 0126 10 19 1.01 0.96 1. 01 1. 19 l 1. 32 i 

' 
LOG. LINEAR 3.69 74 l. 26 LO .65 o4 .25 0 16 .13 

I 
I 
I 

LINEAR 3o71 75 1. 55 .55 NEG NEG NEG NEG I NEG 
I 

j 
LOG. PARABOLA 4.14 74 0 121 1.35 1.26 1. 23 1. 26 1. 35 1. 43 ·I 

I 

' 
S. M. E. 4.19 74 o114 1.42 10 35 1. 33 1. 33 ].32 1. 32 : 

' 
GOMPERTZ 6.44 71 0142 1.49 1o45 1.44 1 o43 1.43 1 o43 j 

LOGISTIC METHC D DOES N PT ALLOW ~ALCULATJ( DN TO COt\ TINUE I 
' I 
I 
; 

F. GOODS MOVED BY PIPELINE {x10
8 

tonne kilometres) 1974 = 3400 million tonne kilometres 

2nd DEG. POLY 88 97 .93 53 77 104 I 137 173 

I 
193 r 

GOMPERTZ 133 96 .36 72 121 161 188 204 209 i 
I 

LOGISTIC !65 93 .33 42 46 47 47 47 47 
i 

I 
S. M. E. 167 95 NA 90 285 882 2704 8266 I 14447 I I 
LINEAR 301 91 NA 44 62 81 99 118 I 127 I I 
LOG. PARABOLA 355 92 .34 82 167 318 517 947 I 1194 ! 
LOG. LINEAR 575 89 .35 160 1018 6478 41227 262401 l 661999 i 

I 



w 
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FORECASTS OF FREIGHT MOVED, BY MODE,· FOR GB. BASED ON 1953-1977 DATA 

A, GOODS MOVED BY ALL MODES (x10
8 

tonne kilometres) 1977 := 153700 million tonne kilometres 

TREND CURVES 'STATISTICAL TESTS FORECASTS 
' 

~SQUARES R2 RSS 1980· 1990- 2000 1 2010 

GOMPERTZ 56735 95 0.0103 1537 1659 1728 1765 

LOG. PARABOLA 58641 95 0.0088 1593 1796 1880 1826 

2nd DEG. POLY 61231 95 0.0099 1835 2052 2052 2240 

LINEAR 62347 95 0.0094 1614 1917 2221 2524 

S. M. E. 6405l 95 0.0123 1541 1681 1775 1837 

LOG. LINEAR 79904 94 0.0102 1700 2222 2904 3798 

LOGISTIC 80336 91 0.0135 1492 1576 1615 1632 

B. GOODS MOVED BY ROAD (x10
8 

tonne kilometres) 1977 = 97900 million tonne kilometres 

LOG. PARABOLA 13644 99 .0079 1038 993 725 404 

GOMPERTZ 14318 99 .0107 1053 1182 1251 1286 

LOGISTIC 19050 98 0.0129 999 1062 1081 1087 

S. M. E. 19942 98 0.0186 1065 1244 1381 1483 

2nd DEG. POLY 21170 98 0.0164 1078 1286 1446 1559 

LINEAR 24235 98 0.0123 1119 1422 1726 2029 

LOG. LINEAR 86407 94 0.0263 1311 2151 3531 5795 I 

2020 

1785 
1648 I 

I 

2399 I 

2827 
I 

1878 
4966 
1639 

I 

172 I 
I 

. 1303 I 
I 

1089 I 
I 

1562 ' 
1623 I 
2333 I 

I 
9510 ! 

I 

2025 

1790 
1522 
2468 . 
2979 
1893 . 
5678 
164 i 

101 
1308 
1089 
1593 
1638 
2485· 

12184 

--, 

_J 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 

I . 

1 

i 
I 

I 
i 
! 

·-J 
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C. GOODS MOVED BY RAIL (x10
8 

tonne kilometres} 1977 = 22700 million tonne kilometres 

TREND CURVES STATISTICAL TESTS FORECASTS I ' 

~'SQUARES R2 RSS 1980 1990 2000 2010 2020 I 2025 I I 
-

LOG. PARABOLA 3850 93 .0705 249 327 543 1139 3021 I 5369 I 
2nd DEG. POLY 3981 92 0.0111 257 352 522 769 1090 1279 
LOG. LINEAR 9798 79 .0243 203 167 138 114 94 85 
S. M. E. 10584 85 .0194 241 241 241 241 241 241 
LINEAR 11639 78 .0300 192 136 80 24 NEG I NEG 

I 

I GOMPERTZ 16385 81 .0259 241 241 241 241 241 

I 
241 

LOGISTIC METHC D DOES Ne DT ALLOW :ALCULATIC ~N 
I 

I 

D. GOODS MOVED BY COASTAL SHIPPING (x10
8 

tonne kilometres} . 1977 = 24000 million tonne kilometres 

LOG. PARABOLA 12761 63 .0590 181 96 33 8 1 4 
r 
I 

2nd DEG. POLY 13765 . 64 .0683 180 51 NEG NEG NEG NEG I 

LINEAR 22660 40 .0973 251 285 320 354 388 I 405 j 
LOG. LINEAR 24407 42 0 1021 259 312 375 451 543 596 ! 
S. M. E •. TREND ;:URVE NOl INSTRUCT! .;e i 
GOMPERTZ TREND ::uRVE NO .. INSTRUCT I vE I 
LOGISTIC METHC D DOES N ::n ALLOW CALCULATIC )N I I 

Continued •••• · 



E. GOODS MOVEE> BY PIPELINE· (x108 tonne kilometres) 1977 = 8700 million tonne kilometres 

TREND CURVES STATISTICAL TESTS FORECASTS I 
' I 

~SQUARES R2 RSS 1980 199o·· 2000 2010 I 2020 I 2025 I I 
LOG. PARABOLA 1551 83 o4466 81 169 216 169 80 46 
S. M. E. 1565 81 NA 73 178 421 966 2196' 3306 
2nd DEG. POLY 1577 82 o2285 73 143 238 357 501 581 
GOMPERTZ 1767 76 o5354 58 83 97 104. 107 103 
LOGISTIC 1962 72 o4229 50 55 ·. 56 56 56 56 I 
LOG. LINEAR 1786 85 o5081 124 694 3888 21778 121971 288653 ! 

LINEAR 2365 73 NA 52 74 96 119 141 152 I 
I 
i 



APPENDIX 6 

PROJECTIONS OF ROAD FREIGHT FUEL USAGE 

These extrapolations of fuel usage by road freight vehicles 

are based upon two series of historical data, namely : 

(a) 1950 to 1974 

(b) 1950 to 1977 

In each case trend fitting curves based upon seven equations 

developed by Dr. David Pitfield of Loughbo2•ough University were 

applied to these series to project usage to 2025 - the time 

horizon selected. 

The results produced by the equation bes·t; fitting historical 

data are graphed in Figure 14. (Page 101). 
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APPENDIX 6 FORECASTS OF GOODS LIFTED, BY MODE, FOR G. B. BASED UPON 1953-1974 DATA 

A. GOODS LIFTED BY All MODES (MILLION TONNES) 1974 = 2015 million tonnes 

TREND CURVES STATISTICAL TESTS FORECASTS 

~SQUARES R2 RSS 1980 1990 2000 2010 2020 2025 

LOG. PARABOLA 94291 .95 • 006 2104 2040 1879 1645 1368 1224 . 
GOMPERTZ 105679 94 • 008 2163 2221 . 2241 2248 2251 2251 
2nd DEG. POLY 11230 94 .0081 2135 2145 2089 1968 1781 1663 
S. M. E. 122750 93 .0099 2169 2240 2270 2282 . 2258 2289 
LINEAR 159986 92 .0091 2452 2905 3358 3811 4204 4490 
LOGISTIC 154149 89 • 011 2056 2074 2078 2079 2079 2079 
LOG. LINEAR 223797 90 0 012 2643 3482 4586 6041 7957 9132 

B. GOODS LIFTED BY ROAD (MILLION TONNES) 1974 = 1734 million tonnes 

LOG. PARABOLA 71431 96 .0076 1793 1699 1500 1236 949 810 
GOMPERTZ 86817 95 0 011 1869 1929 1949 1955 1958 1958 
2nd DEG. POLY 91921 96 0 011 1845 1861 1811 1694 1512 1396 

S. M. E. 106844 94 • 015 1878 1958 1992 2007 2013 2015 
LOGISTIC 115414 92 0 013 1775· 1800 1805 1806q 1086 1806 
LINEAR 141421 93 .0119 2168 2636 3104 3572 4040 4274 

LOG. LINEAR 234685 90 0 018 2436 3470 4941 7037 10023 11961 
I 
I 
I 

Continued •• o o. 
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C. GOODS LIFTED BY RAIL (MILLION TONNES) 1974 = 177 million tonnes 

TREND CURVES STATISTICAL TESTS FORECASTS 

~SQUARES R2 RSS 1980 1990 2000 

LOG. LINEAR 1670 93 .0062 161 129 104 
LOG. PARABOLA 1673 93 .0062 170 151 135 
2nd DEG. POLY 1676 93 .0062 171 155 142 
S. M. E. 1690 92 .0062 160 124 92 
GOMPERTZ 1700 92 .0062 160 124 94 
LINEAR 1772 93 .0064 149 98 47 
LOGISTIC 3204 87 0 01 150 97 58 

D. GOODS LIFTED BY COASTAL SHIPPING (MILLION TONNES) 1974 = 44 million tonnes 

LOG. PARABOLA 81 73 .007 40 32 24 
2nd DEG. POLY 87 72 .007 40 30 16 
LINEAR 233 26 .Oi9 52 59 58 
LOG. LINEAR 238 27 .019 52 56 60 
LOGISTIC NEG. 
GOMPERTZ NEG. 
S. M. E. NEG. 

2010 2020 2025 

83 67 60 
120 107 101 I 132 124 121 
65 42 31 I 
70 51 43 

NEG NEG NEG 
33 18 13 

17 11 8 
NEG. NEG. NEG. 

61 64 66 
64 68 71 

I 
I 
I 

Continued ••• ~. 
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E. GOODS LIFTED BY INLAND WATERWAYS (MILLION TONNES) 1974 = 4 million tonnes 

TREND CURVES STATISTICAL TESTS FORECASTS 

~SQUARES R2 RSS 1980 1990 2000 

GOMPERTZ 2.75 96 .009 1.26 0 0 
2nd DEG. POLY 2.77 97 o009 1 .a NEG NEG 
S. M. E. 3. 13 96 oOi NEG NEG NEG 
LOG. PARABOLA 3.25 96 0 01 3o0 1.56 0.7 
LOGISTIC 5.52 92 0 02 2. 1 0.4 o. 1 
LINEAR 9.14 89 0.34 3.7 0.5 NEG 
LOG. LINEAR 16. 1 85 0.49 4.3 2.8 10 9 

F. GOODS LIFTED BY PIPELINES (MILLION TONNES) 1974 =56 million tonnes 

LOGISTIC 328 95 .44 60 61 63 
2nd DEG. POLY 373 96 X 85 120 162 
LOG. PARABOLA 1325 90 .46 120 223 336 
GOMPERTZ 457 95 .50 100 156 185 
S. M. E. 490 95 X 112 305 719 
LINEAR 777 92 X 71 105 137 
LOG. LINEAR 31.55 83 • 51 269 2535 19452 

2010 

0 
NEG 
NEG 
0.3 
0.01 
NEG 
1.3 

63 
209 
441 
200 

1660 
168 

149267 

2020 2025 

0 0 
NEG NEG 
NEG NEG 
0. 1 0.06 
0.001 0.0004 
NEG i NEG 
0.9 I 0.7 

63 . 63 

262 291 
503 509 
207 209 

3802 5744 
199 214 

1145446 3173075 



APPENDIX FORECASTS OF GOODS LIFTED, BY MODE, FOR G. B. BASED ON 1953-1977 DATA 

A. GOODS LIFTED BY All MODES (x10
6 

tonnes) 1977 = 1720 million tonnes 

TREND CURVES STATISTICAL TESTS FORECASTS 
-

~·SQUARES R2 RSS 1980; 1990:-;. 2000 2Q10 I 2020 I 2025 
I 

~ ---1 
LOG. PARABOLA 132191 92 .0096 1653 1011 441 137 30 13 I 

2nd DEG. POLY 176962 90 .0140 1677 903 NEG NEG NEG NEG I 
LINEAR 564449 67 .0341 2142 2441 2740 3039 3338 3487 

LOG. LINEAR 661476 66 .0388 2217 2675 3229 3897 4703 5167 

GOMPERTZ 988697 68 01216 1870 1870 I 1870 1870 1870 1870 i 
S. M. E. 2287832 63 1.853 1872 1872 1872 1872 1872 1872 I 

I 
LOGISTIC THE M THOD DOES NOT All ':JW CALCUlATION I I I 

B. GOODS LIFTED BY ROAD (10
6 

tonnes) 1977 = 1422 million tonnes 

LOG. PARABOLA 104276 94 .0115 1361 I 
~ 

748 269 64 10 3 I 

I 
I 

2nd DEG. POLY 151940 92 .0196 1402 671 NEG NEG NEG NEG I 
I LINEAR 51879 71 .0474 1854 216/ 2481 2794 3107 3264 I LOG. LINEAR 656002 69 .0568 1962 2510 3211 4109 5257 5946 

GOMPERTZ 657414 74 o. 1271 1570 1570· 1570 1570 1570 1570 
j 
I 

S. M. E. 1395191 68 1.325 1572 1572 1572 1572 1572 l 1572 
I 

I i 

LOGISTIC THE M THOD DO SNOTAU OW CALCU AT ION ! l 
I ! 

Continued •••• 



c. GOODS LIFTED BY RA I~ {10
6 

tonnes) 1977 = 170 mill ion tonnes 

TREND CURVES 'STATISTICAL TESTS FORECASTS --, 
-

I 
I 

~SQUARES R2 RSS. 1980"· 1990 2000 2010 2020 I 2025 I 
I 
' I 

LOG. LINEAR 1688 95 0.0063 160 128 

I 
I 

102 82 65 59 ' I 

LOG. PARABOLA 1691 95 .0063 159 124 96 73 56 48 I 
I 

2nd DEG. POLY · 1693 95 .0063 160 128 106 93 90 I 92 
I 

I 
S. M. E. 1745 94 .0064 155 110 66 24 NEG NEG I 

I 
GOMPERTZ 1765 94 .0064 155 113 77 48 28 I 20 I 

I 
LINEAR 1812 95 a0066 151 101 51 4 NEG i NEG I 
LOGISTIC THE M lH OD DOl SNOT ALL bW CALCUI AT ION 

1 
' ' 1 

D. GOODS LIFTED BY COASTAL SHIPPING (106 tonnes) 1977 = 49 million tonnes 

LOG. PARABOLA 194 57 .0186 36 20 8 3 6 

I 
3 r 

2nd DEG. POLY 202 56 .0195 36 9 NEG NEG NEG NEG l 
LINEAR 450 02 .0414 48 48 . 49 50 51 51 I I I 
LOG. LINEAR 451 02 .0414 47 48 49 50 51 51 I 

LOGISTIC THE M THOD DO S NOT AllOW CALCU ATION TO :ONTINUE 
I 
J 

THE RESUlTING CURVE IS NOT INSTRUCTIVE · _ ' 
S. M. E. 

I 

I 
I 

GOMPERTZ I THE RdULTING CWRVE IS NOlf CONSTRUC~IVE -
I 
I 

Continued •••• 



E. GOODS LIFTED BY PIPELINE {x 10
6 

tonnes) 1977 = 75 million tonnes 

I 

TREND CURVES 'STATISTICAL TESTS FORECASTS i 

' i 
I 

I 
I 

~SQUARES· R2 RSS 1980 1990 2000 2010 2020_ 2025-- I 
I . 

LOGISTIC 813 92 .6451 55 56 56 56 56 ·I 56 I 
GOMPERTZ 832 93 0 850 71 82 86 87 88 88 l 

I 

2nd DEG. POLY 1143 91 NA 80 129 187 256 334 376 I 
I 

LOG. PARABOLA 1496 90 .5654 80 57 14 . 1. 2 0.03 .004 I 
S. M. E. 1100 91 NA 79 123 175 237 310 351 i 

LINEAR 1269 90 NA 71 101 130 161 190 1 2o5 I 
I 

LOG LINEAR 7602 77 85 201 1197 7137 42557 253755 16196=4 
l 

• l 
' I 



. 
APPENDIX 6 : FORECASTS OF FUEL USAGE BY GOODS VEHICLES IN THE U.K. BASED UPON 1950-1974 DATA 

A. TOTAL FUEL USAGE BY GOODS: MOTOR SPIRIT AND DERV ('000 tons) 1974 = 7,020,000 tons 

TREND CURVES STATISTICAL TESTS FORECASTS 

~SQUARES R2 RSS 1980 1990. 2000 

GOMPERTZ 518455 99 .0068 8783 11349 13925 
2nd DEG. POLY 603655 99 .0073 9020 12277 1~113 
LOG. PARABOLA 697488 99 ~0073 9399 13708 19679 
S. M. E. 565077 99 • 0077 8862 11846 15408 
LOG. LINEAR 763836 98 .0074 9603 14525 21969 
LOGISTIC 850357 98 .0092 8004 9357 10238 
LINEAR 1054803 98 0 017 8233 10157 12082 

B. MOTOR SPIRIT USAGE BY GOODS VEHICLES ('000 tons) 1974 = 2,530,000 tons 

-
2nd DEG. POLY 121612 49 .0038 2677 

I 
3074 3674 

LOG. PARABOLA 122411 49 .0038 2683 3140 3983 
LOG. LINEAR 175994 25 • 005 2405 2342 2280 

I LINEAR 176897 26. • 005 2402 2333 2263 

lLOGISTIC. NEG. · 

I 
I 
' 

GOMPERTZ NEG; 
S. M. E. NEG. 

' 

2010 

16394 
20527 
27808 
19661 . 
33229 
10752 
14007 

4476 
5475 
2219 
2194 ., 

2020 I 
18674 I 

I 

25521 
I 
! 
I 

38679 I 
24738 I 
50259 
11035 
15932 

' - -

5482 I 
i 

8152 I 2161 t 

2125 i 
I 
i 

I 

-, 

2025 
-
19728 ~ 
27681 
43941 
27365 
59305 
11121 
16702 

5941 
9777 
2138 
2097 

I 
I 

I 
i 
I 

I 
I 
I 

! 
! 

I 
i 
1 
• I 

I 
! 
i 
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C.. DERV USAGE BY ROAD GOODS VEHICLES ('000 ~ons) 1974 ~ 4,490,000 tons 

, n 

TREND CURVES STATISTICAL TESTS FORECASTS I 
I 

2025 1 
r---~-----1~-----l-----+-----l!----l----~---· ----- ----·+-------·· 

~SQUARES R2 RSS 1980 1990 2000 2010 2020 

GOMPE iZ 96377 1.0 0.02: I 5392 6073 6351 6459 6500 6509 
LOG. PARABOLA 140097 1.0 0.02 1 3946 1570 230 13.7 0.3 0 
LOGISTIC 159289 1.0 0.01 4691 4780 4789 4790 4790 4790 
2nd DEG. POLY 489889 99 1.43 6343 9202 12438 16051 20040 21340 
S. M. E. 392532 99 1.86 I 6207 8751 11538 14591 17936 19727 
LINEAR 680462 99 · 5831 7825 9819 11813 13807 14605 

, __ LO_G __ ._L_IN_E_A_R~-~~1-W_7_1_59_3 __ ~_8_8 __ ~--~~~--~1,L1_4_0_5_2 __ ~------~-----~----~----~------• 



FORECASTS OF FUEL USAGE BY GOODS VEHICLES IN THE UK, BASED UPON 1950-1978 DATA 

A. TOTAL FUEL USAGE BY GOODS VEHICLES : MOTOR SPIRIT AND DERV ('000 tons) 1978 = 7, 520,000 tons. 

TREND CURVES 'STATISTICAL TESTS FORECASTS I 
' I 

I 
I 

2010 
I 

~SQUARES R2 RSS 1980~- 1990.' .2000 2020 2025 I 

I 

I 
- l GOMPERTZ 8921778 99 .0093 7865 9004 9767 10256 10562 10668 

S. M. E. 1085336 98 .0126 7921 9350 10583 11648 12566 12977 I 
LOG. PARABOLA 1257965 98 .0112 8051 9449 100005 9556 8234 7300" 

i 
I I I \ 

I 2ndDEG. POLY 1430470 98 0.0155 8044 9929 11843 13786 15757 16750* I 

LINEAR 1432780 98 ,' .0161 8017 9043 11668 ·13493 15319 16200* 
I 
I 

LOGISTIC 1550272 97 .0120 7330 7936 82GB 8322 8369 8380 I 

LOG. LINEAR 2999857 96 .0169 8861 12911 18813 27413 39944 48200 I 
' I 

B. MOTOR SPIRIT USAGE BY GOODS VEHICLES ('000 tons) 1978 = 2,600,000 tons 

. 
2nd DEG. POLY 147382 44 .00456 2570 2822 3220 3763 4451 l 4845* r LOG. PARABOLA 147649 44 .00456 2570 2838 3319 4212 5555• I 6400"'" i LOG. LINEAR 206498 21 .00631 2437 2387 2338 2290 2243 I 2220~' 

LINEAR 207294 22 .00634 2435 2381 2328 2275 2222 I 2215* I I 
S. M. E. METHC D DOES N PT ALLOW ~ALCULATI< DN 

I 
i 

GOMPERTZ METHC D DOES N PT ALLOW ~ALCULATI< DN i 
I 

LOGISTIC METHC D DOES N PT ALLOW ~ALCULATI< DN I 1 

*Extrapolated 

Continued •••• 



C. DERV USAGE BY ROAD GOODS VEHICLES ('000 tons) 1978 = 4,490,000 tons 

TREND CURVES 'STATISTICAL TESTS FORECASTS I ' 

~SQUARES R2 RSS 198.0' 1990::, -~000 2010 2020 . j2025 I 
GOMPERTZ 175150 1.00 .0089 5085 5561 5729 5785 5804 5808 I LOGISTIC 334122 99 .0240 4779 4894 4907 4908 4909 498 
LOG. PARABOLA 406895 99 .0242 4269 1849 330 24 7 I 1* j 
S. M. E. 718941 99 NA 5343 6570 7545 8319 8934 9192 
2nd DEG. POLY 1124309 98 NA 5374 7107 8623 10023 11305 I 11900* I 

' 
LINEAR · 1162999 98 NA 5582 7461 9340 11219 13097 114100* j 

I 
LOG. LINEAR 26166692 84 .4432 9729 27065 75291 209454 1582685 950000 I 

I 

I I 

1 
~ 

*Extrapolated 
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TERMINOLOGY USED IN RECYCLING 

RECYCLINq_ refers to the actual process by which recovered raw materials 

are re-used. This may take three main forms: direct recycling would be a use 

of the material to make a similar product; indirect recycling would imply a 

product or a use of less critical specification; energy recycling implies con

version of the material into useful energy. 

RECOVERY may describe the process of collecting homogeneous scrap for 

re-use within an organization. 

RECLAMATION is the function of scrap merchants who collect homogeneous 

and mixed wastes which can be sold for recycling. 

SALVAGE describes the most difficult situation: the extraction of homogeneous 

wastes from a mixture of wastes. Such a mixture may take the from manufactured 

products such as cars, or domestic refuse. 

PROCESS SCRAP OR NEW SCRAP describes the scrap which arises during 

production of goods, and takes the form of swarf, bushy turnings and off-cuts 

etc., which have to be returned to a secondary smelter before re-use by the 

process of "recovery". 

CAPITAL SCRAP OR OLD SCRAP arises when products reach the end of their. 

useful lives, and may be returned by "reclamation" or "salvage". 

CIRCULATION SCRAP OR HOME SCRAP refers to material recirculated 

within a single processing plant (such as a steel-works by "recovery". 

DISSIPATIVE USES implies that for the foresre_able future, the material used 

is not recoverable, and includes such uses as lead in anti-knock petrol. 

Pyrolysis involves the heating of a carbon-containing waste to a high tem13erature 

in the absence of air to generate solid, liq:.Jid and :;aseous products. 
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Appendix 8 Notation and Energy Equivalents 

The following table summarizes the general relationships 

between various units of energy used in this thesis. In the main, 

the units used by the original author are quoted in the text since 

it is usually the rate of change between factors or the composition 

of a total which is of most interest. Converting to a single 

consistent unit would have produced inaccuracies since no single 

conversion factor has been employed in the original works. 

Units 

ltilo (K) = thousand (th) = 10
3 

mega (M) = million (m) = 106 

gig a (G) = billion (b) = 109 

tera (T) = trillion (t) = 1012 

Some approximate energy equivalents 

mtce m toe tcf Twh(g) · Twh(e) b.th . 1 15 0 Joules 

1 million tons of coal 
(equivalent) (mtce) = 1 0.60 0.025 2.0 7.5 0.26 28.8 

1 million tons of oil 
(equivalent) mtoe = 1.67 1 0.042 3.6 12.5 0.43 17.3 

1 trillion cubic feet 
of ~""natural gas (tcf)= 40 24 1 90 300 10 0.72 

1 tera watt-hour of 
electricity 
generated (Twh(g))= 0.50 0.28 0.011 1 3.3 0.11 57.6 

1 terawatt-hour of 
electrical energy 
(Twh(e)) = 0.13 0.08 0.003 0.30 1 0.03 216 

1 billion therms 
(b. th) = 3.9 2.4 0.10 8.8 29 1 7.5 

15 10 Joules = 0.036 0.06 1.4 0.018 0.005 0.13 1 
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--------------------------------------------------------------

Units used include : 

1 barrel of oil= 42 U.K. gallons (7.35 barrels= 1 tonne of oil) 

1,000 barrels a day of crude oil = 50,000 tons per year of crud~ oil. 

1 ton crude oil 
3 = 45,454f~. natural gas 

r~ 

1 KWh = 3.6 MJ. 

one gallon of derv. contains 198 MJ. (66 KWh) 

One gallon of petrol contains 181 MJ (50.3 KWh) 

These are 'ready reckoner' approximations that reflect 

averages of all grades and uses of fuels (e.g. power station coal 

and other coal) and all types of product except for electricity 

generated. For this only power station grades of coal and oil have 

been used in arriving at the approximations. The equivalents for 

the different fuels relate to fules as supplied to the user and do 

not take account of efficiency of utilization, except that for 

electricity generation an average thermal efficiency of 30% has 

been assumed. 
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APPENDIX 9 

OutLine of thesis as sv~mitted in 1974 
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The Implications of Resource Depletion for Freight Transport 

and Distribution 

1 • Introduction 

~ims ofthe project: 

(1) To identify those resources with important transport 

applications that may face depletion within the next 

fifty years. 

(2) To forecast the demand for these resources by freight 

transport in the U.K. 

(3) To assess the scope for resource conservation in goods 

transport. 

Justification for the project 

The_ transport of goods is essential to all developed economies, 

and is dependent upon non-renewable resources of energy and raw materials 

which may become progressively scarcer and more expensive within the next 

fifty years. 

Although resource shortages are though unlikely to bring transport 

to a halt within this period, the historical trend towards concentration upon 

relattve~y resource extravagant modes and systems may create future problems. 

For this reason, it is prudent to consider ways in which transport's 

dependence upon scarce resources may be reduced and to consider the 

potential for a more efficient use of resources in goods transport systems. 

2. The future availability of energy and raw material resources 

(1) Using published data, the resources facing the most 

severe supply problems are identified, and their future 

availability assessed. Particular emphasis is placed on 

oil and other energy sources , although materials 

which have important transport applications, such as 

aluminium, copper and lead are also discussed. 
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(2) The relationship between materials and energy is 

explored, and the energy cost of producing various 

materials noted, so that the energy required in 

different transport systems may be estimated. 

3. Freight transport and resource usage 

{l) The future demand for resources, particularly oil, 

by U.K. freight transport is forecast, using statistical 

techniques to derive a curve that best fits historical 

usage data. The coefficients of the resulting equations 

are then used to forecast resource needs to 2025. 

{2) The efficiency of resource usage by each of the inland 

U.K. freight modes is calculated, and historical trends 

noted. Where data availability allows, this is estimated 

by dividing work done by resources used. 

4. The scope for resource savings in goods transport 

Various approaches to resource conservation are considered, and 

the role ,of the price mechanism in effecting suggested improvements 

assessed. Attention is concentrated upon possible oil savings. 

1. Modal Transfer 

Potential savings resulting from transfer of traffic to 

the more resource efficient modes are assessed, and the 

development and significance of novel modes, such as 

capsule pipeline and airship, considered. 

The method involves : 

(i) Forecasting the future growth and modal split of 

U.K. freight traffic up to the year 2025. 

(ii) Estimating the effect of fuel price increases on 

the operating costs of each mode, and assessing 

the effect of resulting price increases on modal choice. 
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(iii) Estimating the effect of possible non-price changes on 

modal competition, including technical advances and 

legaJ/governmental factors. 

{iv) Eztimating the magnitude of energy savings resulting 

from possible modal transfers. 

2. Increasing modalenergy efficie;cies 

Since road transport will probably remain the dominant mode 

in the U.K. for at least the next fifty years, the present study concentrates 

upon savings from possible improvements in the energy efficiences of rood 

vehicles and systems. 

(i) Vehicle design 

The effects of various changes in vehicle design on 

fuel consumption are discussed and the areas offering 

greatest scope for improvement i~entified. The topics 

dealt with include aerodynamic drag reduction, 

alternative power plants, reduced tare weights and 

increased carrying capacities. 

(ii) Operational and organisational changes 

The potential fuel savings available from better vehicle 

control, increased use of transhipment centres and 

groupage, and improved distribution systems etc., are 

discussed. 

5. Conclusions 

6. Appendices 
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