LOUGHBOROUGH UNIVERSITY OF TECHNOLOGY LIBRARY

A Master's Thesis
 Submitted in Partial Fulfilment of the Requirements for the award of Master of Science Degree of the Loughborough University of Technology

December 1978

Supervisor: Dr G K Creighton
Department of Electronic and Electrical Engineering
(C) by Zakir Aziz Mohsini, 1978.

Summary i
Major Symbols iii
Acknowledgements v
CHAPTER I INTRODUCTION I
CHAPTER 2: -ARMATURE REACTION 6
2.1 General 6
2.2 M.M.F. Due to Armature Current 6 Alone
2.3 M.M.F. Due to Field Current 8 Alone
2.4 Resultant M.M.F. Shape due to 10 Field Current and Armature Current
2.5 Effect of Change in Input on 10 Resultant M.M.F.
2.6 Effect of Change of Input on 12 the Total Flux per Pole
CHAPTER 3: MACHINE MODEL 15
3.1 General 15
3.2 Steady State Equation for Sepa- 15 rately Excited D.C. Motor
3.3 Equations for Small Changes 16
3.4 Modification in the Machine 24 Model
3.5 Modification Considering Dynamic 27 Loading
CHAPTER 4: PARAMETER MEASUREMENTS
4.1 General 31
4.2 Expression for Gl 32
4.3 Expression for G2 33
4.4 Estimation of G1 and G2 34
4.5 Measurement of Armature Resis- 40 tance at Different Load Currents
4. 6 Measurement of Brush Contact Resistance
4.7 Measurement of Field Resis- 47 tance
4.8 Measurement of the constant 50 of Viscous Friction4.9 Estimation of F1, F2, H1, H262
CHAPTER 5: COMPUTER PROGRAMMING
5.1 General 64
CHAPTER 6: MACHINE RESPONSE
6.1 General 69
6.2 Method of Change in Armature 69 Input
6.3 Method of Change in the Field 70 Voltage
6.4 Measurement of Change in the 72 Output
CHAPTER 7: RESULTS AND DISCUSSION
7.1 Introduction 76
7.2 Discussion 77
REFERENCES 122
APPENDIX 1: 125
APPENDIX 2: 130
APPENDIX 3: 132

SUMMARY

Abstract

In a d.c. machine the armature reaction reduces the total flux per pole because of saturation effects at heavy armature currents. In this project the separately excited d.c. motor is modelled by considering the total flux per pole as a function of armature and field currents. The machine model is linearized so that it is valid only for small changes in the neighbourhood of steady state conditions.

The machine model when represented in the matrix form is a set of first order differential equations in which changes in the armature voltage, field voltage and load torque are the inputs, whereas changes in the armature current, field current and motor speed represent the response of the machine.

The parametersof the machine measured are for an 800 watt Westinghouse generalised machine connected as a separately excited d.c. motor. A mechanically coupled d.c. machine was used as a d.c. generator to load the test machine. Experiments were done for the transient and steady state responses of change in armature current and speed.

This machine model is then simulated on a digital computer to calculate the time response of change in armature current and speed by applying a change in field voltage and armature voltage.

The calculated response of the machine model is compared with the experimentally obtained responses of the machine.

The twosets of results are found to be similar.

LIST OF MAJOR SYMBOLS

VA	Supply voltage
VF	Field voltage
$\Delta \mathrm{VA}$	Change in armature voltage
$\Delta \mathrm{VF}$	Change in field voltage
IA	Steady state armature current
IF	Steady state field current
$\Delta \mathrm{IA}$	Change in armature current
$\Delta I F$	Change in field current
RA	Armature resistance
RAI	Brush contact resistance
RF	Field resistance
Te	Electrical torque developed by the machine
Tl	Load torque
$\mathrm{T}_{\text {loss }}$	Lost torque
$\Delta \mathrm{T} \ell$	Change in load torque
$\Delta \mathrm{Te}$	Change in electrical torque
N	Speed of motor inssevs/min
$\Delta \mathrm{N}$	Change in speed of motor in rev/min
J	Moment of inertia
D1	Constant of friction
.	Flux per pole
${ }_{*}{ }_{\text {A }}$	Total flux linkage with armature winding
ψ	Total flux linkage with field winding
P	Number of poles
Z	Total number of conductors
A	Number of parallel paths

E Back emf
Ke . Back emf constant
Kt . Torque constant
Kd Distribution factor
Kp Pitch factor
K $\Phi=$ Leakage factor
KW Kd.Kp winding factor
La Self inductance of the armature winding
Lf Self inductance of the field winding
$D(\triangle \psi A)$ Derivative of the change in armature flux linkage
$D(\triangle \psi F)$ Derivative of the change in field flux linkage

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Dr G K Creighton for the patience with which he has made me acquainted with this project. I am also thankful to him for giving his personal notes, from which I have taken the motor model and method for determining the motor characteristics and the parameters.

I would also like to mention the help that has been given to me by the research students of the power electronics group whenever it was needed.

I am thankful to Janet Smith for her patience in typing this thesis.

CHAPTER I

INTRODUCTION

The d.c. motor has high capital and maintenance costs because it has a copper commutator. On the other hand the induction motor is cheap, robust and requires little maintenance. ${ }^{1}$ In addition the frame size of an induction motor is smaller than that of a d.c. machine for a given rating. Therefore even though the d.c. motor has superior speed torque characteristics, the induct.n motor replaced d.c. motors especially in the situations where sparking may cause explosion. 3,5

With the advent of thyristors the need for a separate rotating machine power unit and, consequently, the need for large space is reduced and overall economy of machine running is increased because the power unit for a.c./d.c. conversion becomes much smaller in size, with reduced cost of maintenance. ${ }^{5}$ Also the reliability is increased if electronic components such as diodes and transistors are used in the control circuit because they occupy less space and they are less costly compared to motor generator sets. 7,8 ' Also time and the cost of maintenance is reduced. These economies are further enhanced by integrated circuits which are rapidly and increasingly replacing the conventional electronic components. ${ }^{9,10}$

Researches in commutator-less d.c. motors using thyristors for commutation instead of the commutator and brush set arrangement, is leading to still reduced cost, size of the d.c. motor, easy maintenance and increased reliability.

By using digital methods for the control of speed of a d.c. motor, the accuracy between desired speed and obtained speed could be achieved up to 0.1% at the lower end of the range and 0.02% for the majority of the range. Accuracy up to $.002 \%$ is claimed. Also the digital method of control of speed eliminates the drawbacks of the analogue control system, like ageing of components and change in characteristics due to temperature variation. The signal - can also be transmitted over a long distance without distortion, if remote control is required. ${ }^{4,12,11}$

A thyristor converter, when combined with a separately excited d.c. motor, gives a drive system which is superior in many ways. For example speed could be controlled by an armature voltage control and field voltage control, and better speed control provides high production rates, better production quality and increased process automation. ${ }^{9}$ Furthermore, for a separately excited d.c. motor, the speed torque characteristic could either be constant speed varying torque or varying speed constant torque, or both could vary independently. ${ }^{9}$ When field weakening is used with constant armature voltage, constant horsepower output
is obtained with decreasing torque and increasing speed. A separately excited d.c. motor, when supplied by a thyristor rectifier, is capable of running in all the four quadrants and therefore regenerative braking is possible. ${ }^{8,5}$

The weakening of the field near the full load condition increases the speed such that it becomes uncontrollable and the motor becomes unstable. It could be controlled by using a suitable control system. For developing a control system it is necessary to predict the steady state and transient responses of the machine accurately and therefore modelling of the machine is a fundamental step towards designing a control system. ${ }^{2}$

By modelling any machine mathematically its response could be predicted for any input condition like field or armature voltage. This prediction of machine response is useful for the control engineer. ${ }^{13}$. It is therefore necessary that the model should be as near a representation of the actual machine as possible. The closeness of the machine model with the actual machine can be judged by comparing their responses under the same input conditions. Also the usefulness of any model over another may be judged according to ease with which its parameters could be measured.

Modeling may be done in a number of ways, for example, by obtaining the transfer function ${ }^{14,21}$ of the machine or writing the machine equations for armature and
field voltages ${ }^{15,21}$ and load torque. It may be modelled by changing the input to the machine around the steady state conditions. ${ }^{16}$ Their time response could be found either by Laplace transform or solving the simultaneous differential equations or using a numerical method. But all these models ignore the effect of armature reaction. The effect of armature reaction is the weakening of the total flux per pole due to the saturation of iron of the stator. ${ }^{17}$. Therefore they do not take into account the changing of parameters due to change in armature current. Sinha ${ }^{18}$ has considered the armature reaction as a voltage added or subtracted from the back e.m.f. and developed ways of calculating it. The armature reaction term needs to be calculated by experiment?

The object of the thesis is to model a separately excited d.c. motor taking armature reaction into account. This is done by taking flux per pole as a function of armature and field current. The machine model is linearized so that it is valid only for small changes in the neighbourhood of steady state conditions. The gradients or partial derivatives, that is change in flux per pole with change in armature current and change in flux pole with change in field current, are the main parameters of the machine. These new parameters are termed. G1 and G2 respectively.

- The parameters of the machine are determined on a Westinghouse generalised machine connected as a separately excited d.c. motor. Another d.c. machine coupled
to the generalised machine was used as a separately excited d.c. generator. The experiments for parameter measurement are described in Chapter 4.

A computer program is developed for the transient response of the machine model around steady state conditions. This program uses a subprogram already developed by my supervisor to integrate a set of three first-order differential equations using a numerical method.

The Gino library subroutines are used to plot the transient response. Tests are then performed to obtain the time response of the machine and recorded on a u.v. recorder. Results obtained from computer simulation and from the machine are then compared.

CHAPTER 2

ARMATURE REACTION

2.1 General

In this chapter, the effect of small changes in either the field voltage or the armature voltage on armature reaction and the total change in the flux linkage with field and armature windings will be discussed. Initially, the m.m.f's produced by the armature winding and the field winding are considered separately. Then their combined effect is considered. It is shown that the resultant m.m.f. varies with a change in either of the inputs. Then assuming flux per pole proportional to the m.m.f., the change in flux per pole with change in input is considered. Finally the effects of saturation are discussed. In this case the flux produced is not proportional to the m.m.f. and the effect of a change in an input on the change in flux per pole in the air gap is explained.

2.2 M.M.F. Due to Armature Current Alone

If the field of the machine is not energised and a current is passed through the armature, the ampere turns of the armature will produce an m.m.f. wave with a shape, as shown in Fig. 2.1 ${ }^{19,20}$ The steps in the waveform are caused by the armature slots. However it will be assumed in the remainder of the thesis that the effect of the slotting can be neglected and in this case the m.m.f. waveform becomes triangular.

FIG. 2.1 Armature mmf alone

This is the approximation of the actual m.m.f. shape. The armature m.m.f. is zero at the centre of the pole and a maximum at the magnetic neutral axis. On either side of the centre of the pole or magnetic axis, the shape of the m.m.f. curve is the same, but its sign is reversed. ${ }^{20,25}$ The magnitude of this m.m.f. at every point is proportional to the current passing through the coil. The net area of the armature m.m.f. curve is zero.

2.3 M.M.F. Due to Field Current Alone

Usually the d.c. machine has one or more pairs of salient poles. The winding is placed on the pole pieces. The shape of the m.m.f. produced depends upon the shape of the pole face and the magnitude of the m.m.f. depends upon coil current.

The machine on which the tests are performed does not have salient poles. The stator field winding is embedded in slots in the cylindrical surface. The inner periphery of the stator is divided into four quadrants, each quadrant having a similar winding layout. The m.m.f. shape is again stepped one, and shown in Fig. 2.2. The shape of the field m.m.f. is the same as shown in Fig. 2.2 but the magnitude is dependent upon the amount of current passing through the field winding.

FIG. 2.2 Field mmf alone

2.4 Resultant M.M.F. Shape Due to Field Current and Armature Current

In the running condition both the armature and the field m.m.f. are acting simultaneously. If the resultant of the two m.m.f.'s is drawn then on on side of the magnetic axis, the m.m.f. will be additive, while on the other side of the axis it will be subtractive. The final result is that the m.m.f. is strengthened on one side and weakened on the other side of the magnetic axis. Thus the resultant m.m.f. is distorted in shape due to the presence of armature m.m.f. and also the magnetic neutral axis is shifted from the original no load neutral axis. The resultant m.m.f. wave is shown in Fig. 2.3. $20,24,25$

2.5 Effectof a Change in Inputonthe Resultant M.M.F.

Suppose a change is made in the armature voltage. This change will cause a change in armature current and the armature m.m.f. will change. After this change, m.m.f. is added on one side of the magnetic axis and subtracted on the other side, and there will be a change in the resultant m.m.f. curve. The shape of the resultant will distort but the total area of the m.m.f. will be zero. Similarly the shape of the resultant m.m.f. will be affected if the change is made in the field voltage, which will cause a change in field current and field m.m.f.

Angles in radians

The effect of Change of Input on the Total Flux per pole

The flux per pole is required rather than the m.m.f. It would have been simpler if this m.m.f. was directly proportional to the flux produced by it, but after a certain point (in BH curve) the flux density and hence the flux produced becomes a non-linear function of m.m.f. $23,25,27$

Firstly it is assumed that flux per pole is proportional to the resultant m.m.f., i.e. the iron is unsaturated for all m.m.f. values.

So long as the iron is unsaturated, the m.m.f. required to overcome the reluctance of the iron parts of the magnetic circuit is small compared with the air gap m.m.f. But in the case of saturation of iron, the m.m.f. drop can no longer be neglected in the iron parts of the magnetic circuit. The reluctance of iron parts increases and becomes comparable with the reluctance of the air gap. In the case of saturation the flux produced by the same m.m.f. is less than the flux - produced when there is no saturation. ${ }^{17,20,23,25}$

In the case of armature current near the full load condition , the resultant m.m.f. has a very high value at one side of the magnetic axis. This high value of the m.m.f. saturates the iron parts which results in more m.m.f. drop in the iron parts. ${ }^{17,20}$ This drop is comparable to the drop in the air gap. The flux produced can be given by the relation:
$\Phi=\frac{\text { m.m.f. }}{\text { (Reluctance of the air gap }+ \text { Reluctance of the iron })}$

Due to saturation the reluctance of the iron parts becomes comparable to the reluctance of the air gap, and as the degree of saturation is increased, the reluctance of the iron increases. Equation 2.6.1 represents the situation when the iron is saturated and, due to saturation, the properties of iron are changed. The reluctance of the iron, which was negligible compared to the air gap reluctance when there was no saturation, now becomes comparable to the air gap reluctance. The effect of saturation is such as to reduce the flux produced. $17,19,22,23,25$

If a change is made in the armature input, there will be a change in the armature m.m.f. Suppose the change in the armature m.m.f. is increasing, this change will be additive to the field m.m.f. on one side of the magnetic axis. This increase in m.m.f. will change the properties of iron so as to increase the reluctance of the iron. Although there will be an increase in the flux, the increase in flux will be less than it would have been in the absence of saturation.

On the other side of the magnetic axis, this increase in armature m.m.f. is subtracted from the field m.m.f. and therefore the resultant m.m.f. will be less than what it was before the change in the arma-
ture input, and this reduction in armature m.m.f. will take the iron out of saturation. The overall effect of an increase in the armature input is that there is a net reduction of flux per pole.

Along the same line of argument, the effect of a change in the field m.m.f. on the total flux per pole can be discussed.

CHAPTER 3

MACHINE MODEL

3.1 General

In representing a separately excited d.c. motor by a mathematical model, there can be three independent input variables.
(i) Field voltage, which is applied to energize the field winding.
ii) Armature voltage which is applied to energize the armature winding.
iii) Torque input.

In this model of a separately excited d.c. motor the starting point is the steady state equation of these input variables. Then these inputs are changed by small amounts and the expressions for changes are derived. This model for change in the input variable is then arranged as a set of first-order differential equations.

3.2 Steady State Equationsfor Separately Excited d.c. Motor

The steady state equations for separately excited d.c. motors may be written as:

$$
\begin{aligned}
& \mathrm{VA}=(\mathrm{RA}+\mathrm{RA} 1) \cdot \mathrm{IA}+\mathrm{E} \\
& \mathrm{VF}=\mathrm{RF} \cdot \mathrm{IF} \\
& \mathrm{Te}=\mathrm{T}_{\ell}+\mathrm{T}_{\mathrm{IOSS}} \\
& \mathrm{Te}=\mathrm{K}_{\mathrm{t}} \Phi \mathrm{IA}
\end{aligned}
$$

3.3 Equations for Small Changes

When inputs are changed by small amounts from their steady state values, they will produce changes in field flux linkage and armature flux linkage, which will initiate a transient response. These changes of the input will result in changes of the outputs which are armature current, field current and speed.

The total flux per pole can be represented as:

$$
\Phi=\Phi(\mathrm{IA}, \mathrm{IF})
$$

and the change in total flux per pole is given by:

$$
\begin{equation*}
\Delta \Phi=\left(\frac{\partial \Phi}{\partial I A}\right)_{I F} \cdot \Delta I A+\left(\frac{\partial \Phi}{\partial I F}\right)_{I A} \cdot \Delta I F \tag{3.3.1}
\end{equation*}
$$

$\left(\frac{\partial \Phi}{\partial I A}\right)_{I F}$ is the change in flux per pole with change in armature current, when IF is a constant.
$\left(\frac{\partial \Phi}{\partial \mathrm{IF}}\right)_{\text {IA }}$ is the change in flux per pole with change in field current when IA is a constant.

If ψ is the total flux linkage:

$$
\begin{align*}
& \Delta \psi F=\Delta \psi F(I A, I F) \tag{3.3.2}\\
& \Delta \psi A=\Delta \psi A(I A, I F) \tag{3.3.3}
\end{align*}
$$

where:
$\Delta \psi F=$ change in total field flux linkage
$\Delta \psi A=$ change in total armature flux linkage.
Let $d / d t=D$.

Taking the partial derivatives of 3.3 .2 and 3.3 .3 with respect to time:

$$
\begin{align*}
& D(\Delta \psi F)=\left(\frac{\partial \psi F}{\partial I A}\right)_{I F} \cdot D(\Delta I A)+\left(\frac{\partial \psi F}{\partial F}\right)_{I A} \cdot D(\Delta I F) \tag{3.3.4}\\
& D(\Delta \psi A)=\left(\frac{\partial \psi A}{\partial I A}\right)_{I F} \cdot D(\Delta I A)+\left(\frac{\partial \psi A}{\partial I F}\right)_{I A} \cdot D(\Delta I F) \tag{3.3.5}
\end{align*}
$$

where:

$$
\begin{aligned}
\left(\frac{\partial \psi F}{\partial I F}\right)_{I A}= & \text { change in total field flux linkage with } \\
& \text { change in field current, keeping armature } \\
& \text { current constant. } \\
\left(\frac{\partial \psi F}{\partial I A}\right)_{I F}= & \text { change in total field flux linkage with } \\
& \text { change in armature current, keeping field } \\
& \text { current constant. }
\end{aligned}
$$

$\left(\frac{\partial \psi A}{\partial \mathrm{IF}}\right)_{I A}=$ change in total armature flux linkage with change in field current, keeping armature current constant.
$\left(\frac{\partial \psi A}{\partial T A}\right)_{I F}=$ change in total armature flux linkage with change in armature current, keeping field current constant:

Equation for change in armature input
For a steady state condition, the armature circuit equation may be written as:

$$
\begin{equation*}
V A=(R A+R A 1) I A+E \tag{3.3.6}
\end{equation*}
$$

If the input voltage is changed by a small amount $\triangle V A$ the result is:

$$
\begin{equation*}
\mathrm{VA}+\Delta \mathrm{VA}=(\mathrm{RA}+\mathrm{RAI})(\mathrm{IA}+\Delta \mathrm{IA})+\mathrm{D}(\Delta \psi \mathrm{~A})+E+\Delta \mathrm{E} \tag{3.3.7}
\end{equation*}
$$

$D(\triangle \psi A)$ is due to the total inductance of the armature winding
Subtracting (3.3.6) from (3.3.7)

$$
\begin{equation*}
\Delta \mathrm{VA}=(\mathrm{RA}+\mathrm{RAl}) \Delta \mathrm{IA}+\mathrm{D}(\Delta \psi \mathrm{~A})+\Delta \mathrm{E} \tag{3.3.8}
\end{equation*}
$$

The back e.m.f. is represented by:

$$
E=K_{e} \Phi N
$$

where $K_{e}=Z P / 60 . A$ is the back e.m.f. constant

$$
\begin{align*}
\Delta E & =K e \cdot N \Delta \Phi+K_{e} \cdot \Phi \Delta N \\
& =K e \cdot N \cdot\left(\frac{\partial \Phi}{\partial I A}\right) \cdot \Delta I A+K e \cdot N\left(\frac{\partial \Phi}{\partial I F}\right) \cdot \Delta I F+K e \cdot \Phi \cdot \Delta N \tag{3.3.9}
\end{align*}
$$

Let $\mathrm{RT}=\mathrm{RA}+\mathrm{RAl}$
$=$ Substituting equations (3.3.9) and (3.3.5) into (3.3.8):

$$
\Delta V A=R T \cdot \Delta I A+\left(\frac{\partial \psi A}{\partial I A}\right)_{I F} \cdot D(\Delta I A)+\left(\frac{\partial \psi A}{\partial I F}\right) I A \cdot D(\Delta I F)+K_{e} N\left(\frac{\partial \Phi}{\partial I A}\right) \Delta I A
$$

$$
+K_{e} \cdot N \cdot\left(\frac{\partial \Phi}{\partial I F}\right) \cdot \Delta I F+K_{e} \cdot \Phi \cdot \Delta N
$$

Rearranging

$$
\begin{align*}
& \Delta V A=\left[R T+K_{e} \cdot N\left(\frac{\partial \Phi}{\partial I A}\right)\right] \Delta I A+K_{e} \cdot N\left(\frac{\partial \Phi}{\partial I F}\right)_{I A} \cdot \Delta I F+K_{e} \cdot \Phi \Delta N+\left(\frac{\partial \psi A}{\partial I A}\right)_{I F} \cdot D(\Delta I A) \\
&+\left(\frac{\partial \psi A}{\partial I F}\right)_{I A} \cdot D(\Delta I F) \tag{3.3.10}
\end{align*}
$$

The steady state equation relating the field voltage to the field current is:

$$
\begin{equation*}
\mathrm{VF}=\mathrm{RF} \cdot I \mathrm{~F} \tag{3.3.11}
\end{equation*}
$$

If a change is made in the field voltage, the result is:

$$
\begin{equation*}
\mathrm{VF}+\Delta \mathrm{VF}=\mathrm{RF}(\Delta \mathrm{IF}+\mathrm{IF})+\mathrm{D}(\Delta \psi F) \tag{3.3.12}
\end{equation*}
$$

$D(\triangle \Psi F)$ is due to the total inductance of the field winding Subtracting (3.3.11) from (3.3.12) and substituting (3.3.4):

$$
\begin{equation*}
\Delta \mathrm{VF}=\mathrm{RF} \cdot \Delta \mathrm{IF}+\left(\frac{\partial \psi F}{\partial \mathrm{IA}}\right)_{I F} \mathrm{D}(\Delta \mathrm{IA})+\left(\frac{\partial \psi F}{\partial \mathrm{IF}}\right)_{I A} \mathrm{D}(\Delta \mathrm{IF}) \tag{3.3.13}
\end{equation*}
$$

Torque equation

The torque developed by a motor is given by:

$$
\mathbf{T}_{\mathbf{e}}=K_{t} \Phi \mathrm{I}_{\mathrm{A}}
$$

- where $K_{t}=Z P / 2 \pi A$ is torque constant

If the torque is changed by small amounts in the neigh-- bourhood of a steady state:

$$
\mathrm{T}_{\mathrm{e}}+\Delta \mathrm{T}_{\mathrm{e}}=\mathrm{K}_{\mathrm{t}}(\Phi+\Delta \Phi)(\mathrm{IA}+\Delta \mathrm{IA})
$$

Neglecting the second order terms:

$$
\begin{equation*}
\Delta \mathrm{T} \mathrm{e}_{\mathrm{e}}=\mathrm{K}_{\mathrm{t}} \cdot \Phi \cdot \Delta \mathrm{IA}+\mathrm{K}_{\mathrm{t}} \Delta \Phi \cdot \mathrm{IA} \tag{3.3.14}
\end{equation*}
$$

Steady state
electrical torque can also be represented by:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{e}} & =\text { load torque }+ \text { viscous torque } \\
& =\mathrm{T}_{\ell}+2 \pi \mathrm{ND} 1
\end{aligned}
$$

If the torque is changed by a small amount in the neighbourhood of the steady state value:

$$
\begin{align*}
T_{e}+\Delta T_{e} & =T_{\ell}+\Delta T_{\ell}+(2 \pi \mathrm{~J} / 60) \cdot \mathrm{D} \Delta \mathrm{~N}+(2 \pi \mathrm{Dl} / 60) \cdot(\mathrm{N}+\Delta \mathrm{N}) \\
\Delta \mathrm{T}_{\mathrm{e}} & =\Delta \mathrm{T}_{\ell}+(2 \pi \mathrm{~J} / 60) \cdot \mathrm{D} \Delta \mathrm{~N}+(2 \pi \mathrm{D} 1 / 60) \cdot \Delta \mathrm{N} \tag{3.3.15}
\end{align*}
$$

Equating. (3.3.14) and (3.3.15) and rearranging

$$
\Delta \mathrm{T}_{\ell}=\mathrm{K}_{\mathrm{t}} \cdot \Phi \Delta \mathrm{IA}+\mathrm{K}_{\mathrm{t}} \cdot \Delta \Phi \cdot I \mathrm{~A}-(2 \pi \mathrm{~J} / 6 \mathrm{O}) \cdot \mathrm{D} \Delta \mathrm{~N}-(2 \pi \mathrm{D} 1 / 6 \mathrm{O}) \cdot \Delta \mathrm{N}
$$

Substituting for $\Delta \Phi$ from equation (3.3.1)

$$
\Delta T_{\ell}=K_{t}\left(\Phi+\frac{\partial \Phi}{\partial \overline{I A}} \cdot I A\right) \Delta I A+K_{t}\left(\frac{\partial \Phi}{\partial \bar{I} \bar{F}}\right) \cdot I A \cdot \Delta I F-(2 \pi J / 6 O) \cdot D \Delta N
$$

$$
-(2 \pi \mathrm{Dl} / 60) \cdot \Delta \mathrm{N} \quad(3.3 .16)
$$

a set of first order linear differential equations is obtained, representing the separately excited d.c. motor:

$$
\begin{aligned}
& \left.\Delta V A=\left[R T+K_{e} \cdot N\left(\frac{\partial \Phi}{\partial I A}\right)\right] \Delta I A+\left[K_{e}^{N} \cdot \frac{\partial \Phi}{\partial I F}\right] \Delta I F+K_{e} \Phi \Delta N+\left(\frac{\partial \psi A}{\partial I A}\right) I F \cdot D \Delta I A\right) \\
& +\left(\frac{\partial \psi A}{\partial \overline{I F}}\right)_{I A} \cdot I(\Delta I F) \\
& \Delta \mathrm{VF}=\mathrm{RF} . \Delta \mathrm{IF}+\left(\frac{\partial \psi F}{\partial \mathrm{IA}}\right)_{I F} \cdot \mathrm{D} \Delta \mathrm{IA}+\left(\frac{\partial \psi F}{\partial \overline{I F}}\right)_{I A} \cdot \mathrm{D} \Delta \mathrm{IF} \\
& \Delta \mathrm{~T}_{\ell}=\mathrm{K}_{\mathrm{t}}\left[\Phi+\left(\frac{\partial \Phi}{\partial \mathrm{IA}}\right) \cdot \mathrm{IA}\right] \Delta \mathrm{IA}+\mathrm{K}_{\mathrm{t}} \cdot \mathrm{IA}\left(\frac{\partial \Phi}{\partial \mathrm{IF}}\right) \cdot \Delta \mathrm{IF}-\left(2 \pi \mathrm{D}^{\prime} / 60\right) \cdot \Delta \mathrm{N} \\
& -(2 \pi J / 60) . D \Delta N
\end{aligned}
$$

For simplicity let

$$
\frac{\partial \Phi}{\partial \mathrm{IA}}=\mathrm{G} 1, \quad \frac{\partial \Phi}{\partial \overline{I F}}=\mathrm{G} 2, \quad\left(\frac{\partial \psi A}{\partial \mathrm{IA}}\right)_{I F}=F 1, \quad\left(\frac{\partial \psi A}{\partial \mathrm{IF}}\right)_{I A}=F 2,
$$

$$
\left.\frac{\partial \psi F}{\partial I A}\right)_{I F}=H 1, \quad\left(\frac{\partial \psi F}{\partial T F}\right)_{I A}=H 2 .
$$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{RT}+\mathrm{K}_{e} \cdot \mathrm{~N} \cdot \mathrm{G1} \\
\mathrm{RP} & =\mathrm{K}_{e} \cdot \mathrm{~N} \cdot \mathrm{G} 2 \\
\mathrm{RTA} & =\mathrm{K}_{t}(\mathrm{G} 1 \cdot I A+\Phi) \\
\mathrm{RTF} & =\mathrm{K}_{t} \cdot I A \cdot G 2
\end{aligned}
$$

The simplified model in terms of new constants is:
$\left[\begin{array}{c}\Delta V A \\ \Delta V F \\ \Delta T_{l}\end{array}\right]=\left[\begin{array}{ccc}R & R P & \mathrm{~K}_{\mathrm{e}}(\\ 0 & R F & 0 \\ R T A & R T F & \frac{-2 \pi D^{4}}{60}\end{array}\right]\left[\begin{array}{l}\Delta I A \\ \Delta I F \\ \Delta N\end{array}\right]+\left[\begin{array}{ccc}F 1 & F 2 & 0 \\ H 1 & H 2 & 0 \\ 0 & 0 & \frac{-2 \pi J}{60}\end{array}\right]\left[\begin{array}{l}D \Delta I A \\ D \Delta I F \\ D \Delta N\end{array}\right](3.3 .17)$

Let:
$Y=\left[\begin{array}{c}\Delta V A \\ \vdots \\ \Delta V F \\ \Delta T_{\ell}\end{array}\right]$,
$X=\left[\begin{array}{c}\Delta I A \\ \Delta I F \\ \Delta N\end{array}\right]$,
$A=\left[\begin{array}{ccc}\mathrm{R} & \mathrm{RP} & \mathrm{K}_{e}{ }^{\Phi} \\ 0 & \mathrm{RF} & 0 \\ \mathrm{RTA} & \mathrm{RTF} & \frac{-2 \pi \mathrm{DA}}{60}\end{array}\right]$
and

$$
C=\left[\begin{array}{ccc}
F 1 & F 2 & 0 \\
H 1 & H 2 & 0 \\
0 & 0 & \frac{-2 \pi J}{60}
\end{array}\right]
$$

Equation (3.3.17) can now be represented by:

$$
\begin{equation*}
Y=A X+C \frac{d X}{d t} \tag{3.3.18}
\end{equation*}
$$

z -multiplying equation (3.3.18) by C^{-1} and rearranging

$$
\begin{equation*}
\frac{d X}{d t}=-C^{-1} \cdot A \cdot X+C^{-1} Y \tag{3.3.19}
\end{equation*}
$$

where: $\quad X$ is the state vector of the system Y is the control vector of the system.

$$
|\mathrm{C}|=\frac{2 \pi \mathrm{~J}}{6 \mathrm{O}} \quad[\mathrm{~F} 2 . \mathrm{H} 1-\mathrm{H} 2 . \mathrm{F} 1]
$$

$$
=\frac{-2 \pi \mathrm{~J}}{60} \mathrm{EL}
$$

where: $\quad \mathrm{EL}=\mathrm{H} 2 . \mathrm{F} 1-\mathrm{F} 2 . \mathrm{HI}$

$$
\mathrm{C}^{-1}=\left[\begin{array}{ccc}
\mathrm{H} 2 / \mathrm{EL} & -\mathrm{F} 2 / \mathrm{EL} & 0 \\
-\mathrm{H} 1 / \mathrm{EL} & \mathrm{~F} 1 / \mathrm{EL} & 0 \\
0 & 0 & \frac{-60}{2 \pi J}
\end{array}\right]
$$

Substituting C^{-1} in equation (3.3.19)

$$
+\left[\begin{array}{ccc}
\mathrm{H} 2 / \mathrm{EL} & -\mathrm{F} 2 / \mathrm{EL} & 0 \\
-\mathrm{H} 1 / \mathrm{EL} & \mathrm{~F} 1 / \mathrm{EL} & 0 \\
0 & 0 & \frac{-60}{2 \pi J} \cdot
\end{array}\right]\left[\begin{array}{c}
\Delta \mathrm{VA} \\
\Delta \mathrm{VF} \\
\Delta \mathrm{~T}_{\ell}
\end{array}\right]
$$

Simplifying:

(3.3.20)

Equation (3.3.20) ${ }^{28}$ is a set of first-order differential equations representing a separately excited d.c. motor. Integration of this set of equations will give the time response of the machine.

3.4 Modification in the Machine Model

Change in armature input and field input is made by varying the series resistance in the armature circuit and field circuit. Equations in terms of input variable are written taking series resistance into account. This series resistance is then changed by connecting another resistance in parallel and another equation is then written representing the changed condition. The remainder of the analysis is then carried out along the same lines as done previously.

Armature Circuit

If R2 is a series resistance:

$$
\begin{equation*}
V A=(R A+R A 1) I A+I A \cdot R 2+E \tag{3.4.1}
\end{equation*}
$$

Another resistance R1 is switched in parallel with R2:

$$
\begin{equation*}
V A=(R A+R A 1)(I A+\Delta I A)+\left(\frac{R 2 \cdot R 1}{R I+R 2}\right)(I A+\Delta I A)+E+\Delta E+D(\Delta \psi A) \tag{3.4.2}
\end{equation*}
$$

Subtracting (3.4.1) from (3.4.2):
$0=(R A+R A 1) \Delta I A+\Delta E+D(\Delta \psi A)+\left(\frac{R 1 \cdot R 2}{R 1+R 2}\right) \Delta I A+I A\left(\frac{R 1 \cdot R 2}{R 1+R 2}-R 2\right)$
$\frac{R 2^{2}}{(R 1+R 2)} I A=\left(R A+R A 1+\frac{R 1 \cdot R 2}{R 1+R 2}\right) \Delta I A+\Delta E+D(\Delta \psi A)$

Rest of the analysis is carried out as in Section 3.2. ,

Field circuit:

$$
\begin{equation*}
\mathrm{VF}=\mathrm{IF} \cdot \mathrm{RF}+\mathrm{IF} \cdot \mathrm{R} 3 \tag{3.4.4}
\end{equation*}
$$

If another resistance $R 4$ is switched in parallel with R3:

$$
\mathrm{VF}=(\mathrm{IF}+\Delta \mathrm{IF}) \mathrm{RF}+\frac{\mathrm{R} 3 . \mathrm{R} 4}{(\mathrm{R} 3+\mathrm{R4})}(\mathrm{IF}+\Delta \mathrm{IF})+\mathrm{D}(\Delta \psi F)
$$

Subtracting equation (3.4.4) from (3.4.5)

$$
\begin{aligned}
& 0=R F \cdot \Delta I F+R 3 \cdot R 4 /(R 3+R 4) \cdot \Delta I F+((R 3 \cdot R 4 /(R 3+R 4))-R 3) I F+D(\Delta \psi F) \\
& \left(R 3^{2} /(R 3+R 4)\right) \cdot I F=(R F+R 3 \cdot R 4 /(R 3+R 4)) \Delta I F+D(\Delta \psi F)
\end{aligned}
$$

The remainder of the analysis is carried out as in Section 3.3. No change in load torque is made and the equation for change in load torque remains the same as in Section 3.3.

Let:

$$
\begin{aligned}
& R=R A+R A 1+R 1 \cdot R 2 /(R 1+R 2)+K_{e} \cdot N \cdot G 1 \\
& R F F=R F+\frac{R 3 \cdot R 4}{R 3+R 4}
\end{aligned}
$$

The machine model expressed in terms of first order differential equations and arranged in matrix form is given below:

$$
+\left[\begin{array}{ccc}
\mathrm{H} 2 / \mathrm{EL} & -\mathrm{F} 2 / \mathrm{EL} & 0 \\
-\mathrm{H} 1 / \mathrm{EL} & \mathrm{~F} 1 / \mathrm{EL} & 0 \\
0 & 0 & \frac{-60}{2 \pi J}
\end{array}\right]\left[\begin{array}{c}
\left(\mathrm{R} 2^{2} / \mathrm{R} 2+\mathrm{R} 1\right) \mathrm{IA} \\
\mathrm{R3}^{2} /(\mathrm{R} 3+\mathrm{R} 4) . \mathrm{IF} \\
\Delta \mathrm{~T}_{\ell}
\end{array}\right]
$$

3.5 Modification Considering the Dynamic Loading

The load on the test motor is a separately excited mechanically coupled d.c. generator. The flux per pole of the generator is constant and hence the torque on the shaft of the generator is proportional to the armature current. Any change in the armature input voltage or the field input voltage of the motor brings about a change in the speed and hence changes the generator emf and current passing through a resistance connected as a load on the generator. It follows therefore that the load torque T on the motor changes.

If:
$\Phi 1$ is the flux per pole of the generator
Ket is the emf constant of the generator
K 11 is the torque constant of the generator
RL is the load resistance
N is the speed in rev/min
RT is the brush contact resistance and the armature resistance
T_{g} is the generated electrical torque
El is the generated emf
KA is constant
then the emf El generated is given by:

$$
\begin{aligned}
& \mathrm{El}=(\mathrm{RT}+\mathrm{RL}) \mathrm{IA1} \\
& \mathrm{~T}_{\mathrm{g}}=\mathrm{Kt1} \Phi 1 . \mathrm{IA1} \\
& \mathrm{~T}_{9}=\frac{\mathrm{Kt1} \Phi 1 . \mathrm{Kel} \cdot \Phi 1 \cdot \mathrm{~N} / 60}{(\mathrm{RT}+\mathrm{RL})}
\end{aligned}
$$

$$
\begin{align*}
T_{g} & =K A \cdot N / 60 \tag{3.5.1}\\
\Delta T_{g} & =K A \cdot \Delta N / 60 \tag{3.5.2}
\end{align*}
$$

If: T_{gf} is the friction and windage torque of the generator Tmf is the friction and windage torque of the motor Tgi is the torque lost in the iron losses of the generator
$T_{m i}$ is the torque lost in the iron losses of the motor.
the electrical torque developed by the motor is given by:

$$
\begin{aligned}
& T_{e}=T_{g}+T_{g f}+T_{m f}+T_{g i}+T_{m i} \\
& T_{m f}+T_{g f}=2 \pi N D I \\
& T_{g}=T_{e}-\frac{2 \pi N \cdot D I}{60}-T_{g i}-T_{m i}
\end{aligned}
$$

Let the power post in the iron of the generator be Cl watts and the power lost in the iron of the motor be C2.

$$
\begin{equation*}
\mathrm{T}_{\mathrm{g}}=\mathrm{Kt} \cdot \Phi . \mathrm{IA}-\frac{2 \pi \mathrm{~N} \cdot \mathrm{D} 1}{60}-\frac{\mathrm{Cl}+\mathrm{C} 2}{2 \pi \frac{N}{60}} \tag{3.5.3}
\end{equation*}
$$

Substitute T_{g} in equation 3.5.1 in equation 3.5.3:

$$
\begin{align*}
& K A \cdot \frac{N}{60}=K t \cdot \Phi \cdot I A-\frac{2 \pi N \cdot D 1}{6 O}-\frac{C 1+C 2}{2 \pi \frac{N}{60}} \\
& K A=\frac{K t \cdot \Phi \cdot I A}{N / 6 O}-2 \pi D 1-\frac{(C 1+C 2)}{2 \pi\left(\frac{N}{60}\right)^{2}} \tag{3.5.4}
\end{align*}
$$

The 1 oad torque on the motor

$$
T_{\ell}=T_{g}+T_{g i}
$$

If the variation in the speed is small enough to make T_{gi} constant:

$$
\Delta \mathrm{T}_{\ell}=\Delta \mathrm{T}_{\mathrm{g}}
$$

Substituting ΔT_{ℓ} for ΔT_{g} in equation 3.5.2

$$
\Delta \mathrm{T}_{\ell}=\mathrm{KA} \cdot \Delta \mathrm{~N} / 6 \mathrm{O}
$$

Substituting ΔT_{ℓ} in the set of equations 3.4.6
the equations overleaf are obtained.

$\mathrm{D} \Delta \mathrm{IA}$		R.HZ/EL	-RP.HZ/EL+RFF.F2/EL-Ke.Ф.HZ/EL	[IA $]$
$D \triangle I F$	=	R.H1/EL	-RFF.Fl/EL+RP.HI/EL Ke.Ф.HI/EL	$\triangle I F$
$D \triangle N$		$\frac{\mathrm{RTA}}{2 \pi J} .60$	$\frac{\mathrm{RTF}}{2 \pi J} \cdot 60 \quad-\frac{\mathrm{D} 1}{\mathrm{~J}}-\frac{\mathrm{KA}}{2 \pi J}$	$\Delta \mathrm{N}$

$+\left[\begin{array}{ccc}\text { H2/EL } & \text {-F2/EL } & 0 \\ -H 1 / E L & \text { FI/EL } & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\mathrm{R}^{2} /(\mathrm{R} 2+\mathrm{R} 1) . \mathrm{IA} \\ \mathrm{R}^{2} /(\mathrm{R} 3+\mathrm{R} 4) \cdot \mathrm{IF} \\ \vdots \\ 0\end{array}\right]$
(3.5.5)

CHAPTER 4

PARAMETER MEASUREMENTS

4.1 General

Generally parameters such as the resistances of the armature and field windings, self and mutual inductances, moment of inertia and constant of friction are supplied by the manufacturer of the machine and taken as such if measurements are not possible. But generally they are fixed quantities and not dependent either on field current or armature current. The brush drop of the machine is assumed to be constant at 2 V and the brush contact resistance is not measured for different armature currents, but calculated by dividing the brush contact drop with armature current. The parameters of the motor model, which has been derived in the previous chapter, are functions of field and armature current, flux per pole and speed. In this chapter expressions are derived for two main parameters G1 and G2. Experiments are performed and characteristics are drawn to calculate G1 and G2.

The resistance of the armature and field winding increases with temperature. It is difficult to estimate the temperature of field and armature winding separately. Approximate temperatures can be found if it is assumed that the flow of heat is taking place from rotor to stator, and temperature of the field winding and armature winding is the same. The constant of friction is
derived as a function of the square of the speed. An expression for power loss in friction and windage is derived. Tests are performed to obtain the characteristics relating power 'lost in friction and windage to the speed.

4.2 Expression for G1 ${ }^{28}$.

The expression for G1, that is change in flux per pole with change in armature current can be derived by differentiating flux per pole with respect to armature current IA.

The speed of the motor can be expressed as:

$$
\begin{equation*}
N=(N O+D N, I A / I F L) \tag{4.2.1}
\end{equation*}
$$

where NO is no load speed of the motor and DN is the difference of speed between no load and full load. Speed increases linearly from no load to full load, when field current and armature voltage are held constant.

$$
\mathrm{VAA}=\mathrm{VA}-\mathrm{IA} \cdot \mathrm{RA} 1
$$

where VAA is the voltage across armature winding.

Back e.m.f. $E=$ VAA - IA.RA

$$
\begin{align*}
& \Phi=\frac{V A A-I A \cdot R A}{K_{e} \cdot} \tag{4.2.2}\\
& \Phi=\frac{V A A-I A \cdot R A}{K_{e}(N O+D N \cdot I A / I F L)} \tag{4.2.3}
\end{align*}
$$

Flux per pole Φ induces a back e.m.f. E in the armature winding whose resistance is $R A$. The reason for taking only IA.RA in the expression is that RA is the armature coil resistance, in which back e.m.f. is induced and RA1, the brush resistance, is considered as an external resistance. To calculate the change in flux per pole with change in armature current, differentiate equation (4.2.3) with respect to IA and simplifying

$$
\begin{equation*}
\left(\frac{\partial \Phi}{\partial \mathrm{IA}}\right)_{\mathrm{IF}}=\mathrm{G} 1=\frac{-(\mathrm{NO}+\mathrm{DN} \cdot \mathrm{IA} / \mathrm{IFL}) \cdot \mathrm{RA}-(\mathrm{VAA}-\mathrm{IA} \cdot \mathrm{RA}) \mathrm{DN} / \mathrm{IFL}}{\mathrm{~K}_{\mathrm{e}}(\mathrm{NO}+\mathrm{DN} \cdot \mathrm{IA} / \mathrm{IFL})^{2}} \tag{4.2.4}
\end{equation*}
$$

4.3 Expression for G2 ${ }^{28}$

Change in flux per pole with change in field current is calculated by utilising the fact that the speed of the motor is a function of armature and field currents.The speed of the motor N can therefore be differentiated with respect to field current.

$$
\begin{equation*}
N=N O+(I A / I F L) \cdot D N \tag{4.3.1}
\end{equation*}
$$

Differentiating (4.3.1) with respect to IF

$$
\begin{equation*}
\left(\frac{\partial N}{\partial \mathrm{IF}}\right)_{I A}=\left(\frac{\partial N O}{\partial \mathrm{IF}}\right)_{I A}+\left(\frac{\partial D N}{\partial \mathrm{IF}}\right)_{I A} \cdot I A / I F L \tag{4.3.2}
\end{equation*}
$$

Total flux per pole is given by:

$$
\Phi=\frac{V A A-I A \cdot R A}{K_{e} \cdot N}
$$

Differentiating (4.3.3) with respect to IF:

$$
\begin{equation*}
\left(\frac{\partial \Phi}{\partial \mathrm{IF}}\right)_{\mathrm{IA}}=\mathrm{G} 2=\frac{(\mathrm{VAA}-\mathrm{RA} \cdot \mathrm{IA})}{\mathrm{K}_{\mathrm{e}}} \cdot\left(\frac{1}{-\mathrm{N}^{2}}\left(\frac{\partial \mathrm{~N}}{\partial \mathrm{IF}}\right)_{\mathrm{IA}}\right) \tag{4.3.4}
\end{equation*}
$$

Substituting (4.3.1) and (4.3.2) into (4.3.4):

$$
\begin{equation*}
\mathrm{G} 2=\frac{-(\mathrm{VAA}-\mathrm{RA} \cdot \mathrm{IA})}{\mathrm{K}_{\mathrm{e}}\left(\mathrm{NO}+\mathrm{DN} \cdot \frac{\overline{I A}}{\overline{I F L}}\right)^{2}}\left[\left(\frac{\partial N O}{\partial \overline{I F}}\right)_{I A}+\frac{\mathrm{IA}}{\mathrm{IFL}}\left(\frac{\partial \mathrm{DN}}{\partial \overline{\mathrm{IF}}}\right)_{A}\right] \tag{4.3.5}
\end{equation*}
$$

4.4 Estimation of G1 and G2 28

For estimating G1 and G2 at constrontield current the following constants are needed:
i) No load speed.
ii) Change in speed between no load and full load.
iii) $(\partial N O / \partial I F)_{I A}$
iv) $(\partial D N / \partial I F) I A$
v) Armature resistance at a particular load current.

Described below is the simple experimental set-up which determines the first four parameters required for the determination of G1 and G2. Fig. 4.1 shows the circuit diagram.

FIG. 4.1 Circuit diagram for determining the characteristics of a separately

The generalised machine is connected as a separately excited d.c. motor. The voltage across the armature is kept constant at loov throughout the experiment by adjusting R2.

The generalised machine is mechanically coupled to another d.c. machine. This machine is excited at its rated field current. This machine is used to load the test machine. The test machine field is energized and the field current is kept constant throughout for each set. Each set consists of loading the machine from no load to full load. Full load current for the generalised machine is 8 A . For every load current sufficient time is allowed so that the armature and field winding temperature becomes constant. The speed of the motor is noted for that armature current and plotted. A rising straight line is obtained. The point of intersection of this line at zero current and full load current are the no load and full load speed. These N Vs. IA characteristics are drawn for different field currents. These characteristics are shown in Fig. 4.2.

The difference between theno load and the fult load speed DN is obtained and then plotted against the corresponding field current and is shown in Fig.4.3. The tangent on any point on this curve gives the slope ($\partial \mathrm{DN} / \partial \mathrm{IF})_{\text {IA }}$. A curve showing the relationship between thenoload speed NO and the field current is shown in Fig. 4.4. The fangent at any point on this curve gives the slope ($\partial \mathrm{NO} / \partial \mathrm{IF}$).

FIG. 4.2 Relation between motor speed and armature current. Each characteristic is for constant field current and constant armature voltage

FIG. $4.3 \begin{aligned} & \text { Relationship between field current and change in } \\ & \text { motor speed }\end{aligned}$

FIG. 4.4 Relationship between field current and the no load speed of the motor

Table I shows the values of no load speed, full load speed and change in speed, for different values of field current.

TABLE I
No load speed, full load speed and change in speed at different field currents

Field Current Amps.	No load Speed rev/min	Full load Speed rev $/ \mathrm{min}$	Change in Speed rev/min
1.6	3295	3450	
1.9	2965	3100	155
2.3	2595	2875	135
2.5	2495	2595	120
2.8	2440	2530	110
3.1	2340	2410	100
3.4	2270	2330	90
3.7	2210	2255	70
4.0			60

4.5 Measurement of Armature Resistance at Different Load Currents

The temperature of the machine increases with the increase in armature current. Heat is generated due to armature copper loss, eddy current and hysteresis losses, friction and windage loss and field winding copper loss. Iron losses are mainly in the armature ${ }^{17}$ and friction - loss is in the shaft and bearing and between brush and
commutator, are all on the armature side of the machine. Therefore heat transfer is taking place from armature winding to field winding. At constant field current the rise in temperature of the machine is dependent upon the armature current. For steady state armature current the rise in temperature can be assumed the same for both field and armature windings.

There is a portion of field winding in the generalised machine accessible to the tip of the thermocouple. The tip of the thermocouple is placed on the portion of the field winding which is facing the armature winding. The rise in temperature of the field winding is assumed to be the same as that of the armature in the steady state condition. A graph is then drawn between the rise in temperature and the armature current and is shown in Fig: 4.5. Table 2 shows the rise in temperature at different load currents. The resistance of the armature winding and the field winding is then calculated for any temperature rise by:

$$
\begin{equation*}
R_{h}=R_{c}\left\{1+\alpha\left(T_{h}-T_{c}\right)\right\} \tag{4.5.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
R_{h} & =\text { resistance of hot winding } \\
R_{c} & =\text { resistance of cold winding } \\
\alpha & =\text { temperature coefficient of resistance } \\
& =0.04 \\
\left(T_{h}\right. & \left.-T_{c}\right)=\text { rise in the temperature of the winding } \\
T_{c} & =\text { ambient temperature }
\end{aligned}
$$

TABLE 2
Rise in temperature of the machine at different armature currents

Armature Current Amps	$\begin{gathered} \text { Ambient } \\ \text { Temperature } \\ { }_{O_{C}} \end{gathered}$	$\begin{gathered} \text { Rise in } \\ \text { Temperature } \\ { }_{\mathrm{O}}^{\circ} \end{gathered}$
1.2	21	14
- 2.4 , 2		-Kerty 19
3.5 -		23
4.6		27
5.6		31
6.6		35
7.6		38
8.6		42

Resistance of armature winding at $21^{\circ} \mathrm{C}=0.46$ ohm By using formula 4.5.1 and the rise in temperature at different load currents from the graph, rise in temperature Vs. IA, the resistance of the armature winding at different load currents can be calculated. Fig. 4.6 shows the RA Vs. IA graphically and Table 3 shows the armature resistance at different load currents.

TABLE 3

Armature resistance at different armature current

Armature Current Amps	Armature Resistance Ohms
1	0.485
2	0.495
3	0.502
4	0.509
5	0.517
6	0.524
7	
8	

FIG. 4.5 Relationship between armature current and rise in temperature of the machine.

FIG. 4.6 Relationship between armature current and armature resistance when the ambient temperature is $21^{\circ} \mathrm{C}$

4.6 Measurement of Brush Contact Resistance

Brush resistance is measured indirectly, by applying voltage at armature terminals after locking the armature and measuring the current passing through the winding. Armature voltage divided by the current gives the brush contact resistance and armature winding resistance at room temperature. From this armature winding resistance, at room temperature, is subtracted. This gives brush contact resistance. A curve is drawn for brush contact resistance Vs. armature current. Fig. 4.7 shows the relationship between brush contact resistance and armature current and the Table 4 shows the brush contact resistance at different load currents.

TABLE 4

Brush contact resistance at different armature currents

Current through armature Amps	Voltage applied Volts	Total resis- tance at 210C RT Ohms	Brush contact resistance RT-0.46 Ohms
1	1.85	1.85	1.39
2	3.05	1.52	1.06
3	3.80	1.27	0.81
4	4.60	1.15	0.69
5	5.2	1.04	0.58
6	6.10	1.01	0.55
7	6.80	0.97	0.51
8	7.40	0.925	0.465

FIG. 4.7 Relationship between armature current and brush contact resistance

4.7 Measurement of Field Resistance

The field winding is accessible for measurement. The resistance of the field winding at room temperature is measured by applying voltage to it and measuring the current. It is assumed previously that the heat flow takes place from the armature to the stator and at a steady state condition the temperatures of the armature and the field winding are the same. Therefore at a steady state load current the temperature of the field winding is the same as the temperature of the armature winding. Also because the calculation for transient response is carried out around a steady state armature current and a constant-field current, the field resistance is calculated for those temperatures which correspond to that particular armature current. Figure 4.8 shows the relation between field resistance and armature current and Table 5 shows the field resistance at different load currents.
${ }^{*}$ Measured resistance of field winding $=2.44 \Omega$ at $21^{\circ} \mathrm{C}$.

TABLE 5
Field resistance including temperature effect umbient temperature $21^{\circ} \mathrm{C}$

FIG. 4.8 Relationship between armature current and field resistance ambient temperature $21^{\circ} \mathrm{C}$

4.8 Measurement of the Constant: of Viscous Friction

The electrical torque generated by the motor is given by:

$$
\mathrm{T}_{\mathrm{e}}=\mathrm{K}_{\mathrm{t}} \cdot \Phi . I \mathrm{~A}
$$

A fraction of this generated torque is absorbed in bearing and brush friction, windage, hysteresis and eddy current. Hysteresis and eddy current losses could be put together as iron loss or core loss, as they are eliminated from the final equation for friction and windage loss

Friction and windage loss is a function of the square of the speed and the torque loss in it is represented by:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{FW}}=2 \pi \mathrm{ND} / 60 \tag{4.8.1}
\end{equation*}
$$

where D is the constant: of friction. If the power lost in friction and windage is P_{L} then

$$
\begin{equation*}
P_{L}=\frac{2 \pi N \cdot T_{F W}}{60} \tag{4.8.2}
\end{equation*}
$$

substituting 4.8.1 in 4.8.2

$$
\begin{align*}
& P_{L}=\frac{2 \pi N}{60} \cdot \frac{2 \pi N D 1}{60} \\
& D_{1}=\frac{P_{L}}{(2 \pi N / 60)^{2}} \tag{4.8.3}
\end{align*}
$$

The constant of friction can be calculated if the power loss in firiction and windage could be estimated at different speeds

For the Westinghouse generalised machine, the power lost in \quad friction and windage is the sum of the power loss in friction and windage of the generalised machine and another machine which is coupled to it and represented by P_{L}.

There are three unknowns for the two machines, one is the core loss of the test or generalised machine, and second is the core loss of the loading machine. Third, is the power loss in friction and windage which is common for both the machines. Three equations will be needed to eliminate core loss, and the final equation could be obtained in the form of applied armature voltages to the generalised machine and the loading machine and copper losses in them. The core loss, though, depends upon the flux density and which, in turn, depends upon both the field and armature current. For the purposes of our calculations of power loss in friction and windage, it will be assumed that the core loss depends only on the field current and not upon the armature current.

The two machines are run in three ways. Firstly, the loading generator or rotor drive motor is run at full excitation leaving the test machine or generalised machine unexcited. Secondly, the test machine, or
generalised machine, is run at full excitation, leaving the rotor drive motor unexcited. Thirdly, the test machine or generalised machine is run at full excitation and the rotor drive motor field is excited to its rated value. The speed is kept constant for all the three runs.

The brush drop of the rotor drive motor is taken as 2 V from the manual of the machine.

When the R.D.M. is running as the motor and G.M. unexcited:

$$
\begin{align*}
& V_{R D} \cdot I_{R D}=\left(R / R_{R D} I_{R D}+2\right) I_{R D}+\text { Core loss of } \tag{4.8.4}\\
& \text { R.D.M. }+P_{L}
\end{align*}
$$

When the G.M. is running as the motor and R.D.M. unexcited:

$$
\mathrm{V}_{\mathrm{G} 1} \cdot \mathrm{I}_{\mathrm{G} 1}=\mathrm{R}_{\mathrm{G} 1} \cdot \mathrm{I}_{\mathrm{G} 1}^{2}+\text { Core loss of G.M. }+\mathrm{P}_{1}(4.8 .5)
$$

When the G.M. is running as the motor and R.D.M. excited to rated field:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{G} 2}: \mathrm{I}_{\mathrm{G} 2}=\mathrm{R}_{\mathrm{G} 2} \cdot \mathrm{I}_{\mathrm{G} 2}^{2}+\text { Core loss of G.M. }+ \tag{4.8.6}\\
& \text { Core Ioss ofR.D.M. }+\mathrm{P}_{\mathrm{L}}
\end{align*}
$$

where: R.D.M. is abbreviation of the rotor drive motor.
G.M. is abbreviation of the generalised machine.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{RD}}= & \text { voltage applied to R.D. motor when G.M. } \\
& \text { field unexcited } \\
\mathrm{I}_{\mathrm{RD}}= & \text { current passing through R.D.M. } \\
\mathrm{V}_{\mathrm{G} 1}= & \text { voltage applied to G.M. when R.D.M. field } \\
& \text { is unexcited } \\
\mathrm{I}_{\mathrm{G} 1}= & \text { current passing through G.M. } \\
\mathrm{V}_{\mathrm{G} 2}= & \text { voltage applied to the G.M. when R.D.M. } \\
& \text { field fully excited } \\
\mathrm{I}_{\mathrm{G} 2}= & \text { current passing through G.M. when R.D.M. } \\
& \text { field fuliy excited. } \\
\mathrm{R}_{\mathrm{ARD}}= & \text { armature resistance of R.D. motor } \\
\mathrm{R}_{\mathrm{G} 1}= & \text { armature and brush contact resistance of } \\
& \text { generalised machine corresponding to } \\
& \text { current } I_{G 1} \\
R_{G 2}= & \text { armature and brush contact resistance of } \\
& \text { G.M. corresponding to current I }
\end{aligned}
$$

Subtract (4.8.5) from (4.8.6):

$$
\mathrm{V}_{\mathrm{G} 2} \cdot \mathrm{I}_{\mathrm{G} 2} \cdot \mathrm{~V}_{\mathrm{G} 1} \cdot \mathrm{I}_{\mathrm{G} 1}=\left(\mathrm{R}_{\mathrm{G} 2} \cdot \mathrm{I}_{\mathrm{G} 2}^{2}-\mathrm{R}_{\mathrm{G} 1} \cdot \mathrm{I}_{\mathrm{G} 1}^{2}\right)+\text { Core loss }
$$

of R.D.M.

$$
\begin{aligned}
\text { Core loss of R.D.M. }= & \left(\mathrm{V}_{\mathrm{G} 2} \cdot I_{G 2}-\mathrm{V}_{\mathrm{G}} \cdot \cdot \mathrm{I}_{\mathrm{GL}}\right)- \\
& \cdot\left(\mathrm{R}_{\mathrm{G} 2} \cdot I_{\mathrm{G} 2}^{2}-\mathrm{R}_{\mathrm{G} 1} \cdot I_{\mathrm{G} 1}^{2}\right) \\
= & \mathrm{C} 1
\end{aligned}
$$

Substitute core loss of the rotor drive motor in equation (5.8.4):

$$
\begin{aligned}
& V_{R D} \cdot I_{R D}=\left(R_{A R D} \cdot I_{R D}+2\right) I_{R D}+C+P_{L} \\
& { }^{P_{L}}=V_{R D} \cdot I_{R D}-\left(R_{A R D} \cdot I_{R D}^{2}+2 I_{R D}\right)-C
\end{aligned}
$$

P_{L} is determined for different speeds and a curve is drawn for P_{L} versus speed and shown by Figure 4.12. The coefficient of friction and windage can then be calculated for any speed.

Figures $4.9,4.10$ and 4.11 show the circuit diagrams for the experiments carried out, whose results are given in Tables 6, 7 and 8 respectively.

Core loss of R.D.M and GM can be calculated by equations 48.4 and 4.8 .5 respectively. Figure 4.13 shows the relation" between. speed and power loss in the iron cf G.M and R.D.M

TABLE 6

Rotor drive motor as motor and generalised machine unexcited.

Speed N rpm	V_{RD} Volts	I_{RD} Amps	$\mathrm{V}_{\mathrm{RD}} \cdot \mathrm{I}_{\mathrm{RD}}$ Watts	$\mathrm{R}_{\text {ARD }}$ Ohms	$\mathrm{I}_{\mathrm{RD}}\left(\mathrm{I}_{\mathrm{RD}} \cdot \mathrm{R}_{\mathrm{ARD}}^{+2}\right)$ Watts
1000	40.5	0.55	22.48	0.72	1.33
1500	79.0	0.67	52.93		1.66
2000	117.0	0.77	90.24		1.96
2500	194.8	0.96	187.00		2.25
3000	233.3	1.10	256.30		2.84

TABLE 7

Generalised machine as motor and rotor drive motor unexcited

Speed $N \mathrm{rpm}$	$\mathrm{V}_{\mathrm{G} 1}$ Volts	$\mathrm{I}_{\mathrm{G} 1}$ Amps	$\mathrm{V}_{\mathrm{G} 1} \cdot \mathrm{I}_{\mathrm{G} 1}$ Watts	$\mathrm{R}_{\mathrm{G} 1}$ Ohms	$\mathrm{I}_{\mathrm{G} 1}{ }^{2} \cdot \mathrm{R}_{\mathrm{G} 1}$ Watts
1000	23.0	0.76	17.59	2.05	1.20
1500	65.2	1.05	68.46	1.90	1.56
2000	86.1	1.15	99.01	1.82	2.10
2500	107.8	1.30	140.00	1.74	2.41
3000	128.8	1.40	180.32	1.71	2.94
				39.20	1.95

FIG. 4.9: R.D.M. as motor at rated.field and variable $V R D$ for different , speed. Field of G.M. unexcited.

FIG. 4.10 G.M. as motor at rated field and variable VG 1 for different speed. Field of R.D.M. unexcited.

TABLE 8
Generalised machine as motor and rotor drive motor fully excited

Speed Nrpm	$\begin{aligned} & \mathrm{V}_{\mathrm{G} 2} \\ & \text { Volts } \end{aligned}$	$I_{G 2}$ Amps	$\begin{array}{r} \mathrm{V}_{\mathrm{G} 2} \mathrm{I}_{\mathrm{G} 2} \\ \text { Watts } \end{array}$	$\mathrm{R}_{\mathrm{G} 2}$ Ohms	$\begin{gathered} \mathrm{I}_{\mathrm{G} 2}{ }^{2} \cdot \mathrm{R}_{\mathrm{G} 2} \\ \text { Watts } \end{gathered}$
500	23.4	1.15	26.96	1.82	2.41
1000	45.0	1.40	63.00	1.71	2.35
1500	65.6	1.60	104.96	1.63	4.17
2000	87.1	1.80	156.78	1.56	5.06
2500	108.7	2.00	217.78	1.52	6.0 .8
3000	130.0	2.20	286.00	1.47	7.12

TABLE 9
Calculations for power lost in friction and windage P_{L}

Speed N rpm	$\begin{gathered} \mathrm{A}=\mathrm{V}_{\mathrm{G} 2} \cdot I_{\mathrm{G} 2}- \\ \mathrm{V}_{\mathrm{GJ}} \cdot \mathrm{I}_{\mathrm{G} 1} \\ \text { Watts } \end{gathered}$	$\begin{gathered} \mathrm{B}=\mathrm{R}_{\mathrm{G} 2} \mathrm{I}_{\mathrm{G} 2}{ }^{2}- \\ \mathrm{R}_{\mathrm{G} 1} \mathrm{I}_{\mathrm{G} 1}{ }^{2} \\ \text { Watts } \end{gathered}$	$C=A-B$ Watts	$\begin{gathered} \mathrm{P}_{\mathrm{L}}=\mathrm{V}_{R D} \cdot \mathrm{I}_{R D}-1 \\ R_{A R D} \cdot I_{R D}^{2}+ \\ 2 \cdot I_{R D}-a \\ \text { Watts } \end{gathered}$
500	9.36	1. 21	8.15	13.00
1000	23.80	1.79	22.01	29.26
1500	36.50	$2.07{ }^{\prime \prime}$	34.42,	54.86
2000	57.77	2.65	55.12	76.36
2500	77.40	3.14	74.26	109.90
3000	105.68	4.05	101.63	151.60

FIG. 4.11 G.M. as motor at rated field and variable VG 2 for different speed. Field of R:D.M., fully excited.

FIG. 4.12 Relationship between speed and power lost in friction and windage

FIG. 4.13 Relationship between speed and power lost the iron of the G.M. and R.D.M.

4:9 Estimation of $\mathrm{F} 1, \mathrm{~F} 2, \mathrm{H} 1, \mathrm{H} 2$

F1, or the change in the armature flux linkage with change in armature current when the field current is kept constant, is the self inductance of armature. The selfinductance is obtained from the manual of the machine ${ }^{26}$
$F 1=0.05$ Henry
F2, orthe change in armature flux linkage with change in field current is zero if the armature current is constant, because the field and armature windings are effectively perpendicular to each other and there is no flux linkage between them. Any change in flux linkage due to change in magnetic properties because of saturation of the rotor iron are considered to be small and therefore neglected.

H, or the change fin fiet flux linkage with change in armature current when the field current is kept constant will have a value, because the change in armature current will change the magnitude of the resultant mmf, - which in turn will change the magnetic properties of the stator iron. H1 can be calculated as follows:
Number of stator slots 36
Winding groups used 2
Number of slots per winding group 9
Coils per group 9
Number of turns per coil 18

Total number of turns HF
HF
$18 \times 9 \times 2$ 324

Kp
0.819

Kd
0.956

KW
0.783

K Φ
1.10

Change in the field flux linkage when armature current is changed and the field current is kept constant:

$$
(\partial \psi F / \partial I A)_{I F}=H F \cdot G 1 . K \Phi . K W \text { Henry }
$$

H2, or change in flux linkage with the field winding when the field current is changed and the armature current is kept constant is:

$$
(\partial \psi \dot{F} / \partial I F)_{I A}=H F \cdot G 2 \cdot K \Phi \cdot K W \text { Henry }
$$

$K \Phi$ is the leakage factor for the field winding detined as the ratio of the atal llux linking the field winding divided by the mutual flux linking the field and armature windings

COMPUTER PROGRAMMING

.5.1 General

The solution of the set of three first order differential equations, which represent the machine, is carried out using a numerical method and a program written in Fortran language is used for digital computer simulation. The parameters of the machine are calculated for different armature currents.

The numerical method of solution of first order differential equations divides the time of integration into small and equal intervals. Then using this interval with derivatives of the state and the value of the state at any instant of time, the value of state for the next interval of time is predicted. Using the new state as the initial value, derivatives of the new state are calculated, which is used for calculating the value of the new state. Proceeding in this way the transient response of the mathematical model is determined.

It can be observed from rigures 5.1.1a and 5.1.1b that the integration by the numerical method is more accurate if the interval of time between the calculation of successive states is small. But for a given time of integration, smaller values of interval mean more numbers of calculations. It is therefore necessary to
calculate the transient response of the machine model for different intervals of time to ensure the accuracy of the result.

The program used is given in Appendix 1 and a flow chart is shown by Figures 5.1.2a and 5.1.2b.

FIG. 5.1.1a

FIG.5.1.2a FLOW CHART, MAIN PROGRAM

FIG.5.1.2b FLOW CHART, SUBROUTINE

CHAPTER 6

MACHINE RESPONSE

6.1 General

To verify the validity of results obtained by computer simulation oftheseparately excited d.c. motor model, it is necessary to compare the results, with the results obtained from the machine run under the same conditions and with the same changes as in the program. The change in the output is then recorded. The comparison of the two results gives the validity of the machine model.

The steady state output quantities involving the armature current, field current and speed of the motor are compared to the change in these quantities. To record the changes only the output signal or part of it is balanced with another independent source and zero signal in voltage form is fed to the recorder. The recorder then plots the change in output against time whenever a change in input is made.

6.2 Method of Change in Armature Input

The supply voltage is fixed at 240 volts. A variable series resistance is used to keep the voltage at 100 volts at the armature terminals. If this resistance is changed, then the drop across it will change as well, depending upon the change in resistance, there will be a change in armature current and change
in back e.m.f. As shown in Chapter 3, the change in the series resistance can be achieved by switching in a resistance in parallel with the series resistance, and the value of the resistance can be calculated by assuming the value of change in the input voltage at the armature terminals. This parallel resistance is different for different steady state armature currents. This change in input will bring about a change in the output, i.e. change in armature current and the speed of the motors. The scheme for the change in armature input is shown in Figure 6.3.1.

6.3 Method of Change in the Field Voltage

The field input is supplied by a variable voltage power supply. For making a change in the field circuit'input, again a resistance combination is used. A standard resistance of 0.1 ohms is used in series with the field winding. To make the change, another standard resistance of 0.1 ohms is connected across the first-standard resistance or one resistance is taken out of parallel combination, depending upon the effect of field strengthening or field weakening has to be considered. This will change the over all resistance of the circuit and set about a change in field current.

The circuit diagram for making the change in the field input is shown in Figure 6.3.2..

$\begin{array}{ll}\text { FIG. 6.3.1 } & \begin{array}{l}\text { Method of change in armature input } \\ \text { voltage }\end{array}\end{array}$

FIG. 6.3.2 Method of change in field input voltage

6.4 Measurement of Change in the Output

The steady quantities are large compared to the change in these quantities. The recording instrument has a range of sensitivity from $0.1 \mathrm{~V} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. If the changes are recorded as superimposed on the steady state values, and low sensitivities then they may hardly be distinguishable. On the other hand, if the record is made in higher sensitivities of the recorder, to make changes in the output distinguishable, the amplitude of the output will be more than the width of the recording paper.

Figures 6.4.1 and 6.4 .2 show schemes which represent the method of recording the change in the output like change in speed and change in armature current. Variable voltage source B is so adjusted that voltage across $A A^{\prime}$ is zero. A change is then made in the field voltage or armature voltage to produce a change in the output, this change in output is recorded by the U.V. recorder.

The output from the tachogenerator, and the armature current has ripples superimposed on d.c. The magnitude of the ripple is comparable to the change, when only the change is recorded. The presence of ripple makes the recognition of the amplitude of the response difficult. A low pass filter is used to suppress these ripples. The output needed is a zero
frequency voltage, therefore the d.c. level will be unaffected while high frequency will filter out, making recorded output more smooth.

FIG. 6.4.1 Measurement of change in speed

FIG. 6.4.2 Measurement of change in armature current when change in armature input voltage is made

FIG. 6.4.2a:. Measurement of change in armature current when change in field, input voltage is made

CHAPTER 7

RESULTS AND DISCUSSION

7.1 Introduction

In this chapter the responses of the machine model, in terms of change in speed and change in armature current are compared with the same responses of the actual machine, when the change in either field input or armature input is made. Two steady state values of field current are taken. One near the rated field condition at 3.4 A and another for weakened field condition at 2.2A.

Three steady state values of armature current are taken around which a change is made, i.e. 4A, 5A, 6A. The reason for doing so is that the excessive sparking made it difficult to operate the machine beyond that armature current and especially at weakened field current.

The results are tabulated for each of the two steady state values of field current, indicating which input is changed and what output is compared. Amplitude of the machine response is compared with the model response at different instants for transient and steady state values, for each steady state value of armature current. Actual and computed responses for the same instant of time cire then used to calculate the percentage error between the machine response and the model response.

The graph plotted for the response of the machine model, using Gino facilities, and the graph obtained from the U.V. recorder for each steady state condition of field current, armature current and for each of the input conditions, are given soon after each table for computed and machine responses

7.2 Discussion

As can be seen from the results tabulated, percentage error between the machine and the model response is normally within $\pm 15 \%$. The comparison of transient and steady state response between the model and the machine would have been closer but for two main reasons.

The reason for not having a closer comparison is that the machine has non-salient poles. As can be seen from Figure 2.3, that due to a small air gap, the flux density, which is normally very small in the interpolar region due to large air gap in the salient pole d.c. machine, at the neutral or brush axis is quite high and the emf induced in the short circuited turns is also high, thus increasing the sparking during commutation. Because of this sparking there is a voltage variation of about ± 1 volt, around steady state value of 100 volts applied at the armature terminal. Also if the load torque increases with speed then the motor speed may hunt below and above an average value. 20 This variation in speed and voltage makes it difficult to determine the average value precisely.

Fig. 7.2.1a

Change in field current, flux per pole and back emf when field input is changed.

TABLE 10

Steady state field current 3.4A
Change in series field resistance from 0.05 to 0.1 ohm Comparison of change in armature current.

$\begin{aligned} & \text { Time } \\ & \text { in } \\ & \text { Secs } \end{aligned}$	Steady State Armature Current A	Theoretical Change in Armature Current, A	Practical Change in Armature Current, A	Percentage Difference Between Practice and Theory
0.1	4 A	0.0155	0.014	-10.71
0.2	-	0.0177	0.016	-10.62
0.3		0.0182	0.018	-0.55
0.5		0.0184	0.020	8.00
1.0		0.0196	0.021	6.66
5.0		0.0213	0.023	7.39
0.1	5	0.0195	0.018	- 8.33
0.2		0.0224	0.021	- 7.14
0.3		0.0230	0.023	0.0
0.5		0.0235	0.024	2.08
1.0		0.0244	0.025	2.40
5.0		0.0273	0.028	2.50
0.1	6	0.0235	0.022	- 6.81
0.5		0.0285	0.030	5.00
1.0		0.0300	0.034	11.70
5.0		0.0332	0.035	5.14
0.1	, 7	0.028	0.027	- 3.70
0.2		0.033	0.034	2.80
0.5		0.034	0.036	5.55
1.0		0.036	0.039	7.69
5.0		0.044	0.044	0.0

Percentage difference $=$ Practical value - Theoretical value $\times 100 \%$ Practical value

$$
\begin{array}{r}
.98 \\
\quad .80 \\
\vdots .70
\end{array}
$$

$$
\begin{aligned}
& \left.\therefore .70 \cdot\right|_{\times 10^{1}} \\
& 0.60 .
\end{aligned}
$$

Change in voltage across 35Ω resistance
Change in armature current $\frac{Y \text {. sensitivity }}{35}$
Sensitivity $0.5 \mathrm{~V} / \mathrm{cm}$

FIG. 7.2.3 Machine response

FIG. 7.2.5 Machine Response

FIG. 7.2.7 Machine response

[^0]FIG. 7.2.9 Machine response

TABLE 11
Steady state field current 3.4A
Change in armature series resistance Comparison of change in armature current.

$\begin{gathered} \text { Time } \\ \text { in } \\ \text { Secs. } \end{gathered}$	Steady State Armature Current A	Theoretical Change in Armature Current, A	Practical Change in Armature Current, A	Percentage Difference Between Practice and Theory
0.1	4A	0.0280	0.025	-12.00
0.2	4900 Ohms	0.0276	0.030	8.00
0.3	cosistance	0.0271	0.029	6.55
0.5	in parallel with 37 ohms	0.0263	0.028	2.59
1.0	resist.	0.0245	0.027	5.78
2.5		0.0207	0.022	5.91
5.0		0.0178	0.018	1.10
0.1	5A	0.0348	0.032	- 8.75
0.2	3920 Ohms	0.0343	0.033	- 3.94
0.3	connected	0.0340	0.037	8.11
0.5	$\begin{gathered} \text { in parallel } \\ \text { with } 28 \end{gathered}$	0.0324	0.032	- 1.25
1.0	ohms	0.0300	0.030	0.0
2.5		0.0250	0.027	7.41
5.0		0.0218	0.023	6.57
0.1	6 A	0.0416	0.042	0.95
0.2	3266 Ohms	0.0410	0.045	8.88
0.3	connected	0.040	0.046	13.04
0.5	in parallel with 23.33	0.0384	0.043	10.69
1.0	ohms. resis	0.0350	0.038	7.89
2.5		0.0292	0.028	- 4.28
5.0		0.026	0.025	4.00

FIG. 7.2.11 Machine response

Change in voltage across 6Ω resistance

FIG. 7.2.13 Machine response

FIG. 7.2.14 Machine Model Response

$$
\begin{aligned}
& \text { Change in voltage across } 6 \Omega \text { resistance } \\
& \text { Sensitivity } 0.1 \mathrm{~V} / \mathrm{cm}
\end{aligned}
$$

FIG. 7.2 .15
Machine response

TABLE 12
Steady state field current 2.2A
Change in series field resistance from 0.05 to 0.1 ohm Comparison of change in armature current

$\begin{gathered} \text { Time } \\ \text { in } \\ \text { Secs } \\ - \end{gathered}$	$\begin{gathered} \text { Steady } \\ \text { State } \\ \text { Armature } \\ \text { Current } \\ \hline \mathrm{A} \end{gathered}$	Theoretical Change in Armature Current, A	Practical Change in Armature Current, A	Percentage Difference Between Practice and Theory
0.1	4A	0.0162	0.015	- 6.66
0.2		0.0210	0.019	-10.55
0.3		0.0230	0.021	- 9.25
0.5	.	0.0244	- 0.024	- 2.50
1.0		0.0500	0.026	3.84
5.0		0.0284	0.030	5.30
10.0		0.0298	0.032	6.87
0.1	5A	0.0200	0.020	0.0
0.2		0.0260	0.023	-13.04
0.3		0.0290	0.028	- 3.57
0.5		0.0300	0.029	- 3.45
1.0		0.0310	0.030	- 3.33
5.0	.	0.0356	0.036	1.00
0.1	6 A	0.0240	0.024	0.0
0.2		0.0316	0.0300	-5.33
0.3		0.0340	0.0320	- 6.25
0.4		0.0350	0.0340	- 2.94
0.5		0.0357	0.0360	0.83
1.0		0.0370	0.0370	0.0
5.0		0.0426	0.0450	5.33

Change in voltage across 35Ω resistance Sensitivity $0.5 \mathrm{~V} / \mathrm{cm}$

Change in armature current $=\frac{Y \cdot \text { Sensitivity }}{35}, A$

FIG. 7.2.20
Machine model response

FIG. 7.2.21 Machine response

TABLE 13

Steady state field current 2.2A
Change in series field resistance from 0.05 to 0.1 ohm Comparison of change in speed

$\begin{aligned} & \text { Time } \\ & \text { in } \\ & \text { Secs } \end{aligned}$	$\begin{gathered} \text { Steady } \\ \text { State } \\ \text { Armature } \\ \quad \text { Current } \\ \mathbf{A} \end{gathered}$	Theoretical Change in Speed msev/min.	$\begin{gathered} \text { Practical } \\ \text { Change in } \\ \text { Speed } \\ \text { rev/min } \end{gathered}$	Percentage Difference Between Practice and Theory
0.5	4	-0.69	-0.63	- 8.69
1.0		-1.44	-1.37	- 5.11
2.0		-2.69	-2.75	2.18
3.0	-	-3.68	-4.06	9.36
5:0		-5.10	-6.87	25.76
10.0		-6.69	-7.81	14.34
0.5	5	-0.86	-1.25	31.20
1.0		-1.75	-2.50	30.00
2.0		-3.19	-3.75	14.90
3.0		-4.25	-4.69	9.38
5.0		-5.61	-6.25	12.19
10.0		-6.89	-8.75	21.25
0.5	6	-1.02	-1.0	-2.00
1.0		-2.06	-2.19	5.93
2.0		-3.66	-4.06	9.85
3.0		-4.76	-5.00	4.80
5.0		-6.07	-8.08	24.87

FIG. 7.2.23 Model response

FIG. 7.2.25 Machine model

FIG. 7.2.27 Machine response

TABLE 14
Steady state field voltage 2.2A
Change in armature series resistance
Comparison of change in speed

$\begin{aligned} & \text { Time } \\ & \text { in } \\ & \text { Secs } \end{aligned}$	Steady State Armature $=$ Current A	```Theoretical Change in Speed rev/min```	Practical Change in speed rev/min	Percentage Difference Practice to Theory
0.5	4 A	1.60	1.75	8.57
1.0	4900 Ohms	3.04	3.50	13.14
1.5	switched	4.32	5.00	13.60
2.0	with 35 ohm	5.46	6.25	12.60
3.0		7.40	9.37	21.62
5.0		10.17	13.12	22.48
0.5	5A	1.93	2.12	8.96
1.0	3420 Ohms	3.61	4.00	9.75
1.5	connected	5.06	5.75	12.00
2.0	with 38 ohm	6.31	7.50	15.86
3.0	resistan	8.34	10.50	20.57
4.0		9.86	12.75	22.66
10.		13.61	18.75	27.78
0.5	6A	2.23	2.50	10.80
1.0	3266 Ohms	4.11	4.37	5.95
1.5	connected	5.69	6.25	8.96
2.0	in parallel	7.01	7.50	6.53
	ohms			
3.0	resistance	9.07	10.0	9.30
5.0		11.56	15.0	22.90

$I A=4 A$

FIG. 7.2.29 Machine response

FIG. 7.2.31 Machine response

FIG. 7.2.33 Machine response

Change in speed from no load to full load and armature voltage are two important factors on which the main parameters G1 and G2 depend.

Also the variation of voltage across the armature due to sparking, makes armature current vary as well. It can be seen from the machine response of change in armature current, that the output is varying around some average value, which makes it difficult to determine the change in armature current. There are additional reasons for not having closer comparison of theoretical and practical results.
parameters GI and G2 depend upon $\Delta N, \frac{\partial \Delta N}{\partial I F}$ and $\frac{\partial N O}{\partial I F}$. It can be observed from Figure 4.2 that for weakened field currents the machine cannot be run for full load current because of heavy sparking and therefore the N Vs IA characteristic has to be dependent largely on the few points available. Therefore ΔN for low values of field current has a large margin within which its actual value may lie and chances of error are more. If a salient pole machine, preferably with interpoles, is used then N Vs. IA characteristic can be obtained by running the machine up to full load current and therefore the value of ΔN will be more accurate.

Also the gradient $\partial N O / \partial I F$ at lower field current has high sensitivity and therefore the tangent at any point should be drawn more accurately.

Near rated field current, $\frac{\partial \Delta N}{\partial \mathrm{IF}}$ becomes comparable to $\partial N O / \partial I F$ and therefore accurate drawing of the tangent.
at any point on $\triangle N / I F$ characteristic is also an important factor contributing towards the accuracy of the result

The temperature of the room in which the machine is run, always remains nearly constant and therefore any change in the resistance of the field and the armature winding due to the change in ambient temperature is small. Also due to a high resistance in series with the armature winding, any change in the armature resistance, due to the change in ambient temperature, will not make any effect on transient and steady state response. However in the absence of large resistance, where rated armature voltage is equal to the supply voltage, the brush contact resistance and the armature reaction becomes important along with ambient temperature and rise in temperature, It is shown in appendix 3 that, appoximately, for the stability RT>-Ke.N $\frac{\partial \Phi}{\partial I A}$. Therefore accurate measurements of armature resistance, taking effect of temperature in consideration, becomes an important factor, not only when comparing the machine model and machine response, but also for stability as well.

- The model has taken armature reaction into account by considering flux per pole as a function of armature and field current. By comparing the results obtained from the machine and the model, it could be claimed that shapes of the two sets of responses are similar and transient and steady state responses generally close enough and could be useful for control applications.

This model needs the gradients G1 and G2 as its main parameters. Both G1 and G2 are functions of flux per pole, which in turn is a function of armature and field current. These parameters are affected by armature current, as can be seen from equations 4.2.4 and 4.3.5. The success of the model as the representhe tation of ${ }^{\wedge}$ machine demonstrates not only that the analysis is correct, but the special method of obtaining the parameters from the characteristics N Vs. IA, $\partial \Delta N V$. IF and $\partial N O$ Vs. IF and the relationship for calculating G1 and G2 are also correct. These parameters are derived from a set of N Vs. IA characteristics at different constant field currents. The experimental set is simple and performance of experiments is easy. The success of this model, after taking into account the reasons given above, shows that the new approach of the model is comparable to any other approach as far as response is concerned. It is advantageous because of the ease with which parameters can be obtained from a set of N Vs. IA characteristics. The computer program for the model response gives change in armature current, field current and speed simultaneously. Their derivatives are also calculated. This gives a great advantage because states and their derivatives are known, for any instant, and can be used

* for designing a flexible control circuit.

To explain the time versus change in the speed and time versus change in the armature current characteristics, when the field voltage is changed by changing a series resistance in the field circuit, the following equations can be used.

$$
\begin{align*}
& \mathrm{E}=\mathrm{K} 1 . \mathrm{N} . \Phi \tag{7.2.1}\\
& \mathrm{T}=\mathrm{K} 2 . \mathrm{IA} \mathrm{\Phi} \\
& \mathrm{~V}=\mathrm{E}_{+} \mathrm{IA} . \mathrm{RC}+\mathrm{LA} \frac{\mathrm{dIA}}{\mathrm{dt}} \\
& \mathrm{~T}-\mathrm{T}_{\ell}=\mathrm{K} \cdot \frac{\mathrm{dN}}{\mathrm{dt}}
\end{align*}
$$

where $K 1, K 2$ and K are constants.
LA - inductance of armature winding
RC - total resistance in the armature circuit.

There will be a transient change in the field current when the field voltage is reduced. The change in the field current is shown in Fig. 7.2.la. and; will depend upon the series resistance and the time constant of the field windingThe flux per pole will reduce as well and will follow the field current, if changes in the magnetic properties of iron due to saturation are ignored. The reduction of flux per pole, shown in Fig. 7.2.1b, will reduce the back emf E , shown in Fig. 7.2.1c. Due to the reduction in the back emf E, the armature current will increase as shown in Figs. 7.2.2 to 7.2.9 and Figs.7.2.16 to 7.2.21.

It can be seen from the time versus speed charac.teristics of the machine and the model, shown in Figs. 7.2 .22 to 7.2 .27 , that the speed is reducing. If the load torque is assumed to be constant, the reduction in the speed is due to the reduction in developed torque because the product IA. Φ of equation 7.2.2, after the change became less than what it was before.

Initially the flux per pole will fall very rapidly and the increase in the armature current will be very fast as well. The decrease in the speed will be very slow due to the large mechanical time constant, compared to either the field winding time constant or the armature winding time constant. Therefore, as the flux per pole attains the steady state value, the speed will still continue to decrease. The back emf will decrease according to the decrease in speed. The armature current will be increasing but very slowly and because the flux is no longer changing, the torque given by equation 7.2 .2 will increase until it is again equal to the load torque when the speed and the armature current will attain the steady state value.

The time versus change in speed and time versus change in armature current characteristics are explained below when the change in armature input voltage is made.

The armature voltage is changed by changing the series resistance so that the armature current is increased. This increase in the armature current will
depend upon the time constant of the armature circuit. Figs. 7.2.10 to 7.2 .15 show the time versus armature current characteristics of the model and the machine, when a change in the series resistance of the armature circuit is made. speed: versus time characteristics shown in Figs. 7.2.28 to 7.2 .33 are rising. It means that the developed torque, as given by equation 7.2.4, is exceeding the load torque and therefore accelerating the motor. Due to the change in the armature input voltage, the armature current will rise very rapidly, according to the time constant of the armature circuit, because initially the change in the back emf will be small due to slow rise in the speed and constant flux per pole.

It can be seen from Figs. 7.2.10 and 7.2.15 that the armature current starts falling after attaining maximum. This is due to increase in the back emf. The developed torque will reduce as well and become equal to load torque when both the armature current and the speed will attain the new steady state value. It can be observed that the armature current is falling to the $n \in \mathbb{N}$ steady state value very slowly. This is due to the fact that the speed is increasing slowly and the back emf is following the rise in speed.

REFERENCES

1. H. Winkler, "Development of standard thyristor drives", Electrical Times (GB), 21/28, Dec. 1972, pp 29-33.
2.. N.K. Sinha, C.D. di Cenzo, B. Szobodos, "Comparison of mathematical model for electromagnetic and D.C. motor" Engineering Journal, Canada, Vol. 55, 1972 and transactions.
2. J.M. McTaggart, "Application of controlled D.C. devices" Hydraulic Pneumatic Mechanical Power, pp 139-143, April 1975.
3. D. Smith Gall, "A phase locked loop motor control system", IEEE Transaction, Industrial Electronics and Control Instruments, Vol. IECI22, Vol. 4, pp 487-490, 1975.
4. J.J. Pollack, "Some guidelines for the application of adjustable speed drives", IEEE Transactions Industrial Application, Vol. IA9, pp 704-710, Nov/Dec 1973.
5. Alan London, "A.C. motors, A step by step guide to types and applications", Control and Instrument, Vol. 7, No. 11, Dec. 1975, pp 24-27.
6. P.C. Bracher, "Trends in three phase D.C. thyristor drives", DEM Design, April 1976, pp 65-67.
7. Gunnar Kironberg, "Industrial D.C. motor drives", ASEA Journal, 1975, Vol. 48, No. 5.
8. Per-Ake Diborn and Olof Shuncke, "Modern thyristor converters for D.C. motor drives", ASEA Journal, Vol. 5, 1975.
9. Gèza Joes and Thomas H Benton, "Four quadrant D.C. variable drives", Proceedings IEEE, Vol. 63, No. 12, Dec. 1975.
10. Timothy A Maloney and Franando L. Alvarado, "A digital method for D.C. motor control", IEEE Transaction, Industrial Electronics and Control Instrument, Vol. IECI-23, No. 1, 1976.
11. A.N. Moore, "Phase locked loop for motor speed control", IEEE Spectrum, pp 71-67, April 1973.
12. W. Wood, "Making the most of D.C. modelling", Electrical Review, Vol. 199, No. 6, 6 Aug. 1976.
13. De1. Taro "Electromechanical devices for energy conversion and control systems", Prince Hall, EE Series, 1968.
14. N.N. Hancock, "Matrix analysis of electrical machines", Pergamon Press, 1964.
15. Bernard Atkins, "The general theory of electrical machines': Chapman and Hall, 1964.
16. Michael Lifschitz, "Direct current machines", D. Van Nostrand Company Inc., 1959.
17. N.K. Sinha, C.D. De Cenzo, B. Szabodos, "Modelling of D.C. Motor for control applications", IEEE Transaction, Industrial Electronics and Control Instruments, Vol. IECI-21, No. 2, pp 84-88, 1974.
18. J. Hindmarsh, "Electrical machines and their applications", The Commonwealth International Library, Pergamon Press, 1970.
19. E.B. Moulin, "Electromagnetic principles of dynamo" "Clarendon Press, 1955.
20. Samuel Seely, "Electromechanical energy conversion", McGraw Hill, 1962.
21. A. Fitzgerald and L. Kingsley, "Electric Machinery", - 1961, McGraw Hill.
22. A.E. Cloyton, "Performance and design of directcurrent machines", Pitman 1959.
23. C. Siskind, "Electrical machines, direct and alternating current", McGraw Hill Book 1959.
24. A.S. Langsdorf, "Principles of direct current machines", McGraw Hill, 1959.
25. Manual of Westinghouse Generalised Machines.
26. J. Rosenblatt Freedman, "Direct and alternating current machinery", McGraw Hill, 1963.
27. Dr. G.K. Creighton, "Separately excited D.C. motor model", Personal notes.

COMPUTER PROCRAM

```
    KE=Z/AC*P/60
    DY|(2)=".
    1fl=8.
    MI=0.0?4.9?
    PI=3.141592654
    DVr=2.4
    2N*55.1*50+2.*5u
    D0 11 Jj=1,5
    QEAO(1,TO)IS,RA,RA1,RFF,PA
    10.FOFMAT(:4,3F7.3,F10.5)
    DN=DVT*50
    R2=140.71A
    RI:*1A/DYY(2)*(2&**く)-R7
    WRITE(3.00)R1
99 FORIMAT(IH :E1O.')
    VA=240mRA1*IA-RZ*IA
    N=7N+NN*IH/IFL
    D1=P\/(()*PI**/50)**?)
    si=-40.37*1A/1F1.
    S2=-604.84
    G1=-(((Z4+D!|*1A/TFL)*RA)+((VA~|A*RA)*DN/IFL))/(KE*(7N+(DN*IA/1FL)
    1**2)
    G2=-(VA-IA*RA)/(KE*(2H+BH/IFS*IA)**2)*(S1+S.2)
    NS=2/2**/F
    F1=0.05
    F2=0
    HF=32.4
    H{=4F*G1*1.1,*0.7715
    H2=HF*Gく*9.9***,7ザ!
    PHj=(VA-1A*RA)/(2*N/60)
        KA=KT*p|1*1A*60/N-2*T*D1-(C1+C2)/(2*\pi*(N/60) )
    R=RA+R\1+KE*{*(G)+RI*R2/(R1+R2)
    RF:KE*** F,2
    RTA=KT*((S|*IA)*PYI)
    RTF=KT+IA*3?
    EL=F1*S-H1*F2
    R(1,1)=51
    B(1, 2)=;?
    B (1,3) =1, 1
    8(1,4)=1,2
    R(2,1)=F1
    f(2,2)=?
    B(2,3)=::9
    A(2,4)=:?
    B(3,1)=:i
    B (3,2)=FF
    B(3,3)= KTA
    B(3,4)=2,r
    B(4,1)=:
    B(4,2)=41
    B}(4,3)=0.
    B(4,1)=:1
    WF:TF(2,习2)(?B(i,J),J=1,4),I={,4)
    S2FCRFAT(%H 14(11人,4<4x,E20.10)))
    A(1,1)=0.0
    A(1,2)=!.C
    A(9,3)=1.0
    A(1,4)=0.0
    A(7.9)=:0
    A(2,2)=-R*N2/EL
    A(2,3)=-RF*:O/EL+QFE+F2IEL
    A(7-,4)=-K[*P|{*!?/tLL
```

```
    A(3,1)=0.0
    A(3,2)=|!/EL* P
    A(3,3)=FF*HI/EL-F1*RFF/FL
    A(3,4)=NF*P!1[*H1/EL
    A(4,1)=0.0
    A(4,?) = RTA/( (2*PI*MI)*O0
    A(4,3) =! TF/(?*P\*M1)* *0
    A(4,4)=-01/HI-KA/(2*\pi*MI)
    WPITE(2,91)((A(1, J),1=1,4), 1=1,4)
```



```
    C(1,1)=6.0
    c(1,2)=0.0
    c(1,3)=0.0
    C(1,4)=0.0
    c(2,1)=1,0
    C(2,7)=|2/EL
    C(3,3)=-52/EL
    C(2,4)=0.
    c(3,1)=u
    C}(3,2)=-H1/E!
    C(3,3)=F1/EL
    C(?,4)=0.0
    C(4,1)=1.0
    C(1,2)=0.0
    c(1, 3)=0.0
    C(4,4)=-60/(2*3.14157265*M1)
    D( 70 I=1,4
    DK(1)=0.0
n0x(1)=0.0
77.CONT1N4E
WRITE(?,?51)
    251 FOF,HAT(/8),54DX(9),5x,54DX(2),5x,5HDX(3),5X,5HDX(4):10X,6HDDX(2),5
9x.finf0x(3),5x,6:10n)(6))
    CALL IVTEG(4,DX,DOX,nY,0,0004,35000,K2,J)
    CAIL AKISCA(3,12,0.,95.:1)
    CALL AXISCA(3,30,0.,7.15,?)
            CALL 4aICRA(1,1,1)
    CALL AXGDFA(-1, -1, 4)
    CALL GR:DOL(X,XA,7:OO)
    CA!L PICCLE
    CALL. AX,SCA(3,13,0.,13..1)
    CALL AX:SCA(3,3:,.0023,-.0301,2)
    CA1,L AX:DRA(1,1,1)
    CALL AX:ORA(-1,-1,2)
    CAIL GRAOCL(X,Y,>OU)
    CALI PICCLE
    CAIL AXISCA(3,1),9.,95..9)
    CA1L AXISCA(3,2%.19,,75.,2)
    CALL AXIOAA(1,1,1)
    CALL AXPORA(-1,-9,く)
    CALL.GANAOOL(X,YA,7UO)
    CAIL:PICCLE
        11 CONTINJE
    CALL DE:ENO
    stge
    ENO
```

```
    DIMENSION X(700),XA(700),Y(700),YA(700)
    DIMENSIUN DX(4):NOX(4),TY(4)
    rümot/b,OCX?/XIXA,Y,YA
    KR=i
    00x(1)=:1
    D(190 J= 1.al
    117 D)(0)=0.0
        DO 117 к:?=1,NI
        D0 117 1=1,4
        CHLL [QUAT(4,DX,DOX,KZ.,.)
        DO 114 i=z,|
    114 DOx(I)=00x(:)*H
        DO 102 i=1,!1
        G0 T0 (:04,105,106,in%),J
        104R=(0.5*in的(I)-0)(1)+RX(i))-0)X(1)
        gfo TO 10R
        105p=(0.2722332.98.39*(0DX(1)-0Y(1))+DX(1))-D X(1)
        G0 10 108
        106 R=(1.7071057812*(00\times(1)-DY(1))+0\times(1))-0\times(1)
        (0. T0 108
        107.R=((nDK(I)-2*DY(I))/4.+i)X(I))-D\times(I)
        g0 T0 108
        108 DX(I)=0\lambda(I)+H
        S*i)Y(I)+3,*R
        (G) T0 (107,191),111.107).J
    107 OV(1)=5-0.5*(1) 人(1)
        0% T0 102
        110nY(1)=5-0.29287321839*00x(1)
        g(10 192
        111 DY(1)=S-1.7071007812*0DP(1)
        102 contlaut
        1f(J-4)117,6,0
        1F(K2-34*KK)197,0,U
        WKITE(?,82)(0X(i),1=1,M1,(DNX(i), 1=2,M)
            82 FOR:1AT(1H,4F12.5,5x,3F.12.5)
        x(kk)=0)(1)
        XA(KK)=:X(2)
        Y(KK)=0X(3)
        YG(K人)=,j(4)
        kr = < < + 1
            197 Cu`|⿴囗十|
        RETUR!!
        EPD
```

$=$

GMENT．LENGTH 336．NAME IHTEG
336. NAYE IGTEG

FEEND OF SEGMF:T, l.ENGTH, 97. NAVE EUUAT
5
4- 0217 :
FMISI.

(END OF COHPILATIOM - HO ERRORS
Ma, -

APPENDIX 2

MACHINE SPECIFICATION

Generalised Machine

Rotor: Standard two pole, continuous lap wound, armature with commutator.

Moment of inertia $1.1202 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{2}$

Number of rotor induc- 560 tors

Number of rotor cir- 2 cuits

Number of turns per 5 single coil

Winding scheme
Full pitch
Rotor resistance at 0.46Ω $25^{\circ} \mathrm{C}$

Stator: Standard two pole, two phase, distributed winding Number of slots 36

Winding scheme : 4 winding groups
9 coils per group
18 turns per coil

Rotor Drive Motor

> D.C. shunt motor
Voltage
240 volts

Rated field current 0.562 amps
Rated armature current. 10.8 amps
Armature resistance at $\quad 0.72 \Omega$ $21^{\circ} \mathrm{C}$

Number of poles 2

Number of interpoles	2
Moment of inertia	$1.2925 \times 10^{-2} \mathrm{kg.m}$
Tachometer	$50 \mathrm{rpm} / \mathrm{volt}$

APPENDIX 3

APPOXIMATE STABILITY CONDITION
If a change is made in the armature input voltage, assuming $\Delta T \ell$ and $\Delta V F$ zero, then according to the set of equations 3.3.17: and with $\mathrm{F} 2=0, \mathrm{H}=0$ due to negligıble magnetic coupling between the field and the armature windings.

$$
\begin{align*}
\Delta V A & =R \cdot \Delta I A+K e \cdot \Phi \cdot \Delta N+F I \cdot D \Delta I A \tag{A3.1}\\
0 & =R T A \cdot \Delta I A-\frac{2 \pi D 1}{60} \cdot \Delta N-\frac{2 \pi J}{60} \cdot D \Delta N \tag{A3.2}\\
0 & =R F \cdot \Delta I F+H 1 D \Delta I A+H 2 D \Delta I F \tag{A3.3}
\end{align*}
$$

T'aking Laplace transform of A3.1 and A3.2:

$$
\begin{align*}
& \frac{\Delta V A(S)}{S}=R \cdot \Delta I A(S)+K e \Phi \cdot \Delta N(S)+F I \cdot S \cdot \Delta I A(S)(A 34) \\
& O=R T A \cdot \Delta I A(S)-\frac{2 \pi D}{60} \cdot \Delta N(S)-\frac{2 \pi J}{60} \cdot S \cdot \Delta N(S) \\
& \Delta N(S)=\frac{R T A \cdot \Delta I A(S)}{\left(\frac{2 \pi}{60}\right)(D H-J S)} \tag{A3.5}
\end{align*}
$$

Substituting A3. 5 into A3.4

$$
\begin{aligned}
& \frac{\Delta \mathrm{VA}(\mathrm{~S})}{\mathrm{S}}=\mathrm{R} \cdot \Delta \mathrm{IA}(\mathrm{~S})+\frac{\mathrm{Ke} \cdot \Phi \cdot \mathrm{RTA}}{\left(\frac{2 \pi}{60}\right)(\mathrm{DH}+\mathrm{JS})} \cdot \Delta \mathrm{IA}(\mathrm{~S})+\mathrm{Fl} \cdot \mathrm{~S} \cdot \Delta \mathrm{IA}(\mathrm{~S}) \\
& \left(\frac{2 \pi}{60}\right)(\mathrm{D}+\mathrm{JS}) \frac{\Delta \mathrm{VA}(\mathrm{~S})}{\mathrm{S}}=\left[\left(\frac{2 \pi}{60}\right) \mathrm{R}(\mathrm{DH} \mathrm{JS})+\frac{2 \pi \cdot \mathrm{Fl}:}{60}(\mathrm{DH}+\mathrm{JS})+\mathrm{Ke} \cdot \Phi \cdot \mathrm{RTA}\right] \Delta \mathrm{IA}(\mathrm{~S}) \\
& \Delta \mathrm{IA}(\mathrm{~S})=\frac{\left(\frac{2 \pi}{60}\right)(\mathrm{D} H \mathrm{JS}) \cdot \Delta \mathrm{VA}(\mathrm{~S})}{\mathrm{S}\left[\frac{2 \pi}{60} \cdot \mathrm{R}(\mathrm{DH}+\mathrm{JS})+\frac{2 \pi}{60} \cdot \mathrm{FlS}(\mathrm{DH}+\mathrm{JS})+\mathrm{Ke} \cdot \Phi \cdot \mathrm{RTA}\right]}
\end{aligned}
$$

For stability the real parts of the roots of the denominator should be negative:

$$
\frac{2 \pi}{60} \cdot R(D 1+J S)+\frac{2 \pi}{60} \cdot F l \cdot S(D 1+J S)+K e \cdot \Phi \cdot R T A=0
$$

$$
\begin{align*}
& \frac{2 \pi}{60} \mathrm{RD} 1+\mathrm{Ke} . \Phi . \mathrm{RTA}+\frac{2 \pi}{60}(\mathrm{R} . \mathrm{J}+\mathrm{Fl} . \mathrm{DI}) \mathrm{S}+\frac{2 \pi}{60} \mathrm{Fl} . \mathrm{JS}{ }^{2}=0 \\
& \text { S1, } \mathrm{S} 2=-\frac{2 \pi}{60}(\mathrm{RJ}+\mathrm{Fl} . \mathrm{D} 1) \pm \sqrt{ }\left(\left(\frac{2 \pi}{60}\right)^{2}(\mathrm{R} . \mathrm{J}+\mathrm{Fl} . \mathrm{D} 1)^{2}-4 \cdot \frac{2 \pi}{60} \mathrm{~F} 1 . J\left(\frac{2 \pi}{60} \mathrm{R} . \mathrm{DI}+\mathrm{Ke} . Ф . \mathrm{RTA}\right.\right. \\
& 2 \cdot \frac{2 \pi}{60} \cdot \mathrm{Fl} \cdot \mathrm{~J} \tag{A3.7}
\end{align*}
$$

Second term in the square root of the equation A3. 7 cannot be negative unless RTA is negative and large such that Ke. Φ. RTA becomes more than $\frac{2 \pi}{60}$. RDl in that case. Instability is a certainty because then one of the roots will become positive. In the present case RTA is positive and large so that $K e . \Phi . \mathrm{RTA}>\frac{2 \pi}{60} . \mathrm{RD1}$.

The first term in the under root factor is always positive. From the above it can be concluded that the under root term, if positive, will always be less than:
$\frac{2 \pi}{60}$ (RJ+Fl.DI) and if negative then it will be the imaginary part of complex roots. In either case now the stability depends upon the factor $\mathrm{RJ} \ddagger \mathrm{Fl} . \mathrm{Dl}$, which - should be more than zero:

$$
\begin{aligned}
& R \cdot J+F l \cdot D I>0 \\
& R>-\frac{F l \cdot D}{J} \\
& R T+\frac{\partial \Phi}{\partial T A} \cdot K \in N>-\frac{F l D}{J}
\end{aligned}
$$

$$
\begin{equation*}
R T>-K e \cdot N \cdot \frac{\partial \Phi}{\partial \mathrm{IA}}-\frac{\mathrm{Fl} \cdot \mathrm{D}}{J} \tag{A3.8}
\end{equation*}
$$

Factor $\frac{F 1 D i}{J}$ in equation $A 3.8$ is small and positive and contributes marginally to the stability. Therefore for stability:

$$
\begin{equation*}
R T>-K e \cdot N \cdot \frac{\partial \Phi}{\partial I A} \tag{A3.9}
\end{equation*}
$$

Accurate measurement of armature resistance, taking effect of heating into account and accurate measurement of brush contact resistance is very important when there is no series resistance.

[^0]: $I A=7 A$

