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SYNOPSIS

One of the most common electromechanical positioning devices for
low-power applications is the 2-phase servomotor, several different

. constructional forms being available.

When used in a control application, various transfer functions of

the machine are important and these have been investigated by

previocus workers using analyses of varying validity. For example,

in early studies, it was common to régard the speed-torque character-
istics of the machine as straight lines, and alsoc to neglect the
'electrical enexrgy storage elements in comparison with those of the
mechanical system. Quite sophisticated mathematical studies usiné,

for example, symmetrical components, were based on these assumptions,
but the results obtained are obviously highly suspect in view of the
doubtful basis from which they are established. ﬁxperimental verifi-
cation of the results of the analyses were confined to steady-state.
measurements, attention being devoted to establishing an equivalent
circuit to provide steady-state characteristics. Recently, with the
increasing usé of powerful mathematical tools in engineering situations,
'séveral workers have attempted to obtain direct solutions of the non-
linear equations chéracterising the ‘operation of the servomotor. Thus,
simulation and state transition mathods, involving a step-by-step
numerical solution, have attracted considerable interest. Although
these approaches may provide useful numerical answers, they do not help
in forming any understanding of the main factors affecting the transient
performance of the machine. A recent paper used the complex convolution

approach to provide analytical transfer functions, but unfortunately this




iv

paper contains a fundamental error which completely invalidates the
work. The same fofmal approach is followed in this thesis, with
the‘Gomplex convolution technique being used to find time-domain
express;ons for the variations in- speed which follow step changes in
either the torque or the magnitude or phase c¢f the control-winding
voltage. As in the previous work, attention is confined to the
practically important range of speed much lower than synchronous speed.
Results obtained from the analysis are compared with experimentally

obtained results and with results provided by earlier analyses, and

an assessment is made of the usefulness and limitations of the various

- techniques.
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LIST OF PRINCIPAL SYMBOLS

As several previous investigations are described during the course
of this thesis, it is convenient to define the symbols used by

earlier authors as they appear.

Only the more commonly occurring symbols are defined here.

w = angular fregquency of a.c. supply (rads/sec)
-k

t = time (seconds)

L = Laplace transform of

s = Laplace transform variable

{ }* = conjugate

A
"Re = real part of

Py = number of pole pairs

Rl,Rz = stator and rotor resistances (ohms)

Ll' L2= stator and rotor self inductances (henrys)
M = maximum mutual inductance between the stator and the rotor

phase (henrys)

.xm = magnetising reactance, equal to wM (ohms)
Xg = leakage reactance (ohms)
Ri,Li = stator resistance {(ohms} and inductance (henrys) at stall
Zi = magnitude of stall impedance of a stator phase, equal to
J RIZ + w’Li2 (ohms)
-1 mLi
$B =  equal to tan R'
1
L}
Tl = stator time constant at stall (= E% ) (seconds)
: L R
T, = rotor time constant (= ﬁ;) {seconds) }

ix



mr(t) = angular speed of the rotor (rad.secﬁl)

Amr(t) = c¢hange in the angular speed of the rotor (rad.sec-l)

Wy ’ = synchronous speed (rad.sec_l)

Br(t) = angular displacement of rotor (radians)

Vpr vQ = direct and quadrature axes stator.phase voltages, taken
as control and reference voltages ’

Vg uq = direct and quadrature axes rotor phase voltages

iD' iQ = currents flowing‘in control and refence stator phases

iDo(t), iQo(t) = currents in control and reference windings at stall

id' iq = direct and guadrature axes currents of the rotor windings

¢D = angular phase shift between the two voltage signals

J = moment of inertia of armature and coupled load referred
to rotor shaft (kg.mz)

£ = mechanical viscous-friction damping (Nm/rad.sec-l)

fa = average mechanical viscous-friction damping (Nm/rad.sec_l)

fe = effective damping when stalled (Nm/rad.sec-l)

Ty = mechanieal time constant (= J/f) (seconds)’

Te(t) = . electromagnetic torque (Nm)

TM(t) = 'load torque (Nm)

_TMI . = step input load torgue (Nm)

Ts = stall torque {Nm)

Té " = modified stall torque to obtain effective démping {(Nm)

s . = slip

Zp = input: impedance per phase at angular frequency w and slip § (ohms)

Z, = 1input impedance per phase at angular frequency u and slip 2-5 (ohms




INTRODUCTION

In many control systems, a small 2-phase amplifier-driven servomotor
is used as the output power unit. One phase winding of the motor
(the reference winding) is connected to a constant voltage source, v
with the sécond phase (the control winding) fed with a signal obtained from
the moéor control loop. Control of the motor speed is achieved by

changing either the magnitude or the phase of the control voltage.

The 2-phase servomotor requires less assoéia£ed electronic circuitry

than any other polyphase machine, ana this represents an important

advantage in many practical applications. Since it does not regquire

electrical connections, in the form of brushes and slip rings, friction

is low and little maintenance is required.

Two-phase sexrvo motors are extensively used in servomechanisms for
instruments and computers, where relatively small torques are reguired.
Large quantities of these machines are now used in military appli-
Acatioﬂs, whére the environmental situations encountered may he
extremely arduous. Servomotor loads are usuall? driven through a
_gear train, built integrally with the motor, which must be capable of
aicceleratint‘; fhe effectiveinertia against the frictional torque, at

a sufficiently rapid rate to follow the input signal to the control
winding. The servosystem designer must be able to provide an optimum
motor for each application, and to specify the performance expected in
each situation. . For example, some medium-performance servomechanisms

require a motor with high internal damping, since no additional external



damping can be added to the system, when. the designer may become

involved with magnetic and fluid damping. 1~6

In machines in which a uniform torgque and a minimum bhearing friction

are necessary, the drag-cup Lype of rotor construction is usually adopted,
while viscous damping may be employed where relatively low output

powers with high damping are required. However, where a continuously
and rapidly varying inbut may be applied, and accurate following is

essential, inertially damped servomotors are utllized.

In precision circuits requiring an aécurate control of velocity, or
the integration of an electrical signal, motor-generators are used.
When a closed-locop feedback circuit is added, the machine may be used
as a damping generator, producing an effective and flexible damping
especially in high-gain positioning servomechanisms. However, the
advantages of closed-loop operation are achieved at the expense of a
higher initial cost, more complex wirinhg, greater physical length

and a more sluggish response. to changes in the input conditions.5

" There are basically three types of servomotor rotor design, the squirrel
. cage, the drag-cup ana the solid-iron rotor, although an additional
‘rotating mass is often added to brovide the required damping characteristics.
The same type of stator assembly is equally suitable for;all three types
of rotor, with the 2-phase stator winding normally contained in closed
slots in the stator éunchings. To complete the magnetic circuit of
the drag~cup arrangement, an additienal central stationary cylinder is

required, within the drag-cup and again made from steel punchings.




In some situations an inverted arrangement is adopted, with the
rotor being mounted outside the central stator, although this makes

3,5,7
no difference to any analysis made on the dewiee. '’

While the structure of a 2-phase servomotor is very simple, the

phenomena that occur within it are very complicated, being combinations
. _ 4

of electrical and mechanical effects. An adequate analysis of the

behaviour of the motor is therefore difficult, although many‘attempts

have been made to predict both thé steady-state'and the dynamic response.

Since the 2-phase servomotor usually operates with unbalanced 2-phase

voltages, the application of symmetrical component techniques is an

obviéus possibility. By this means, the_currents and torques of the

motor can be found, although in practice only for steady-state operation

from sinusoidal input voltages obtained from a constant impedance

source. -1l However, it has been suggested 11 that ghe application

could be extended to nonsinusoidal input voltages, by the use of

Fourier series and the principle of superposition. However, when

‘a servomotor is used as a control-system element, it is frequently

necessary to know various transfer functions of the device. Early

studies of the transfer functions were a mixture of steady-state and

transient considerations, and electrical transients in botﬁ the rotor

'aﬂd stator windings were freéuently neglected. The torque/ speed

curves 6f the machine were regarded as linear for different wvalues

of control voltage, and a very simpleimsult was obtained.12_14 Since

the analyses based on the simple and idealized model of the motor,

more detailed analyses have been presented. Several investigators



have interested themselves in the problem and they have approached
it painly thecoretically, with no significant experimental work to
verify their theoretically derived transfer functions. Based on
different techniques for the approximate solution of the electrical
(dy-q) and mechanical (torque) differential equations of the machine
several authors have produced motor transfer functions. 15-18
Nevertheless, in some of these approaches the transient and steady-
state électrical conditions were considered as the same, which ensured
that the reﬁult could not contain any électrical time constant and

is therefore almost the same as that provided by the early idealized
model .15 However, some authors were convinced that an accurate
transfer function must contain some electrical parameters, but they
soon found that it wés only practicable to obtain such a result

under a restricted range of operating conditions. Thus, when the
speed of the motor is low, such that rotational voltage terms within
the motor can be neglected, the differential equations of the motor
are in a form which allows an algebraic solution to be obtained. The
equations contain a product—of-variéble type nonlinearity, and in a

19 it has been shown how the complex convolution technique

recent paper
" may be applied to these equations to provide an algebraic transfer

- function.

An alternative technique, which might be used to solve the full
differential equationg of the machine, is the state transition method,
which is frequently encountered in modern control theory.ll'2°
Although this provides a powerful tool for the numerical solution

of linear differential eguations, it is only suitable for a square-
wave input signal because of the form of the numerical solution.

Further, it does not allow the effects of the motor time constants



to be identified, and it is entirely unsuitable when the phase of

the control voltage is varied.

Scope of the thesis:

The work described in this thesis is devoted to a study of the transfer
functions of a 2-phase servomotor. A survey of the existing
literature 1-19 reveals that although many authors have obtained
transfer functions theoretically,.most of the analyses are based on
quite drastic idealising assumptions, which make the results of dubious
reliability. It is shown in the thésis that a correct formulation

of the problem leads to equations which it is entirely impracticable’
to solve in the general case. However, if the assumption is made

tha£ the speed of the motor is sufficiently low for the rotational
voltage terms in the machine equétions to be neglected a solution
becomes possible, although even then the differential eqguations of

the motor invelve a product-of-variable type nonlinearity. When

these equatidns are obtained complex convolution techniqueszl_25

are used to f£ind the Laplace transforms of the product-of-variable

type nonlinearity. Transfer functions are thereby obtained relating

' spéed to step changes in the magnitude and the phase of the control
-voltage and the load torque.  Since the transfer function expressiocns

" are found to contain first-order poles onlf, a special form of complex
convolution theorem23- , which does not require complex integration,

is applied to find the necessary time-domain expressions in each case.
Tﬁe elettrical and mechanical parameters arising in the transfer function

are obtained from a series of tests on a 5 W, 50 Hz motor.



Mechanical viscous-friction damping is determined from the slope
of the measured steady-state torque/speed characteristics of the

3

motox , for various control voltages and the electrical parameters

are obtained from no load and locked rotor tests.26_28 These
parameters are used to provide theoretical predictions of the

transient response of the motor, for all the transfer functions derived.
Similar predictions are made using earlier analyses 12,15 and a
comparison is made with the experimental speed/time curves following
step changes in either the magnitude or the phase of the control

voltage and load torque of the test motor. An assessment is made of

the usefulness and limitations of the—various approaches.



CHAPTER I Constructional features of a Servomotor

The stator frames of a.c. servomotors are all constructed in
essentially the same way, although motors made by different manufact-
urers have external differences and various mounting styles. Since
the high acceleration conditions sometimes encountered require the
rotor to be of small diameter, the stator coils are often machine

wound in closed stator slots.

A closed slot construction has a higher inductance at low flux
densities than a conventional stator, and sufficient control voltage
to saturate the slot bridge must be applied before the motor will
starF. This reduces the accuracy of a servosystem at low voltage,
although when the control veoltage is high and the slot bridges are
saturated the perfarmance is little different from that of a machine
with open stator slots. The closed slot construction reduces

irregularities in the airgap, and by smoothing out the airgap flux

density it reduces the stray losses of the motor. A further advantage
is that the effective length of the airgap is reduced , which reduces
the no load current and the stator copper losses. In general, closed

slot motors run quietly and smoothly with a faster respénse and a
higher efficiency than open slot motors. The stators have a standard
distributed winding, suitably arranged to improve the spacial variation
of flux density in the'airgap and thereby to reduce harmonic effects

. . s < 3,5
in the motor and to minimise irregularities in the torque/speed curves '

Motors are designed for various supply frequencies and for different

numbers of poles. The reference phase is usually a winding with two




leads fed directly from a fixed voltage soﬁrce. The control phase

may be a 2-lead winding similar to that of the reference winding, or

a centre-tapped 3-lead winding, or even a 4-lead winding in two separate
sections. In use, a servomotor often receives most of its_power
through the referénce winding, and only a small portion of the total
through the control winding. The control winding is often fed directly

from the output of a control amplifier, although sometimes a transformer

is interposed.

1.1 Rotor Construction

The different requirements for servomotors arising in various areas
of application have resulted in three basically different forms of
" rotor design. These are the squirrel-cage rotor, the drag-cup rotor

and the solid iron rotor.3’5’7

1.1.1 Squirrel-cage rotor

To obtain-the form of torgque-speed curve desirable in servomotors, a

high rotor resistance is required, and in the typical squirrel-cage
construction shown in Fig. (1.1) thé diameter is small compared with

the length. The low roment of inertia associated with the small

-diameter produces th; high torque-to-inertia ratio required for a fast
response at high speeds. The possible presence of slots on both sides

;f the airgap results in a magnetic slot locking phenomenon, particularly
when operating at low speeds. This leads to a minimum break-away voltage .
which is defined as the minimum control voltage that will just cause
rotation with rated voltage applied to the reference winding.4 Slot
locking effects and bearing friction clearly degrade the motor performance,’
and in a control application thé‘systemﬁsensiéivity will be reduced by

the voltage that the error detecting device must develop to overcome their

presence. The slot effect may be minimised by a proper choice of the



number of stator and rotor slots, and by using skewed rotor slots.
Closed stator and rotor slots may also help, although their use will

increase the effective airgap of the machine.

Skewing the slots of a squirrel-cage reduces the rotor sensitivity to the
various stator harmonics that may be generated, and prevents the
possibility of the rotor becoming locked. Skewing may either be used to
cancel the effect of a particular harmonic, such as the third or fifth,
or to minimise the effect of a significant groqu’? The third harmonic
is often the most troublesome in small 2-phase servomotors, and to
eliminate its effects the rotor reeds. to be designed with a skew of

two 3rd-harmonic pole pitches. Elimination of the third harmonic will

_ also normally reduce the fifth harmonic to a level with which the
servomotor will have entirely acceptable characteristics. However,

a little care is necessary in design, since too great a physical angle

of skew may unduly increase both the leakage reactance and the resistance
of the rotor and may lead to a significant loss of outbut torque.
Increasing the number of poles in a servomotor leads to a decrease in

£he winding inductance and to an increase in the losses, and to overcome
this it is necessary that the airgap should be as small as possible.

.In practice it may be as short as 0.025 mm, and it is clear that both
panﬁfacturing‘tolerances and the matching of the coefficients of
expansion of the materials of the servomotor are important considerations.
The best servomotors available today possess good mechanical rigidity
and strength and?very efficient cooling system for heat conduction

from the windings. Advanced machining techniques and precision bearings
have resulted in servomotors with as many as eight ﬁoles in a frame size
of under one inch. Non-corrosive high-nickel magnetic alloys are

substituted , for the usual silicon steel, to prevent corrosion in the




10

narrow airgap. Class H insulations (such as Teflon and silicone
varnishes} and bearing greases, have resulted in motors capable of
operating at ambient temperature of 160°C. The majority of a.c.

servomotors are under 100 watts in size and operate from either S0 Hz

.or 400 Hz supplies. Above 10 watts, cooling is provided by a separate

motor-driven blower, included in the same stator housing as the control

motor.

1.1.2 The drag-cup type:

For some applications the squirrel-cage construction is inferior to
other types of rotor configuration. .For example, the drag-cup type

servomotor is adopted when uniformity of developed tofque with rotor

. angular position is important, and it also offers the advantages of

freedom from cogging and low bearing friction, resulting from the
absence of radial airgap_forces on the nonmagnetic rotor. As shown
in Fig (1.2) the stator of a drag-cup machine has the usual stator
punchings and windings but the slotted rotor laminatioﬁs of the
squirrel-cage construction are replaced by a set of stationary iron-
fing laminations that provide a low reluctance'path for the magnetic

flux. It may be regarded as derived from a squirrel-cage rotor, by

removing the squirrel-cage assembly from the rotor slots and forming

this into a drag-cup of nonmagnetic, but conducting material, such as

copper .or copper alloy. The drag-cup fits between the windings and

a stationary iron cylinder, and the airgap is kept as small as possible

by using very small clearances between the cup and the two adjacent
surfaces. The drag-cup rotor has clearly a very low moment of inertia,
and consequently the torque-to-~inertia ratio compares favourably with

that of the squirrel-cage rotor. The drag-cup has a very high sensitivity
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to supply . voltage changes, typical starting voltages being of the
order of %% rated voltage.3 If aluminium is considered for use as
the ‘cup material, then since the conductivity of aluminium is

lower than that of copper, a greater cup thickness is required. This
effectively results in a larger airgap and higher stator copper losses,
so that in practice copper is always used as the basic rotor material.
Manufacturing tglerances limit the smallest gap length which can be
embloyed to about 0.03 inches, and due to this restriction small drag-

'cup machines have a low ratio of torgque developed to power input.5-7

1.1.3 The solid iron rotor:

The solid iron rotor is similar in external appearance to a squirrel

cage rotor, with a slender and non-slotted cylindrical rotor.‘ Its
characteristics are a compromise between the high performance of the
squirrel cage rotor and the uniformity of the drag-cup rotor. The

iron used in the rotor must have good magnetic and electrical properties,
so that sufficient rotor current can be produced. Since there are no
slots,‘there.is ne cogging effect, and although some rotor nonuniformity
will exist due to grain eﬁfects in the iron, this can be minimised by
careful annealing. Since the structure is simple, the solid-rotor

'motor is strong mechanically,and it is suitable for applications

involving freguent starting and stopping operations.

Space harmonics can be generated in small-size servomotors having a
limited stator-winding distribution and a large number of poles, and in
constrast to the skewed squirrel-cage rotor, these will produce losses
in the solid-iron rotor. Moreover, the pattern of the rotor flux

distribution will also result in somewhat less developed torque.
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Although the overall torque per watt input may be 20% less than that
for the squirrel-cage, this is unimportant in comparison with the gain
in smoothness of performance, low starting voltage and reduced

~manufacturing costs.5

Although the magnetic and electric circuits of a squirrel-cage rotor
can be clearly separated for analytical purposes, no simple separation
is possible in the case of the solid iron rotor. A full analysis of a

machine with this type of rotor is an extremely complicated undertaking.

1.2 Servomotor damping:

The measured torque/speed characteristics of a servomotor, supplied by
a fixed control voltage, shows a decrease of torque with speed, as if

a viscous dragwas applied to the shaft. For successful operation of a
contrel system the motor must respond guickly to changes in the control
voltage,and.it must not oscillate or oversh.oot.l-—2 The required rapid
response is achieved by a high terque-to-inertia ratio;and the over-
shooting is minimised and stability achieved by the use of different

forms of ‘retarding torques that increase with rotational speed

Usually, a damping torgue exerts no effect at_staﬁdstill, and a motor
‘will have a high initial.acceleration. However, as the speed rises and
the damping torgue gets progressively higher, the acceleration corres-
pondingly decreases. If the control phase voltage is reduced, the
stalled torque decreases faster than does the no-load speed, so that
the internal damping coefficient of the motor is also reduced and the

system is inherently less stable.

If the internal damping of a motor is inadequate for the stabilization

of a closed loop, additional wviscous friction can be added. A vane on
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the motor shaft rotating in a viscous fluid or a drag-cup rotating in
a magnetic field can be used for this purpose. Although the driven
leoad can sometimes supply viscous damping, in many applicaticons the
gear érrangement is such that the contribution of the locad to the

system dynamics is negligible.

While viscous friction that varies linearly with speed is most desirable,
cost factors sometimes dictate the use of nonlinear coulomb friction
which.is independent of the speed. Typically this is obtained through

" the pressure of-an oiled felt padlon a metal braking surface on the

motor shaft.

Damping is alsoc sometimes obtained by feeding a direct current proportional
* to the system error through the motor ceontrol winding, but although this
is both effective and cheap it results in a considerable reduction in

both torque and efficiency.

Dampers that rely on the properties of a fluid are obviously sensitive
to teﬁperature variation, although materials enabling satisfactory
dperation over a temperature range of SOéc are now available. Magnetic
damper arrangements are inherently insensitive to temperature changes,
.although second-order effects may result from changes in the drag-cup

conductivity.

All of the above damping methods add viscous or coulomb fiictional drag to
the internal damping characteristics of thélmachine. Although these
methods are effective, they subtract from either the.speed or the
available shaft power. In applications requiring this reduction to

3-7
be minimal, inertially or tachometérdamped servomotors are used.
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1.2.1 Inertial dampers

An inertially-damped motor has a double shaft extension, with one of

the;e carrying a special drag-cup assembly. As shown in Fig (1.3),

the end of one of the extensions carries a "frictionless" bearing, on
which is mounted a ring-shaped permanent magnet with the drag cup

located in an annular ring cut in the magnet.

Dﬁring steady-state operation, interaction between the magnet and the
drag cup causes the magnet to rotate at a speed slightly below that

of the motor, and there is very 1ittlg,reduction in the speed of the
motor. During a tranéient condition increased viscous damping is
generated as a result of the increased relative motion between the drag-
cup and the relatively massive structure of the magnet. Althoughn
inertial damping of the type shown by F;g (-3) is superior to viscous
damping in not affecting the steady-state performance of the motor, it
does introduce substantial errors during acceleration, and it is utilised
mainly for servomechanisms in which the acceleration conditions are not

very arduous.

1.2.2 Tachometer damping

An alternative to inertial damping is provided by tachometer damping,

in which the drag cup and the flywheel of Fig (l1.3) are replaced by

an additional machine. This takes the form of.a permanent magnet”
generator, constructed on the same shaft as the servomotor, and usedr

to provide a voltage proportional to the motor speed for feeding back

to the-inpu£ of the control~winding amplifier. By reducing the control
amplifier input by an amount proporticnal to the speed, the torque

developed in the motor is reduced by an amount also proportional to the
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speed. Although this is precisely the same result as is achieved

using viscous damping, the tachometer enables almost the full power capacity
of éhe servomotor to be utilized. Although tachometer damping results

in a sluggish response, and is costly, it is used extensively in high-

gain positioning servomechanisms.
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Chapter 2: Steady-state calculation of servomotor performance

2.1 Symmetrical component method

As explained in the introduction, a 2-phase servomotor usually
contains two windings in quadrature on the stator, with the rotor
being :often of the squirrel-cage type. One phase winding is fed
from a reference a.c. voltage and the other from a variable control

voltage.

The operation of é servomotor differé from that of a conventional
induction motor, primarily because the voltages supplied do not
usually cpnstitute a balanced polyphase set. During steady-state
operation the behavicur may be inveétigated using the method of
symmetrical components 7_11. Two different situations were considered
by Koopmans. In the first of these both scurces were of negligible

impedance, but in the second the contrel source was assumed to have a

resistance approximately equal to the motor impedance.

Generélly, the unbalanced supply voltages are ccﬁverted into two

. sets of balanced 2—phése voltages of opposite phase sequence, a
.positive—sequence set and a negative-sequence set. The positive-
sequence set produces only positive-sequence currents and the negative-
sequence set only negative-séquence currents. The total current and
torque are found by the principle of superposition. Alternatively,
the servomotor can be considered as equivalent to a system consisting
of two identical motors mechanically coupled, one supplied by the

Positive-sequence voltages and the other by the negative-sequence voltages.
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In practice the principle of symmetrical component analysis has been
successful in providing theoretical results which are in good agreement
with experimental observations; for machines operating with quite widely

varying degreee of unbalance 8,10

2.1.1 2-phase symmetrical component

-

An unbalanced 2-phase system of voltages is essentially a special case
of the unkbalanced but symmetrical 4-phase systemg. The unbalanced

phase voltages v p V-, v

A B c and VD of the 4-phase system can be expressed

mathematically as

A 1 1 1 1 v_ N
Vé _ -3 j -1 1 6;2

Vé .1 -1 1 1 5;3 cas (2.1)
Vﬁ J -~j -1 1l 6;

where _

Val = balanced positive-seguence component

6;é = balanced negative-sequence component

V;3 = single-phase compcnent j = V-1

G; = zerb—sequence component

— ,

but in the unbalanced but symmetrical 2-phase case, both 653 and Vo

are zerc, since two sets of balanced voltages are sufficient to define
theunbalanced 2-phase supply voltages.  Thus, in the case of the
servomotor, the reference and control voltages v and vc are resolved

into positive and negative sequence components Vo1 and Voo by

AY] =

rl (vr + jvc) ... (2.2}

N N

AV =

2 (vr - jvc) vee (2.3)
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2.1.2 Determination of net torque

~ When the voltages Url and vr2 are applied to two identical motors on
a common shaft,_the resultant torgque can be calculated from the
equivalent circuit of Fig. (4,1;), noting that when the positive-
sequence motor has a slip §, that of the negative-sequence motor is 2-8S.
- It is normally assumed that the two windings are identical, and hence
that the equivalent circuits for positive and negative seguence
operation differ only in the value of the slip. However, if the

windings are not identical the use of a suitable transformer can bring

about a balanced condition.

Wheﬁ the stator windings are not electrically balanced, it is assumed
that the windings of the motoreachprodﬁce a sinusocidal distribution
of magnetomotive force. Thus, if Kmr and ch are the winding factors
of the reference and control windings respectively, and Nr and NC are
the corresponding numbers of turns, then Ir'Kmr'Nr and Ic'ch'Nc are

the ampere-turns of the main and contrel windings.

Assuming uniform permeance in the magnetic circuit, the flux waves

produced by the two windings will be equal when

Iy Ko = No
I, T k_on T °¢ e (28
c wr r

or Uc2 = o2 v

r " When an ideal transformer of turns ratio ¢ is

introduced before the control winding, and equal véltages are applied

to both windings, V¢ = ¢ Vy and I, = cIr, which satisfies equation (2.4).
Usually taking c as the ratio of the ratea voltageé of the two windings
is adequate. The'servomotor/transforﬁer combination may then be
regarded as having the terminal characteristics of a motor with

balanced stator windings.



The airgap power associated with- the positive-sequence rotating field is

. 2 Ry

P = 2 1,1 5 .e. (2.5)

and that with the negative-sequence field is
2R
’ P = 2 |1,] 2 ... (2.6)
g2 22 2-5

so that the resultant torque is

2 2
[Ty, | 1T,,1
21 : 22 1
= 2R - ). = N e (2.
TE; 2'( s 2-8 w m (2.7)
where

w = synchronous angular frequency (rad.sec_l)

121 = positive-sequence current in the rotor

122_ = negative-sequence current in the rotor

With positive- and negative-sequence input impedances of Zp s Zn

the corresponding sequence currents in the reference phase are:

. vy
. = XL ee. {2.8)
rl Zp .
v
r2
Ir2 = Z Ceee (2.9)
where
;2 L
24’ 1 w3g— §2‘
“ R, s : 2 T2
z; = R, +',. -__2_-2_ + Ju @ - m2 2 ... (2.10)
L,-_'_sz 1—2+ 22
2 2 g R
s
R2 | - 2
and Z;; is obtained by replacing S in equation (2d0) by (2-5). The

rotor currents produced by the action of the positive and negative-

“sequence rotating fields are

22
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~ 2(s)
I, = I . % . (2.11)
s T I%
_ '7(2-8)
1, = I, . =, .. (2.12)
2 -5 %

where R
. ( 2 + 3%.)
Jxm S J 2

Z(8) =
R2/S f j(x2 + xm)

and Z(2-8)isobtained by replacing S by'(Z—S) in the expression for Z(S).

b ¢ = M
m
x2 = m(L2 - M)
On substituting for_Irl and Ir2 from equatlong (2.8 and (2.9), |121[
and |122| become
) _ vrl Z(8)
|121| "= T .o (2.13)
- ' st
v
r2 Z{2-8)
I = N e .
A 210
noo 2y,
2-5 2
leading to
2 R..
v ' 2. .
p . = 2|-ft . 28 - e. {2.15)
gl % Ry | s : -
s T %
V2 Z(2-5) : R
= 5|E = . ee- (2.16)
Pg2 2 z, ’ R, 2-5 :




Onn the other hand,

vol;ages (i.e. vr

<
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when the motor is operated with balanced 2-phase

Ve /—90o )} the phase current is

(2.17)

..

(2.18)

L

(2.19)

LR )

R
2
S (2.20)

r
I, = 7 .
P
the rotor current is
- _2(8)
I2 o Ir . R2
s tI%
and the gap power is
2 R2
Pg(s) = 2 |1,| .35
2
_ 2{‘25 z(s)
Ry
s * %,

.As béfore, the gap power for operation at
replacing S by (2-S) in equation (2.20).
of equation (2.15) to equation (2.20),

vrl

v
r

lZ

Pgl . . Pg(s)

-and by proceeding in a similar manner

P

the net gap power is

Pnet gl g2
v 2 v
rl r2
or Pnet = -\)_ Pg'(S) - '\—)"'—'
r r

a slip 2-5 is obtained by

By formulating the ratio

{2.21)

|2 P (2 - )
g
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Generally, torque is expressed in terms of power by
P

T = - Nm.
w

€

or from {(2.21) as

... {2.22)

where

TEb {(5) and TEb(21gare the torgques for balanced operation
at rated voltage and slips of S and 2-S. Thus, the resultant torque
at any slip and any condition o£ unbalanced voltages may be obtained
in terms of that for balanced operation at rated voltage. Hence,
using equation (2.22), the torque/speed characteristics for various

values of the control winding voltage can be determined without resorting

to the equivalent circuit. .

2.4.3 Electromagnetic torgue expression when the angle between the

. o}
control and reference voltages is ¢ .

The torgque produced by the servomotor is different in directiqn
depending on whether the contxol voltage leads or lags the.reference
voltage. In equation (2.22) we need to find the positive and ﬂegative
sequence voltages vrl and V.o to establish the general expression for
“this torque.

(1) if Vo lags V.. by ¢° (|¢| < 900) then from symmetrical component

analysis.

c2. .. (2.2?)

Vv = v + v vee (2.24)




26

Assuming that

v o= v k /¢ ... (2.25)

C r
then
Vi T T . ' cee (2.26)
vc2 = v, sea (2,27

From equations (2.23), (2.24), (2.26) and (2.27)

A

vrl = = (vr + jvc)

and using eguation (2.25)

N .
. X .

vy o= 5 L+ dk /o)

vr
\.’rl = ?)_.-_ (1 + k (90 - Q )
. o |
v.. = — {1l +ki(sing + J cos ¢)) -.- (2.28)
rl 2 .

Similarly, it can be shown that

<

Vea T 55 (L - k /90 - ¢)
-\Jr .
Vo = (} - k (sin¢ + j cos ¢)) cee (2.29)

From equations (2.28) and (2.29) it now follows that

v 2 .
L l_ = %—(1 + 2 k sing + k) Cer (2.30)
Vr
and i
v 2
r2 _ 1 _ . 2
v_ ’ = 2 {1 2k sing + k™)

substituting in equation (2.22)
T - = (T (8) . (1 + 2k sin¢ + k2) -
4 Eb

M (2 =78, (L - 2k sing + k%)) cee (2.31)

N 7
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(8).{(1 + sing) - TEb(2—S).(1 - sing)) ... (2.32)

{2y If vc leads vr by ¢0, then

Vep = v, .i. {(2.33)
Ve = T IV ee. (2.34)
v, = kv_/¢ .e. (2.35)
and if |¢] < 90
~ \Jr .
\)rl = '5'— (l = k /90 + Q )
Vr
Ve, T T3 (1 + k(sing - jcos ¢}) -« (2.36)
and similarly
Vr
Vo, = 3 (1 -k (sing - jcos ¢)) eew (2.37)
from which
v 2 : .
rlj] _ 1 . 2
> = 2 1+ 2# sing + k7)
r
and ‘
Voal2 %(1—2ksin¢+k2)_
v
r
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2.1.4 Analysis of the machine performance for finite impedance source

The.control voltage is applied to the control winding through a series
resistance approximately equal to the average magnitude of the motor
impedancea. This is equivalent to supplying the winding from a

power amplifier matched to the motor winding through an imbedance

matching transformer. The contreol voltage Vo 1s represented in terms

of the voltage drop across the series impedance Iczc_and the source wvoltage

E as
c

Ec = Vo + Ich .. {2.38)

If the control voltage leads the reference voltage, rotation will

be. in one direction, if it lags then it will be in the opposite direction

" as before. Koopman assumed that
E, = =~ jk v, : ee (2.39)
where
Ec
k = 5
r

and is chosen according to the requirements of the contrcl system.

From equations (2.23), (2.26) and (2.27)

\Y
- . 2

I = —j Z_rl + 3 ;E_ «ee (2.40)
n P

Using equation (2.39), (2.40) and (2.3g), the control and reference

voltages are given as

url vr2
= _ . - - =t : & Z . .
vc _'jk'Ur (-3 Z-f) + 3 Z'r‘l) c (2.41)
From equations (2.2) and (2.41)
Url vr2
v .= j (=1 j —= - — : ‘e .
2V Ve ¥ 300+ 0 Zp j%;- ) 22 (2.42)
and from equations (2.3} and (2.41)
v v
. . L. rl . "r2
2vr2 = vr_- j(—]kvr + (3 E;_ 3 E;— } ZE) vee (2.43)
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is0 that Zc

1+k +—
v = = v (2.44)
rl -_— 2 - r. Zc l . . 0. -
1+57 =+ 30)
2 'z, N
Z¢e
1l -k +2°
v, = % v_- P .. (2.45)
| e 1,1

The expressions for Vel and v,y can be found for all control voltages,
and the corresponding torque/speed characteristics can be computed

using equation (2.22).

2.1.5 Analysis of the machine performance for low impedance source

When the control veoltage is applied directly to the control winding, Ze

becomes zerc in equation (2.44) and (2.45), i.e.

Vpy (1 + k) . ... (2.46)

N <) o<
e = ™

1t

v {1 - k) e (2.47)

r2

and the analysis continues as before.

©2.1.6 Theoretical and measured steady-state characteristics

"Many authc.uc's3’4'8_ll

have used the analytical approcach described above
to investigate the steady-state performance of a 2-phase servomotor.
Although their analyses differ in detail, they originate from the same

basic principlg and provide fundamentally the same results. The

principle concern of the authors has been the steady-state torque/speed
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characteristics of the machine’and the validify of their analyses has

been established experimentally by many workers. Reascnable agreement
has.been obtained between the thecretical and measured results when

the supply voltages are both balanced and unbalanced. Advance

reference to Fig. (5.5) shows the nonlinear characteristics of a5 W

motor, and these are typical of many similar results presented in the
literature. The general shape of these curves should be kept in mind when

the . idealizing assumptions given in. section (3.l1l1) are read.

2.2 Sfate transition method

The work described in this thesis is restricted to machines fed with
sinusoidal reference and control voltages, and the analysis of the
perfo;mance when the motor is driven by nonsinuscidal voltages is
beyond the scope of Lhe present contribution. The only nonsinusoidal
voltage supply likely to be encountered in practice is rectangular in
forﬁ, as provided by the ocutput of many inverter circuits. This
situation is mathématically more complex than that of the sine-wave
supply, and one authorll has used the state~tranéition technigue as

. the basis of an analy£ical method for calculating the performance
characteristics. The state-transition technique is used commonly in
modern control theory to solve linear differential eqﬁations, and it
has been found to be especially useful in the analysis of discrete time

systems.

In applying thastate-transition technigue to the servomotor, the d-gq

axis differential equations of the stator and the rotor are first
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transformed into instantaneous symmetrical component form. In this
reference frame the positive and negative-sequence quantities are
conjugate pairs, so that only the positive-sequence set is needed

to form the state vector of the state-transition eguation. The net
effect of the voltages fed to thé servomotor during a supply cycle is
conveniently divided into four stages, transition between the stages
occurring at 90° intervals, as either of the supply voltages changes
in direction. Each of the 90° intervals is regarded as a sampling
period, and the symmetrical components of the motor voltaées are
obtained during these periods on the éssumption that the speed remains
constant. The differential equations of the motor are represented
in Z-transform notation, which enables the currents and torque during

the sampling instants to be calculated.

Although the theory has been worked out fully, predictions of the
motox perfdrmance have only been made for one sampling period, and no

attempt at all has been made at experimental verification of the analysis.
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CHAPTER 3. EARLY ANALYSES OF THE TRANSFER FUNCTION OF Z2-PHASE

SERVOMOTORS

The transfer function of a control system element is defined as the
ratio of the output response to.the input excitation, If the
output is linearly related to the input, the transfer function is
normally expressed as the ratio of the Laplace transform of the
output to that of the input, with the initial conditions assumed

Zero,

The use of the Laplace transform prbvides a convenient method of
handling in a systematic aigebraic manner the differential egquations
of the element, and the transfe£ function of the element is the same
for both open and closed loop operaticn. However, the transfer’
function of d;fferent con;rol elements can have different dimensions

(e.g. the output of a position transducer may be in volts and the

"Anput in radians, whereas the cutput of a sensitive servocontrol

valve is in'm3/sec and the input in radians) or they may be dimension-

less, As a transfer function is the ratio of two Laplace transforms,

it will be an algebraic function of the Laplace complex variable s.

. The symbol G(s} is normally used in control thecry to dencte the

transfer function of a forward path, and the symbol H(s) that of a
feedback path. Since the conditions for the va;idity of a transfer
function stem from its definition as the ratio of the Laplace transforms
of initially inert system, a system not directly transformable has no

valid transfer function. Although strictly this eliminates systems
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with non-cdnstant coefficients, such as nonlinear sysﬁems, various
techniques (such as the use of the describing function) enable approxi-
mate results to be obtained for certain nonlinear situations. In
many instances, the generalised trangfer function of a nonlinear
element is composed of a frequency-independent non-linear term,

which is the describing function of the element, followed by a linear
term in the form of a low-pass filter. Using the conditions for the
limit-cycle oscillation of the system, the describing function is
modified in terms of the linear filter, and various convenient
graphical techniques are available to enable such relations to be

used in analysis and design.

The input/output (or excitation/response) relationships of many
systems and system elements will contain product-of-variable type
nonlinearities, and this is found te be the case in a rigorous
analysis of the 2-phase servomotor. All early analyses neglected
this effect, 5ut‘it is clearly necessary to overcome this and include

it when a rigorous analysis is attempted.

3.1 Comparison of different early approaches to the machine transfer

function

Among many authors who have studied the behaviour, propeities and
characteristics of the 2-phase servomotor, several have considered
the transient response and have attempted to establish valid transfer

functions for the machine. The following sections provide a summary
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of the different approaches which have been followed, and attempt

to show the need for the rigorous analysis of Chapter 4.

3.1.1 Analyses based on a simplified model of the servomotor

?he most elementary approach to the transfer function of the 2~-phase
servomotor assumes linear torque/speed characteristics, egqually-
spaced for equalchanges in the control voltage and parallel 12

as shown in Fig (3.1). A further assumption involved is that

both the stator and the rotor windings have negligible time constants,
so that the control current is proportional to the error signal.
During the analysis, torque is taken as a function of both speed and
control voltage, and only the first terms in a Taylor expansion for

the electromechanical torque are retained:

i.e. dTy "= K, du_ +K, dv_ | ceee(3.1)

where

=~
It

(change in torque)/(change in speed)

for constant input signal

K2 (change'in torque/(change in signal voltage)

for constant speed
V¢ = control voltage

.To obtain the transfer function, equation (3.1) is expressed in
Laplace transform notation, and equated to the dynamic equation for
the mechanical system, also expressed in Laplace transform notation,
i.e.

Ty = J52 Br(s) + fg Br(s) eess {3.2)

where Br is angular displacement of the rotor in radians, and J and £
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are respectively the moment of inertia and the coefficient of
viscous_friction damping. By this means, the transfer function

between the output shaft position and the control voltage is obtained

as
8 (s) K
r 3
Gl(s) = V(s - S(l+osT ) eess (3.3)
c m
X,
where K =
3 f - K
l.
J
and Tm = o Kl

In a second and quite similar elementary study, it was assumed that
the control winding of the motor was energised from a power source

that provided a control current proportional to an error signale 13

Thus
er(s) Kv
Y & B s g e 300
where
aqr BIC
K = o, —
v aIc de
Ic = control phase current
- 5,oT -
Tm = J/Swr = J/Kl

mechanical time constant at no load.’

The above transfer functions, Gl(s) and GZ(S)’ indicate that the
frequency response of a servomotor contains only the single time
0

constant of the mechanical system, and that the phase shift of 90

at low frequency increases to 180° as the frequency is raised.
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To verify this, Hopkins 15 obtaineq experimental transient responses
reéulting from various step input amplitudes applied to the control
winding, with various values of reference‘field voliage. The
response was drawn as log (final velocity - instantaneous velocity)
versus time and a straight line would be expected. However,
considerable curvature was observed in the early-time domain, and
this was accounted for as the result of a second exponential term,
caused by the electrical time delays in the motor winding neglected
in the theoretical analysis. Without any further basis, it was

proposed that the transfer function should be written as

, K
S(1 + Tys) (1 + Tgs) '

G, (s) = (3.5)

where Tg is an electrical time constant. Although the transfer
"functions given in equations.(3.3) and (3.4) are attrgctive for
their simplicity and are intellectually iﬁteresting, they rely on
‘basic assumptions which are far from valid. . Although they are
likely to p?ovide results much different from the actual situation,

no direct compariscon appears to have so far been made.

In 1951, L. O, Brown lq published a slightly more detailed solution
for the transfer function ©f the servomstor, althOugh he still assumed
the transient and steady state torques to be equal. By considering
the interacticons between the distributions of flux density and current
following é step change in the coﬁtrol voltage, he obtained an

expression for the electromechanical torgque of the motor. Equating
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this to the rotor and load requirements, he produced the equation

R2
dw -—= %
J = + fw = K, e L2 cos {wt - a) + K.A (3.6)
dt r 1 21 te :
where Al = amplitude of the inphase component of the rotor

current as a function of the instantaneous rotor

velocity
Kl, K2 = constants
o = angle between the stator and rotor reference

- lines as—e—fumetiop—-cf--pime

Numerical examination of the first term on the right-hand side of
equation (3.6), which contains typical machine parameters, shows

that the exponential term decays very rapidly in comparison with

the decay of the cosine term, which can therefore,be regarded as

approximately constant and egual to unity for the dufation of the
exponential. The equation relating the inphase and quadrature

components of the rotor current (of amplitudes A, and A, respectively)

1 2
is
a2, ' Pe In
L2 3C + R2Al = (A2L2 - 5 Y {w - wr) vess (3.7)
B, = proportionality constant between the stator

magnetizing current and the flux density

In magnitude of magnitizing current in either phase.
An examination of the right-hand side of equation (3.7) from the

standpoint of the initial and final values for various final velocities,

will show that it remains nearly constant over a wide range. The




38

eguation can then be written approximately as

L2 dAl o+ RzAl = K3
at

which leads to an approximate expression for the instantanecus

angular velocity as

_Boe
_ J/ft
w (t) = M+ M, e + MET2 cen. (3.8)
where M = steady state torque divided by the coefficient

of friction for the system

From the initial conditions of zero acceleration and velocity, the

coefficients of the exponential terms (M2 and M3) can be evaluated

in termg of the constant Ml' By taking the Laplace transform of
each term, and then collecting the terms over a common denominator,

Brown obtained the transfer function for the motor as

]

8 3 A ceee (3.9)
G,(s) = v, (s) s{l + Tys) (1 + Tes)

where A is a combination of various electrical and mechanical parameters
~of the motor. It will be noted that equation (3.9) has precisely the

-same form as that proposed by Hopkins {(equation (3.5))

With the excitation voltage to the conﬁrol winding considered as
amplitude modulated by a low frequency signal, the amplitudes and
phase of the frequency response of a typical 25 W motor was predicted

from equation (3.9), and compared with an experimentally obtained result.
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Although a reasonably high level of agreemeﬁt waé cbtained, this is
§e¥y surprising in view of the assumptions involved in the analysis
and the doubtful nature of the mathematical treatments. It cannot
therefore be regarded as establishing any widespread validity of

the result.

3.1.2 More detailed early analyses

In the first attempt at a more than superficial analysis, Hopkins 15
used the method of symﬁetrical components, to separate the unbalanced
supply voltages into two balanced sefé. He no longer regarded the
torque/speed characteristics of the motor as pérallel straight lines,
and expressed the characteristic for balanced steady-state operation
at rated veltage by the expression

T = constant x reference voltage x control voltage x slip ... (3.10)
when unbalanced voltages are fed to the mbtor windings, the techniques
of symmetrical component analysis may be used to determine the
corresponding steady-state torque of the motor. If the assumptions
involved in the previous section still apply, the steady-state and
'the transient torques are the same at any given speed, and Hopkins

'thereby obtained an expression for the electromechanical térque as

2 .
VC (t) +Vr2 mr .
T = K [v_ (t). - .= |
. c( ) Vr 5 " ees (3.11)
s
where ) .. -
v, = amplitude of constant reference voltage, v = /E-Vr sinwt
V?FF) = amplitude of time varying control voltage,vc = /E'Vc(t) coswt
W, = synchronous speed

With equal steady state and transient torques, the differential equation
which relates the electromechanical torque to the parameters of the

mechanical system is
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d KV 2(E) + v %) 42 fuy KV (t) V. -a
I.'+ C r @ - C r (3 12)
at 2wSJ r J e v ea .

where J, a and f are, respectively, the moment of inertia and the
coefficients of Coulomb and viscous friction. Although equation

(3.12) can be solved for any specific form of Fime variation of the control
voltage' amplitude, numerical or graphical integration may be necessary

for some forms of variation. The solution for the case of step

change is similar to that for a linear system, except that the time
constant is now a function of the step voltage amplitude. Thus, the

corresponding speed response is

._t/T
W W (L - e ) ) veee (3.13)
where
2 J ms
T = > = effective time constant
K(VZ2 +vV I+ 2f
c r s
20 (K VV_ - a)
_ s cr
Yss T 2 2

K(V +V ) + 2f w
c r S

Since only one time constant exists in this result, the transfer
funcfion resembles that obtained previously in equation (3.2). If
the control voltage amplitude is time varying the theo;y of small
bscillations may be used, provided that the amplitude variations are
sufficiently small, but this results in an extremely complicated

expression for the speed variations.

.Hopkins was unable to continue his analysis and obtain a solution

for the case of large amplitude variations, and although he set out
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to solve completely the nonlinear differential equations of the
motor he ended up by deducing from experimental observations the

same result as that arrived at by previous workers.

In an analysis based on an approximate solution of the differential
equations of the machine, Kutvinov 16 bPresented a further improved
solution. As with Hopkins he no longer maintained the restrictive
assumptions of early authors concerning the linear form of the torque/
speed characteristics, but uniike Hopkins he conducted a fqndamental
study. By writing loop equations for the steady-state currents in
the conventional equivalent circuit of the motor and substituting these
in the expression for the torque, he obtained the ratio of the motor

torque at a speed w. to the stalled torque %}- as
s

5
R, cos(¢c - ¢e)

2.2 2 )
. Y(Kl + a B K2) Y afsinb ( 4K1K2 - zrC . zre
—- = oafsind -
Ts ' 2 2R22cos(¢c- ¢e) 4 Rzg R22
1=y (1 + 4Kk, - 7 7 )+ oy 2K, - — 2K, —-—5—)
. re® “rc Z Z
re re
3 Ry 22 R 4 R,” R,?
Y ( 5 Kl + a B S~ K2H + v ( 2Kl - —5—)( 2K2 - —Ev)
ZZrc re ZrC Zre
- eee {3.14)
2R 2cos (¢ ~¢ 3y a R 2 R 2
1 - 72 (1 + 4K K, - 2 S ® 3y y (2K --—3—)(2x - 2
12 Z .z : 1 2 2 2
re "rc 2 Z
rc . re
. V. w :
ji¢ _ e . X J$q ke _
where ge =g ¢ Y o Be , 0 ¢ + ¢l
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ékc and 2ke are defined by Kutvinov as the transmission impedances
of the control and reference circuits, with the rotor locked.

6 is the phase difference of the currents in the stator

windings with locked rotor

zZ _, 7z are the moduli of the reference
re’ “re .

and control circuit impedances measured on the rotor  side.

Zmie : émzc
Zre = 22 + - zrc = Z2 +
Z + 2 Z + Z
m e m c
Zm =  JuM 22 = R2 + JmL2 Ze .= Zie + Rl + Jle
. _ .
Zc Zic + Rl ijl

gie: zic are the internal impedances of the equivalent generators of
the control and excitation circuits.

Assuming the rotor resistance to be greater than one half that of
the stator, and a speed range between O and 80% of synchronous speed,
the above torque equation .. expressed in series form, is
r
.

. 2.2 3
= @fsinb - Y(Kl + o B K2) - Y n2 - Y n

HIH

X 3 - (3f15)
Kutvinov assumed that the general solution for the motor current
obtained from the differential equations describing the machine could
also be given as a power series in y, but since Y < 1, and for any

2
.small changes in speed, Ay << 1, it is clear that vyay, {(Ay)" etc. are

all approximately zero. The general solution for the transient response



thus leads to an equation which differs from egquation (3.15) only
in Fhe coefficients of the zero aﬁd first powers of «y. Kutvinov
therefore limited his equation (3.15) to the first power of vy, and
- sought a solution by setting the average speed change equal to zero
for the cases of both amplitude modulated and frequency modulated
methods of control. After much algebraic manipulation of the
differential equations of the circuit, a transfer function relating
. the instantaneous changes .in speed to the changes in an amplitude

modulated signal was obtained as

v ' w B K sin® A(P)
—= (P} = cee. (3.16)
aE EP1  a+ P9 pep) + K, N{(P)

Py

and the transfer function relating the changes in speed to the

changes in the phase in: a freguency modulated input signal as

Awr ~ f_‘?_. or.Bsuan Alp)
EE— Py T .
' D(P)(a + P— ) + K, N(P)
P 1
1
ﬁhere P = Jjwj (mm being the modulating frequency)
bg = 0 - Tr/2 \
. fmo . . w
= TS == ’
Ts‘pl s Py
T = J/Ts ; P, = number of pole pairs
Eo = reference voltage amplitude

The denominators of both equatiéns (3.16) and (3.17) contain two
different functions of the operator P, D(P) and N(P). To avoid
complication these two functions were assumed approximately equal,

although this was said to lead to an error of only 5% to 7% in the

{(3.17)

43
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determination of the transfer function, which is not beyond the
limits of engineering accuracy. As a result of this approxi-

mation the transfer functions were rewritten as

Aw w B K sindg A {P)
A—r (F) = —— . — . cee. (3.18)
Em c 1 Pwo D (P}
{a + Kl + }
o7l
and
Bu, ®c a B sin b A(P) cee. (3.19)
B P TR Pra,
"1 o) D(P)
(a + K, + ——)
1 P
.
. - . . ; A(P)
which now contain the single operator BTEH -
A full statement of the functions involved in equations (3.16) - (3.19) is
f{*eje(z +2) Z + qM 5
A(P) = Re & (N 2 s 4 ... ar
K_ sind “o Z + Z 2
c m rc
. * *
K e-je . Z, + sM .
- i (Z,, + QM) | e == ] ceee (3.20)
K sind 4 Z + Z Z
m rc
* - * -
sr r ZS + sM Z_ + qM
D(P) = —= g . _ . _q_______ cere (3.21)
Z Z Z + 2 Z + 2
rc rc c m C m
and
2 * . *
- 1 z_ z . 2, + sM
N(P) = Re 3¢ [ - A
1z (z_+3) o [z Z_ + 32
re c m rc c m
. . . *
- 22 + 2 A r Zs + sM Z_ + gM
. .4 ] ceee (3.22)
z* Zre |2c - 2, Zo + 2q
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N, k- Koej¢°

where R, is the real part with respect to P,KN = KN ¢ K

and Ke = KeeJ¢e are the complex transmission factors of amplifier

and modulator for frequencies w - w_,® and w + W -

ml

s = J (w=wyl, a9 =+ wy)

Zg and éq stator winding control supply impedances at frequencies

W - w, and w + @
ﬁsr and qu are motor éontrol circuit impedances measured on the

rotoxr side at frequenéies w =W, andl w 4w,

ﬁzq = Ry + jlw + up) L,

The above expressicns for the transfer functions are difficult to

use in any practical computations, since thé direct calculation of

the céefficients necessitates thé carrying out of lengthy mathematical
transformations, However, Kutvinov showed that an approximate
transfer function could be obtained in the case of amplitude modulated
éontrol by using graphical tecﬁniques based on the frequency response
cﬁaracteristics of the motor. Even so,a considérable volume of
_calculation is requiied.- It is perhaps not surprising that Kutvinov
presents an entirely theoretical paper in which he neither evaluates
the transfér function for a given maéhine nor attempts any correlation

with the practical results.

In a general method of solution suggested by Vlasov 17 , the '‘servomotor

is a component of a carrier type automatic control system operating

on a.c., and Vlasov attempts to describe the overall system by linear
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differential equations with periodic coefficients. In his approach,
the:torque'eqﬁation of the servomotor is linearised, by the assumption
that the control winding flux linkage is much less than that of the
reference winding. The coefficient in the torque equation thereby
becomes periodic at.the supply frequency. Vlasov considered a
system comprising a modulator, a quadripole, and a motor, with the
inputs to these stages being respectively x(t), x{t)Um cos(wt - ¢) and
"Ll v(s). L(x(t). Um cos (wt + 8)))

where Um = control voltage amplitude

1

w supply frequency

The Laplace transform of the quadripole is

Uy(s') ¥Y(s'). Uy;(s")

where U (s') L {x{t). Um cos (wt + ¢)) and s' =

£ |t

Neglectingterms modulated at twice supply fregquency, since the motor
acts as a low pass filter, this approach leads to an overall transfer

function relating the motor output to the modulator input as

g,(s") : v o .
Gl(sl) = 2 - 1 ' ( <] 2] Y(s' - j)eja
x(s') C,S' (cls + 1) st - j
. .6
p S22y 4 gy cees (3.23)
s' + 3 ;

where <y and c, are dimensionless constants,with the quadripole
designed to operate at supply frequency with a gain K,, equation

{3.23) becomes

2Ky ((s'2 +2) cos§ + s'sing)

G, (s') =
1 czs' (cls' + 1} ((s‘)2 + 1

where § = - ¢ V?-‘= U2m sin (wt + )




47

The transfer function is simplified still further if we set 9 = O

and s'? << 1. Then

4 Ko
G, (s') =
1 c.s' (1l +c s')
2 1
which can be written as
K
Gl(s) = Sl 1 Tos) ceee (3.24)
c
where K = 49 Ty = 4
& ' w
L2
13

which resembles the result obtained by Brown and Campbell, although
the basic requirement that the differential equations should be
linear with periodic coefficients is quite restrictive and the gain and

4Kom c
" and —) are quite different. As in
w

time constant factors (
’ 14

the approach of Brown, the development of equation (3.23) requires

the equating of the electromagnetic torque develcoped by the motor

with the mechanical torque required by the load, and it is in the

‘solution of. this equation that the linerization process is used.

In an approach broadly similar to thét of Kutvingv, Mikhail and Fett18
" established from the differential equations of the motor the general

. form of the torque/speed equation, in terms of the 2—pha$e currents

of the motor. At an iﬁportant stage of their analysis, the authors
atteﬁpt to solve the torque equation before linearisation, by the

use of Laplace transform. However, they made a fundamental mistake
‘by simply replacing the differential operator by the Laplace operator

when finding the Laplace transform of the product of two time functiocns,
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a process which completely invalidates their result. The result
of their study is a transfer function relating the speed to the

modulating signal, given as

2 wl
G(s = ‘
(s) R sese (3.25)
L+ T s)(L+Ts) + (12 + go)
3 e
KM
where I = r.m.s. value of the current in the reference phase
g = r.m.s. value of the modulating function g(t)
K = constant
T, = electrical time constant
T, = mechanical time constant
Gls) = A ' (3.26)
(1 f sTa)(l + sTb)
3
. 2 wK M'T
where A = T, T
: a b
£ R2 T'mTe
=L g =L
1 2
where
2 3,2 2
N T S N |2t B = v e
1,2 2 ‘Te Tm . e m 2 € 'm

although resembling in form the result of L.O, Brown, the terms of
the equation are quite different. Neither Vlasov nor Mikail and

Fett give more in their papers than the mathematical statements of

the tansfer functions.
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Fig 3.1 Linear torque/speed characteristics of

idealised  2-phase servomotor

Reference wvoltage = 100%
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CHAPTER 4, TRANSFER FUNCTIONS OF 2-PHASE SERVOMOTOR USING COMPLEX

CONVOLUTION APPROACH

The early analyses described in the previous chapter of the thesis,
were either based on a machine model assumiﬁg a linear torque-speed
characteriétic, and the same behaviour during both steady state and
transient conditiong'or on a solution of the machine equations in
‘which quite drastic approximations were made. Both approaches may
lead eventually'to a transfer function of the same general foxm,
although these differ in the magnitudes of the gain and time constants
involved, To establish correctly a transfer function for the servo-
. motor containing the time constants associated with all the electrical
energy storage elements of the motor, besides tﬁat of the mechanical
system, necessitates an algebraic solution of the nonlinear equations
involved. The product of variables noniinearity which arises in

this solution can most conveniently be dealt with by the use of the Complex
éonvolution technique (see Appendix 8.1.4) which enables the Laplace

transform of the product of two time functions to be briefly expressed

21-24
.as follows. If £,(t) and f,(t) are Laplace transformable functions,
A (s)
having the Laplace transforms of Fy (s} and Fz(s), and if Fl(s) B FET
is a rational fraction with q first order poles only, then
k=g A (g}
L (£, (1) . fo(t))y = "I F2(s = sy) veee {d.1a)
k=1 B (s)
where B'(s) - | & B(g)
. ds B
. : 5% 5
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The inverse of a transfer function given by a general rational proper

fraction is

A . L A0) 0 i "k ... (4.1b)
s Bl(s) Blip) k=2 Bl(sK)
wh B! 4 (B }
ere l(s) as l(S)
s = s,

4.1 D-Q aﬁis equation of a 2-phase servomotor

fhe idealized 2-phase induction motor provides a very convenient
starting point for the study of the dynamic bahaviour of the 2-phase
servomotor. This model is shown in Fig. 4.la, while Fig. 4.l1b shows
the stationary axis equivalent produéed by the application of Park's

transformation. The idealised machine is assumed to possess

(L) 'negligible saturation, hysteresis and eddy currents

(2} a_unifprm airgap, and rotor and stator induﬁtances which are
independent of the rotor position

(3). conductors -and coils so distributed that the mutual inductance

between a rotor phase and a stator phase is a cosinusocidal

function of their relative displacement.

Based on these assumptions the familiar d, g equations of the machine

may be obtained as:

er~ -ﬁI-bLlp o] Mp . 6 ] riD-
Vg o} R, + L,p o) Mp :F.Q
V4 = Mp er R, + sz - Ezwr id (4.
qu._ -Mmr Mp _—Lzmr R2 + L2p iq
- - e -

or [v] = [ZJ[l]
where [quis the impedance matrix of the machine. The conventional

eqguivalent circuit of the induction machine, which can be derived from

equation (4.2) is shown in Fig.(4.1lc).
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In eguation{4.2) the upper—case symbols D and Q refer to the stator
windings while the lower-case symbols d@ and q refer to the rotor
windings, and normally vd = vq = Q.

The electromechanical torgque produced by the motor is normally

cbtained from

H
[

(iJ0G) [1)

= ey U dg - iy ) . cee. (4.3)

where [G) is a matrix found from the coefficients of Wy in [Z] and

pl is the number of pairs of poles in the machine.

The first stage in the development of the transfer function is to

obtain eguations from (4.2) for i_. and iq, as

d
L -M ((R2 + sz)(plwrlQ + p?D) + plmrL2 (plwriD - plQ))
d ... (4.4)
2 2 2 2
(R2 + sz) + pl W, L2
and
M ((R2 + LZP)(plwrlD - plg) - Qf%Lz(plwrlQ + plD))
i = es e (4-5
? (R, + L )2 + 2m 2L2
2 T RoP Py ¥

and to substitute these in equation (4.3) to give the electromechanical

torgue equation as

le ) 2 %
T = ) { - (R2 + sz)(plwr(lD + lQ + lQpED - le}Q]

£ 2 2
(Ry + Lyp)™ + plu "L,

+py0 L, (iDpiD + iQpiQ) ) vee (4.6
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During normal operation a servomotor will be operating at speeds
very much below synchronous, and under these conditions it is

: ‘ 19
reascnable to neglect all the terms in equation(4.6)which involve mr.

L
With the introduction of the rotor time constant T2(= —2 ), equation (4.6)

R
may then be rewritten as
Dl M2
Te = (i pi - i pi) cae. (4.7)
R2 {1 +-sz) D @D

A further useful simplification is now to introduce the stalled

stator impedances of the machine, which may be written as

vb(t) .
iDC(t) = —— esae. (4.8a)
1 L}
Rl +Llp
v ()
. _ Q.
1Qo(t) = ——— «e.. (4.8b)
T [} .
Ri' +L'p
where Rl' and Ll' are the input resistance and inductance respectively,
given by 2
2 m°
w R2
R, = R, + —r— e (4.9a)
1 -
1 1+ (mTZ)2
N CROR >
1 1 -a.. (4.9D)



54

4.2 Transfer function for amplitude modulated control

When the control of the servomotor is by amplitude modulation of
the control winding voltages, the mutual phase shift between the

control and reference voltages remains always at 90°.

If a fixed reference voltage v_(t) = V_ sinwpt is applied to the @

Q Q
axis winding and a control voltage vD(t) = VD(t) sin{wt + n/Z) to

the D-axis winding then

y o308
100 (®) = sin Wt ... (4.10)
| 21 |
‘ WV e'j¢3
Pi, (8) =—f —— coswt ev. (4.11)
| 21
where |Zi] e+j¢8 = Ri + iji

It is at this stage that the analysis of the present author departs
from that of the only previocus solution of (4.10) using complex conjugate
techniques. In equation (17} of his paper, D. R. Wilsonl9 applied

‘this technique incorrectly, and his equation for the reference phase

current v : uQ(t) = VMsin(wt + ¢l)
, _ M . _ _ -
1Qo{t) = 3z sin {wt + ¢l ¢Q) ¢l = phase at t 0
1 -1 le
| ¢ = tan = ——
Q R,

is accordingly in error. This error is maintained throughout his
analysis, and leads to expressions considerably diffegent from those in
the present study. A further mistake which appears in the analysis

of Wilson is that the stalled impedance of the motor is taken simply

as the stator winding impedance Rl + le.
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Since the contreol voltage vD is a function of both VD(t) and
sin(wt + m/2), we need to use complex corvolution in determining
the Laplace transform. Thus, if we let fl(t) = cos pt and

fz(t) = VD(t), then

} _ ]
L fl(t) = 5 2
sT + w
A (s)
= E-(—g) with
first order poles -sl, 52 = * Jw and
L(£,(t)} = Vpis)

substituting in equation(4.la) and noting that

¢, A
B ' {s) = ds B. (s)
= 2 s . we ohtain
v (s) =L(V_(t) coswt)y = ii_iﬁl V (s - jw) + {=Jw) V_ (s + jw)
D D 2 {(+jw) D . 2(-jw) D
v_(s + jw) + Vp(s - jw)
vp (s D e (4.12)

2
The Laplace transforms of the reference and control winding currents

are given by equations (4.8Ba and b) as

ke {s)
igo(s) = —————
Rl' + Ll's
and
v D(S)
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V(s + Juw) + V(s = Jw)

ceee (4.13)
2 Zl'(s)

From equation (4.13), two currents iDO(s + jw) and iDO(s - jw),

.which arise later in the analysis, may be defined as

VD(s) + VD(s + 2jw}

i (s + jw) -
Do 2 zl'(s + juw)

VD(S) + VD(S ~ 2jw)

i (s - jw)
Do 22" (s - ju)

It is reasonable to assume that the twice supply frequency terms

in these equaticns cannot give rise to shaft oscillations at that

9,28
frequency,'and with these components of the currents neglected

v,(s)
iDO(S + Jw) eees (4.14)
227" (s + Fw)

VD(s)
iDO(s - Juw) eres (4.15)

L}
22l (s - Jw }

Substituting iQ&t) and p igét) in ‘equation (4.7) we obtain for the

torque of the motor

: 2 Coor i (E) _
T () = nle VQ e J¢Bjw D cos wt - Pluét’ .
- —_— : E_T;T sinwt -.a. (4.16)
‘zl'| 2 2, (P)

and it is clearly necessary to apply complex convolution to each term

in the square bracket. Thus, for the first term

iDJt)

Zz(p)

fl(t) = cosWt . fz(t) =
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A, (s) i (s)
1 Do
F (s} = = ¢ F (s8) =
1l s2 + m2 Bl(s) 2 Zz(s)
Bi(s) = 2g and S1s 8, = - Jw
. i_(ty : i (s + jw) i (s = Jw)
oW e _ W Do Do
and L -(———Zz(P) cos wt) = 3 —-—-——-———ZZ(S T ) + ——-————22 5 = J0) ) ven- (4.17)

and similarly for the second term in the bracket

P iDét)

L ¢ . sin wt ) _ l_ ( (s - jw) iIb(s - ju) (s + jw) iDO(s + jm})
Z,(p) 23 - + -
2 Z,.{s - jw) Z,(s + jw)
.2 2
(4.18)
From equation (4.16) the Laplace transform of the motor torque is
therefore,
p M2 iDés + juw)
_ 1 -3%8 Do L.
TE(S) = : VQ e (Z (s 7 30) (20 - js)
2|z, 2
iD(Ss - Jjuw) .
+ ———————— (2 + js)) ce-e {4.19)
Zz(s - Jw}
and on substituting for iDés + jw) and iDés ~ jw) from:equations (4.14)
"and (4.15) '
P . ZX(+). Z,(+) {20 + js) + Z! (=) (2w- js)Z.y-)
Ts(s) = 1 M2 VQ VD(s)e 168 1 2 1 2!
4 1 LA -—
a|z]] 2] (+) 25(9) . 21 ()2, (-)
(4.20)
v gt . . . '
'where ] () = Zi (s T jw) = R+ (s * Ju)Ly

= R} (L+fs I ju) T,)
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+ .
25 (=) = Z,(s * 5w
= R_(1+(s? jw f )
2 - 2
L! L
1 2
T = — and T = —
1 Ry 2 R,

Evaluating the complex

Z} (+). B, (+)

conjugate pairs in equation (4.20)

1 = R2 (L + (5 + jw) Tl)(l + (s + jw) Tj
= 1 + s(T + T )+ - 2)‘I‘ T
= R Ry - w 1'2
L+ Jw (T + T2 + 25T T )) cee. (4.21)
and
Z! (<) Zo(-) = R! R, (L+ s(T. + T.) + (s - w?) T.T
1 2 172 1t 2 F172
- jm(T + T, + 2s T T n

Further, since Zi(+). Zz(+),(2w + js) and Zi(—) ZZ(—) {2w - js)
are also complex conjugateg,their sum is twice the real part of either’i.e.

since Ro(2Z] (1) Z,(+) (2w + js)

= u R 201 - w?r 1) 4+ s (T, + T,)) (4.22)
wRp Ryt i e LA LS B 1 e U

then

Zl(+). 22 {(+) (2w + js) + zlt—). Zz(~)(2w - js)

2

- ' -

= 2u R1 R2 (2 (1 - w T1T2) + s(Tl + Tz)) ceee (4.23)
Thus the final equation for the electromagnetic ~ motor torgque becomes

: 2
. 2 v 2.(1 - T, T,) + s(T + T )
Py e-3¢8 M™ 0 V()6 1 2
= - . 1
Te(s) 2]z | Ry, P (1 +s)? +m2T2)((1+ST)+wT)

(4.24)
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4.2.1 Transfer function relating speed and control voltage

The  equation for the mechanical system is

mechanical torque = inertia teorque + frictional torque
or TM(s) = (Js + ) mr(s) . cees (4.25)
where w_(s) = 85 6_{(s)
. r r

The required transfer function can now be obtained by equating the

electromagnetic torgue given by equation (4.24) to the mechanical

torgue requirement of equation {4.25), leading to-

tw 2 v

pqw _—
r 1 M Q - ¢B'
(S) = LI I * [ = J .
v, | 2]zl] R, "R} T &
2
2(1 - w Tsz) + 5{(T + T2)
2 2 2 2 2. 2
((1 + sTl) + w Tl Yy ({1 + st) + w T2 YL + Ths)

» ‘ e (4.26)
after a considerable amount of algebraic manipulation.

A particular case of interest is the speed response following a step
v
: D
change in the control voltage. Replacing VD by g—-in equation (4.26)

leads to a speed repsonse of the form

2(1 -~ sz T.) + s(T, + T.)
w_(s) = H.V_. L2 2 . e (4.27)
* P osis + L (s + l_)Z + wzﬂ(s + 190 wd)
Tm T T
1 2
where
. py XQ. ﬂi e"J¢B
- 2 2 " R! "R, [z'l
2J Tl T2 1 2 1

Obtaining the inverse Laplace transform of equation {(4.27), to provide
the required time response of speed; is an extensive task necessitating

a further application of the complex convolution technique.
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- If equation (4.27) is writtenm as

wr - A(s})
HVD é‘Bl(s)

the demoninator has the form

(s - sl)(s - 52) crens

" where

1 2
1 4+
S, , S = - (= =
3~ 4 T,
Ss % = -t
_ 2

The term which corresponds to the zero first order pole is the first
term on the right-hand side of equation (4.1lb), and is obtained by

substituting s = 0 in s times equation (4.28), as

A(o)

2
21 - w'TyT,) T T

Jw)

2

1

Bl(o) 2

(1 + w le)(l + w T

Equation (4.1b) requires also the evaluation of both A(SK) and s

2

2

for all the. five non-zero roots of the denominator, thus

- T

(53 Bi (sB)r

(Tl.f T2)

(T, + T,.)

1 2

1t T2)

(T, + T.)

1 2

(Tl + T2)

- 54) (52 -

A(sz) = 2(1 - szsz)

- 3(53) = 2(1 - szsz) -
-A(s,) | = 2(1 - szsz)
A(s;) = 2(1 - szsz)
A(SG) = 2(1 - sziTzl’-
Sp By (5] = sy(sy - s5) (s,
S3 Bi (53) = s3(s3 - 52)(53
S4By (5g) = 5,05, -~ s5)(s,

- 33) (54 -

a conjugate pair

a conjugate pair

—S)

6

ss)(s3 - 56)

- 56)

(4.28)

K1

60

(SK) '

«e-.(4.29)

“ e ne

{(4.30)

{(4.31)
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' - - - - -
Sg Bl (55) = 55(55 sz)(s5 - 53)(55 54)(55 56) vees (4.32)
S¢ Bl (56) = 56(56 - 52)(56 - s3)(s6 - 54)(56 - ss) ceeas (4.33)
= ! *
(55 Bl (SSD
On obtaining the summation of equation (4.1b), after adding together
texrms corresponding to conjugate poles, and performing a considerable
amount of algebraic manipulations, we obtain
T+ T _"]Iq‘*t
2 1 2 5 2 2 m
A. (52) eszt o (2(1 - w Tsz) - T ) Tm Tl T2 . e
s, B! (s,) - a2, 2,2 2 - 2, 22,2
21 2 { (Tm Tl) + w Tl Tm )¢ (Tm T2) + w T2 Tm )
: es3t s4t
A (53} . A (SL) g )
s_B! (s,) . -
31 3 54 Bl (s4)
_l,
T1
2. e
5 . 2 ( (xlA - mTyl) cos wt - (ylk + mef sin wt)
S RS
sct s _t
5 A(s. ) e 6
B (sS) e + e
L} [}
sSBl (55) Se Bl (56)
1,
2 e T2 . Y- .
= > N > ((le - mTyQ C?S wt - (yzl + waz)Sant)
X2 7Y
sees (4.34)
where
N T Wl (2(T B S N Wl TP S 0
1 T]_T2 T2T T}TZ TlT



2 2 1 2 2 1 2
X, = 20 . . (2] +w ) - )
2 T, T, 7 2 T T,T, T, T
2 m
T, - T, s T - 2T T, -T, T, -T 9
Y) T2 T (20 T T ' T.T (=3 o))
172 1l m 12 T T
1 m
T, - T, 'é T, - 2T X T, - T, (T -7 . wz))
vy, = 2w (2w . T T T, 2
2 T,T, 2 m 102 T, T
T = T, +T,
2 T
A= 2 (1L ~u TlT2) -
1
T
1 — — —
A= 2 (1 w TlT2) T2

Adding together all the above terms, we obtain the required speed

response as

. 2 2 2
2(1 - w Tsz) T Ts T, i
Wt = Vg bWl e+ el Ty
1 2
T, + 7T 1
2 1 2 2 2 5 -— t
(2 (1 w Tsz) T } Tl T2 Tm Tm
m . 2
2 2 2 2 2 22
((Ty, = T} +w T,0 T ) (T, - T, +w T, T )
_1
2e N1
5 N 5 ((xlA - mTyl) cos wt - (yll + wal) sinwt)
¥ty
N
2 e T2 ,
+ 2 > ((xzk - wTyz) cos wt - (y2A + me2)51nwt .o
¥ t Y,

62

{4.35)
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4.3 Transfer function for phase modulated control

As was stated in the previous section, the stator currents of the
servomotor are governed essentially by the stalled impedance of the

statog so that

vD(t)
i (t) = S
Do Rl + le
v {t)
. Q
i (v} = v
Qo R1A+ le

For phase-modulation control, the constant veltage applied to the

reference winding will again be assumed as

. vQ(t) = VQ sin wt

but the voltage applied to the control winding now has the form

vD(t) = VD sin (wt + ¢D(t))
= Al{t)cosmt + Az(t) sinwt eras (4.36)
Qhere
A (t) = v sin ¢ (t)
'Az(t) = Vp cos ¢ (t)

In the analysis of the previous section, the voltage applied to the
control winding had precisely the same form as the first term of equation
(4.36), so that the electromagnetic torque caused by this voltage is

given directly from equation (&.24) as

. 2
: » 2(1-w°T,T.) + s(T,+T.)
o N m L Vo L eTI9B A, (s) 172 12

Ter®) = 22T zi] R, R

2

2, .2 2 2 2
(0_+sTl) +u Tl )ﬂ1+sT2) +w T2 }

cee. (4.37)



64

The torque produced by the second term of equations (4.36) is obtained
by the same technique used in Section (4.2), differences being introduced
by the sine term which has replaced the cosine term. Thus, the two
components of the control winding currents are now

A2(5)
2j Zi(s + jw)

1DO(5 + Jjw) =

) A2(s)
2j Zl(s = Jjw)

lDO(S - jw)

and on substituting these in equation (4.19),

. o M2 ~3¢8 2] (=12, (=) (s+320) + B] (+}y (+) (=520
T,(s) = - P1 - Vgee- - B, (s) T O e
. 4‘Zi| 1 1 T2 2

cer. (4.38)
Since the numerator of equation (4.38) is the sum of two conjugate

quantities, its sum is twice the real part of either or

. _ Oy on 3 2 2
2 Re (zl( ).zz( ) {s+2jw)) = 2R1R2 (s T T, + s (Tl+T2) + 5{1+3w T

2 .
175 12)+2w (T1+T21

1
which gives

2 -jéB.. . 3 2 _ 2 2
_:le e .A2(s{ [ TlT2+s (T1+T2)+s(l+3w Tsz) + 2w (T1+T2)

] - [}

2]z} | RiRy ((1+sT) 2 + w?T.?) (tL+sT.) 24wle_2)
1 1 2 2

... (4.39)

and on adding equations (4.37) and (4.39), the total electromagnetic torque is

(s)

Te2

. 2
(o) = o vQ Mz o198 (wAl(s)(2(l—w T,T,} + s(T1+T2»
= T . —l' T . T 2 J 2 7 2 -
£ 2 R 'R, |zl| ((1+ sT;)2 +uw Tl2)((1+ st) + w T2 )

A, (s) (53T T, + 52(T +T.) + §(3w2T T, + 1) + 2w2(T +T.))
2 172 172 172 1 "2
I 5 > 3 ) -es (4.40)

Tl y{ (1+ sT2) + W T2 )

((L + sTl)2+m
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where
Aj(s) = L v, sin q)(t)

Az(S)

L VD cos ‘ﬁD(t)

4.3.1 Transfer function relating change in speed to a step change in

the phase shift

The electromagnetic torgue given by equation (4.40) is equated to the

mechanical torque requirement of equation (4.25), leading to

2
wh, (s) (2(1 - w7 T) + S(T,+T,))

w _ 172
e (s + =) ( (s421) 2
S T T

+ 0l ( (st % +u®)
1 2

_ 3 2 2 2
) A2(s) {s T1T2 + s (T1+T2) + s{(3w TlT2 + 1) + 2w (T1 + T2)) )
s +59 (s +297 +0D) ((sr 297+ wh) :

m 1 T

(4.41)

H
H = oy
where 1 >

For a step change in the phase between the control and reference voltages

from an initial angle ¢2 to a final angle ¢l

sin¢2.— sin¢:l

Al(s) = VD . .

cos¢2 - cosqg1

V.. .
D s

A2(S)

from which it follows that

2 )
o (8 = vom [' wCll( 2 (1 ~w Tsz) + s(T1 + T2)) )
* Pl lsts+390 s+ 292 4 030 s+ 292 4+ W9
T T, T
m 1 2
3 2 2_ 2
Coy &TT,) + 87(T) + T + s T\ T, + 1) + (T, + Tz))]
.. (4.42)
sts+ ) ((s+392 4+ %) ((s+ 592 + 0d
T T. T
m 1 2
where
: Cll = 51n¢2 - 51n¢1
022 = cos¢2 - cos¢1
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The first term in the square bracket is exactly that for which the
speed response was obtained in section (4.2.1). In investigating by the

same procedure the second term, it is found that

2 : 2 2
A(o) 2w (T) +T)) T T)°T,
Bl(o) (1 + sz 2)(1 + sz 2)
1 2
Als) = 53T T, + 52(T + T.) + s(3w2T T, + 1) + 2m2(T + T.)
172 7% Y 172 1 2
e, -1
2 T .
T,T. + T (T, + T.) - T 2(3w>T.T. + 1) + T 3 20°(T. + T.)
12 m 1 2 m i m w 1 2
Als,) =
2 3
T
m
1 . .3 1 . .2 1 . 2
A(SB) = - (T + Jjw) TlT2 + (T + Jjuw) (Tl + Tz) - (T + dw) (3w T1T2 + 1)
1l 1 1
+ 2 2(T + 7))
©w ity 2
2 2 T,
A(SB) = w (Tl + T2) + jw({l - 2w T1T2 - EI) = ag+ ]b3 a
2 2 Ty _ conjugate
A(S4) = w (Tl +.T2) - Jw (1 - 2w TlT2 - ;I) = ag- Jb3 pair-
Similarly
1 .3 1 .2 : 1 . 2
A(SS) = - (T + Jjuw) T1T2 + (T + Jw) 7. (Ty + T2) (T + jw) (3w TlT2 + 1)
2 2 2
+ 202 (T, + T.)
. 1 2
, 2 . 2. T .
N m(T1+T2)+]w(}—2@ TITQ.-'_F) io= a5+jb5
§ince's5 and 56 are conjugate, it follows that
Als.) = 2(T + T5) - jw(l - 2 2T T, — El = - jb
g = w (Ty +T)) - Ju S K I R

1 1 [ ] L [ ]
szBl(sz) ’ 53 81(53) ’ s4B1(s4) r 55 Bl(ss) and 56 Bl(SG)

are all as before.

On obtaining the summation of equation (4.1b)

1 72
2., 2 2, 2
(1 +w Tl ?(l + w T2 )

2(1 - szlT y°r 7 2T 2
Ao (t) = HV_C 2 m
r D 11
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T, +'T
2 1 5 2 2
(2(1 - 0Ty T,) T )T T, S S
- 2 e T
' 2 2 2 2 .2 2 )
((Tm - Tl) + w Tl Tm } ((Tm - T2) F oW T2 T 7)
1 ' 1
-——t XA - Ty -t x X' - wly
+ 2 (e Tl . L > 12 + e T2 . 2 > 3 ] cos wt
X
* Ty 2 T Y
- }—-t A+ T - ;——t A+ -T
T yl w '{l. T y2‘ W x2 .
-~ 2 (e 1 . 5 > + 2 5 > ) singt
X3 7 ¥ * Y,
2 2 2
. E-'c [ 2w (Tl + T2) Tm Tl T2 )
D w 22 (1 + sz 2)(1 + sz 2)
1 . T2
2.2 32 2
2 ‘— T1T2 + Tm(Tl + T2) - Tm (3w Tsz + 1) + 2Tm w (Tl + T2) e Tm
(Tm Tsz)- '

2 2 2 2
((Tm - Tl) + (leTm) )((Tm = T2) + (szTm) )

1 )
T t ax,. +b

1
-~——t a, x, + b,y Y
+2 (e T1 . 3_ 12 3 ; + e 2 . > 2 5 3 22 ) cos ot
3ty ¥, T Y,
1 _ 1 b.x, ~ a_y
T, ¢ Py¥ -~ agy; Tt 22 22 ) sin ot
+ 2 (e 1l . + e 2 2 2
2 + 2 x2 + y2
* TN
... (4.43)
_ _ 2
where a3 = as = (Tl + T2)
T
2 2
b3 = wu{l - 2w T1T2 - ;— )
' 1
T
2 1
b5 = w{l - 2w T1T2 - 12 )

RITRSY ¢ Yy0 Yoo T, A, A" and H are as before.
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4.4 Transfer function relating speed and torque

The equation for the mechanical system is

mechanical torgue inertia torque + frictional torque

i.e. T,(s) (Os + £) wy,(s)
= £(1 + Tms)wr(S)
TM(S)
£f{1 + sT )

m

'or wrts)

T .
On replacing TM(S) by ~§£ 1 the speed response following a step change

in the mechanical torque is given as

1
T —
MI
(s) = < - Tﬂll ceee (4.44)
(s + )
S T
m

mrl

The required time response of the speed is provided by obtaining the
inverse Laplace transform of equation (4.44). From standard Laplace

transformations, this can be written as

L
T - — t
(t) = M g T .. (4.45)

rl £
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Quadrature axis

l-,m\’_] Direct axis
D

Fig.41a A two pole 2.phase symmetrical machine

‘Quadrature axis

Direct axis
D

Fig- 41b Stationary axis equivalent of the
2-phase  servomotor

R, jwily-M) Jwilp-M)
*—\N\N—TTTI0N /UBB0T N -

JuM %

tn|:n
I~

Fig 4.1c  Equivalent circuit per phase




70

v

CHAPTER 5. EXPERIMENTAL PROCEDURE AND COMPARISON OF RESULTS

"In order to compare the transient behaviour of the servomotor, as
predicted by the results of the previous chapterf with its experimental
performance, it is clearly necessary for an accurate measurement of

the machine parameters to be made. The two techniqﬁes most commonly
used for this purpose are descri_bed below, and the measured parameters

of a typical servomotor are given.

5.1 The use of an a.c. impedance circle diagram

The use of an a.c. impedance circle for determining servomotor para-

maters was first described by Rekoffyr26'27.

The technigue neglects
any core loss in the motor and assumes that the contrel and reference

windings are identical, as are the stator and rotor leakage reactances.

Test data is obtained by connecting the servomotor to a 2-phase source

of rated machine voltage, and measuring the impedaqce of one of the windings
at twe known values of slip (conveniently 8. = QO and & = 1). As shown

in the impedance circle diagram of Fig. (5.1°), the impedance data of'

the two slips is plotted on a graph, with an ordinate of inductive

reactance x "and an abscissa of resistance R. A semicircle is then

drawn through the two points, wih its centre on a line parallel to the

X axis and mssing through the data point at zero slip. A perpendicular
bisector to the chord between the data points, 5 =0 ads =1, cuts

the vertical line throudh & = O at the centre of the circle. The semi-

circle can then be drawn as shown, and extended by the horizontal lines

which cut the ordinate at 6§ and B. A horizontal line through S = 1 cuts

this axis at y.
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With the construction as shown, a vertical line through 5 = O obviously
intersects the abscissa at the value of the stator resistance Rl and a

horizontal line at ﬁhe value of

§ = X + % eees (5.1)
where X and ¥y are the mutval and leakage reactances. The inter-
section on the ordinate at B is the value of the input reactance at

85 = », and is thus

x-xa
B = xj; + 22— cves (5.2)
: Ty + x5
Hence
x = [|5% - sB ee. (5.3)
m
and
xl =6—Xm

Similarly, the projection on the ordinate of & = 1 gives

>
x RS 4+ X X, (% + %,)
y o= oxem2Z B om L s

2
R2 + (xm + xl)

from which -

X X

2
- 26_ y - x2)6

Yy - (xm + x&)

and all the impedances of the motor can be cobtained.



5.2 Alternative interpretation of measured data

Some of the limitations in the technique described in the previous
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section are removed when the measured data is analysed as suggested

by Hughes 28 .

longer assumed equal, and the analysis provides values of R, L

L

The stator and rotor leakage reactances are no

lr

2

2 - \ . . ..
and R’ which, as the previous chapter has shown, is sufficient to
2

enable the transfer functicns of the motor to be evaluated.

M
R

2

From Fig. 4.1(c}, the input impedance per phase at frequency w and slip

S is

If the input impedance at the no-load slip of S5 is ZO¢J¢0 and that

at the locked-rotor slip of S = 1 is 2

real and imaginary

Zl cos¢B

4 singg

and

Zocos¢O

2051n¢o

2 3y’ T
1 2 M w — .
= W - T R2 R
s Ry + i (@L. -
1 w L 1 2 L2
) + "2 — tuw
S R2 s

2

;_ej¢8 '

parts of equaticon (5.5), we obtain

2 M

+ e n

- (5.5)

then on separating the

(5.6)

(5.7)

(5.8)

{5.9)

e A p————
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On subtracting equation (5.9) from equation (5.7) and rearranging

we obtain

. ., 2 2. .1 2 2
M2 ) (2051n¢0 leln¢ﬁ)(l tw TN tw T2)
= - o

R2.

cees (5.10)

(éf - l)w?T2
o

and on substituting this result in equatiocns (5.6) and (5.7} the

stator resistance and inductance are obtained as

. o 1 2.2
(Zo 51n¢0 2151n¢ﬁ)(52 + W T2) |
— . - 0
Ry 2 cosdg eee (5.11)
' 1
("5' - 1) mT2
SO
. ;s 1 2_2
Zisin¢g (Zosn)cpD - 2131n¢$)(sg + w T2)
- Ll = + vens (5.12)
© ' 1
w(—i' - 1)
s
o

_After subtracting equaticns (5.9) and (5.7) and also equations (5.6)

and (5.8), and then dividing the first result by the second, the rotor

L .
time constant R can be obtained from the resulting equation.
2
WF, (1 4+ =)
: - V4 . .

Zosine, - Z,sindg 2 s vevn (5.13)

- 2
! - 1
Zlcos¢B Zocosd)O = - m'Tz

y o]




5.3 Experimental motor
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The tests described in the previcus secticons were carried out on a

sexvomotor with the following manufacturer's data, guoted at a motor

temperature of approximately 65°C.

Type FAFlOZ/H3
stator windings

starting torque
rotor moment of inertia

initial acceleration
static friction

single phasing torque at
50 Hz

motor stalled input per
phase at rated voltage

stalled iméedance per phase
stalled power factor
number of pole pairs

nominal d.c. resistance
per phase

plain shaft diameter

overall weight

5.3 watts, 50 Hz, 115 volts, identical

" 0.586 x 10_5 kg m

540 gm cm

540 x 10°° kg m

-58.6 gm cm2

2

9050 rad/sec2

5.8 x lO_5 Kagm
21.6 gm cm

15.0 watts
17.5 vA
830 ohms
0.86

1

185 chms
6.35 mm

1100 gms
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5.3.1 No load and locked rotor test results

With the reference phase of the experimental servomotor supplied

at rated voltage, the control voltage was varied from O to 130 volts

(i.e. 113% of rated voltage) . Both open and shmntcifcuit charactex-

istics were measured, as shown in Fig. (5.2) and (5.3).

At rated control voltage, the no load test data cobtained for the

reference and control phases is:
reference phase current

power factor

Hence, input impedance of the
reference phase

control phase current

power factor

Hence, input impedance of control
phase

.no load speed
Similarly, from the rated voltage,
_ Fig. (5.3)

reference phase current

power factor

= 127 mA

4.9
14.6

= 0.3356

= 905.51 /70.39° ohms

= 127 mA
4.5

14.6
= 0.3082

= 905,51 /72.05 ohms
= 2940 r.p.m.

locked rotor results shown in

160 ma

16.125
18.4

0.8764

Hence, input impedance of reference phase

control phase current

power factor

Hence, input impedance of the
control phase

= 718.75 /28.79 ohms

= .160C mA

16
18.4

0.8696

= 718.75 /29.59 ohms
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5.3.2 cCalculation of servomotor parameters using a.c. impedance

circle diagram

Followihg the constructional procedure outlined in section (5.1), we
obtain the scales for the a.c. impedance circle diagram of Fig (5.1},
from which 6§ = 857.51 ohms, R = 125 ohms, vy = 350.75 ohms,

o = 291.5 ohms.

From this data and the equations given in section (5.1} , the equivalent

circuit. impedances are found as

Ry = o = 291.5 ohms
R2 = 572.36
-— "
X = 792.56
Xgp = 64.95 "
X
Hence M . B
t
= 2.52 henrys
X
R = ___‘Q‘_ n
w
= 0.21 "
Ll .= L2
= M+ 8
= 2.73 henrys
. .2
2 R2
= 4.77 m sec
2
L = 0.01109
)

When the test results are analysed by the method outlined in section

(5.2), the motor parameter terms required in equations (4.35) and

(4.43) are




77

2] cos ¢g = 627.467 ohms

2] sin ¢g = 350.750 " ’
2, cos ¢0 = 291.574 "

Z, sin ¢, = 857.518 . "

and since

s = 0.02
o ' .

it follows that

Rl = 270.157 ohms

Ll = 2.7315 henrys
) L

T, = ./R2

= 4.52 m sec
u’

Ry

. _—
= 0.0109202 (henry) /ohm

which all agree glose;y with the results obtained from the circle
diagram. " The stalled resistance, inductance and time constant of
the stator required in equations (4.35) and (4.43) are given by
equations (4.9a) and (4.9b) as

- R 1

1 627.467 ohms

Li = 1.12 henrys

5.4 Steady state torque-speed characteristics at various control

voltages
In addition to the no-lecad and stélled tests, the steady-~state torque-
speed characteristics of the servomotor were established with the
reference winding gupplied at rated voltage with the control winding
voltage varied in 20% steps from zero to the rated value. The motor
was loaded as shown in Fig (5.4) and the experimentally obtained torque/
speed characteristics are shown in Fig (5.5). These curves resemble
closely corresponding curves provided by the manufacturers and are similar

to results obtained by previous workers on different machines.afllf15
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5.5 Determination of various parameters affecting the dynamic characteristics

5.5.1 Determination of the mechanical viscous-friction damping

Determination of the coefficients in the speed response equations

for the servomotor (see sections (4.2.1} and (4.3.1)), for step changes
in either the madnitude or the phase of the control winding voltage,
necessitates that the mechanical viscous damping should be known under
stalled conditions. Damping is generally defined as the slope of

thé torque/speed characteristics of the motor, and Fig. (5.5) shows
that this decreases in a nonlinear manner with the control voltage.

In a position serve, internal damping of the motor is utilized in
producing a stable control system. The cperating point at stall,
with zero control voltage, is thus particularly important, since it is
here that secondary effects such as backlash tend to cause trouble,.

As Fig. (5.3) shows, even in a practical motor, with a nonlinear
torque-speed characteristics, the stall torgue is almost proportional

to the control voltage.

It has been well established by previous workers that, for small
servomotors, the damping at zero speed and zero control voltage is
about half the slope of the torque/speed curve for balanced opération.
The curve relating stalled damping to control winding voltage has been
- regarded as roughly parabolic, with the minimum damping gt zero control
voltage 3 . A reasonably accurate estimate of the effective stalled

damping can be obtained.

From Fig. (5.5), by extending the straight portion of the torque-speed

curve near no load speed to meet the torgue axis at TS', when 3
7' T
_effective stalled damping (f_) = Average damping (1 - A=22)) ... (5.14)

T
s
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where
actual stalled torgque (Ts)

Average damping (f3) = ho load specd

Calcuilations based merely on the average damping {(in which the term
in the brackets is ignored) have been shown to be in error by factors
of three or more 3, For the-experimental motor, the effective

and average damping'coefficients obtained from Fig. (5.5} ére given

in Table (5.1).

When a series of step changes was made in the control winding voltage,
the experimentally obtained changes in speed areigiven in Table ({(5.1l}.
The Table also sHows the changes in speed'found from the two values of
the damping coefficients, and the necessity for the corrected value is
clear. The Table indicates that although a parabolic variation of
damping with the contrel winding voltage is a reasonable assumption

above 25% voltage, the damping coefficient of the machine tested may

conveniently be assumed constant below this voltage.

'5.5.2 Determination of the Coulomb friction:

The servomotor was run at no load with rated voltages applied to both
control and reference wiﬁdings. The tachogenerator output was fed to

the u.v recorder, through the complex-matching circuit shown in Fig. (5.6).
The suéplies to both windings were switched off, and the speed/time
characteristic was recorded as the motor ran down to standstill.

The deceleration at different speeds was obtained by finding the

gradient of the curve at the appropriate speed. From a knowledge of the

moment of inertia, the curve in Fig. (5.7), showing the variaticn in

deceleration torque with speed, was then obtained. The figure thereby
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obtained should not be confused with the curve of electromagnetically-
produced torgue against speed shown in Fig. (5.5). Since frictional

torque was assumed to vary linearly with speed (sée_Section 4.4}, the

best straight-line fit to Fig (5.7) was obtained using the method

of least squares, and the Coulomb friction (i.e. the frictional

torque at zero speed)} thus obtained as 2.3 gm cm.

‘Although for the experimental machine the Coﬁlomb friction is very

small in comparison with the stalled torque under balanced conditions

of 585 gm cm (see Fig. (5.5)), some previcus workers 15 have

taken it into consideration when establishing curves of the speed response

following step changes in the control voltage.

5.5.3 Determination of best linearity of tachogenerator output

With the tachgenerator terminated in loads of 2 kfi, S.kQ and 10 k@ , the
output voltage was measured over the full range of servomotor speed.
_The voltage/speed characteristics thus oﬁtained are shown in Fig. (5.8}
and they esfablish that the most linear relationship between the

quantities is obtained with the output terminated in a 5 kI lecad.

5.6 Transient speed response

The speed response of the servomotor following a step change in the
input conditions was cobtained from measurements of the output of

the tachogenerator (the coefficient of mechanical viscoﬁs damping
measured before included the contribution provided by this machine),
terminated in a 5 kI load. Since this is too high a source impedance
for the electromagnetically damped galvanometers uéed, it was necessary

to use the damping circuit shown in Fig. (5.6).
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Before performing any experiments, the overall linearity of the
tachogenerator and ultra-violet reco;der was determined, with the
resulting characteristics as shown in Fig. (5.9); »From this graph, the
overall measurement sensitivity is

peak to peak galvanometer deflection (cm)
speed (r.p.m.)

1l

0.0046153 cm/r.p.m.

or )
speed (r.p.m.)
peak to peak galvanometer deflection

216.667 r.p.m.

5.7 Speed response following a step change in the control veoltage:

With the reference winding of the servomotor supplied at rated
voltage from phase A to the neutral of the laboratory supply, the
motor control winding was supplied from the line voltage between
phases B and é, to provide the necessary 90o phase shift. The
moéor control voltage was chosen to lead the referenqe winding
voltage by 900, the resulting direction of rotation being counter-
~clockwise when viewed from the drive end. The line voltage VEC
was controiled to any desired value by a variac. A series of tests
was performed, in which step function changes wére made in the
control Qinding voltage, from an initial value of zero, and the speed
- response was obtained from the tachogenerator output. The height

of the step ch;nge was varied from a very small value to rated value,

and the results obtained are as shown in Fig. (5.10).

5.7.1 bomputed speed/time curves using ideal servomotor model

The early &nalyses which assumed linear torque/speed characteristics

(see section 3.1.1)) led to a transfer function as given in equation (3.3).
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From this it follows that, for a step change in the control voltage,

K
2 1 1
mr(s) = V5 TFox s "1+ Ts
1 m

and thus that the  corresponding speed response is

K, -t
o9 = VgD (-e m ) e (5.15)

The viscous damping coefficient (£f) in this equation is defined

by Balmer and Lewis 12

as the slope of the straight-line torque/
speed characteristics of the idealised machine. Since the actual
torgque/speed curves depart somewhat from this ideal situation, an
estimate of (f) was obtained for each of the curves of Fig. (5.5}, as

the average slope between zero speed and zero torque, The parameters

required for the calculation of the gpeed response are:

s | |
% R
(volts) 115 % 92 69 50 | 30 15 5 ! 2.6
| |
Kl X 105 : ? i
-18.64.-16.4 {-12.6 | -9.55 | -7.26 | -6.04 ; -5.80! -5.66
{(Nm rad i ; | i
scl) 1 | %
K, x 10° i ;
(Nm/volt) % 49.90: 53.32; 52.60 | 51.012; 50.685 é50.69 49.05 : 47.16
i i 1
- £ x lO5 ' ! E
{Nm/rad 18.64: 16.4 12.6 9.55 7.26 6.04 5.80 5.66
sec™1)
1
Ty (msec)
(J = 15.72 | 17.8 23.3 30.7 40. 4 48.51 | 50.52 | 51.8
0.586 x 107>
Kg m? )
VQ = 115 volts

Using this information the corresponding speed/time curves were

calculated from equation (5.15) and added in Fig. (5.10).
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5.7.2 Speed/time curves based on more detailed early analyses:

The approximate solution of the servomotor differential equation,

given by Hopkins 15, was also used to compute the speed variation

with time of the experimental motor, following a step change in

the control voltage magnitude.

In equation (3.13) of section (3.1.2)

Ly
w = W (1l - e } eees (5.16)
r ss

where 2 Jd mS

K(Ve2 + Va2) + 2 fug

2w (KV.V - a)
s r C

S8 K (vZ4v?3) +2 £
r c S

The torgque constant K for balanced operation

Te
w c r
va - -5
‘ W
where its value at a speed 2B60 r.p.m. is obtained from Fig. (5.5) as

K = 0.3974 x 10 ° Nm/volt2

The stalled value is obtained from the same figure as
-5 2
Ks = 0.4339 x-10 Nm/volt

and is assumed constant over the entire range of control winding voltage.

Together with data obtained in the previous section, this enabled
the speed/time curve to be calculated from equation {5.16) and the

results obtained are also included in Fig. (5.10).
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5.7.3 Speed/time curves obtained by complex convoluticn approach

Eqﬁation (4.35) from Section (4.2.1) qu‘used to compute speed/time
curﬁes for the experimental motor, following step changes in the
control voltages ofthe same magnitude as in the previous two sections,
using values of the rotor and stator time constants given in sections
(5.3.1) ana (5.3.2). For the ncnlinear torque/speed curves of

Fig. (5.5) the effective mechanical viscous damping (f) for each

control voltage was obtained as described in section (5.5.,1)as

VD(volts) 115 92 69 50 i 30 23 15 5 2.6

r-Mm.S.

f o x 105 _
‘Nm/rad sec| 10.28] B.6| 6.98] 5.48( 4.04| 3.23] 3.231( 3.231] 3.23

v - 5. =
0 (r.m.s.) 115

From a knowledge of the moment of inertia, the time constant (Tp) for
the mechanical system at each control voltage was then obtained, and
the speed/time . curves were computed, and added to Fig. (5.10).

‘The computer programme is shown in appendix (8.2.a4).

5.7.4 Compariscn of results

Generally, the experimental speed/time curves obtained are of

" approximately exponenﬁial form, with a time constant that increases
with a decreasing magnitude of the contrel voltage step. Curves
coﬁputed on the basis of the ideal model of the servomotor and the
approximate solution of the differential equations of the motor agree

reasonably closely, as is expected from the similar forms of the

transfer functions given in equations (3.3) and (3.13). A very




obvious feature of the graphs is that the curves computed from

the complex-conveolution approach are much closer to the experimental
curves than are results obtained from either of the other theoretical
approaches, especially when the control voltage is low. Computed
resul;s using thé complex—convolutionappioaijecome closer to the
experimental curves at very low speeds, validaging the simplifications
made by introducing ﬁhe stalled stator terms of the machine, as given

in section (4.1).

Using both early approaches, the computed steady-state speeds, over
the whole range of voltages, are much lower than those given by
the complex-convolution approach, which arealso much closer to the

experimental.

Although Hopkins attempted to analyse the unbalanced operation

using symmetrical components, his results include a torque constant
-which applies for balanced steady-state operation at rated voltage.
The values‘of torque constant at stall and at a high speed, given

in Section (5.7.2), result in two values of steady~state speed.

It is clear from equation (S.lGi that the speed/time curves obtained
using the stalled value of the t&rque constant_gives results closer
to the experimental than the value for high speeds. This case is
taken to give the best possible results that can be obtained using

Hopkins appfo ach.

Taking values of mechanical damping of Section (5.7.1}, the steady
state speeds following the same step changes in control voltage were
calculated using the complex convelution approach. The results
obtAined are given in Table (5.1) and can

be seen to he closer to the experimental results thﬁn the cofresponding

results obtained by previous workers.
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5.8 Speed responses followind step changes in the angle between

contrel and reference voltages

The circuit diagram shown in Fig. (5.11l) was used to obtain.a step
change of 60° in the phase of the control winding voltage. The
primary sides of two single-phase t;ansformers were fed from phases
A and B of the supply, and tﬁe secondaries were connected in series
- to give rated véltage. This was fed to the control winding of the
experimental machine and the referencé winding was supplied directly
from the phase A voltage. With the switch S; open the motor was
run at rated steady-state speed. -When‘the switch 5, was ciosed,
fuse F; was blown, and a step change from +120° to +60° was made in
the phase angle between the reference and control winding voltages.
.Similarly, a step change of from -30° to +30° was obtained from the

circuit shown in Fig. (5.12).

5.8.1 Computation of sbeed/time curves following step changes in

the phase angle:

Equation (4.43) of Section (4.3.1) for the change in speed following
a step change in the phase shift of the control voltage can be

rewritten as

Buy (£) A, A(t) - By B(t) cee {5.17)

1

or Awr(t) = (sin¢2 - sinq)l) A(t) - (cosd:2 - cosqbl)B(t)

.where A(t) and B(t) are the coefficients of Al and By in equation
(5.17)
For angular step changes from
(o) o
(a) =30 to +30 and

{b) 120° to 600, the corfesponding speed changes are, respectively,

given by
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Aw () = (sin (-30) - sin 30) A(t) =~ (cos (-30) - cos 30) B(t)
= - A(t) «.. (5.18)
and
Awr(t) = (sin 120 - sin 60) A(t) - (cos léO - cos 60)B(t)

= B{t) ... (5.19)

"5.8.2 Determination cf the coefficient of mechanical damping when

the angle between the control and reference voltages is 30°

The magnitude of the electromagnetic torque when the rated control voltage

leads the reference voltage by an angle of|¢]< 90° can be found from

section (2.1.3) as
1l ‘ . .
IE(¢) = 3 (TEb (SY {1l + sing) =~ Tep (2 - 8)(1 - sind)) ... (5.20)
where
R
2 2 2
Tp(S) = oo 110 F

is the torque obtained at a slip $ with balanced supply voltages

and TEb(z'_ 5) is the torque obtained by replacing S by (2. - S) in the
expression for Tgp (S).

From the measured data of the machine, given in section (5.3.2),

and the eguivalent circuit of Fig. (4.l.¢).

T (S) = S N . (5:2D)

Eb 2.066 S% + 6.926 S + 8.964

2 -5 eee (5.22)
2.066 (2 - 3)2 + 6.926 (2 - 5) + 8.964

and TEb(2 - 8) =

‘Using equations (5.21), (5.22) and (5.20), the motor torques at speeds

of -2000 r.p.m. and +2000 r.p.m., were calculated for a phase shift




of 30° as 0.040388 and 0.0058415 Nm respectively..

‘The corresponding coefficient of mechanical damping is

ATe

Aw
Y

0.0345465
418.88

= B.24 x 10—5 Nm/rad sec_l

from which the mechanical time constant follows as

. 0.586 x 10>
8.24 x 10°°

0.07112 secs

Using equations (4.43) and (5.18B) the speed response for a step
change from -300 to +30O was computed, and was found to agree
reasonably with the experimental result as shown in Fig. (5.13).

(Computer programme is shown in Appendix (8.2b)}.

5.8.3 Determination of the coefficient of mechanical damping when

the angle between the control and reference voltages changes

from 1200 to 600

For a step change in the angle from lZOotO 600 the speed changes
from an initial value of 2600 r.p.m. to a minimum of 2400 r.p.m.

and then recovered to a final value of 2615 r.p.m..

Using equations (5.21), (5;22) and (5.20), the torque of the motor
at speeds of 2600 r.p.m., 2400 r.p.m. and 2615 r.p.m. was calculated

for a phase shift of 60O as 0.0082 Nm, 0.01359 Nm and 0.00778 Nm

88
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respectively. The'change in the magnitude of the torque for
speeds 2600 r.b.m. and 2400 r.p.m. is 0.00539 Nm; and for the
speeds 2400 r.p.m. and 2615 r.p.m. it is 0.00581 Nm. The total

change in the torque between the initial and final states is

AT

e 0.00581 + 0.00539

fl

0.0112 Nm

and the change in speed, Amr = 2615 - 2600 = 15 x.p.m. Ideally,

of course, ATE andﬂmi should both be zéro.

The corresponding coefficient of méchanical damping is

AT,
£ o=

fi)
“r

0.0112
1.571

- -1
= 713 x 10 5 Nm/rad.sec
Following the same procedure, the motor torgues at speeds of 2600 r.p.m.,

2400 and 2615 r.p.m. were calculated for a phase shift of 75° as

0.0118665, 0.0177856 and 0.01164 Nm. It then follows that

A Tk = 0.01206591 HNm
and that AT,
£ = —
Aw o
0.01206591
1.571

il

768. x 10“5 Nm/rad.sr-_'c_l

Taking the average mechanical damping as

f = 740.5 x 10-5 Nm/rad sec_l
gives . g
m £
) -5
0.586 x 10

= sy = 0.00079 sec
- 740.5 x 10
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Using equations (4.43) and (5.19) the speed response for a step
change froﬁ 120o to 600 was computed (computer programme shown in
Appendix 8.2.b). The computed épeed change decreases to about
2400 r.p.m. in approximately 15 msecs and increases to the steady
state as shown in Fig. (5.14). Experimentally obtained results
are also shown in this figure, and it is clear that a quite close

prediction of these has been achieved.

5.9 Speed response following step changes in tbrque at various

contreol voltages.

To obtain a torque on the motor; known weights were suspended on a
thin string wrappea cnce round the shaft in a direction opposed to
the rotation. The upper end of the string was attached to a

spring balance. The reference winding of the motor was supplied
with rated voltage and the control.winding with 20% of the rated
voltage, and the motor was allowed to reach steady étate speed.
Various step changes of torque were then applied at the shaft, and
the corresponding speed response was obtained from the tachogenerator.
.The experiment was repeated with the contrel voltage raised in steps

of 20% to rated voltage,

5.9.1 Computation of speed/time curves following step changes

in tbrque at various control voltages:

Equation (4.45) was utilized to find theoretical changes in speed
following step changes in the load torque, with the motor initially
running at steady state speed and on no load. Thus, the required
speed response can be written

-1

w (t) =0, -— (1-e

i T ) er. (5.23)
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where
w, = 1initial steady-state no load speed at a certain

control voltage.

T = step input torque
MI tep pu qu

£ = mechanical damping

Speed/time curves calculated from equation (5.23) are given in

fig. (5.15).for several different values of TMI with rated voltage
applied to both stator windings. The figure for the mechanical
damping(f)was obtained from the torgue/speed characteristics of
Fig. (5.5), as the slope of the-straight line joining the operating
points between thé initial no load speed and the final step input
torque. Because of the experimental difficultiss it was not
possible to obtain a full experimental response for comparison

ﬁith these results, although the steady-state values added to

Fig. (5.15) are in quite close agreement. Steady—étate speeds

for various step torgues at different control veoltages are tabulated

together with the corresponding experimental results (Table (5.2)).

No previous workers have investigated, either fheoretically or

experimentally this form of speed response.
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in  the control vollage
—_— Experimental curves
Theoretical curves usj ng
Pyt ideal servomotor model
o—o—o more dctailed early anclyses
Srr—a complex <convolution
400, 400
F:' (a) step change=z 2.6V ¢
[a'R "
2 (=
300 <300
b
Q [
[J] o
[J] wn
j=X
)
2001 200
100 100}
100 200 300 400 100 200 300 400
Time m.sec Time soc
2200 2’200[
” (d} step change = 30V
2000 {¢ )step change=15V 2000} i
£
1800 | _ c}1 800 |
1600 | & 16001
a
E )
alsoo | 1400
§1200 12001
- a
v
1000 | 1000
800 | 8001
6001 600(
400| - @ © —e 400 |
200 | ) 200
100 200 300 400 100 200 300 400
Time m.sec Time m.sec



X (f) step change = 69V

2600,
2400}
2400|
22001,
22001
2000/
2000
1800 )
£
51800 |
600 | :
) 1600 |
8400 | a
by 1400
©1200
& 1200 |
1000
. 1000}
8001
800|
600|
. 600|
400} fF, :
) {e} sfep change= 50V 400
200} '
/ 2001
30 60 90 120 150 180
Time m. sec
2800, 2800 .
2600 2600
2400 ¢ 2400
a
€ 2200} <2200
o
- o)
2000 & 2000
e oo
g W
21800 | 1800
1600 | 1600
%00 1400
1200 1200
5000 | 1000 |
800| B00|
600} (g)step change=92V 600}
400 4001|
200 200|
16 B0_ B0 100 120
Time m.sec

30 60, 90 120 150 180
1me m.sec

" {h} step change=ti5V

100 120
m.sel

80
Time

20 40 60




A o0
“V
-] 31 / A
To
e
reference |
winding : To control
— winding
" before  closing switch S,
t A o ‘ ) VA
Fig. SH Skematic circuit diagram to obtain ° 60 step change -ih
in the phase of control winding voltage {from 120°to 6C°} ¥
”~
after closing switch Sy

voltage vector diagrams

£OT1



To control
— " winding

A
4--‘_ ’ | ”
- To
lf——— .
reference i
winding |

Fig. 5.12 Skematic circuit diagram to obtain 60° step change in after closing switch S1

before closing switch S

the phase of control windin voltage [ from -30° to +30°) Voltage vector diagrams
9 9 g

o1



curves

Experimental

using

...complex convolution

curves

" Computed

!
i

B T

B ah

]
i
RETIN

§
!
1
i
!
i
.
m
;
_
|

e Etattat o

speed / time curves

T
' theofeficu!

nd

a

" Ex perimental
foltowin

of

g

phase angle

i

!

g




106

I e

A e m e —

TorEEmeTs ottt D S B MR St SRR Il B .,..llq TTYTTTTY et .milt.ml-.!..._ = T i<m - A Sl 1 R - .|!ﬁ..1..| ... ...,M T T e I-l.m It e lvl.ll T
' Pt | i ﬂ A Lo ! oo R ' _l ! f | T HE ~ _‘|._
. I P SR “ ; Lo _ RN TR
' t ! ! ' ! ; . ) . u i
- e - ﬂ - ; . ' : ! R R s
., ) . ' ; . ' , . y : ' N - i ' 1 ' 1
. 0 T - . ' 1
i M ' . ' . . i N
: ! ! : . _ X
' X | ‘ ; ' . ! _.
: : - E - - C b - . . f - . . W] - Y “r
C S e T R B -I AR
R R [ - _ I M # m e Sk o _ N . = g i i T TR
¥ t H .. . H . H N H ; , P . ! . .
(U S I B U e b L = N~ - SN T O I I i
1 — H m in...-. . . { | ! | " — | ! .N | ; t : _ ! :
_ . 4 corop ! b o : : e _ Do !
: _ P 2 TS oo v @ - P . | |
| .. — . c ) . P H i | ' i | LA _ o | ' | 5
T JUUTURLIL U SIS T, SR B S e e o T N ST [T T v
: | 1 H : w m = i ! i : “ : Yo i ! o i . mu_ L) _ | b W K ey ;
i P - P = P _ R S B ot =y " Lol s RS
-1 | - w fQ |m A. P h_ . : ._ B H - . M — MJ o “ . ” . i aoagas Am“ ol . FRRANN
: i i ! ! : - . ! N .
- e PRSI SETCENN LR L el QUSRS S VO S S FEUUS UL S B o : m g o .-t DULPIRES SNRIE N Je B L B S ,
! = o i ! H _ . _ o B i . . ! N - H
T T - i g O Cod | o : _ ! -0 | i < " :
IS DU SR A , O - A O R T Vo ! 3. ; . S S
: i v m N (S 4 . _ 1 . H . .m ' .0 Ce |0| : m } _ ..
U k e — JENE S = o PR VU !..n..”vll. SRL I U SN ool n.Ol O . ' % o L _ S R - - i
_ R T I - T P IR R o o 22% | : R
' . : . R S ' b - N N e s — n o | . B P L
: | . . co = : i o | o E ; o |- ; ; ! (U R N
H ! ) . . Q . 3 . ' ~ 1 ' 3 ' . b . i, } ' ' . i e
& o I PO SR S (== SV SRR o . e
T R } e B g : I N BT A E F2 o a7 : 1 ¥ : i
i Ry e X | 95 ] i " L L L e g S RO A ¢ i
b -t _r et B0 Q0 Qe e e S FRESL R e Afesects oo L= B g R i S s
! 1 i ﬁ . | o { N B m N I w _ _ o _.
y - " [ . VPR UL SOV VPRI UV U SO DU R .. O . ol o RN SN SN N — }
e e JEEE et ; i i ; u v | ! Sy
! ! B LT i ooby . @ jo— == | H S S
' 4 i } I i . . i !
' m..-l. [ SRS .. . : R SIS S £ . O o o ... o i e PRI
\ S ! T S K = - M i - :
; R ! o : ; 2 b ;
A A Sl == : : g - -l-ml b Ml Srusean Iou. = ...._.:a v @ : e : ” : - ; -
oo ; : i : ! i - | . I E i 3 ! IR I
H - ~ e e - B S B ot J— . s e ' o ) ..~ - : =L T
I [ ! | \ s : T Y _ 1 ! | .. i
S S S R Sy N S LS LS DU T SN - JUURE TP < W - (PO SN VO S L :
! T { i I = o x 3 &£ : i PO i
Lot : N SO ORI (RIS O VO SIS S S S0 ER SR Y S CYE =S FOARE FSUUN OO S DUPRE N JUUE SO SHUDS A SO S
: . H . ; I ! S i ! HE !
i _ L P i j . o | : 1 | : b i
e e SURIS ST ST % b Q- e b s ! IS :
P Coye T - . . ' _ Lo o ,
! : U Do - b = . Co R S O
i - b ; L . , w . -
SO D U S N — SRR SRS NN Ot W o
} E T . t 1 1 1 _ t i ] 1. _ ; : h fl ) _ .
o . Vo oo g R ! ! i - Lo
. N 1 " i "
. . oo [ I X _ : -
,. - —— 'y S S P S : - . .Ilnncvl. ll.t..l...uml.nlll - i > _— B —
v g 8 ¢:2.8 g &8 8.8 :8 8 g 8 | SN PR
- o ~ ~r o~ = T b :
i NN N S B == T U S TN S S SOUE SRR SUUUY SUUOT TSN NOOE S SO O
. [ H H ' . o I " o ! T i
P ST SN0 S 1 Z0 S 0k T O U P U U P ) 1 8
Co P i R : oL R I R ol
I A R EC A A ; “ : T , “ A R T y T e
Lo e e VL OO RO A 0 St e e
AU A T A R A A S A Bt i i T TR T AN I AR UL K
b _T ot ‘ \ : I + bk . P 5 L S L,_,..-“.. ]
S S e | m ORI T O A e S A
) P R R R ; - Lo I RN S Lo - = _ Y U PO
I IS0 S T S A R R A SR WL R N 13 0 O
m | i w m , Lol oy Log _ “ I
i [ e e B R Rianr AR ol S st S St s ot IR Bt whaed tlnel e - -
. ! f B 1 ' ! . ! , 1 H w o _. .
v t - - : : : : : : S - -
] I I e T O T D D O B I I i
T T A A R A At AR STk AR R Mt JRETES IOV SR ST M :
I [ .l 1 i IO i i FE IR i




i
i
IRUREIOUS SOPRIIN SOOI MES SR
: :
b R !
. : |
: .
} N ¢
¥ . 13
4 B
. ,
: o ;
S I EOR SN SRS
.
_ _

| OGS

beom e gon

curves

‘cafcdfateq

700 800 90G 1000 1100 1200 1300

600

0

100 200 . 300 . 400 50

,fol!owiné

12400

o
e
o
1

rated

voltage .

curves at

T

load.

in
cm.

() 205 gm.cm..

-t

ile) it gm_cm_'
SRR




Steady-state speed Experimental
stall : ; . Steady-state speed -
Control | torque T Average da?ping with damping Effective dgmping with damping steady-state
voltage - fa x 10 fa fe x lot fe speed
V) r.m.s. gm.%cm |gm.cm. |Nm/rad.sec™ 1l (r.p.m.) Nm/rad. sec ! (r.p.m.) (r.p.m.)
115 585 | 740 18.64 1765 -~ 10.28 3200 2940
92 500 656 16.4 - 1619 8.6 2990 " 2860
69 370 475 12.6 1568 7.018 2818 2760
50 260 331 9.55 1494 ' 5.48 2613 2550
46 225 280 8.4 1569 5.138 2566 2500
30 155 199 7.26 1184 4.04 2126 2000
23 115 151 6.12 1077 3.23 2041 1760
15 77.5 | 1ol 6.04 " 702 . 3.23 1330 1200
5 25 33 5.8 234 3.23 444 404
2.6 12.5 | 16 5.66 ' 122 3.23 230 207
Table (5.1)
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Experimental steady . Theoretiﬁal results

Control Step torgque . state speeds £ mechénlcal

voltage T gm.Cm. e - ) damping .
| T mam | ST Twlt e s s

r.m.s, i . r.p.m. i MI
115 417 2816 1470 0.278 1500 1316
115 205 2784 2318 0.35 586 2198
115 122 2784 2513 0.4 305 2479
92 325 2806 1320 0.21 1548 1258
92 214 2828 2123 0.26 823 2005
92 120 2795 2448 0.3 397 2398
69 255 2756 1430 0.18 1416 1340
69 203 2763 1970 0.214 948 1815
69 122 2791 2275 0.221 552 2239
46 142 2492 1430 0.135 1052 1440
46 118 2405 1612 0.1355 871 1534
46 62 2288 1990 0.167 371 1917
23 75 1660 823 0.078 962 698
23 . 34 1625 1257 G.072 472 1153
23 26 1635 1387 0.1 260 1375

Table (5.2)

60T
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CHAPTER 6. Comments and Conclusions =

From the tﬁeoretical and experimental work recorded in this thesis,
_thé following comments and conclusions can be drawn:

(i} Previous theoretical studies of the performance of 2-phase

servomotors have been confined largely to calculations of the steady-

state torque/speed characteristics, often using symmetrical component

anaiysis. When calculated curves were compared with measured results,

close agreement was generally obtained.

Previous attempts to establish trapsfer functions for the 2-phase
servomotor can be. classified into either elementary analyses based on
ideal machine models, assuming linear torque/speed characteristics and
requiriﬁg quite drastic simplifying assumptions, or more detailed
analyses in which some of these assumptions were lifted. However,
since all the analyses negleéted electrical transients and assumed

the transient and étea&y—state torgues to be equal, transfer functions
of the same general form but with different gain and time constants were
"obtained. fhese investigations were almost entirely mathematical,

without any significant attempt at justification from practical results.

The establishment of‘a Eorrect transfer function for a servomotor
) necessitateé consideration of the stator and rotor time constants, as

well‘as that of the mechanical system. This more detailed machine

modelling leads to differential equations which contain a product-of-
‘variable type nonlinearity, ana in this thesis complex convolution

techniques are employed to provide from these equations transfer functions

for different_transient conditions. A servomotor usually operates at

speeds much below synchronous, but even though it is then entirely

reasonable to neglect rotational veoltage: terms,quite complicated results are

obtained.

e e r —— = - - . . - - 3 . - - e b e e — L e e ey g = = T
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(ii) The transfer functions obtained relating the speed to a step

change in either the magnitude or the phase of the control voltage, have
poles which are functions of either the mechanical time constant, the stator
. time constant or the rotor time constant, and as they are all first-order
poles, a special form of complex convolution is utilised. Fﬁrthermore,
the poles that are functions of the stator and rotor time constants occur
as conjugate pairs, the only difference between the poles being the
replacement of the stator time constant with the rotor time constant.

It can be seen from the speed response expressions of sections

€(4.2.l) and (4.3.1) that, aftér obtaining the constant coefficients

of the exponential time functions associated with poles that are
functions of the stator time constant, the corresponding rotor
coefficients are obtained simply by interchanging the stator and rotor
time constants. This leads fﬁ considerable simplification when time

expressions for the transfer function are being established.

(iii) The speed response results, following a step change in the
magnitude of the control voltage, as caiculated using any of the early

- transfer fgﬁction expressions are nearly the same. In these expressions,
the mechanical viscous—friction damping of the ;ervomotor is defined as
the slope of the line joining zero speed to zero torque. When the

same values of mechanical damping is used in the calculation of the
steady-state speeds from the complex convolution approach (see Table(5.1)),
the results are much closer to the experimental results, despite the

low speed restriction in the analysis. When the damping coefficients
are corrected to the stalled value (i.e. the values of the cﬁefficients
given in Table (5.1)}, the results cobtained from the complex convolution

approach agree very much more closely with the measured values than
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those using the early analyses approaches. This is especially
true when the control voltage is low, validating the simplification
méﬁe in the analysis by considering low speed conditions only.

" Both early analyses gave almost the same results confirming that the

assumptions made in these cases are basically the same.

(iv) The complex convolution technigue was also used in the
establishment of transfer functions relating the speed change to a
step change in the phase angle between the control and reference
voltages. - Computations of the speed response following a step
change were found to agree rea;onably well with measured results when
the mechanical damping coefficiénts were obtained using the final
steady-state angle between the voltages and covering the whole speed

change. No previous work has been recorded in this area.

{(v) The speed response following a step change in torque for various
control voltages does not involve complex convolutiop and although

the théoretical analysis is éimple,lconsiderable experimental

' difficulties arise. However, when the measgured steady--state speeds
are comparéd with the corresponding calculated values, close agreement

is obtained, as indicated by Table (5.2).

(vi) In practice, servomotors are often supplied with nonsinusoidal
signals, usually rectangular in form. Such a waveform can be analysed
into its sinusoidal compoﬁents in the form of a Fourier series and,
using complex convelution technique, a transfer function can be
established for each pair of sinuscidal signals of the same frequency
supplied to the control and reference windings. Summing these
individual results will give the overall transfer function for the

machine, although a very considerable amount of work would be involved.

P —— - e e e e e - e
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Similarly, the time integral of the function which is identical with

the convolution of the function and of a unit step I(t) is

t
I(e)* £(t) = J It - 1) « £(1) dr
o
t
= J f(r)dr
(o]
since I(t - 1} =1 for © <‘T < t

8.1.2 Laplace Transform of the Convolution

If two functions fl(t) and f2(t) are Laplace transformable, arnd

have respectively the transforms'Fl(s) and Fz(s), then

t
L « J fl(I)- f2(t - t)dr) = Fl(S)- FZ(S)
(o} .

which shows that the Laplace transform of the convolution of two
functions is therproduct of the respective transforms of these two
functions. That'is to say, convolution in the time domain changes
-to mﬁltipl;cétion_in the complex s domain. A proof of the above

' 21-25
result may be found in several text books.

8.1.3 Laplace Transform of the product of two time functions

If the two functions have abscissae of absolute convergence 0.1 and

o respectively, then if

a2

Fts)

L(f, (e}, £,(t))

a0 -

-st
fl(tl. fz(t) e dt ceee (8.1)

Q

provided that the maxima of 9a1’ 9, and o, + g

1 are all < g,

2 az

where g is the real part of s.




8. Appendices

Appendix 8.1 Complex Convolution

8.1.1 The Concept of Convolution

The convolution of two time-varying functions fl(t) and f2(t)

is defined by

t o
£L|)x £,(t) = JO £ (r)y. £,(0 - 1) dr

where 1 is the varjable of integration. Introducing a new
integration variable , such that {(t - 1) = x, it can be shown

that convolution is a commutative process, that is

o
—Jt fl(t - x). f2(x)dx

£ (ed* £, (¢)

t
J fz(r)- £,(t - 1)t

Q

]

£ ()% £.(1)

In a similar way it can be shown that convolution is also an

associative process,that is

(£, (t)* fz(t))* £i(t) = £ (£, ()% £5(1))

- An impulse of unit intensity and very short duration is called a
Dirac impulse, and is normally denoted by §(t). Any function can be

written as the convolution of itself and the Dirac impulse, that is

’ t
§(B)* £(t) = J §(r). £(t - 1) dr
o

Using the mean value theorem of the integral calculus, the above

integral may be evaluated as

[f(t-—t) } T = Q

£(t)

116
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By substiﬁuting for fz(t) its integral representation in terms of

Fz(m), where w is any complex variable, that is

C, - o
1 o tw
Fz(w) = 25 thm) @ dw era. (8.2)
c, = je
where c2 is a real constant such that oa2A< oo and max (Ual' 0a2’
9.1 + caz) < ¢ it follows that .
oo ”02 4+ Jeo
1 tw -st
£ (), —— dwe
F(s) 1( ) 2] Fz(m) e duw at
[o] ) 02 - Jj=

Integration is to be carried out first with respect to the complex
variable w and then with respect to t, but since the functions are
Laplace transformable it is permissible to change the order of

integration. Thus

02 + Jeo o0
D | ~(s ~ wt
F(s) = 5;5 Fz(w) fl(t).e . dt du
c, - joo o
subject to the same restriction as equation 8.2.
Since, by definition
CE (e (8T O 5 = F (s - w)
O 1 . \
provided that Rglw) < g = oal , it follows that
¢, + Je
1
F(s) = L(fl(t). f2(t)) = 3 - Fl(s - w) Fz(w) doy ...(8.3)
2

The process expressed by the integral 8.3 is called "Convolution in the

Complex domain" or, more briefly, “"Complex Convolution". The functiocns
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Fl(s) and Fz(s) are said to be convolved. The iheorem, as expressed by
equation (8. 3) ,states that the Laplace transform of the product of two
functions of the real variable is found by conQolving the Laplace
transforms of these two functions. Thus multiplication in the real
domain becomes complex convolution in the complex domain. The

integral indicates folding, translation, multiplication and integration.
In the complex y plane, the function Fl(m), and hence the geometric
pattern of its singularities‘and zeros is first folded abéut the
imaginary axis and then translated by the complex variable s. Since
the translations are limited to those which keep Cap <c, <o~ Ual;

the path of integration from ¢, - jo to ¢, + j= lies in an analytic strip.

2 2

The idea of complex convolution canlbe used in certain special forms
which do not require complex integration, Generally there are two
forms
a. A form in which at least one transform factor has
first order poles only
b, A form in which at least one transform factor has multiple

order poles.

Different forms of the transfef'function expressions for a 2-phase
servomotor will have poles which Are functions of one of éhe mechanical
time constant, the stator time constant or the rotor time constant.
The poles are gherefore of the first order, and only form 'a' above will

"be considered.

8.1.4 Forms of Complex Convolution utilized in establishing 2-phase

servomotor transfer functions

In the general rational algebraic fraction of the form

F(S) - _, e s (8-4)
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let A(s) be a polynomial of the order p in s, and with constant
nonzero coefficients. Similarly, let B(s} be another polynomial

with constant nonzero coefficients of the order g, both p and g

being'positive integers. Generally there are two possible cases.
' A_(s)
: A(s)
. p + +
1 P2q when B(s) Ko Kls B(s)
2. P <g when F(s) is a proper fraction. Two cases may arise

a. the poles of F(s) are all first order
b. some or all of the poles.may be of higher order.

~All the transfer functions arising in this thesis fall into type 2(a).

The poles of equation(8.4)are found by putting B{s) = 0, and if

the roots are s,, s

3 YAERRER Sq’ then none are repeated. When

A(SK)# 0, for X =1, 2, ... g, F(s) has g poles and not less, It

may be shown that

- k=q
I VoA N Alsy) kY o st ces. (8.5)
‘ B(s) 7 B'(sK) '
k=1
v - .d__! B(S)
where B (sK) = ‘ ds:
s = SK
= ~(sK - sl)(sK - 52} - (sK - sK_l)(sK - SK+1) ..(sK - s )

and if one of the poles lies at the origin

K=
PRI C EEN YO R S Pl st
s Bl(s) Bl(o) Py SK Bi(sK) ‘ 05t
... (8.6}
dB‘l(S)
where B1 (sk) = ‘ ds
Sk
= (s (s, -
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Finally, the complex convolution theorem that can be used if at

least one transform factor has first-order poles only, can be

.stated as:

If fl(t) and f2(t) are Laplace transformable functions, having

the Laplace transforms Flts) and Fz(s), respectively, and if

Fl(s) = %ﬁg is a rational algebraic fraction having q first

order poles and no others then

k =

a
A(s, )
L (£ (t). £,(t))y = ~> K _
1 2 P B'(SK) F2(s sK) .e. (B.T)
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APPENDIX 8.2 COMPUTER PROGRAMS

In this appendix, documentation is presented for the computation of

}a) the speed response following step changes in the control
voltage, as presented in section (4.2.1l), equation (4.35)

(b) the speed responsé following step changes‘in the phase angle,

as described in section:(4.3.1), equation (4.43) and section (5.8.1}),

equations (5.17), (5.18} and (5.19).
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Appendix 8.2.a

PROGRAMME FOR THE SPEED RESPONSE FOLLOWING STEP CHANGES
IN THE CONTROL VOLTAGE

T1= STATOR WINDINGS TIME CONSTANT AT STALL
TZ2=3 RCTOR TIME CONSTANT

TH= MECHANICAL TIME CONSTANT

OMEGA=ANGULAR SUPPLY FREQUENCY (RAD./SEC,)
VDaSTERP CHANGF IN CONTROL VvOLTAGE

JaH (GIVEM IN SECTION(L.2.1) ,EQUATION(L.27))
THINSMINIMUM TIME

TINCSTIME INCREMENT

THAX=MAXIMUM TIME

OMEGAR= ROTOR SPEED IN R.P.M,

MASTER MAIN
REAL
- DATA CMEGA/314. 15026536/
T READ(Y.Z200%VD,.TM,T1,T2
IF(TM,.LE.0.0)YG0TO4
Pl=4,0«ATANCY . D)
JET4A9 75/ (T eT1+T2+T2)
OMEGAZ=0OMEGAwOMEGA
900 FORMAT(LF10,6)
A= (TIwT2}/(T4+72)
X1m2 , 0x A% OMEGA2« (2. 0% ((TTmTM) /(T1*T14TM)I+OMEGAZ)~A%(T1
=2, 0%TMY/ (TheTM))
Y122 0wOMEGARA» (2 O*OMEGAZw (TA=2,0oTMY/ (TA+TMI+A*( (T~
1TH)/(T1*T1*TM)¢OMEGA2))
AzmA
X2= 2.0*A*OMEGA2*(2.0*((TZ-TH)I(TZ*TZ*TM)+0MEGA2)-A*(T2
1=2,0%TM)/ (T29TM))
Y22, 0«0MEGARA® (2 N*OMEGA22(T2=2,0¢TM)/(T2xTM)+A% ((T2~
1TMY/ (T2+T2+TM)«OMEGA2)) '
TYOT=Y1+72
‘WRITE(2,901)
901 FORMAT(IX ,10%,14HRESULTS SO FAR)
READ(1.,903YTHMIN, TINC, THAX
003 FORMAT(3F10,4)
Bz?2,0«(1,0-0MEGA2+*T1*T2)
LAMDA=B-TTOT/T4
LAMDAD=R=TTOT/T2
CoR®*TMaT2 T2« T{*T1/( (1, 0+0MEGA2*T1¢T1)a (1 0+0MEGA2*T2+T2))
D ((TM=T1) e * 24 OMEGAZ*TI* T4 4 THATHI s ((THuT2) 4 *2+0MEGAZ+T
T2« T2%TM=TI{)
Ex(Bm (TI+T2)/TMI®TINTI#T22a T2 TM**S
D=E/D
Ex(X1+LAMDA~DMEGA»TTOT*Y)
Fa(Y1«LAMDA+OHEGA«TTOT®X)
R (X2« LAMDAD=OMEGA=TTONT*Y2)Y
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H= (Y2+LAMDADSOMEGA+TTOT*X2)
T=TMIN
1 E=32,0/(XT*XTavi+Y1)Y+EXP((~y, 0/T1*T))*(F*COS((OMEGA*T))
T=F+SINC(OMEGAXT)))
Fe2.0/(X2*X2¢y2*Y2)EXP({»y, OITZ*T))*(G'COS((OMEGA*T))
1=H*SINCC(OMEGA=T)))
OMEGARSYDw w (uDwEXPL(=1,0/TMaT))+E+F)eb0/¢2,0+P])
WRITE(2,204)0HMEGAR,T,¥D.,TM
004 FORMAT(IX,10%,7HOMEGAR=,F12.4,5X,2HT=,F5,3,5X,3HVD=,
1F5.1:34HTH=,F8.5)
FF(T.GE.TMAXYGOTOS
TeT+TINC
GOTO1
& CONTINUE
STOP
END
FINISH
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Appendix $.2.b

PROGRAMME FOR THE SPEFD RESPONSE FOLLOWING STEP CHANGES
IN THE PHASE ANGLE

Ti= STATOR WINDINGS TIME CONSTANT AT STALL
T2= ROTQR TIME CONSTANT

THa MECHANICAL TIME CONSTANT

J=H (GIVEN IN SECTION(L.2.1) 1 EQUATION(4,27))
OMEGA=ANGILAR SUPPLY FREQUENCY (RAD./SEC,)
WIcINITIAL SYEADY STATE SpeED

W= INITTIAL PHASE ANGLE

A1 AND B1 ARE GIVEN IN SECTION (5.8.1)
THINSMINIMUM TIME

TINC=TIME INCREMENT

THAXSMAXTHUM TIME

OHEGAR= ROTOR SPFED IN R,p.M,

MASTER MAIN

REAL J.K.|

DATA OMEGA, VD/31A 15926536,115,0/
READ(1.900%A1.,B1,U.,TM,TT1,72,:W1

IF(TH.LE.O.O)GOTOA

FORMAT(7FO,0)

OMEGA?=OMEGAR(MEGA

T15=T1%71

T28=T2%72

THS=THM»TH

Pl=& ,0O«ATANCT  0)

Ju149 75/ (T18«T728)

$52, 00 (T1+T2)+TH*T1S*T2S+OMEGA2

PaTHS 2 T1S+T28w (~T 1% T2+ TH*(T1+72)=TMSw (3, OtOMEGA2iT1iT2
141,03 42, 0« THS«OMEGAZ* (TT+T2)#TM)
S1=(1.0+0MEGA2#T1S)+(1,0+0MEGA2*T2S)

$2=5/81

AZSOMEGAZ*(T14+T2)

BI3sOMEGA® (1,0-2,0xCHMEGAZ*TA*T 2= T2/T1)

BS=OMEGA® (4 ,0~2, OxOMEGAZ*T1*T2T1/T2)

A=(T1- T2)/(T1*T?)

X922, 0xA«0MEGA2+ (2, Nw( (T~ THY /(TI«TI%TM)SOMEGA2) ~AW (T
1=2.0«TMY/{(T1eTM))

YA22 ,0+#OMEGAw A+ (2 O%x0MEGA2+(Ty=2, O*TMY/(T1eTM) «AX ( (T~
TTHY/(T1S*TM) wOMEGA2))

A=mA

X222, 0+A*OMEGA2 (2, O% ((T2=TH) 7/ (T2*xT2#TMI+OMEGAZ) ~A* (T2
1=2. 0011/ {T2%TM))

Y2u2 . 0«OMEGAWA* (2, 0*OMEGA2«(T2=2,0*TMY /(T2 THMI+AR((T2~
TTMY/ (T2S*TMYNMEGA2)) .

TT0T=T1+72

B=2,0+(1=0MFGA2*T1+T2)

LAMDA=8-TTOT/TH
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LAMDAD=B=TTOT/T2
CoB*THU*T2S+T18/((1.0*0OMEGA2*T1S)* (1, 0+0HEGA2*TZS))
D3 (T~ T1)t*2+OHEGA2*T1S*TMS)*((TM-TZ)t*2+0MEGA2*TZS*TMS)
E=(Bm(T14T2)/TM)+T15T1+T2%T2uTM*¥5
R=E/D
Ex (X1« LAMDA=OMEGA+TTOT*Y1)
Fe(Y1+ LAMDA+OMEGA=TTOT#»X1)
G=(X2+ LAMDAD=OMEGA»TTOT*Y2)
He (Y2»LAMDAD+OMEGA*TTQOT*X2)
WRITE(2,901)
001 FORMAT(IX,10%,14HRESULTS S0 FAR)
READ(1,903)THIN,TINC, TMAX
903 FORMAV(3F10.6)
TaTMIN
1 E=?, Oltx1*x1+v1*v1)*Exp(( 1. 0/7T9*T))*(E*xCOSC(OMEGAT))
1=FeSINC(OHFGAXT)Y)
Fu2,0/(x2+x24v2*Y2)*EXP((=4,0/T2*T))*(GwCOS((OMEGAT))
TmH*SIHNC(OMNFGA=T))) ’
213(A3*X1+R3*Y1)/(H1*X1*Y1*Y1)*EXP(('1.0/T1*T))
22=(A3«X24R5ey2)/ (X2*X2+Y2+Y2)=EXP (=1 0/72+T))
Z3=2(BaX1~A3uy 1)/ (X1 *X1+Y 1w Y1) wEXP((=1,0/7127))
24 (B #X2=a3uy2) /(X2 *X2+Y2+Y2YREXP((»1,0/T2%T))
K=2,0%(2147Z2)+«COS ((OMEGA*T))
L=2,0+4¢23+24) % SINC(OMEGA*TY)
ARTSVRwJ R (C=RAEXP( (=1 . 0/TH+T))+E+F)*»40/(2.0%P1)
BOTEVDwJ*{(S2=p/D*EXPC(=1.0/TH*T)I+K+)+60/(2.0:P1+0GHEGA)
OMEGAR=UWI~ (A1 +ALT+B1*RET)
WRITE(2,904)0OMEGAR, T, THM
904 FORMAT(IX, 410X, 7HOMEGAR=F12:4,5X2HTS,FS5,3,5X,3HTM=,F8,6)
JFCT,.GF.THAXYIGOTO3
T=T+TINC
G070
4L CONTINUE
STOP
END
FINISH






