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Abstract—A novel dynamic control allocation method is pro-
posed for a small fixed-wing unmanned aerial vehicle (UAV),
whose flaps can be actuated as fast as other control surfaces,
offering an extra way of changing the lift directly. The actuator
dynamics of this kind of UAVs, which may be sluggish comparing
to the UAV dynamics, should also be considered in the control
design. To this end, a hierarchical control allocation architecture
is developed. A disturbance observer based high-level tracking
controller is first designed to accommodate the lagging effect of
the actuators and to compensate the adverse effect of external
disturbances. Then, a dynamic control allocator based on a
receding-horizon performance index is developed, which forces
the actuator state in the low-level to follow the optimised ref-
erence. Compared to the conventional control allocation method
that assumes ideal actuators with infinite bandwidths, higher
tracking accuracy of the UAV and better energy efficiency can
be achieved by the proposed method. Stability analysis and high
fidelity simulations both demonstrate the effectiveness of the
proposed method, which can be deployed on different fixed-wing
UAVs with flaps to achieve better performance.

Index Terms—Control allocation, actuator dynamics, distur-
bance observer, non-minimum phase, flight control.

I. Introduction

RECENT decades have witnessed the rapid growth on
both the development and application of small unmanned

aerial vehicles (UAVs) in different domains, ranging from
surveillance, payload delivery to environmental monitoring
and agriculture mapping. Among different UAV configura-
tions, such as helicopters and multicopters, conventional fixed-
wing UAVs still manage to position themselves in many
critical applications, because their simpler structure and better
aerodynamic efficiency can offer longer endurance and higher
airspeed. For many small fixed-wing UAVs, they are normally
featured with low-cost and light-weight designs to facilitate
the rapid deployment to various applications. However, these
attributes also mean that their limited power and low inertia
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may make them susceptible to external wind gusts, leading
to degraded flight performance. To alleviate these phenomena,
some control oriented techniques [1]–[4] have been investi-
gated to compensate the wind disturbances.

This paper approaches this problem from a different per-
spective, specifically by exploiting the flight mechanism of
conventional fixed-wing UAVs equipped with dedicated flaps.
Flaps can be used to change the lift and drag, which is often
referred to as direct lift control (DLC) in aviation literature
[5]. Unlike their counterparts on full-size aircraft, the flaps on
small UAVs are usually actuated by the same electric servos
used for other control surfaces. This means that the flaps
can be used as ordinary control surfaces in the same way
as elevators, which in turn, provides the control redundancy
and extra control authority to deal with external disturbances.
Therefore, to fully explore the potential of DLC on small
fixed-wing UAVs, a solution to control allocation is required
to distribute the desired total control effort among a redundant
set of actuators, i.e. the elevator, motor thrust, and flap.

Various control allocation methods, e.g., pseudo-inverse,
daisy chaining and direct allocation, have been developed and
extensively investigated in literature [6]–[9], some of which
have a particular focus on reconfigurable flight control design
[10]–[12]. Apart from the basic control allocation functions,
many advanced algorithms have considered additional fac-
tors, e.g., actuator energy saving and actuator safety, using
techniques such as linear/nonlinear constrained quadratic pro-
gramming [13], [14], additional dynamic augmentation [15]
and input matrix factorization [16]. However, those control
allocation methods may not be readily applicable to the
problem investigated in this work due to the presence of slow
actuator dynamics. It is very common in control allocation to
assume ideal actuators with infinite bandwidths, ignoring their
dynamics. This assumption is justifiable since the dynamics of
many over-actuated systems, e.g., cargo ship, full-size aircraft
and submarine, are indeed much slower than those of their
actuators. On the contrary, the actuator dynamics of small
fixed-wing UAVs cannot be ignored in high-performance flight
control due to the agile dynamics of a small UAV.

Several pioneering works on control allocation with the
consideration of actuator dynamics can be found in literature.
In [9, Ch. 7], the existence of actuator dynamics is regarded
as one of the most significant obstacles in control allocation,
because the input matrix of the cascaded system can not be
factorized into two matrices with lower dimensions, suggesting
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that the conventional control allocation methods cannot be
applied directly. To the best of the authors’ knowledge, the first
viable solution was proposed in [17] by introducing a punish-
ment on the allocation rate. This approach is also referred to as
dynamic control allocation, which indicates that an additional
transient process is introduced for control allocation. Hence, it
is easier for actuators to catch up with the time-varying control
signals. Following this dynamic approach, some important
progress has been made in both theory [18] and applications
[19]. However, it is worth noting that this kind of dynamic
allocation methods only relieves the adverse effect of actuator
dynamics, because the perfect allocation is only available for
constant control signals (see [17, Thm. 3] for details). On the
other hand, a practical approach to compensate the actuator
dynamics via the measurement of actuator states is proposed
in [20]. However, since it is an open loop compensation, only
very fast sampling rate can guarantee the effectiveness and the
stability of the closed-loop system, setting high requirements
on the sensors of actuators. In [21], model predictive control
(MPC) method is used for control allocation, which considers
a second order actuator model with constraints on position
and velocity. In [22], an adaptive control allocation method
is proposed for stabilization of a much more general case
where the actuator model is not only nonlinear but also
with parametric uncertainties, which increases the complexity
for practical tracking applications. Meanwhile, along the line
of linear full-information output regulation for over-actuated
systems, the rigorous theoretical framework has been build up
in [23]–[27]. Specifically, on the basis of [24], over-actuated
plants with parametric uncertainties are considered in [25]
whilst in [26], [27], MPC methods are involved to specify
desired steady states with constraints. These methods have the
potential to deal with the problem considered in this paper by
several extensions and embedding the actuator dynamics into
the considered system.

To tackle the challenges on DLC based control for small
fixed-wing UAVs, namely, disturbance rejection, actuator dy-
namics and control allocation, a novel integrated control
design with dynamic control allocation is proposed in this
work. The considered actuators are of linear dynamics without
constraints, but their dynamic states are unmeasurable. Fol-
lowing the structure of conventional control allocation [13], a
hierarchical framework is adopted to pursue the superiorities of
modular design. The structure of the proposed framework con-
sists of two parts. In the high level, a linear control design with
a compensator is adopted for precise output tracking. Due to
the insufficient sensors for actuators and external disturbances,
a disturbance observer [28] is combined with the tracking
controller to achieve the objectives of output tracking and dis-
turbance rejection. However, embedding the actuator dynamics
into the high-level tracking design will introduce additional
zero dynamics into the system. Therefore, the corresponding
low-level allocator needs to be designed not only to reduce the
extra energy consumption caused by control inputs, but also
to stabilize the internal dynamics [29], [30]. In the low level,
inspired by the generalized predictive control method [31], a
receding-horizon performance index is adopted to represent
the total cost. Unlike the conventional performance indexes

in control allocation (e.g., J(t) = ‖Wu(t)‖1,2,∞), which is only
related with the current control input, the receding-horizon one
contains the future information, and hence, is dynamic. By
using the Taylor expansion for prediction, the optimal desired
states of actuators are explicitly obtained, which are directly
dependent on the disturbance estimates in the high level and
the reference commands of the UAV. Subsequently, a virtual
allocator is designed to force the actuator states to the optimal
ones.

Notation: For any smooth enough function f (t), symbol
f (i)(t) denotes the i-th order derivative of f (t) with respect
to variable t. For any state x, symbols x̂ and xr denote its
estimate and reference, respectively. For any matrix A ∈ Rm×n,
A(i, j) ∈ R denotes the element in i-th row and j-th column of
A, A(i,:) ∈ R

1×n denotes the vector row i of A, and

A(i: j,:) ,
[
AT

(i,:) A
T
(i+1,:) · · · A

T
( j,:)

]T
∈ R( j−i+1)×n

A(i: j,p) ,
[
A(i,p) A(i+1,p) · · · A( j,p)

]T
∈ R( j−i+1)×1

A(i,p:q) ,
[
A(i,p) A(i,p+1) · · · A(i,q)

]
∈ R1×(q−p+1)

A(i: j,p:q) ,
[
A(i: j,p) A(i: j,p+1) · · · A(i: j,q)

]
∈ R( j−i+1)×(q−p+1)

where n, m, i, j, p, q ∈ N+, 1 ≤ i ≤ j ≤ m and 1 ≤ p ≤ q ≤
n. Matrix 0i× j denotes an i × j zero matrix and matrix 1k×k
denotes a k × k identity matrix.

II. Problem Formulation

In this section, the linearized longitudinal model of a small
fixed-wing UAV with the assistance of DLC, together with
models of actuators, i.e., the elevator, motor throttle and flap,
are briefly introduced. Readers can refer to [2], [32] for the
illustration of the longitudinal dynamics of UAV.

A. UAV Dynamics

The linearized longitudinal model for the considered small
fixed-wing UAV is given as follows [33, Ch. 5.5.3]:

ẋp = Apxp + Bpuup + Bpdd, yp = Cpxp (1)

where xp , [u w q θ h]T , yp , [u h]T , up , [δe δt δ f ]T ,
d , [du dw dq dh]T , Ap , [Xu Xw Xq −g cos θ∗ 0; Zu Zw Zq −

g cos θ∗ 0; Mu Mw Mq 0 0; 0 0 1 0 0; sin θ∗ −

cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0], Bpu ,
[Xδe Xδt Xδ f ; Zδe 0 Zδ f ; Mδe 0 Mδ f ; 0 0 0; 0 0 0],
Bpd , [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0; 0 0 0 1],
Cp , [1 0 0 0 0; 0 0 0 0 1]; u, w, q, θ and h are the forward
body velocity, vertical body velocity, pitch rate, pitch angle
and height, respectively; δe, δt and δ f are the control inputs
generated by the elevator, motor throttle and flap, respectively;
X, Z and M are the force and moment coefficients given
their associated subscripts; g is the acceleration of gravity;
any state denoted further with ∗ represents the state at the
linearization point of the model; du, dw, dq and dh are the
lumped effects of external disturbances and directly affect
the system states u, w, q and h, respectively. Since most
external disturbances in flight control systems, e.g., wind
gusts, normally present much slower dynamics than UAV
itself [2], d is therefore assumed to be unknown constant.
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B. Actuator Dynamics

The elevator and flap are directly driven by electric servos
and are much faster than the motor thrust dynamics. Therefore,
first-order systems are used to represent the actuator dynamics
of the elevator and flap, whilst a second-order one is used
for the motor thrust. The dynamics of the three actuators are
written compactly as follows:

ẋa = Aaxa + Baua, ya = Caxa (2)

where xa , [δe δt δ̇t δ f ]T , ya , up, ua , [ue ut u f ]T ,
Aa , [−1/τe 0 0 0; 0 0 1 0; 0 −ω2

nt −2ζtωnt 0; 0 0 0 −1/τ f ],
Ba , [1/τe 0 0; 0 0 0; 0 ω2

nt 0; 0 0 1/τ f ], Ca ,
[1 0 0 0; 0 1 0 0; 0 0 0 1]; ue, ut and u f are the control input
signals to the elevator, motor throttle and flap, respectively;
τe and τ f are the time constants of the elevator and flap,
respectively; ωnt and ζt are the oscillation frequency and
damping ratio of the thrust dynamics, respectively. Combining
the UAV dynamics, the following assumption is adopted,
which can be easily verified for different UAV systems.

Assumption 1: (Aa, BpuCa) is observable.

C. Control Objective

Let x , [xp
T xa

T ]T and substitute (2) into (1) to obtain
the following actuator-dynamics-based UAV system:

ẋ = Ax + Buua + Bdd, yp = Cx (3)

where A , [Ap BpuCa; 04×5 Aa], Bu , [0T
5×3 BT

a]T , Bd ,
[BT

pd 0T
4×4]T and C , [Cp 02×4]. The objective of this work

is to design a control input ua such that the output of the
UAV system yp asymptotically tracks any given sufficiently
smooth and bounded reference ypr , [ur hr]T under unknown
external disturbances, and meanwhile, to save the total cost
caused by the actuators. Before detailed design, the overall
control scheme is presented in Fig. 1. Notably, the designed
control input ua is only the input command to actuator, which
is a virtual signal without much physical significance. Hence,
the output of actuator ya (or up), rather than its input ua, will
be optimized in the subsequent allocation design.

UAV  Actuator

 Actuator/Disturbance 
Observer  

Tracking Controller

Dynamic Allocator
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Fig. 1. Schematic diagram of the proposed method.

III. Actuator/Disturbance-Observer-Based Tracking

In this section, as shown in Fig. 2, the tracking controller in
high level with a compensator for the lag effect of the internal
actuators and the adverse effect of the external disturbances is
designed for the augmented plant (3).
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Fig. 2. Schematic diagram of the tracking controller in high level.

A. Actuator-Dynamics-Based Disturbance Observer Design

The designed observer should be able to estimate the
actuator state xa as well as the external disturbance d. With
actuator dynamics (2), one arrives at

ẋad = Aadxad + Badua, yad = Cadxad (4)

where xad , [xT
a dT ]T , yad , ẋp − Apxp, Aad ,

[Aa 04×4; 04×4 04×4], Bad , [BT
a 0T

4×3]T and Cad ,
[BpuCa Bpd]. Note that (04×4, Bpd) is observable. By
Assumption 1, with Popov-Belevitch-Hautus observability cri-
terion [34], one gets that (Aad,Cad) is also observable.
Following the approach in [35], by defining an internal state
z , x̂ad −Lxp with x̂ad , [x̂T

a d̂T ]T , one gets the following
actuator/disturbance observer:

ż = (Aad −LCad) z

+
(
AadL −LAp −LCadL

)
xp + Badua

x̂ad = z + Lxp

(5)

where L is the observer gain.

B. Tracking Controller Design Via Dynamic Inversion

Based upon the parameters in Appendix A, the relative
degree of each output is available as C1Bu = 0, C1ABu ,
0; C2Bu = 0, C2ABu = 0, C2A

2Bu , 0, where
C1 , C(1,:) and C2 , C(2,:). Since the sum of relative degrees
is strictly less than the system dimension, there exists zero
dynamics in (3). Following the approach in [36, Chap. 5.1],
define a new state as

DX ,
[
DT

Y DT
Z

]T
= TMx + TNd (6)

where DY , [u u(1) h h(1) h(2)]T , DZ is the state of the
zero dynamics, and TM and TN are transformation matrices.
To endow this coordinate transformation with more physical
significance, let DZ , xa. The transformation matrices can
then be fixed as follows:

TM =

[
CT

1 (C1A)T CT
2 (C2A)T

(
C2A

2
)T

[04×5 14×4]T
]T

TN =
[
0T

1×4 (C1Bd)T 0T
1×4 (C2Bd)T (C2ABd)T 0T

4×4

]T
.

It is worth noting that rank(TM ) = 9, which implies that map-
ping (6) is inverible between DX and x. Taking derivatives
of DX in (6) along (3) gives

ḊX = AxDX + Bxuua + Bxdd (7)

where Ax , TMAT −1
M

, Bxu , TMBu and Bxd ,
−TMAT −1

M
TN +TMBd. For tracking control design, extract-

ing the second and the fifth lines from system (7) yields[
u(2)

h(3)

]
=

[
Ax(2,:)
Ax(5,:)

]
DX +

[
Bxd(2,:)
Bxd(5,:)

]
d + vt k (8)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

where vt k , [vu vh]T = Bt kua and Bt k ,
[(C1ABu)T (C2A

2Bu)T ]T . Using the dynamic inversion
approach [37] gives the following tracking controller:

vu = Ku

(
DYr(1:2,1) − D̂Y(1:2,1)

)
+ vur

vh = Kh

(
DYr(3:5,1) − D̂Y(3:5,1)

)
+ vhr

(9)

where DYr , [ur u(1)
r hr h(1)

r h(2)
r ]T , D̂X , TM [xp

T x̂T
a]T +

TN d̂ = [D̂T
Y D̂T

Z]T , vur , u(2)
r −Ax(2,:)D̂X −Bxd(2,:)d̂, vhr ,

h(3)
r − Ax(5,:)D̂X − Bxd(5,:)d̂; Ku and Kh are the controller

gains.
Remark 1: There are two deficiencies of using the conven-

tional control allocation method for allocation of the designed
controller (9). On one hand, the targeted control input ua is
a virtual signal without much physical significance. One the
other hand, based upon the system parameters in Appendix
A, we get that Bt k = [0 0 − 0.18; 0.59 0 2.13]. The second
column of the pseudo-inverse of Bt k is 02×1, which implies
that u∗t = u∗

a(2,1) = 0 holds for any control signal vt k generated
from high level. Therefore, it will lose the freedom to stabilize
the zero dynamics.

IV. Actuator-Dynamics-Based Dynamic Control Allocation

In this section, the dynamic allocator in the low level
considering the actuator dynamics is designed as shown in
Fig. 3, following the stability analysis of the closed-loop
system.
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Fig. 3. Schematic diagram of the dynamic allocator in low level.

A. Preliminaries

Since that Bt k ∈ R
2×3 with rank(Bt k) = 2, it has a nullspace

of dimension 1 = 3 − 2, in which the control input ua can be
perturbed without affecting ḊY . For convenience, we choose
P as [0 1 0]T , which belongs to Ker(Bt k), the allocation input
is thus constructed as ut = Pua.

Define Q , [BT
t k P T ]T and v , Qua = [vT

t k ut]T . It
is worth noting that rank(Q) = 3 and ua = Q−1v. Next,
rewriting the actuator dynamics (2) in light of (8) yields

ẋa = Avxa + Bvaut + R + Bvdd, ya = Caxa (10)

where Av , Aa − BaQ
−1[AT

x(2,6:9) AT
x(5,6:9) 0T

1×4]T , Bva ,

BaQ
−1[0 0 1]T , Bvd , −BaQ

−1[BT
xd(2,:) B

T
xd(5,:) 0T

1×4]T and
R , BaQ

−1[u(2) −Ax(2,1:5)DY h(3) −Ax(5,1:5)DY 0]T .
The following assumption is adopted to facilitate the deriva-

tions, that is, in general, satisfied.
Assumption 2: (Av , Bva) is controllable.
In what follows, the proposed dynamic allocation method

is introduced, which is inspired by the generalized predictive

control method [31]. However, unlike the generalized predic-
tive control method, the desired states of actuators, rather than
the states in (10), are optimized here. Note that in the output
regulation framework for over-actuated systems [23]–[27], the
desired states are also optimized based upon different cost
functions.

B. Generator and Estimator of Optimal Desired States

The desired states of the considered actuators should satisfy
the following system:

ẋar = Avxar + Bvautr + Rr + Bvdd, yar = Caxar. (11)

If the tracking objective has been achieved, Rr is also avail-
able as a priori knowledge, which is directly related to the ref-
erence commands, i.e., Rr = BaQ

−1[u(2)
r −Ax(2,1:5)DYr h(3)

r −

Ax(5,1:5)DYr 0]T .
Due to the linearization points (or trims) on the control

inputs, the cost functions for each actuator can be defined as
Ja(t) ,

∫ T
0

[
δar(t + τ) + δ∗a

]2 dτ, a ∈ {e, t, f }, where T > 0 is
the predictive period. The total cost of actuators is defined as

J(t) , ρeJe(t) + ρt Jt(t) + ρ f J f (t)

=

∫ T

0

[
yar(t + τ) + y∗a

]T W
[
yar(t + τ) + y∗a

]
dτ

(12)

where y∗a , [δ∗e δ
∗
t δ
∗
f ]

T ; ρe > 0, ρt > 0 and ρ f > 0 are the
weights on the elevator, motor throttle and flap, respectively,
W , diag (ρe, ρt, ρd). Inspired by [31], the following Taylor
expansion with finite series is used to approximately predict
yar(t + τ):

ȳar(t+τ) = yar(t)+τy(1)
ar (t)+ · · ·+

τn

n!
y(n)

ar (t), n ∈ N+, τ ∈ [0,T ]
(13)

where ȳar(t+τ) is its prediction. Before optimization, notably,
CaBva = 03×1 and CaAvBva , 03×1, which implies that
the Taylor expansion order should be chosen as n ≥ 2, n ∈
N+. The case of n = 2 is simple, i.e., yar = Caxar,
y(1)

ar = CaAvxar + CaRr + CaBvdd and y(2)
ar = CaA

2
vxar +

CaAvBvautr + CaAvRr + CaR
(1)
r + CaAvBvdd. Therefore,

the detailed analysis of this case is ignored here.
Subsequently, a kind of compact optimization procedure is

provided to simplify the general case of n ≥ 3, n ∈ N+. First,
extend the original system (11) by following integrators, and
then regard xer , [xT

ar utr · · · u(n−3)
tr ]T as the new state of the

extended system such that

ẋer = Aexer +Bevu(n−2)
tr +BerRr +Bedd, yar = Cexer (14)

where Ae , [Av Bva 04×1 · · · 04×1; 01×4 0 1 · · · 0; · · · ; 01×4
0 0 · · · 1; 01×4 0 0 · · · 0], Bev , [0T

4×1 0 · · · 0 1]T , Ber ,
[1T

4×4 0T
1×4 · · · 0T

1×4 0T
1×4]T , Bed , [BT

vd 0T
1×4 · · · 0T

1×4 0T
1×4]T

and Ce , [Ca 03×1 03×1 · · · 03×1]. Based upon system (14),
we have y(1)

ar = CeAexer+CeBerRr+CeBedd, · · · , y
(n−1)
ar =

CeA
n−1
e xer +

∑n−2
i=0 CeA

i
eBerR

(n−2−i)
r + CeA

n−2
e Bedd and

y(n)
ar = CeA

n
exer +

∑n−1
i=0 CeA

i
eBerR

(n−1−i)
r + CeA

n−1
e Bedd +

CeA
n−1
e Bevu(n−2)

tr .
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With the assistance of (13) and (14), the cost function (12)
can be predicted as follows:

J̄(t) =

∫ T

0

[
ȳar(t + τ) + y∗a

]T W
[
ȳar(t + τ) + y∗a

]
dτ

= u(n−2)T
tr T 0u(n−2)

tr + 2xT
erT 1u(n−2)

tr + 2y∗Ta T 2u(n−2)
tr

+ 2
[
RT

r R(1)T
r · · · R(n−1)T

r

]
T 3u(n−2)

tr + 2dT
T 4u(n−2)

tr + ?
(15)

where T 0 to T 4 are all collected in Appendix B and ? is
independent of u(n−2)

tr . Letting ∂J̄(t)/∂u(n−2)
tr = 0 yields

u(n−2)
tr = −T −1

0

(
T

T
1xer + T T

2y
∗
a

+ T T
3

[
RT

r R(1)T
r · · · R(n−1)T

r

]T
+ T T

4d

) (16)

which is an explicit solution of the optimal problem (12).
Note that the existence of d in (14) and (16) makes the
designed optimal desired states of actuators unimplementable,
and hence, the construction of the estimates of these states
should be considered first based upon observer (5), as follows:

˙̂xer = Aex̂er + Bevû(n−2)
tr + BerRr + Bedd̂

û(n−2)
tr = −T −1

0

(
T

T
1x̂er + T T

2y
∗
a

+ T T
3

[
RT

r R(1)T
r · · · R(n−1)T

r

]T
+ T T

4d̂

) (17)

where x̂er , [x̂T
ar ûtr · · · û(n−3)

tr ]T .
Remark 2: The main computational burden of the dynamic

control allocation method is to compute matrices T 0 to T 4 in
(15). In principle, as long as the Taylor expansion order n is
fixed, all computation can be done off-line, which means that
matrices T 0 to T 4 are explicit with respect to the predictive
period T and weighting matrix W , making the real-time
tuning available.

Remark 3 (Modular Design): Optimizing the desired states
of actuator xar, rather than directly optimizing the state xa,
is adopted here to pursue modular design. Replacing Rr in
(16) with R in (10), one will find that once trying to directly
optimize the actuator states, higher order observer should be
redesigned to estimate R, R(1), · · ·, R(n−1). This implies that
the whole control structure will be changed as long as the
Taylor expansion order n in (13) is changed.

C. Dynamic Control Allocator Design

In this step, the control input ut is designed to force the real
actuator state xa to the optimal one xar. Thus, we can design
the following allocator:

ut = Kt (x̂ar − x̂a) + ûtr (18)

where Kt is the allocator gain. Based upon the preceding
tracking controller (9) and allocator (18), the physical con-
troller ua is obtained as

ua = Q−1v. (19)

D. Performance Analysis

Theorem 1: Under Assumptions 1 and 2, consider the
closed-loop system (1)-(2)-(19). If all the control parame-
ters are well tuned, i.e., for observer (5), Aad − LCad is
Hurwitz; for controller (9), [0 1; 0 0] − [0 1]TKu and
[0 1 0; 0 0 1; 0 0 0] − [0 0 1]TKh are Hurwitz; for optimal
desired state generator (17), Ae −BevT

−1
0 T

T
1 is Hurwitz; for

allocator (18), Av − BvaKt is Hurwitz, then the following
three statements hold:

1) Uniform Boundedness: All the signals in the closed-loop
system are uniformly bounded.

2) Asymptotic Tracking: The output of the UAV yp asymp-
totically tracks any given sufficiently smooth and bounded
reference command ypr, i.e., lim

t→+∞
yp = ypr.

3) Control Allocation: The state of the actuator xa asymp-
totically tracks the solution of the optimal problem xar,
which is generated by (14) and (16), i.e., lim

t→+∞
xa = xar.

Proof: Define the estimation errors as ead , xad−x̂ad and
eer , xer − x̂er. Define the tracking errors as Ea , xar − xa,
Eu , [ur−u u(1)

r −u(1)]T and Eh , [hr−h h(1)
r −h(1) h(2)

r −h(2)]T .
Omitting tedious derivation gives the following error system:

Ėa

Ėu

Ėh
ėer
ėad


=


Av −BvaKt Λ1 Λ2

02×4 AKu 02×3
03×4 03×2 AKh

0(n+2)×4 0(n+2)×2 0(n+2)×3
08×4 08×2 08×3

Λ3 Λ4

02×(n+2) Λ5

03×(n+2) Λ6

Ae −BevT
−1
0 T

T
1 Λ7

08×(n+2) Aad −LCad




Ea
Eu
Eh
eer
ead



(20)

where AKu , [0 1; 0 0] − [0 1]TKu, AKh ,
[0 1 0; 0 0 1; 0 0 0]−[0 0 1]TKh and Λi (i = 1, 2, · · · , 7) are
nonzero matrixes. If all the control parameters are well tuned,
system (20) is globally asymptotically stable. Besides, since
that ur, u(1)

r , u(2)
r , hr, h(1)

r , h(2)
r , h(3)

r and d are all bounded, all
the signals in the closed-loop system are uniformly bounded.

This completes the proof of Theorem 1.
Remark 4 (Hierarchy Parameter Tuning): From dynamics

of the output tracking errors, Eu and Eh, one can conclude
that the tracking performance in high level is segregated from
the allocation performance in low level. And hence, the tuning
process can also be divided as two steps. First, tune parameters
of the proposed actuator/disturbance observer (5) and tracking
controller (9) to satisfy specific requirements on the output
tracking. Second, tune the weighting matrix W to penalize
the specific actuator.

V. Simulation Study

In this section, X-Plane flight simulation software is em-
ployed to verify the proposed dynamic control allocation
method. X-Plane is popular in aeronautical engineering due
to its high fidelity on both aircraft dynamics and atmospheric
environment [38]. In particular, the simulations are conducted
based upon a geometrical UAV model built in X-Plane
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using blade element theory to determine the aerodynamic
performance. The considered UAV in X-Plane is illustrated
in Fig. 4. To generate extra disturbances and uncertainties
in the simulation, we have added 2m/s wind gusts as well
as small changes on the centre of gravity and weight of
the aircraft. The constraints on the outputs of actuators are
chosen as δe + δ∗e ∈ [−50◦, 50◦] , δ f + δ∗f ∈ [−50◦, 50◦] and
δt + δ∗t ∈ [0, 100%] .

����� 

��� 

���� 

Motor 

throttle
Flap

Elevator

Fig. 4. The 3D model of the used UAV in X-Plane.

To demonstrate the effectiveness of the proposed method,
both the conventional static control allocation (CSCA) method
[8] and the conventional dynamic control allocation (CDCA)
method [21] are adopted as benchmarks. Physical constraints
are considered in both CSCA and CDCA methods whilst
actuator dynamics are only used in the design of CDCA and
the proposed methods. The high-level tracking controllers are
also designed following the same approach. Meanwhile, for
fair comparisons, the controller gains of the three methods
are tuned to render similar offset errors when the disturbance
estimates are not included in the controllers, as shown in
the gray patches of the subsequent simulation results. The
observer gains are then fixed by making the poles of estimation
error system five times of those of tracking error systems. It
should be noted that although the CDCA method is able to
deal with actuator dynamics, this method replies on the direct
measurement of the actuator states, hence is not applicable in
practice.

In what follows, two case studies are carried out to show
the improvement of the proposed method on robustness and
disturbance rejection.

A. Robustness Improvement

Following the test approaches of control allocation meth-
ods considering actuator dynamics [20], [21], [39], we also
consider a sine signal with time-increasing frequency as the
reference of the velocity but a constant reference of the height,
which are both depicted in the red dash lines of Fig. 5 (a).
The output tracking results of the UAV and the outputs of
the actuators under the different allocation methods, and the
estimates of the total disturbances are illustrated in Fig. 5 (a),
Fig. 5 (b) and Fig. 5 (c), respectively. It can be observed
from the velocity tracking result in Fig. 5 (a), the disturbance
observer will improve the robustness of the proposed method
against the unmodelled dynamics of both aircraft dynamics
and atmospheric environment. Moreover, the height tracking
precision of the proposed method is much higher than those of
the CSCA and CDCA methods when the disturbance estimates

are included. The main reason is that without considering the
compensation for the lag effect of the actuators, the tracking
error will largely depend on the frequency of its reference,
especially when the frequency beyond the bandwidth. After
nearly 70s, the UAV under the CSCA method tends to be
unstable. The essential reason is that the CSCA method is not
able to actively stabilize the zero dynamics [30], and hence, its
control parameters are very sensitive. Although the UAV under
the CSCA method works well at the beginning, it inevitably
becomes unstable when the unmodelled dynamics becomes
more significant, e.g., in the case where the reference changes
more dramatically.

(a)

(b)

(c)

Fig. 5. Tracking performance under the sine reference with time-increasing
frequency. (a): Outputs of UAV. (b): Outputs and estimates of actuators. (c):
Estimates of disturbances.
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B. Disturbance Rejection

In the second case study1, in the presence of additional wind
gusts, the UAV is controlled to track a descending profile with
airspeed reduced from 15m/s to 12m/s and height from 890m
to 840m, which are depicted in the red dash lines of Fig. 6
(a). Due to the weakness of the CSCA method in the first
case study, the comparison with only the CDCA method is
implemented here. The output tracking results of the UAV, the
outputs and estimates of the actuators, and the estimates of
the total disturbances are illustrated in Fig. 6 (a), Fig. 6 (b)
and Fig. 6 (c), respectively. It can be observed from these
tracking results, the proposed method will largely improve
the tracking precisions compared with the CDCA method,
which is critical for UAV safety under wind conditions. Since
that total disturbances are still unmeasurable even in X-Plane
simulation, the estimation performance of disturbances can be
indirectly verified by the improvement of tracking precisions
in Fig. 6 (a) and the estimation precisions of actuators in Fig. 6
(b). From Fig. 6 (c), the estimate of du changes relatively fast
but is very small around zero whilst the estimates of dw, dq

and dh are all slowly time-varying changing.

VI. Conclusion

In this work, a new actuator-dynamics-based dynamic con-
trol allocation scheme is developed for flight control of a
small fixed-wing UAV with DLC to compensate unknown
external disturbances. Compared to the conventional UAVs,
the considered small UAV presents faster dynamics, hence
the actuator dynamics cannot be ignored in high-precision
applications. By embedding the internal models of actuators
into both the tracking controller design in the high level and
dynamic allocator design in the low level, remarkable supe-
riorities in tracking precision of UAVs and energy efficiency
can be achieved by the proposed method, which have been
demonstrated in the verification example using high fidelity
simulations. It is envisaged that the proposed control scheme
can be used to improve the flight performance and extend
the flight envelop of small fixed-wing UAVs with dedicated
flaps, allowing them to be used in wider applications and
unfavourable weather conditions. Future work will be focusing
on the extension of the current framework to deal with actuator
constraints.

Appendix

A. Parameters

The UAV model parameters are obtained through system
identification around the operation point of level flight at
forward velocity 15m/s and height 890m, whereas the actuator
dynamics are established based upon the ground test data of
the servos used on the UAV at the sampling rate of 100Hz.
The identification process is detailed in [40, Chap. 4]. The
sampling rate of the control program is 50Hz. For the sake of
completeness, the UAV parameters are listed in Table I.

1Please refer to https://youtu.be/zkTS4GtDSLE for the simulation video.

(a)

(b)

(c)

Fig. 6. Tracking performance in the presence of wind gusts. (a): Outputs of
UAV. (b): Outputs and estimates of actuators. (c): Estimates of disturbances.

TABLE I
Parameters of the UAV and the Actuators

Parameter Value

Xu, Xw, Xq, Xδe , Xδt , Xδd −0.116, 0.922, − 0.352, 0, 2.72, − 0.029
Zu, Zw, Zq, Zδe , Zδd −1.05, − 6.74, 14.99, − 0.095, − 0.34
Mu, Mw, Mq, Mδe , Mδd 0.144, − 3.87, − 3.8, − 1.99, 0.187
u∗, w∗, q∗, θ∗, h∗; δ∗e , δ

∗
t , δ

∗
f 15.04, 0.57, 0, 0.038, 890; −2.7, 0.37, 0

τe, τd , ζt , ωnt 0.16, 0.16, 1, 1.6

B. Expressions

The expressions of T 0 to T 4 are presented as follows:
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T 0 ,

∫ T

0

(
τn

n!
CeA

n−1
e Bev

)T

W

(
τn

n!
CeA

n−1
e Bev

)
dτ

T 1 ,

∫ T

0

(
Ce + · · · +

τn

n!
CeA

n
e

)T

W

(
τn

n!
CeA

n−1
e Bev

)
dτ

T 2 ,

∫ T

0
W

(
τn

n!
CeA

n−1
e Bev

)
dτ

T 3 ,
[
T

T
31 T

T
32 · · · T

T
3n

]T

T 3i ,

∫ T

0

(
τCeBer + · · · +

τn

n!
CeA

n−i
e Ber

)T

W

×

(
τn

n!
CeA

n−1
e Bev

)
dτ, i = 1, 2, · · · , n

T 4 ,

∫ T

0

(
τCeBed + · · · +

τn

n!
CeA

n−1
e Bed

)T

W

×

(
τn

n!
CeA

n−1
e Bev

)
dτ.
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