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Visualizing spin degrees of freedom in atoms and molecules
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In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new
capability in the visualization of quantum states of atoms and molecules. This method allows us to display
quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling) and
between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement.
This is important as there is growing recognition that such properties affect the physical characteristics, and
chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation,
those with a nontechnical background can gain an appreciation of subtle quantum properties of atomic and other
systems. By providing insights and modeling capability, our phase-space representation will be of great utility
in understanding aspects of atomic physics and chemistry not available with current techniques.
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I. INTRODUCTION

Despite its fundamental flaws, the Rutherford description
of the atom as electrons orbiting a nucleus is an established
icon of the physical sciences. This provides a familiar image
with which to start a discussion of matter at the subatomic
level. In such discussions one rapidly moves towards a more
sophisticated view of a set of atomic and molecular orbitals,
generally displayed as the 90th percentile of the probability
density of the associated quantum-mechanical energy eigen-
state. These images represent a much more accurate view;
however, some simplifications remain. For example, they are
unable to display the entanglement of spin and spatial degrees
of freedom due to coupling between the spin of an electron
and its orbital angular momentum. This spin-orbit coupling
contains key features that change the shape of an energy
eigenstate as well as affecting chemical properties such as
dissociation energy [1–4]. Given the growing recognition that
phenomena such as spin-orbit coupling play an important role
in some chemical reactions [5–7], there is a need for tools to
help better understand these processes.

In this work we bring insight to atomic systems by present-
ing a framework for visualizing states such as those found us-
ing modern quantum-chemistry numerical simulations (which
include both spin and entanglement [8–11]). To do this we
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extend the standard picture of the probability density to the
full atomic phase space, including spin degrees of freedom.
While there have been a number of previous attempts to
visualize atoms using these techniques, none have so far
included spin [12–16]. Representing atoms and molecules in
phase space (via Wigner functions) allows for a complete
description of the quantum state as a quasiprobability density
function. While Refs. [17,18] lay down the necessary frame-
work for heterogeneous systems (by which we mean systems
combining differing continuous phase-space representations),
we are aware of only two other examples considering the
Wigner functions of heterogeneous quantum systems com-
pletely within phase space. Reference [19] considers using
the Wigner function as an entanglement witness for hybrid
bipartite states. Reference [20] investigates the phase-space
representation of one or more two-level systems coupled to
a cavity mode in the Jaynes- and Tavis-Cummings models.
Our simple procedure however, allows for the construction of
Wigner functions of composite heterogeneous systems.

We demonstrate below how such methods can be used
to visualize spin-orbital, spin-spin, and other more complex
entanglement combinations of spin and spatial degrees of
freedom. We expect that this capability will find great utility in
understanding important electronic transfer processes such as
photosynthesis (PSI and PSII), the avian compasses, and oxy-
gen transport via hemoglobin in blood [21–26]. Having said
this, spin-orbital entanglement is not trivial, particularly for
many-electron systems which often have many internal corre-
lations between electrons. It is with these future applications
in mind that we demonstrate a more accurate visualization of
the atom: one that is familiar, yet at the same time offers more
insight into the internal entanglement effects that determine
many atomic properties [2–4,10,27].
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FIG. 1. A set of reference plots of spin Wigner functions to aid interpretation of the results presented later in this work. The state vectors
for each Wigner function are given under each image. Multispin states have been plotted on the equal-angle slice, θi = θ and φi = φ for all i.
Note that panel (c) is the product of two states which individually are the same as those in panel (a), panel (g) is the product of panels (a) and
(d), and panel (h) is the product of panels (a) and (e). See Ref. [28] for a full discussion. For those in black and white, note that the top of
the sphere in panel (a) is positive and blue and that panel (e) is uniformly red and negative. The top of the color bar is blue and the bottom
is red.

II. PARTICLES IN PHASE SPACE

It is possible to write the state of any system as a quasiprob-
ability distribution over the system’s degrees of freedom
[17,18,28]. This is termed the Wigner function and can be
calculated by taking the expectation value of a suitably dis-
placed parity operator over all its possible configurations (the
phase space). For the electron this generalized parity is the
tensor product of the displaced spatial parity �̂i(qi, pi ) and
the generalized displaced spin-parity π̂i(θi, φi ):

�̂e−
i (qi, pi, θi, φi ) = �̂i(qi, pi ) ⊗ π̂i(θi, φi ). (1)

The spatial parity �̂ is the operator that reflects states
through the origin in phase space, displaced by the dis-
placement operator D̂i(qi, pi ) = exp (i[pi · q̂i − qi · p̂i]/h̄) so
that �̂i(qi, pi ) = D̂i(qi, pi )�̂D̂†

i (qi, pi ) [29]. The general-
ized spin-parity is π̂ = (1 + √

3σz )/2 and is chosen over
a parity operator with eigenvalues ±1 so that it satisfies
Stratonovich-Weyl conditions [28]. The displacement opera-
tor for spin is Û (θ, φ,�) = exp (iσ̂zφ) exp (iσ̂yθ ) exp (iσ̂z�)
so that π̂i(θi, φi ) = Ûi(θi, φi,�i )π̂Û †

i (θi, φi,�i ) for Euler an-
gles θi and φi (note that the third angle �i cancels and plays
no part in the Wigner function). Given our focus on atomic
physics and chemistry applications rather than quantum in-
formation, a sign convention is used for Û (θ, φ,�) and π̂

that is different from that used in Refs. [17,18,28] so that the
Wigner function for σz = +1, i.e., spin up, points up. Note
that the negative values in the Wigner function have mani-
fested due to spin-half systems not being classical [30,31];
a full discussion of this approach can be found in Ref. [28]
with exploration of other spin systems. There have been a
number of other attempts to describe spin systems, such as
Refs. [17,18,28,31–37]. However, none of these have also

included the spatial degrees of freedom needed to fully de-
scribe the quantum state of atoms and molecules.

The Wigner function for a composite system is found
by taking expectation values of the tensor product of the
displaced parity for each of the constituent parts. The ex-
amples shown in Fig. 1 provide a visual index of some
important spin Wigner functions that will be used to inform
later discussions, where the total spin-parity is

⊗
i π̂i(θi, φi )

over the appropriate set of spins. Note that throughout the
paper, blue is positive, red is negative, and white always
corresponds to 0 (see colorbar in Fig. 1).

For an N-electron atom, ignoring the nucleus, with density
matrix ρ̂ the Wigner function will be

W (q1, p1, θ1, φ1, . . .) = Tr[ρ̂ �̂(q1, p1, θ1, φ1, . . .)], (2)

where

�̂(q1, p1, θ1, φ1, . . .) =
N⊗

i=1

�̂e−
i (qi, pi, θi, φi ). (3)

The generalized displaced parity for each electron has
eight dimensions of which three are the spatial degrees of
freedom, xi, yi, and zi; three are the concomitant momentum
degrees of freedom; and two are the spin degrees of freedom,
θi and φi. The Wigner function is therefore an 8N-dimensional
function—distilling from this function meaningful visualiza-
tions of atomic states is the subject of the next section.

How we choose to visualize the Wigner function depends
very much on the application at hand. If, for example, the
system is an electron in a periodic lattice, where momentum
states are well defined, we might start by integrating out
position degrees of freedom. This would yield a function that
combines the probability density in the momentum represen-
tation with the spin Wigner function. If instead the system
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is an electron exposed to a potential that is periodic in one
dimension and quadratic in perpendicular directions (such as
a quantum wire or ion trap) it seems appropriate to integrate
out the position degrees of freedom for the periodic compo-
nent and the momentum degrees of freedom for the other
components. This would yield a function that combines the
probability density function in the momentum representation
for the periodic dimension, the position representation of the
probability density, and the spin Wigner function.

It is possible to extend our method to include the nucleus
using a suitable spin-parity operator to represent the overall
nuclear spin. The total atomic Wigner function is then ob-
tained by taking expectation values of

�̂He
with nucleus = �̂nucleus ⊗ �̂e−

1 ⊗ �̂e−
2 , (4)

which may be of interest for systems where the Jahn-Teller
effect is important (see Refs. [17,18] for details on how to
construct �̂nucleus for a given nuclear spin). If more detail is
required, displaced parity operators for protons and neutrons
could be used so that

�̂He
total = �̂

p+
1 ⊗ �̂

p+
2 ⊗ �̂n

1 ⊗ �̂n
2 ⊗ �̂e−

1 ⊗ �̂e−
2 . (5)

If still more detail is required, it may even be possible to write
the phase-space representation for each nucleon’s constituent
parts (see Refs. [17,18] for details on how to construct gen-
eralized displaced parity operators such as those needed for
other spins and color).

In a similar way, to describe an atom interacting with a
field, or indeed molecules, the total parity is the tensor product
of the parities of all the system’s constituent parts. This leads
to a Wigner phase-space representation of the total quantum
state.

III. RESULTS

In this section we obtain a Wigner function visualization
for a range of atomic states. The states we consider are
pure states of the atom before integration over degrees of
freedom. At this stage, in order to simplify calculations, we
use a model atom representation which replaces the Coulomb
confining potential with that of a three-dimensional harmonic
oscillator (as in Ref. [38]) and is similar in form to the Hooke
and Moshinsky atoms in the noninteracting electron model
[9–11,39–41]. This approximation does not alter the angular
distributions of the eigenstates and provides an adequate
first approximation to the radial dependence of real hydro-
genic systems which is sufficient for our present purposes.
It has the additional advantage of allowing the calculation of
momentum-only representations, such as are required for the
visualization of Compton scattering profiles (see, for example,
Refs. [42,43]).

The states of hydrogen, helium, and lithium referred to
below are obtained within this approximation; however, for
simplicity, such states are referred to by their corresponding
atomic name.

A. Hydrogen

Even though hydrogen is a one-electron system, the
Wigner function is eight dimensional (with three spatial q,

three momentum p, and two spin degrees of freedom). To
produce from this a representation of hydrogen as similar as
possible to existing images we integrate out the momentum
degrees of freedom:

W H(q, θ, φ) :=
∫

d3pW H(q, p, θ, φ). (6)

In contrast to tracing out entire components we have here re-
duced complexity by using marginals to integrate out individ-
ual degrees of freedom (the momentum) while still retaining
others (position). This results in a reduced Wigner function of
only three spatial and two spin degrees of freedom. We adopt
the notation throughout this work that the degrees of freedom
not in the argument list have been integrated out resulting in
a reduced Wigner function. We now consider a visualization
strategy that seeks to display as much of this information as
possible, while being constrained by our requirement to make
this as familiar as possible.

For the visualization we choose a set of points in space
[44]. At each of these points a sphere is plotted with its
opacity, α, obtained from the value of

|ψH(q)|2 = W H(q) = 2

π

∫ π/2

0
dθ

∫ π

0
dφ sin(2θ )W H(q, θ, φ),

(7)

as α = W H(q)/W H
max(q). This position marginal is simply the

spatial probability density function. In order to more readily
make comparison with standard orbital plots, all spheres with
an opacity less than 0.1 have been omitted. On the surface
of the sphere at q is plotted the reduced Wigner function
W H(q, θ, φ). This means that each sphere is an indication of
the probability of finding an electron at that point in space
with a certain spin.

As a gentle introduction to our visualization scheme a
simple state generated using the above scheme is plotted in
Fig. 2. The spatial dependence conforms to standard plots
of dz2 orbitals of hydrogen. Comparing each sphere with
Fig. 1(a), the spin Wigner function at each point is consistent
with the up state, |↑〉. From inspection we have been able to
correctly infer that this is |dz2 ,↑〉 [45].

Figure 3 shows a less trivial state. It is interesting to explore
what can be deduced from only this figure and Fig. 1. The first
observation is that the spheres are identical to that in Fig. 1(a)
but pointing in different directions. The more opaque spheres
are predominantly pointing in one direction suggesting there
is a corresponding overall spin magnetic moment. Second, the
direction of the spin varies as a function of position—this is
an indication of correlation (entanglement) of the electron’s
spin and spatial degrees of freedom [46]. Neither of these two
pieces of information are obtainable from conventional plots
of atomic orbitals.

In real atomic hydrogen the total energy is more than the
sum of kinetic and Coulomb potential energies. There are a
number of relativistic effects that need to be taken into account
in order to get an accurate model that, for example, correctly
predicts the energy level structure and thus the absorption
and emission spectra of hydrogen. One of the most important
of these relativistic effects is the spin-orbit coupling term
(proportional to L̂ · Ŝ). In Fig. 3 is a state that takes account
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FIG. 2. This figure displays the spin-up 3dz2 orbital for the three-
dimensional harmonic oscillator. The Wigner function for this orbital
has eight dimensions:at the three spatial x, y, and z degrees of
freedom; the concomitant momentum degrees of freedom; and two
spin degrees of freedom, θ and φ. To obtain the familiar orbital
structure, all momentum and spin degrees of freedom are integrated
out to yield the probability density function in terms of position.
These values are used to set the opacity (α) of each sphere, neglecting
all points where α < 0.1. At each point q in the xz plane we plot the
reduced Wigner function W H(q, θ, φ) on a sphere as in Fig. 1 [see
Eq. (6)]. Each sphere can then be interpreted as an indication of the
probability of finding an electron at q with a certain spin. In this
plot, which has rotational symmetry about the z axis, the state of the
system is of the same form as an n = 3, l = 2, and m = 0 d orbital of
hydrogen with spin pointing up [see Fig. 1(a)]. To aid interpretation,
the inset shows an equivalent plot using arrows to represent the spin;
i.e., the arrows show the direction of the spin component (Bloch
vector) at each point in position space.

of such correlations. Specifically,
∣∣∣∣ j = 5

2
, m = 1

2

〉
=

√
3

5
|dz2〉|↑〉 +

√
1

5
(|dxz〉 + i|dyz〉)|↓〉,

(8)

which, as we deduced in our above discussion of Fig. 3, has
a nonzero magnetization (1/2), strongly entangles spin and
spatial degrees of freedom and has an entropy of entanglement
of 0.971 bits. We note that the eigenstates | j, m〉 are labeled by
j, the quantum number associated with Ĵ2 = (L̂ + Ŝ)2, and
m, the eigenvalue of Ĵz = L̂z + Ŝz for orbital and spin angular
momenta L̂ and Ŝ, respectively. These two pictures then are
not only able to distinguish between states with spin-orbit
coupling and those without but also are able to make clear
spin-spatial correlations. Figure 3 has different spin states of
the electron at different positions, encapsulating the definition
of pure state entanglement visually. That is, this is a direct
manifestation of, and can be mapped back to, the fact that

FIG. 3. Due to relativistic effects in the Hamiltonian of real
atomic hydrogen, states such as the one shown in Fig. 2 are not
stationary. One of the most important corrections arises due to a
coupling between spin and orbital angular momentum degrees of
freedom. This affects every state, other than the s orbitals, and the
result is that the energy eigenstates have entangled spin and spatial
degrees of freedom. Such entanglement cannot be made visible using
conventional probability density plots. This figure follows the same
scheme as Fig. 2 but for the | j = 5/2, m = 1/2〉 orbital; it is clear
that there are correlations between the spin and spatial degrees of
freedom. In this way we demonstrate how our method can visualize
the entanglement of the electron’s spin and orbital degrees of free-
dom, as the spin points in different directions at different positions.
The inset shows an equivalent plot using arrows to represent the spin.

the spin of a particle cannot be described independently of
its position.

B. Helium

We now begin to consider the case of multielectron atoms.
Helium’s Wigner function is 16 dimensional having three
spatial, three momentum and two spin degrees of freedom
for each electron. To obtain the graphical representation of
helium we use a scheme to the one used for hydrogen, also
taking account of the Wigner function’s increased dimen-
sionality. Once more a reduced Wigner function is calcu-
lated, W He(q1, θ1, φ1, θ2, φ2), integrating out both electrons’
momenta and one of the electron’s spatial degrees of free-
dom (indistinguishability of electrons means that it will not
matter which one is chosen). Here the function W He(q1) =
|ψHe(q1)|2, defined in the same manner as in Eq. (7), by
integrating out all spin degrees of freedom, is again used to set
the intensity. In plotting multielectron systems, we choose the
equal-angle slice of the Wigner function for the spin degrees
of freedom, where θ1 = θ2 and φ1 = φ2. Choosing this slice
has the advantage of keeping the figures familiar in the context
of the literature, for example, states found in Ref. [33]. It not
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FIG. 4. This figure shows the equal-angle slice, θ1 = θ2 = θ and
φ1 = φ2 = φ, of the Wigner function for the following states of
helium: (a) ground state, (b) first excited singlet, (c) first triplet state
with magnetization quantum number m = 1 (note for m = −1 each
sphere would be the antipodal version of the ones shown here),
and (d) first triplet state with magnetization quantum number m =
0. Comparing each figure with Fig. 1 we see that panels (a) and
(b) correspond to the entangled state in Fig. 1(e) and that panel
(d) corresponds to the entangled state in Fig. 1(f). Panel (c) cor-
responds to the nonentangled state in Fig. 1(c). In this way we
demonstrate how our method clearly visualizes not only spin-orbit
entanglement (as in Fig. 3) but also spin-spin entanglement.

only allows us to relate certain states to other representations
of the Wigner function but also allows us to pull out additional
useful information (such as the ability to represent the singlet
state). This slice is then plotted on the surface of each of the
spheres in Fig. 4 for helium.

In Fig. 4 we have plotted the ground state [Fig. 4(a)], the
first excited singlet state [Fig. 4(b)], and two of the triplet
states [Figs. 4(c) and 4(d)] of helium. In the ground state we
see three key features: (i) with reference to Fig. 1(d), each
sphere is consistent with that of the two-spin singlet state (the
antisymmetric superposition of spin up and spin down, and
not |↑↓〉 as in Fig. 1(c), often indicated in elementary treat-
ments of the subject); (ii) the intensity in this plot suggests
the spatial component is the product of two s orbitals; and
(iii) there is no dependence of spin on position, consistent with
the spin and spatial degrees of freedom being separable. These
observations are consistent with the ground state of helium,
|1S(1)1S(2)〉(|↑1↓2〉 − |↓1↑2〉)/

√
2 [47]. A comparison of

the spins with Fig. 1 for the remaining states demonstrates
that both Figs. 1(b) and 1(d) are in an entangled spin state,
while Fig. 1(c) is not.

C. Lithium

As with helium, lithium is often introduced along the
following simplified lines: two electrons are added to the 1S

orbital with opposite spin, as dictated by the Pauli exclusion
principle. It also states that the third electron cannot be in
the 1S orbital as it is now fully occupied. This electron must
therefore go into the 2S orbital with spin |↑〉 for example.
The actual configuration of electrons in lithium is not this
simple.

The state of multifermionic systems can be found using
the Slater determinant, which ensures that Pauli’s exclusion
principle is properly satisfied and for lithium is

|ψLi〉 = 1√
3!

∣∣∣∣∣∣
|1S(1)〉|↑1〉 |1S(1)〉|↓1〉 |2S(1)〉|↑1〉
|1S(2)〉|↑2〉 |1S(2)〉|↓2〉 |2S(2)〉|↑2〉
|1S(3)〉|↑3〉 |1S(3)〉|↓3〉 |2S(3)〉|↑3〉

∣∣∣∣∣∣,
(9)

yielding

|ψLi〉 = 1√
6

[|1S(1)1S(2)2S(3)〉(|↑1↓2〉 − |↓1↑2〉)|↑3〉

+ |1S(1)2S(2)1S(3)〉(|↓1↑3〉 − |↑1↓3〉)|↑2〉
+ |2S(1)1S(2)1S(3)〉(|↑2↓3〉 − |↓2↑3)|↑1〉] (10)

or

= 1√
6

[|↑1↑2↓3〉(|2S(1)1S(2)〉 − |1S(1)2S(2)〉)|1S(3)〉

+ |↑1↓2↑3〉(|1S(1)2S(3)〉 − |2S(1)1S(3)〉)|1S(2)〉
+ |↓1↑2↑3〉(|2S(2)1S(3)〉 − |1S(2)2S(3)〉)|1S(1)〉]. (11)

The ground state of lithium is a superposition of Slater
determinants but here we shall only consider this one. From
Eq. (10), it can be seen that there is bipartite entanglement be-
tween each spin degree of freedom. There is also a nontrivial
level of spin-spatial entanglement combining these bipartite
entangled spin states. Entanglement such as this could be
an important factor in determining physical and chemical
properties [2–4,10,27]. Therefore, being able to get a grasp
of such phenomena without necessarily analyzing the full
mathematics would be of tremendous value. We now explore
an example of how our visualization strategy can be utilized
in achieving such an ambition.

Lithium has a 24-dimensional Wigner function (the usual
eight dimensions for each electron). Due to the added com-
plexity of lithium, it is now necessary to look at different slices
of the Wigner function. As before all momentum degrees of
freedom have been integrated out; however, spin degrees of
freedom have also been integrated out, appropriate to each
figure. For those slices with multiple electron spin degrees of
freedom remaining, the equal-angle slice is used. We show
a selection of different slices in Fig. 5. Although we have
restricted this discussion to the four slices presented, other
slices could be chosen to explore different features of the
state.

In Fig. 5(a), the spatial degrees of freedom q2 and q3 have
been integrated out. This leaves the reduced Wigner function
W Li(q1, θ1, φ1, θ2, φ2, θ3, φ3). The function behavior at the
origin of Fig. 5(a) is similar to that displayed in Fig. 1(h). It is
important to note that the state differs from Fig. 1(h) because
what is shown is not itself pure. The reason for it being mixed
is that this is a single slice of the full Wigner function with
entangled degrees of freedom integrated out. Points far from
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FIG. 5. Showcasing the power of the Wigner function we demonstrate how to reconstruct all the important aspects of the Slater determinant
for lithium by inspection of different slices (these figures are on a different scale to others to accommodate the 2S orbital). We follow the same
scheme as in Fig. 4, on the equal-angle slice where appropriate. In panel (a) is the reduced Wigner function W Li(q1, θ1, φ1, θ2, φ2, θ3, φ3),
which at the origin is similar to that displayed in Fig. 1(h). Importantly, this shows that the spin entanglement structure in Fig. 1(h) is part of
the state. In panel (b) we extract the electron spin density, plotting the reduced Wigner function W Li(q1, θ1, φ1). This means that lithium must
have an overall magnetic moment and, by comparison with Fig. 1(a), we see this manifested as the preponderance of blue, positive values, in
the positive z direction. In panels (c) and (d) we have removed the link between transparency and amplitude of the position marginal to explore
some of the more complex aspects of the quantum correlations. Panel (c) shows the reduced Wigner function W Li(q1, θ1, φ1, θ2, φ2). Note
that integrating out θ2 and φ2 instead yields the same result, as the only spatial component is q1. Panel (d) shows the reduced Wigner function
W Li(q1, θ2, φ2, θ3, φ3). At point X, when q1 is likely to be in the 2S orbital, we find the singlet state |↑2 ↓3〉 − |↓2↑3〉. At the same point in panel
(c), the state is similar to spin up. From both of these figures then, the spin state they are visualizing is consistent with |↑1〉(|↑2 ↓3〉 − |↓2↑3〉).
In panel (d), the node of the 2S orbital (indicated by the ring Y) has spin states similar to spin up. This means that when q1 is likely to be
in the 1S orbital, one of the other electrons is likely to be spin up. Putting the information from panels (c) and (d) together we deduce a
state consistent with |2S(1), 1S(2), 1S(3)〉(|↑2 ↓3〉 − |↓2↑3〉)|↑1〉. Coupled with the fact that the pictures must be invariant under cyclic per-
mutation of electron indices (Pauli’s exclusion principle), we infer that the state is |ψLi〉 = 1√

6
[|1S(1), 1S(2), 2S(3)〉(|↑1 ↓2〉 − |↓1↑2〉)|↑3〉 +

|1S(1), 2S(2), 1S(3)〉(|↓1↑3〉 − |↑1 ↓3〉)|↑2〉 + |2S(1), 1S(2), 1S(3)〉(|↑2 ↓3〉 − |↓2↑3〉)|↑1〉].

the origin tend towards the pure variation of Fig. 1(h), where
an electron is in the up state and likely to be found in the 2S
orbital. This slice is consistent with the description of lithium
as a singlet state in the 1S orbital coupled with a spin up in the
2S orbital.

Figure 5(b) is a plot of the reduced Wigner function
W Li(q1, θ1, φ1). This slice gives us insight into the electron
spin density, revealing the magnetization of lithium. Lithium
has an overall magnetic moment which is manifested as the
preponderance of blue in the up direction [compare with
Fig. 1(a)]. There are no negative values in this plot as a suffi-
cient amount of entanglement information has been integrated
out.

Figures 5(c) and 5(d) explore some of the more complex
aspects of the quantum correlations within lithium, which
combine both spin-spin and spin-orbit entanglement. To study
these entanglement effects in more detail, we have removed
the link between transparency and amplitude of the position
marginal.

Figure 5(c) is the equal-angle slice of the reduced Wigner
function W Li(q1, θ1, φ1, θ2, φ2). We note that integrating out
θ2 and φ2 instead of θ3 and φ3 yields the same result, as the
only spatial component is q1. The region dominated by red,
the same region ring Y indicates in panel (d), is the node of
the 2S orbital and implies that if the electron associated with
q1 is found here it is likely to be in a singlet state.
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FIG. 6. Simplified versions of (a) single electron and (b) double
electron π bonds in a p-bonded pseudomolecule. Note that in the
linear combination of atomic orbitals approximation the spatial com-
ponents are identical; the states can only be visually distinguished
through spin degrees of freedom—this difference is clearly seen in
the Wigner functions displayed above. States where this distinction
is important will arise often in organic chemistry.

Figure 5(d) is the equal-angle slice of the reduced Wigner
function W Li(q1, θ2, φ2, θ3, φ3). Here we see that if the elec-
tron associated with q1 is far from the origin, the other two
electrons are likely to form a singlet. By forming a singlet the
electrons have high probability of being in the same orbital,
the 1S orbital. Furthermore, where the 2S contribution is

close to zero, there is little contribution from the singlet state
indicated by the lack of negative values in the Wigner function
(comparatively less red, compare with Fig. 1(d)). Hence, the
electrons associated with q2 and q3 are not likely to be in the
same orbital at these points.

Putting all this together, and taking recognition of the
permutations, we see from Fig. 5 that we can infer the Slater
determinant and get substantial insight into advanced aspects
of the quantum nature of lithium. This analysis is performed
purely on the basis of the supporting table of spin Wigner
function reference states (Fig. 1).

IV. MOLECULES

The importance of including spin degrees of freedom in
the visualization of atoms and molecules is clearly illustrated
in Fig. 6, which shows simplified versions of single electron
[panel (a)] and double electron [panel (b)] π bonds. The spa-
tial distributions of these two pseudomolecules are identical
in the linear combination of atomic orbitals approximation
[48]. However the spin provides a distinguishing feature in
the visualization for each state. Such situations will naturally
be important in organic chemistry.

As the number of degrees of freedom grows, more reduced
Wigner functions become available for plotting. The key to
utilizing our technique will be in selecting plots that display
the relevant information of important aspects of the quantum
state. As quantum correlations may determine how certain
parts of a molecule will react [1–4], correctly chosen slices
will provide a visualization that will aid the understanding of
such processes.

We note that a full quantum mechanical calculation of real
molecular bonds, including terms from spin-spin, spin-orbit,
electron-electron, nuclear interaction, and other relativistic
effects, will have a substantial effect on the forms of these
Wigner functions. As such Figs. 6(a) and 6(b) provide only
a glimpse of the potential that Wigner functions have for
understanding the role of spin and entanglement in chemical
processes. However, such analysis is beyond the scope of this
paper and will be considered in future work.

V. CONCLUDING REMARKS

In this work we have shown that it is possible to visu-
alize various forms of atomic entanglement in an accessible
way. Specifically, we have considered spin-orbit coupling (in
hydrogen), spin-only entanglement (in helium), and more
complex hybrid entanglement (in lithium). Importantly, we
have been able to infer each of the states from the visualization
alone. We believe that this visualization technique will be of
great utility in communicating the more complex and subtle
aspects of the quantum mechanics of atoms and molecules,
not just within the professional scientific community but also
beyond. We note that the Wigner function is found by tak-
ing expectation values of displaced parity operators, each of
which commute with one another and are observables. Should
simultaneous measurement of these quantities be possible,
then the direct measurement of the system’s Wigner function
could be considered a form of quantum state spectroscopy.
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exp(α · â† − α∗ − ·â) with parity �̂ = exp(iπ â† − ·â) .
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This means that the Wigner function, when visualized at dif-
ferent points, will have only scaled versions of the same state.
When this separability is not there the spin pointing in different
directions becomes possible, as seen in Fig. 3. Thus, as the state
is pure, the rotation in the spin state can only have arisen from
the lack of separability, i.e., entanglement.

[47] This work has adopted the notation that the number before the
S (or P, D, …) indicates the principal quantum number with the
electron index in parentheses.

[48] A. Haaland, Molecules and Models: The Molecular Structures
of Main Group Element Compounds (Oxford University Press,
Oxford, England, 2008).
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