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Indexes are essential in data management systems to increase the
speed of data retrievals. Widespread data structures to provide fast
and memory-efficient indexes are prefix tries. Implementations like
Judy, ART, or HOT optimize their internal alignments for cache
and vector unit efficiency. While these measures usually improve
the performance substantially, they can have a negative impact on
memory efficiency.
In this paper we present Hyperion, a trie-based main-memory

key-value store achieving extreme space efficiency. In contrast to
other data structures, Hyperion does not depend on CPU vector
units, but scans the data structure linearly. Combined with a custom
memory allocator, Hyperion accomplishes a remarkable data density
while achieving a competitive point query and an exceptional range
query performance. Hyperion can significantly reduce the index
memory footprint, while being at least two times better concerning
the performance to memory ratio compared to the best implemented
alternative strategies for randomized string data sets.

1 INTRODUCTION
The amount of data being generated and processed has grown
dramatically. The Internet, social media, sensors, and logs
produce so much information that traditional processing and
storage technologies are unable to cope with it. These data are
often accessed under near-real-time requirements, e.g., when
companies like Twitter or Facebook dynamically provide web
pages to their users [40][47]. In-memory database clusters
based on, e.g., Redis or Memcached are here used as caches to
fetch thousands of small key-value (k/v) pairs for assembling
a single web page [31][12]. Data and metadata of such caches
must be highly compressed to use memory efficiently, and
well-structured indexes are required to guarantee low access
latencies.
This paper investigates indexing data structures for in-

memory databases with respect to the trade-off between per-
formance and memory consumption and presents Hyperion,
a trie-based indexing key-value store designed with memory
efficiency being the main objective.
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Search trees have been used to index large data sets since
the 1950s [19]; examples are binary search trees [29], AVL
trees [1], red-black trees [8], B-trees [9] and B+-trees. These
trees have the disadvantage of always storing complete keys
inside their nodes and hence large parts of the keys many
times. Binary trees also show bad caching behavior and do
not adapt well to new hardware architectures [44]. The result-
ing performance issues become worse due to the increasing
divergence between CPU and memory speed [42][46].
More memory-efficient data structures are tries [19][21]

which distribute the individual parts of a key over multiple
nodes to reduce redundancies. A key is reconstructed by
following a path in the trie and concatenating the individual
parts stored in the nodes. Since all keys of a sub-trie share
a common prefix, tries are also called prefix tries or radix
tries. Tries are not balanced, and their lookup complexity will
grow linearly in O(n) with the key size if the paths are not
compressed. Tries are nevertheless faster than less memory-
efficient B+-Trees (even when adapted to new architectures
[45][25][32]) in many scenarios [35][5][3][10].
Memory is one of the most expensive server components.

Indeed, memory accounted for more than half of the costs
of the servers used as evaluation platform for this paper.
Recent studies have shown that the individual key and value
sizes within k/v stores in industrial settings are rather small,
e.g., values smaller than 500 bytes account for more than
80% of the overall capacity within most of Facebook’s key-
value stores [6]. Although tries tend to be more memory-
efficient than trees, trie-based indexes are still responsible for
taking large parts of the main memory [48], and it remains a
challenge to further reduce their metadata overhead.
Several optimization strategies were explored [27][7][5]

[11][33][35], but analyzing their design and comparing their
benchmark results, it seems that these tries were still con-
structed with performance as the primary objective. Hyper-
ion, on the other hand, focuses on handling huge indexes in
a very memory-efficient way.
Performance is not neglected though, Hyperion tries to

find a sweet-spot between memory consumption and per-
formance. The number of requests processed by each server
in scale-out scenarios is determined by CPU utilization and
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network saturation (see Twitter use case [47]) and even 10
GBit/s Ethernet is unable to handle more than a few million
messages per second. The performance objective of Hyperion
is therefore to be fast enough to not become the bottleneck
of distributed in-memory k/v stores, while k/v stores in such
scale-out environments are Hyperion’s first use case.
Thanks to its extreme data density, Hyperion can there-

fore also be used in Internet-of-Things (IoT) scenarios, where
many data streams have to be online processed in edge de-
vices by embedded systems with limited processing and mem-
ory capacities [38]. This includes, e.g., traffic time series for
network monitoring purposes [34] or storing and processing
machine logs with self-similar entries [26]. Additionally, Hy-
perion is able to efficiently store potentially arbitrarily long
keys, becoming necessary, e.g., for future DNA sequencing
techniques providing longer base sequences [13].
We analyze Hyperion and four state-of-the-art tries regard-

ing point and range queries and memory consumption: Judy
Arrays [7], the HAT-trie [4], the Adaptive Radix Trie (ART)
[35], and the Height Optimized Trie (HOT) [10]. A red-black
tree (STL map) and a hash table (STL unordered_map) are in-
cluded as baselines. The data structures are evaluated as k/v
stores using integer keys with sparse and dense distributions
and a real-life string data set [24].
Our main contributions are:

• Hyperion, an indexing data structure that is twice as mem-
ory efficient for string data sets than all existing competing
data structures and that provides exceptional (and best)
range-query performance, while furthermore still being
more than 20% more memory efficient than potential opti-
mizations of other trie data structures.

• An evaluation of indexing structures of unprecedented size
within single servers. Previous evaluations [4][5][35][3]
only considered subsets of the key types, operations, and
structures covered here. The new results highlight individ-
ual strengths and indicate that some previous results can-
not be extrapolated to huge data sets, while also showing
the potential of HOT and ART if theywould be transformed
into k/v stores.
Hyperion does not yet implement fine-grained thread-

parallelism, but it already allows to split tries in up to 256
separately locked and thread-safe arenas. They are not op-
timized yet and only provide limited speed-ups. It is never-
theless already well-suited for huge simulations involving
several billion index elements within a single server or as a
building block for scale-out in-memory databases.

2 BACKGROUND
The concept of a trie grew out of the requirement to index
byte sequences of variable length [19]. The term trie was
introduced as a means to store and retrieve information that

is referenced by keys of variable length [21]. This section pro-
vides definitions and an overview of existing tries describing
the ones most relevant to our work in more detail.

2.1 Definitions
A trie or prefix tree is a rooted search tree that is commonly
used for storing vectors of characters which we usually refer
to as (indexed) keys. Every node, or alternatively every edge,
is attributed with a character of an underlying alphabet. A
path from the root to any node represents a string, namely
the concatenation of the characters. Figure 1 shows a trie
storing the words (or keys) a, and, be, that, the, and to. The
root node represents the empty string and nodes that are
grayed ends of words.
Morrison [39] reduced the memory footprint of a trie by

using path compression. If a key suffix forms a path without
branches, then the suffix can be stored as a string in a single
leaf node. Generally, if a node in a trie has only one child,
then parent and child can be merged by concatenating their
characters. A radix tree (also known as radix trie or patricia
trie) is such a compressed trie. In the remainder of the paper
we refer to radix trees also as tries.
In a binary trie, every node represents a single bit; e.g., 0

for a left child, 1 for a right child. Anm-ary trie is a trie where
each node has up to m children and encodes ⌈loд2(m)⌉ bits
of the key. A key K of n bits can be defined as a sequence of
such partial keys ki :

K = k0,k1, ...,k( n
⌈log2(m)⌉

)−1 (1)

Since each ki is stored in one trie node, the height of the
trie is O( n

⌈log2(m)⌉)
). Accessing a node usually results in at least

one cache line fill and the trie height is a lower bound for the
expected number of cache line fills per request. Increasing
m leads to a higher fan-out and hence a reduction of the
trie height and number of cache line fills. At the same time,
it increases the size of the nodes, leading to more complex
partial key comparisons. Especially for sparsely populated
nodes a large fan-out can be inefficient.
Most tries store keys in lexicographical order, which might

not be the natural order of the data. We use the transfor-
mations from Leis et al. [35] to obtain binary-comparable
keys.

a b t

ohen

d

t

a e

Fig. 1. A trie representation of English words

2



2.2 Judy arrays, HAT-trie, ART, and HOT
Judy arrays were among the first data structures that dynami-
cally adapt the memory usage of a node to the actual number
of keys [7][3]. Judy arrays are 256-ary radix trees and come
in three different flavors: Judy1 is an associative array that
maps integer keys to boolean values and is used to create
sets. JudyL is an int-to-int map, and JudySL maps strings of
arbitrary length to int values. JudyL arrays form the inner
nodes of JudySL tries.
Judy distinguishes uncompressed nodes and two types of

compressed nodes, namely linear and bitmap nodes. The in-
ternal data structures are designed to minimize the number of
cache line fills per request. Judy also applies various compres-
sion techniques, which can be grouped into two categories:
horizontal and vertical compression. While horizontal com-
pression aims to decrease the size of internal nodes, vertical
compression reduces the number of nodes.
The burst trie [27] was designed to store string keys of

characters chosen from an alphabet Σ. A burst trie consists
of trie nodes and containers. A trie node represents one char-
acter and keeps an array of size |Σ| with pointers to the next
nodes or containers. Since lower trie levels tend to be sparsely
populated, the burst trie merges small enough sub-tries into
a container. Once a container becomes too large, it bursts
and is replaced by a trie node and new, smaller containers.
The authors examined different heuristics for bursting and
tested linked lists, binary trees and splay trees for managing
partial keys in a container. The HAT-trie [4] is a successor of
the burst trie and manages the partial keys of a container in
a cache-conscious hash table. Hash tables allow fast access
rates, but complicate range queries.
The Adaptive Radix Tree (ART) is a cache-line-optimized

256-ary trie [35]. It uses four node types to reduce mem-
ory overhead and improve cache utilization: Node4, Node16,
Node48, and Node256. The number specifies the maximum
number of entries. Each node has a 16 byte header specifying
the node type, child count and a compressed path. The header
of a Node4 or Node16 is followed by two arrays, a char array
containing the stored key characters, and a pointer array
referencing the children. Node4 elements are compared it-
eratively, but Node16 elements using SIMD instructions. A
Node48 has a 256-elements char array and an array of 48
child pointers. The first array stores the index of the corre-
sponding elements in the pointer array. The key defines the
index in the character array and the retrieved entry defines
the index in the pointer array if present. Finally, a Node256
node is a 256-element child pointer array.
The height optimized trie (HOT) is a generalized Patricia

trie that is able to adapt the number of bitm considered in
each node by combining multiple nodes of a binary Patricia
trie into compound nodes [10]. It is therefore able to adapt

the span of its nodes to the key distribution such that each
node has a high fan-out independent of the data set. HOT
supports range queries and its node layout allows to use
SIMD-instructions, while the fine-grained node locking en-
ables concurrent put and get operations. The adaptability
of the fan-out also leads to more densely populated nodes,
where presented memory savings compared to ART can be a
factor of three.

2.3 Other Tries
The C-trie [36] is anm-ary trie, which is optimized for read-
only workloads. Nodes of the trie keep anm-sized bitfield
to indicate the existence of a child node. All nodes are enu-
merated and serialized into a single bit stream which is why
updates can cause a complete reconstruction of the trie.
The generalized prefix tree (GPT) stores its trie nodes in

huge pre-allocated memory segments [11]. Nodes are refer-
enced by their offset within the segment and the basememory
pointer of the segment. GPT reduces the storage costs of mem-
ory allocation and heap fragmentation and, at the same time,
reduces the memory footprint of child node pointers. But
since GPT uses neither path compression nor adaptive node
sizes, other tries such as ART provide a better worst-case
memory efficiency [35].
The KISS-Tree [33] is a specialization of the GPT and uses

32 bit keys. They are split into three sections, f1(16 bits),
f2(10 bits) and f3(6 bits), generating three levels. On the first
level, no memory lookups are necessary because the second-
level address is directly computed using f1. Direct addressing
requires that the nodes of level two are sequentially stored in
memory. The bits of f2 then identify one of 1,024 buckets on
the third level each containing a compact pointer (i.e., a 64 bit
pointer reduced to 32 bit). The last six bits address a bucket
of the selected third-level node. On this level, the nodes are
compressed, and a 64 bit map indicates which nodes exist.

3 HYPERION
Memory-efficient trees must have a high information density
per node, while keeping the total number of nodes small.
Tries naturally achieve a high information density by reduc-
ing redundancy when storing common prefixes only once.
Having fewer nodes reduces overhead and memory fragmen-
tation. However, increasing the node size can be detrimental
to the performance as it complicates updates.
Hyperion is based on three main ideas: Reduce the over-

head of nodes by increasing the partial key size, decrease
internal fragmentation by an exact-fit approach, and opti-
mize memory management. Hyperion is therefore an m-ary
trie with m = 65, 536 being large compared to other tries.
Each node of the trie encodes up to 16 bits of the overall key,
leading to fewer, but bigger nodes. Hyperion stores nodes in
containers and adapts the size of containers to their actual
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Fig. 2. Hyperion core concepts. The red arrow in (d) shows the linear lookup steps for the key “that”.

population, applying an exact-fit approach. It is therefore fea-
sible to encode the 16 bit partial keys into containers without
excessive internal fragmentation.
Figure 2 demonstrates Hyperion’s core ideas. Figure 2a

shows a sketch of a basic container storing the 16 bit keys
“be” and “by”. A container splits them into two 8 bit keys
(visualized by the vertical offset) which allows to store the b
only once. The exact-fit layout of the node is illustrated by
the tight frame around the keys.
Figure 2b shows a larger example graph adding the keys

that, the, and to. Unlike ART or HAT, Hyperion does not rely
on fixed offsets and is able to recursively embed small con-
tainers into their parents, reducing the number of containers
in the trie and improving cache locality.
Although large containers are more memory-efficient, they

cannot grow indefinitely to keep costs for updates and searches
small. Once an embedded container becomes too large, it is
ejected by its parent (see Figure 2c).
Sketches of the key lookup and insertion procedure are

shown in Figures 2d and 2e. Lookups perform a pre-order tra-
versal of the container’s data structure. The linear scanning
procedure is slower than SIMD operations or direct offset cal-
culations but also not constrained to static offsets and fixed
sizes. The implementation of the data structure is therefore
highly compact and flexible. Maintaining order among the
keys is crucial for achieving fast lookups and range queries.
Thesemethods and other performance andmemory efficiency
considerations are presented in Section 3.3.
A compact trie data structure alone does not guarantee

memory efficiency. Hyperion’s containers grow in small 32 byte
increments to keep over-allocation low. This growth pattern
is very unusual and can lead to excessive memory fragmen-
tation. Since the pattern is also very predictable, we built
a custom memory manager that is tailored to our use case.
It prevents excessive external fragmentation and introduces
the Hyperion Pointer (HP), a 5 byte representative stored in
our trie instead of 8 byte pointers. This further increases the
information density and fully decouples the data structure
from its location in memory (see Section 3.2).

Finally, we present the optional key pre-processing in Sec-
tion 3.4. Data structures have to provide a good trade-off
between performance and memory consumption. Optimiza-
tions for different use cases can be based on providing differ-
ent implementations or on adapting the data sets themselves.
Hyperion’s approach is to transparently adapt the data set
so that it suits our data structure better.

3.1 Trie Data Structure
Hyperion is designed as a carefully growing 65,536-ary trie.
Every node of the trie forms a container and represents a 16
bit partial key which, in the case of internal nodes, is used to
identify up to 216 children. The large branching factor results
in fewer, but larger nodes.
First, wewill explain the container layout and its partial key

handling. Once we are familiar with the structure of internal
nodes within a container, we will discuss the child-container
mechanisms.
Each container has a 4 byte header and an appended pay-

load (Figure 3). The header’s first 19 bits store the container
size and the next 8 bits the number of unused bytes at the
end of the container. They are followed by three jump table
bits denoted by ‘J’ and finally by the two bits of the split
container flag ‘S’. Jump tables and container splits enhance
the performance and are discussed in Section 3.3. Containers
are initialized with 32 bytes, i.e. with a payload of 28 bytes.
Figure 4 maps the sample trie of Figure 1 onto containers

C1, C2, and C3. Containers maintain internal tries to handle
the 16 bit partial keys as separate 8 bit keys:

ki = k
0
i k

1
i (2)

The key “be”, e.g., is split into k0i = b and k1i = e . We use
two internal node types called “T-Node” (top) and “S-Node”
(sub) for k0i and k

1
i , respectively.

Payload

256 bit

Size Free

27190

J S

3032

Fig. 3. Container: header and appended payload
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Fig. 4. Containers mapped onto the sample trie

The bit structures of the T- and S-Nodes are shown in Fig-
ure 5. The partial key index ‘k’ which is the third bit, distin-
guishes T- from S-Nodes. Its value is equal to the superscript
index of Equation (2). The character a and e in container C3,
e.g., have partial key index 0, while the character t has in-
dex 1. In a container all T-Nodes are siblings, every S-Node
is a child of a T-Node, and two S-Nodes are siblings if they
have the same parent T-Node.

t k d c

T−Node

87630 2

S−Node

t k d jtjs

Fig. 5. Bit structure of the T/S-Nodes

The first two bits of a T- or S-Node form the type flag ‘t’,
which defines the node type: 01 denotes an inner node, 10
and 11 a leaf node, and 00 an invalid node. a in container C3,
e.g., is an inner node; t and e are leaf nodes. Depending on
whether its key maps to a value, the type of a leaf is either
10 (w/o value) or 11 (with value). Invalid nodes mark over-
allocated memory of a container and correspond to internal
fragmentation.
The type and key flags can be explained with the two

example containers in Figure 6a. C3 stores the partial keys
at and e whereas C3* stores at and ae, which makes e and
t siblings in C3*. Containers store their internal tries as byte
arrays in pre-order traversal, which means that a T-Node
is always followed by its S-Node children. Figure 6b shows

C3*C3 a

e tt

a e

(a) Graph representation
8 16

1 xx
24

10
40 48

0 x x100 xxx x x01C3: a t e
0 32

110 100 x x01C3*:
k jt t k t d

1 xxxxa e t
t cd kjsd

xxx xxx

xxx xxx

xxx

(b) Byte array representation

Fig. 6. Two versions of C3 to illustrate the key flag

a simplified representation of the byte arrays generated for
C3 and C3*. The container headers are omitted and the yet
unexplained flags d, js, jt, and c are replaced with don’t
cares x. The numbers above the arrays are bit offsets.
We exemplarily parse the byte array of C3. The first node is

an inner node (t=01) and a T-Node (k=0). Ignoring the don’t
cares, we continue to read the partial key a. The next 16 bit
encode the node storing the partial key t. It is a leaf node
without value (t=10) and an S-Node (k=1). Together with its
parent, it forms the key at. The last 16 bit define a second
leaf node (t=10) with partial key e. It is a T-Node and hence
a sibling of a.
In C3* the representation of the partial key a is the same.

Since e is now a child of a, it is an S-Node, and since e is
smaller than t, it must precede t to maintain the order among
the siblings. Apart from its position in the byte array, the
encoding of the t key is unaltered.
Child Containers: Containers must reference their child

containers. T-Nodes have two jump flags (explained in Sec-
tion 3.3), S-Nodes a two-bit child flag ‘c’ (see Figure 5). A 00
child flag indicates that no child container exists. The node
is therefore a leaf node which in this case is also redundantly
encoded in the previously explained type field. A value of 01
declares the existence of a trailing child container pointer.
Standard eight byte pointers are replaced by our own five
byte Hyperion Pointer (HPs) (cf. Section 3.2). Figure 7a shows
as an example the byte representation of the h-node in C1.
This node has a child container (C3), hence sets c=01 and
appends a corresponding HP.
Figure 7b shows C3 as an embedded container, which is a

special child container that is embedded into the byte array of
its parent. The parent h defines the existence of an embedded

1 xxx

k d c

0 8 16 56

01 40 bit HP01

t

h

(a) C1’s node representing “h” referencing C3 with a Hyperion
Pointer (HP)

C2 C3

C1

1 xxx01 7 1 xxx10 0100 xxx01 x x00

0 8 16 24 32 40 48 56

10

64

xxx

71

h a t ex x

d

a b t

ohen

t

a e

C3 as embedded container
C1 

(h) in C1 size (t) in C3(a) in C3 (e) in C3

(b) C1’s node representing “h” embedding C3

Fig. 7. Byte array representation of the node representing “h” in
C1 with C3 being referenced (a) and embedded (b)
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si>y i>xt
memset(0)HP

(c) Final state after updating the old container

Fig. 8. Ejecting an embedded container

container by setting c=10. Embedded containers have a one
byte header that only stores their total size, which is limited
by the maximum size of S-Nodes of 256 bytes. In this case
it is 7 bytes including the size field itself. The byte array of
the embedded container C3 is the same as it would be in a
normal container (cf. Figure 6b).
Embedded containers must be ejected if they cannot be

stored anymore in their parent S-Node (cf. transition of Fig-
ure 2b into 2c). Figure 8 shows the necessary steps in more
detail. First, the embedded container of the key txsy is ejected
(Figure 8b). Memory for the new container is allocated (refer-
enced by the Hyperion Pointer HP) and an empty container is
initialized. Then the embedded container’s payload is copied
to the new container and its size and free fields are updated.
Updating the old container is straight forward and shown

in Figure 8c. The reference HP to the new container needs
to be stored and the child container flag is updated to c=01.
The remaining memory section of the embedded container
is now vacant and the trailing bytes of the array are shifted
to close the gap. This creates new vacant memory at the end
of the stream, which is zero initialized. This is required by
the scan algorithm to reliably identify invalid nodes. Finally,
the free attribute of the container head is updated. For effi-
ciency reasons this occasionally triggers a reallocation of the
container’s memory to keep the unused free memory small.
Embedded containers can be nested and therefore behave
like an ordinary container.
The fourth state c=11 encodes a child as path-compressed

node (PC). Since keys in a trie can share a common prefix,
they also can have a unique suffix and encoding a long unique
suffix with recursively embedded containers is inefficient. A
PC has a one byte header with 7 bits denoting its size and
one bit declaring whether a value is attached to the node,

limiting the size of a PC to 127 characters. In case a value is
stored, it is appended to the PC header. Then the partial suffix
key is appended as a regular string. Eventually, an S-Node
with a PC encoded child might have to handle another key,
which means that parts of the PC node’s formerly unique
suffix is not unique anymore. In this case it is recursively
transformed into an embedded child until the two partial
keys can be stored as separate PC nodes.
Operations: The lookup and insertion procedures corre-

spond to a pre-order traversal of the node’s trie data structure.
Offsets to the next T/S-Node are calculated based on the flags
presented in Figure 5 and the size fields of embedded con-
tainers or path compressed child nodes. Consequently, the
exact-fit approach causes a computational overhead com-
pared to fixed size node elements. Inserts are performed in an
order-preserving manner. This requires shifting byte array
segments as, e.g., explained in Figure 8. However, maintain-
ing order among siblings has several advantages. Not only are
missing keys detected earlier and range queries much faster,
it also facilitates several of the performance and efficiency
enhancements presented later in Section 3.3.
The complexity of update and delete operations is compa-

rable to that of insertions or lookups. Deletions will almost
always trigger memory shifts, while updates only trigger
shifts if a value is added to an existing key without an at-
tached value. Such an operation marks the transition of a
type 10 node to type 11.
Ordered range queries use a callback approach. A callback

function is passed to the range query function along with a
given prefix key. Hyperion invokes the callback function for
every key greater than or equal to the provided prefix key,
until the callback function returns zero to quit the operation.
The stored value is a parameter of the callback function.

At this point we have an understanding of the partial key
handling within containers, the different types of containers
and how they can be linked to form a trie data structure.
Next, we are going to investigate the way these containers
are mapped into memory efficiently before examining perfor-
mance and memory efficiency optimizations in Section 3.3.

3.2 Memory Management
Over-allocation and heap fragmentation considerably influ-
ence the memory efficiency of data structures.
Over-allocation refers to allocated but unused memory

inside a data structure. ART’s Node48, e.g., allocates memory
for 48 entries as soon as a node’s population exceeds 16
entries, leaving up to 31 entries unused. Over-allocation is
typically tolerated to improve performance, e.g., to optimze
cache line efficiency or to support SIMD operations. Examples
are Judy’s uncompressed node, ART’s Node256, and HAT’s
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array nodes. Their layout allows calculating an element’s
offset within the data structure based on its value.
The performance of exact-fit strategies significantly suffers

from frequent memory reallocations. Dynamic memory used
by exact-fit strategies is either allocated on the heap or by
anonymous memory mappings (mmap). Heap allocations are
generally very fast, but frequent reallocations can lead to
excessive heap fragmentation. Memory mappings always
include a trap into kernelmode but do not suffer from external
fragmentation, as they are always page aligned. Once freed,
memory is always returned to the OS.
Hyperion imposes several challenges on the memory sub-

system as containers grow in 32 byte increments to mini-
mize over-allocation. These allocations could cause extreme
fragmentation if the heap was used. Actually, a first imple-
mentation using the glibc allocator (based on ptmalloc2 [23])
collapsed when a Hyperion trie with one billion 32 byte sized
containers started to increment its containers. The memory
manager must therefore prevent such excessive heap frag-
mentation.
State-of-the-art memory managers, such as tcmalloc [22]

or jemalloc [20], try to reduce the impact of fragmentation,
e.g., by supporting size-specific allocations or by coalesc-
ing unused segments. Yet, tcmalloc was designed to improve
performance and never releases memory to the operating sys-
tem; and jemalloc mostly emphasizes on scalable concurrency
support.
The unusual but also very predictable memory allocation

pattern of our trie encouraged us to tailor a memory manager
to our use case, which helped us to overcome heap fragmen-
tation and considerably reduce the metadata overhead. It
acts as a middleware between our trie and the system’s mem-
ory management. Small allocations of up to 2,016 bytes are
grouped by size and stored in large memory mapped seg-
ments. Larger allocations are placed on the heap.
Memory Hierarchy and Hyperion Pointer: The mem-

ory manager employs a hierarchical data structure to manage
allocated and free segments efficiently. The hierarchy is il-
lustrated in Figure 9. 64 superbins are at its top. Superbin
SB0 handles all requests larger than 2,016 bytes; and each
superbin SBi , i ∈ [1, 63], provides segments of 32 · i bytes.
Every superbin has up to 214 metabins, every metabin up to
256 bins, and every bin 4, 096 chunks. A chunkCi is the mem-
ory segment used to store a trie container. So, every superbin
addresses up to 234 chunks.
Instead of eight-byte pointers, our allocator returns five-

byte Hyperion Pointers (HPs) containing the IDs of the re-
spective hierarchies. The trie only stores HPs which are re-
solved by the memory manager. Consequently, the use of
HPs completely decouples our trie from the virtual memory.
This empowers the memory manager to reorganize and move
chunks at will.

SB0 SB63Superbins SBi

Metabins MB2MB1MB0 ...

0 C 1C

C4095

0 C 1C

C4095
...

0 B1 ... B255B

6

14

8Bins

Chunks
...

12

H
P

 b
it

s

Fig. 9. Memory manager data structure hierarchy

The memory overhead of superbins is small, they fit into a
single cache line. The data structure contains a reference to a
metabin pointer array, so that newmetabins can be initialized
individually. Additionally, superbins include a sorted list of 16
non-full metabin IDs to find a free chunk fast. Metabins store,
besides housekeeping variables, a 256 bit array to identify
non-full bins and an array of the bin structures. Bins use a
4,096 bit array to distinguish used from free chunks, a pointer
to the memory mapped segment containing the individual
chunks and housekeeping variables. Since each of the 256 bins
is 521 bytes large, a metabin consumes a total of 133,416 bytes.
Heap allocators typically store the allocation size inter-

nally and impose an eight-byte overhead per segment. In
contrast, the kernel does not keep track of memory mapped
segment sizes. Therefore, applications must manage segment
sizes. As mentioned earlier, the superbin ID defines the chunk
size from which the memory mapped segment size can be
computed. Hence, our memory savings per allocation accu-
mulate to 11 bytes, compared to heap usage. Once 12,128 out
of 1,048,576 chunks are allocated, those savings will compen-
sate for the metabin data structure overhead and every full
metabin saves over 10MiB.
We use SIMD instructions to quickly identify free bins and

chunks and only issue one kernel trap per 4,098 allocations.
Extended Bins are used for allocations larger than 2,016

bytes and are managed by the superbin SB0. Extended bins
have a size of 16 bytes, as they only store extended Hyper-
ion Pointers (eHP), which contain a regular heap pointer, an
integer storing the requested size and a short denoting the
over-allocated memory within that allocation. The remaining
two bytes store housekeeping flags. Even though our trie
continues to grow in 32 byte steps, eHPs are incremented
in intervals of 256 bytes for requests up to 8KiB, 1 KiB for
request up to 16KiB and 4KiB otherwise. These larger in-
crements mitigate the effects of heap fragmentation for fast
growing containers and improve performance by reducing
reallocation overhead.
Chained Extended Bins (CEB) are eight extended bin

chunks that are allocated and freed atomically. This means,
that a single HP owns eight extended bin chunks, which have
to be located in eight consecutive chunks of a bin in SB0. The
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heap pointers of some of those extended bins can be void.
This concept allows us to access eight individual extended
bin chunks without having to handle multiple HPs in our trie.
Its application is discussed in the performance and memory
efficiency Section 3.3.
Arenas: As mentioned in Section 1, prefix tries are not bal-

anced, and every trie has one fixed root node. This simplifies
parallelizing prefix tries. Instead of a single 256-ary trie, an
application can create 256 tries Ti with i ∈ [0, 255]. Opera-
tions regarding a key k are then mapped toTk0 . Arenas enable
thread-safe concurrent access using one memory manager
per arena. Every arena therefore has its own set of superbins
and controls access using a spin lock. The individual tries
Ti are mapped to a set of arenas Aj in a simple round-robin
fashion: Ti → Ai mod j .
The concept of arenas is already fully implemented within

Hyperion; preliminary evaluations showed that it is neces-
sary to better couple arenas with the memory manager and
caching schemes to enable performance improvements be-
yond small factors of two to three. Furthermore, skewed
distributions can limit the benefit of arenas, as only few of
them might be filled.

3.3 Performance and Memory Efficiency
The previous sections explained how to build a Hyperion
trie and map it into memory. Now we examine four perfor-
mance and memory efficiency features in more detail. The
first improves memory efficiency by delta encoding the T/S-
Node character values. The second and third measures, called
Jump Successor and Jump Tables, accelerate key lookups by
reducing the number of node comparisons during a container
traversal. Finally, the split container technique decreases shift-
ing overhead by splitting large containers vertically.
Delta Encoding (d):Maintaining a less than order among

siblings facilitates delta encoding of key characters. Figure 10b
shows the containers C3 and C3* with delta encoded key
representations. In C3 t is the only child of a and has the
value 116, but e is a sibling of a and ∆(a, e) = 101 − 97 = 4.
Since three bits are sufficient to binary represent 4, this delta
can be stored in the delta field ‘d’ of the T/S-Nodes and the
trailing character byte is unnecessary. In C3* the t is delta
encoded as ∆(e, t) = 116 - 101 = 15, as it is a sibling of the e
character. This technique is particularly effective for dense
data sets like sequential integers or skewed distributions such
as alphanumeric strings. The delta encoding feature comes
without memory overhead, as the three bit delta field would
be padded otherwise.
Jump Successor (js): The linear pre-order representation

of the container’s two-level internal tries leads toO(k2) com-
parisons when scanning a trie of degree k. For this reason,
we allow the algorithm to jump from one T-Node to the next

if the trie becomes too large, and thus to reduce the number
of comparisons to at most 2k. We use the js-flag to indicate
whether a jump reference is appended to a T-Node. This ref-
erence is the offset to the successor sibling in bytes. As the
reference is limited to 16 bits, the maximum jump distance is
65,536 bytes and the maximum S-Node size is 256 bytes.
Successor jumps trade capacity for performance. They

should only be used if the number of children reaches a (con-
figurable) threshold, where the default value is 2. The default
value avoids jumps on nodes with a single child node, because
the child node is most likely already located in the current
cache line. Therefore, the scanning overhead would be rather
small and not worth the two bytes memory spent. A minor
drawback of this offset based jump approach is the necessity
of updating the offset on insertions or deletions applied on
the T-Node’s children.
Jump Tables (jt): Successor jumps improve performance,

but scanning the trie is still slow for large k . The reason is
that the jump distance from a T-Node to its successor also
growswithk and the probability that the hardware prefetcher
cannot keep up increases, which also increases the cache
miss rate. We therefore introduce jump tables for T-Nodes
and containers. A jump table is a reference list that allows
the scanning procedure to jump closer to its target and thus
to skip the majority of scans. Both, the container header and
the T-Node set their J- or jt-flag to indicate the presence of a
jump table.
The T-Node jump table reduces the latency to access its

S-Nodes by storing an array of unsigned shorts referencing
15 of its S-Nodes. Delta encoding is in this case a challenge
for our jump table. Jumping from a T-Node to an S-Node, we
do not know its predecessor key and are not able to translate
the delta to its key character. Therefore, the target key must
be known in advance. This can be achieved by storing the
target key in the jump table or by jumping to predefined
nodes. We chose the second approach.
A T-Node jump table has 15 entries ei , i ∈ {0, 1, ..., 14},

where ei references the S-Node storing the 8-bit partial key

C3*C3 a

e tt

a e

(a) Graph representation

0 8 16 32

1 000 xx
24

10

40 48

0 x x100 000 x x01C3: 97 116 4

1 00010 000100 000 x x01C3*:
d js jt t k d c t k d

1 xxxx 10197 15
t k

(b) Byte array representation with correct key deltas

Fig. 10. Two sample tries illustrating delta encoding
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16 · (i + 1). The mapping makes it unnecessary to store the
destination key along with the jump offset and the jump
table entry for a key ki can be determined by a bit shift
JT (ki ) = (ki ≫ 4) − 1. Nevertheless, additional destination
points must be created if keys are missing.
The container jump table targets T-Nodes instead of S-

Nodes. The three bits of the container’s jump field ‘J’ allows it
to grow up to 49 entries in seven entry intervals. A balanced
container jump table with 49 entries ensures that at most
⌈ 25649 ⌉ = 6 T-Nodes are traversed during lookup. Our con-
tainer traversal algorithm increases or rebalances the jump
table, once eight T-Nodes have been seen. Therefore, once
a container jump table has grown to its full extend and its
entries are properly balanced, the algorithm will not have to
update it again. Special instructions to check for the state of
the jump table are unnecessary, which is particularly impor-
tant, as these would add branch instructions to the critical
path of the scanning algorithm.
Each entry is encoded into a 32 bit integer with 8 bits denot-

ing the entry’s key and 24 bits storing the offset. Entries are
ordered by their keys and occasionally rebalanced. A jump
table entry lookup is performed by linearly scanning the en-
tries and identifying the largest entry with a key less than or
equal to the required key.
Splitting Containers vertically is a performance opti-

mization mechanism. Consider a fully populated container
referencing 65,536 child containers. Such a container is over
400 KiB large. Until this size is reached, the shifting and reallo-
cation overhead is considerable. Splitting a container reduces
the severity of this overhead.
A container may be split up into a maximum of eight

chunks with chunki managing the T-Node keys:

[32 · i, (32 · (i + 1)) − 1], i ∈ [0, 7] (3)

For example, chunk0 is responsible for the key range [0-31]
and chunk3 for the range [96-127]. Containers can be split
once per iteration. Figure 11 sketches the vertical splitting
of container X . Cuts aim to balance the size of the newly
created containers. Here the cut is made at the T-Node key
160. The newly created container X1 contains the key range
[0-159] and X2 the range [160, 255].
Splitting a container results in two newly created contain-

ers, each having their own extended bin pointer. Chained
pointers introduced in Section 3.2 are used to store extended
HPs (eHPs) for all potentially existing eight split containers.
The split containers are allocated in consecutive chunks, as
indicated by the red border in Figure 11. Although the small-
est T-Node in X1 has the key 57, X1 is still responsible for the
complete range [0-159]. Therefore, the eHP of X1 is located
at the first chained chunk. X2’s eHP has the index 5, because
its smallest potential T-Node key is 160 and 160

32 = 5.

�
�
�

�
�
�

�
�
�

�
�
�

244
...

X1 : X1 :

244
...

57 110 164
... ... ...

X: Key Range [0−255]

Extended
Bin Chunks:

16457 110
... ... ...

Chained Pointer

0 1 2 3 4 5 6 7

Key Range [160−255]Key Range [0−159]

Fig. 11. Container split with chained pointers.

Our scanning algorithm uses the memory manager API
to translate HPs into virtual memory addresses. For chained
pointers, we add the requested T-Node key to the request.
Assume the next partial key we are looking for is 110, which
is part of the container X1. X1’s parent container only stores
the HP that directs us to the set of chained pointers. Then the
partial key 110 is used to determine, which split container
address to return. The chunk index

⌊ 110
32
⌋
= 3 is the first to

check for a valid eHP. As the indices 3, 2 and 1 are all void,
the container located at index 0 is returned.
The chained pointer approach facilitates the use of multiple

child links without the need of storing multiple links. That
would be counter productive, as the HPs are responsible for
up to 80% of the inner node’s container size.
Finally, we need to understand under which conditions a

container is split. Each time a container is scanned during
insertion operations our algorithm checks whether:

sizec ≥ a + b · s (4)

where sizec is the container size, a = 16 KiB, b = 64 KiB and
the split delay s ∈ [0, 3]. The split delay is the two bit flag S
in the container head (c. f. Figure 3) and initialized to zero.
Even though this check might pass, the splitting process

might get aborted. The most common case is that the con-
tainer only stores keys within a single key range (c. f. Eq. 3).
This happens for skewed key distributions or already com-
pletely split containers. Another case is that either of the two
split candidates is smaller than 3 KiB. Then splitting the orig-
inal container is not very effective. Should the process abort,
the containers split delay S is incremented. This increases the
necessary container size required to pass the initial condition
and avoids recurring failing splitting attempts.

3.4 Key Pre-processing
Key pre-processing is a technique to transform keys so that
their distribution is more suitable for a data structure. There
has been extensive research on key pre-processing for index
minimization, especially on compacting tries and modifying
the processing order of the key parts [2, 15, 16, 43]. Most
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... ...xxxxxxxx xxxxxxxx xxxxxxxxOriginal Key
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Fig. 12. Representation of the key transformation.

heuristics and approximations developed are offline algo-
rithms which require that the data set is known and finite.
But even under these restrictions, several aspects of trie index
minimization have been shown to be NP-complete [14, 17].
A key pre-processing heuristic which is online in the sense

that it does not need complete knowledge of the data in ad-
vance, is Oracle’s reverse key index [41] which reverses a key’s
byte order and is used to balance indexes with monotonically
increasing elements.
More formally, a key pre-processor is an injective function

f that maps an input key k ∈ K1 to an output key k ′ ∈ K2.
Injectivity is sufficient to maintain consistency for CRUD
operation, but for range queries, f must also be invertible
and preserve the binary-comparable order <bc among the
keys: ∀k, ℓ ∈ K1 : k <bc ℓ =⇒ f (k) <bc f (ℓ).
Hyperion provides an optional key pre-processor that is

specifically designed for uniformly distributed keys such as
random integers or cryptographic hashes which are chal-
lenging for many data structures. They result in wide tries
with a high number of leaf nodes and therefore decrease the
memory efficiency of Hyperion.
Our heuristic overcomes this issue by injecting eight zero-

bits (as shown in Figure 12) to reduce the entropy encoded
into the first four bytes of the keys. By injecting two zero
bits into the second, third and fourth byte of the key, the
total number of third level container is reduced from 232 to
226. Having fewer, but larger containers improves memory
efficiency considerably. It is easy to show that the zero-bit
injection is an injective, inverse and binary-comparable order
preserving function.
We chose to inject the zero bits into the two least signif-

icant bits of the respective byte because this preserves the
possibility of efficient delta encoding and uniform distribu-
tion of the partial key values. With the help of the T-Node
jump tables, at most four S-Nodes need to be scanned for the
second and fourth byte. The container splits – based on the
third byte T-Nodes – are preformed uniformly as well.
Key-preprocessing has to be enabled in advance, but the

approach itself does not need a-priori knowledge about the
data and can perform the key transformations online. The
key size grows by one byte, but due to path compression,
the memory overhead is low. The effect of this technique is
evaluated in Section 4.4.

4 EVALUATION
Weperformed a comprehensive evaluation of Hyperion, Judy [28],
HAT [30], ART [18][35] and HOT [10] and also included the
STL map (red-black tree, RB), and the STL unordered_map
(hash table). Neither the source code nor the individual con-
figuration parameters of these data structures were modified.
All data structures were used as k/v stores.

4.1 Setup
All benchmarks ran on our HPC system, where each node is
equipped with two Intel Xeon E5-2630 v4 processors running
at 2.2 GHz (3.1 GHz in turbo mode), having 25MiB L3 cache
and 1 TiB of main memory, out of which 978GiB are usable.
The main memory is split into two NUMA nodes of 512GiB
each. The operating system was a 64 bit CentOS 7, and the
sources were compiled using GCC-7.2.0 -O3 -std=gnu99. The
memory consumption was parsed from /proc/self/status.
Data Sets:We used integer and string data sets, both eval-

uated in sequential and randomized order. The integer keys
and values were always 64 bit; random integers were gener-
ated by the SIMD-oriented Fast Mersenne Twister [37].
Variable-length string performance was evaluated using

the Google Books n-gram corpus [24]. The data set consists
of all 1- to 5-grams found in this corpus, including the year
a book was published, the number of books it was found in
and the total number of occurrences. In our experiments, the
n-grams including the year formed the key and the number of
books and number of occurrences were encoded as integers
and formed the value.
Methodology:We restricted the performance evaluation

to inserts, lookups and range queries because the cost of up-
dates is equivalent to lookups, and a key deletion results in
case of Hyperion in a memmove within the container so that
its runtime is comparable to an insert. For technical reasons,
lookups were performed for all values in the same order as
they were inserted and range queries were performed from
the first element in the data structure to the last one.
Hyperion and all other data structures besides ART and

HOT are very similar to a k/v store, where all keys and values
are stored in the data structure. ART and HOT instead set
pointers to locations outside of the trie. Each lookup there-
fore requires to follow the pointer and check the requested
key and value. This is very efficient if used as a secondary
database index, where the key and value are already stored
outside of the trie.
We evaluated ART and HOT by adding an array of all k/v

pairs. For these pairs, we only accounted for the size of the
data without any padding or metadata overhead. This is close
to the approach implemented by Alvarez et al. [3]. Leis et. al
additionally proposed a single-value approach, where each
leaf stores one k/v pair [35], which has been implemented inC
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by Dadgar (calledARTC in the following) [18]. We performed
experiments for ART and ARTC and the original ART has
shown to be more efficient, partly because it has not to care
about allocating memory for k/v pairs, where the k/v memory
consumption is (artificially) minimized.
ART and HOT can be (theoretically) implemented in a

way that already stores values up to 8 bytes within the trie,
not needing the additional array. This can lead to neces-
sary changes in the node structure and the results, shown
as ARTopt and HOTopt inside the tables, are therefore lower
bounds not covered by experiments. ARTC shows that a gen-
eral implementation for arbitrary value sizes can easily loose
the predicted advantages. We therefore do not add perfor-
mance values or performance to memory ratios for ARTopt
and HOTopt .
Judy provides specifically designed versions, where we

used JudyL for integer keys and JudySL for strings.
The threshold for Hyperion’s embedded containers was

set to 8 KiB for integer keys which means an embedded child
container is ejected if the parent container grows larger than
8,192 bytes. For variably sized keys, such as alphanumeric
strings, the threshold was set to 16 KiB to better utilize path
compression. An embedded container is ejected as soon as it
grows beyond its limit of 256 bytes.
As key performance indicators we measure put and get op-

erations inmillion operations per second (MOPS), the duration
of range queries (in seconds), the number of bytes per key
(B/key), and memory consumption with and without payload.
In the interest of easy comparison, we define the ratio P/M

which includes performance and memory efficiency:

P

M
=

Puts per sec + Gets per sec
Memory footprint

(5)

Faster put and get operations and a lowermemory footprint
improve this factor. The P/M ratio is in the following always
normalized to the Hyperion value.

4.2 Unlimited Inserts
Since Hyperion is designed to create enormous indexes, we
start the evaluationwith an experiment that shows howmany
elements can be indexed within 978GiB. Figure 13 shows the
results for random integers and the English 3-gram string data
set. The results already indicate that Hyperion is especially
well suited as string k/v store, while still providing a very
good memory efficiency for integer keys.
Hyperionp with key pre-processing enabled generates the

second largest index for the random integer data set. Hyper-
ion on the other hand outperforms all other data structures
by an order of magnitude for sequential strings. To under-
stand these results, we analyze the data structures in the next
sections in more detail.
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Fig. 13. Memory consumption for the random integer (left) and the
3-gram data set (right).

ART and HOT have not been considered here, as the k/v
pre-allocation used in our implementation would have sig-
nificantly distorted the results.

4.3 String Data Set: Google Books n-grams
For the string data test, we used the English 2-grams a-d
consisting of 7.948 billion entries. The keys and values have a
total size of 167.7 GiB and 59.1 GiB, respectively. The average
key size is 22.65 bytes, and keys larger than 255 were skipped,
as larger keys are not supported by HOT. Two experiments
were run, the first with the n-grams sorted lexicographically
enabling a good cache hit rate, the second with the n-grams
in random order (see Table 1).
The cache-friendly ordering of the sequential data set fa-

cilitates high performance inserts and lookups. ART achieves
the best insert throughput, closely followed by Judy, which
has slightly faster lookups. Hyperion has the lowest mem-
ory consumption, while its insert rate is comparable to the
hash table’s and HAT’s. HAT achieves a much higher lookup
rate that does not suffer from the rehashing overhead during
inserts. Judy’s performance leads to the best P/M trade-off,
closely followed by Hyperion. HOT’s performance is slightly
worse than the performance of Judy or ART, while anHOTopt
implementation could reduce HOT’s memory usage to 101.9
GByte for the sequential string data set, which is only 22%
more memory than required by Hyperion.

7.95 B Sequential String Keys 7.95 B Randomized String Keys
Puts Gets Mem. GiB P/M Puts Gets Mem. GiB P/M
avg. MOPS total B/key avg. MOPS total B/key

Hyperion 0.83 1.10 85 11.4 1.0 0.26 0.32 98 13.2 1.0
JudySL 2.06 2.77 202 27.3 1.0 0.32 0.33 205 27.7 0.5
HAT 0.83 1.86 281 37.9 0.4 0.33 0.45 281 38.0 0.5
ARTC 2.36 2.70 622 84.1 0.4 0.30 0.32 622 84.1 0.2
ART 2.37 2.76 435 58.8 0.5 0.37 0.37 444 59.9 0.3
ARTopt 208 28.1 217 29.3
HOT 1.75 2.46 333 45.0 0.5 0.45 0.53 339 45.7 0.5
HOTopt 106 14.4 112 15.2
RB-Tree 1.29 1.44 944 127.5 0.1 0.12 0.15 944 127.5 0.0
Hash 0.92 0.85 954 128.8 0.1 0.66 0.69 954 128.8 0.2

Table 1. KPI’s of the string data sets.
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Hyperion memory efficiency significantly benefits from
delta encoding, embedded containers and path compression:
A memory consumption of 11.27 bytes per key means that
Hyperion compresses the average key size of 22.65 bytes
to only 3.27 bytes, as 8 bytes are used for the value. The
nodes encoded 7,836,534,666 entries as deltas, saving 7.3 GiB
memory. Additionally, there have been 953,202,064 embedded
containers, where each container saves between 11 bytes and
35 byte, decreasing the memory footprint by at least 10 GByte.
199,706,521 path compressed bytes added around 286 MiB of
memory savings.
The results for the randomized data set show a consid-

erable performance degradation for most data structures. Es-
pecially Judy and ART suffer from the bad caching behavior
and are surpassed by HOT and the hash table. Hyperion’s
performance deteriorates less than Judy’s or ART’s due to
the dense packing in its containers. Encoding 16 bit of the
key per container already halves the number of traversed
nodes compared to a 256-ary trie. Recursively embedding
small child containers into their parents’ nodes results in a
better cache utilization and facilitates hardware prefetching.
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Fig. 14. Hyperion’s memory characteristics for the ordered (top)
and randomized string data set (bottom).

Hyperion’s memory consumption rose by 8.4 GiB, which
is caused by memory fragmentation. The x-axis in Figure 14
represents the 64 superbins. The primary y-axis shows the
number of chunks, with allocated chunks (green) per su-
perbin growing upwards and empty chunks (red) growing
downwards. Empty chunks can be classified as external frag-
mentation and occur, e.g., at the initialization of a new bin.
The secondary y-axis sums up the memory consumption of
unused and allocated chunks (shown as dots).
Hyperion is by factors more memory-efficient than Judy,

ART, and HAT and by orders of magnitude more efficient
if we do not include the payload. Consequently, Hyperion
dominates the P/M ratio. The normalized P/M ratio of Judy,
HOT, and HAT are 0.528, 0.501, and 0.455, respectively. The
hash table and ART are outperformed by factors of 4.2 and 6.0
and the tree by an order ofmagnitude. Nevertheless, aHOTopt

implementation could compete with Hyperion concerning
memory efficiency and P/M ratio.

4.4 Integer Keys and Values
The next benchmarks use integer keys and values. We in-
serted 16 billion sequential and 13 billion randomized 64 bit
k/v pairs. We reversed the keys’ byte order for ART, HAT
and Hyperion to adapt to Intel Xeon’s little-endian format.
Otherwise the sequential integers would be disordered. This
way they start processing the keys at their most significant
byte and fill the trie in a depth-first manner. Figure 15 shows
the put and get performance and the memory footprint for
both data sets, Table 2 summarizes the results.
The sequential data set represents the best-case scenario

for tries, both with regards to memory efficiency and perfor-
mance. The first four bytes are highly redundant and only
take four different states. In the lower levels of the trie, the
nodes are densely populated and the key ordering leads to a
cache-friendly access pattern. Such data sets can occur, e.g.,
if keys are artificially created as unique indexes in databases.
The upper right graph in Figure 15 shows the memory con-
sumption of the different tries, where the hatched, light-red
part of each bar is equal to the combined memory require-
ments of the keys and values of 238.4 GByte.
Hyperion and Judy achieve outstanding memory efficiency,

which is even smaller than the hatched area. Table 2 shows
that Hyperion only requires 1.3 bytes per 8 byte key to index
the data set (cf. ‘index’ column). The sequential nature allows
all Hyperion nodes to delta encode the partial keys, and due
to the highly populated containers, memory fragmentation
is low. Since JudyL is specifically designed for this key size,
it achieves a slightly better memory efficiency and provides
the best trade-off between performance and memory effi-
ciency. Hyperion’s memory consumption of 9.31 Bytes/key
breaks down to the eight byte value, a one byte internal node
and 0.31 Bytes/key for the higher level container and other
overhead. A Hyperion variant mapping eight byte keys and

16.0 B Sequential Integer Keys 13.0 B Randomized Integer Keys
Puts Gets Mem. GiB P/M Puts Gets Mem. GiB P/M
avg. MOPS total B/key avg. MOPS total B/key

Hyperion 1.54 2.96 139 9.3 1.0 0.36 0.64 314 25.9 1.0
Hyperionp 0.41 0.54 224 18.5 1.4
JudyL 8.42 21.28 130 8.7 6.3 1.02 1.07 259 21.4 2.7
HAT 2.99 11.03 359 24.1 0.9 0.55 0.89 334 27.5 1.4
ARTC 9.26 13.34 840 56.4 0.9 0.93 0.92 910 75.1 0.7
ART 17.32 25.85 360 24.2 3.9 1.23 0.96 520 43.0 2.9
ARTopt 121 8.2 327 27.0
HOT 1.38 2.77 416 27.9 0.3 0.66 0.68 353 29.1 1.3
HOTopt 177 11.9 159 13.1
RB-Tree 1.34 2.58 954 64.0 0.1 0.23 0.26 775 64.0 0.2
Hash-T 12.24 34.63 605 40.6 2.0 1.44 2.38 516 42.6 2.4

Table 2. KPI’s of the sequential and randomized integer data sets.
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Fig. 15. Results of 16 billion sequential (top) and 13 billion randomized (bottom) 64 bit integer k/v benchmark with put / get operations and
memory footprint. Circles mark moments when remote NUMA memory is accessed.

values would not need the one byte internal node and achieve
8.31 Bytes/key efficiency. Also, Hyperion is always faster than
the RB-Tree and HOT for sequential integers.
HAT performs lookupsmuch faster than insertions because

insertions eventually trigger the resizing of hash containers,
where the hash table is doubled in size and the hash values
of all keys are recomputed. This overhead also applied to
the hash table, but is invisible in the graph, as the x-axis
represents the number of index elements, rather than time.
The hash table achieves an average of 12.2MOPS for puts if
we ignore the resizing overhead, and 10.8MOPS otherwise.
ART outperforms all other data structures for puts, while still
being very fast for gets. The performance of ARTC can be
compared with Judy, while it requires much more memory.
HOT is unable in this scenario to compete with the rest of
the tries, as its memory consumption is in the same order as
the hash map, while being significantly slower.ARTopt would
deliver an excellent memory efficiency, while HOTopt would
still need more memory than Hyperion.
The moment when the data structures start to access re-

mote NUMA memory is marked by circles. NUMA effects
slightly impact performance for the hash table, ART, ARTC ,
and HOT.
The randomized data set is challenging for all tries. Hype-

rion’s insert rate drops to approximately 290k IOPS during the
first 1.8 B inserts and then increases up to 450k IOPS. Constant
shifting overhead during random inserts is the root cause
for the low throughput. Without container splitting, which
reduces the container size and thus the amount of shifted
memory, the insertion rate would even sink to 90k IOPS until
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Fig. 16. Hyperion’s (top) and Hyperionp ’s (bottom) memory usage
characteristics. Note the different scales (109 vs. 106) at the primary
Y-axis.

2 B inserted elements and then grow to roughly 200k IOPS.
Hyperion’s average lookup rate of 641k IOPS is much faster
than the average insertion rate of 359k IOPS, outperforming
the RB-tree and being comparable with HOT, while HOTopt
would have the best memory consumption.
The effects of ART’s node structure become visible during

the first billion inserts. The two dents represent transitions
from Node16 to Node48 and from Node48 to Node256 on the
fourth trie level. Similarly, HAT’s increasing re-hashing ef-
forts become visible as the index grows. Hyperion’s perfor-
mance is much improved by activating key pre-processing.
Hyperionp reaches a steady state after approximately 500M
inserts and has a better insert rate than Hyperion. More im-
portantly, its memory consumption is reduced by 29 %.
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Figure 16 shows the allocation distribution for Hyperion
and Hyperionp after 13 billion inserts. Hyperion produced
4.08 B mostly tiny allocations smaller than 128 bytes, totaling
to 278.3 GiB and additional 30.8 GiB external fragmentation.
Chunk sizes in Hyperion grow in 32 byte intervals and one
can expect 16 bytes of internal fragmentation per allocated
chunk, leading to 60.8 GiB internal fragmentation within this
experiment. Extended bins in Hyperion account for 23.5 GiB,
and the memory manager’s overhead is 1.02 bits per chunk,
resulting in 610.4MiB, leaving 4.5 GiB heap fragmentation.
The motivation for the pre-processing heuristic is to re-

duce the number of nodes and of allocated chunks in our
trie. In fact, applying pre-processing, the number of allocated
chunks shrinks by a factor of 72 to 68.87M. The chunk count
reflects one extended bin chunk for each of the 226 possible
4 byte key prefixes. Its higher efficiency originates in the re-
duction of internal fragmentation from 60.8GiB to 7.36GiB.
Each of its chunks is approximately 3 KiB large. At this size
chunks grow in 256 byte increments, which means that one
can expect 128 bytes internal fragmentation per chunk. In
this experiment it is 117.8 bytes per chunk (7.36GiB/226). Fig-
ure 16 explains 196.7 out of 223.5 GiB ofHyperionp ’s memory
consumption. As the memory manager’s overhead is only
8.4MiB, the remaining 26.8 GiB are heap fragmentation.
The random data set did not allow the tries to exploit key

prefix redundancies using, e.g., delta encoding as profitably
as for the sequential data set.Hyperionp ’s memory consump-
tion is therefore only 13.6 % better than Judy’s and in general
larger than for the sequential data set. On the other hand, the
data set is less cache-friendly, which reduces the performance
of the other data structures more severely. Again, Judy pro-
vides the best trade-off, the hash table the best performance
and Hyperionp the best memory efficiency.

4.5 RangeQueries
An advantage of tree-based data structures over hash tables
is the efficient range query processing. We evaluate the range
query performance for the previously used data sets. HAT’s
implementation only provides a begin() iterator. For a fair
comparison, we run a single range query covering the full in-
dex. The hash table and ART did not offer an ordered iterator
and are not considered.
Hyperion aggregates 16 bits of the key and therefore gen-

erates larger containers. This explains the outstanding range
query performance shown in Table 3, as the hardware pre-
fetching speeds up the linear scanning procedure. With few
exceptions, the other data structures are significantly outper-
formed. ARTC achieves a good range query performance for
sequential data sets while HAT’s bad performance was ex-
pected because its containers use hash tables to manage their
items. An ordered range query requires those items to be

sorted first. Judy’s results indicate that the nature of the data
set has little impact on its generally bad range query perfor-
mance, while HOT offers a good range query performance for
strings, while being comparable to Judy for integers. Overall
Hyperion demonstrates extraordinary range query perfor-
mance, regardless of key type and distribution.

Integer String
seq. rand. seq. rand.

Hyperion 166 2,540 184 205
Hyperionp 423
Judy 551 2,057 1,661 2,257
HAT 3,823 6,023 3,303 4,103
ARTC 277 2,677 245 1,472
HOT 580 215
RB-Tree 732 5,920 650 3,752
Table 3. Range query duration in seconds

5 CONCLUSION
This paper introduced Hyperion, an efficient in-memory in-
dexing data structure. We analyzed Hyperion’s throughput
for puts, gets and range queries and included several data
structures for comparison. The data sets used in the evalua-
tion consisted of 64 bit integer key/values and real-life string
data. We used sequential and randomly distributed data.
Despite the trend towards vector unit utilization and cache

line optimization, we demonstrated that an exact-fit node
layout and a linear search approach are still practical in mod-
ern in-memory search trees and that especially Hyperion’s
get performance for non-sequential data sets can compete
with all other trie data structures. Hyperion’s point further-
more query performance also outperforms a cache-optimized
STL map. Furthermore, the memory footprint is reduced
by up to a factor of 2.1 times and Hyperion processes range
queries up to 40% faster than the best alternative.
Our evaluation examined data structures of exceptional

size. Analyzing throughput with reference to index size en-
ables interesting runtime characteristics that were concealed
in previous works [3][35][4][5]. We have been able to show,
e.g., that previous results on ranking data structures do not
hold at this scale [3]. Judy’s throughput for random integers,
e.g., exceeds ART’s after 3 B inserts, while the insert perfor-
mance of many data structures is highly irregular during the
first 1 B operations. Extrapolating average performance to
larger indices can therefore result in false assumptions.
Future work will focus on improving Hyperion’s multipro-

cessing performance using Arenas and include extensions
towards non-volatile main memory.
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