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Abstract— Nowadays, shorter and more flexible production 
cycles are vital to meet the increasing customised product 
demand. As any delays and downtimes in the production 
towards time-to-market means a substantial financial loss, 
manufacturers take an interest in getting the production system 
to full utilisation as quickly as possible. The concept of plug-and-
produce manufacturing systems facilitates an easy integration 
process through embedded intelligence in the devices. However, 
a human still needs to validate the functionality of the system 
and more importantly must ensure that the required quality and 
performance is delivered. This is done during the ramp-up 
phase, where the system is assembled and tested first-time. 
System adaptations and a lack of standard procedures make the 
ramp-up process still largely dependent on the operator’s 
experience level. A major problem that currently occurs during 
ramp-up, is a loss of knowledge and information due to a lack of 
means to capture the human’s experience. Acquiring this 
information can be used to simplify future ramp-up cases as 
additional insights about change actions and their effect on the 
system could be revealed. Hence, this paper proposes a decision-
support framework for plug-and-produce assembly systems 
that will help to reduce the ramp-up effort and ultimately 
shorten ramp-up time. As an illustrative example, a glueing 
station developed as part of the European project openMOS is 
considered. 

Keywords— decision-support framework; ramp-up; plug-and-
produce; expert system; learning. 

I. INTRODUCTION 

In the context of a globally competitive market, it is vital 
for companies to rapidly respond to their customers’ needs by 
transferring products quicker from the design phase into full 
production. Adapting existing or introducing new products, 
usually requires some form of modification to the production 
system. Many efforts to shorten this period in industry have, 
however, proven to be insufficient [1]. These physical and 
process adaptations occur during the ramp-up period of the 
product lifecycle and can take in the automotive sector, for 
example, up to several months. While a variety of definitions 
for the term ramp-up exists, for the purpose of this paper, 
ramp-up is the activity that delivers systems which operate to 
an established quality and performance level. As finetuning of 
equipment and process adjustments need to take place during 
that phase, the need for human intervention is required [2]. But 
this and the absence of knowledge about the system and its 
operational behaviour, result in poorly understood and lengthy 
ramp-up processes [19]. Therefore, as most of the complexity 
is dealt with by the operator, the effectiveness of the ramp-up 
is largely dependent on the operator’s level of expertise and 

knowledge. In spite of this, the visibility of decisions taken 
during that phase is often not given as the user’s decisions are 
currently not captured. This means that a lot of knowledge that 
could facilitate future ramp-ups is lost. 

Plug-and-produce systems are expected to bring advances 
in the way data are made available. For one, automation 
devices can be rapidly introduced into production through a 
level of embedded intelligence. Moreover, a cyber-physical 
representation of the manufacturing system enables a high 
degree of agility. The idea of plug-and-produce manufacturing 
systems is not new. Two examples are European research 
projects such as IDEAS [3], where the adaptability of 
assembly equipment was proven, and PERFoRM [4], which 
targeted the need for increased flexibility and 
reconfigurability in the manufacturing domain. Applying the 
concept of plug-and-produce manufacturing systems to the 
ramp-up phase has yet not been addressed.  

The European project ‘open Dynamic Manufacturing 
Operating System for Smart ‘Plug-and-Produce’ automation 
components’ (openMOS) [5] targets the development of an 
innovative, openly accessible Plug-and-Produce (P&P) 
system platform. As part of openMOS, this work aims to 
contribute to the growing area of research in plug-and-produce 
assembly systems by proposing a decision-support framework 
that can increase the sustainability of these systems during 
ramp-up. This is envisioned to be achieved by bringing 
operational data and human knowledge together. Relevant 
information will be made available in a way that the operator’s 
decision-making for quick system adaptations is supported. It 
is expected that this will lead to reduced ramp-up time while 
simultaneously increasing the level of achieved performance 
during production.  

The remaining part of the paper proceeds as follows: a 
brief literature review is presented in Section II to back the 
problem definition in Section III. The decision-support 
framework is explained in Section IV, followed by an 
illustrative example in Section V. Finally, the conclusion in 
Section VI provides a summary and an outlook for future 
work. 

II. RELATED WORK 

Shortening ramp-up time has previously been considered 
in literature. Du et al. [1] present a methodology that allows 
the identification of system faults during ramp-up through the 
comparison of predicted and actual operational data. In [6], 
Terwiesch et al. describe a case study for production ramp-up 
and changeover in the hard disk drive industry, where a 
production process to be brought to full-scale production is 
assessed under consideration of quality and cost. The reported work is part of the openMOS project partially funded by 

the European Commission as part of the EC-H2020-IA (GA 680735).  



Even though ramp-up is a crucial step for manufacturing 
systems, difficulties already arise in the definition of the term 
ramp-up and its boundaries. For instance, rather than 
achieving high-volume production, the end of the ramp-up 
phase can be defined based on certain objective achievements, 
such as product quality [7], [8]. In [9], Doltsinis, et al. propose 
a framework for measuring production performance during 
ramp-ups. Their framework introduces a one-dimensional 
ramp-up performance index that combines the performance 
metrics equipment functionality, output quality and 
performance optimisation (including productivity, quality and 
time). While durations, processes, and tools for ramp-up 
might differ, common characteristics have been widely 
discussed. Surbier et al. [10] summarise their findings in their 
state-of-the-art review as follows: (1) little information and 
preliminary knowledge about the product and the process is 
available, (2) tools and methods used for pilots are 
insufficient, and training for personnel might not be possible, 
(3) a lack of communication and cooperation, as well as trust 
issues among personnel exist, (4) production output and 
capacities, are low, but demand and cycle times are usually 
higher, (5) disturbances to product quality, process and supply 
chain occur frequently and uncertainty is high.  

The uncertainties that exist during ramp-up make the use 
of mathematical models difficult. In data-driven modelling, a 
model can be created with only limited information about the 
physical behaviour of the system based on collected 
measurements [11]. Uncovering unknown links between the 
input and output values of a system is the major role of 
learning in data-driven modelling. Machine learning has been 
widely applied in manufacturing to help uncover hidden 
patterns in data [12] with one area of application in the field 
of decision-support. Many machine learning approaches, 
however, rely on the availability of sufficient data samples to 
provide meaningful insights into reoccurring patterns. 
Although the development of machine learning techniques in 
ramp-up is currently still immature, Reinforcement Learning 
(RL) and Recommendation Systems (RS) have been applied 
to ramp-up scenarios. Doltsinis and Lohse [13] examine the 
practicality of more formal machine learning methods to assist 
decision-making during ramp-up. They investigate the 
efficiency of a Monte Carlo approach that applies 
reinforcement learning to a ramp-up scenario emulating 
Terwiesch and Xu’s [14] copy-exactly strategy of an assembly 
station. Another approach based on reinforcement learning 
was studied by Doltsinis et al. [2] where time savings can be 
achieved using a Q-learning algorithm. Willmann et al. [15] 
present the use of knowledge-based production ramp-up 
process (K-RAMP) for ramping-up a new product considering 
the production objectives and product specifications. Based on 
process knowledge, product requirements and operator’s 
expertise, the authors propose the use of an RS that provides 
rapid access to necessary product and process knowledge. 
These systems can also automatically extract relevant 
knowledge and generalise well for new processes. For 
creating recommendations as part of their decision-support 
framework, Scrimieri et al. [16] use a variant of the k-nearest 
neighbour algorithm in their work. The framework is targeted 
to the ramp-up process of modular assembly systems and 
learns configuration as well as tuning factors by considering 
past experience. 

Doltsinis et al. [9] highlight that the non-repetitiveness of 
the ramp-up phase increases the complexity of the process. 
This is because decisions about the logical or physical 

adjustments of the system are often made on a try and error 
basis. Nevertheless, Ball et al. [17] recognise the opportunity 
of being able to obtain performance improvements during 
ramp-up. This is seen in the introduction and first-time testing 
of novel production processes. In their paper, Fjällström et al. 
[8] study the source and type of information that can aid to 
enable production ramp-up. The authors find that in order to 
deal with critical events during ramp-up, information about 
the domain and problem at hand are particularly useful. It is 
also reported that differences between novice and experienced 
staff exist. Namely, less knowledgeable personnel can draw 
from less domain knowledge and might have more difficulties 
in its application. The authors conclude that personal 
knowledge is of great value in ramp-up scenarios and can save 
effort and time. Li and Rajagopalan [18] highlight how 
knowledge impacts production quality and cost, and 
emphasise that system setup times are influenced by learning. 
Terwiesch and Bohn [19] conduct experiments (induced 
learning) that, on the one hand, reduce production capacity in 
a short period of time, while on the other, model process 
improvements in form of learning. This is done to analyse the 
interactions between learning, capacity utilisation, and yields. 
The authors use dynamic programming techniques to derive 
value and cost of experiments. They find that long-term 
investment in learning often suffers from short-term cost 
improvements and that keeping the level of experimentation 
constant during ramp-up is not ideal.  

Glock and Grosse [20] review the literature on the topic of 
decision-support models for ramp-up. The authors state that 
process improvements leading to increased productivity and 
deduced errors are the results of learning that takes place 
during the ramp-up activity. Improving the aspect of 
knowledge capture and communication during ramp-up is an 
important research subject, helping to keep disturbances 
caused by the loss of human knowledge as small as possible. 
Yet few researchers propose a suitable learning approach and 
assisting tools (software) for ramp-up [21]. 

III. PROBLEM DEFINITION 

Despite all the good work, insufficient capture and reuse 
of human knowledge still contribute to the increased effort 
necessary for ramping-up a system. For this research work, it 
is hypothesised that additional insights can be gained from the 
human’s knowledge. Therefore, a means for gathering and 
communicating this data needs to be in place. 

While plug-and-produce manufacturing systems reduce 
the ramp-up effort through their level of modularity and 
intelligence, they do not deal with all the complexities 
emerging in system configurations. Nevertheless, the added 
functionalities and availability of information in P&P systems 
do offer new opportunities to address the ramp-up process. In 
fact, this links to well-established concepts from multiple 
advances in P&P, which provide so-called Skills, Skill 
Requirements and Recipes [22], [23]. Simply put, these 
concepts are used to describe an assembly process with an 
underlying relationship of the Product, Process and Resource 
(PPR). A Skill represents assembly process capability 
essential for the execution of a process by the equipment. 
Depending on the level of granularity, skills can either be 
atomic or composite. An atomic skill describes elementary 
skills such as pick and place, while a composite skill 
comprises these lower level skills to more complex ones. 
Skills fulfil a set of Skill Requirements needed for the 
manufacture of a product. The execution of skills requires the 



instantiation of its execution parameters defined as a Recipe. 
The Recipe can be linked to the fulfilment of a set of skill 
requirements, which enable the creation of products. These 
models are used in the openMOS project to provide easy 
access to data and structured information about the assembly 
process, product, and equipment.  

Referring to the performance metrics proposed in [9], 
ramp-up can be divided into three parts: functionality, quality, 
performance. Linking this to a P&P context (Fig. 1), the first 
step is to guarantee that the system functionality is provided. 
This means that all the equipment modules need to be set up 
accordingly and the skills need to be tested. The next part of 
ramp-up foresees the introduction of target products into the 
system. For this, the operator also must guarantee that for each 
product the right recipes in the form of software and hardware 
settings to deliver the product exist. After the functioning step 
of the ramp-up is guaranteed, the product quality needs to be 
assured given the product description. In cases where the 
quality does not meet the required level, equipment and 
process adjustments done by the human will be essential. 
Once the product quality is ensured, the system performance 
under consideration of production targets is considered. As 
potentially several recipes can be defined, fine-tuning these 
input parameters within a valid range can bring performance 
improvements. In order for the human to be able to decide 
whether the performance targets are reached, easy access to 
system information and Key Performance Indicators (KPIs) 
are required. Any changes made at that point can also have an 
effect on the product quality again, so a reassessment will be 
needed. Optimal quality and performance targets might not be 
able to be reached simultaneously and a trade-off between 
these two metrics is most likely.  

In this context, this work proposes a decision-support 
framework for ramp-up. It is designed to leverage data from 
this phase to assist the operator in making decisions that will 
lead to shortened ramp-up effort and, ultimately, reduced time. 
As the ramp-up is still very human-centric, the operator must 
be fully integrated into the framework. Reviewing the 
literature implied that the application of machine learning 
models to the ramp-up case can create a knowledge base that 
can guide the human in the absence of experience through 
future reconfigurations and product introductions. Such a 
framework must be able to work within the particular nature 
of the ramp-up process. For example, the uniqueness of 

systems and low availability of data during ramp-up have to 
be taken into account for choosing suitable data-driven 
decision models. 

IV. DECISION-SUPPORT FRAMEWORK 

The intended decision-support framework (Fig. 2) aims to 
better integrate the operator into the ramp-up activity. For this, 
the framework contains means to facilitate the data collection 
throughout the different stages of ramp-up. Through the use 
of learning mechanisms, knowledge extraction can be 
achieved based on the obtained data. In guiding the operator 
through these actions, the framework will allow to more 
rapidly bring the system to an operational state.  

For this work, ramp-up is understood as a sequence of 
different system states which capture the system settings at a 
given time. At the end of this sequence, a working system that 
performs to the established requirements is delivered. 
Between the individual system states, different actions can 
repeatedly be chosen and executed by the human until the 
required functionality, quality and performance are achieved. 
These actions can be classified into the following stages: 
assessment stage, change stage and test stage. During these 
stages, various operation, sensor and human-related data will 
be collected and stored in the openMOS Cloud. Data gathering 
on its own is not be very meaningful, particularly since 
production systems tend to be quite different. Therefore, it is 
important to gather the data in a structured and contextualised 
manner. The openMOS project uses in particular models for 
the product, equipment, execution, and assembly process that 
cater for the collection of data for plug-and-produce assembly 
systems. However, these models do not include the necessary 
elements for depicting human actions and their results on the 
system. As the operator’s knowledge and expertise can reveal 
insights about the ramp-up process that cannot be easily 
identified through the operational data or setup alone, it will 
be key to acquire information on human actions and resulting 
system behaviour to enable the capture human expertise. For 
that reason, additional semantic models have been defined to 
encapsulate equipment and process adjustments as well as 
human knowledge in the form of assessments and 
observations. 

Assessing the current state is necessary to decide whether 
the required performance targets are achievable or have been 
already met under the given setting. An assessment is a rating 

Fig. 1. Overview of Problem Definition. 



of functionality, quality, and performance that will be 
provided by the operator. In the case where the assessment 
shows that the system does not yet deliver the expected 
functionality, product quality and performance, either an 
equipment or process adjustment has to be made. All the 
interaction between the system and the operator is facilitated 
through a Human- Machine Interface (HMI) that has been 
developed as part of the openMOS project. So is, for example, 
an overview of the system, its individual equipment modules, 
and status provided including details about available skills and 
recipes, order instances and product lists offered. It is noted, 
that the operator can add observations about the functionality, 
quality or performance of an equipment to the openMOS 
system at any time of the ramp-up cycle. An optional 
comment in the form of free-form text can be added to the 
observation. This allows the provision of additional visibility 
about the system. 

Although this visibility can already speed up the ramp-up 
phase, the envisioned framework aims to further enhance this 
process by proposing potential improvement actions. Once a 
change is indicated, the Recommender System (RS) will be 
triggered to check for any recommendations related to the 
equipment or process under consideration. Recommendations 
are made accessible to the user through the HMI and can be 
described as a list of different suggested change actions and 
an overall evaluation based on predicted functionality, quality, 
and performance. For this work, it is intended to realise 
Recommender Systems to identify similar recipes in the 
historical knowledge data and then propose adjustment 
actions based on previous user assessments. In order to 
provide such recommendations, a hybrid RS will be 
developed to aid the decision-making during the ramp-up 
processes. This hybrid RS system will be composed of 
content-based and collaborative filtering models. The content-
based model aims to determine the most similar recipe in the 
historical data, while the collaborative model aims to identify 
the most appropriate adjustment action. The Recommender 
System will map the input recipes to a set of actions that can 
be executed by the operator to enhance the overall assessment 

score for the system performance. The mapping is achieved 
through a training procedure, which includes data collection, 
features extraction, model parameters optimisation and 
testing. At the beginning of the ramp-up process, it is expected 
that the recommendations will be less accurate due to the lack 
of sufficient data. However, as the ramp-up progresses, more 
and more data become available. All the information gathered 
by the system as well as information provided by the human 
is stored in the openMOS Cloud. The obtained data then serve 
as an input to data-driven models. This allows building a 
sufficient knowledge base over time so that recommendations 
will gradually improve.  

Once the operator has decided to undertake a change 
action and applied the alterations to the system, the system 
will be tested under this new configuration, resulting in a new 
system state. During the test stage, the operator will run a test 
execution for a skill, recipe or product on the current system 
setup. After this stage has been completed, a new system state 
including relevant KPIs exists and will again be required to be 
assessed by the operator. The different stages, i.e. assessment, 
change, and test, are repeated as long as the required 
production targets have not been deemed reached and 
accepted by the operator. 

V. ILLUSTRATIVE EXAMPLE 

On the basis of a physical demonstrator from the 
openMOS project, the concepts of the previously described 
decision-support framework are illustratively explained. The 
general operational task of this demonstrator is an industrial 
glueing process as part of an assembly step demonstrator.  

The glueing station consists of standard industrial 
components that have been retrofitted with plug-and-produce 
capabilities. The main component of the physical setup is a 
single ABB IRB120 6-axis industrial robot, which is 
connected to an IRC5 controller. A two-finger gripper has 
been fixed to the robot to hold a flat metal workpiece. An 
automated time-pressure dispensing unit (Fisnar JB1113N) is 
used. Glue is dispensed in a controlled manner through a 

Fig. 2. Overview of proposed decision-support framework for ramp-up. 



nozzle that has been mounted to the surrounding frame as the 
robot will manipulate the metal workpiece. It is to mention, 
that the demonstrator will be used in the future to collect initial 
ramp-up data to evaluate the effectiveness of the proposed 
framework. Therefore, additional sensors providing 
environmental and energy consumption information have 
been fitted to the glueing workstation.  

To prepare for the capture of process parameterisation and 
equipment adjustments, the glueing station has been mapped 
to its cyber-physical module representations as pictured in 
Fig. 3. The atomic skills for this workstation consist of pick, 
release, handle and dispense. At the higher hierarchical level, 
the composite skills of the workstation are raster glueing skill 
and frame pattern skill. For better readability, the skill 
requirements, which establish the composite skill for raster 
glueing, have been omitted but can be assumed to be similar 
to the skill requirements for the frame glueing composite skill. 
For both, processes and equipment modules, specific 
parameters can be selected to allow for a certain range of 
adjustment. In the given case, for example, the handle skill for 
the robot can be parameterised for operating the robot at 
different speeds, i.e. 20, 30, and 40 mm/s. For the glue 
dispenser, the dispense skill can take on the values 10, 16, or 
20 psi for setting the dispensing pressure. Moreover, the 
dispensing nozzle can be physically replaced to gain different 
line widths of 1.2 mm or 1.6 mm. If any of the process or 
equipment parameters are, however, not set fittingly, the 
desired product quality and performance will not be achieved. 
This is why ramping-up a system is such an important activity, 
as here all equipment and process parameters will be tweaked 
until this is the case. 

For this use case, two product variations (Product A and 
B) of an electronic package housed in a 3D printed enclosure 
are considered. The products can generally differ in the 
electronic packaging paint, glueing pattern, and enclosure. As 
the focus is on the glueing process, it is assumed that Product 
A and B at least vary in the glueing pattern that is applied to 
the product base. The two possible glueing options that are 
available are a frame and raster pattern. For simplicity, the 
focus for this demonstrator is solely on the process 

parameterisation and equipment adjustments. This means that 
for each pattern one or more recipes defining the glueing path 
can exist and a fitting interaction between the nozzle diameter, 
dispensing pressure and robot speed needs to be found. 

As an exemplary walk-through of how the proposed 
decision-support system is foreseen to help an operator during 
ramp-up, three outcomes of the glueing process can be seen in 
Fig. 4. The first result is achieved through a parameterisation 
of 10 psi. After a visual inspection by the operator, the 
produced pattern is deemed undesirable. This means that the 
raster glueing recipe has not been instantiated with the correct 
value for the dispensing pressure. When changing this value 
now through the HMI, the Recommender System will provide 
the operator with certain change actions, as shown in Fig. 5. 
As the decision about a suggested change lies with the 
operator, recommendations provided by the system cannot 
just be accepted but also discarded. This information, in 
addition to whether an advised change was actioned, will be 
taken into consideration for future learning steps to improve 
the quality of the recommendations. For the purpose of this 
example, it is assumed that the operator chooses to modify the 
dispensing pressure to 20 psi next. Once the change has been 
recorded, the raster glueing recipe is executed. The second run 
does also not provide the anticipated result as the line, in this 
case, turns out to be too thick for the intended purpose. Again, 
a change is initiated by the operator and the Recommender 
System will have updated its suggestions based on the latest 
data collected. In the last instance, the dispensing pressure is 
set to 16 psi, which results in a satisfactory outcome. It is noted 
that for all the steps undertaken, the operator can choose to 
add an observation, describing, for example, the produced 
outcome or reasons for actions taken in more detail.  

Fig. 3. Simplified overview of the cyber-physical representation of the glueing station and products under consideration. 

Fig. 4. Exemplary outcomes of the glueing process [24]. While outcome 3 
represents the desired outcome, 1 and 2 show unacceptable quality results 
(discontinuity of line; dispensed line too thick). 



VI. CONCLUSION 

In this paper, a framework to aid an operator in the 
decision-making during the ramp-up of plug-and-produce 
assembly systems is proposed. The framework sets out to 
reduce ramp-up time and effort through learning from ramp-
up actions and experience. For this, data-driven models will 
be leveraged to provide assistance in the form of 
recommended change actions to the human. An example of 
how the framework is intended to work is described with the 
help of an illustrative case for an assembly glueing step. As a 
first step of practically creating this framework, existing 
models for plug-and-produce assembly systems from the 
European project openMOS have been enhanced to capture 
the ramp-up data. In particular, models for representing 
equipment and process adjustments as well as human 
observations and assessments have been developed. Future 
work foresees to implement a hybrid Recommender System 
consisting of content-based and collaborative filtering models 
for which the characteristics of ramp-up, such as low data 
volume, have to be studied. The framework will be initially 
tested and evaluated by ramping up the glueing workstation 
described in this paper. However, to ensure the robustness and 
flexibility of the framework, other industrial use cases and 
ramp-up scenarios will be considered in the future.  
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